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Summary 
 
A large number of traffic accidents occur worldwide each year, of which a sizable 
portion involve pedestrians, making them a vulnerable group on the road. Many of 
these accidents occur due to visual distraction, meaning drivers and pedestrians fail 
to look at the persons, objects, or locations they should be looking at. 
 
In addition to this tendency for distraction, the eyes are a means of exchanging 
information between road users, via behaviors such as eye contact. However, the 
role of eye contact in traffic in connection with traffic safety and the decisions of road 
users is not yet entirely clear. For example, there is disagreement among experts 
about the extent to which driver-pedestrian eye contact is important in traffic 
interactions compared to vehicle motion cues. Further, with the advent of automated 
vehicles, the role of eye contact in traffic may change or disappear altogether, due to 
the absence of drivers (or their absence of vehicular control). 
 
One promising way to shed light on this matter might be to use eye-tracking, a 
technology which can measure the eye movements of road users. Insight into where, 
when, and how people distribute their attention in traffic might allow the engineering 
of solutions to mitigate the frequency and severity of accidents. Thus, alongside this 
technological transformation of traffic, new possibilities arise to boost the safety of 
vulnerable road users such as pedestrians. 
 
This dissertation aims to investigate the role of eye contact between drivers and 
pedestrians, as well as its influence on pedestrians’ road crossing intentions. 
Another aim of this dissertation is to assess the accuracy of eye-tracking devices 
and to objectively detect and operationalize driver-pedestrian eye contact using 
eye-tracking. Finally, this thesis aims to develop safety systems based on 
eye-tracking that can automatically analyze and contextualize gaze in traffic and 
warn vulnerable road users of danger. 
 
This thesis consists of four independently readable and empirical research papers, 
each presented as their own chapter. 
 
Chapter 2 is an online study conducted among 1835 participants, each of whom 
observed 13 animated videos twice of an approaching car from the perspective of a 
pedestrian wanting to cross a road. In some cases, the car yielded to the pedestrian, 
and in other cases, it did not. A virtual driver in the car made eye contact with the 
pedestrian at different onset and offset moments, or sometimes avoided eye contact, 
and participants (pedestrians) could press a key whenever they considered it safe to 
cross. The results of this study showed that, although the car’s kinematics had a 
dominant effect, eye contact also had an influence on the pedestrians’ crossing 
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intentions. In general, the driver’s eye contact made pedestrians feel safer and more 
likely to cross than an absence of eye contact. Moreover, the onset of the driver’s 
eye contact alongside the car’s braking led to a substantial increase in willingness to 
cross. Similarly, the offset of the driver’s eye contact alongside the car’s acceleration 
led to a marked decrease in willingness to cross. This study demonstrated the 
impact of eye contact in traffic and revealed that it is not a binary, static 
phenomenon, but a time-dependent, dynamic one. 
 
Chapter 3 benchmarks the actual accuracies of eye-tracking glasses in order to lay 
the foundation for the future objective detection and operationalization of eye 
contact. While some studies have tested the performance of mobile eye-trackers at 
different targets at eccentricities, few have measured the effect of dynamic 
conditions (similar to those experienced by drivers and pedestrians) on their 
accuracy. This information will be important to put detections of driver-pedestrian eye 
contact, and gaze on persons and objects (e.g., pedestrians and cars) in the traffic 
scene, into perspective. In a lab experiment with 36 participants, we assessed two 
recent mobile eye-trackers, the Tobii Pro Glasses 2 and the Tobii Pro Glasses 3, in 
scenarios where participants were permitted only eye movements (while seated), 
only eye and head movements (while seated), or eye, head, and body movements 
(while walking). Some insights from this study were that eccentricity (i.e., the extent 
to which the eyes need to rotate) worsened eye-tracking accuracy, but that 
dynamicity (i.e., the extent to which the user is moving) did not necessarily worsen 
accuracy. The Tobii 3 was also found to perform better all-round than the Tobii 2. The 
study also revealed eye-tracking accuracies reported by manufacturers were more 
favorable than values obtained in practice. 
 
Chapter 4 presents a method to objectively detect and operationalize 
driver-pedestrian eye contact using two synchronized eye-trackers and computer 
vision. In a staged experiment involving a driver-pedestrian interaction, 30 
participants played the role of a pedestrian standing on a curb or crossing a road in 
front of a stationary car, while sometimes looking at the driver. Eye contact was 
detected by tracking the gazes of both driver and pedestrian, and estimating the 
positions of the two parties with respect to each other via computer vision. The 
interactions, including the 3D gaze vectors of the persons, were also reconstructed 
as animations. Driver-pedestrian eye contact was operationalized as both road users 
simultaneously looking at each other within maximum angular errors of 4° each. This 
4° threshold also includes inaccuracies in the eye-trackers themselves. A useful 
by-product of this study was the technique to automatically analyze gaze data, which 
bypassed the need for manual annotation in eye-tracking analysis. One future 
application of the eye contact detection method might be safety systems in 
automated vehicles that brake when pedestrians or other vulnerable road users have 
not sought eye contact with the safety driver of the automated vehicle. 
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Given the above, the question arises whether this knowledge of road user gaze 
behavior, obtained via eye-tracking, can be used to create safety systems for drivers 
and pedestrians in the real world. The recent innovations in the field of AI and the 
availability of vision-language models provide a wealth of opportunities in this regard. 
Chapter 5 presents four related concepts of road user safety systems that use 
combinations of Tobii Pro Glasses 2 eye-tracking, YOLOv8 object detection, and 
image analysis using GPT-4V, a vision-language model, for the purposes of real-time 
and automatic analysis of gaze behavior and the estimation of risk in traffic. Such a 
system would be able to analyze the context of traffic scenes, where the user is (not) 
looking, and be able to warn the user (e.g., pedestrian, cyclist, or driver) about risky 
situations. The developed concepts were tested in traffic scenarios of a pedestrian 
walking in a parking lot, a car driving through urban streets, a distracted pedestrian 
crossing a street while using a mobile phone, and an additional scenario of a cyclist 
navigating an urban environment. The results were promising; automatic gaze 
analysis was achieved in near real-time using YOLOv8, GPT-4V risk ratings of traffic 
scenes correlated strongly with human risk ratings, and a combination of YOLOv8 
and GPT-4V showed potential for analyzing traffic scenes. This study offered 
real-world evaluations of prototype safety systems for road users, as a first step 
towards artificially intelligent wearable devices for use in traffic and beyond. 
 
This dissertation concludes with a recap of the main results of the four papers and a 
general discussion of their findings. It argues that while eye contact is neither as 
powerful a cue as kinematics nor essential for crossing, it is still a “should-have” in 
driver-pedestrian interactions as it can increase perceived safety and willingness to 
cross. It therefore concludes that certain types of external Human Machine 
Interfaces (eHMIs) – substitutes for the missing eye contact between pedestrians 
and automated vehicles – would be beneficial to maintain existing levels of comfort 
in interactions. This thesis also advocates the use of (mobile) eye-tracking to detect 
phenomena such as eye contact in traffic, but cautions against taking accuracy 
specifications at face value. That said, it operationalizes driver-pedestrian eye 
contact in a typical interaction as mutual gaze within 4° of each person’s eyes, 
including any eye-tracker inaccuracies. The dissertation also draws attention to the 
potential to combine mobile eye-tracking with computer vision and generative 
artificial intelligence to create context-aware safety systems for road users. It 
showcases the real-time, human-like capabilities of such systems via four concepts 
but tempers the former with limitations in terms of analysis quality and operating 
costs. Finally, this thesis also speculates about future applications of mobile 
eye-tracking and AI in the traffic, manufacturing, medical, education, and other 
domains, and recommends topics for further research into eye contact and 
eye-tracking. 
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The epilogue briefly covers a related study (in which I was a co-author) that suggests 
that eye contact in traffic may be an even more intricate phenomenon than 
previously discussed, especially in traffic cultures where formal rules, e.g., traffic 
lights and right of way, are not strictly adhered to. An online survey of 3857 drivers 
found that the reasons for making and avoiding eye contact could be sorted into 15 
distinct categories. For example, some drivers deliberately avoid eye contact or 
pretend not to have seen other nearby drivers in order to manipulate the situation to 
their advantage and gain right of way. Cultural differences in (the reasons behind) 
driver-driver eye contact were also found. These final observations provide food for 
thought regarding the level of social intelligence that future automated vehicles will 
need to possess in order to navigate complex, mixed traffic effectively, consisting of 
drivers, pedestrians, and other automated vehicles. 
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Samenvatting 
 
Wereldwijd gebeuren er elk jaar veel verkeersongevallen, waarvan een aanzienlijk 
deel voetgangers betreft, een kwetsbare groep op de weg. Veel van deze ongevallen 
gebeuren door visuele afleiding, wat betekent dat bestuurders en voetgangers niet 
naar de personen, objecten, of locaties kijken waar ze naar zouden moeten kijken. 
 
Behalve de neiging tot afleiding zijn de ogen ook een middel om informatie uit te 
wisselen tussen weggebruikers, via gedragingen zoals oogcontact. De rol van 
oogcontact in het verkeer in relatie tot verkeersveiligheid en de beslissingen die 
weggebruikers maken is echter nog niet helemaal duidelijk. Er is bijvoorbeeld 
onenigheid onder experts over de mate waarin oogcontact tussen bestuurder en 
voetganger belangrijk is in verkeers-interacties in vergelijking met signalen van 
voertuigbewegingen. Verder kan de rol van oogcontact in het verkeer veranderen of 
helemaal verdwijnen met de komst van geautomatiseerde voertuigen, vanwege de 
afwezigheid van bestuurders (of hun afwezigheid van voertuigcontrole). 
 
Een veelbelovende manier om licht op deze kwestie te werpen, zou het gebruik van 
eye-tracking kunnen zijn, een technologie die de oogbewegingen van weggebruikers 
kan meten. Inzicht in waar, wanneer en hoe mensen hun aandacht in het verkeer 
verdelen, kan het mogelijk maken om oplossingen te bedenken om de frequentie en 
ernst van ongelukken te verminderen. Zo ontstaan   er naast deze technologische 
transformatie van het verkeer nieuwe mogelijkheden om de veiligheid van kwetsbare 
weggebruikers, zoals voetgangers, te vergroten. 
 
Dit proefschrift heeft als doel de rol van oogcontact tussen bestuurders en 
voetgangers te onderzoeken, alsmede de invloed ervan op de intenties van 
voetgangers om de weg over te steken. Een ander doel van dit proefschrift is om de 
nauwkeurigheid van eye-tracking-apparaten te beoordelen en om oogcontact tussen 
bestuurder en voetganger objectief te detecteren en operationeel te maken met 
behulp van eye-tracking. Tot slot heeft dit proefschrift als doel om 
veiligheidssystemen te ontwikkelen op basis van eye-tracking, welke automatisch 
iemands blik in het verkeer kunnen analyseren en contextualiseren en kwetsbare 
weggebruikers kunnen waarschuwen voor gevaar. 
 
Dit proefschrift bestaat uit vier onafhankelijk leesbare en empirische 
onderzoeksartikelen, elk gepresenteerd als een eigen hoofdstuk. 
 
Hoofdstuk 2 is een online studie uitgevoerd onder 1835 deelnemers, die elk twee 
keer 13 geanimeerde video’s van een naderende auto bekeken vanuit het 
perspectief van een voetganger die een weg wilde oversteken. In sommige gevallen 
gaf de auto voorrang aan de voetganger, en in andere gevallen niet. Een virtuele 
bestuurder in de auto maakte oogcontact met de voetganger op verschillende begin- 
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en eindmomenten, of vermeed soms oogcontact, en deelnemers (voetgangers) 
konden op een toets drukken wanneer ze het veilig vonden om over te steken. De 
resultaten van deze studie toonden aan dat, hoewel de kinematica van de auto een 
dominant effect had, oogcontact ook invloed had op de oversteekintenties van de 
voetgangers. Over het algemeen zorgde het oogcontact van de bestuurder ervoor 
dat voetgangers zich veiliger voelden en eerder geneigd waren om over te steken 
dan het ontbreken van oogcontact. Bovendien leidde de aanvang van het oogcontact 
van de bestuurder tezamen met het remmen van de auto tot een aanzienlijke 
toename van de bereidheid om over te steken. Evenzo leidde het einde van het 
oogcontact van de bestuurder tezamen met de acceleratie van de auto tot een 
duidelijke afname van de bereidheid om over te steken. Deze studie toonde de 
impact van oogcontact in het verkeer aan en onthulde dat het geen binair, statisch 
fenomeen is, maar een tijdsafhankelijk, dynamisch fenomeen. 
 
Hoofdstuk 3 vergelijkt de werkelijke nauwkeurigheid van eye-tracking brillen om de 
basis te leggen voor de toekomstige objectieve detectie en operationalisering van 
oogcontact. Hoewel sommige onderzoeken de prestaties van mobiele eye-trackers 
op verschillende afstanden en met doelen op excentriciteiten hebben getest, hebben 
er maar weinig het effect van dynamische omstandigheden (vergelijkbaar met die 
ervaren door bestuurders en voetgangers) op hun nauwkeurigheid gemeten. Deze 
informatie zal belangrijk zijn om detecties van oogcontact tussen bestuurder en 
voetganger en blik op personen en objecten (bv. voetgangers en auto’s) in het 
verkeer in perspectief te plaatsen. In een lab-experiment met 36 deelnemers hebben 
we twee recente mobiele eye-trackers, de Tobii Pro Glasses 2 en de Tobii Pro 
Glasses 3, beoordeeld in scenario’s waarin deelnemers alleen oogbewegingen 
(zittend), alleen oog- en hoofdbewegingen (zittend), of oog-, hoofd- en 
lichaamsbewegingen (lopen) mochten maken. Enkele inzichten uit deze studie 
waren dat excentriciteit (d.w.z. de mate waarin de ogen moeten roteren) de 
nauwkeurigheid van eye-tracking verslechterde, maar dat dynamiciteit (d.w.z. de 
mate waarin de gebruiker beweegt) niet noodzakelijkerwijs de nauwkeurigheid 
verslechterde. De Tobii 3 bleek ook allround beter te presteren dan de Tobii 2. De 
studie onthulde ook dat de door fabrikanten gerapporteerde nauwkeurigheid van 
eye-tracking gunstiger was dan de waarden die in de praktijk werden verkregen. 
 
Hoofdstuk 4 presenteert een methode om oogcontact tussen bestuurder en 
voetganger objectief te detecteren en te operationaliseren met behulp van twee 
gesynchroniseerde eye-trackers en computer vision. In een ‘gestaged’ experiment 
met een interactie tussen bestuurder en voetganger speelden 30 deelnemers de rol 
van een voetganger die op een stoeprand stond of een weg overstak voor een 
stilstaande auto, terwijl ze soms naar de bestuurder keken. Oogcontact werd 
gedetecteerd door de blikken van zowel bestuurder als voetganger te volgen en de 
posities van de twee partijen ten opzichte van elkaar te schatten via computer vision. 
De interacties, inclusief de 3D-blikvectoren van de personen, werden ook 
gereconstrueerd als animaties. Oogcontact tussen bestuurder en voetganger werd 
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geoperationaliseerd als beide weggebruikers die tegelijkertijd naar elkaar keken 
binnen maximale hoekafwijkingen van elk 4°. Deze drempel van 4° omdat ook 
onnauwkeurigheden in de eye-trackers zelf omvatten. Een nuttig bijproduct van deze 
studie was een techniek om automatisch blikgegevens te analyseren, waardoor de 
noodzaak van handmatige annotatie bij eye-tracking-analyse werd omzeild. Een 
toekomstige toepassing van de oogcontactdetectiemethode zou veiligheidssystemen 
in geautomatiseerde voertuigen kunnen zijn, die remmen wanneer voetgangers of 
andere kwetsbare weggebruikers geen oogcontact hebben gezocht met de 
veiligheidsbestuurder van het geautomatiseerde voertuig. 
 
Gegeven het bovenstaande rijst de vraag of deze kennis van het kijkgedrag van 
weggebruikers, verkregen via eye-tracking, kan worden gebruikt om 
veiligheidssystemen voor bestuurders en voetgangers in de echte wereld te creëren. 
De recente innovaties op het gebied van AI en de beschikbaarheid van 
vision-language-modellen bieden in dit opzicht een schat aan mogelijkheden. 
Hoofdstuk 5 presenteert vier gerelateerde concepten van 
verkeersveiligheidssystemen die combinaties van Tobii Pro Glasses 2 eye-tracking, 
YOLOv8-objectdetectie en beeldanalyse door GPT-4V, een vision-language model, 
gebruiken voor realtime en automatische analyse van kijkgedrag en de inschatting 
van risico’s in het verkeer. Een dergelijk systeem zou de context van 
verkeersscenario’s kunnen analyseren, waar de gebruiker (niet) naar kijkt, en de 
gebruiker (bijvoorbeeld voetganger, fietser of bestuurder) kunnen waarschuwen voor 
risicovolle situaties. De ontwikkelde concepten werden getest in verkeersscenario’s 
van een voetganger die op een parkeerplaats loopt, een auto die door de stad rijdt, 
een afgeleide voetganger die een straat oversteekt terwijl hij een mobiele telefoon 
gebruikt, en een extra scenario van een fietser die door een stedelijke omgeving 
navigeert. De resultaten waren veelbelovend; automatische kijkgedrag-analyse werd 
in bijna realtime bereikt met behulp van YOLOv8, GPT-4V-risicobeoordelingen van 
verkeersscenario’s correleerden sterk met menselijke risicobeoordelingen, en een 
combinatie van YOLOv8 en GPT-4V toonde potentieel voor het analyseren van 
verkeersscenario’s. Deze studie bood real-world evaluaties van prototype 
veiligheidssystemen voor weggebruikers, als een eerste stap naar kunstmatige 
intelligente draagbare apparaten voor gebruik in het verkeer en daarbuiten. 
 
Dit proefschrift wordt afgesloten met een samenvatting van de belangrijkste 
resultaten van de vier artikelen en een algemene bespreking van hun bevindingen. 
Het betoogt dat hoewel oogcontact niet zo’n krachtige cue is als kinematica en ook 
niet essentieel is voor het oversteken, het nog steeds een ‘must-have’ is in 
interacties tussen bestuurder en voetganger, omdat het de waargenomen veiligheid 
en bereidheid om over te steken kan vergroten. Het proefschrift concludeert daarom 
dat bepaalde typen external Human Machine Interfaces (eHMIs) – vervangers voor 
het ontbrekende oogcontact tussen voetgangers en geautomatiseerde voertuigen – 
gunstig zouden kunnen zijn om de bestaande niveaus van comfort in interacties te 
behouden. Dit  proefschrift  pleit ook voor het gebruik van (mobiele) eye-tracking  om 
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verschijnselen zoals oogcontact in het verkeer te detecteren, maar waarschuwt 
tegen het voor lief nemen van nauwkeurigheids-specificaties. Dat gezegd hebbende, 
operationaliseert het oogcontact tussen bestuurder en voetganger in een typische 
interactie als wederzijdse blik binnen 4° van de ogen van elke persoon, inclusief 
onnauwkeurigheden in de eye-tracker. Het proefschrift vestigt ook de aandacht op 
het potentieel om mobiele eye-tracking te combineren met computer vision en 
generatieve kunstmatige intelligentie om context-bewuste veiligheidssystemen voor 
weggebruikers te creëren. Het toont de real-time, mensachtige mogelijkheden van 
dergelijke systemen via vier concepten, maar tempert de eerste met beperkingen in 
termen van analyse-kwaliteit en operationele kosten. Tot slot speculeert dit 
proefschrift over toekomstige toepassingen van mobiele eye-tracking en AI in het 
verkeer, fabrieken, de medische sector, het onderwijs en andere domeinen, en 
beveelt onderwerpen aan voor verder onderzoek naar oogcontact en eye-tracking. 
 
De epiloog behandelt kort een verwant onderzoek (waarvan ik medeauteur was) dat 
suggereert dat oogcontact in het verkeer een nog ingewikkelder fenomeen kan zijn 
dan eerder besproken, vooral in culturen waar formele regels, zoals verkeerslichten 
en voorrang, niet strikt worden nageleefd. Een online enquête onder 3857 
bestuurders liet zien dat de redenen om oogcontact te maken en te vermijden in 15 
verschillende categorieën konden worden ingedeeld. Sommige bestuurders 
vermijden bijvoorbeeld opzettelijk oogcontact of doen alsof ze andere bestuurders in 
de buurt niet hebben gezien om de situatie in hun voordeel te manipuleren en 
voorrang te krijgen. Er werden ook culturele verschillen in (de redenen achter) 
oogcontact tussen bestuurders gevonden. Deze laatste observaties bieden stof tot 
nadenken over het niveau van sociale intelligentie dat toekomstige 
geautomatiseerde voertuigen moeten bezitten om effectief door complex, gemengd 
verkeer te navigeren, bestaande uit bestuurders, voetgangers, en andere 
geautomatiseerde voertuigen. 
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Introduction 
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1.1. Motivation 
The primary motivation for this dissertation is to help mitigate the high number of 
lives lost in traffic each year. This figure was 1.19 million road users in 2023, among 
whom 23% were pedestrians, numbers that have remained largely unchanged in the 
last two decades. This is not to mention the 20 to 50 million more people who suffer 
non-fatal injuries in traffic yearly, many of whom end up with a disability (World 
Health Organization, 2023). 
 
In the USA, 80% of yearly pedestrian fatalities happen in urban areas (National 
Highway Traffic Safety Administration, 2023), with approximately three-quarters of 
those killed in locations other than intersections and without sidewalks (Governors 
Highway Safety Association, 2023). In over 85% of all cases, pedestrian fatalities are 
due to frontal impacts by vehicles. Meanwhile, in the Netherlands, in 2022, 
pedestrian deaths accounted for 8% of all traffic-related fatalities (SWOV, 2023), and 
roughly three-quarters of those occurred in urban areas (European Road Safety 
Observatory, 2023). 
 
A pattern can be seen here: pedestrians are most often killed in frontal collisions with 
vehicles in urban settings, a problem that is exacerbated when there is a lack of road 
safety infrastructure (e.g., traffic lights, zebra crossings, sidewalks) and/or when 
traffic rules such as right of way are ambiguous. Many explanations for these 
casualties have been offered by the aforementioned reports, including inattention 
and distraction, for example due to mobile phones, in both drivers and pedestrians. 
That being said, a major consequence of such behaviors is an inability or a failure to 
communicate properly with the other road user. 
 
Several studies note that communication in traffic is a critical aspect of road safety 
(Ackermann et al., 2019; Kong et al., 2021; Zandi et al., 2020). Since communication 
almost always happens via either implicit or non-verbal cues (Lee et al., 2021; 
Rasouli et al., 2017), these behaviors are worth investigating. Markkula et al. (2020) 
define implicit communication as “a road user behavior which affects own movement 
or perception, but which can at the same time be interpreted as signaling something 
to or requesting something from another road user” (p. 741). Examples of implicit 
communication include pedestrian and vehicle orientation and motion, and gaze 
direction. While there is some overlap between these and non-verbal cues by 
definition, the latter typically refer to explicit communication or communicative 
actions directed specifically at other road users. Markkula et al. (2020) define explicit 
communication as “a road user behavior which does not affect own movement or 
perception, but which can be interpreted as signaling something to or requesting 
something from another road user” (p. 742; Italics added). Examples of this include 
eye contact, nodding, and hand gestures (Färber, 2016). 
 
Coming to the subject of gaze, a person’s gaze behavior may be considered the 
pattern of their gaze directions and durations in a given environment. The gaze 
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behavior of road users can offer a window into their minds, because it has been 
observed that there is a strong correlation between where a person is looking and 
what they are thinking about (Just & Carpenter, 1980). While, in isolation, gaze 
behavior on the road is an implicit cue (e.g., a pedestrian checking traffic lights 
before crossing a street), it can become an explicit cue when directed at other road 
users, e.g., a pedestrian looking at a driver before crossing a street. 
 
Eye contact is a special instance of gaze behavior and is particularly interesting due 
to its simultaneous potential for clarity and ambiguity as a cue. Past research has 
generally shown that eye contact, much like other types of road communication, can 
be beneficial for road safety, or at least perceived road safety (Habibovic et al., 2018; 
Malmsten Lundgren et al., 2017; Ren et al., 2016; Sucha et al., 2017). This claim is 
not without its detractors, however, and a few studies dispute its usefulness or even 
its occurrence (AlAdawy et al., 2019; Dey & Terken, 2017; Moore et al., 2019). 
 
Eye contact is also a challenging behavior to decipher. In an instant, it is able to 
convey the intentions and determination of a road user to another, and yet can also 
signal uncertainty and indecisiveness. Moreover, the psychological processes that 
underpin eye contact in traffic are complex and not yet fully understood. For 
instance, it is not entirely clear what goes through the minds of a driver and a 
pedestrian when they make eye contact as they simultaneously approach a junction, 
which leads to a crossing conflict and requires negotiation of right of way. 
 
An extra dimension of complexity is that eye contact often occurs in combination with 
other cues like pedestrian and vehicle motion, and its duration and time of onset vary 
widely from one road interaction to the next. It also is a two-way phenomenon, 
dependent on both driver and pedestrian to engage one another at the same time. 
All these factors make eye contact in traffic difficult to isolate and operationalize. 
 
Finally, with the advent of automated vehicles (AVs) and the entire or partial removal 
of drivers from the vehicle control loop, effectively becoming passengers or stand-by 
operators, more often inattentive or altogether absent, concerns about reductions in 
pedestrian safety arise (Färber, 2016; Habibovic et al., 2018; Malmsten Lundgren et 
al., 2017). This is primarily due to the ineffectiveness of eye contact (and other forms 
of non-verbal communication) in the traditional sense, since the AV’s “driver” 
(occupant) is either incapable of acknowledging and reciprocating the pedestrian’s 
non-verbal cues or is capable but this has no effect on the vehicle’s actions. 
Therefore, in preparation for this new era of traffic interactions, it is prudent to 
research and objectively describe road user behaviors like eye contact, in the 
interest of retaining or improving any safety benefits they bring, especially in a future 
when the behaviors themselves may no longer be able to occur. 
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1.2. Research gap 
Traffic studies often overlook the aforementioned complexities in eye contact and 
tend to reduce it to a one-sided, standalone, instantaneous, or binary action 
(Malmsten Lundgren et al., 2017; Ren et al., 2016; Sucha et al., 2017). In other 
words, they often record it from only one perspective, i.e., either the driver’s or the 
pedestrian’s, view it as independent from other cues, reduce it to one defining 
moment, or treat it as a dichotomy, i.e., simply either present or absent in a road 
interaction. 
 
These drawbacks raise the question of what methods and tools to use to best 
capture eye contact. Among some of the more recent studies, Lanzer et al. (2021) 
noted, based on manual annotation of naturalistic vehicle-pedestrian interaction 
videos recorded from the vehicle’s perspective, that about 63% of pedestrians gazed 
at least once in the direction of the approaching vehicle. Although this did not 
necessarily imply eye contact since the pedestrians’ exact gaze locations were 
unknown, it did highlight the difficulty in differentiating eye contact from glances at 
the vehicle or the environment when reviewing video footage. 
 
Belkada et al. (2024) introduced body, head, and eye features in a deep learning 
model to detect pedestrians’ eye contact attempts from images of driving scenes 
borrowed from existing autonomous driving datasets. They found that the model 
achieved the best performance when using features around the eyes only. The 
authors also provided annotations of 57 thousand instances of pedestrians’ looking 
behavior from three autonomous driving datasets. While this likely aids automatic 
detection in future studies, the dataset suffers from the same uncertainty pitfall of 
whether the pedestrians were really making eye contact. 
 
The same problem even affected studies that employed simultaneous direct 
observation of drivers and pedestrians interacting in real traffic, ultimately leading the 
researchers to remove eye contact from their observation protocol, as it was too 
difficult to determine with confidence (Lee et al., 2021). Earlier works using camera 
recordings and direct on-site observations of driver-pedestrian interactions fared 
similarly, encountering the same uncertainty problem (Sucha et al., 2017), with some 
of the papers advising the operationalization of eye contact as (at least) an arbitrary 
number of seconds of gaze in the direction of a road user (Rasouli et al., 2017). All 
these endeavors point to the larger problem of accurately determining the target 
object and duration of a road user’s gaze, a phenomenon of which eye contact is but 
one instance. 
 
One promising technique that does not face the above uncertainty pitfall, is resistant 
to timing variations, and also does not rely on subjective self-reports of eye contact 
by drivers and pedestrians, is eye-tracking. This technology has been used in 
automotive research for decades due to its ability to accurately localize a person’s 
gaze (Land & Lee, 1994; Mourant & Rockwell, 1972; Sodhi et al., 2002). Some of 
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these devices worked in real-time, were head-mounted, and in theory, portable, 
which made naturalistic studies of drivers in environments such as vehicle cockpits 
possible. However, the complexity of the eye-tracker setups and the need for cables 
and auxiliary equipment were drawbacks that hindered naturalistic studies of 
pedestrians on the road. 
 
More recently, the development of truly portable eye-trackers (often in the form of 
wearable glasses) that are mobile, lightweight, wireless, and require minimum setup 
has revolutionized traffic research by their ability to be used in outdoor environments, 
dynamic conditions, and tight spaces (Babić et al., 2020; Fotios et al., 2015; Gruden 
et al., 2021; Zito et al., 2015). With this have come investigations into 
driver-pedestrian eye contact, within the larger realm of studies on road user gaze 
behavior. For example, Nathanael et al. (2019) tracked the eyes of drivers on urban 
roads using a Tobii Pro Glasses 2 eye-tracker, and found that pedestrians gazed 
towards the vehicle in 65% of all interactions, including 11% in which eye contact 
occurred, i.e., the drivers gazed back at the pedestrians’ faces. The authors noted 
that in almost all of the latter cases, the crossing conflict was resolved solely on the 
basis of eye contact, without the need for additional cues. Similarly, De Winter et al. 
(2021) used the Tobii Pro Glasses 2 and observed that pedestrians navigating a 
parking lot sought eye contact with drivers of parked and moving cars for a median 
of 4.5% of the total experiment recording time, and that in 25% of cases where 
pedestrians looked in the direction of an approaching vehicle, they looked at the 
driver. 
 
In spite of mobile eye-tracking being a potentially effective tool to study the gaze 
behaviors (including eye contact) of road users, the technology suffers from a few 
problems: 
 
1. Compared to remote eye-trackers, wearable eye-tracking glasses encounter a 

number of challenges which might undermine their accuracy: 
a. Being used in conditions that are dynamic, which risks that the glasses slip 

from the position on the user’s face at which they were calibrated (Niehorster 
et al., 2020), have varying lighting conditions and disturbances from sunlight 
(e.g., Tatler et al., 2019), and involve different/larger target distances than the 
distance used for calibration (MacInnes et al., 2018). 

b. Less rigorous calibration procedures for the sake of user-friendliness (e.g., 
one-point calibration in the Tobii Pro Glasses 2 and 3 versus nine-point 
calibration in SR Research’s EyeLink 1000 Plus); 

c. Lower sampling frequencies than those in remote eye-trackers (e.g., 50 or 
100 Hz in the Tobii Pro Glasses models versus 2000 Hz in the EyeLink); 

d. Involuntary movement during calibration because of being head-mounted. 
2. Just one eye-tracker is insufficient to fully capture a phenomenon that involves 

the simultaneous gazes of multiple persons (e.g., joint attention or eye contact in 
traffic). 
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3. There is currently no easy way to automate both the analysis and 
contextualization of mobile eye-tracking data with respect to video footage of a 
user’s point of view, especially in real-time (Barz & Sonntag, 2021; Fong et al., 
2016). In other words, it is hard to determine automatically, i.e., without resorting 
partly or wholly to manual, post-hoc review, what object/person/environment 
features a user is looking at and what such gaze might mean in that context. 
 

1.3. Research goal 
Thus, in view of the research gaps, the goals of this PhD thesis are fourfold: 
 
1. Investigate the effect of eye contact in traffic on road user behavior, while 

considering eye contact as a complex and variable cue. 
2. Benchmark the accuracy of mobile eye-trackers under static and dynamic 

conditions. 
3. Operationalize driver-pedestrian eye contact fully using two eye-trackers. 
4. Develop a method to automatically analyze and contextualize mobile eye-tracking 

data in traffic scenarios, preferably in real-time. 
 
To elaborate, this thesis aims to provide a deeper understanding of the role and 
importance (if any) of eye contact between road users in traffic interactions, 
preferably with an emphasis on pedestrians, the most vulnerable road users (SWOV, 
2023; World Health Organization, 2023). Next, it tries to quantify how reliable the 
gaze measurements of mobile eye-trackers are under various conditions, as a 
prelude to using the devices in naturalistic traffic settings. That done, it strives to 
push the boundaries of using eye-tracking technology to operationalize 
driver-pedestrian eye contact, in order to better understand this communication 
strategy. Finally, it seeks to take the first steps towards developing systems that can 
automatically and in real-time, make sense of mobile eye-tracking data. The ultimate 
goal is to lay the groundwork for the future development of eye-tracking-based 
assistance and safety systems that can assess risk and provide gaze-contingent and 
context-specific feedback to a user (e.g., warnings, information bulletins), in a variety 
of environments. 
 
Based on the above goals and the automotive scope of this thesis, the main 
research questions may be formulated, respectively, as follows: 
 
1. What is the effect of eye contact, its timing, and its duration on the behavior of 

pedestrians in a traffic interaction? 
2. How accurate are mobile eye-trackers under various levels of dynamicity? 
3. How can eye contact between a driver and a pedestrian be detected and 

operationalized objectively? 
4. How can eye-tracking data of road users be automatically analyzed and 

contextualized for the purpose of traffic risk assessment and the development of 
safety systems? 
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A wide variety of methods are used to answer these research questions, ranging 
from questionnaires and crowdsourced, online experiments, to indoor re-creations of 
traffic scenarios and outdoor, naturalistic trials. This broad spectrum of techniques 
aims to lend validity to the findings in both real-world traffic applications and future 
laboratory-based research. 
 

1.4. Thesis outline 

 
Figure 1.1. Outline of the thesis chapters and their corresponding research papers. 
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This thesis is divided into six chapters, as shown in Figure 1.1. First, this introduction 
chapter provides a brief overview of the state of the art in eye contact and 
eye-tracking research in the traffic context. It also identifies research gaps in the 
literature, outlines the research goals of this thesis, and poses research questions. 
 
Chapter 2 contains a journal paper that explores the role of drivers’ eye contact in 
pedestrians’ feeling of safety to cross a road in front of an approaching car. The 
experiment was conducted online in a crowdsourced manner with a large sample 
size, using videos of a driver in an oncoming car as seen from a pedestrian’s 
perspective, generated from a simulated environment. The study is innovative in its 
treatment of eye contact as a nuanced, dynamic variable, i.e., not simply “present” or 
“absent” in a given interaction, but instead varying in its timing and duration, with 
different possible start and end points during the crossing conflict. The study is also 
innovative in its isolation of eye contact from other confounding driver states, such as 
distraction, drowsiness, or absence. Only the car’s yielding behavior was retained as 
an additional variable, allowing insight into the relative strength of drivers’ eye 
contact and vehicle motion as cues for pedestrians. Questionnaires were 
administered before and after the experiment to ascertain the validity of the findings 
against the opinions of pedestrians on the importance and usefulness of drivers’ eye 
contact for pedestrian safety. In this manner, Chapter 2 answers the first research 
question of this thesis on the role of eye contact in traffic. This chapter also reiterates 
safety concerns surrounding the potential disappearance of non-verbal cues like eye 
contact in future pedestrian interactions with automated vehicles. 
 
The results of Chapter 2 may find application in the development of AVs and in the 
design of traffic safety infrastructure, particularly about when and how these entities 
should communicate with pedestrians and other vulnerable road users (VRUs), 
informed by a better understanding of eye contact in traffic. 
 
Chapter 3 presents a journal paper that evaluates the eye-tracking accuracy of two 
popular mobile eye-trackers, the Tobii Pro Glasses 2 and the Tobii Pro Glasses 3 
(occasionally referred to simply as Tobii 2 and Tobii 3 in this thesis), under multiple 
levels of dynamic conditions. This paper forms an intermediate but necessary step 
by benchmarking the capabilities of modern eye-tracking glasses in situations with 
different levels of dynamicity, so that eye-tracking data may be interpreted correctly. 
The study acts as a precursor to future efforts to detect driver-pedestrian eye contact 
using mobile eye-tracking. While manufacturer-quoted accuracy specifications do 
exist, past research has found discrepancies between these reported values and the 
researchers’ own observed values, with the latter accuracies often being poorer 
(Ehinger et al., 2019; Holmqvist, 2017; Stuart et al., 2016). Chapter 3 is innovative in 
its assessment of accuracy as a function of dynamicity, as opposed to target 
eccentricity, target distance, or ambient illumination level, which are more common 
approaches in eye-tracker testing (MacInnes et al., 2018; Tatler et al., 2019). The 
experiment was performed in a laboratory setting with a moderate sample size of 
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participants who were, at times, allowed to (1) move only their eyes, (2) move only 
their eyes and their head, or (3) move their eyes, head, and body, while gazing at 
designated targets. In this way, Chapter 3 addresses the second research question 
of this thesis on the accuracy of the chosen tools for detecting eye contact. The tests 
in this chapter may also, by extension, provide insight into the reliability of mobile 
eye-tracking when dealing with head movements and eye movements of drivers and 
pedestrians in the real world.  
 
The applications of Chapter 3 lie in future advancements in eye-tracking technology, 
where the current findings may help develop more accurate and precise 
eye-trackers, especially in dynamic conditions or when gazing at eccentric targets. 
Such improvements will likely benefit research in various fields, including traffic 
safety, psychology, marketing, sports, video gaming, art, and human-computer 
interaction. 
 
The journal paper that comprises Chapter 4 proposes a new method to objectively 
detect and define driver-pedestrian eye contact using two synchronized eye-trackers, 
two cameras, and image recognition. It fills a major gap in the literature on eye 
contact measurement techniques by eliminating subjective, indirect, “third-person”, 
or one-sided assessments of eye contact between drivers and pedestrians, e.g., 
direct observations by researchers, reviews of traffic camera footage, self-reports by 
road users, estimations from road user head orientations, and eye-tracking of only 
one of the two parties. The study makes the technological leap from merely being 
able to infer eye contact between two road users to definitively detecting it, and 
validates this via a staged, indoor experiment with a moderate sample size that 
recreates a driver-pedestrian interaction involving eye contact. The paper 
operationalizes eye contact in a typical driver-pedestrian interaction as both persons 
looking at each other’s eyes simultaneously, within an error of 4° in gaze directions. 
In this manner, Chapter 4 answers the third research question of this thesis on how 
to detect and operationalize driver-pedestrian eye contact. The objective and precise 
definition may aid in the development of safety solutions to compensate for the lack 
of eye contact in pedestrian interactions with automated vehicles in the future. 
 
The findings of Chapter 4 are applicable to future efforts in modeling 
driver-pedestrian interactions and non-verbal communication in traffic. The method 
proposed could form the basis for safety systems incorporating eye-tracking and eye 
contact and operating from the pedestrian’s, driver’s, or vehicle’s perspective. 
Examples might include wearable devices and sensor modules in automated 
vehicles for detecting, interpreting, and if necessary, responding to eye contact (or 
more generally, non-verbal communication) between road users. Additionally, similar 
applications may be found in other areas where accurate detection of eye contact is 
useful, e.g., social interaction, education. 
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Chapter 5 contains a paper that explores the possibility to use eye-tracking to create 
a wearable, context-aware safety system for road users, by combining the former 
with object detection and generative AI. The study presents a demonstration of such 
a system that uses combinations of Tobii Pro Glasses 2 eye-tracking, the 
object-detection method YOLOv8, and the vision-language model GPT-4V. Test runs 
were performed in four distinct scenarios, ranging from an indoor scene observation 
and a pedestrian navigating a parking lot to a driver in an urban environment and a 
distracted pedestrian crossing a road while using a mobile phone. One novelty of this 
endeavor is the automatic context analysis of eye-tracking video and gaze data, 
eliminating the need for labor-intensive post-hoc annotation, environmental markers, 
and manual review of footage. Another is the provision of context-specific feedback 
to the user about instantaneous risk, in the form of a rating (0–100), and brief text 
about the user’s relation to the immediate environment and the biggest safety risks in 
the moment, both of which aim to increase the user’s situational awareness. Since 
this system is intended as a proof-of-concept, tests were restricted to a small number 
of trials in naturalistic environments. In this way, Chapter 5 answers the fourth and 
last research question of this thesis on automatically analyzing eye-tracking data and 
estimating traffic risk in order to develop safety systems. On a broader scale, 
Chapter 5 strengthens the applicability of eye-tracking technology to real-world 
applications in the field of traffic safety. 
 
In a similar vein as the previous chapter, the applications of Chapter 5 lie in the 
future development of real-time, wearable, and artificially intelligent assistance 
systems that can provide safety warnings, information bulletins, and 
context-appropriate feedback in a variety of settings, e.g., traffic (walking, cycling, 
driving), industrial work, social interaction, shopping, household chores, and 
human-computer interaction. The integration of eye-tracking with object detection 
and AI analysis can help raise situational awareness and aid in tasks requiring rapid 
contextualization of user focus in scenes. 
 
Finally, Chapter 6 recaps the main findings of all the preceding chapters of this 
thesis, and discusses the conclusions drawn from them. It also provides an outlook 
on the future of eye contact and eye-tracking in the traffic context and beyond, and 
offers recommendations for follow-up research. In the epilogue, Chapter 6 includes a 
brief discussion of a related, fifth paper in which I was a co-author. 
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Abstract 
Many fatal accidents that involve pedestrians occur at road crossings, and are 
attributed to a breakdown of communication between pedestrians and drivers. Thus, 
it is important to investigate how forms of communication in traffic, such as eye 
contact, influence crossing decisions. Thus far, there is little information about the 
effect of drivers’ eye contact on pedestrians’ perceived safety to cross the road. 
Existing studies treat eye contact as immutable, i.e., it is either present or absent in 
the whole interaction, an approach that overlooks the effect of the timing of eye 
contact. We present an online crowdsourced study that addresses this research gap. 
1835 participants viewed 13 videos of an approaching car twice, in random order, 
and held a key whenever they felt safe to cross. The videos differed in terms of 
whether the car yielded or not, whether the car driver made eye contact or not, and 
the times when the driver made eye contact. Participants also answered questions 
about their perceived intuitiveness of the driver’s eye contact behavior. The results 
showed that eye contact made people feel considerably safer to cross compared to 
no eye contact (an increase in keypress percentage from 31% to 50% was 
observed). In addition, the initiation and termination of eye contact affected 
perceived safety to cross more strongly than continuous eye contact and a lack of it, 
respectively. The car’s motion, however, was a more dominant factor. Additionally, 
the driver’s eye contact when the car braked was considered intuitive, and when it 
drove off, counterintuitive. In summary, this study demonstrates for the first time how 
drivers’ eye contact affects pedestrians’ perceived safety as a function of time in a 
dynamic scenario and questions the notion in recent literature that eye contact in 
road interactions is dispensable. These findings may be of interest in the 
development of automated vehicles (AVs), where the driver of the AV might not 
always be paying attention to the environment. 
 

2.1. Introduction 
Worldwide, more than 50% of traffic-related deaths are that of vulnerable road users 
such as pedestrians (World Health Organization, 2020). Most pedestrian deaths 
occur in urban areas at non-intersection locations (National Highway Traffic Safety 
Administration, 2020; SWOV, 2020). 
 
A possible cause of these casualties is a breakdown in communication with other 
road users such as car drivers (European Road Safety Observatory, 2018). Färber 
(2016) noted that road users communicate via informal means, such as eye contact, 
in addition to relying on formal traffic rules. Understanding the role of eye contact in 
traffic is a relevant topic in recent times, with the development of AVs in which the 
driver may be intermittently attentive. To illustrate, according to Google Scholar, from 
the 45 papers citing a recent paper on the effect of pedestrian’s eye contact on the 
speed of approaching vehicles (Ren et al., 2016), 30 (67%) are directly related to AV 
interaction with vulnerable road users, based on the titles of the citing works.  
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Thus far, a few studies have investigated the effect of drivers’ eye contact on 
pedestrians, as listed below: 
 
● In a Wizard of Oz experiment, Malmsten Lundgren et al. (2017; N = 13) found 

that pedestrians reported greater willingness to cross the road when the driver of 
a supposed AV made eye contact with them, compared to when the driver was 
inattentive by reading a newspaper or talking on the phone.  

● Yang (2017; N = 40) presented participants with pictures of a driver making eye 
contact, talking on the phone, sleeping, or being hidden from view by blinded 
windows. This study found that the driver’s eye contact made participants feel 
more certain they were safe to cross compared to when the driver was inattentive 
or hidden from view. 

● In a crowdsourcing study using images of an intersection from a cyclist’s 
perspective, Bazilinskyy et al. (2023) found that a driver’s eye contact increased 
the willingness of cyclists to cross compared to no driver’s eye contact. This 
effect was only found in their second experiment (N = 1086), in which observers 
were asked to rate features of an AV in the image; it was not found in their first 
experiment (N = 1260), in which participants made a quick go/stop decision. 

● In a Wizard of Oz study by Rodríguez Palmeiro et al. (2018; N = 24), no 
significant differences were observed between pedestrians’ moments of making a 
crossing decision between attentive-driver and distracted-driver conditions, 
including a distracted driver reading a newspaper. 

● In another Wizard of Oz study by Faas et al. (2021; N = 65), pedestrians felt safer 
to cross in front of a car with a driver making eye contact compared to a driver 
reading a newspaper or a car with blinded windows. No significant differences 
were observed, however, in terms of crossing onset times. 

● In a study using a head-mounted display, Núñez Velasco et al. (2021; N = 20) let 
pedestrians cross a virtual road in front of an AV with an external Human 
Machine Interface (eHMI), which featured an attentive driver, a distracted driver, 
or no driver. The study concluded that “the most important factor affecting 
pedestrians’ road crossing behavior was the motion cues derived from the 
vehicle, rather than the presence or state of the driver. This raises the question 
about the needs, purpose, and added value of eHMIs” (p. 57). 

● In a virtual reality study, Chang et al. (2017; N = 15) evaluated an eHMI in the 
form of artificial eyes and found that pedestrians reached a correct crossing 
decision faster and reported feeling safer when the eyes made eye contact with 
them, compared to when they did not. Similar eHMI concepts were proposed by 
Alvarez et al. (2019, 2020), Jaguar Land Rover (2018), Löcken et al. (2019), 
Mahadevan et al. (2018), Pennycooke (2012), Verma et al. (2019), and Wang et 
al. (2021). In Löcken et al. (2019), the virtual eyes concept came out as the most 
untrustworthy from a total of five eHMI concepts. Additionally, Furuya et al. (2021) 
tested a virtual human embodiment in AV-pedestrian interaction and found that a 
‘driver that looks at you’ was preferred over ‘no driver’ and a ‘static driver’ by 25 
out of 26 participants. 
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From the above, it appears that drivers’ eye contact can, in some cases, make 
pedestrians feel safer to cross as compared to no eye contact. These findings are in 
line with research in social and evolutionary psychology, suggesting that eye contact 
has various functional rules, including signaling, recognizing, facilitating joint 
attention, and encouraging compliance (Argyle & Dean, 1965; Hamlet et al., 1984; 
Tomasello et al., 2007).  
 
However, most of the studies listed earlier concerned situations where the driver was 
completely disengaged from the driving task, for example by reading a newspaper. 
These are unlikely scenarios to encounter on real roads since AVs are not yet at a 
level of automation that (legally) allows drivers to be this lax at the wheel. Thus, the 
positive impact of drivers’ eye contact on pedestrians’ crossing behavior noted by the 
above studies may be because these studies used a completely disengaged driver 
as the baseline, instead of simply an attentive driver who does not make eye contact. 
 
More problematically, the above studies used only two simplified conditions: eye 
contact is either present or absent in the crossing conflict. They also used only a 
single go/stop decision moment without examining the evolution of such 
decision-making as the car is approaching. Since eye contact is a phenomenon that 
spans a finite length of time, and because traffic interactions themselves are typically 
brief affairs, there is incentive to investigate eye contact in relation to crossing 
behavior as a function of time. The results of such an approach would provide a 
more truthful account of the importance of eye contact on the road. 
 
At the same time, it has been argued that implicit communication cues, viz. car 
speed and distance are probably more dominant cues for pedestrians to understand 
the intention of an approaching car (Clamann et al., 2017; Dey & Terken, 2017; Lee 
et al., 2021; Núñez Velasco et al., 2021). In an online survey study, AlAdawy et al. 
(2019) reported that pedestrians are usually unable to see the driver through the 
windshield because of sunshine, shadows, glare, or darkness. In the same vein, it 
has been noted that drivers are less compelled than pedestrians to make eye 
contact (Sucha et al., 2017) and that pedestrians may not even notice the absence 
of a driver (Rothenbücher et al., 2016). Moore et al. (2019) devoted an entire paper 
to arguing that eHMIs are superfluous, as pedestrians can judge whether it is safe to 
cross based solely on the kinematics of the approaching car. 
 
In summary, research so far suggests that drivers’ eye contact may encourage 
vulnerable road users to cross the road, but that implicit communication is more 
dominant. However, there appears to be neither systematic investigation that isolates 
drivers’ eye contact from other confounding driver behaviors (e.g., being distracted) 
nor research about the effects of eye contact timing on pedestrians’ perception of 
safety and crossing decisions. In the present online crowdsourced study, we 
examined participants’ perceived safety to cross the road in front of an approaching 
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car, measured by means of a keypress response, for various timings of a driver’s eye 
contact. 
 
It was hypothesized that pedestrians feel safer to cross the road when the driver 
makes eye contact with them compared to when the driver does not make eye 
contact. The initiation of eye contact is a salient event due to the head turn involved. 
Thus, it is possible that not only eye contact itself, but also the change in the state of 
a driver’s eye contact influences the pedestrian’s crossing decisions. Furthermore, it 
is plausible that the highest perceived safety to cross is achieved when the change 
in a car’s state of yielding (i.e., the initiation of braking) accompanies and 
complements a change in the state of a driver’s eye contact (i.e., the initiation of eye 
contact). 
 

2.2. Methods 
2.2.1. Videos 
Participants watched a set of 13 videos twice. Each video presented the viewpoint of 
a pedestrian standing on a sidewalk while a car (Smart Fortwo) with a driver was 
approaching from the left on a two-lane, 10 m-wide road. In 11 videos, the car 
yielded, and in 2 videos, it did not. Furthermore, in 11 videos, the driver made eye 
contact, and in 2 videos, he did not. The videos differed based on the initiation and 
termination of the driver’s eye contact. 
 
The videos were generated using an open-source simulator built in Unity3D 
(Bazilinskyy et al., 2020). They had a frame rate of 25 fps and a resolution of 
1280×720 pixels. The videos included the engine sound of an approaching car 
(stereo, sample rate: 48 kHz). Videos were shown to participants via the cloud 
platform Heroku (https://www.heroku.com). The virtual camera in the animation was 
positioned 1.67 m above the pavement, which itself was 0.25 m above the road. The 
camera was also angled to obtain a full view of the road and was 0.7 m from the 
edge of the pavement. These values were regarded as comparable to the eye 
position of a typical pedestrian standing on the curb and turning to look at an 
approaching car. The field of view of the camera was set to relatively low values of 
21 deg horizontally and 12 deg vertically, creating a ‘zoomed in’ effect. A narrow field 
of view was chosen to mimic the psychological experience of focused attention on 
approaching cars in real traffic. Wider fields of view were tried in the design of the 
experiment but were deemed less suitable, as in those cases, the car occupied a 
smaller part of the computer screen, which itself subtends only a limited field of view 
for the participant. Narrower fields of view, on the other hand, caused parts of the 
road and sidewalks to go out of sight, which was undesirable. 
 
The 11 videos in which the car yielded were 31.0 s long, and the 2 videos in which 
the car did not yield were 21.0 s long. All videos started with a black screen lasting 1 
s to prevent abrupt transitions between videos. The driver’s eye contact in the videos 
was implemented by rotating the driver’s head from its default straight-ahead 
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orientation to the orientation of the line connecting the driver’s and pedestrian’s 
heads. Initiation and termination of eye contact was achieved by turning the driver’s 
head between these two orientations in 0.2–0.3 s. While making eye contact, the 
driver’s head smoothly tracked the pedestrian’s as the car approached. 
 
The car’s initial speed and longitudinal distance relative to the pedestrian (i.e., the 
camera’s point of view in the videos) were 13.2 km/h and 66 m, respectively. It was 
expected that at lower speed, the effect of explicit communication, such as the 
driver’s eye contact, becomes more important relative to the effect of implicit 
communication, such as the car’s speed (Dey et al., 2021; Färber, 2016; Merat et al., 
2018; Schneemann & Gohl, 2016). 
 
In case the car yielded, it did so at a deceleration of 1 m/s2, starting at a distance of 
19.8 m (13.6 s) from the pedestrian and coming to a stop at a distance of 13.7 m 
(17.6 s). Distances were considered longitudinally between the location of the 
pedestrian’s head (i.e., the camera’s position) and the car’s center. Given the Smart 
Fortwo’s length of 2.695 m, the distance from the car’s front end to the pedestrian at 
full stop was 12.35 m. Although the distance at stop was high compared to what one 
might see in real-life scenarios, it did not appear as high due to the low field of view 
(see Figure 2.1). Shorter distances were tried, but they caused the car to be partially 
or entirely out of view when stopped. The car stood still for 5.3 s, and then drove off 
with an acceleration of 1 m/s2. Acceleration and deceleration values were set 
according to what was deemed a gentle change of speed for a Smart Fortwo, that is, 
about one-third of its maximum acceleration of 3.47 m/s2, calculated based on a 
0–60 km/h time of 4.8 s (Smart, 2021). The driver went out of sight 26.5 s into the 
videos involving a yielding car. For videos involving a non-yielding car, the driver 
went out of sight after 16.7 s from the start of the video. 
 
Table 2.1 summarizes the characteristics of the videos in terms of yielding behavior 
of the car and eye contact interval. The reasoning behind the various eye contact 
intervals was that they represented all possible combinations between five distinct 
moments in a typical driver-pedestrian interaction: 
 
1. The moment the approaching car is first visible (‘First visible’) 
2. The moment the car starts to slow down (‘Braking start’) 
3. The moment the car reaches a standstill in front of the pedestrian (‘Full stop’) 
4. The moment the car starts to move again (‘Take-off’) 
5. The moment the car leaves the pedestrian’s view (‘Out of sight’) 
 
In the case of a non-yielding car, only the first and last entries from the above are 
applicable. This rationale led to a total of 13 videos, each involving a unique interval 
of eye contact. Figure 2.1 showcases screenshots from videos with and without the 
driver’s eye contact. 
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Table 2.1 
Characteristics of the videos 
Video Yielding Eye contact interval Timing of eye contact 
1 Yes None No eye contact 
2 Yes 1.0–17.6 First visible–Full stop 
3 Yes 1.0–22.9 First visible–Take-off 
4 Yes 17.6–22.9 Full stop–Take-off 
5 Yes 22.9–26.5 Take off–Out of sight 
6 Yes 1.0–26.5 First visible–Out of sight 
7 Yes 17.6–26.5 Full stop–Out of sight 
8 Yes 1.0–13.6 First visible–Braking start 
9 Yes 13.6–17.6 Braking start–Full stop 
10 Yes 13.6–22.9 Braking start–Take-off 
11 Yes 13.6–26.5 Braking start–Out of sight 
12 No None No eye contact 
13 No 1.0–16.7 First visible–Out of sight 

 

 
Figure 2.1a. Screenshot from a video showing the driver making eye contact while the car 
was standing still. 
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Figure 2.1b. Screenshot from a video showing the driver not making eye contact while the 
car was standing still. 
 
2.2.2. Participants 
Two thousand participants were recruited from across the world via the online job 
portal Appen (https://www.appen.com). The job was titled “Eye contact in traffic”. In 
Appen, participants first encountered a brief description of the study, followed by a 
question asking for informed consent. This research was approved by the Human 
Research Ethics Committee of the Delft University of Technology (reference number 
1444). 
 
2.2.3. Procedure 
After providing informed consent, participants completed a questionnaire on their 
basic data and road behavior. Next, a link took them to the experiment on the Heroku 
platform, where the videos were preloaded to minimize delays, and the participants 
were presented with the following task instructions:  
 
You will watch videos of approaching cars from the point of view of a pedestrian 
standing on the side of the road. Some cars will stop and other cars will not stop. In 
some videos, the driver will make eye contact with you. Imagine that you are the 
pedestrian and that you want to cross the road. Before the start of each video, you 
will briefly see a black screen. Please PRESS AND HOLD the ‘F’ key on your 
keyboard during this time. Once the video starts, continue holding the key as long as 
you feel safe to cross. RELEASE the key if you do not feel safe to cross anymore. 
You can press, hold and release the key as many times as you want per video. 
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Before proceeding, participants calibrated their device’s volume against a piece of 
royalty-free music to ensure that they could hear the video sound clearly. They were 
then shown the 13 videos twice, all in random order, with a break after every 10 
videos (the last batch contained only 6 videos). Under each video, the following text 
was present: “PRESS AND HOLD the ‘F’ key when you feel safe to cross. RELEASE 
the key when you don’t feel safe.” 
 
After each video, participants were presented with a question and a statement: 
 
1) “Did the driver make eye contact with you?” (No, Yes) 
2) “The driver’s eye contact behaviour was intuitive for me to decide whether I could 

or could not cross” (five-point Likert scale ranging from ‘Completely disagree’ to 
‘Completely agree’) 

 
In addition, a total of 10 true-false test questions (e.g., “Bananas are yellow”) were 
randomly inserted in each batch for each participant. These questions were used to 
screen out inattentive participants.  
 
After all 26 videos were viewed, the penultimate page presented three additional 
statements: 
 
1) “Eye contact between drivers and pedestrians is important for road safety” 
2) “I prefer eye contact to no eye contact” 
3) “I could concentrate well during the study” 
 
Participants responded to these statements on five-point Likert scales of ‘Completely 
disagree’ to ‘Completely agree’.  
 
On the final page, participants received a unique worker code that they were 
required to enter in Appen as proof of completing the experiment and to receive 
payment. Each participant received a reimbursement of $0.45. 
 
2.2.4. Analyses 
First, participants who did not yield data or who may not have taken the task 
seriously were screened out. Next, trials that took longer than 33 s (for videos with a 
yielding car) or 23 s (for videos with a non-yielding car), i.e., more than 2 s longer 
than the nominal video duration were excluded. This exclusion was done to remove 
trials where participants may have suffered from technical problems such as lag 
while rendering in the browser or buffering of videos. 
 
The first dependent variable, pedestrians’ perceived safety, was analyzed by 
visualizing and statistically comparing the percentage of trials in which participants 
pressed the response key, for different videos. Statistical comparisons between 
videos were made at the level of participants using paired samples t-tests for each 
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0.1 s of video time. A conservative significance level (alpha = 0.001) was used to 
minimize the probability of false positives. Our approach is similar to Manhattan plots 
in molecular genetics, which use a stringent alpha value to visualize which of many 
genetic variants are predictive of a particular phenotype (Cook et al., 2013). 
 
The second dependent variable was the mean intuitiveness rating of eye contact in 
helping make a crossing decision. Mean scores of the different videos were 
compared, and pairs of conditions were compared using paired samples t-tests, with 
an alpha value of 0.005 (Benjamin et al., 2018). 
  
In addition, a performance score was calculated for the 11 videos depicting a yielding 
car. The performance score was calculated as: ((mean keypress percentage over the 
interval 13.6–22.9 s) + (100% − mean keypress percentage over the interval 
22.9–26.5 s))/2. Accordingly, the performance score represents the extent to which 
participants felt safe to cross when it was indeed safe to cross (i.e., the braking and 
standing still phases) combined with the degree to which participants did not feel 
safe to cross when it was indeed unsafe to cross (i.e., the take-off phase). 
 

2.3. Results 
Participants who indicated that they did not read the instructions (n = 29), who 
indicated that they were younger than 18 (n = 3), who completed the study within 
1000 s, suggesting cheating or carelessness (n = 89), who could not be linked to the 
data due to a data storage issue or cheating (n = 14), who made more than 2 
mistakes out of the 10 test questions (n = 16), or who suffered video playback 
delays, defined as more than 2 videos taking more than 5 s too long to complete (n = 
49) were excluded, leaving 1835 participants from 64 countries. Multiple 
participations from the same IP address were permitted, as there was no reliable 
way to determine whether duplicate IPs were due to one person or multiple persons 
completing the experiment on one device or multiple devices connected to the same 
network. Out of the total number of 47710 trials (1835 participants x 26 trials per 
person), 46277 trials (97.0%) were retained, whereas the rest of the trials were 
excluded due to playback lags of more than 2 s. 
 
The mean study completion time was 39.1 min (SD = 18.8 min, median = 33.0 min). 
The study yielded a mean satisfaction score of 4.4 on a scale of 1 (very dissatisfied) 
to 5 (very satisfied) by 86 people who completed the optional satisfaction survey 
offered by Appen. The five most represented countries were Venezuela (n = 1098), 
the United States (n = 210), Russia (n = 70), India (n = 59), and Egypt (n = 57). The 
participants consisted of 1159 males, 668 females, and 8 people who indicated ‘I 
prefer not to respond’. The mean age was 34.9 years (SD = 10.9). A total of 100 
participants indicated that they were ‘never’ pedestrians, 68 indicated ‘less than once 
a month’, 166 ‘once a month to once a week’, 487 ‘1 to 3 days a week’, 376 ‘4 to 6 
days a week’, and 580 ‘every day’ (58 participants indicated ‘I prefer not to respond’).  
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2.3.1. Keypress Percentage as a Measure of Perceived Safety to Cross 
Figure 2.2 shows the mean keypress percentage for yielding cars for driver’s eye 
contact throughout versus no driver’s eye contact. It can be seen that pedestrians 
perceived the situation as less and less safe until the car began braking. As the car 
braked, perceived safety increased and remained high while the car was fully 
stopped, only to drop sharply after the car took off. This sharp drop started at 
200–300 ms and has the highest slope at 300–600 ms after the car drove off. This 
drop is consistent with the reaction time distribution to a discrete stimulus (e.g., 
Ratcliff, 1993), which in this case would be the onset of motion of the car. Figure 2.2 
further shows that there was also a small increase in the mean keypress percentage 
after the car went out of sight.  
 
It can also be seen from Figure 2.2 that the driver’s eye contact did not significantly 
affect perceived safety before the car started braking and for most of the car’s 
take-off. The driver’s eye contact substantially increased perceived safety compared 
to a lack of it in a time window starting soon after the car started braking and ending 
shortly after the car took off again. 
 

Figure 2.2. Percentage of trials in which the response key was pressed for no driver’s eye 
contact (Video 1) and driver’s eye contact throughout (Video 6), for the videos in which the 
car yielded. The bold sections of the lines indicate that there was eye contact at those 
moments. The asterisks at the bottom indicate significant differences, p < 0.001. 
 
For non-yielding cars (Figure 2.3), perceived safety decreased throughout the video, 
which is explained by the fact that the car got closer and closer to the pedestrian but 
without slowing down. Similar to Figure 2.2, a slight increase in perceived safety can 
be seen after the non-yielding car went out of sight after passing the pedestrian. 
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Figure 2.3. Percentage of trials in which the response key was pressed for no driver’s eye 
contact (Video 12) and driver’s eye contact throughout (Video 13), for the videos in which the 
car did not yield. The bold sections of the lines indicate that there was eye contact at those 
moments. The asterisks at the bottom indicate significant differences between pairs of 
conditions, p < 0.001. 
 
Figure 2.4 shows that if the driver started making eye contact when the car started to 
brake (Video 11), perceived safety during the braking phase was significantly higher 
compared to when eye contact was already present at the beginning of the video 
(Video 6). In other words, the initiation of eye contact alongside the initiation of 
braking positively affected pedestrians’ perceived safety compared to eye contact 
throughout the encounter. From Figure 2.4, it can be seen that eye contact while 
braking had a strong effect: when the car came to a stop, the keypress percentage 
was 31.3% for Video 7 but 49.7% for Video 11 (i.e., a 59% increase). 
 
Figure 2.4 further shows that the initiation of eye contact when the car came to a 
stop (Video 7) gave a small boost to perceived safety, so that in parts of the standing 
still and driving off phases, it was higher compared to eye contact throughout (Video 
6). So again, the initiation of eye contact had a reinforcing effect on the keypress 
percentage compared to continuous eye contact from the beginning of the video. 
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Figure 2.4. Percentage of trials in which the response key was pressed for driver’s eye 
contact throughout (Video 6), and eye contact initiation when the car started to brake (Video 
11), and when the car came to a stop (Video 7). The bold sections of the lines indicate that 
there was eye contact at those moments. The asterisks at the bottom indicate significant 
differences with the video containing eye contact throughout (Video 6), p < 0.001. 
 
If the driver stopped making eye contact when the car came to a full stop (Videos 2 
and 9), this was seen by pedestrians as a sign that they should not cross when the 
car was standing still, compared to no eye contact at all (Video 1), as seen in Figure 
2.5. In other words, just like the initiation of eye contact was a cue that pedestrians 
should cross, the termination of eye contact was a cue that they should not cross. It 
is interesting that the effects of eye contact termination at full stop carried forward 
until after take-off. It is also worth noting that the drop in mean keypress response 
due to termination of eye contact was not as steep as the drop due to the car’s initial 
approach or its take-off, suggesting that the car’s motion was a more dominant cue. 
 
The above figures show that participants’ perceived safety reduced abruptly when 
the car started to drive away, regardless of eye contact. In other words, implicit 
communication (i.e., vehicle motion) was more dominant. There was, however, a 
delayed response for cases when the driver retained eye contact while driving away 
(e.g., Video 6) compared to when eye contact ended when the car drove off (e.g., 
Video 3), as seen by the presence of significant differences in Figure 2.6. Thus 
again, the termination of eye contact was perceived as a sign that the pedestrian 
should not cross. 
 
Figures 2.2–2.6 showed results for selected videos. The results for all 11 videos 
involving a yielding car are available in Appendix 2.A (Figure 2.A1). 
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Figure 2.5. Percentage of trials in which the response key was pressed for no driver’s eye 
contact throughout (Video 1) and eye contact termination when the car came to a stop 
(Videos 2 and 9). The bold sections of the lines indicate that there was eye contact at those 
moments. The asterisks at the bottom indicate significant differences with the video 
containing no eye contact (Video 1), p < 0.001. 
 

 
Figure 2.6. Percentage of trials in which the response key was pressed for driver’s eye 
contact throughout (Video 6) and eye contact termination when the car took off (Video 3). 
The bold sections of the lines indicate that there was eye contact at those moments. The 
asterisks at the bottom indicate significant differences, p < 0.001. 
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2.3.2. Relationships Between Self-Reported Intuitiveness, Self-Reported 
Driver’s Eye Contact, and Objective Performance 
Figure 2.7 provides an indication of concurrent validity by depicting the mean scores 
across participants for self-reported intuitiveness, self-reported driver’s eye contact, 
and objective performance. From Figure 2.7 (left), it can be seen that for videos in 
which there was eye contact, self-reported eye contact was high (i.e., close to 
100%), suggesting that participants were generally attentive. 
 
Figure 2.7 (left) also shows that the false-positive rate was 15–20% for the videos 
without eye contact (Videos 1 and 12). These values are relatively far from 0%, 
which can be explained by the fact that it is difficult to ascertain that there was no 
eye contact at all during the entire video because of the low signal-to-noise ratio 
when the car is still far away. That is, when the car is far away, participants have to 
guess whether there is eye contact or not since they cannot see the driver clearly.  
 
Intermediate percentages of self-reported eye contact were observed for Video 5 
(85%), Video 8 (38%), and Video 13 (84%). These relatively low percentages may be 
because eye contact occurred late in the video, only when the car drove off (Video 
5), occurred very early, in which case eye contact is hard to detect (Video 8), or 
because the car did not stop, which may have also made it difficult to detect eye 
contact (Video 13).  
 
Figure 2.7 (left) further shows clear differences between the intuitiveness ratings of 
the 13 videos. From the 78 pairs of comparisons between the 13 videos, only 7 pairs 
were not significantly different from each other, i.e., p greater than 0.005 (Video pairs 
1–12, 2–7, 3–10, 5–8, 6–9, 6–11, and 9–11), indicating that our study was 
adequately powered to detect small differences in the intuitiveness ratings. The 
highest intuitiveness ratings were found for Videos 3 and 10, which were videos in 
which the driver terminated eye contact upon driving away, whereas the highest 
performance scores were obtained for Videos 10 and 11 (Figure 2.7, right), which 
were videos in which the driver initiated eye contact when the car started braking. 
 
Among the videos in which the driver made eye contact, Video 5 was the least 
intuitive and yielded the lowest performance by a substantial margin (Figure 2.7, 
right). In this video, the driver started looking at the pedestrian when the car started 
to drive off. Another counterintuitive video that yielded low performance was Video 7. 
This video was similar to Video 5 as the driver started to make eye contact upon 
take-off. 
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Figure 2.7. Mean self-reported intuitiveness of eye contact per video versus self-reported 
occurrence of eye contact per video (left), and mean self-reported intuitiveness of eye 
contact per video versus performance score per video with a yielding car (right).  
 
2.3.3. Effects of Self-Reported Concentration 
An issue in online studies such as the present one is that inattentive participants may 
contaminate the data. A small positive correlation was observed between 
self-reported concentration and objective performance (r = 0.10, p < 0.001, n = 1813 
participants with a response to this question). The association between self-reported 
concentration and keypress behavior for videos with yielding cars is illustrated in 
Figure 2.8, showing that non-concentrated participants were less likely to hold the 
key than concentrated participants. More specifically, the mean keypress 
percentages from the start of the video until the car went out of sight were 20, 31, 32, 
37, and 37% for concentration levels 1 (Completely disagree) to 5 (Completely 
agree). 
 
2.3.4. Cross-Cultural Consistency 
A common question in the analysis of eye contact and other road user gestures is 
whether there may exist cross-cultural differences (Ranasinghe et al., 2020). In an 
attempt to address this question, we computed the means and standard deviations, 
as well as correlations of the means of videos (n = 13) for participants from the five 
most represented countries. 
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Figure 2.8. Percentage of trials in which the response key was pressed for different 
self-reported concentration levels. 
 
The results in Table 2.2 suggest that outcomes for participants from different 
countries were highly similar. More specifically, the average ratings of driver’s eye 
contact intuitiveness were similar (between 3.44 for Egypt and 3.56 for Venezuela, 
on the scale of 1–5), and the average performance scores were similar as well 
(between 61% for Egypt and 63% for the United States). Also, the correlations of the 
mean intuitiveness ratings were all high (r > 0.97, n = 13) and correlations for the 
mean performance scores were high as well (r > 0.90, n = 11), with the exception of 
participants from Egypt, whose performance scores showed a more modest 
correlation with the performance scores of participants from the four other countries. 
Nonetheless, correlations between intuitiveness ratings and performance scores 
were all around r = 0.75 (n = 11), indicating that the results presented in Figure 2.7 
(right) are cross-nationally robust. The correlation coefficients for the two most highly 
represented countries (Venezuela and the United States) are illustrated in Figure 2.9.  
 
The performance scores were computed based on whether the participants pressed 
the key when the key should be pressed and released the key when the key should 
not be pressed. Although performance scores were similar, the base rates of key 
presses were different between countries, with mean keypress percentages from the 
start of the video until the car went out of sight being 36, 33, 47, 39, and 33% for 
Venezuela, United States, Russia, India, and Egypt, respectively. These differences 
in base rates, which are illustrated in Appendix 2.A (Figure 2.A2), may be caused by 
some participants from particular countries misunderstanding the task or not taking 
the task seriously (e.g., holding the key throughout the trial). Such anomalies were, 
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however, not of concern for the relative effects between videos, as was 
demonstrated in Table 2.2.  
  
Table 2.2 
Means, standard deviations, and Pearson product-moment correlation coefficients of means 
per video (n = 13 for intuitiveness ratings, and n = 11 for performance scores, which were 
computed for videos with a yielding car) for participants from different countries 

  M SD 1 2 3 4 5 6 7 8 9 10 11 

1 Intuitive (1–5) (All) 3.52 0.60            

2 Intuitive (1–5) (VEN) 3.56 0.62 0.999           

3 Intuitive (1–5) (USA) 3.53 0.54 0.998 0.999          

4 Intuitive (1–5) (RUS) 3.47 0.78 0.987 0.981 0.978         

5 Intuitive (1–5) (IND) 3.46 0.54 0.981 0.978 0.971 0.978        

6 Intuitive (1–5) (EGY) 3.44 0.50 0.987 0.987 0.981 0.972 0.979       

7 Performance (%) (All) 62.62 1.87 0.827 0.823 0.830 0.805 0.760 0.830      

8 Performance (%) (VEN) 62.71 1.74 0.834 0.832 0.836 0.803 0.772 0.837 0.997     

9 Performance (%) (USA) 62.84 1.70 0.776 0.768 0.777 0.771 0.693 0.789 0.980 0.964    

10 Performance (%) (RUS) 61.45 3.22 0.871 0.864 0.875 0.869 0.800 0.861 0.963 0.950 0.957   

11 Performance (%) (IND) 61.42 2.05 0.788 0.779 0.786 0.795 0.725 0.807 0.925 0.905 0.959 0.915  

12 Performance (%) (EGY) 60.75 1.70 0.749 0.748 0.739 0.703 0.731 0.776 0.866 0.884 0.814 0.844 0.729 

 

 
 

Figure 2.9. Mean self-reported intuitiveness of eye contact per video for participants from the 
United States and Venezuela (left, r = 0.999), and mean performance score per video 
involving a yielding car for participants from the United States and Venezuela (right, r = 
0.964). The diagonal lines are lines of unity. 
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2.4. Discussion 
This study aimed to examine the effect of drivers’ eye contact on pedestrians’ 
perceived safety to cross a road. Through an online experiment with a large sample 
size, we varied the start and end times of a driver’s eye contact, yielding a total of 
ten different eye contact intervals for an approaching car that slowed down to a full 
stop and subsequently drove off. In addition, we included a video with no eye contact 
as a baseline and two videos in which the approaching car did not yield: one with 
eye contact throughout and one without eye contact. 
 
The results of this study unambiguously indicated that a driver’s eye contact made 
pedestrians feel safer to cross. This finding confirms the scarce evidence so far that 
suggests that eye contact increases the feeling of safety and willingness to cross 
(Bazilinskyy et al., 2023; Malmsten Lundgren et al., 2017; Yang, 2017). The studies 
so far, however, did not provide insight into the effects of drivers’ eye contact on 
pedestrians as a function of time during the car’s approach. 
 
In our study, the effects of different eye contact timings were investigated, and the 
results can be summarized by stating that not only eye contact but also the initiation 
and termination of eye contact affect perceived safety. That is, the initiation of eye 
contact alongside braking was found to be a more powerful cue for pedestrians to 
cross compared to eye contact throughout, and conversely, the termination of eye 
contact alongside take-off was a stronger deterrent to cross than no eye contact at 
all. This argument may be extended to say that there exists a time window between 
a car’s braking and its subsequent take-off where eye contact is a strong cue to help 
resolve crossing conflicts. 
 
Previous research made a case against the importance of eye contact and the 
usefulness of eHMIs, by arguing that implicit communication alone is sufficient for 
pedestrians, without any need for explicit communication, such as eye contact 
(Moore et al., 2019). The present study does not dispute that a car’s motion is a 
more dominant cue than eye contact; in fact, it confirms this. However, it also 
provides counterevidence to the claim that eye contact is dispensable by showing 
that eye contact initiation while braking increased the perceived safety, with an 
increase from 31% to 50% of participants feeling safe to cross the road when the car 
came to a stop. These findings have implications for research into substituting eye 
contact in the context of AVs, i.e., that replacements may indeed be required to 
maintain the safety of pedestrians. 
 
As pointed out above, our study showed that implicit communication could override 
the effect of eye contact. For example, the driver’s eye contact did not have much of 
an effect if the car did not slow down. This finding can be explained by the fact that 
crossing will lead to collision in this scenario and is therefore intuitively unsafe. 
Similarly, after the car drove off from a standstill, participants consistently released 
the response key, and eye contact had a comparatively small effect. These results 
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can be summarized by the common-sense notion that eye contact, although a 
compelling cue, is not compelling enough to cause participants to get run over by the 
car. Our study further showed that eye contact failed to have an effect when eye 
contact could not be detected with certainty, that is, when the vehicle was still far 
away. If the driver’s eyes or head movement cannot be seen because of the large 
distance, pedestrian behavior cannot be affected. 
 
The current study investigated the effect of drivers’ eye contact on pedestrians’ 
perceived safety. The converse topic, namely the effect of pedestrians’ eye contact 
on drivers’ perceived safety, would be of interest as well. Several early studies 
showed that drivers slowed down or stopped more often when staged 
pedestrians/hitchhikers looked at the approaching vehicle compared to when they 
did not (Katz et al., 1975; Morgan et al., 1975; Snyder et al., 1974). Similarly, Ren et 
al. (2016) observed that drivers braked earlier and approached more slowly when 
staged pedestrians made eye contact with them as opposed to when they did not. 
Naturalistic driving studies suggest that pedestrians’ gaze/eye contact combined with 
other pedestrian behaviors such as facial expression and assertiveness have 
important roles in successfully resolving driver-pedestrian interactions (Kong et al., 
2021; Nathanael et al., 2019; Uttley et al., 2020). The relatively small number of 
studies so far suggests that more research is needed in the area of the effect of 
pedestrians’ eye contact on drivers. Apart from investigating one-way communication 
(i.e., driver→pedestrian, pedestrian→driver), it would be worthwhile to examine 
reciprocal effects of eye contact on both drivers and pedestrians, taking into 
consideration that eye contact is both an input (i.e., reading the other agent’s 
intentions) and a cue (i.e., signaling one’s own intentions), cf. Myllyneva and 
Hietanen (2016). The notion of mutual attention in traffic is a topic that is receiving 
increased attention nowadays (Kotseruba et al., 2016; Onkhar et al., 2021). 
 
Some limitations have to be acknowledged. In particular, participants were looking at 
a monitor, were not immersed in actual traffic, and did not experience physical risk. 
In real traffic, pedestrians might overlook drivers’ eye contact or have particular 
incentives to cross the road, for example, being in a hurry (Cefkin et al., 2019). The 
detectability of eye contact in our study may be better or worse than the detectability 
of eye contact in real traffic. In our study, participants watched videos with a 
resolution of 1280×720 pixels. Based on a side-by-side comparison of video frames, 
eye contact (i.e., head turn) was already distinguishable from no eye contact when 
the car was about 50 m away. However, when eye contact was present from the 
video start until a 20 m distance, only 38% of participants reported noticing it (see 
Video 8 in Figure 2.7, left), which is modestly higher than the video without eye 
contact (Video 1, with 16% of participants reporting eye contact). These findings are 
supported by Figure 2.A3 in Appendix 2.A, showing the percentage of trials in which 
the response key was pressed as a function of vehicle-pedestrian distance. It can be 
seen that the earliest deviation between eye contact from the video start and no eye 
contact arose at a distance of about 25 m. In other words, although eye contact may 
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have been theoretically detectable at farther distances, in our experiment, 
pedestrians started noticing and reacting to the driver’s eye contact at a 
vehicle-pedestrian distance of 20–25 m or less. Research in real-life conditions 
shows that the detectability of eye contact (Martin & Jones, 1982; examined 
distances between 0.6 and 4.0 m), facial affect (Hager & Ekman, 1979; examined 
distances between 30 m and 45 m) and the recognizability of individuals (Lampinen 
et al., 2014; examined distances between 3.7 and 37 m) decreases with increasing 
distance. In the real world, pedestrians are not hampered by restrictions of screen 
resolution, but other factors may impair the detectability of eye contact at a distance, 
such as smog, blinding headlamps at night, shadows, and windshield glare (e.g., 
AlAdawy et al., 2019; Schneemann & Gohl, 2016). Thus, it remains to be 
investigated how well the present findings are applicable to actual on-road settings. 
 
It is to be noted that the speed of the car was 13 km/h, representative of speeds in 
residential areas and shared spaces. At this low speed, there is presumably 
substantial uncertainty about what the car will do. It can be expected, based on 
related findings in the literature (Schneemann & Gohl, 2016), that if the car would 
approach at higher speeds, then perceived safety would be lower, and the effect of 
eye contact relative to implicit communication would be smaller or effective across a 
shorter time interval. It needs to be investigated how the results generalize to 
high-speed interactions. 
 
It should also be noted that all conditions included a male driver with a presumed 
neutral or somewhat authoritative expression on his face. It would be relevant to 
investigate whether the results apply to different types of drivers as well. Previous 
research indicates that emotional expression (e.g., happy, sad, angry) has a strong 
effect on perceived dominance (Sutton et al., 2019) and may be interpreted 
differently cross-culturally (Arapova, 2017). Another limitation is that most of the 
participants were from Venezuela, followed by the United States, which may be 
regarded as an idiosyncratic subset of the world population. While the current study 
showed that the effects of drivers’ eye contact generalize well between participants 
from different countries (see also Bazilinskyy et al., 2023), cultural differences in 
vehicle-pedestrian interactions may still exist. Norman (1992) anecdotally reflected 
on eye contact in Mexico City traffic: “it was essential to avoid eye contact with other 
drivers. In the traffic circles of the city, the trick was to avoid letting the other drivers 
see that you had seen them. Once the other drivers knew that you knew they were 
there, they would proceed at high speed around the circle, completely ignoring your 
presence, because they knew that you knew that they were there, so they expected 
you to stop or slow down. … Most places in the United States don’t let you get away 
with such games.” (also see Vanderbilt, 2008, making the same point about driving in 
Mexico City). It would be interesting to explore these and other cultural differences in 
future research. 
 

 



36             Chapter 2 

In relation to the above, some eye contact behaviors by the driver in our videos may 
be perceived as unnatural. Continuous eye contact by the driver throughout the car’s 
approach is one such example. However, in the interest of systematically varying eye 
contact across the videos, it was necessary to include this scenario. Additionally, 
some eye contact behaviors by the driver that one might find realistic were 
deliberately excluded in our videos, such as multiple back-and-forth looks by the 
driver during the car’s approach. These were undesirable in our experiment’s design 
as they introduced a confounding variable – the number of eye contact attempts in a 
single interaction, which would have taken the focus away from eye contact duration 
and initiation/termination. 
 
Another point of attention is that some participants may not have concentrated on 
the task or may have misunderstood the task. In particular, the results showed that 
about 8% of the participants inappropriately held the key when it was unsafe to 
cross, that is, when the vehicle drove away. The test questions and self-reports, on 
the other hand, revealed committed participants, with only 16 of 2000 participants 
failing the test questions (more than 2 mistakes out of 10 questions), and correct 
detection rates of eye contact close to 100% for videos in which there was eye 
contact when the car was close. Even though not all participants were fully 
committed to the task, this should not affect relative comparisons between the 
results for the different videos. 
 
Finally, while not a shortcoming per se, it is worth noting that the current study is 
another entry in a series of papers we have published on pedestrians’ crossing 
behavior that employed online crowdsourcing and our open-source simulator 
(Oudshoorn et al., 2021; Sripada et al., 2021). As such, this paper bears similarities 
in its methods with its predecessors but also retains its novelty as an attempt to 
further the understanding of eye contact in traffic, since the prior works were instead 
concerned with eHMIs and vehicle motion. 
 
In conclusion, this experiment demonstrated for the first time how drivers’ eye 
contact and its timing affect the perceived safety of pedestrians. Results indicate that 
the presence and initiation of eye contact increase perceived safety, whereas the 
absence and termination of eye contact reduce perceived safety. The results also 
suggest that eye contact helps resolve crossing conflicts during a time window 
starting from the car’s braking and ending with its subsequent take-off, and that a 
replacement for eye contact may be needed in the context of AVs. Future research 
could repeat the present study in a staged on-road design. Future research could 
also examine whether the driver’s eye rotation or the driver’s head rotation is a more 
dominant factor in pedestrians’ perceived safety. 
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Appendix 2.A. 

 
Figure 2.A1. Percentage of trials in which the response key was pressed for the videos that 
depict a yielding car. The bold sections of the lines indicate that there was eye contact at 
those moments. 
 

Figure 2.A2. Percentage of trials in which the response key was pressed for the videos that 
depict a yielding car for participants from different countries. The responses for the 11 videos 
were averaged. 
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Figure 2.A3. Percentage of trials in which the response key was pressed for no driver’s eye 
contact from the start of the video (Videos 1, 4, 5, and 7 averaged), driver’s eye contact from 
the start of the video (Videos 2, 3, 6, and 8 averaged), and eye contact initiation when the 
car started to brake (Videos 9, 10, and 11 averaged) vs. vehicle-pedestrian distance. 
 

Supplementary Data 
The videos shown, questions posed, data collected, and MATLAB code used for the 
analysis are available at: https://doi.org/10.4121/16866709. 
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Abstract 
Over the past few decades, there have been significant developments in 
eye-tracking technology, particularly in the domain of mobile, head-mounted devices. 
Nevertheless, questions remain regarding the accuracy of these eye-trackers during 
static and dynamic tasks. In light of this, we evaluated the performance of two widely 
used devices: Tobii Pro Glasses 2 and Tobii Pro Glasses 3. A total of 36 participants 
engaged in tasks under three dynamicity conditions. In the “seated with a chinrest” 
trial, only the eyes could be moved; in the “seated without a chinrest” trial, both the 
head and the eyes were free to move; and during the walking trial, participants 
walked along a straight path. During the seated trials, participants’ gaze was directed 
towards dots on a wall by means of audio instructions, whereas in the walking trial, 
participants maintained their gaze on a bullseye while walking towards it. Eye-tracker 
accuracy was determined using computer vision techniques to identify the target 
within the scene camera image. The findings showed that Tobii 3 outperformed Tobii 
2 in terms of accuracy during the walking trials. Moreover, the results suggest that 
employing a chinrest in the case of head-mounted eye-trackers is counterproductive, 
as it necessitates larger eye eccentricities for target fixation, thereby compromising 
accuracy compared to not using a chinrest, which allows for head movement. Lastly, 
it was found that participants who reported higher workload demonstrated poorer 
eye-tracking accuracy. The current findings may be useful in the design of 
experiments that involve head-mounted eye-trackers. 

 
3.1. Introduction 

Eye-tracking, though seemingly a modern technique, is in fact by no means new, 
having been around in various forms for over 100 years (Płużyczka, 2018). As with 
any technology, its design and performance have improved over the decades, from 
invasive rods placed on users’ corneas and connected to sound-producing drums 
(Lamare, 1892) to noninvasive, remote screen-based systems as well as lightweight 
glasses equipped with infrared cameras. These contemporary eye-tracking devices 
are used in a variety of research fields, including psychology, marketing, art, sports, 
and human-computer interaction to investigate visual attention, cognitive processes, 
and user experience (Kredel et al., 2017; Meißner et al., 2019; Rosenberg & Klein, 
2015). 
 
However, with regard to the accuracy of eye-trackers, a mismatch has repeatedly 
been noted between their observed values and those reported in manufacturer 
specifications (Ehinger et al., 2019; Holmqvist, 2017; Morgante et al., 2012; Stuart et 
al., 2016). Therefore, there is a need to determine the accuracy of eye-trackers used 
in human subject research. 
 
A variety of previous studies have evaluated the accuracy of eye-tracking 
technology. For example, Serchi et al. (2014) evaluated the Tobii TX300 remote (i.e., 
screen-based) eye-tracker. Their experiment involved four participants looking at a 
white dot that appeared sequentially for 2 seconds each in a grid of 13 dots, while 
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standing at different distances, or walking on a treadmill at a speed of 0.6 m/s or 1.1 
m/s. They reported that the distance between the participant and the eye-tracker 
cameras was a critical factor in determining accuracy, but whether the participant 
was walking or not had little influence. 
 
Recognizing the need to benchmark affordable remote eye-tracker models, Gibaldi 
et al. (2017) evaluated the Tobii EyeX, a low-cost eye-tracker attached to a screen. 
In their experiment, 15 participants were seated 0.7 m from the screen with a 
chinrest, and looked at circular targets appearing for 2 seconds on a grid, in random 
order. Their results showed that accuracy decreased with target eccentricity. 
 
In a large-scale effort, Holmqvist (2017) assessed 12 eye-trackers with up to 194 
participants per eye-tracker. They also analyzed participant characteristics that could 
potentially impact data quality, including eye color, eye makeup, pupil size, screen 
position, and the use of glasses. An unexpected result was that, compared to earlier 
studies of the same research group (Lång et al., 2011; Nyström et al., 2013), 
accuracy was worse. Several possible explanations were provided, including the low 
luminance of the environment, inexperienced or unmotivated experimenters, and the 
wide variety of participants. Generally, accuracy was found to be poorer for larger 
target eccentricities, and for certain participant characteristics, such as blue eyes (in 
infrared, a blue iris appears darker than a brown iris), the use of makeup (mascara 
can be mistaken by the eye-tracker for a pupil because they both appear dark), 
glasses with anti-reflective coating, scratches, or dirt, and soft contact lenses (which 
may generate infrared reflections). 
 
Concerning mobile, also known as head-mounted or wearable, eye-trackers, Stuart 
et al. (2016) assessed the accuracy of a Dikablis model, developed by Ergoneers. 
Thirty-four older participants (14 with Parkinson’s disease, 20 without) gazed at two 
targets placed 5°, 10°, and 15° apart in time with a metronome of 1 Hz for 20 
seconds while seated and using a chinrest, standing and not moving their head, or 
walking on a treadmill. Accuracy was defined as the bias of saccade amplitude, with 
bias, in turn, defined as the difference between known target distance, i.e., 
eccentricity, and median saccade amplitude. It was evident that accuracy was poor 
and depended on the target eccentricity, but it did not seem to be significantly 
affected by whether participants sat, stood, or walked. The authors noted that the 
accuracy observed in the study was considerably worse than the 0.5° accuracy 
claimed by the manufacturer. They also observed that accuracy was better among 
participants with no visual correction as compared to those with correction. 
 
Niehorster et al. (2020) conducted an experiment to investigate how accurately four 
wearable eye-trackers (Tobii Pro Glasses 2, SMI Eye Tracking Glasses 2.0, Pupil 
Labs Pupil in 3D mode, and Pupil Labs Pupil with Grip gaze estimation algorithm) 
recorded gaze when the glasses slipped on participants’ noses. Nine participants 
looked at (the center of) a grid containing eight ArUco markers at a distance of 1.5 
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m, while pronouncing vowels, making facial expressions, or moving the eye-trackers 
on their face using their hands. The authors observed that while the gaze estimates 
of the Tobii and Grip remained stable, the other two systems exhibited significant 
increases in gaze deviation when performing such movements, which raises 
concerns that they may not be suitable for use in dynamic scenarios. 
 
Pastel et al. (2021) assessed the accuracy of the Eye Tracking Glasses 2.0 (SMI, 
Germany). Twenty-one participants were seated in front of a computer screen, used 
a chinrest, and sequentially performed three tasks: looking at stationary targets 
appearing at four locations, tracking a target moving in the shape of an infinity loop, 
and looking straight ahead at stationary targets at different distances. In line with 
previous studies, accuracy was found to be poorer for more eccentric gaze targets. 
 
Finally, Hooge et al. (2022) compared six different eye-trackers (Pupil Core 3D, Pupil 
Invisible, SMI Eye Tracking Glasses 2 60 Hz, SeeTrue, Tobii Pro Glasses 2, Tobii 
Pro Glasses 3) in various conditions (e.g., standing still, walking along a circle, 
jumping). The results of four participants showed that the best accuracy occurred for 
the standing-still condition, but substantially poorer accuracy was obtained for 
walking, skipping, and jumping. 
 
To summarize, a number of studies on remote and mobile eye-trackers have shown 
that eye-trackers are less accurate for targets at greater eccentricities (Gibaldi et al., 
2017; MacInnes et al., 2018; Niehorster et al., 2020; Pastel et al., 2021; Stuart et al., 
2016). There is less consensus on the effect of dynamic tasks, with earlier research 
(Serchi et al., 2014; Stuart et al., 2016) reporting no large differences between 
sitting, standing, and walking, while the recent study by Hooge et al. (2022) showed 
a clear reduction in accuracy with increased dynamicity from standing still to walking, 
skipping, and jumping. It should be noted, however, that Serchi et al. (2014) used a 
remote eye-tracker, which is normally not used while walking. Another factor to take 
into consideration in assessing the accuracy of mobile eye-trackers concerns the 
automated localization of the visual target in the camera image. This has been done 
by mapping the camera image to a reference image with the help of feature 
matching (MacInnes et al., 2018) or ArUco markers (Ehinger et al., 2019; Niehorster 
et al., 2020), or alternatively, by identifying the colored fixation target in the camera 
image (Hooge et al., 2022). These methods may introduce errors, depending on the 
method used. These challenges highlight the need for further research on the 
accuracy of mobile eye-trackers in dynamic tasks using appropriate computer-vision 
algorithms. 
 
The current study investigates accuracy as a function of dynamicity by using two 
popular mobile eye-trackers: the Tobii Pro Glasses 2 and 3. The Tobii 2 is a widely 
used eye-tracker that has four eye cameras (2 per eye) and 12 illuminators (6 per 
eye), which are integrated into the frame of the glasses below and above the eyes. 
The Tobii 3 is a newer model with a more streamlined appearance resembling 
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conventional glasses. It uses four eye cameras (2 per eye) and 16 illuminators (8 per 
eye) that are integrated into the lenses instead, for better positioning and supposedly 
more robust eye-tracking.  
 
In our study, we assessed the performance of Tobii Pro Glasses 2 and 3 under three 
distinct conditions: the first encompassing only eye movements, the second 
incorporating both head and eye movements, and the third involving a combination 
of body, head, and eye movements. Investigating these three conditions allows for a 
comprehensive understanding of the devices’ performance under various realistic 
scenarios. Notably, our second condition represents an important (and until now, 
missing) bridge between seated, static trials and walking ones, two of the most 
commonly tested scenarios in research evaluating eye-trackers. We hypothesized 
that with each added layer of dynamicity, eye-tracking accuracy would worsen. 
 
In addition to assessing eye-tracker accuracy for different task conditions, we 
evaluated how participant characteristics correlated with eye-tracker accuracy. We 
expected accuracy to be worse for participants who wore contact lenses and for 
participants with blue eyes because of their reduced contrast against pupils in 
infrared light (Holmqvist, 2017). Gender was not expected to be of influence 
(Holmqvist et al., 2022). Previous studies propose that eye-tracker accuracy might 
be affected by lighting conditions, considering that pupil diameter tends to vary in 
response to light (Hooge et al., 2021; Wyatt, 2010). According to documentation from 
Tobii, the accuracy of the Tobii 2 and Tobii 3 eye-tracking devices may be 
substantially compromised in environments with minimal lighting (1 lux) (Tobii AB, 
2017b, 2022b). In the present study, although the lighting conditions were not as low, 
an investigation was conducted to determine the relationship between the recorded 
pupil diameter of the participants and the eye-tracker’s accuracy. Finally, we used 
the NASA Task Load Index (TLX) questionnaire to understand the association 
between eye-tracker accuracy and facets of perceived workload (i.e., mental 
demand, physical demand, temporal demand, performance, effort, and frustration), 
thus making it possible to assess whether eye-tracker accuracy is purely software- 
and hardware-related or also tied to participant state. 

 
3.2. Methods 

3.2.1. Participants 
Thirty-six participants (20 males, 16 females) between the ages of 21 and 38 years 
(mean: 27.19, SD: 3.07, median: 26 years) were recruited via social media and direct 
contact to take part in the experiment between December 13, 2021 and February 4, 
2022. Most were PhD candidates (22 participants) or employees at the Delft 
University of Technology or elsewhere (8 participants). The remaining participants 
were a postdoctoral researcher (1 participant) and (former) students (5 participants). 
Only people with normal visual acuity, corrected-to-normal vision using contact 
lenses, or low refractive errors (such that prescription lenses were not required for 
daily life activities) were eligible to participate. 
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Precautions were also taken against the spread of COVID-19 (sanitization of 
participants’ and experimenter’s hands, surfaces, and equipment touched, and social 
distancing whenever possible). All individuals provided written informed consent. The 
research was approved by the Human Research Ethics Committee of the Delft 
University of Technology (reference number 1832). 
 
3.2.2. Eye-trackers 
Two head-mounted eye-trackers, the Tobii Pro Glasses 2 (firmware version 
1.25.6-citronkola-0, head unit version 0.0.62) and the Tobii Pro Glasses 3 (firmware 
version 1.23.1+pumpa), were used to track participants’ gaze at 50 Hz and 100 Hz, 
respectively, and a forward-facing scene camera in each recorded their field of view 
at 25 frames per second and a resolution of 1920×1080 pixels. Note that the Tobii 2 
allows for 100 Hz recordings by alternating the measurements from each eye 
(Holmqvist et al., 2022; Niehorster et al., 2020), an approach not taken in the present 
study. The Tobii 2 was used without its detachable protective lenses. 
 
3.2.3. Experiment Setup 
The experiment was conducted indoors in a workplace setting, with the seated trials 
performed in a private office and the walking trials in a nearby corridor, both of which 
were illuminated by natural and overhead lighting.  
 
3.2.3.1. Seated Trials 
A pattern consisting of nine green dots was printed on white A1-size paper and 
attached on a wall; this arrangement included a central dot surrounded by eight 
equidistant peripheral dots, forming a circle with a diameter of 536 mm. Note that it 
was decided to use printed gaze targets instead of a digital display, such as a 
television screen, due to its portability and ease of setup, making it simpler to 
replicate the study. 
 
A table of 1 m lateral width was placed against the wall, and a chinrest was clamped 
on the table’s opposite side, at its longitudinal center. At this distance from the wall, 
each dot had an eccentricity of 15° from the center. The dots themselves had a 
visual span of approximately 1.1° (20 mm diameter). The selection of a 15° 
eccentricity was informed by considerations of user comfort and applicability to 
real-life tasks. In tasks involving target detection, humans typically employ eye 
movements for small target eccentricities, and incorporate head movements for 
larger eccentricities to reduce eye strain (Stahl, 1999). Stahl found a mean eyes-only 
range across participants to be 35.8° (median of 25.3°), which is consistent with our 
30° range and the ranges used in tests by eye-tracker manufacturers (Tobii AB, 
2017b, 2022b). These assumptions align with eye movements during naturalistic 
tasks, such as walking, where individuals tend to focus on targets by employing a 
combination of eye and head movements. Standard deviations of eyes-in-head 
angles typically range from 5° to 10°, depending on factors such as terrain 
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roughness (Bahill et al., 1975; Foulsham et al., 2011; Franchak et al., 2021; ’t Hart & 
Einhäuser, 2012). 
 
The height of the chinrest was set prior to the experiment so that the central dot of 
the pattern was aligned with the experimenter’s eye level while seated in an office 
chair and using the chinrest. The height of the chinrest was not to be adjusted during 
the experiment, but participants were free to adjust the chair height to sit 
comfortably. The chinrest was unclamped and re-clamped to the table between trials, 
without compromising its preset height and position along the table. The chinrest 
was used without its removable forehead attachment, since it was not possible to 
press one’s forehead against it without having the eye-tracker collide with the setup. 
Two speakers were used in the seated trials to play audio instructions to guide 
participants’ gaze across the pattern. Figures 3.1 and 3.2 illustrate the seated trials 
with and without a chinrest, respectively. 
 

 
Figure 3.1. Seated trial with chinrest. 
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Figure 3.2. Seated trial without chinrest. 
 
3.2.3.2. Walking Trials 
A green bullseye (480 mm outer diameter) was printed on A1-size paper and 
mounted on a mobile whiteboard. The whiteboard was placed at one end of a 
corridor, on the edge of a 21.7-m long carpet. Participants would stand at the 
opposite end of the corridor before they commenced walking towards the bullseye 
during the trial. Figure 3.3 shows a walking trial in progress. 
 
3.2.4. Experimental Design and Procedure 
The experiment involved three types of trials for each of the two eye-trackers, 
resulting in a total of six trials as shown in Table 3.1. A blocked design was 
implemented, with each block using one eye-tracker. Half of the participants, 
specifically those with odd participant numbers, began with a block using the Tobii 2, 
followed by a block using the Tobii 3. The remaining participants with even 
participant numbers started with a block using the Tobii 3 and then moved on to a 
block using the Tobii 2. Within each block, the sequence of the three dynamicity 
conditions was random. 
 

 



Evaluating the Tobii Pro Glasses 2 and 3 in static and dynamic conditions     53 

 
Figure 3.3. Walking trial. 

 
Table 3.1 
Experimental trials 
Dynamicity condition Eye-tracker Permitted movements Gaze target 
Seated, with chinrest Tobii 2 Eyes Pattern of 9 green dots 
Seated, without chinrest Tobii 2 Eyes, head Pattern of 9 green dots 
Walking Tobii 2 Eyes, head, body Green bullseye 
Seated, with chinrest Tobii 3 Eyes Pattern of 9 green dots 
Seated, without chinrest Tobii 3 Eyes, head Pattern of 9 green dots 
Walking Tobii 3 Eyes, head, body Green bullseye 
    
Upon arrival, participants sanitized their hands, signed the consent form, and 
completed a questionnaire on their demographic data, eye color, and visual acuity. 
They were then briefed about the aim, procedure, and tasks of the experiment. Next, 
they put on one of the eye-trackers (depending on the predefined random order of 
trials assigned to them) and, if necessary, the eye-tracker nose pad size was 
adjusted for better comfort. 
 
Participants’ gaze was then calibrated using a bullseye card that the participant held 
at arm’s length. A successful calibration was achieved when the participant’s gaze 
marker sufficiently overlapped with the bullseye for a specified period of time, criteria 
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that were internally determined by the manufacturer’s software. All participants 
achieved successful calibration and no participants were excluded because of failing 
to calibrate. 
 
The robustness of the calibration was verified by asking the participant to move the 
card to multiple points of varying eccentricity (up, down, left, right), during which they 
looked at the card without rotating their head, using only their eyes. Recalibration 
was performed if there was insufficient overlap between the participant’s gaze 
marker and the bullseye. After successful verification, participants were not permitted 
to adjust the eye-tracker’s position on their faces until the upcoming trial was 
completed. Calibration and verification were performed before each trial, with 
participants standing in a designated area of the private office. Breaks were provided 
between trials if necessary. 
 
In the seated trials with a chinrest, participants adjusted the chair height to sit 
comfortably, carefully placed their chin on the chinrest, and gazed at specific dots in 
the pattern (using only eye movements) for 12-second intervals each, following audio 
instructions in a synthesized female voice played in random order. The 12-second 
interval was chosen to ensure 10 seconds of available data per instructed dot 
(assuming it took participants no more than 2 seconds to respond to an instruction 
and focus on a new dot). The instructions were directions, each corresponding to a 
specific dot: “center”, “top”, “bottom”, “left”, “right”, “top left”, “top right”, “bottom left”, 
and “bottom right”. The central dot was called out, and hence to be visited, three 
times (at the start, middle, and end of the trial), and the remaining dots were called 
out twice each (in random order), in a trial that lasted just under 4 minutes. 
 
Similarly, in the seated trials without a chinrest, participants gazed at specific dots in 
the pattern for 12-second intervals each, as per the audio instructions. They were 
also instructed in advance by the experimenter to look at the dots as they might 
naturally do, i.e., they were made aware they had the freedom to rotate their head as 
well as their eyes. The chinrest was unclamped and placed aside beforehand. These 
trials also lasted approximately 4 minutes and involved three visits to the central dot 
(at the start, middle, and end of the trial) and two visits each to the remaining dots in 
random order. 
 
In the walking trials, when the corridor was free of passers-by and disturbances, 
participants walked from one of its ends to the bullseye at the other end, while 
keeping their gaze fixed on the center of the target. They were asked to walk 
normally, which meant eye, head, and body movements were all permissible. When 
they had reached a close distance to the bullseye, participants turned around, 
walked back to their starting position, and repeated this exercise once more. These 
trials lasted approximately 1 minute. 
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After each block of trials, i.e., after completing the three types of trials with a specific 
eye-tracker, participants completed the NASA TLX questionnaire, which polled six 
facets of workload: mental demand, physical demand, temporal demand, 
performance, effort, and frustration. The responses were recorded on a horizontal 
scale with 21 ticks, with anchors at the ends representing very low and very high, 
respectively. For the performance item, the anchors used were perfect and failure, 
respectively. Participants then put on the other eye-tracker and repeated the entire 
procedure once more, at which point the experiment was finished, and they were 
free to leave. Before the arrival of the next participant, the experimenter disinfected 
all surfaces and equipment that came into physical contact using alcohol wipes. 
 
3.2.5. Data Preprocessing 
Once the experiment was completed by all participants, the raw eye-tracking data 
were exported as separate .xlsx files. In addition, .mp4 video files from the Tobii 
project folders were used. The analysis used the variables ‘Gaze Point X’ and ‘Gaze 
Point Y’, which represent the coordinates of the averaged gaze points for the left and 
right eyes in pixels, in the horizontal and vertical directions, respectively.  
 
In the assessment of eye-tracker accuracy, it is important to focus on relevant 
accuracy indicators, rather than high-frequency jitter and blinks, which are commonly 
addressed in standard practice. Therefore, the data were filtered and blinks were 
removed. Specifically, the x- and y-data were passed through a moving median filter 
(e.g., De Winter et al., 2022; Jarodzka et al., 2012; Onkhar et al., 2021). The median 
filter had a 0.30-second interval and omitted missing data, i.e., any window 
containing missing values is the median of all non-missing elements in that window. 
A median filter removes noise and outliers while preserving edge information. That 
is, a median filter preserves fast movements like saccades, as opposed to smoothing 
filters, which would cause blurring of these rapid transitions.  
 
Figure 3.4 illustrates the filtering applied. Finally, the mean x- and y-positions were 
computed per video frame (i.e., two measurements per frame for the Tobii 2 and four 
measurements per frame for the Tobii 3). 
 
The target coordinates were automatically extracted from the recorded video frames 
of the scene camera. For the seated trials, an image filter was applied so that the 
green dots stood out more clearly from the background. Next, MATLAB’s 
imfindcircles function (Yuen et al., 1990) was used to extract the nine dots (see 
Figures 3.1 and 3.2). Various heuristics with regard to the expected distances 
between the dots were applied, to ensure that the dots were appropriately labeled 
(e.g., “center”, “top”, “top right”). For the walking trials, lines were fitted to the edges 
of the red carpet (see Figure 3.3), and the intersection of the lines was used to 
estimate the approximate position of the bullseye. Next, the imfindcircles function 
was applied to estimate the coordinates of the bullseye in the scene camera image. 
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Finally, a median filter was applied to the estimated coordinates of the target, using a 
time interval of five video frames (0.20 s) to remove possible jitter. 
 

Figure 3.4. Filtering of the eye-tracking data for the Tobii 2. It can be seen that a blink at 
approximately 106.5 s was filled with data. Note that a y-coordinate of 1080 px corresponds 
to the bottom of the image (see also Figure 3.8). 
 
Figure 3.5 illustrates the type of data collected in a seated trial with chinrest (top 
figure) and without chinrest (bottom figure), for a participant wearing the Tobii 2. The 
figure shows the continuously tracked coordinates of the nine dots, as well as the 
target dot (the audio instruction onsets were automatically extracted from the audio 
recorded by the eye-tracker), and the gaze x-coordinate. It can be seen that the 
participant tracked the target dot accurately, and in the condition without chinrest, 
also rotated their head, as indicated by the changes in the position of the dots 
(especially after being instructed regarding a new target dot). 
 
Figure 3.6 shows the equivalent target and gaze data for a walking trial. In the 
walking trials, the bullseye was not steady in the scene camera image, but oscillated 
according to the gait of the participant. 
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Figure 3.5. x-coordinate of the nine dots (in black) extracted using computer-vision, the 
instructed target dot highlighted in magenta, and a participant’s gaze (in cyan), in the seated 
trials with the Tobii 2, with chinrest (top figure) and without chinrest (bottom figure). 
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Figure 3.6. x- and y-coordinates of the estimated bullseye (in black) and filtered gaze (in 
cyan) for one participant in the walking trial (Tobii 3). The oscillating motion is caused by the 
participant’s gait. 
 
3.2.6. Computation of Angular Distance with Respect to Target 
For each video frame, the angular distance between Tobii’s instantaneous gaze point 
and the designated target was calculated. This was achieved by determining the 
angle between two vectors: the vector connecting the eyes to the gaze point, and the 
vector connecting the eyes to the target. The calculation was based on the dot 
product of the two vectors and the product of their magnitudes, as demonstrated in 
Eq. 1. The same approach has been previously employed in eye-tracking accuracy 
research (e.g., Aziz & Komogortsev, 2022, Eq. 4; Cercenelli et al., 2019, Eqs. 4 & 5; 
Mantiuk, 2017, Eq. 2; Xia et al., 2022, Eq. 26; and see Onkhar et al., 2021 using an 
equivalent formula using the cross-product and the dot-product). 
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In Eq. 1, x and y are expressed in pixels, and (1,1) is the top-left corner of the image. 
i and j refer to the gaze coordinate and target coordinate at that moment, 
respectively. A constant is subtracted from the x- and y-coordinates to ensure that 
the angular distance is computed relative to the center of the scene camera image 
(e.g., Mantiuk, 2017). More specifically, for the x-coordinates, 960 pixels are 
subtracted, or half the screen width. For the y-coordinates, 540 pixels are subtracted, 
being half the screen height. 
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Viewing distance (VD) is a constant that relates to the magnification factor of the 
scene camera. If placing the Tobii closer (or farther) from the wall, the same 
translation in pixels corresponds to a proportionally smaller (or larger) translation in 
millimeters. VD can be interpreted as the virtual viewing distance, that is, the ratio 
between the distance between the Tobii scene camera and the wall in mm and the 
pixel size in mm. The VD parameter was determined by placing the Tobii 
approximately 1 m away from a wall with graph paper on it (Figures 3.7 & 3.8). The 
Tobii glasses were tilted so that the grid was vertically aligned with the borders of the 
camera image. Through manual and automated evaluations of the distances 
between grid lines, it was concluded that the camera view exhibited negligible 
distortion, aside from the outer few centimeters of the grid. Consequently, we opted 
to proceed without conducting a camera calibration designed to rectify such 
distortions. A screenshot of the camera view was made, and the distance in 
millimeters from the image center to various points (Figure 3.8) was determined with 
the help of the grid. Using the mean distances reported in Table 3.2 for a 400-pixel 
(px) eccentricity, VD was estimated to be 1132.4 px and 912.8 px for the Tobii 2 and 
3, respectively. In other words, although both eye-trackers offered the same image 
resolution of 1920×1080 px, the Tobii 3 offered a larger field of view. 
 

 
Figure 3.7. Setup for estimating the VD parameter. Graph paper consisting of 1×1 cm 
squares was stuck to the wall, and the Tobii was located at a distance of approximately 1 m 
from the wall. 
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Figure 3.8. View of the scene camera pointing at the graph paper in the setup shown in 
Figure 3.7. The coordinates used in the analysis are shown. The distance to the edges 
(blue) was used to estimate the camera field of view, and the distance to points at 400 px 
eccentricity (yellow) was used to estimate the viewing distance (VD). 
 
Table 3.2  
Measured distances between coordinates shown in Figure 3.8 for the Tobii 2 and 3. 
Model Distance between 

scene camera and 
wall (mm) 

Pitch  
angle of 
Tobii (°) 

Distance between edge 
coordinates and center (°) 

Distance between center 
and coordinates at 400 px 
eccentricity (°) 

Tobii 2 1010 12 (0, 540): 846 mm (40.0°) 
(1920, 540): 850 mm (40.1°) 
(960, 0): 475 mm (25.2°) 
(960, 1080): 481 mm (25.5°) 

(560, 540): 357 mm (19.5°) 
(1360, 540): 358 mm (19.5°) 
(960, 140): 354 mm (19.3°) 
(960, 940): 358 mm (19.5°) 

Tobii 3 890 1 (0, 540): 950 mm (46.9°) 
(1920, 540): 970 mm (47.5°) 
(960, 0): 524 mm (30.5°) 
(960, 1080): 529 mm (30.7°) 

(560, 540): 386 mm (23.4°) 
(1360, 540): 394 mm (23.9°) 
(960, 140): 390 mm (23.7°) 
(960, 940): 390 mm (23.7°) 

Note. The distance between coordinates in mm was converted to degrees using atan(d/D), 
where d is the distance between the point and the image center in millimeters, and D is the 
distance between the scene camera and the wall in millimeters. For the Tobii 2, the horizontal 
and vertical FOVs were established to be 80.1° and 50.7°, which are close to the 
specifications reported by Tobii (82° and 52°; Tobii AB, 2017a). For the Tobii 3, the horizontal 
and vertical FOVs were estimated at 94.4° and 61.2°, again close to the manufacturer 
specifications (95° and 63°; Tobii AB, 2022a). The pitch angle was measured with a mobile 
app (RateFast, 2015). 
 
In the seated trials, instructions to gaze at the dots were provided a total of 19 times 
(center dot: 3 times, other eight dots: 2 times each). The time interval between 
instructions to fixate on each dot was 12 seconds. Because the participant would 
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need time to shift focus from one dot to the next (see Figure 3.5), the first 2 seconds 
were discarded, and the angular distance was averaged over the remaining 
10-second interval (i.e., 250 frames). For the walking trials, the participant walked up 
to the bullseye twice. Angular distance was averaged over a 10-second interval (see 
Figure 3.6) for each walk. The intervals for the walking trials were automatically 
extracted, with their end point being approximately when the red carpet went out of 
the scene camera’s view and the starting point being 10 seconds before that 
moment. 
 
The accuracy of the gaze of a participant in an experimental condition was 
calculated by computing the mean angular distance θ over the time intervals of that 
participant and condition. For the seated trials, 19 time intervals of 10 seconds each 
were available. For the walking trials, participants performed the task twice, and two 
time intervals of 10 seconds were used. 
 

3.3. Results 
Of the 36 participants, two participants (1 male, 1 female) completed only the Tobii 2 
trials of the experiment due to a malfunction in the Tobii 3. Four other participants 
completed the experiment in two sessions spread across two separate days for the 
same reason. Furthermore, for one participant, the results for one condition (Tobii 3, 
without chinrest) were not available because of an error by the experimenter in 
carrying out the trials in their predefined order. Finally, for one of the participants in 
the walking trial with the Tobii 3, one of the two 10-second intervals was declared 
invalid due to an individual walking in front of the bullseye; consequently, the results 
of this trial rely on the data gathered from only one of the two time-intervals. 
 
3.3.1. Accuracy of the Eye-Trackers 
First, we determined the accuracy of the Tobii 2 and 3, where accuracy refers to the 
mean angular distance from the target. Table 3.3 shows the accuracy, averaged 
across participants and all nine dots, for the six experimental conditions. According 
to a two-way repeated-measures analysis of variance (ANOVA), there was a 
significant effect of Tobii model, F(1,32) = 31.7, p < 0.001, partial η2 = 0.50, and of 
the level of dynamicity (i.e., with chinrest, without chinrest, or walking), F(2,64) = 
5.25, p = 0.008, partial η2 = 0.14. There was also a significant Tobii model × 
dynamicity interaction, F(2,64) = 5.25, p = 0.008, partial η2 = 0.14. 
 
Post-hoc paired-samples t-tests showed that for the Tobii 2, the chinrest condition 
yielded significantly poorer accuracy than the without-chinrest condition (p = 0.001) 
but not compared to the walking condition (p = 0.123). Furthermore, the 
without-chinrest condition yielded significantly better accuracy than the walking 
condition (p = 0.003). On the other hand, for the Tobii 3, there was no significant 
difference between the chinrest condition and the without-chinrest condition (p = 
0.134) or the walking condition (p = 0.859). Also, the without-chinrest condition 
yielded no significant difference from the walking condition (p = 0.404). Upon 
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comparison of the two eye-trackers, it was observed that the Tobii 3 had significantly 
better accuracy than the Tobii 2 for the chinrest condition (p < 0.001) and walking 
condition (p < 0.001), but not for the without-chinrest condition (p = 0.051). 
 
Table 3.3 
Accuracy per experimental condition (in degrees) for all nine dots and for the central dot 
only. The mean, standard deviation (SD), and median across participants are reported. 
  All dots Only central dot  
Dynamicity condition Eye-tracker Mean SD Median Mean SD Median n 
Seated, with chinrest Tobii 2 2.77 1.49 2.40 1.44 1.90 1.04 36 
Seated, without chinrest Tobii 2 1.99 1.45 1.55 1.58 1.96 1.03 36 
Walking Tobii 2 3.53 2.70 2.86    36 
Seated, with chinrest Tobii 3 1.78 1.09 1.54 1.21 0.79 0.96 34 
Seated, without chinrest Tobii 3 1.60 0.98 1.27 1.23 0.96 0.86 33 
Walking Tobii 3 1.74 0.90 1.59    34 
Note. For the walking trials, there was only one dot (i.e., the bullseye). 
 
Note that the accuracy of the eye-trackers in the seated trials, as presented above, 
was calculated by computing the average across all nine dots. Table 3.3 also shows 
the accuracy specifically for the center dot. It can be seen that the mean accuracy for 
the center dot is markedly better as compared to all dots. This difference in accuracy 
can also be seen in Figure 3.9, which shows the angular distance to each instructed 
dot in the seated trials. It can be observed that for both eye-trackers, the center dot 
was detected more accurately than the others. In particular, for the Tobii 2 with 
chinrest, the eccentric dots showed poor accuracy compared to the center dot. 
 
3.3.2. Movement of the Gaze Target 
Heatmaps were created to better understand the underlying causes of the relatively 
poor accuracy of the Tobii 2. The heatmaps, shown in Figure 3.10, were created by 
dividing the camera image into squares of 20×20 pixels. It can be seen that the 
target was on average higher in the scene camera for the Tobii 2 compared to the 
Tobii 3. It can also be seen that participants without a chinrest were inclined to center 
the target dot in their field of view. That is, for the chinrest condition, participants 
looked at the dots by turning only their eyes, in accordance with the instructions. In 
contrast, during the without-chinrest condition, they also turned their heads, reducing 
the need to turn their eyes towards large eccentricities. Similarly, for the walking 
trials, in which there was only one target, participants tended to keep the target in the 
center of their view.  
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Figure 3.9. Angular distance to instructed dots, averaged across participants, for the Tobii 2 
(top) and the Tobii 3 (bottom) and for the chinrest condition (left) and the without-chinrest 
condition (right). Note that the accuracy was determined for the last 10 seconds of the 12- 
second interval. 
 
A restriction of movement was also associated with a larger amount of missing data. 
Specifically, the percentage of missing gaze data computed per video frame, and 
after filtering (see Methods) was 3.07, 1.88, and 0.12% for the chinrest, 
without-chinrest, and walking conditions of the Tobii 2, and 1.42, 0.58, and 0.12% for 
the Tobii 3, respectively. Before filtering, these values were 6.07, 3.96, and 1.41% for 
the Tobii 2, and 3.63, 2.43, and 1.38% for the Tobii 3. 
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 Tobii 2 Tobii 3 

Seated,  
with 
chinrest 

Seated,  
without 
chinrest 

Walking 

Figure 3.10. Heatmaps of the location of the targets (i.e., instructed dots for the seated trials, 
bullseye for the walking trials) across all 10-second intervals of all participants. The colormap 
represents the number of target points in the 20×20-pixel square, normalized so that the total 
of all squares equals 1000. 
 
Subsequent to the above observations, an analysis of target speed within the 
camera image was conducted. Table 3.4 shows the mean speed of the identified 
target, averaged across the 10-second measurement interval. The instantaneous 
speed was computed using Eq. 1 for x- and y-coordinates for successive video 
frames. The results presented in Table 3.4 corroborate the efficacy of the chinrest in 
limiting head motion in comparison to the other conditions. There was no detectable 
effect of the Tobii model, which can be explained by the fact that the speed of the 
target is solely caused by participant movement, not by the eye-tracker itself. 
Specifically, according to a two-way repeated-measures ANOVA, there was no 
significant effect of the Tobii model, F(1,32) = 0.09, p = 0.766, partial η2 = 0.00, but a 
strong effect of the level of dynamicity, F(2,64) = 215.9, p < 0.001, partial η2 = 0.87. 
There was also no significant Tobii model × dynamicity interaction, F(2,64) = 0.14, p 
= 0.873, partial η2 = 0.00. 
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Table 3.4 
Mean speed of the target in the camera images per experimental condition (in degrees per 
second). The mean, standard deviation (SD), and median across participants are reported. 
Dynamicity condition Eye-tracker Mean SD Median n 
Seated, with chinrest Tobii 2 0.28 0.08 0.27 36 
Seated, without chinrest Tobii 2 0.83 0.70 0.68 36 
Walking Tobii 2 8.57 3.04 7.99 36 
Seated, with chinrest Tobii 3 0.28 0.08 0.26 34 
Seated, without chinrest Tobii 3 0.81 0.47 0.67 33 
Walking Tobii 3 8.77 3.88 8.39 34 

 
3.3.3. Self-Reported Workload 
To gain a deeper understanding of whether human workload experience is linked to 
eye-tracking accuracy, we examined the self-reported workload data from 
participants. Table 3.5 lists the perceived workloads when using the Tobii 2 and 3. It 
can be seen that the Tobii 3 resulted in statistically significantly lower physical 
demand, effort, and frustration compared to the Tobii 2. 
 
Table 3.5 
Mean and standard deviation of self-reported workload for Tobii 2 (n = 36) and Tobii 3 (n = 
34). Also shown are the results of a paired-samples t-test. 
 Tobii 2 Tobii 3  
 Mean SD Mean SD t-test 
TLX Mental demand (%) 29.7 22.8 27.9 19.9 t(33) = 1.17, p = 0.249 
TLX Physical demand (%) 30.8 22.0 26.0 22.5 t(33) = 2.56, p = 0.015 
TLX Temporal demand (%) 18.5 17.1 19.0 18.4 t(33) = 0.19, p = 0.851 
TLX Performance (%) 30.3 21.6 29.1 21.8 t(33) = 1.38, p = 0.176 
TLX Effort (%) 39.4 26.2 32.2 21.2 t(33) = 2.78, p = 0.009 
TLX Frustration (%) 30.3 26.7 21.2 22.5 t(33) = 2.77, p = 0.009 
Note. Scores were converted to a scale from 0% (minimum possible) to 100% (maximum 
possible). p < 0.05 is listed in boldface. 
 
3.3.4. Individual Differences 
In order to better understand the underlying factors that contribute to variations in 
eye-tracking accuracy, we examined individual differences among participants using 
the devices. The Pearson correlation between participants’ overall accuracy 
(averaged across the dynamicity conditions) between the Tobii 2 and Tobii 3 was r = 
0.56 (p < 0.001). This finding suggests that individual differences, such as unique 
eye characteristics or behavioral patterns, affected the performance of both 
eye-trackers; see Figure 3.11 for the tracking accuracy for the Tobii 2 and 3 per 
participant.  
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Figure 3.11. Overall eye-tracking accuracy (averaged across the three dynamicity 
conditions) for the Tobii 2 and 3. Each circular marker represents a participant (n = 34). The 
dotted line represents the line of equality. 
 
Point-biserial correlations of participants’ overall accuracy (z-transformed and 
subsequently averaged over all six conditions) did not reveal a statistically significant 
association with participant gender, whether or not the participant was wearing 
contact lenses, whether the participant had a particular eye color, and the 
participant’s pupil diameter averaged across all conditions (see Table 3.6)1. However, 
there were significant associations with self-reported workload (physical demand, 
temporal demand, and frustration). These findings suggest that eye-tracking 
accuracy may be more influenced by participants’ workload rather than their physical 
characteristics, highlighting the importance of considering human factors in 
eye-tracking research and technology development. 
 
Finally, we investigated head movement as a possible factor influencing eye-tracking 
accuracy. Figure 3.12 illustrates that the speed of movement of the target was 
strongly person-specific, with some participants having a more dynamic gait than 
others regardless of Tobii model (r = 0.88, p < 0.001). However, the speed of the 
target did not correlate significantly with eye-tracking accuracy (r = -0.26, p = 0.133, 
n = 36 for the walking trials of the Tobii 2; r = -0.12, p = 0.509, n = 34 for the walking 
trials of the Tobii 3). That is, participants’ eye-tracking accuracy was not significantly 
related to the speed of their head movement while walking. 
1 Our statement here applies to blue and brown eyes. However, we did find that the accuracy for 
hazel, green, gray, and amber eyes combined was statistically significantly better than for brown and 
blue eyes combined (see Table 3.6). The reasons for this are unclear but may involve confounding 
factors such as ethnic differences in eye shape. Because this effect is not clearly interpretable and 
only marginally significant (p = 0.040), we will not elaborate on it further. 
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Table 3.6 
Means, sample sizes (n), and standard deviations of participants’ characteristics and 
self-reported workload, together with the Pearson product-moment correlation coefficient 
with overall angular distance (n = 36). 
 Mean n r p 
Gender (0: female / 1: male) 0.56 16 / 20 -0.09 0.619 
Contact lenses (0: no / 1: yes) 0.22 28 / 8 0.16 0.341 
Brown eyes (0: no / 1: yes) 0.39 22 / 14 0.19 0.276 
Blue eyes (0: no / 1: yes) 0.14  31 / 5 0.23 0.172 
Other eye color (0: no / 1: yes) 0.47 19 / 17 -0.34 0.040 
 Mean SD r p 
Pupil diameter (mm) 3.80 0.66 0.06 0.732 
TLX Mental demand (%) 28.5 20.4 -0.13 0.456 
TLX Physical demand (%) 28.3 21.1 0.41 0.013 
TLX Temporal demand (%) 18.3 17.1 0.46 0.005 
TLX Performance (%) 29.2 21.1 0.09 0.598 
TLX Effort (%) 35.8 22.3 0.32 0.056 
TLX Frustration (%) 25.9 22.8 0.34 0.040 
Note. Scores for the NASA TLX were averaged across the two eye-trackers (only the 
Tobii 2 in two participants), and converted to a scale from 0% (minimum possible) to 
100% (maximum possible). p < 0.05 is listed in boldface. For binary variables (gender, 
contact lenses, eye color), the Pearson product-moment correlation coefficient is 
equivalent to the point-biserial correlation coefficient. Other eye colors include hazel, 
gray, green, and amber. 
 

 
 

Figure 3.12. Mean speed of the target in the camera image in the walking trials for the Tobii 
2 and the Tobii 3. Each circular marker represents a participant (n = 34). The dotted line 
represents the line of equality. 
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3.4. Discussion 
In this study, the accuracy of Tobii Pro Glasses 2 and Tobii Pro Glasses 3 was 
compared under three distinct dynamicity conditions representing varying levels of 
freedom in movement: using a chinrest, without a chinrest, and while walking. 
 
The accuracy of the Tobii 2 was found to be better without a chinrest, opposite to the 
standard approach for remote eye-trackers that recommends using a chinrest for 
enhanced accuracy (e.g., Holmqvist et al., 2011; Minakata & Beier, 2021; Niehorster 
et al., 2018). Interestingly, some researchers have used chinrests with mobile 
eye-trackers (Wang & Grossman, 2020; Werner et al., 2019). We initially 
hypothesized that eye-tracker accuracy would deteriorate with increasing levels of 
movement freedom; however, this did not turn out to be the case. The improved 
accuracy for the off-center dots without a chinrest can be ascribed to participants 
turning their heads, thereby reducing the need for gazing at large eccentricities. 
Eye-trackers generally exhibit better accuracy at smaller target eccentricities 
(MacInnes et al., 2018; Stuart et al., 2016), a notion supported by our seated trial 
results, wherein the central dot demonstrated the highest accuracy. Consequently, 
the use of a chinrest with a mobile eye-tracker is not recommended. 
 
Our study also showed that the Tobii 3 exhibited statistically significant better 
accuracy than the Tobii 2 during the walking condition. This enhanced accuracy of 
the Tobii 3 may be attributed to the incorporation of extra illuminators and the more 
optimal placement of its eye-tracking cameras. Moreover, the Tobii 3’s design 
possibly renders it more resistant to inaccuracies resulting from vibrations and other 
perturbations. Additionally, the Tobii 2 is characterized by a downward pitch angle of 
its scene camera (as also noted by Niehorster et al., 2020; Rogers et al., 2018; 
Thibeault et al., 2019, and which can be seen in the heatmaps in Figure 3.10). This 
deviation may compromise accuracy, as the central gaze point is situated at an 
eccentricity. 
 
Another finding was that the difference in eye-tracking accuracy for the Tobii 3 during 
walking (averaging at 1.74°) and seated trials (averaging at 1.78° with chinrest and 
1.60° without chinrest) was only small and not statistically significant. This result was 
unexpected, since research has suggested that eye-tracking accuracy is 
compromised during dynamic tasks such as walking (Hooge et al., 2022). In line with 
the above explanation for the chinrest vs. without-chinrest condition for the Tobii 2, a 
possible explanation is that participants were able to freely rotate their heads and 
bodies while walking, which helped to keep the target in the center of their field of 
view. This interpretation is supported by the heatmaps in Figure 3.10, which show 
relatively centralized gaze patterns for the walking trials. Additionally, the results 
suggest that participants were able to keep their gaze on the target while walking, 
regardless of how much head movement the participant exhibited. The effectiveness 
with which participants are able to track a target while walking can be attributed to 
the vestibular-ocular reflex, i.e., the reflexive eye movement that helps to stabilize 
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the gaze on a target while the head is moving (Dietrich & Wuehr, 2019; Moore et al., 
1999). Future research could examine the factors that contribute to eye-tracking 
accuracy in dynamic tasks, including the role of head and body movements in 
maintaining a stable gaze. Additionally, it would be interesting to explore the 
generalizability of the findings to other mobile eye-trackers and different types of 
dynamic tasks, such as those requiring rapid head turns (e.g., crossing a road as a 
pedestrian, scanning a traffic scene as a driver) or tasks that require fast walking or 
running. 
 
The present study examined the potential influence of several participant 
characteristics, namely gender, the use of contact lenses, eye color, and mean pupil 
diameter, on the overall accuracy of the eye-trackers. A sample of 36 participants 
was used, and the results did not reveal interpretable statistically significant 
associations with the accuracy of the eye-trackers. Previous research (Holmqvist, 
2017; Nyström et al., 2013) suggested that contact lenses may reduce the accuracy 
of eye-trackers due to multiple corneal reflections. The results of our study did not 
support this hypothesis. It is possible that the Tobii eye-trackers were designed to 
accurately track eye movements even in the presence of these reflections. Future 
research could examine the effect of a larger variety of participant characteristics, 
including eye shape, and using larger sample sizes.  
 
Our findings shown in Table 3.3 indicated that the mean accuracies across 
participants for the Tobii 2 and Tobii 3 in the chinrest condition were 2.77° and 1.78°, 
respectively. If selecting only the center target, the mean accuracies for the Tobii 2 
and 3 are 1.44° and 1.21°, respectively. Our findings are in the ballpark of previous 
studies that have evaluated the Tobii 2, with mean accuracies between 1.19° and 
5.25° for various target eccentricities (Niehorster et al., 2020). It is noteworthy, 
however, that even our accuracies for the center target alone are worse than those 
reported by Tobii, which reported a mean accuracy of 0.62° for the Tobii 2 in an 
unpublished test report (Tobii AB, 2017b), and 0.5° (for a central target) to 0.8° (for 
‘common gaze angles’) in a Tobii 3 test report (Tobii AB, 2022b). There are several 
potential factors that could explain the discrepancies in accuracy observed between 
Tobii’s results and the current study: 
 
● One factor is that Tobii AB (2017b) used another definition of accuracy. Following 

Holmqvist et al. (2011), we computed the angular distance per video frame, and 
subsequently calculated the mean angular distance, which is always a positive 
value, across those frames. Hence, in our case, accuracy represents the overall 
angular distance from the target. On the other hand, Tobii AB (2017b) and others 
(e.g., MacInnes et al., 2018) have defined accuracy as bias, a component of 
accuracy, which they calculated by determining the mean gaze point over a time 
interval and then computing the angular difference between this mean gaze point 
and the target. Bias, reflecting the average deviation from the true value, can 
present a misleadingly low value compared to the overall accuracy (absolute 
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error), by allowing overestimations and underestimations to offset each other. 
Therefore, bias should always be interpreted together with precision (which has 
been defined in different ways in the literature). For completeness, we offer bias 
and precision values for our experimental conditions in Appendices 3.A and 3.B. 
Bias values can be seen to be indeed smaller than the accuracy values 
presented in Table 3.3. 

● Furthermore, in our seated trials, 3 out of 19 trials concerned the central dot, 
whereas the remaining 16 involved a dot at 15° eccentricity. In contrast, Tobii AB 
employed a more evenly distributed range of eccentricity values, which therefore 
constituted a less demanding evaluation. Specifically, the Tobii 2 test report (Tobii 
AB, 2017b) investigated one central dot, four dots situated at approximately 7° 
eccentricity, and another four dots at 10° eccentricity. Similarly, the Tobii 3 report 
(Tobii AB, 2022b) evaluated five dots within a 5° range, four dots at approximately 
8° eccentricity, and four additional dots at 14° eccentricity. The fairness of each 
test may be a matter of debate: Despite both our study and Tobii’s shared interest 
in targets at 15° eccentricity or below, our research was primarily concerned with 
targets at 15° eccentricity, the natural limit of eccentric gaze. In contrast, Tobii’s 
evaluation included only a limited number of targets in close proximity to 15° 
eccentricity. 

● Another consideration is the extended gaze duration employed in our seated 
trials, wherein accuracy was calculated over 10-second intervals, which is 
considerably longer than Tobii’s 1-second window (Tobii AB, 2017b, 2022b). This 
decision was made to capture eye-tracker variability, although it introduced 
possible drawbacks, such as a challenge for participants to maintain focus. 
Figure 3.9 shows no evident difficulty in sustaining attention, as the mean angular 
distance across participants remained approximately constant throughout the 
measurement interval. Furthermore, it is important to note that large angular 
deviations should not necessarily be ascribed to participant inattention; 
eye-tracker inaccuracies themselves may also be a contributing factor.  

● Another potential explanation for the better accuracy reported by Tobii AB 
(2017b) is that they may have included participants whose eyes were better 
trackable. Indeed, it should be noted that the median value of participants, as 
presented in Table 3.3, is lower than the mean value. This observation suggests 
that a small number of participants may be responsible for a disproportionately 
large portion of the observed inaccuracy. This point was also highlighted by 
Holmqvist (2017), who noted: “we did our best to record all sorts of participants 
with troublesome features, while a typical study would try to exclude participants 
with glasses, mascara, squinting, unsuitable pupil sizes and other issues already 
during recruitment” (p. 20).  

● Also, based on correspondence received from Tobii AB in response to a preprint 
of this work, it was proposed that differences in firmware might have partially 
accounted for the observed discrepancy. In Tobii’s tests of the Tobii 2, firmware 
1.16.1 was used (Tobii AB, 2017b), whereas our study used the latest version 
accessible to users, 1.25.6-citronkola-0. Likewise, for the Tobii 3, our experiment 
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used the most recent firmware version available at the time, 1.23.1+pumpa, while 
Tobii’s report, published later that year, made use of 1.28.1-granskott (Tobii AB, 
2022b). 

● As a final point, the methods of filtering and data processing implemented could 
potentially have had an influence. We developed the filtering algorithm to 
adequately handle artifacts such as blinks (see Figure 3.4), while also providing a 
robust estimate in the event of extensive missing data and jitter. In this sense, it 
should be noted that the filtering improves the apparent accuracy of the 
eye-tracker by an average of about 0.14° compared to using unfiltered data. In 
addition, it should be noted that during the seated trials with the Tobii 2, the top 
target occasionally disappeared from the camera view due to the previously 
mentioned tilt angle of the eye-tracker. This resulted in a gap in the measurement 
data, which in this paper is not considered as missing eye-tracking data or 
inaccurate measurement. The angular deviation also occasionally assumed very 
high values, which has a relatively large influence on the accuracy. One possible 
way to address this would be to define accuracy not as the mean angular 
deviation, as we have done, but as the median angular deviation. When this is 
done, the accuracy improves by approximately 19% compared to the values in 
Table 3.3. 

 
Our study found that Tobii 3 had more accurate eye-tracking abilities, and also 
yielded statistically significantly lower physical demand, effort, and frustration than 
the Tobii 2, something which may be due to its more ergonomic design. In support of 
this, the experimenter noted that some participants reported partial obstruction of 
their view by the corners of the Tobii 2 frame when settling into the chinrest ahead of 
those trials and gazing eccentrically at the “left” and “right” target dots. An 
accuracy-workload correlation was also found at the level of participants, with 
participants who had better eye-tracking accuracy experiencing lower physical 
demand, temporal demand, and frustration. A possible explanation for the latter 
correlations is that participants who were less motivated and more fatigued exhibited 
increased bodily movement and a decreased ability to keep their eyes on the target. 
It is also possible that participants who had experienced experimental nuisances, 
such as calibration failures, experienced higher temporal demand and frustration. A 
recommendation that may follow from the above workload-accuracy correlations is 
that researchers who use eye-tracking may wish to consider measures to reduce 
workload in order to improve eye-tracking accuracy. For example, researchers 
should use concise instructions and provide adequate breaks.  
 
Eye-tracker calibration verification in our study left some room for improvement. 
Although the calibration was rigorous, the experimenter was still responsible for 
subjectively verifying the accuracy of the calibration. It should also be noted that the 
trials in our experiment did not feature major disturbances such as wind, sunlight, or 
vibrations. In trials that may involve repeated facial movements or disturbances, or 
repositioning of the eye-tracker glasses, accuracy is likely to worsen. That said, 
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compared to other eye-trackers, the Tobii glasses have been found to be relatively 
resistant to accuracy degradation caused by slippage (Niehorster et al., 2020). 
 
It is worth noting that in our experiment, the chinrest was used without a forehead 
attachment, as the participants’ faces, when wearing the eye-tracker, could not be 
accommodated within the setup otherwise. Evidence from the scene camera 
indicated that participants’ head movements were minimal during the chinrest trials 
(see Figure 3.5 for an example of one trial, which demonstrates limited movement of 
the dots, and Table 3.4 for numerical results). Consequently, it can be reasonably 
inferred that the findings of this study would not deviate significantly if the 
participants’ heads were fully restrained. 
 
Another limitation of the current study is that it only examined angular distances from 
a target in a number of standard tasks. Future research could examine the 
capabilities of mobile eye-trackers for a more comprehensive set of measures (see 
Ehinger et al., 2019, who developed a test battery consisting of 10 tasks to evaluate 
the Pupil Labs glasses eye-tracker). 
 

3.5. Conclusions 
This study showed that the Tobii Pro Glasses 3 yields better eye-tracking accuracy 
than the Tobii Pro Glasses 2 during walking. Furthermore, for the Tobii 2, not 
restraining the head yielded better eye-tracking accuracy than when a chinrest was 
used. Finally, participants who experienced higher workload exhibited poorer 
eye-tracking accuracy, which suggests that the observed eye-tracking accuracy is a 
function not only of the eye-tracker itself but also of the state of the wearer. Future 
research could investigate the relative performance of this and other eye-trackers 
under a wider range of task conditions and participant samples. 
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Appendix 3.A. Results for Eye-Tracker Precision 

The precision of the gaze for a participant in an experimental condition was 
calculated by computing the standard deviation of the angular distance θ over the 
time interval (10 seconds), and subsequently averaging the intervals of that 
participant and condition. Table 3.A1 shows the results of precision.  
 
According to a two-way repeated-measures ANOVA, there was a significant effect of 
the Tobii model, F(1,32) = 10.3, p = 0.003, partial η2 = 0.24, as well as of the level of 
dynamicity, F(2,64) = 6.42, p = 0.003, partial η2 = 0.17, but there was no significant 
Tobii model × dynamicity interaction, F(2,64) = 1.82, p = 0.171, partial η2 = 0.05. 

 



Evaluating the Tobii Pro Glasses 2 and 3 in static and dynamic conditions     73 

 
Table 3.A1 
Precision per experimental condition (in degrees). The mean, standard deviation (SD), and 
median across participants are reported. 
Dynamicity condition Eye-tracker Mean SD Median n 
Seated, with chinrest Tobii 2 1.22 0.77 1.00 36 
Seated, without chinrest Tobii 2 0.89 0.52 0.81 36 
Walking Tobii 2 1.29 1.01 0.92 36 
Seated, with chinrest Tobii 3 0.81 0.72 0.58 34 
Seated, without chinrest Tobii 3 0.77 0.82 0.45 33 
Walking Tobii 3 0.97 0.90 0.68 34 
      

Appendix 3.B. Results for Eye-Tracker Bias 
The bias of the gaze for a participant in an experimental condition was calculated by 
computing the mean gaze point and target point in pixels over the time interval (10 
seconds), computing the angular distance of those means using Eq. 1, and 
subsequently averaging the intervals of that participant and condition.  
 
Table 3.A2 shows the results of bias. According to a two-way repeated-measures 
ANOVA, there was a significant effect of the Tobii model, F(1,32) = 32.0, p < 0.001, 
partial η2 = 0.50, a significant effect of dynamicity, F(2, 64) = 4.60, p = 0.014, partial 
η2 = 0.13. Moreover, there was a significant Tobii model × dynamicity interaction, F(2, 
64) = 5.53, p = 0.006, partial η2 = 0.15. 
 
Table 3.A2 
Bias per experimental condition (in degrees). The mean, standard deviation (SD), and 
median across participants are reported. 
Dynamicity condition Eye-tracker Mean SD Median n 
Seated, with chinrest Tobii 2 2.22 1.10 1.97 36 
Seated, without chinrest Tobii 2 1.60 1.26 1.13 36 
Walking Tobii 2 2.86 2.01 2.52 36 
Seated, with chinrest Tobii 3 1.52 0.90 1.35 34 
Seated, without chinrest Tobii 3 1.30 0.71 1.10 33 
Walking Tobii 3 1.37 0.85 1.26 34 

      
Supplementary Data 

Data and scripts are available at: 
https://doi.org/10.4121/442018c6-30eb-4439-a452-c0046726905c. 

 
References 

Aziz, S., & Komogortsev, O. (2022). An assessment of the eye tracking signal quality 
captured in the hololens 2. Proceedings of the 2022 Symposium on Eye Tracking 
Research and Applications, Seattle, WA, Article 5. 
https://doi.org/10.1145/3517031.3529626 

 



74             Chapter 3 

Bahill, A. T., Adler, D., & Stark, L. (1975). Most naturally occurring human saccades 
have magnitudes of 15 degrees or less. Investigative Ophthalmology, 14, 
468–469. 
https://iovs.arvojournals.org/arvo/content_public/journal/iovs/933061/468.pdf 

Cercenelli, L., Tiberi, G., Bortolani, B., Giannaccare, G., Fresina, M., Campos, E., & 
Marcelli, E. (2019). Gaze Trajectory Index (GTI): A novel metric to quantify 
saccade trajectory deviation using eye tracking. Computers in Biology and 
Medicine, 107, 86–96. https://doi.org/10.1016/j.compbiomed.2019.02.003 

De Winter, J. C. F., Dodou, D., & Tabone, W. (2022). How do people distribute their 
attention while observing The Night Watch? Perception, 51, 763–788. 
https://doi.org/10.1177/03010066221122697 

Dietrich, H., & Wuehr, M. (2019). Strategies for gaze stabilization critically depend on 
locomotor speed. Neuroscience, 408, 418–429. 
https://doi.org/10.1016/j.neuroscience.2019.01.025 

Ehinger, B. V., Groß, K., Ibs, I., & König, P. (2019). A new comprehensive 
eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the 
EyeLink 1000. PeerJ, 7, Article e7086. https://doi.org/10.7717/peerj.7086 

Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze 
allocation in the lab and the natural environment. Vision Research, 51, 
1920–1931. https://doi.org/10.1016/j.visres.2011.07.002 

Franchak, J. M., McGee, B., & Blanch, G. (2021). Adapting the coordination of eyes 
and head to differences in task and environment during fully-mobile visual 
exploration. PLOS ONE, 16, Article e0256463. 
https://doi.org/10.1371/journal.pone.0256463 

Gibaldi, A., Vanegas, M., Bex, P. J., & Maiello, G. (2017). Evaluation of the Tobii 
EyeX Eye tracking controller and Matlab toolkit for research. Behavior Research 
Methods, 49, 923–946. https://doi.org/10.3758/s13428-016-0762-9 

Holmqvist, K. (2017). Common predictors of accuracy, precision and data loss in 12 
eye-trackers. ResearchGate. https://doi.org/10.13140/RG.2.2.16805.22246 

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de 
Weijer, J. (2011). Eye-tracker hardware and its properties. In Eye tracking: A 
comprehensive guide to methods and measures (pp. 9–64). OUP Oxford. 

Holmqvist, K., Örbom, S. L., Hooge, I. T. C., Niehorster, D. C., Alexander, R. G., 
Andersson, R., Benjamins, J. S., Blignaut, P., Brouwer, A.-M., Chuang, L. L., 
Dalrymple, K. A., Drieghe, D., Dunn, M. J., Ettinger, U., Fiedler, S., Foulsham, T., 
Van der Geest, J. N., Hansen, D. W., Hutton, S. B., ... Hessels, R. S. (2022). Eye 
tracking: Empirical foundations for a minimal reporting guideline. Behavior 
Research Methods, 55, 364–416. https://doi.org/10.3758/s13428-021-01762-8 

Hooge, I. T. C., Niehorster, D. C., Hessels, R. S., Benjamins, J. S., & Nyström, M. 
(2022). How robust are wearable eye trackers to slow and fast head and body 
movements? Behavior Research Methods, 55, 4128–4142. 
https://doi.org/10.3758/s13428-022-02010-3 

Hooge, I. T. C., Niehorster, D. C., Hessels, R. S., Cleveland, D., & Nyström, M. 
(2021). The pupil-size artefact (PSA) across time, viewing direction, and different 

 



Evaluating the Tobii Pro Glasses 2 and 3 in static and dynamic conditions     75 

eye trackers. Behavior Research Methods, 53, 1986–2006. 
https://doi.org/10.3758/s13428-020-01512-2 

Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, 
B. (2012). Conveying clinical reasoning based on visual observation via 
eye-movement modelling examples. Instructional Science, 40, 813–827. 
https://doi.org/10.1007/s11251-012-9218-5 

Kredel, R., Vater, C., Klostermann, A., & Hossner, E.-J. (2017). Eye-tracking 
technology and the dynamics of natural gaze behavior in sports: A systematic 
review of 40 years of research. Frontiers in Psychology, 8, Article 1845. 
https://doi.org/10.3389/fpsyg.2017.01845 

Lamare, M. (1892). Des mouvements des yeux dans la lecture [Eye movements in 
reading]. Bulletins et Mémoires de la Société Française d’Ophthalmologie, 10, 
354–364. 
https://pure.mpg.de/rest/items/item_2352590/component/file_2628648/content 

Lång, K., Zackrisson, S., Holmqvist, K., Nystrom, M., Andersson, I., Förnvik, D., 
Tingberg, A., & Timberg, P. (2011). Optimizing viewing procedures of breast 
tomosynthesis image volumes using eye tracking combined with a free response 
human observer study. Proceedings of the Medical Imaging 2011: Image 
Perception, Observer Performance, and Technology Assessment, Orlando, FL, 
15–25. https://doi.org/10.1117/12.878066 

MacInnes, J. J., Iqbal, S., Pearson, J., & Johnson, E. N. (2018). Wearable 
eye-tracking for research: Automated dynamic gaze mapping and 
accuracy/precision comparisons across devices. BioRxiv. 
https://doi.org/10.1101/299925 

Mantiuk, R. (2017). Accuracy of high-end and self-build eye-tracking systems. In S. 
Kobayashi, A. Piegat, J. Pejaś, I. El Fray, & J. Kacprzyk (Eds.), Hard and Soft 
Computing for Artificial Intelligence, Multimedia and Security. ACS 2016. 
Advances in Intelligent Systems and Computing (pp. 216–227). Springer. 
https://doi.org/10.1007/978-3-319-48429-7_20 

Meißner, M., Pfeiffer, J., Pfeiffer, T., & Oppewal, H. (2019). Combining virtual reality 
and mobile eye tracking to provide a naturalistic experimental environment for 
shopper research. Journal of Business Research, 100, 445–458. 
https://doi.org/10.1016/j.jbusres.2017.09.028 

Minakata, K., & Beier, S. (2021). The effect of font width on eye movements during 
reading. Applied Ergonomics, 97, Article 103523. 
https://doi.org/10.1016/j.apergo.2021.103523 

Moore, S. T., Hirasaki, E., Cohen, B., & Raphan, T. (1999). Effect of viewing distance 
on the generation of vertical eye movements during locomotion. Experimental 
Brain Research, 129, 347–361. https://doi.org/10.1007/s002210050903 

Morgante, J. D., Zolfaghari, R., & Johnson, S. P. (2012). A critical test of temporal 
and spatial accuracy of the Tobii T60XL eye tracker. Infancy, 17, 9–32. 
https://doi.org/10.1111/j.1532-7078.2011.00089.x 

Niehorster, D. C., Cornelissen, T. H. W., Holmqvist, K., Hooge, I. T. C., & Hessels, R. 
S. (2018). What to expect from your remote eye-tracker when participants are 

 



76             Chapter 3 

unrestrained. Behavior Research Methods, 50, 213–227. 
https://doi.org/10.3758/s13428-017-0863-0 

Niehorster, D. C., Santini, T., Hessels, R. S., Hooge, I. T. C., Kasneci, E., & Nyström, 
M. (2020). The impact of slippage on the data quality of head-worn eye trackers. 
Behavior Research Methods, 52, 1140–1160. 
https://doi.org/10.3758/s13428-019-01307-0 

Nyström, M., Andersson, R., Holmqvist, K., & Van De Weijer, J. (2013). The influence 
of calibration method and eye physiology on eyetracking data quality. Behavior 
Research Methods, 45, 272–288. https://doi.org/10.3758/s13428-012-0247-4 

Onkhar, V., Bazilinskyy, P., Stapel, J. C. J., Dodou, D., Gavrila, D., & De Winter, J. C. 
F. (2021). Towards the detection of driver-pedestrian eye contact. Pervasive and 
Mobile Computing, 76, Article 101455. https://doi.org/10.1016/j.pmcj.2021.101455 

Pastel, S., Chen, C.-H., Martin, L., Naujoks, M., Petri, K., & Witte, K. (2021). 
Comparison of gaze accuracy and precision in real-world and virtual reality. Virtual 
Reality, 25, 175–189. https://doi.org/10.1007/s10055-020-00449-3 

Płużyczka, M. (2018). The first hundred years: A history of eye tracking as a 
research method. Applied Linguistics Papers, 25, 101–116. 
https://doi.org/10.32612/uw.25449354.2018.4.pp.101-116 

RateFast. (2015). RateFast Goniometer. 
https://blog.rate-fast.com/ratefast-goniometer 

Rogers, S. L., Speelman, C. P., Guidetti, O., & Longmuir, M. (2018). Using dual eye 
tracking to uncover personal gaze patterns during social interaction. Scientific 
Reports, 8, Article 4271. https://doi.org/10.1038/s41598-018-22726-7 

Rosenberg, R., & Klein, C. (2015). The moving eye of the beholder: Eye tracking and 
the perception of paintings. In J. P. Huston, M. Nadal, F. Mora, L. F. Agnati, & C. J. 
Cela-Conde (Eds.), Art, aesthetics and the brain (pp. 79–108). Oxford University 
Press. https://doi.org/10.1093/acprof:oso/9780199670000.003.0005 

Serchi, V., Peruzzi, A., Cereatti, A., & Della Croce, U. (2014). Tracking gaze while 
walking on a treadmill: Spatial accuracy and limits of use of a stationary remote 
eye-tracker. Proceedings of the Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Chicago, IL, 3727–3730. 
https://doi.org/10.1109/EMBC.2014.6944433 

Stahl, J. S. (1999). Amplitude of human head movements associated with horizontal 
saccades. Experimental Brain Research, 126, 41–54. 
https://doi.org/10.1007/s002210050715 

Stuart, S., Alcock, L., Godfrey, A., Lord, S., Rochester, L., & Galna, B. (2016). 
Accuracy and re-test reliability of mobile eye-tracking in Parkinson’s disease and 
older adults. Medical Engineering & Physics, 38, 308–315. 
https://doi.org/10.1016/j.medengphy.2015.12.001 

’t Hart, B. M., & Einhäuser, W. (2012). Mind the step: Complementary effects of an 
implicit task on eye and head movements in real-life gaze allocation. Experimental 
Brain Research, 223, 233–249. https://doi.org/10.1007/s00221-012-3254-x 

Thibeault, M., Jesteen, M., & Beitman, A. (2019). Improved accuracy test method for 
mobile eye tracking in usability scenarios. Proceedings of the Human Factors and 

 



Evaluating the Tobii Pro Glasses 2 and 3 in static and dynamic conditions     77 

Ergonomics Society Annual Meeting, 63, 2226–2230. 
https://doi.org/10.1177/1071181319631083 

Tobii AB. (2017a). Tobii Pro Glasses 2. User manual. 
https://www.manualslib.com/download/1269253/Tobii-Pro-Glasses-2.html 

Tobii AB. (2017b). Eye tracker data quality report: Accuracy, precision and detected 
gaze under optimal conditions—controlled environment, Tobii Pro Glasses 2. 

Tobii AB. (2022a). Tobii Pro Glasses 3. User manual. 
https://go.tobii.com/tobii-pro-glasses-3-user-manual 

Tobii AB. (2022b). Tobii Pro Glasses 3 data quality test report: Accuracy, precision, 
and data loss under controlled environment (Rev. 1).  

Wang, B., & Grossman, T. (2020). BlyncSync: Enabling multimodal smartwatch 
gestures with synchronous touch and blink. Proceedings of the 2020 CHI 
Conference on Human Factors in Computing Systems, Honolulu, HI. 
https://doi.org/10.1145/3313831.3376132 

Werner, K., Raab, M., & Fischer, M. H. (2019). Moving arms: The effects of 
sensorimotor information on the problem-solving process. Thinking & Reasoning, 
25, 171–191. https://doi.org/10.1080/13546783.2018.1494630 

Wyatt, H. J. (2010). The human pupil and the use of video-based eyetrackers. Vision 
Research, 50, 1982–1988. https://doi.org/10.1016/j.visres.2010.07.008 

Xia, Y., Liang, J., Li, Q., Xin, P., & Zhang, N. (2022). High-accuracy 3D gaze 
estimation with efficient recalibration for head-mounted gaze tracking systems. 
Sensors, 22, Article 4357. https://doi.org/10.3390/s22124357 

Yuen, H. K., Princen, J., Illingworth, J., & Kittler, J. (1990). Comparative study of 
Hough transform methods for circle finding. Image and Vision Computing, 8, 
71–77. https://doi.org/10.1016/0262-8856(90)90059-e 

 



 
 

 

 



 

 
 
 
 
 
 
 
 
 
 

Chapter 4 
 

Towards the detection of driver-pedestrian eye 
contact 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been published as:  
Onkhar, V., Bazilinskyy, P., Stapel, J. C. J., Dodou, D., Gavrila, D., & De Winter, J. C. 
F. (2021). Towards the detection of driver–pedestrian eye contact. Pervasive and 
Mobile Computing, 76, Article 101455. https://doi.org/10.1016/j.pmcj.2021.101455 

 



80             Chapter 4 

Abstract 
Non-verbal communication, such as eye contact between drivers and pedestrians, 
has been regarded as one way to reduce accident risk. So far, studies have 
assumed rather than objectively measured the occurrence of eye contact. We 
address this research gap by developing an eye contact detection method and 
testing it in an indoor experiment with scripted driver-pedestrian interactions at a 
pedestrian crossing. Thirty participants acted as a pedestrian either standing on an 
imaginary curb or crossing an imaginary one-lane road in front of a stationary vehicle 
with an experimenter in the driver’s seat. In half of the trials, pedestrians were 
instructed to make eye contact with the driver; in the other half, they were prohibited 
from doing so. Both parties’ gaze was recorded using eye-trackers. An in-vehicle 
stereo camera recorded the car’s point of view, a head-mounted camera recorded 
the pedestrian’s point of view, and the location of the driver’s and pedestrian’s eyes 
was estimated using image recognition. We demonstrate that eye contact can be 
detected by measuring the angles between the vector joining the estimated location 
of the driver’s and pedestrian’s eyes, and the pedestrian’s and driver’s instantaneous 
gaze directions, respectively, and identifying whether these angles fall below a 
threshold of 4°. We achieved 100% correct classification of the trials involving eye 
contact and those without eye contact, based on measured eye contact duration. 
The proposed eye contact detection method may be useful for future research into 
eye contact. 
 

4.1. Introduction 
In 2018, there were over 300,000 pedestrian deaths worldwide (World Health 
Organization, 2018). Studies have shown that pedestrian fatalities are growing by 
the year, especially on urban roads (National Highway Traffic Safety Administration, 
2018a), and that most pedestrian casualties occur during the act of street crossing 
(DaSilva et al., 2004). An area of study with relevance to pedestrian safety is how 
pedestrians interact with approaching vehicles. Next to formal traffic rules, 
non-verbal communication plays a role in the safe interaction between pedestrians 
and drivers (Färber, 2016; Habibovic et al., 2018).  
 
4.1.1. The Effect of Eye Contact on Pedestrians 
Through interviews and on-site observations (Lee et al., 2021; Sucha et al., 2017) 
and recordings of natural driving scenes (Rasouli et al., 2017; Schmidt & Färber, 
2009; Sucha et al., 2017), it has been shown that a sizeable percentage of 
pedestrians use eye contact to negotiate right of way when crossing the road. 
Additionally, studies have investigated pedestrians’ responses to automated vehicles 
without a driver making eye contact (typically using a Wizard of Oz approach; 
Habibovic et al., 2018; Malmsten Lundgren et al., 2017; Rothenbücher et al., 2015). 
In particular, Malmsten Lundgren et al. found that most pedestrians were willing to 
cross the road when there was eye contact with the driver, whereas only a few were 
willing when the driver of the automated vehicle was inattentive. There also exists a 
prevalent belief outside academia that eye contact is of significance to the safety of 
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pedestrians, as evidenced by notices, signs, and advice issued by traffic safety 
organizations (london.ca, 2016; National Highway Traffic Safety Administration, 
2018b; Veiligverkeer, 2020). The view that eye contact is important has even led to 
the development of anthropomorphic external human-machine interfaces (eHMIs) for 
automated vehicles. Chang et al. (2017), for example, tested a novel eHMI with 
dynamic eyes on the car.  
 
While many studies have shown that pedestrians seek eye contact with drivers (Lee 
et al., 2021; Schneemann & Gohl, 2016; Sucha et al., 2017), it has been suggested 
that eye contact is not essential and that pedestrians often cross in front of vehicles 
by solely relying on vehicle motion cues (Dey & Terken, 2017; Lee et al., 2021; 
Moore et al., 2019). In an online study by AlAdawy et al. (2019), participants looking 
at photos of a car with a driver inside at different distances and under different 
lighting conditions reported that, in many situations, they could not even see the 
driver, let alone make eye contact. 
 
4.1.2. The Effect of Eye Contact on Drivers 
Next to pedestrians’ communication needs at crossings, studies have investigated 
the effect of pedestrians’ communication attempts, including eye contact, on drivers. 
As early as 1974, Snyder et al. noted in a field experiment on hitchhiking that drivers 
yielded more often when staged hitchhikers sought eye contact with them. Katz et al. 
(1975) found that drivers slowed down and yielded more often to pedestrians when 
the pedestrians initiated crossing but were not looking in the driver’s direction, 
compared to when they were. More recently, in a field study measuring car speed 
profiles as a function of eye contact, Ren et al. (2016) found that drivers braked 
earlier for staged pedestrians who attempted to make eye contact than for those who 
did not. That said, Schmidt and Färber (2009) found that participants looking at 
videos of traffic scenes from a driver’s perspective were able to make accurate 
predictions of pedestrians’ crossing intentions even when the pedestrians’ heads 
were occluded, suggesting that eye contact is not essential in traffic. 
 
4.1.3. Literature Gap 
From the above, there appears to be a need for further research into the importance 
of eye contact in traffic. However, as of present, no general conclusions can be 
obtained due to the variety of measurement methods employed. Measurements such 
as head orientation, as reported by experimenters standing on the roadside or 
recorded via cameras inside or outside of the vehicle, can be used to infer eye 
contact seeking (Kotseruba et al., 2016; Rasouli et al., 2017; Roth et al., 2016; 
Schneemann & Gohl, 2016; Sucha et al., 2017). For example, based on an analysis 
of video clips from urban driving scenarios, Rasouli et al. (2017) suggested that 
pedestrians looking in the direction of approaching vehicles for longer than 1 second 
might also seek eye contact. However, head orientation alone does not determine 
where road users are looking. 
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Herein, we propose the use of eye-tracking to detect eye contact. Eye-tracking can 
establish where road users look without explicitly asking them and without relying on 
third-party observations. Some research into how drivers look at pedestrians already 
exists. For example, Walker (2005) and Walker and Brosnan (2007) reported that 
drivers gazed at cyclists’ faces first and for longer than other body parts. Nathanael 
et al. (2019) used eye-tracking to analyze drivers’ gaze and concluded that 
pedestrians’ body movement/posture and eye gaze were sufficient to resolve 
crossing conflicts in the majority of interactions, without the need for eye contact or 
hand gestures. Diederichs et al. (2015) performed eye-tracking in a driving simulator 
study with simulated pedestrians and reported that drivers’ pedal responses that 
indicated an intention to brake were accompanied by eye fixations on pedestrians 
0.4–2.4 s earlier. Finally, Borowsky et al. (2012) conducted an eye-tracking 
experiment where participants viewed traffic videos from a driver’s perspective and 
pressed a button when they perceived a hazard. The authors reported that, in 
general, drivers fixated more often on pedestrians on the road compared to those on 
the curb.  
 
Research on eye movements in pedestrians exists as well. For example, De Winter 
et al. (2021) conducted an eye-tracking study of pedestrians during interactions with 
vehicles in a parking lot and found that pedestrians frequently sought eye contact 
with drivers. Dey et al. (2019) used eye-tracking of pedestrians at a curb and 
measured their willingness to cross in front of an oncoming vehicle using a handheld 
slider. They reported that despite the interior of approaching cars being dark and 
reflections on the windshield making it difficult to establish eye contact, pedestrians 
still sought information about the driver’s intentions by looking at the windshield 
when the vehicle was nearby. A recent literature review on eye-tracking studies of 
pedestrians crossing the road noted that a limitation of the research so far is that the 
eye-tracking results were not combined with physical measurements such as the 
distance of the vehicle to the pedestrian (Lévêque et al., 2020). Image recognition 
combined with eye-tracking could prove a solution to this limitation. 
 
Another important caveat in the above studies involving eye-tracking in traffic (e.g., 
De Winter et al., 2021; Dey et al., 2019; Nathanael et al., 2019) is that only one 
perspective (either the driver’s or the pedestrian’s) was measured, which provides an 
incomplete picture because eye contact is a mutual phenomenon (and see Roth et 
al., 2016 for a study on mutual situation awareness of driver and pedestrian; also 
Broz et al., 2012 and Rogers et al., 2018, for studies using dual eye-tracking in social 
interaction). In other words, gaze detection of solely one of the two parties is 
informative about the party’s seeking of eye contact but cannot tell whether eye 
contact has been established. These problems in the operationalization of eye 
contact in the literature have also been reported by Jongerius et al. (2020) in their 
scoping review on eye contact in human-human interaction. This vacuum in the 
literature could be filled by techniques that detect driver-pedestrian eye contact. 
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4.1.4. Study Aims 
In the current study, we developed a method that detects driver-pedestrian eye 
contact by means of two eye-trackers along with two cameras. Our work’s novelties 
are the use of dual eye-tracking in the traffic context, which pinpoints where both the 
driver and the pedestrian are looking at any given time, and the use of image 
recognition on video recordings from cameras to estimate the locations of the driver 
and the pedestrian. We validated the method by means of an indoor experiment with 
scripted driver-pedestrian interactions at a pedestrian crossing.  
 
Driver-pedestrian eye contact was operationalized as a situation when the driver and 
the pedestrian are looking at each other at the same time within predefined threshold 
angles. In the literature, there is an emphasis on the psychological (and hence, 
subjective) experience of eye contact (Heron, 1970; Jongerius et al., 2020). In this 
study, we are concerned with the objective detection of eye contact. An underlying 
assumption in our operationalization is that if two persons are looking at each other’s 
faces, they are looking at each other’s eyes in an attempt to make eye contact. 
 

4.2. Methods 
4.2.1. Participants 
Thirty-one persons (23 males, 8 females) took part in the experiment as staged 
pedestrians. Participants were recruited via social media and personal contacts. 
Only people with normal visual acuity or corrected with contact lenses were eligible 
to participate. All participants provided written informed consent. The research was 
approved by the Human Research Ethics Committee of the Delft University of 
Technology (reference number 865). One male participant was excluded because of 
a failure of one eye-tracker, resulting in a final sample of 30, with a mean age (SD) of 
24.8 (2.3) years and with ages ranging from 19 to 31 years. 
 
4.2.2. Equipment 
A head-mounted Tobii Pro Glasses 2 eye-tracker was used to track and record the 
pedestrian’s (i.e., participant’s) gaze direction at 50 Hz. The ‘Gaze Spot Meter’ 
setting of the Tobii was turned on, as a result of which the exposure of the camera 
images was automatically adjusted based on where the participant looked. A 
head-mounted camera built into the Tobii recorded the pedestrian’s view as a video 
at 25 frames per second, a field of view of 90o, and a resolution of 1920×1080. 
Pedestrian gaze calibration was achieved using a card with a printed bull’s-eye, and 
parallax error was corrected automatically by the manufacturer’s software. 
 
A dashboard-mounted Smart Eye Pro dx eye-tracker installed in a Toyota Prius 
intelligent vehicle (i.e., with environment-sensing capabilities; Ferranti et al., 2019) 
was used to track and record the driver’s (i.e., experimenter’s) gaze direction at 60 
Hz. The Smart Eye collected gaze data using a combination of the manufacturer’s 
bundled software and custom C++ programs running inside the Robot Operating 
System (ROS) on an Ubuntu Linux computer onboard the Toyota Prius. Parallax 
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error was avoided as the Smart Eye was not head-mounted and worked with 3D 
space rather than 2D projections on an image plane.  
 
Both eye-trackers work on the principle of pupil corneal reflection, i.e., by using the 
angle between the locations of the pupil and reflections of infrared light on a person’s 
cornea to determine their gaze direction (Tobii AB, 2021). To this end, artificial 
infrared light sources are employed, and the corneal reflections are captured by 
infrared cameras. The pedestrian’s and the driver’s gazes were both taken as the 
average of the gaze directions from each of their two eyes. An iDS UI-3060CP-C-HQ 
Rev. 2 stereo camera installed in the car with integrated pedestrian detection 
recorded the pedestrian’s locations using the single-shot detection (SSD; Braun et 
al., 2019) technique at 10 Hz. 
 
The Smart Eye was temporally synchronized with the stereo camera using Network 
Time Protocol (NTP) clients on a local area network (LAN) with a synchronization 
buffer, which minimized the difference in capture time between the two sources. The 
Smart Eye was further spatially calibrated relative to 22 reference points inside the 
vehicle, the locations of which were known (i.e., the position and orientation of the 
vehicle’s sensors, including that of the stereo camera) obtained by laser scanning 
the Toyota Prius (methods described by Domhof et al., 2019). Driver gaze was 
calibrated using a different set of 7 known points in the vehicle’s interior. Flashes 
from a NexTorch flashlight (300 lumens) during the experiment were captured by 
both the Tobii camera and the stereo camera to enable retrospective synchronization 
of the data from the two eye-trackers. 
 
4.2.3. Experimental Procedure 
The experiment was conducted indoors in an open lab space, with the area 
cordoned off to prevent interference from passers-by. The location was well lit by a 
combination of natural light (indirect and diffused through windows) and fluorescent 
tubes on the ceiling. The Toyota Prius was parked away from sunlight to reduce 
windshield glare and angled in such a way as to minimize the chance of unwanted 
detection of onlookers and passers-by by the stereo camera. 
 
Participants played the role of a pedestrian, and two experimenters conducted the 
study: the first posed as the driver of the stationary car, and the second instructed 
the participant about their task and controlled the torch for the synchronization of the 
two eye-trackers. Upon arrival, participants read and signed the consent form, which 
also contained a brief overview of the experiment, its objectives, and their role in it. 
They subsequently completed a questionnaire on their height, age, sex, nationality, 
etc. Next, participants were provided with an oral explanation of how to interact with 
the car (to supplement what they had read). They were asked to wear the Tobii, 
which was calibrated using a card with a printed bull’s-eye. In the meantime, the 
driver calibrated his gaze with the Smart Eye using a checkerboard. Participants 
were instructed to imagine that they were a pedestrian on a curb who had the 
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intention of crossing a one-lane road at an uncontrolled crossing when an 
approaching car had just slowed down to a stop. 
 
Each participant performed six trials, as summarized in Table 4.1. The trials involved 
either a standing pedestrian (on the right or left imaginary curb) or a crossing 
pedestrian, with instructions to make/not make eye contact with the driver. Three 
repetitions were conducted per trial. Thus, each participant performed 18 repetitions 
in total (6 trials x 3 repetitions). The six trials were performed in two blocks: one 
containing all four standing trials and the other containing the two crossing trials. The 
order in which the blocks were performed and the order of the trials within the blocks 
were randomized. The repetitions within each trial were conducted back-to-back. 
 
Table 4.1 
Trials in the experiment 
Pedestrian action/position Eye contact Abbreviation 
Left standing pedestrian Yes L-S-EC 
Left standing pedestrian No L-S-NEC 
Right standing pedestrian Yes R-S-EC 
Right standing pedestrian No R-S-NEC 
Crossing pedestrian Yes C-EC 
Crossing pedestrian No C-NEC 

 
Before each trial, participants were instructed by the second experimenter about 
what type of trial would be performed next (i.e., whether/where to stand or cross, and 
whether to make/not make contact with the driver). In the standing trials, the 
pedestrian stood on the imaginary curb at a longitudinal distance of 5 m from the 
front of the car and at a lateral distance of 0.5 m from the side of the car, either to its 
left or right (see Figure 4.1). In the crossing trials, the pedestrian always started on 
the right curb. 
 
In half of the standing trials, the pedestrians were asked to turn their head to briefly 
make eye contact with the driver, whereas in the other half, the pedestrians were 
asked to turn their head to briefly look at the body of the car (at a location of their 
preference) but refrain from gazing at the driver. In the crossing trials, the 
pedestrians were instructed to either maintain eye contact with the driver for the 
whole time as they walked towards the opposite curb across the imaginary road and 
back (as shown in Figure 4.2a) or avoid it by fixating on the body of the car. One 
repetition in the standing trials involved head turning to look at the car/driver, 
followed by eye contact/no eye contact, and head-turning to look away from the 
car/driver. One repetition in the crossing trials involved head turning to look at the 
car/driver, followed by walking once in front of the vehicle towards the opposite curb 
and back while maintaining/avoiding eye contact, and head-turning to look away 
from the car/driver. 
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Figure 4.1. Layout of the experiment. The green circle marked ‘D’ denotes the location of the 
driver, the orange circle marked ‘S’ denotes the location of the ‘synchronizer’ (i.e., the 
experimenter with the torch), and the magenta circles marked ‘PL’ and ‘PR’ denote the 
locations of the pedestrian on the left and right curbs, respectively. In the experiment, the 
curbs were rectangles (shown here in light brown), and the road crossing (marked ‘R’) was a 
line, all three drawn in chalk on the floor. 
 

 
Figure 4.2a. A pedestrian crossing towards the right curb, with the driver and pedestrian 
looking at each other’s eyes throughout the interaction. The participant provided permission 
for the publication of this image. 
 
The driver briefly sought eye contact with the pedestrian in all standing trials, 
irrespective of whether the pedestrian was looking back at him. There was no 
predefined duration for the driver’s eye contact seeking in the standing trials as this 
would be difficult to execute perfectly, so it was left to his discretion and what felt 
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natural. In the crossing trials, the driver followed the eyes of the walking pedestrian 
with his gaze for the entire duration (as seen in Figure 4.2b), irrespective of whether 
the pedestrian was looking back at him. 
 

 
Figure 4.2b. The driver watching a pedestrian who is crossing towards the right curb, with 
the driver and pedestrian looking at each other’s eyes throughout the interaction. Both 
persons provided permission for the publication of this image. 
 
Before and after each trial, the participant was instructed to look at the torch held by 
the experimenter (standing in front of the car a few meters beyond the pedestrian) 
and wait for a flash, which served as an instantaneous marker for the start and end 
of that trial, respectively. The driver also knew to look at the torch at the beginning 
and the end of every trial. 
 
All trials were recorded by both the Tobii and stereo cameras. After completing all the 
trials, the participants completed a questionnaire about their participation experience 
on 7-point Likert items (see Table 4.A1 in Appendix 4.A). 
 

4.3. Analysis 
4.3.1. Data Export 
The gaze data collected by the Tobii, such as the pedestrian’s gaze direction and 
gaze points in pixel coordinates corresponding to its camera video, were exported as 
Microsoft Excel files via the Tobii Pro Lab software. The data collected by the Smart 
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Eye and the stereo camera, such as the driver’s gaze direction, position of his eyes, 
and the pedestrian’s location, were saved in ROSBAG format and subsequently 
converted to comma-separated values (CSV) files via ROS. 
 
4.3.2. Gaze Data Quality 
First, the quality of the raw gaze data of the experimental trials was assessed using 
a gaze sample percentage, defined as the percentage of the trial duration for which 
the driver’s or pedestrian’s gaze direction could be measured. Any instances with 
missing data on either the driver’s end or the pedestrian’s end were filled using the 
previous non-missing entry. 
 
4.3.3. Driver Eye Contact Seeking 
To determine the vector connecting the driver’s eyes to the pedestrian’s eyes in 3D 
space (henceforth referred to as the ‘ideal driver gaze’), the location of the driver’s 
eyes (i.e., the midpoint between his right and left eye) was measured by the Smart 
Eye. The location of the pedestrian’s eyes (i.e., the midpoint between the right and 
left eye) was estimated based on the pedestrian’s location (x, y) obtained from the 
stereo camera and the pedestrian’s eye height (z) calculated as 0.1 m below the 
pedestrian’s self-reported height. Variation in the pedestrian’s eye height due to their 
gait was assumed to be negligible. The stereo camera also detected the location of 
the experimenter holding the torch, which counted as false positives in the 
pedestrian detection. These readings were eliminated using a heuristically 
determined distance threshold of 7.3 m; that is, detections nearer than the threshold 
were the pedestrian and therefore retained, and those farther were the experimenter 
and therefore discarded. 
 
A global coordinate system was defined, and the measurements from the Smart Eye 
(i.e., driver’s instantaneous gaze direction and the position of his eyes) and the 
stereo camera (i.e., pedestrian’s location) were converted to it from the devices’ 
coordinate systems, as seen in Eq. 1. This equation describes the quaternion 
transformation of a coordinate system. 
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with * denoting the complex conjugate. To accomplish the coordinate transformation, 
translation of the measurements was performed using a translation matrix , 𝑘

𝑥
,  𝑘

𝑦
,  𝑘

𝑧[ ]
followed by rotation using a quaternion , as seen above. Finally, all data 𝑠,  𝑎,  𝑏,  𝑐[ ]
were resampled to a common sampling rate of 100 Hz using linear interpolation. 
 
The driver’s eye contact seeking for each sampling instant was determined using the 
angle between the ‘ideal driver gaze’ vector and the driver’s instantaneous gaze 
direction vector, as shown in Eq. 2. This equation uses Euclidean geometry to find 
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the angle between two vectors in 3D that originate from a common point. Driver eye 
contact seeking was operationalized as gaze angle error θdriver < 4o. This threshold 
was based on a visual inspection of the distribution of θdriver for all eye contact (EC) 
trials combined. 
 

    (2) θ
𝑑𝑟𝑖𝑣𝑒𝑟

= ‖𝑖𝑑𝑒𝑎𝑙 𝑑𝑟𝑖𝑣𝑒𝑟 𝑔𝑎𝑧𝑒⨯𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑔𝑎𝑧𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛‖
𝑖𝑑𝑒𝑎𝑙 𝑑𝑟𝑖𝑣𝑒𝑟 𝑔𝑎𝑧𝑒⋅𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑔𝑎𝑧𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛( ) 

 
4.3.4. Pedestrian Eye Contact Seeking 
The location of the driver’s eyes in the video recordings from the pedestrian’s 
head-mounted camera was estimated on a frame-by-frame basis using computer 
vision. First, for increasing computational speed, each frame was resized from 
1920×1080 to 192×108 pixels, and only the blue dimension from the RGB 
dimensions was retained. Next, the location of the Toyota Prius in each frame was 
estimated using a normalized two-dimensional cross-correlation technique (i.e., 
template matching; cf. Briechle & Hanebeck, 2001) with 82 reference images of the 
car (also consisting of only the blue dimension) with a resolution of 51×36 pixels. 
These reference images were cropped from Tobii recordings when the car was in 
view under different lighting conditions, angles, and perspectives. Pixel coordinates 
marking the driver’s eyes in the reference images were manually coded. The location 
of the driver’s eyes in each frame was estimated by finding the reference image that 
offered the maximum correlation (while also being above an empirically determined 
correlation threshold of 0.73), as shown in Figure 4.3. 
 
The pedestrian’s gaze point in pixel coordinates in each frame of a recording was 
available from the Tobii gaze data, and these values were divided by ten to suit the 
resized frames of 192×108 pixels. Pedestrian eye contact seeking was 
operationalized as θpedestrian < 4o. θpedestrian was approximated by converting the 
Pythagorean distance in pixels between the location of the driver’s eyes and the 
pedestrian’s gaze point into an angle (Eq. 3). Since the width of the resized frames is 
192 pixels and the field of view of the Tobii camera is 90°, an 8.53-pixel distance 
corresponds to an angle of 4°.2 
 

    (3) 

2 The approximation of 4° corresponding to 8.53 pixels relies on assumptions related to the Tobii's 
camera perspective. We discovered later on that the horizontal field of view of the Tobii camera is 
about 82°, not 90° (90°, reported by the manufacturer, is likely the diagonal field of view). At the same 
time, Eq (3) assumes small angles, which may be untenable. Using manual measurements with the 
Tobii, we found that at low eye eccentricities of −15° to 15° (i.e., looking ahead), a step of 4° 
corresponds to 8 to 9 pixels and that at very high eye eccentricities of −35° or 35° (i.e., eyes turned 
strongly towards the left or right), a step of 4° corresponds to about 12.0 pixels. It may be assumed 
that participants were mostly looking ahead and that our adopted threshold of 8.53 pixels is indeed 
close to 4°. 
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Figure 4.3. Heatmap of cross-correlations (left) between a resized Tobii video frame (top 
right) and the reference image having the highest value of maximum correlation with the 
frame among all reference images (bottom right). In the left figure, a green arrow marks the 
maximum correlation. A green box marks the region of maximum correlation. The driver’s 
estimated position is marked with a green marker. 
 
4.3.5. Driver-Pedestrian Eye Contact Establishment 
To recap, driver eye contact seeking was operationalized as looking at the 
pedestrian with a gaze angle error smaller than 4°. Similarly, pedestrian eye contact 
seeking was operationalized as looking at the driver with a gaze angle error smaller 
than 4°. Eye contact was established when driver eye contact seeking and 
pedestrian eye contact seeking occurred concurrently. Finally, a classification 
between trials involving eye contact and those involving no eye contact was made by 
examining, per participant, whether the eye contact duration of the former type of 
trial exceeded the corresponding eye contact duration of the latter type of trial. 
 

4.4. Results 
4.4.1. Gaze Data Quality 
Gaze data quality during the experiment was found to be high. The mean gaze 
sample percentage (SD) of the Smart Eye (i.e., driver) was 99.6% (0.7%) and 99.7% 
(0.6%) for the standing and crossing trials, respectively. The corresponding values of 
the Tobii (i.e., pedestrian) were 91.7% (5.3%) and 94.4% (4.4%) for the standing and 
crossing trials, respectively. 
 
4.4.2. Driver Eye Contact Seeking 
Figure 4.4 depicts the frequency distributions of driver gaze angle error (θdriver) for all 
standing and crossing trials. A distinction is made between trials involving eye 
contact (EC), shown in blue, and trials involving no eye contact (NEC), shown as 
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black dotted lines. There is no marked difference in the curves in terms of the 
number of data points, which can be explained by the fact that the driver was not 
asked to adjust his gaze behavior based on the eye contact seeking behavior of the 
pedestrian. There was more eye contact in the crossing trials compared to the 
standing trials (see the ratio of the two peaks of the bimodal distribution), because 
the driver continuously tracked the pedestrian in the former case, whereas in the 
latter case, he only briefly sought eye contact with the pedestrian and looked away, 
and repeated this process thrice. From Figure 4.4, it can be seen that our threshold 
of  is a suitable choice, as it captures the large peak in the number of data points, 4°
which correspond to eye contact. More specifically, on combining the four 
distributions depicted in Figure 4.4, there were 2480 s of data for 0o < θdriver ≤ 4o and 
only 60 s of data for 4o < θdriver ≤ 8o. When the driver was not looking at the 
pedestrian, he was either looking at the torch (at the start and end of every trial) or at 
the experimenter (after each repetition in the standing trials); this explains the 
second peak in the distributions, between 8° and 14°. 
 

Figure 4.4. Distribution of the driver gaze angle error θdriver (i.e., the angle between the 
instantaneous gaze direction of the driver and the ‘ideal driver gaze’) for eye contact (EC) 
and no eye contact (NEC) trials. The sampling rate was 100 Hz, and the resolution of the 
distribution was 0.25°. Left: Standing trials, Right: Crossing trials. 
 
4.4.3. Pedestrian Eye Contact Seeking 
Figure 4.5 shows similar information as Figure 4.4, but from the pedestrian’s 
perspective. In contrast to the driver gaze angle error, the distributions of the 
pedestrian gaze angle error (θpedestrian) are not bimodal but unimodal, which can be 
explained by individual differences, task instructions, and head and body rotation. 
That is, during the standing EC trials, participants were asked to seek eye contact 
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thrice and look away after each time, without instructions about where to look when 
looking away. Thus, due to varying levels of head and body rotation when looking 
away, the car (and therefore also the driver) was located at widely different parts of 
the visual field of the Tobii camera, or even completely outside of it. Accordingly, 
there are no distinct second peaks in the distribution of θpedestrian, as was the case for 
driver gaze angle error shown in Figure 4.4. Figure 4.5 further shows a clear 
distinction in the pedestrian gaze angle error between the EC and NEC trials, with 
the mode of the distribution being about 1.5° (i.e., very close to the driver’s eyes) for 
EC trials and about 12° (i.e., corresponding to some location on the car, as per the 
participants’ task instructions) for NEC trials. The latter observation is corroborated 
by manual geometric calculations, which show that the pedestrian gaze angle error 
in an NEC trial when they are looking at the car’s number plate (a plausible scenario) 
is 10–12°. This range of values is well above the 4° threshold, thereby reducing the 
likelihood of there being many false positives of eye contact in the NEC trials, 
assuming that the participants carried out the instructions faithfully. Our chosen 
θpedestrian threshold of 4° also represents a good trade-off for making a classification 
between EC and NEC trials, as gaze angle errors below this value capture a large 
portion of the samples in the EC trials (pedestrians were expected to exhibit small 
θpedestrian values for a portion of the EC trials) while capturing relatively few samples in 
the NEC trials (pedestrians were expected not to exhibit small θpedestrian values, since 
they were instructed not to make eye contact). Appendix 4.A provides further 
justification for the 4° threshold through a sensitivity analysis (see Figure 4.A1). 
 

Figure 4.5. Distribution of the pedestrian gaze angle error θpedestrian (i.e., the angle between 
the gaze point of the pedestrian and the estimated position of the driver’s eyes) for eye 
contact (EC) and no eye contact (NEC) trials. The sampling rate was 100 Hz, and the 
resolution of the distribution was 0.25°. Left: Standing trials, Right: Crossing trials. 
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4.4.4. Occurrence and Reconstruction of Eye Contact 
Figure 4.6 shows four time-synchronized plots from a particular instant of a crossing 
trial with instructed eye contact (C-EC). In the bottom half, animations (comprising of 
a top view on the left and a side view on the right) of the trial are shown, created by 
plotting the position of the driver’s eyes (green marker), his gaze direction (green 
dashed line), and the position of the pedestrian’s eyes (magenta marker), along with 
an image of the Toyota Prius. Along the axes, X, Y, and Z represent the longitudinal, 
lateral, and vertical position in the world. The pedestrian’s gaze direction is 
intentionally not plotted, as there was no sufficiently accurate way to translate it from 
a 2D pixel coordinate in the Tobii recordings to a 3D gaze direction for the 
animations. However, this omission does not have a bearing on detecting eye 
contact. The left top shows a Tobii camera screenshot with the pedestrian’s view 
during a crossing trial, resized to a resolution of 192×108 pixels, and with the 
pedestrian’s gaze point and the driver’s estimated location overlaid as magenta and 
green markers, respectively. The top right part shows the driver’s and pedestrian’s 
gaze angle error plotted over time together with the 4° threshold of eye contact. Eye 
contact occurs when the values for the driver (green) and pedestrian (magenta) are 
both under the horizontal threshold line at the same time. It can be seen that for 
most of the trial, both the driver and the pedestrian sought eye contact. 
 

 
Figure 4.6. Eye contact overview of one trial (Crossing, Eye Contact; C-EC). Top left figure: 
Pedestrian’s view. Top right figure: Driver and pedestrian gaze angle error as a function of 
time. Bottom left figure: Top view. Bottom right figure: Side view. Green marker: Estimated 
location of the driver’s eyes. Magenta marker: Estimated location of the pedestrian’s eyes 
(bottom figures) or pedestrian’s gaze point (top left figure). Demo video available at: 
https://youtu.be/waDT32Tm-T4 
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The large gaze angle errors in the first and last two seconds of the trial are caused 
by the driver and pedestrian looking away from and towards the torch flash. The 
other sharp spikes at around 10 s and 19 s in the pedestrian’s eye contact seeking 
graph are due to looking away from the driver upon completing a repetition (i.e., 
walking towards the opposite curb and back once). The gaps accompanying the 
spikes are due to the gaze angle error being undefined because the car (and 
therefore also the driver) being out of view in the Tobii camera. 
 
4.4.5. Eye Contact Durations 
Table 4.2 shows the means and standard deviations across the 30 participants for 
eye contact measures for the driver and the pedestrian. The driver sought eye 
contact about 55% of the time in the standing trials and in about 90% of the time in 
the crossing trials. Pedestrians sought eye contact for 20–25% of the duration of the 
standing trials with instructed eye contact and roughly 45% of the duration of the 
corresponding crossing trials. These values are consistent with the experimental 
protocol, where both parties sought intermittent eye contact with each other in the 
standing trials and visually tracked each other in the crossing trials. The pedestrian’s 
percentages are lower than the driver’s, as expected, because of the greater extent 
of head and body rotations by the pedestrian, thereby taking longer to (re-)establish 
eye contact. 
 
Table 4.2 
Means and standard deviations of eye contact measures for the standing trials and crossing 
trials. One trial consists of three repetitions. 
 L-S-EC 

Mean 
L-S-NEC 
Mean 

R-S-EC 
Mean 

R-S-NEC 
Mean 

L-S-EC 
SD 

L-S-NEC 
SD 

R-S-EC 
SD 

R-S-NEC 
SD 

Trial duration (s) 12.35 11.97 12.38 11.81 3.25 2.90 2.72 2.71 
Driver eye contact seeking (s) 6.82 6.59 6.80 6.47 2.18 1.92 1.63 1.79 
Driver eye contact seeking (% of time) 55.0% 54.8% 55.1% 54.4% 5.6% 6.6% 5.9% 5.6% 
Pedestrian eye contact seeking (s) 3.18 0.12 2.75 0.09 1.50 0.33 1.16 0.21 
Pedestrian eye contact seeking (% of time) 26.0% 1.0% 22.6% 0.8% 11.1% 2.9% 9.2% 1.8% 
Eye contact (s) 2.94 0.11 2.52 0.08 1.35 0.33 1.04 0.19 
Eye contact (% of time) 24.3% 0.9% 20.8% 0.7% 10.7% 2.9% 8.7% 1.7% 
 C-EC 

Mean 
C-NEC 
Mean 

C-EC 
SD 

C-NEC 
SD 

    

Trial duration (s) 30.83 30.94 4.70 4.90     
Driver eye contact seeking (s) 27.94 28.05 4.11 4.41     
Driver eye contact seeking (% of time) 90.7% 90.7% 2.4% 3.1%     
Pedestrian eye contact seeking (s) 14.94 0.51 5.91 0.77     
Pedestrian eye contact seeking (% of time) 49.0% 1.7% 19.5% 2.6%     
Eye contact (s) 14.61 0.45 5.72 0.67     
Eye contact (% of time) 47.9% 1.5% 18.9% 2.2%     

 
Mean pedestrian eye contact seeking duration was 3.18 s in the L-S-EC trials, 2.75 s 
in the R-S-EC trials, and 14.94 s in the C-EC trials (see Table 4.2). Since each trial 
consisted of three repetitions, pedestrians sought eye contact for an average of 1.06 
s, 0.92 s, and 4.98 s in a single repetition, respectively. Pedestrians crossed the road 
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twice in a single repetition, so the average pedestrian eye contact seeking duration 
in only one direction was half of 4.98 s, or 2.49 s. 
 
The mean durations of eye contact were 2.94 s, 2.52 s, and 14.61 s for the L-S-EC, 
R-S-EC, and C-EC trials, respectively (see Table 4.2). This meant that in one 
repetition, eye contact lasted for 0.98 s, 0.84 s, and 4.87 s, in that order. Dividing the 
third value by two gives the average eye contact duration per repetition while 
crossing the road one-way, that is, 2.43 s. 
 
4.4.6. Classification of Trials 
Figure 4.7 illustrates the classification performance of trials with and without 
instructed eye contact based on eye contact duration. It can be seen that the type of 
trial is distinguished with 100% accuracy within-subject. In other words, all markers 
in Figure 4.7 lie below the diagonal line. 
 

Figure 4.7. Comparison of pedestrian eye contact durations in the trials with and without 
instructed eye contact. Each marker represents one participant. 
 

4.5. Discussion 
4.5.1. Main Findings 
This study aimed to develop an eye contact detection method to address the 
research gap in the objective measurement of eye contact in the traffic context. Our 
method’s main innovation was the use of two eye-trackers to detect driver-pedestrian 
eye contact. The use of computer vision techniques to estimate the driver’s and 
pedestrian’s locations eliminates the need for manually coding the areas of interest. 
Compared to existing techniques such as self-reports and button press responses 
for recording eye contact, our dual eye-tracking method is accurate, since it does not 
rely on subjective perceptions of eye contact occurrence and is not influenced by 
reaction times. Accordingly, our setup may be useful for experimental research in 
staged scenarios and may form the first step towards real-time eye contact detection 
in crossing conflicts.  
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We provided a new operationalization for eye contact, namely that it occurred when 
the gaze angle errors of the driver and the pedestrian were both below 4°. The 4° 
threshold was determined heuristically based on the angle error distributions. 
However, the selected threshold also appears to have psychological significance: A 
study using animated faces by Gamer and Hecht (2007) showed that eye gaze 
around faces (at a distance of 5 m) was in the form of a cone of angular width up to 
approximately 8°, which translates to a gaze angle error of up to 4°. 
 
Our method was validated using staged interactions with and without eye contact 
and yielded perfect within-subject classification. Furthermore, we generated 
animations of the driver-pedestrian interactions, demonstrating that traffic encounters 
could be reconstructed using only the information obtained from cameras and 
eye-trackers. Such a visualization could prove useful to enhance the situational 
awareness of occupants of the vehicle (see Chang et al., 2019 for a top-down 
display that enhances situational awareness in automated vehicles). 
 
Participants were instructed to seek eye contact with the driver briefly in the standing 
trials (but were not told to look for a specific amount of time) and to walk in front of 
the car in the crossing trials (but were not told how fast to walk). It is worth noting 
that pedestrians have mostly been observed seeking eye contact when a vehicle is 
close to them and moving at low speeds or stopped (Dey et al., 2019), which 
resembles our experimental setting. However, strong conclusions about how long 
each party seeks eye contact or how long eye contact lasts in a real 
driver-pedestrian interaction cannot be made using our measurements. The 
observed eye contact durations (0.9 s and 2.4 s for a standing and crossing 
pedestrian, respectively) may be higher than what one might expect in real traffic. At 
pedestrian crossings in real traffic, road users look at various elements of the scene, 
including signs and road markings (Bichicchi et al., 2017), not just the other party’s 
eyes. Furthermore, pedestrians may stop glancing at the car when it has become 
clear that the pedestrian can cross before the car (see Croft & Panchuk, 2018, for a 
similar phenomenon in pedestrian-pedestrian interaction). 
 
As a corollary of our operationalization of eye contact (i.e., a logical AND of the 
driver’s and pedestrian’s gaze behavior), eye contact duration was always less than 
or equal to the lower of the two eye contact seeking durations. Of note, the mean 
eye contact durations for the trials were closer in magnitude to the pedestrian’s 
mean durations of eye contact seeking than those of the driver’s. This was probably 
due to the driver constantly tracking the pedestrian in the crossing trials, whereas the 
pedestrian had to turn around and look away. 
 
4.5.2. Limitations 
Our method has a few limitations. First, our operationalization of eye contact does 
not include the subjective awareness that eye contact is occurring. This could have 
been measured using a think-aloud method or with event recorders (as noted by 
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Jongerius et al., 2020) in the hands of both parties. It would be interesting to 
examine the association between objective and subjective driver-pedestrian eye 
contact, something that has become possible through our eye contact detection 
method. Pedestrians in the present study reported being highly involved in the task 
(see Table 4.A1 in Appendix 4.A), so close congruence between subjective and 
objective eye contact is expected. In more demanding scenarios, it may be the case 
that the driver and the pedestrian are objectively looking at each other but not 
subjectively aware that they are making eye contact, i.e., the ‘looking but not seeing’ 
phenomenon (White & Caird, 2010). 
 
A second limitation is that aspects of synchronization, image recognition, and data 
processing were still performed manually. It is noted that our algorithm, though we 
ran it offline, processes data on a frame-by-frame basis (i.e., without forward-looking 
filters), and therefore can be made to run in real-time. The Smart Eye and the stereo 
camera already reported driver gaze and pedestrian location in real-time. If the Tobii 
and its camera could also be configured to do the same via the API provided by the 
manufacturer, real-time eye contact detection is a viable target. We are currently 
developing a real-time pedestrian feedback system based on this proposed setup, 
where auditory feedback is provided to the pedestrian depending on whether the 
pedestrian has or has not looked at the car.  
 
A third limitation concerns the artificial setup of our experiment. Our study involved a 
staged indoor experiment with a stationary vehicle, not to mention that most 
pedestrians are not equipped with wearable eye-trackers (Tabone et al., 2021). 
These issues may be solved in the future with greater affordability of eye-trackers 
and the advent of smart glasses or eye-tracking contact lenses (Khaldi et al., 2020). 
Findings of a pilot study revealed that the Tobii performed poorly at tracking the 
user’s gaze outdoors, presumably due to infrared radiation in sunlight (Tobii AB, 
2020). The pilot test also found that the visibility of the driver was compromised 
because of windshield glare outside. Windshield glare appears to be a factor that 
prevents eye contact in traffic (AlAdawy et al., 2019), suggesting a need for synthetic 
eye contact detection, such as ours.  
 
A final limitation is that our method used basic computer vision techniques for 
detecting the pedestrian and vehicle. Although road user detection worked reliably in 
our case, more sophisticated methods, which are now becoming available for less 
than $100 (e.g., Nvidia Jetson; Süzen et al., 2020), would be required to make our 
method work with a wider variety of road users. As a proof of concept, we applied 
recent object recognition software intended for real-time usage (YOLOv5, Cui, 2021) 
on one of our experimental videos captured with the Tobii camera. Results showed 
that the algorithm detected the target car, a car in the background, and persons 
outside the car, but not the experimenter in the car (see Figure 4.8). Although the 
detection was not as robust as our template matching approach (the target car was 
often labeled a truck, bus, or train), there clearly appears to be potential for real-time 
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usage in situations with multiple different vehicles. It is worth remembering that our 
image technique also does not detect the driver in the car, and hence the choice of 
image recognition algorithm does not largely affect the detection of eye contact. 
 

 
Figure 4.8. Screenshot of object recognition applied to one of our Tobii videos. 
 
4.5.3. Outlook & Conclusion 
There is ample scope for further research and applications. The topic of 
driver-pedestrian eye contact is not only of interest to manual and semi-automated 
driving (SAE Levels 0–2), it is also relevant to automated vehicles in which the driver 
is intermittently inattentive (SAE Levels 3 and 4). The vacuum created by missing 
eye contact in road interactions opens up possibilities to artificially substitute it. The 
anthropomorphic eye contact eHMI variants proposed by Ochiai and Toyoshima 
(2011), Chang et al. (2017), and Jaguar Land Rover (2018) are one way to achieve 
this. Eye contact could also be used as an objective input in vehicles or wearables 
for providing warnings (e.g., ‘mind the pedestrian’, ‘watch out, the driver is 
distracted’) or in automated vehicle control (e.g., braking earlier if there is no eye 
contact).  
 
As pointed out above, an issue is that drivers and pedestrians are currently not 
equipped with eye-trackers. As an alternative to wearable eye-tracking, 
vehicle-based eye contact estimation may be possible through pedestrian head 
orientation estimation combined with contextual information (e.g., Quintero et al., 
2014; Raza et al., 2018; Ridel et al., 2019; for a survey of methods, see Rudenko et 
al., 2020). However, for the time being, our method may be most useful for research 
purposes in staged scenarios. For example, our method could be applied to outdoor 
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experiments (in cloudy weather) to study eye contact in situations where right-of-way 
is not clear (e.g., Fu et al., 2019). 
 
To conclude, the present study validated a novel eye contact detection method. Our 
method may stimulate further research that aims to obtain a deeper understanding of 
eye contact and its role in traffic. 
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Appendix 4.A. 

 
Figure 4.A1. Sensitivity analysis of the threshold for θpedestrian. The x-axis shows the threshold 
angle (varied in 0.05° increments) and the y-axis shows the number of participants out of 30 
for whom the number of data samples (θpedestrian < threshold) in the eye contact (EC) trial 
exceeded the number of data samples (θpedestrian < threshold) in the no eye contact (NEC) 
trial. Perfect classification is achieved for threshold angles between 1.15° and 10.75° for left 
standing (L-S) trials, between 2.15° and 8.65° for right standing (R-S) trials, and between 
1.75° and 9.15° for crossing (C) trials. 
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Table 4.A1 
Summary of responses to the post-experiment questionnaire. Responses were recorded on 
a 7-point Likert scale, with 1 denoting ‘Not at all’, and 7 denoting ‘Completely’. Responses of 
1–3 were considered negative, 4 neutral, and 5–7 positive. 

Question Positive 
response 

(% of 
participants) 

Negative 
response 

(% of 
participants) 

Neutral 
response 

(% of 
participants) 

Mean 
response 

score 
(1 to 7) 

How well were you able to 
imagine a real traffic scenario at 
a real pedestrian crossing? 

64.5 19.3 16.2 4.74 

How well could you concentrate 
on the task during the 
experiment? 

100 0 0 6.42 

How well could you maintain eye 
contact during the experiment 
without looking elsewhere? 

90.3 0 9.7 5.87 

How well could you avoid eye 
contact during the experiment 
and look elsewhere? 

100 0 0 6.29 

How conscious were you of 
wearing eye-tracking glasses 
while performing the 
experiment? 

48.4 51.6 0 3.97 

How much do you think the 
eye-tracking glasses affected 
your natural road crossing 
behavior? 

22.6 64.5 12.9 2.87 

How realistic did the experiment 
feel compared to crossing a real 
road? 

45.2 22.5 32.3 4.32 

How involved were you during 
the experiment? 

96.8 0 3.2 6.32 

How clear were the instructions 
for the experiment? 

96.8 0 3.2 6.68 

How well do you think you 
followed the instructions for the 
experiment? 

96.8 0 3.2 6.48 
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Figure 4.A2. Screenshot from the stereo camera recording of a standing trial. The ‘curbs’ 
and the ‘road’ marked in chalk are visible here. Both persons provided permission for the 
publication of this image. 
 

 
Figure 4.A3. A trial in progress, moments after eye-tracker synchronization, performed by 
the ‘synchronizer’ (far right) for the standing pedestrian on the left curb (second from right) 
and the car driver (obscured by windshield reflections in the photographer’s point of view). 
No eye contact is occurring at this instant, with the driver looking at the pedestrian’s eyes but 
the pedestrian looking at the right side-view mirror of the car. Both persons provided 
permission for the publication of this image. 
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Supplementary Data 
The two questionnaires, a demo video corresponding to Figure 4.6, the data, and 
MATLAB codes used for the analyses, are available at: 
https://doi.org/10.4121/15134037. 
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Abstract 
With the rise of generative AI, it is important to identify the opportunities and 
limitations of applying this technology to safety systems across domains. This 
research explores the integration of mobile eye-tracking, object detection, and a 
vision-language model to create context-aware safety systems, with road users as 
an example target group. We tested these technologies via four concepts: (1) Near 
real-time mobile eye-tracking (Tobii Pro Glasses 2) and object detection (YOLOv8) 
for an indoor dining table scene and an outdoor parking garage scene to determine 
which objects the user was looking at; (2) Analyzing dashcam video frames from a 
car driving along urban streets using the GPT-4 vision-language model to assess risk 
in a driving context, followed by validation with human risk ratings (r = 0.71); (3) 
Combining Tobii Pro Glasses 2 and GPT-4V for the assessment of a pedestrian’s 
risk when walking in a parking garage, and using GPT-4V to identify objects looked 
at, with YOLOv8 detections as a benchmark; (4) Analyzing a staged eye-tracking 
scenario involving a distracted pedestrian using a mobile phone, demonstrating the 
complementarity of GPT-4V’s holistic assessment of scenes and YOLOv8’s 
coordinate-specific assessment. In conclusion, by combining mobile eye-tracking 
with object detection and vision-language models, it is possible to contextualize a 
user’s visual focus on specific objects in a given environment and generate 
instantaneous ratings of risk faced by the user. Future efforts might aim to minimize 
latency to real-time, increase efficiency, and improve the system’s understanding of 
temporal and spatial context. 
 

5.1. Introduction 
Eye-tracking is a technique by means of which the gaze of a person can be 
objectively and accurately detected. Broadly speaking, depending on their design, 
eye-trackers may be classified as either remote or wearable. Remote eye-trackers 
are not worn or carried by the user, and are typically fixed in position relative to them, 
e.g., on a vehicle dashboard, attached to a computer screen, or on a table in a 
laboratory. Wearable eye-trackers are worn by the user, and therefore, move along 
with their motion, e.g., eye-tracking glasses and eye-trackers integrated into 
extended reality (XR) headsets. Wearable eye-trackers are advantageous due to 
their portability and mobility, which allow natural movement in real-world and virtual 
environments. Since most wearable eye-trackers are worn on or attached to the 
user’s head, they are often also called head-mounted eye-trackers or mobile 
eye-trackers. Head-mounted eye-trackers typically consist of a scene camera that 
records video from the perspective of the user, and infrared eye illuminators and 
cameras that capture the user’s gaze direction, which can then be superimposed 
onto the video to indicate where the user is looking in the environment. One 
widely-used example of such an eye-tracker is the Tobii Pro Glasses 2. 
 
Head-mounted eye-trackers are being increasingly used in human behavior 
research. Fields of study such as social interaction (Macdonald & Tatler, 2018; Rahal 
& Fiedler, 2019; Rogers et al., 2018), driving (Nathanael et al., 2019; Winter et al., 
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2017), walking (De Winter et al., 2021; Lévêque et al., 2020), and sports 
(Hüttermann et al., 2018; Marques et al., 2018), are but some making use of this 
technology. In the automotive domain, mobile eye-tracking has been instrumental in 
studying driver and pedestrian behaviors (Dey et al., 2019; Mantuano et al., 2017; 
Onkhar et al., 2021) and for providing insights into distraction, fatigue, and other 
human factors (Gao et al., 2015; Le et al., 2020). 
 
One challenge with eye-trackers, especially head-mounted ones, is that it is difficult 
to ascertain automatically at which object the user is looking. Researchers typically 
resort to manual annotation post-experiment (Franchak et al., 2018; Vabalas & 
Freeth, 2016), a laborious and time-consuming process. Other techniques involve 
placing markers in the environment, template-matching, or other related image 
projection techniques (e.g., Brône et al., 2011; Bykowski & Kupinski, 2018; De 
Winter et al., 2022; Kurzhals, 2021; Pfeiffer & Memili, 2016; Tabuchi & Hirotomi, 
2022). For example, by using QR-like markers in the cockpit of a car, it is possible to 
estimate where a driver wearing an eye-tracker is looking (e.g., mirrors, dashboard). 
While this approach can work, it is not easily applicable to real-world mobile tasks 
such as walking or cycling, as it often requires prior knowledge of and prior access to 
the environment in order to set up any elements, e.g., markers, which is not always 
possible in real-world scenarios. Other researchers have used object detection or 
image segmentation algorithms in combination with eye-tracking to overcome the 
above challenges and determine what a user is looking at (e.g., Akhmetov & Varol, 
2023; Alinaghi et al., 2024; Deane et al., 2023; Salous et al., 2022; Venuprasad et 
al., 2020; Yamashita & Bandai, 2023; Zhao et al., 2024). 
 
One popular algorithm is You Only Look Once (YOLO), which is a convolutional 
neural network (CNN). YOLO’s computational efficiency and rapid detection speed 
are due to it being a single-shot detector, which processes images in just a single 
forward pass through its neural network (Redmon et al., 2016), making it well-suited 
for real-time applications. YOLO is capable of being trained on custom datasets and 
fine-tuned for optimal detection performance. By default, the model is available 
pre-trained on the 80 object classes of the Common Objects in Context (COCO) 
dataset (Jocher et al., 2023; Lin et al., 2014), including persons, bicycles, different 
types of vehicles (e.g., cars, motorcycles, buses, trucks), selected types of traffic 
infrastructure (e.g., traffic lights, stop signs, parking meters), and various household 
objects. Thus, YOLO presents one possible solution to the challenge of automatically 
determining the object of a user’s attention, if applied to video from a mobile 
eye-tracker. 
 
However, gaze data on objects still needs to be interpreted before it can be turned 
into actionable (and potentially, real-time) feedback or support. For example, just 
detecting a car using computer vision and tracking a pedestrian’s gaze falling on that 
car is insufficient to determine a safe course of action for the pedestrian. Many other 
variables are at play, not necessarily captured by object detection or eye-tracking, 

 



112             Chapter 5 

e.g., the location/environment of the interaction, the status of the cars (parked, 
moving, approaching, receding), the distance and relative speed between the vehicle 
and the pedestrian, etc. A pedestrian, driver, or a human observer usually factor in 
such additional variables before determining the level of risk and deciding what to 
do. Thus, human judgement is typically required as a final step to actually draw 
conclusions from road user gaze (or a lack thereof) on various objects in traffic 
environments, which is a cognitive task that must be performed before and during 
road interactions. This context-dependent assessment of traffic scenarios has 
traditionally been difficult to automate (Yang, Jia, et al., 2024). 
 
In the last couple of years, the world has witnessed the rapid progress of large 
language models (LLMs) like OpenAI’s GPT-4. Moreover, LLMs have become 
capable of handling image-to-text tasks, particularly through OpenAI’s 
vision-language model (VLM) named GPT-4V (OpenAI, 2023a), as well as 
Anthropic’s Claude (Anthropic, 2024). GPT-4 stands for “Generative Pre-trained 
Transformer 4”, and is one of the latest in a series of LLMs developed on the basis of 
the Transformer architecture. The Transformer (introduced by Vaswani et al., 2017) 
revolutionized natural language processing by allowing models to capture long-range 
dependencies in text more effectively than previous recurrent or convolutional neural 
network approaches. 
 
GPT-4 auto-regressively predicts the next token (a word, or piece of a word) given a 
sequence of previous tokens (OpenAI, 2023b). For example, consider the following 
piece of text: “The cat sat on the”. The model predicts the next token: “mat”, based 
on what it has encountered most often in the past and deems most likely the correct 
response. Over successive generations of GPT models, the size of the models 
(number of parameters) and the size of their pre-training datasets have grown 
considerably, resulting in increasingly accurate predictions of the next token. For 
text-based GPT-4, the training data consists of vast collections of text scraped from 
the internet, supplemented by curated sources (e.g., books, academic papers, code 
repositories, websites). This provides the model with a broad overview of human 
language and enables it to learn grammar, facts, and patterns. After pre-training, the 
model is further trained (i.e., fine-tuned) to guide it to produce more helpful and less 
harmful responses. 
 
In GPT models, prompting involves providing the model with context via an input 
(e.g., a question, a set of instructions, or text to complete) so that the model can 
generate a relevant response. For example, if a summary of an existing text on traffic 
safety is desired, a prompt might be written as follows: “Summarize the following text 
about traffic safety in one paragraph: [text].” 
 
GPT-4V (vision-enabled GPT-4) is a vision-language model that extends the 
text-based GPT-4 architecture to handle both text and images in combination. While 
the core principles are similar, GPT-4V has an additional mechanism to process 
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image data. While information about how GPT-4V encodes images is proprietary, 
typically, a CNN or ViT (Vision Transformer) module can be used to transform the 
image into embedding vectors (“visual tokens”) that capture abstract features such 
as shapes, textures, colors, and edges but also higher level semantics (for 
examples, see Dosovitskiy, 2021; Guo et al., 2024). Specifically, embedding vectors 
are numeric representations of input data (text or images) that encode abstract 
features. For example, in text, each token is mapped to an embedding vector, and 
related words like ‘cat’ and ‘dog’ may have embedding vectors that are nearby in a 
multidimensional space (i.e., numerically similar) due to their shared category as 
household animals. For images, the input (e.g., a photo of a cat) is likely divided into 
cells (or regions), with each cell processed to extract features such as fur texture, 
ear shape, or body structure, which are then encoded into individual embedding 
vectors. GPT-4V is believed to process sequences of embedding vectors based on 
text tokens together with the image embedding vectors in a unified framework 
(Looney, 2024). This uniform approach (same “Transformer” architecture no matter 
the modality, i.e., text or image) is one reason multimodal transformers are appealing 
and potentially powerful computer vision methods. 
 
Thus, the model learns to correlate visual features with language, to enable tasks 
like describing images or answering questions about images. For GPT-4V and other 
multimodal LLMs, the training dataset includes millions of pairs of images and their 
corresponding textual descriptions (e.g., from web pages, image captioning datasets, 
instruction-based datasets, and particularly Wikipedia; e.g., Radford et al., 2021; 
Srinivasan et al., 2021). For example, one such pair might be an image of 
pedestrians with a caption “Pedestrians on a crosswalk in Buenos Aires” (see page 
about “Pedestrian” on Wikipedia, 2025). 
 
The strength of large language models (including vision-language models) is that 
they can understand deeper, more general structures in text and/or images. At the 
same time, they can occasionally hallucinate, which means generating output that is 
factually incorrect or misleading (Li et al., 2024). It is known that GPT-4 and GPT-4V 
are not good at performing calculations or tabulations. For example, while GPT-4V is 
able to grasp the gist of a traffic scene, it is not particularly accurate at counting 
objects (such as the number of pedestrians in the image) (Tong et al., 2024; C. 
Zhang & Wang, 2024), something which the object detection algorithm YOLO excels 
at. Another limitation of GPT-4 and GPT-4V is that they are next-token predictors and 
therefore cannot reflect on their own output. They produce answers that strongly 
depend on the initial conditions (i.e., the prompt), so responses can exhibit a certain 
degree of randomness/variability. Therefore, it may be necessary to submit the same 
video frames multiple times to GPT-4V (with these images randomly selected) and 
average the output of these repeated prompts (the so-called self-consistency 
method; Driessen et al., 2024; Tang et al., 2024; X. Wang et al., 2023). 
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To summarize, the strength of vision-language models lies in their generality, 
compared to neural networks trained for more specific tasks. However, they also 
struggle with simple tasks that traditional object detection can handle with relative 
ease. Cui et al. (2024) provide a review of the possibilities that VLMs could offer for 
automotive applications. Examples they provide include VLMs translating natural 
language commands into actionable driving decisions, generating realistic traffic 
scenarios for simulation, and producing textual explanations for the vehicle’s actions 
based on environmental observations. Hence, VLMs may be (part of) a viable 
solution to the aforementioned challenge of automating the assessment of traffic 
scenarios. However, despite various benchmark evaluations of vision-language 
models (OpenAI, 2023b; Yue et al., 2024), there are still few concrete applications 
that could improve human-machine interaction in an automotive context. 
 
In this paper, we demonstrate design steps towards one such application, where live 
video from the Tobii Pro Glasses 2, a popular eye-tracker among researchers, is 
linked to the YOLOv8 object detection algorithm, the 8th iteration of YOLO (Jocher et 
al., 2023). The output of this process is then fed post-hoc to GPT-4V, which serves 
as a video frame analyser, contextualizer, and feedback provider of an instantaneous 
risk rating. This combination of YOLOv8 and GPT-4V means that two types of 
computer vision work in tandem to potentially reinforce each other and yield more 
robust performance than either model working independently. The system we 
provide can accomplish this task of assessing and reporting risk in a variety of 
environments due to it using pre-trained models. We put forth four concepts towards 
the creation of a context-aware safety system geared towards road users. 
 
In its first concept, our system provides object bounding boxes using YOLOv8 which 
are color-coded based on whether the user is looking at the objects, and overlays 
these boxes onto the scene camera video of the eye-tracker, along with the user’s 
gaze marker, in near real-time in two different environments. In Concept 2, dashcam 
video frames from a car driving in an urban environment are used as input for 
GPT-4V, upon which GPT-4V provides frame-by-frame risk ratings, which are then 
validated against human risk ratings. Concept 3 combines eye-tracking with GPT-4V 
to assess a pedestrian’s risk when navigating a parking garage, employs GPT-4V to 
detect objects being looked at, and compares the latter with a benchmark of 
YOLOv8 object detections. Finally, Concept 4 combines Tobii eye-tracking, YOLOv8 
object detection, and GPT-4V context analysis to address pedestrian distraction by 
smartphones in a street crossing scenario. 
 

5.2. Methods & Results 
5.2.1. Concept 1: Real-Time Combination of Mobile Eye-Tracking with Object 
Detection 
Our first concept integrates mobile eye-tracking with object detection. The system is 
based on a Python script that connects with the Tobii Pro Glasses 2 API (De 
Tommaso & Wykowska, 2019). The script provides a means of controlling the mobile 
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eye-tracker and serves as an alternative to the manufacturer’s proprietary software, 
offering the ability to perform a number of operations such as calibrating the glasses, 
making recordings, and live streaming the scene camera video with/without overlaid 
gaze. Thus, it allows direct access to video and gaze data from the Tobii Pro Glasses 
2 in real-time on a Python terminal on a computer. Our system then runs YOLOv8 on 
the video stream from the Tobii eye-tracker to perform near real-time object 
detection. A YOLOv8x model (the “Xtra Large” variant), pre-trained on the COCO 
dataset, was used (Ultralytics, 2023). The largest variant of YOLOv8 also offers the 
best available accuracy (of all the YOLOv8 models) while still being fast enough to 
work in near real-time, i.e., faster than the video frame rate of the eye-tracker’s 
scene camera, which is 25 fps. Detected objects on which the user’s gaze falls have 
their bounding boxes highlighted in green, providing a visual representation of the 
user’s focus. 
 
To demonstrate our system’s capabilities, two environments were used. One was an 
indoor environment from the perspective of a person seated at a dining table 
cluttered with various objects (Figure 5.1). The system was tested on its ability to 
detect the following objects: table, book, mobile phone, water bottle, wine glass, wine 
bottle, bowl, apple, potted plant, scissors, fork, knife, spoon, and a cup of tea with its 
saucer. The second setting was an outdoor one and geared towards pedestrian 
safety, specifically during pedestrian navigation in a parking garage in Delft in 
September 2023, the Netherlands (Figure 5.2). A parking garage was chosen as a 
scenario because it was an outdoor, traffic-like situation that was relatively free from 
sunlight inference to the eye-tracking (Tatler et al., 2019). The system was used to 
demonstrate its ability to detect objects such as cars, passers-by, and shopping 
carts, as well as its ability to identify the target of the user’s gaze in a dynamic, 
naturalistic scenario. Videos demonstrating its feasibility are provided in the 
supplementary material. 
 
The demo trials were conducted using a Tobii Pro Glasses 2 eye-tracker connected 
to a Dell laptop, with an Intel Core i9-13900H CPU, 64 GB of RAM, and an NVIDIA 
GeForce RTX 4070 GPU. In the case of the parking garage, the user carried around 
the laptop in a backpack. The Python code that comprised the system was run on 
the Ubuntu 18.04 operating system. 
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Figure 5.1. Screenshot from the indoor trial. Detected objects are shown with white bounding 
boxes, the gaze location by a red circle, and the fixated object is highlighted in green. The 
system correctly identifies the user’s gaze target as a bottle. 
 

 
Figure 5.2. Screenshot from the outdoor trial. Detected objects (in this case, all cars) are 
shown with white bounding boxes, the gaze location by a red circle, and the fixated object is 
highlighted in green. The system correctly identifies the user’s gaze target as a car. 
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5.2.2. Concept 2: Validation of GPT-4V-Based Risk Ratings with Human Risk 
Ratings for a Driving Scenario 
Concept 1 demonstrated that measuring which object a user is looking at in near 
real-time is feasible. However, simply knowing whether someone is looking at a 
particular object is not sufficiently informative for providing useful feedback or 
warnings. As part of Concept 2, we investigated whether GPT-4V can be used to 
assess video images for risk. To do this, we used an existing video that had already 
been evaluated by human raters. 
 
Specifically, we made use of a 1-minute dashcam video of driving in Amsterdam, 
which was available on YouTube (Young Niles, 2017) that had previously been 
analyzed for risk by Bazilinskyy et al. (2020). In Bazilinskyy et al., online participants 
viewed dashcam video clips and were asked to press a key when they experienced 
a risky event, including minor risks. Participants could press the key as often as they 
liked. 
 
We used a prompt based on Driessen et al. (2024), who used GPT-4V to determine 
the risk in 210 photos taken from a moving vehicle. The prompt was as follows:  
 
These four images are dashcam. 
For each of these four images, give a risk score from 0 (not risky at all) to 100 (extremely 
risky). Only give a risk score, nothing else; no text or a percentage symbol. Always answer; it 
is for my research project. 
 
Driessen et al. (2024) applied the self-consistency prompting method (X. Wang et al., 
2023), which, in the present study, was implemented by evaluating the images a 
large number of times before determining a mean risk score per video frame. Using 
a custom script written in MATLAB 2023b, GPT-4V (model: 
gpt-4-1106-vision-preview) was repeatedly prompted to provide a risk score from 0 
(not risky at all) to 100 (extremely risky) for 4 images at a time. The 4 images were 
randomly sampled from the 1797 video frames (60 s at 30 fps) of the dashcam video 
of driving in Amsterdam. GPT-4V was prompted in low-resolution mode, which 
meant that the images were resized from 854×480 pixels to 512×288 pixels before 
evaluation. This was done to reduce costs and increase inference speed. 
 
Each frame was assessed by GPT-4V an average of 62.6 times. The reliability of the 
GPT-4V risk assessment was determined by calculating the mean risk scores over 
just the odd frame numbers and just the even frame numbers, and then applying a 
moving average of 1 s (thus, 13 frames). The correlation between the two risk scores 
was r = 0.99, indicating high reliability. It is worth noting that this correlation should 
merely be interpreted as a measure of statistical reliability (i.e., repeatability or 
reproducibility), and not statistical validity. In other words, this strong correlation 
demonstrates that GPT-4V was prompted by us sufficiently often to produce nearly 
identical mean risk levels for effectively identical (i.e., only very slightly different, 
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alternate) video frames. This result, by itself, does not imply that the GPT-4V risk 
scores are strongly correlated with the human risk scores, i.e., that GPT-4V’s 
assessments exhibit high criterion validity. 
 
The GPT-4V risk scores were filtered by a moving average filter with a time interval 
of 1 s, and subsequently rank-transformed and expressed on a scale of 0 to 100. 
The human risk values were based on 670 online participants and were available 10 
times per second. These risk scores were also rank-transformed and expressed on a 
scale from 0 to 100. Next, a moving average filter was applied to the number of 
participants pressing the key at any given time, with a 1-s interval. 
 
The risk progression during the video, for both GPT-4V and humans, is shown in 
Figure 5.3. The correlation coefficient r between human risk scores and GPT-4V risk 
scores was 0.71, indicating a strong correlation. It is worth mentioning that we have 
not applied cross-correlation, which involves a time shift and could potentially result 
in a slight increase in the reported association. However, there were also some 
instances of disagreement between the two sets of ratings. Figure 5.4 depicts two 
such moments of deviation between human and GPT-4V-based risk ratings. In 
Figure 5.4 (top), GPT-4V assessed a high risk compared to humans. Here, it is likely 
clear to humans that the risk is not substantial: even though the parked van takes up 
much space, its wheels turned away from the road indicate that it is unlikely the van 
will pull out suddenly. However, such details and their significance for the whole 
scene is possibly not clear to GPT-4V. Figure 5.4 (bottom) shows a moment where 
GPT-4V assessed the situation as low risk, but humans did not. A potential 
explanation is that the ego-vehicle was making a turn, and even though the image is 
free of other road users, humans may perceive risk due to the vehicle’s change of 
direction and the possibility of obstacles coming suddenly into view. Because 
GPT-4V assesses the situation frame-by-frame, it lacks this spatial and temporal 
knowledge and foresight. 
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Figure 5.3. Risk in the driving video, as assessed by GPT-4V and by humans. GPT-4V 
provided a risk rating for each frame, whereas humans assessed risk by pressing and 
holding a key when they experienced risky events. 
 
As a follow-up, we explored various prompts to examine whether a temporal 
understanding of risk could be instilled in GPT-4V. We did this by incorporating 4 
pairs of images separated by 1 frame in time (i.e., 1/30 of a second) into the prompt. 
We also tried prompts where the pairs of images were separated by 1 or 2 seconds. 
This was tested for the current driving video as well as for a dynamic scenario of 
cycling (see Appendix 5.A). An example prompt was: “The four respective images 
are each recorded one second apart, so comparing them can give insight into the 
speed of the cyclist”. Using such prompting, GPT-4V seemed to develop a memory 
of what had occurred previously, but it did not achieve actual temporal insight. A 
failure of true temporal understanding is evident in Figure 5.A2 (see Appendix 5.A), 
where a bus was still marked as risky, even though it was several meters away from 
the cyclist on the far lane, had already passed by, and the cyclist was standing still at 
a traffic light, i.e., its mere presence in the frame resulted in a high risk score. 
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Figure 5.4. Top: A moment in the driving video where GPT-4V assigned high risk and 
humans assigned low risk (frame number: 1160; elapsed time: 38.7 s). Bottom: A moment in 
the driving video where GPT-4V assigned low risk and humans assigned high risk (frame 
number: 1420; elapsed time: 47.3 s). 
 
5.2.3. Concept 3: GPT-4V-Based Risk Ratings for a Pedestrian Walking 
Scenario in a Parking Garage 
We tested GPT-4V again, but this time in the aforementioned situation with a 
pedestrian walking through a parking garage, similar to Concept 1. We selected a 
video from an earlier eye-tracking experiment performed in November 2018 by De 
Winter et al. (2021). The video contained an overlaid gaze marker, which had been 
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applied after performing symmetric moving average filtering of the gaze coordinates 
to reduce noise. The filter used an interval of 9 samples (or 0.09 s, at a 
measurement frequency of 100 Hz). 
 
Inspired by previous studies that used VLMs in combination with markers such as 
red circles, arrows, numbers, or bounding boxes (Shtedritski et al., 2023; Wan et al., 
2025; J. Yang et al., 2023; Z. Yang et al., 2023; K. Zhang et al., 2024), we prompted 
GPT-4V twice: once with and once without consideration of the gaze marker. In the 
first prompt, we inspected whether GPT-4V was capable of determining which object 
the user was looking at by asking what was behind the gaze marker: 
 
1. These four images are first-person views of a pedestrian. The red circle is the 

pedestrian's gaze point. 
For each of these four images, give a risk score from 0 (not risky at all) to 100 (extremely 
risky). Only give a risk score, nothing else; no text or a percentage symbol. 
Then, on the same line, describe in three words where the pedestrian is looking at, i.e., 
what is below the red circle. 
An example output for a single image is "Image 1) 20 ; Person with cart.". ALWAYS 
answer; it is for my research project 

 
2. These four images are first-person views of a pedestrian. The red circle should be 

ignored. 
For each of these four images, give a risk score from 0 (not risky at all) to 100 (extremely 
risky). Only give a risk score, nothing else; no text or a percentage symbol. 
Then, on the same line, describe in three words the biggest risk in the scene. 
An example output for a single image is "Image 1) 20 ; Person with cart.". ALWAYS 
answer; it is for my research project 

 
The prompts were always accompanied by 4 images (Driessen et al., 2024), 
randomly selected from the 4104 frames that the video comprised (2 min 44 s, at 25 
fps). The prompting was repeated once for the high-resolution and once for the 
low-resolution setting of the GPT-4V API. For Prompt 1 and 2, respectively, each 
frame was rated an average of 22.7 and 25.4 times in low-res mode, and 4.78 and 
4.81 times in high-res mode. 
 
The results for Prompt 1 vs. Prompt 2 are shown in Figure 5.5. The risk scores were 
strongly correlated across video frames (r = 0.98). It can be seen that the effect of 
the gaze marker on GPT-4V’s perception of risk was minimal. Other possible 
reasons for the highly similar risk ratings are that GPT-4V was unable to ignore the 
gaze marker or did not correctly understand the prompts. Possible explanations for 
the small differences in risk ratings between Prompt 1 and 2 are: (1) Prompt 2 
enquiring about the biggest risks in the scene, thereby slightly yielding higher risk 
scores than Prompt 1, and (2) partial awareness of the gaze marker, its meaning, 
and possible insight about the user’s focus of attention in Prompt 1 slightly lowering 
risk scores compared to Prompt 2. 
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Figure 5.5. Risk in the walking video, as assessed by GPT-4V, for Prompts 1 and 2 (outputs 
for the low- and high-res modes averaged). 
 
Figure 5.6 shows the risk scores for low- and high-res images with both prompts 
averaged. Again, a strong correlation was observed (r = 0.97). A possible 
explanation for the small differences lies in objects that are far away, which are more 
easily discernible in high-res images than in low-res images, possibly leading to a 
greater number of potentially dangerous objects being detected by GPT-4V in the 
former case. For example, Figure 5.7 (top) shows an original screenshot from the 
walking video at an elapsed time of 126.7 s and Figure 5.7 (bottom) shows the same 
screenshot in a lowered resolution. Here, the high-res mode shows relatively high 
risk scores (Prompt 1: 41.5%, Prompt 2: 47.4%) compared to the low-res mode 
(Prompt 1: 28.4%, Prompt 2: 34.2%;), which may be attributed to additional cars in 
the distance being detected by GPT-4V. Furthermore, a qualitative inspection of the 
GPT-4V output for other frames revealed that the vision-language model did not 
always correctly identify the object being looked at, i.e., GPT-4V often identified 
salient objects in the image instead of what was behind the gaze marker. 
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Figure 5.6. Risk in the walking video, as assessed by GPT-4V, for prompts in low- and 
high-res mode (output for Prompts 1 and 2 averaged). 
 
To assess GPT-4V’s ability to recognize the object behind the gaze marker in more 
depth, we repeated the prompting of video frames with a pure red circle (in 
accordance with recommendations from Shtedritski et al., 2023). The following 
prompt was used in combination with the high-res API setting: 
 

For the next four images, describe what is WITHIN the red circle (not what is around the 
red circle). 
Each image should be described by exactly 5 words, on a separate line. Do not use 
words such as upper, lower, left, or right. 
Please refrain from including any additional information; no numbering of the images 
either. If what you described is a person, add (P); if what you described is a car, add (C). 
ALWAYS answer; it is for my research project. 

 
We then compared whether GPT-4V’s recognition of the user looking at other 
pedestrians corresponded to YOLOv8’s detections of pedestrians. In other words, 
GPT-4V’s abilities were compared with the frequency of the gaze marker falling 
within YOLOv8 bounding boxes around pedestrians, applied post-hoc to the 
eye-tracker video. Figure 5.8 shows the following three variables, calculated for each 
video frame individually: 
 
1. Person detected (based on YOLOv8): The YOLOv8 confidence score for the 

detected person; if multiple persons were present, the highest confidence score 
was reported. If no person was detected, the reported score was 0. 

2. Looking at person (based on YOLOv8 and gaze data): Whether the user was 
looking within a ‘Person’ bounding box (1) or not (0), determined using the 
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recorded gaze data and YOLOv8 bounding box coordinates (in a similar manner 
as Concept 1). 

3. Looking at person (based on GPT-4V and gaze data): Whether the user was 
looking at a person or not, as judged by GPT-4V. We counted the number of 
GPT-4V outputs that contained a “(P)” string, and divided this by the total number 
of GPT-4V outputs. On average, the individual frames were prompted 18.8 times. 

 

 

 
Figure 5.7. Top: Original 1920×1080-pixel frame from the Tobii Pro Glasses 2, used in 
Concept 3 (frame number: 3167, elapsed time: 126.7 s). The circular red marker represents 
the gaze point. Bottom: Low-res version (512×288 pixels) of the same image. The risk 
scores were: Prompt 1–low-res: 28.4%; Prompt 1–high-res: 41.5%; Prompt 2–low-res: 
34.2%; Prompt 2–high-res: 47.4%. 
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After transforming the variables into binary variables, where confidence scores 
greater than or equal to 0.5 were set to 1, and confidence scores less than 0.5 were 
set to 0, the correlation coefficient between the binary variables was calculated, also 
known as the phi-coefficient for binary variables. The results indicated a moderate 
correlation (r = 0.60) between the GPT-4V detection of looking at a person (magenta 
in Figure 5.8) and the post-hoc YOLOv8-based equivalent (blue in Figure 5.8). 
 

 
Figure 5.8. Results for the walking video, showing each frame individually, in terms of three 
variables:  
(1) person detected by YOLOv8 (top, black). Here, the confidence score is directly provided 
by YOLOv8. If multiple persons were detected, the highest confidence score was reported. If 
no person was detected, the reported score was 0. 
(2) looking at a person as determined by a combination of gaze data and YOLOv8 (middle, 
blue), and 
(3) looking at a person as determined by a combination of gaze data and GPT-4V  (bottom, 
magenta). Here, the confidence score represents the number of GPT-4V outputs that 
contained a “(P)” string, and divided this by the total number of GPT-4V outputs for that 
video frame. 
 
Upon considering all the frames where the gaze marker fell within a YOLOv8 
bounding box of a person (blue in Figure 5.8, 8.5% of the frames), GPT-4V indicated 
for 76% of those frames that a person was being looked at. However, upon 
considering the remaining frames where the gaze marker did not fall within a 
bounding box of a person (91.5% of the frames), GPT-4V still indicated for 6.1% of 
them that a pedestrian was being looked at. The above two results revealed that 
GPT-4V had a moderately high true positive rate and a low false positive rate at 
detecting pedestrians in the eye-tracker video with respect to the YOLOv8 
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benchmark, showing potential for use in future safety systems geared towards road 
users. 
 
Figure 5.9 (top) shows an example video frame where GPT-4V incorrectly reported, 
in 16 out of 26 prompt outputs, that the user was looking at a pedestrian (see 
Appendix 5.B). Figure 5.9 (bottom) shows a frame where GPT-4V consistently and 
correctly reported (17 out of 17 prompt outputs) that a person was present within the 
red circle, while YOLOv8 did not detect the person. The nature of the error differs 
between the two cases: The error made by GPT-4V (Figure 5.9, top) may be 
described as a hallucination, where output that was totally incongruent with the 
location of the red circle was generated. The error made by YOLOv8 (Figure 5.9, 
bottom), on the other hand, was one of detection sensitivity. A possible cause for the 
failure of YOLOv8 lies in the fact that the person in question appears blurry and as a 
silhouette behind a glass doorway, and likely does not exhibit the typical features of 
a person as present in the dataset on which YOLOv8 was trained. In summary, 
although GPT-4V has the capacity to recognize persons even if these persons are 
poorly visible (e.g., behind a car windshield or a glass doorway), it is susceptible to 
hallucinations. 
 
5.2.4. Concept 4: GPT-4V-Based Risk Ratings for a Distracted Pedestrian Using 
A Mobile Phone Scenario 
Concepts 2 and 3 demonstrated that GPT-4V can assess risk in traffic videos on a 
frame-by-frame basis, and that, while GPT-4V is capable of analyzing frames 
holistically, it is not proficient in pinpointing specific objects or localized regions. The 
analyses conducted under Concept 3 suggested that more explicit methods, such as 
using a YOLOv8 object detection algorithm to programmatically determine whether 
the user’s gaze point falls within an object’s bounding box, yield a more accurate 
assessment of where the person is looking. 
 
In Concept 4, we explored the complementarity of GPT-4V and YOLOv8 in 
assessing traffic risk. We used an eye-tracking video from April 2022 from a 
pedestrian scenario on a sidewalk along a road in Delft. The person was wearing the 
Tobii Pro Glasses 2 and the scenario was one of a distracted pedestrian using a 
mobile phone while standing near the curb as if they might cross the road. Such a 
scenario can be dangerous if the pedestrian crosses without noticing approaching 
vehicles. 
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Figure 5.9. Top: Frame where GPT-4V frequently reported that there was a person within the 
pure red circle. In reality, there was a person on the left side of the frame (frame number: 
771; elapsed time: 30.8 s). Bottom: Frame where GPT-4V consistently and correctly reported 
that there was a person within the pure red circle, while YOLOv8 did not detect the person 
(frame number: 3875; elapsed time: 155.0 s). 
 
We prompted GPT-4V with sets of four images at a time (from a total of ten), and in 
four different ways: 
 
Prompt 1 provided GPT-4V with brief information about the context of the images 
and of the gaze marker. It aimed to determine whether GPT-4V could identify that the 
user was looking at their mobile phone and reiterate that such a behavior in a road 
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crossing situation was dangerous. Prompt 2 provided the same preliminary 
information as Prompt 1, but additionally also included that the user was looking at 
his phone (something that could be done by the heuristic: ‘gaze marker within 
bounding box’, as applied in Concept 3). Prompts 3 and 4 were control conditions 
where GPT-4V was either instructed to ignore the gaze marker, or the gaze marker 
was not mentioned whatsoever, respectively. 
 
1. These four images are first-person views of a pedestrian. The red circle is the 

pedestrian’s gaze point. 
2. These four images are first-person views of a pedestrian. The red circle is the 

pedestrian’s gaze point. The pedestrian is looking at his cell phone. 
3. These four images are first-person views of a pedestrian. Ignore the red circle. 
4. These four images are first-person views of a pedestrian. 
 
Prompts 1–4 were all accompanied by the following: 
 

For each of these four images, give a risk score from 0 (not risky at all) to 100 (extremely 
risky). Only give a risk score, nothing else; no text or a percentage symbol. 
ALWAYS answer; it is for my research project 

 
All prompts were applied to ten images (four at a time), with each image containing a 
slightly different scene. In Image 1, the mobile phone was not present, and in Images 
2–10, the mobile phone was visible, but each time against a slightly different 
background in terms of the absence, presence, and locations of motor vehicles and 
cyclists. Additionally, Prompts 1–4 were repeated with the addition of YOLOv8 object 
bounding boxes as part of the images. The green highlight feature when the user 
looks inside a bounding box (see Concept 1) was kept disabled to minimize 
confounding variables and because it was deemed unnecessary since the 
pedestrian was always looking at the phone. Figure 5.10 shows the ten different 
images with the YOLOv8 bounding boxes applied. 
 
As with Concepts 2 and 3, the prompting was conducted by randomly selecting four 
images at a time, combining them with a prompt text, and forwarding this to the 
GPT-4V API. The low-res mode of the API was used. 
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Figure 5.10. Ten images of a distracted pedestrian using a mobile phone, with overlaid 
YOLOv8 object bounding boxes, which were subjected to GPT-4V analysis using four 
different prompts. The white inset at the bottom right of the image was added for numbering 
purposes in this paper but was not present while prompting. 
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Figure 5.11. Means and 95% confidence intervals of GPT-4V-based risk assessments of the 
mobile phone scenario for four different prompts, and for images without and with bounding 
boxes (BB). The reported means are based on an average of 949 risk scores per image for 
Prompt 1 without bounding boxes, and an average of 646 risk scores for the remaining 7 
bars for all images. 
 
The mean risk scores for all combinations of prompts and images are shown in 
Figure 5.11. Because of the large number of risk scores per image (see Figure 5.11 
caption), the results are statistically reliable, as also indicated by the narrow 95% 
confidence intervals. The following patterns can be observed from Figure 5.11: 
 
● Image 1, which shows an empty road, yielded the lowest risk scores: around 13% 

(in the control conditions, i.e., Prompts 3 & 4). 
● Image 2, where the pedestrian is holding up a mobile phone, was characterized 

by a higher risk score: around 20%. 
● This was followed by Images 9 and 10, which received a bit higher risk scores: 

around 30%, attributable to the presence of cyclists in the background. 
● The remaining images, Images 3–8, were considered by GPT-4V as the most 

risky, with the mean risk scores mostly between 50 and 70%. These images were 
characterized by the presence of a vehicle on the road. The presence of a truck 
(Images 6–8) was considered somewhat riskier than a car (Images 3–5). 

● Informing GPT-4V that the red circle was the gaze point of the user (Prompt 1) 
did not result in an appreciably higher risk score compared to the control 
conditions (Prompt 3 & 4), similar to earlier observations in Concept 3. 

● However, explicitly stating that the user was looking at his mobile phone (Prompt 
2) did lead to a substantial increase in the risk scores, about 20% higher on 
average than the control prompts (Prompts 3 & 4). 
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● Adding object bounding boxes to the images did not have a consistent effect. 
When GPT-4V was explicitly told that the user was looking at his mobile phone 
(Prompt 2), the bounding boxes did not lead to an increase in risk scores, 
possibly even to a decrease (see, among others, Images 1 & 2). However, when 
it was explained that the red circle represented the user’s gaze point (Prompt 1), 
the bounding boxes did lead to higher risk scores (for all images except Image 1, 
where no bounding box was visible, and Image 4, for reasons unclear). This was 
promising, because in many real-life applications, a pedestrian’s gaze target is 
not known in advance, and therefore, cannot easily be included in prompts. 

 
In summary, Concept 4 showed the potential for combining GPT-4V with YOLOv8 
bounding box information for the assessment of traffic scenes. By having GPT-4V 
assess the situation, and supplementing this with prompt text about where the user 
was looking (“The pedestrian is looking at his cell phone”, Prompt 2), as can be 
determined using eye-tracking in combination with object detection, an estimation 
can be made about whether a pedestrian using a mobile phone is ‘dangerously 
distracted in traffic’. That is, merely holding up a phone and looking at it is not 
necessarily risky (e.g., at home), but in traffic, it can range from mildly risky (Images 
1 & 2) to especially risky if there are other road users involved (Images 3–10). 
 
However, some critical remarks can be made regarding the validity of the risk scores 
as shown in Figure 5.11. For example, the fact that explicitly stating the gaze target, 
i.e., a mobile phone, in a prompt (Prompt 2) led to higher risk scores than only 
stating in a prompt (Prompt 1) that the red circle represented the pedestrian’s gaze 
(even when it fell on the mobile phone), suggested that GPT-4V on its own might not 
actually be able to ‘see’ the gaze marker or the object underneath and understand 
their meaning and significance in context, and instead relied more heavily on the text 
information in the prompts when making its risk assessments. This idea is in line with 
earlier observations in Concept 3 about GPT-4V not being proficient at identifying 
individual objects in scenes. GPT-4V also assigned higher risk scores when a 
vehicle was in view (Images 3–8) than when no vehicle was visible (Image 2). This 
may be visually correct, but Image 2 should ideally also be considered risky, 
because a vehicle could always approach at any moment while the pedestrian was 
distracted by his mobile phone. The vehicles in Images 3–8, on the other hand, were 
not on a collision course with the pedestrian or had already passed him (e.g., Image 
8). This ties into GPT-4V’s current inability to understand temporal and spatial 
dynamics, as also encountered in Concept 2. 
 

5.3. Discussion 
The main contributions of this paper are the exploration and initial results from the 
use of combinations of mobile eye-tracking, object detection, and a vision-language 
model (GPT-4V) for assessing video frames from the perspective of road users. The 
eventual goal is to help create future real-time safety systems that can understand 
the context of a traffic situation and provide appropriate warnings or feedback to road 
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users. The scope of such a system would not be limited to just road applications, but 
find use in a variety of potentially risky environments where a user’s gaze, ability to 
identify objects, and interpret the scene are critical, e.g., search-and-rescue, extreme 
sports, assembly line operations, construction work etc. 
 
Before discussing the results and implications of this work, it is necessary to review 
its limitations regarding real-time functionality. First, YOLOv8 object detection, as 
used in Concepts 1, 3, and 4, had a latency of less than a video frame (< 40 ms) on 
a high-performance laptop. However, the mobile eye-tracker itself introduced a 
latency in streaming video and gaze, of either 500 or 1000 ms (depending on 
whether the Tobii Pro Glasses 2 was set to stream at 50 fps at low resolution or 25 
fps at high resolution, respectively), both of which are too high for real-time 
feedback. Therefore, we recommend using a newer mobile eye-tracker, such as the 
Tobii Pro Glasses 3, which has a lower latency of about 200 ms, as shown in our 
latency tests (see Supplementary Material), although this value also might be too 
high for real-time functionality. Second, in Concepts 2–4, we made use of a 
symmetric moving average filter to remove noise in the obtained risk scores. These 
filters cannot be used in real-time applications; an asymmetric moving average filter 
should be used instead, which relies only on current and past data. Third, the high 
cost of mobile eye-trackers, in the range of tens of thousands of dollars, would make 
a safety system such as ours prohibitively expensive for the average road user. In 
relation to this, the use of GPT-4V is currently also neither fast nor economical for 
this application. At the low-res setting of the API, a prompt consisting of 4 images 
contained approximately 400 tokens and took about 4 seconds to complete. 
Assessing a 2-min video (3000 frames), where each frame was evaluated 30 times, 
cost about $90 and took several hours due to the API’s token rate limit. These 
bottlenecks imply that improvements in generative AI are needed before efficient and 
cost-effective AI-based applications can be deployed. The current inference times 
also make it practically infeasible to evaluate a wide range of prompts in one study; 
for instance, it would be interesting to explore the influence of gaze markers other 
than red circles or alternative prompt phrasing on risk scores, but this was left 
outside of the scope of the current study due to ballooning inference times. Future 
systems could use smaller models instead that are fine-tuned for specific purposes 
(e.g., McKinzie et al., 2024), and which may potentially run locally on the 
eye-tracking hardware itself rather than on a remote computer that is accessible 
through an API. It is also possible to evaluate far fewer frames than we have done, 
e.g., by sampling every alternate frame or one frame every second. The ideal 
sampling frequency would be one that strikes a balance between temporal detail and 
processing speed and cost. In time-critical environments like traffic scenes, where 
the situation is prone to change in a fraction of a second, selecting the right sampling 
frequency is a matter of debate. Others have explored the ability of GPT-4V to 
assess whether crossing decisions of a mobile robot can safely be made by relying 
on a small number of snapshots before crossing a road (Hwang et al., 2024). 
Further, recent announcements by OpenAI about their latest model GPT-4o, which 
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features multimodal input processing capabilities, have claimed the ability to 
summarize videos and analyze footage in real-time, although these features remain 
as yet unavailable to users (OpenAI, 2024). Nevertheless, questions will remain 
about GPT-4o’s eventual latency, accuracy, awareness of individual objects, video 
duration and resolution limits, and reliability in dynamic, fast-paced environments like 
traffic scenes. 

 
Now that these limitations in terms of costs and inference speed have been 
discussed, we will outline the main findings of our study: 
 
1. It is feasible to integrate object detection, specifically the You Only Look Once 

algorithm (YOLOv8; Jocher et al., 2023), with mobile eye-tracking technology to 
automatically and in near real-time determine which object a user is looking at 
(Concept 1). 

2. GPT-4V is capable of conducting frame-by-frame risk assessments in video 
footage of road users (Concepts 2–4). 

3. Self-consistency prompting is needed to achieve statistically reliable outcomes 
(Concepts 2–4). This means that assessing a single image is insufficient; multiple 
images need to be prompted multiple times, and the numerical outputs need to 
be aggregated per image (see also Driessen et al., 2024). 

4. The GPT-4V risk assessments of dashcam (Concept 2) and head-mounted scene 
camera (Concept 3 and 4) images exhibited a high degree of face validity, with 
risk increasing on busy streets and diminishing on empty roads. Furthermore, the 
risk scores exhibited criterion validity: our frame-by-frame risk assessment of the 
dashcam footage revealed a correlation of r = 0.71 with risk scores derived from 
human participants (Concept 2). This association is similar to a previous study of 
210 dashcam images from German roads (Driessen et al., 2024), which found 
correlations between GPT-4V ratings and human ratings in the range of 0.70 to 
0.75. 

5. The manner of prompting influences the numerical risk results in subtle ways. For 
example, the risk scores differed for slightly different versions of a prompt, or for 
high-res vs. low-res images. Despite this, a substantial association (r > 0.97) 
usually remained. 

6. GPT-4V assesses risk in a holistic manner and is not able to pinpoint details in 
images very well (Concepts 2–4). This observation corresponds with previous 
research in which GPT-4V and other VLMs sometimes hallucinate in tasks that 
are relatively simple for humans. Examples of this include counting (“How many 
wheels can you see in the image?”) or recognizing position, direction, and 
orientation (“Is the school bus parked facing the camera or away from the 
camera?”) (Tong et al., 2024; C. Zhang & Wang, 2024). The use of markers, such 
as a red circle, as in our case, did sometimes help to direct attention to objects in 
the scene, but misses and hallucinations persisted (see Concept 3). 

7. GPT-4V is, as of this writing, only capable of processing video on a 
frame-by-frame basis, and it is difficult to promote it to assess temporal and 
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spatial relations between frames. This observation matches that of Guan et al. 
(2024), who, in a benchmark test, found that vision-language models lack true 
temporal reasoning ability. As pointed out above, GPT-4V is also limited in its 
ability to understand the spatial dynamics of a traffic environment, such as 
relative distances and speeds of objects (see Wen et al., 2024; Zhou & Knoll, 
2024, for similar observations), or expected environment features that lie outside 
the bounds of the current frame but which may appear imminently (e.g., Image 2 
of Concept 4 which yielded low risk). 

8. Because GPT-4V is able to assess overall context but is not good at pinpointing, 
counting, or identifying individual objects, similar to the limitations of text-only 
ChatGPT (Tabone & De Winter, 2023), there is added value in combining GPT-4V 
with traditional computer vision methods that can accurately count and locate 
objects. This idea of complementarity was demonstrated in Concept 4, where we 
showed that looking at a phone (something that can be assessed with YOLOv8 
object detection and eye-tracking) in combination with the context of traffic and 
vehicles was considered dangerous by our system. 

 
5.4. Outlook 

The value of the current study lies in demonstrating both the potential and the 
limitations of GPT-4V for use in a gaze- and object detection-based safety system 
through four successive conceptual evaluations. We posit that the holistic 
understanding of image context that GPT-4V demonstrates, in combination with 
traditional computer vision methods that are more coordinate-specific, is valuable for 
future (real-time) safety applications based on eye-tracking and/or video cameras. 
With regard to traffic, this can include driver monitoring systems that alert for 
distractions (a topic that is currently receiving much attention from legislators, e.g., 
Palao et al., 2023) and situation awareness-related feedback for vulnerable road 
users (De Winter et al., 2019), but also more broadly to other domains such as 
extreme sports, construction, factory work, or search-and-rescue operations, where 
the presence of objects, humans, and the latter’s gaze must be identified and 
understood in a task- and environment-relevant manner. Other traffic applications 
can also be envisioned, such as supporting driving examiners in summarizing or 
assessing the driving exams or practice sessions of candidates, as discussed by 
Driessen et al. (2021), and in the more distant future, context-based situational 
assessment modules integrated into wearable devices such as extended reality (XR) 
headsets or heads-up displays (HUDs) for drivers, pedestrians, and cyclists. 
 
At the same time, there are still points of concern and opportunities for improvement. 
The current study is based on frame-by-frame assessments, and the evaluation of 
temporal relationships needs further development. At the time of writing this article, 
we observe that methods related to ours, which combine traditional computer vision 
techniques with vision-language models (Mercier et al., 2024; H. Wang et al., 2024), 
and which can be used on individual frames as well as part of a pipeline for 
analyzing video (Fan et al., 2025; Yang, Chen, et al., 2024), are emerging. 
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In addition, there should also be more emphasis on the validation of GPT-4V 
outputs. For example, while the model had some success in correctly identifying 
when the eye-tracker user’s gaze fell on a pedestrian, it was also prone to misses 
and hallucinations and was overall not as robust as YOLOv8 in this task. In this 
study, GPT-4V was prompted to estimate risk; however, the definition of risk is 
weakly determined and may differ from a momentary feeling of loss of control to a 
statistical estimate of the likelihood of a collision (Lewis-Evans et al., 2010). 
Additionally, there is potential for misinterpretation in the perspective of the risk; for 
example, it is conceivable that GPT-4V assessed the risk for other road users (such 
as the cyclists visible in Figure 5.10) rather than from the ego-perspective, i.e., the 
user of the eye-tracker or the driver from the dashcam videos. Additionally, while we 
found a strong correlation (r = 0.71) between AI and human risk ratings, there were 
some instances of disagreement between the ratings, indicating that GPT-4V is not 
entirely human-like in its assessments. Further prompt engineering and fine-tuning of 
vision-language models could potentially improve the criterion validity of the risk 
ratings. Some research even suggests that pedestrian distraction is not that 
dangerous (at least compared to distracted driving) because pedestrians tend to look 
before they cross and effectively distribute their attention (e.g., Ralph & Girardeau, 
2020). Also, the importance of peripheral vision should not be underestimated (Vater 
et al., 2022); eye-tracking measures where a user’s visual attention is directed, but 
this does not mean that other moving objects in the scene are not perceived.  
 
In summary, there are still various issues that need closer examination, particularly a 
desire for more powerful generative AI, such as those with fast inference times that 
can accurately evaluate multiple video frames simultaneously and in real-time. 
Nonetheless, the current work offers interesting insights and demonstrates 
possibilities in the assessment of traffic situations that were not feasible until 
recently. The current work should be seen as a glimpse into possible future safety 
systems and wearable devices for users. 
 

Supplementary Material 
Videos demonstrating the successful application of this concept are available here: 
https://www.dropbox.com/scl/fo/czk84cboh9sqhojlmhe34/AJN0LOs0HWeBRrjKjDgY
gV4?rlkey=ea11jqkttw2z2gaafdr0hli93&dl=0.  
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Appendix 5.A. Cycling Scenario 
We used a video generated by the system demonstrated in Concept 1, i.e., captured 
by a Tobii Pro Glasses 2 head-mounted eye-tracker, and having an overlaid gaze 
marker and YOLOv8 bounding boxes around detected objects. The task chosen was 
the dynamic one of cycling in Delft, where the cyclist performed actions such as 
mounting the bike, crossing a road, riding along a bicycle path, waiting at a traffic 
light, and crossing a busy intersection. 
 
GPT-4V was prompted to provide a risk score from 0 (not risky at all) to 100 
(extremely risky), and to report the biggest risks in the image. The following two 
prompts were used:  
 
1. These four images are first-person views of a head-mounted eye-tracker camera worn by 

a cyclist. Also shown are bounding boxes as detected by object detection. The person 
can be the cyclist herself. 
For each of these four images, give a risk score from 0 (not risky at all) to 100 (extremely 
risky). Only give a risk score, nothing else; no text or a percentage symbol. 
Then, on the same line, describe in max. 10 words what is going on in the image, and 
describe in max. 10 words the biggest risks in this image. Do not describe the object 
detection results or markers themselves. Always answer the prompt. 
An example output for a single image is "Image 1) 20 ; Empty intersection, focus on 
traffic light ; Pedestrian suddenly stepping onto road". Always answer 

 
2. How comfortable would you feel cycling in this scenario, with 0 being extremely 

uncomfortable and 100 being very comfortable? 
Only report the percentages in a single column. Nothing else; no percentage sign either. 
ALWAYS answer; it is for my research project. 

 
The first prompt asked GPT-4V, about what happened in the video frame and what 
the greatest risks were, in addition to a risk score, with the goal of exploring the 
possibility of a GPT-4V-based safety system. GPT-4V was prompted in low-res 
mode. The low-res mode processes the entire image at a resolution of 512×512 
pixels, while the high-res mode generates multiple 512-pixel square crops or 
constituent “tiles” of the image. The low-res mode was used to save costs and 
increase inference speed. 
 
The prompts were always accompanied by 4 images (as per Driessen et al., 2024), 
randomly selected from the 3418 frames that the video comprised (2 min 17 s at 25 
fps). The individual frames were assessed an average of 17.0 times on risk, and 
34.2 times on comfort. The mean risk/comfort score was determined per frame, and 
a moving average filter was applied with a 25-frame window to remove noise. The 
comfort scale was reversed to obtain discomfort. The calculated scores for risk and 
discomfort were both found to be statistically reliable. This was determined by 
repeating the above process for only the even and only the odd video frames, with a 
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moving average of 13 frames. The correlation between the scores based on even 
and odd frames was r = 0.99 for risk and r = 0.99 for discomfort. 
 
Inspection of the video with overlays from GPT-4V showed that the fluctuation of risk 
and comfort scores during the video exhibited high face validity. For example, the 
relatively low discomfort and risk values at 80–90 s were associated with cycling 
over a bike path with few or no other road users (see Figure 5.A1). High risks, on the 
other hand, were associated with the presence of other vehicles. At certain 
moments, there were discrepancies between the assessment of risk and 
(dis)comfort. For example, when getting on and off the bike, in the first 25 s, GPT-4V 
assessed the risk as low but the discomfort as high. Crossing a road (around 44–47 
s) was deemed moderately risky but not uncomfortable. However, the results shown 
in Figure 5.A1 are not entirely accurate. This is evident, for instance, around 
108–112 s in the video, when a bus passed by. GPT-4V estimated both risk and 
discomfort as high, which does not seem correct because the cyclist was standing 
still at a traffic light, and the bus was either some meters away and would safely 
pass in front of the stationary cyclist or it had already passed by (see Figure 5.A2). 
Just the fact that the bus was in the frame seemed to have contributed to the high 
risk/discomfort scores, irrespective of its distance and the state of the pedestrian. 
 

 
Figure 5.A1. Risk and discomfort scores in a video of a cyclist’s point of view, as assessed 
by GPT-4V. 
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Figure 5.A2. A frame from the cycling video (frame number: 2790, elapsed time: 111.6 s). 
The video also contains a gaze marker (red circle) and bounding boxes (white, green 
rectangles), as in Concept 1. 
 
Appendix 5.B. GPT-4V Outputs Corresponding to Concept 3 in Figure 5.9 (top) 
The list below shows the GPT-4V outputs corresponding to Figure 5.9 (top). The 
selected frame was prompted 26 times, and in 16 cases, GPT-4V incorrectly 
identified that the red circle fell on a pedestrian. 
 
1. Person's leg near car (P) 
2. Person's leg and shoe (P) 
3. Car side mirror visible (C) 
4. Silver car's side mirror (C) 
5. Silver car's rear light (C) 
6. Person crouched near car (P) 
7. Person's leg walking (P) 
8. Man in parking lot (P) 
9. Partial view of person's leg (P) 
10. Car tire on asphalt (C) 
11. Person walking by vehicle (P) 
12. Pavement behind blue car 
13. Person's leg moving quickly (P) 
14. Person walking by car (P) 
15. Parking lot floor empty space 
16. Car's rear wheel and shadow (C) 
17. Vehicle's side mirror reflection (C) 
18. Individual's head and shoulders (P) 
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19. Car's rear wheel and shadow (C) 
20. Person's leg behind car (P) 
21. Person's leg and foot (P) 
22. Person wearing light pants (P) 
23. Person's partial blurry torso (P) 
24. Running person wearing blue shorts (P) 
25. Partial view of grey vehicle (C) 
26. Person's legs walking (P) 
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The aim of this PhD dissertation was to address research gaps in eye contact 
between drivers and pedestrians and in mobile eye-tracking technology. The thesis 
achieves this aim via four primary objectives spread across four research papers. 
First, it investigates the effect and importance of eye contact in traffic on pedestrian 
behavior, treating eye contact as a complex and variable cue rather than just a 
binary presence or absence. Second, it measures the in-practice accuracy of mobile 
eye-trackers under static and dynamic conditions, providing a foundation for using 
these devices in naturalistic traffic settings. Third, it operationalizes (i.e., 
expresses/defines in terms of constituent measurable phenomena) driver-pedestrian 
eye contact using two synchronized eye-trackers, aiming to objectively measure this 
interaction and better understand the communication strategies involved. Fourth, it 
develops a method to automatically analyze and contextualize mobile eye-tracking 
data and assess risk in traffic, using computer vision and generative AI, with the 
objective of taking the first steps toward real-time eye-tracking-based safety 
systems. 
 
The applications of the research in this thesis are primarily geared towards the 
automotive and traffic safety domains, with particular emphasis on pedestrian safety 
in interactions with AVs and the pedestrian’s perspective of traffic events. This is in 
accordance with the primary source of funding for this dissertation, grant 
016.Vidi.178.047, titled How should automated vehicles communicate with other 
road users?, which was awarded by the Netherlands Organization for Scientific 
Research (NWO). The decision to focus on pedestrians was made due to their being 
the most vulnerable category of road users (SWOV, 2023; World Health 
Organization, 2023). With insight into the needs and behavior of pedestrians in 
interactions with vehicles, new possibilities for safety systems can arise, such as 
AI-powered, wearable, extended reality (XR) devices for pedestrians and drivers, 
and advanced sensors in AVs to detect non-verbal cues such as eye contact from 
pedestrians. Moreover, the potential scope of applications of this research extends to 
other domains where gaze behavior and eye contact are of importance, such as 
education, industrial work, marketing, sports, video gaming, art, and 
human-computer interaction3. 
 
In pursuit of the above aims and applications, the main results, conclusions, and 
recommendations of the chapters in this thesis are recapped below, followed by a 
general discussion that synthesizes the findings of the individual papers. 
 
 

3 Examples include analyzing and contextualizing: (1) eye contact during face-to-face and online conversations, 
(2) eye movements when reading text and interacting with physical or XR interfaces, (3) teacher-student gaze 
interactions in classrooms, (4) gaze behavior of children and adults with clinical disorders, (5) gaze behavior of 
human workers in interactions with other humans or robots on factory floors, (6) gaze behavior of customers 
when browsing websites, mobile phone applications, and retail product shelves, (7) gaze behavior of professional 
athletes, sportspersons, and video gamers, (8) gaze behavior when consuming art and electronic media, and (9) 
gaze behavior of non-human primates. 
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6.1. Chapter 2 
Chapter 2 investigated the impact of drivers’ eye contact seeking on pedestrians’ 
feeling of safety when crossing a road. By conducting an online experiment with a 
large sample size of 1835, the study explored, for the first time, the effect of various 
timings of a driver’s eye contact initiation and termination on pedestrians, instead of 
treating eye contact as simply either present or absent in an interaction. The results 
revealed that drivers’ eye contact increased pedestrians’ feeling of safety, in line with 
prior research suggesting that eye contact increases perceived safety and 
willingness to cross a road (Faas et al., 2021; Malmsten Lundgren et al., 2017; Yang, 
2017). 
 
The examination of the temporal dynamics of eye contact revealed that both the 
onset and offset of eye contact influenced pedestrians’ perceptions. Specifically, 
initiating eye contact while simultaneously braking proved to be a stronger cue for 
pedestrians to cross, with an increased feeling of safety compared to sustained eye 
contact throughout an interaction or eye contact only after yielding. Conversely, the 
termination of eye contact during the car’s stop or departure after having stopped for 
the pedestrian acted as a deterrent to crossing compared to no eye contact during 
the interaction. Taken together, these two observations suggested the existence of a 
time window between a car’s start of braking and its take-off after yielding, where 
eye contact constitutes a strong cue for resolving crossing conflicts. 
 
Scenarios containing the above two combinations of driver and car behaviors (i.e., 
eye contact initiation plus braking and eye contact termination plus take-off) were 
also rated the most intuitive interactions by participants in terms of being a cue to 
cross or not to cross. On the other hand, a mismatching combination of behaviors 
(e.g., eye contact initiation plus take-off or eye contact at larger distances and only 
before braking) were rated the least intuitive of all interactions. Thus, broadly 
speaking, these findings indicated that at closer distances, a complementary change 
in a driver’s eye contact state (e.g., from not seeking it to seeking it, or vice versa) 
could reinforce the effect of a change in the car’s state (e.g., from driving to yielding, 
or vice versa) in the minds of pedestrians. The above results were largely consistent 
across participants from a range of countries in different continents. 
 
Chapter 2 also differed from many earlier works on driver-pedestrian eye contact in 
that it used a more balanced baseline when gauging the effect of drivers’ eye contact 
on pedestrians (Faas et al., 2021; Rodríguez Palmeiro et al., 2018; Yang, 2017). In 
other words, the current study used an attentive driver who does not interact with the 
pedestrian (i.e., no eye contact, no gestures etc.) as the baseline, instead of an 
absent, obscured, or inattentive driver (e.g., using a mobile phone, reading a 
newspaper, looking away from the road, sleeping), as these might confound any 
results associated specifically with eye contact. 
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The results showed that while the car’s motion (i.e., kinematics) was a more powerful 
cue, in line with earlier research on the topic (Dey & Terken, 2017; Moore et al., 
2019), eye contact and its appropriate initiation/termination also increased 
pedestrians’ perceived safety. In interactions with contradicting signals from the 
driver’s gaze and the car’s motion, the latter usually overrode the former’s (lack of) 
eye contact. These findings have potential implications for AV design and the need 
for viable substitutes for eye contact to ensure pedestrian safety in urban 
environments. 
 
Some limitations were present, including those inherent to online and simulated 
experiments (e.g., a lack of real-world risks and the artificial nature of the 
experimental setting), and questions pertaining to the visibility of drivers’ eye contact 
in on-screen videos versus real-world conditions. Future research topics were also 
proposed, such as studying the effect of pedestrians’ eye contact timing and 
initiation/termination on drivers’ perceived safety, the reciprocal effects of eye contact 
on drivers and pedestrians across diverse cultural settings, driving environments, 
staged on-road conditions, vehicle speeds, and varied driver characteristics, and 
examining the relative influence of drivers’ eye rotation versus head rotation in their 
eye contact on pedestrians’ perceived safety. 
 
This paper open-sourced its videos, data, and code in the interest of transparency 
and for replication purposes. Chapter 2 also served as a backdrop to the subsequent 
chapters of this thesis by demonstrating the importance and dynamic nature of eye 
contact in traffic, and inspiring attempts to detect it in order to improve road safety. 
 

6.2. Chapter 3 
Chapter 3 assessed the accuracy of Tobii Pro Glasses 2 and Tobii Pro Glasses 3 
mobile eye-trackers across different levels of dynamicity, i.e., movement conditions. 
Three scenarios were tested: stationary tasks with a chinrest (only eye movements 
permitted) and without a chinrest (eye and head movements permitted), and walking 
tasks (eye, head, and body movements permitted). One novelty of the study was that 
the second scenario bridged the gap between the other two, which are two of the 
most commonly used scenarios for eye-tracker evaluation. 
 
Contrary to standard practice for remote eye-trackers, which typically recommends 
the use of a chinrest for improved accuracy (Holmqvist et al., 2011; Niehorster et al., 
2018), the current study found that the Tobii 2, being a mobile eye-tracker, performed 
statistically significantly better without a chinrest. This result may be attributed to 
participants’ ability to freely turn their heads when not using a chinrest, reducing the 
need for extreme eye movements in order to look at gaze targets (effectively, leading 
to smaller target eccentricities), and thus leading to a higher accuracy. There were 
also no significant differences between the chinrest and walking (in a straight line 
while looking ahead at the target) scenarios, while there were significant differences 
between the without-chinrest and walking scenarios, for the Tobii 2. 
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Interestingly, there were no statistically significant differences between any pairs of 
the chinrest, without-chinrest, and walking scenarios for the Tobii 3, presumably due 
to technological advances in tracking eccentric gaze directions (i.e., sideways 
glances) and resisting slippage due to movement. In general, for both eye-trackers in 
this study, increasing levels of dynamicity did not necessarily lead to significantly 
decreasing accuracy. Chapter 3 also reconfirmed via the seated scenarios a finding 
of earlier works, that is, the accuracy of mobile eye-trackers is better for smaller 
target eccentricities than larger ones (Niehorster et al., 2020; Stuart et al., 2016). 
 
Comparing the two eye-trackers, Tobii 3 showed significantly better accuracy than 
Tobii 2 for the chinrest and walking scenarios, possibly due to the former’s extra 
infrared illuminators, more optimal eye camera placement, and build design, making 
it more resistant to inaccuracies caused by gazing at targets at an eccentricity and 
vibrations due to gait. Only small differences in accuracy between Tobii 2 and 3 were 
observed for the without-chinrest scenario, which involved neither of the 
aforementioned complications, lending additional credence to the earlier justification 
of hardware improvements. Both eye-trackers also reported increasing levels of 
missing gaze data with increasing dynamicity, with the Tobii 2 ranging from 
approximately 1–6% loss and the Tobii 3 from approximately 1–4% loss. The Tobii 
2’s scene camera was also noted as being pitched downward when placed on a flat 
surface (and by extension, presumably also when worn), a consequence of its 
design. This could potentially also compromise eye-tracking accuracy. The 
downward pitch of the Tobii 3 was found to be negligible by comparison. 
 
Comparing the accuracy findings with Tobii’s reports showed that the 
manufacturer-reported accuracies were better than current observations, for both 
eccentric and central gaze targets (Tobii AB, 2017, 2022). This might be attributed to 
differences in measurement protocols, definition of the accuracy metric, participant 
inclusion criteria, firmware versions, and filtering and data processing techniques. 
The current study also used longer gaze durations, and less evenly distributed and 
larger magnitude target eccentricities than the manufacturer’s tests, potentially also 
contributing towards a portion of the observed accuracy discrepancies. 
 
As for the potential influence of participant characteristics on eye-tracking accuracy, 
viz. gender, contact lenses, eye color, mean pupil diameter, and speed of head 
movement while walking, the results did not show statistically significant 
associations. Still, a marginally statistically significant and difficult-to-interpret  
correlation was found between the accuracies for brown and blue eyes taken 
together and the remaining eye colors. Previous studies reported that contact lenses 
reduce accuracy due to creating multiple corneal reflections, but this was not 
reflected in the current observations (Holmqvist, 2017; Nyström et al., 2013). Studies 
with larger sample sizes will be needed to shed further light on these effects. 
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Further insights were obtained on the relationship between participants’ self-reported 
workload and eye-tracking accuracy, indicating that participants with better 
eye-tracking accuracy experienced lower physical and temporal demands and less 
frustration, from the six measures of workload in the administered NASA-TLX. Tasks 
with the Tobii 3 were also rated as involving significantly lower physical demand, 
effort, and frustration compared to the Tobii 2. 
 
Chapter 3 recommended that future research involving mobile eye-tracking in 
dynamic conditions use the Tobii 3 instead of the Tobii 2, due to the former’s more 
robust and accurate eye-tracking, and lower workload. The use of chinrests in 
combination with the older Tobii Pro Glasses 2 were also not advised due to the 
detrimental effects on eye-tracking accuracy when gazing at eccentric targets. In 
connection with this, there may also be potential benefits to using the Tobii 3 instead 
of the Tobii 2 in situations where objects of interest are located at eccentricities, and 
head turning is either impossible or undesirable. 
 
The above study also had its share of limitations, including the lack of examination of 
eye-tracker capabilities across a larger variety of (dynamic) tasks, the small variety in 
participant (eye) characteristics, manual verification of gaze calibrations, and the 
testing of only two mobile eye-tracker models. 
 
In summary, Chapter 3 was not merely a Tobii product evaluation but provided 
detailed insight into the operating principles of mobile eye-trackers under practical 
conditions. It also demonstrated that manufacturer specifications are not necessarily 
reliable and how implicit bias can manifest when reporting accuracy figures. For 
example, such bias can occur through the selection of only ideal participants, 
metrics, or task conditions that result in favorable accuracy outcomes. Chapter 3’s 
independent evaluation instead offers a more realistic and mechanistic perspective 
of the topic of mobile eye-tracking accuracy. It also showed that the degree of a 
user’s movement (eye only, eye and head only, or eye, head, and body) does not 
necessarily have a negative impact on the accuracy of eye-trackers. 
 
Again, the paper was accompanied by open-sourced data and code for the purposes 
of transparency and replication. Chapter 3’s findings on mobile eye-tracker 
accuracies also served as a foundation to Chapters 4 and 5, in which eye-tracking 
glasses were employed in various dynamic indoor and outdoor traffic scenarios. 
 

6.3. Chapter 4 
Chapter 4 presented an innovative method for objectively detecting eye contact 
between drivers and pedestrians in traffic interactions using dual, (optically) 
synchronized eye-tracking. The two eye-trackers employed were dissimilar, being 
the dashboard-mounted Smart Eye Pro dx for the driver and the head-mounted Tobii 
Pro Glasses 2 for the pedestrian. The method was developed to overcome the 
limitation of most existing techniques, viz. subjectivity in the occurrence of eye 
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contact as a result of employing inexact measurement methods for gaze (e.g., 
Rasouli et al., 2017; Sucha et al., 2017) or investigating eye contact from one 
perspective only, i.e., the driver’s or the pedestrian’s (e.g., Dey et al., 2019; 
Nathanael et al., 2019). The use of computer vision to estimate the 3D spatial 
locations of the driver’s and pedestrian’s eyes also eliminated the need for manually 
coding areas of interest (AOIs) during eye-tracking analysis. The method was 
validated via an indoor experiment with staged driver-pedestrian (gaze) interactions 
at a pedestrian crossing, and involved combinations of trials with eye contact, 
without eye contact, a stationary pedestrian, a crossing pedestrian, a pedestrian on 
the driver’s left, and a pedestrian on the driver’s right. The driver-pedestrian distance 
used was approximately 5 m, in order to be representative of the short distances at 
which pedestrians typically seek eye contact with drivers (Dey et al., 2019). 
 
One major contribution of this study was defining driver-pedestrian eye contact in a 
typical interaction as occurring when both the driver and the pedestrian were 
simultaneously looking at each other’s eyes, within margins of 4° each. In other 
words, if the gaze angle errors of both road users were simultaneously below 4°, 
there was eye contact. Gaze angle error, in turn, was defined as the angle between 
the vector joining the driver’s and pedestrian’s eyes, and the instantaneous gaze 
direction of the road user in question. The 4° eye contact threshold was determined 
heuristically, and was similar in magnitude to earlier psychological findings in the 
field of social interaction on the perception of others’ gaze and eye contact (Gamer & 
Hecht, 2007). Chapter 4’s experiment also demonstrated the robustness of this 
threshold, achieving 100% accuracy in classifying trials as having eye contact vs. 
having no eye contact, albeit within the limited scope of the staged interaction. It also 
was one of the first eye-tracking studies involving pedestrians to also incorporate 
physical measurements such as driver-pedestrian distances and angles, the lack of 
which was a common limitation in prior research (Lévêque et al., 2020). In 
connection with this, Chapter 4 also provided animated reconstructions of 
driver-pedestrian interactions including gaze. Such visualizations may find use in 
safety systems that enhance the situational awareness of road users. 
 
Despite the controlled setting, the study obtained valuable insights into the nature of 
eye contact on the road. The observed (objective) eye contact durations were 
approximately 0.8–1 s for standing pedestrians and approximately 2.4 s for crossing 
pedestrians in their interactions with a driver. Although these durations were likely 
different from those in real traffic due to the externally imposed conditions of the 
experiment and the presence of other salient stimuli on a real road, they illustrated 
the time-critical and dynamic nature of driver-pedestrian gaze interactions. 
 
There were also some limitations to Chapter 4. First, the proposed operationalization 
of driver-pedestrian eye contact did not consider the subjective awareness of the 
persons involved. This is a shortcoming of eye-tracking technology in general, i.e., 
being susceptible to the “looking but not seeing” phenomenon, where gazing at a 
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target does not necessarily imply that the person is aware of it or cognitively 
processing it (White & Caird, 2010). Another assumption in the study was that if both 
the driver and the pedestrian were looking at each other’s faces, they were looking at 
each other’s eyes in an attempt to make eye contact. At the distances used in the 
experiment, and given the video resolutions and accuracies of the eye-trackers, it 
was not possible to reliably distinguish gaze on individual facial features. 
 
Next, while parts of the eye contact detection method were automated, e.g., in the 
computer vision to determine the locations of the driver and the pedestrian, other 
aspects such eye-tracker synchronization and data processing remained largely 
manual tasks. Further, the algorithm did not function in real-time, which would be 
necessary before an eye contact detection system could be deployed on the road. 
Nonetheless, its design with frame-by-frame processing in mind showed potential for 
adaptation into real-time applications in the future, via a combination of custom 
software and powerful yet portable hardware to process the data streams. 
 
The artificial nature of the experimental setup, involving a stationary vehicle, 
pedestrians equipped with expensive mobile eye-trackers, and staged indoor 
interactions, also limited the generalizability of the findings. Finally, the custom and 
rather rudimentary computer vision techniques used for vehicle and driver location 
estimation, left room for improvement. While this was sufficient in Chapter 4’s highly 
controlled setting, more sophisticated object detection algorithms would be required 
in more complex, real-world traffic environments and showed promise in preliminary 
tests. It is worth noting that computer vision techniques, e.g., YOLO, have 
considerably improved in terms of inference speed and accuracy since the 
publication of Chapter 4. It is expected that in the near future, real-time and 
automatic object detection in traffic combined with eye-tracking will become the 
norm. 
 
Future research could incorporate methods such as think-aloud protocols or event 
recorders alongside eye-tracking to bridge the aforementioned gap between 
objective and subjective measures of eye contact. Real-time operation, powered by 
latest advances in object detection algorithms and computing power, would be 
another goal to strive for. Future studies could also consider naturalistic and outdoor 
scenarios to obtain more generalizable results, and take advantage of 
advancements in mobile eye-tracking technology (e.g., Khaldi et al., 2020; Robert et 
al., 2024) to overcome problems such as infrared interference due to sunlight. Road 
user eye contact detection is also relevant to the first five SAE levels of driving, 
where the attention of the ‘driver’ can be intermittent or absent. The missing natural 
eye contact in traffic interactions with such vehicles might create a need for artificial 
substitutes, such as (anthropomorphic) external human-machine interfaces (eHMIs) 
to communicate between the vehicle and VRUs (e.g., Jaguar Land Rover, 2018). 
Eye contact detections could also serve as an input for wearable devices equipped 

 



Discussion           155 

with safety systems, providing warnings to drivers and pedestrians or feeding into AV 
control modules. 
 
Again, this paper was accompanied by open-sourced data and code for the sake of 
scientific transparency and replication. Chapter 4 served as an early step towards 
real-time object and eye contact detection of road users in combination with 
eye-tracking glasses, and the automated analysis of mobile eye-tracking data. 
Chapter 5 built on this foundation to create concepts of safety systems for road 
users. 
 

6.4. Chapter 5 
Chapter 5 presented four new concepts in the field of mobile eye-tracking and 
contextual risk assessment in traffic situations, using combinations of Tobii Pro 
Glasses 2 eye-tracking, YOLOv8 object detection, and the GPT-4V vision-language 
model (VLM). The main goal was to create concepts of a safety system capable of 
understanding traffic situations, assessing risk, and providing context-specific 
feedback to road users (in real-time, if possible). The working of these concepts 
were demonstrated via recordings made in four different environments: (1) 
eye-tracking video of an indoor dining table scene with various everyday objects, (2) 
eye-tracking video of a pedestrian navigating a parking garage, (3) dashcam video 
from a car driving on urban streets, and (4) eye-tracking video of a distracted 
pedestrian using a mobile phone in a street-crossing scenario. In the process, 
methods to automatically analyze and contextualize mobile eye-tracking video and 
gaze data were also developed, providing one solution to the long-standing problem 
of manual annotation in head-mounted eye-tracker studies (Franchak et al., 2018; 
Vabalas & Freeth, 2016). 
 
The first concept system demonstrated that the integration of Tobii 2 and YOLOv8 
via a Python script was feasible in near real-time at 25 fps to identify objects in view 
and if and when the user’s gaze fell on them. The automatic identification and 
localization of the gaze target was achieved by checking (for every video frame) 
whether the user’s instantaneous gaze point lay inside the dimensions of a detected 
(and classified) object’s YOLOv8 bounding box, and if so, subsequently highlighting 
that bounding box. This concept showed potential as a tool to monitor the attention 
and situational awareness of (road) users and was tested in both the indoor and the 
parking garage scenarios. 
 
Concept 2 demonstrated the potential to use GPT-4V to assess risk in urban traffic 
situations via a frame-by-frame analysis of a dashcam video from a car driving in 
Amsterdam (Young Niles, 2017). It was observed that GPT-4V’s risk scores 
increased on busy streets and reduced on empty roads. It was also found that these 
risk ratings correlated strongly (r = 0.71) with human-provided risk ratings 
(Bazilinskyy et al., 2020), although there were a few instances of deviation between 
the two sets of scores. This was attributed to GPT-4V’s inability to reliably interpret 
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details or specific objects in scenes, and its lack of understanding of temporal and 
spatial relationships between frames (Guan et al., 2024; Wen et al., 2024; Zhou & 
Knoll, 2024). Overall, the results indicated that GPT-4V had a good and intuitive 
(almost human-like) understanding of traffic risks based on visual inputs. 
 
Concept 3 tested GPT-4V’s ability to assess risk in the aforementioned pedestrian in 
a parking garage scenario from an eye-tracking video (De Winter et al., 2021). This 
video contained a gaze marker denoting the user’s instantaneous gaze point but did 
not contain YOLOv8 object bounding boxes. The effect of the gaze marker on 
GPT-4V’s perception of risk was found to be minimal, with a very strong correlation (r 
= 0.98) between risk ratings from two prompts, one asking GPT-4V to consider the 
gaze marker in its analysis and the other asking GPT-4V to ignore the gaze marker. 
The effect of frame resolution was also found to be minimal, with another very strong 
correlation (r = 0.97) between risk ratings for frames evaluated under the low-res and 
high-res modes of GPT-4V. Qualitative inspections of the GPT-4V outputs revealed 
that the model could not always correctly identify the user’s gaze target, e.g., other 
pedestrians. Subsequent tests of GPT-4V’s ability to identify any pedestrians lying 
behind the gaze marker produced a moderate correlation (r = 0.6) with a post-hoc 
YOLOv8 benchmark of pedestrian detections. GPT-4V also had a true-positive rate 
of 76% and a false-positive rate of 6.1% at detecting when a pedestrian was being 
looked at. Thus, in addition to the occasional failure in correctly identifying the gaze 
target, as noted earlier, GPT-4V sometimes also hallucinated, i.e., reported 
pedestrians under the gaze marker when there were none. These observations 
suggested that GPT-4V assessed frames (and by extension, risk) holistically but 
faced difficulties in pinpointing specific details within those frames, a limitation that 
could potentially be overcome by combining it with a second detection layer capable 
of reliably identifying individual objects, e.g., YOLOv8, and complementing the 
strengths of the two technologies. Overall, the results showed promise for using 
GPT-4V (or its successor) in a future safety system geared towards road users. 
 
The fourth and final concept tested if GPT-4V and YOLOv8 could work effectively in 
tandem to assess risk in traffic. Frames from a staged eye-tracking video of a 
distracted pedestrian using a mobile phone and about to cross a busy street were 
analyzed by GPT-4V via four different prompts. The frames all contained the 
pedestrian’s gaze marker but they were analyzed once with and once without object 
bounding boxes overlaid. The results for the different types of frames were observed 
to be in the following order of increasing risk: (1) empty road and no mobile phone 
use, (2) empty road and mobile phone use, (3) cyclists passing by and mobile phone 
use, (4) car passing by and mobile phone use, and (5) truck passing by and mobile 
phone use. This order was noted as having a high degree of face validity. Again, as 
also noted previously in Concept 3, the effect of considering or ignoring the gaze 
marker on risk ratings was minimal. However, explicitly stating the gaze target as a 
mobile phone in a prompt led to a significant increase in risk scores, compared to 
only stating that the pedestrian’s gaze point was represented by a red circle (even 
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when the red circle fell on the mobile phone). This hinted that GPT-4V, by itself, 
could not actually ‘see’ the gaze marker or the object it fell on, and by extension, 
truly grasp their meaning and significance in the given context, and instead factored 
the text information about the gaze target in the prompts into its risk assessments. 
This idea mirrored earlier findings in Concepts 2 and 3 about GPT-4V’s difficulty in 
individual features in a scene. The addition of object bounding boxes to the frames 
showed mixed, but overall promising results. Prompts with the gaze target stated 
explicitly in them did not benefit from an increase in risk scores due to the addition of 
bounding boxes, but prompts that only stated the function of the gaze marker did. 
This showed potential for using Concept 4 (and its combination of mobile 
eye-tracking, traditional computer vision, and generative AI) in real world traffic 
applications, as the gaze targets of road users are often not known in advance and 
therefore cannot be included in prompts. 
 
Some limitations were identified in Chapter 5, particularly concerning real-time 
operation. While YOLOv8 had a latency of less than one eye-tracker video frame (< 
40 ms), the eye-tracker itself (Tobii 2) had an inherent delay of 500–1000 ms in 
streaming video and gaze, which was too high for real-time functionality. The newer 
Tobii 3 eye-tracker was also evaluated and found to have an inherent delay of 
approximately 200 ms. Furthermore, GPT-4V took approximately 4 seconds on 
average to analyze a single prompt, which was too slow for dynamic and time-critical 
applications such as traffic safety. Clearly, new technological advancements in 
mobile eye-tracking and generative AI are necessary before real-time road user 
safety systems can be deployed. 
 
Another important limitation was the high cost of putting together and operating such 
a concept safety system. Apart from mobile eye-trackers being prohibitively 
expensive, the running costs (and processing time) for analyzing several video 
frames multiple times each using GPT-4V also proved high, limiting the scope of the 
research. Future safety systems might instead benefit from using smaller, fine-tuned 
AI models that run directly on the mobile eye-tracker and which sample and analyze 
fewer, selected frames at lowered resolutions. The accuracy and reliability of 
GPT-4V’s image assessments would also need more validation, especially with 
regard to spatial and temporal awareness, and GPT-4V’s holistic approach, which 
proved prone to overlooking details and individual features. 
 
Future research and development could focus on reducing latency and cost while 
improving accuracy and reliability. Potential applications to road safety might be 
advanced driver assistance systems (ADAS), wearable devices to improve the 
situational awareness of road users, and learner driver monitoring systems. 
Applications of such safety systems could also extend beyond the traffic environment 
to extreme sports, construction work, factory work, and search-and-rescue 
operations. Overall, the combination of Tobii 2 eye-tracking glasses, YOLOv8 object 

 



158              Chapter 6 

detection, and GPT-4V image analysis was found to be a step in the right direction 
towards context-aware safety systems. 
 

6.5. General discussion & conclusion 
The results and limitations of the individual chapters recapped above offer scope for 
synthesis into more general findings regarding driver-pedestrian eye contact and the 
use of mobile eye-tracking in (future) traffic. 
 
This thesis demonstrates that drivers’ eye contact and its timing influence 
pedestrians’ feeling of safety and crossing decisions (Chapter 2). It shows that eye 
contact in traffic is a dynamic phenomenon, and goes beyond previous research 
where eye contact was operationalized as a simple ‘yes’ or ‘no’ for a whole 
interaction (Chapters 2, 4). It also confirms the finding of earlier research that vehicle 
kinematics or implicit communication is a more dominant cue for pedestrians than 
eye contact (AlAdawy et al., 2019; Dey & Terken, 2017; Moore et al., 2019). With 
regard to this, the thesis shows that pedestrians can (and will) cross irrespective of 
drivers’ eye contact, by relying on vehicle motion cues alone. Also, it was observed 
that in situations involving conflicting cues, i.e., mixed signals from a driver’s eye 
contact vs. the vehicle’s (lack of) movement, pedestrians prioritize the latter when 
making their crossing decision. The above findings do not mean that eye contact is 
unnecessary in driver-pedestrian interactions. This thesis proves that drivers’ eye 
contact can provide clarity and be beneficial to pedestrians’ perceived safety, 
especially at short distances and in situations where vehicle kinematics are 
ambiguous (see also Dey et al., 2019). Eye contact can also help reinforce the effect 
of vehicle motion cues on pedestrians, leading to a stronger, compounded effect. 
This occurs when both cues align intuitively to the pedestrian, e.g., the initiation or 
termination of the driver’s eye contact occurs alongside braking (before yielding) or 
take-off (after yielding), respectively. 
 
Similarly, on the other side of the road interaction, literature has noted that drivers 
most often use pedestrians’ eye contact to decipher the crossing intentions of the 
latter in ambiguous situations (Schneemann & Gohl, 2016). Pedestrians’ eye contact 
also makes drivers brake earlier, approach more slowly, and stop more often 
(Morgan et al., 1975; Ren et al., 2016; Snyder et al., 1974). This too, leads to 
increased perceived safety in both road users (Sucha et al., 2017) and lowers the 
risk of fatal collisions with pedestrians (Hussain et al., 2019; Richards, 2010; Tefft, 
2013). 
 
One reason why eye contact appears to have a similar type of effect on both drivers 
and pedestrians might be because eye contact has been shown to encourage 
compliance with rules, written or unwritten (Hamlet et al., 1984; Kleinke, 1980). It 
leads to the ‘watching eyes’ phenomenon, i.e., an impression in the mind of the 
person that they are being watched and that a certain (type of) action is expected of 
them, typically encouraging prosocial behavior and inhibiting antisocial behavior 
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(Sueur et al., 2023). In the case of a pedestrian on a curb ‘receiving’ (for lack of a 
better term) eye contact from an approaching driver, this likely manifests as a 
secondary cue to the pedestrian to cross (on top of the primary cue that is the 
reducing vehicle speed). In the case of an approaching driver ‘receiving’ eye contact 
from a pedestrian on a curb, this likely manifests as a secondary cue to the driver to 
slow down or stop (on top of the primary cue that is mere presence of the pedestrian 
at the curb). 
 
Given the above results of this thesis, some key follow-up questions arise: 
 
Q1. Are the added safety benefits of eye contact in traffic significant in practice? 
Q2. Do they make driver-pedestrian eye contact worth investigating further? 
Q3. Do they warrant the development of artificial substitutes, so that ‘eye contact’, in 

some altered form, can continue to exist between driverless, automated vehicles 
and pedestrians? 

 
It is my opinion that driver-pedestrian interactions should not just be collision-free but 
also an efficient, comfortable, and pleasant experience for the road users involved. 
Eye contact is one of the most commonly used forms of non-verbal or explicit 
communication between drivers and pedestrians (Lee et al., 2021; Rasouli et al., 
2017; Sucha et al., 2017). A sizable portion of pedestrians also report that eye 
contact is important for them to feel safe or that they are hesitant to cross the road in 
front of a vehicle in the absence of eye contact (Chapter 2). These feelings might 
stem from confirmations or self-reassurances that the driver is attentive, that they 
have (likely) been seen by the driver, or that they have done their duty to signal their 
intentions via eye contact before crossing, thereby placing their trust and the onus of 
safety on the driver. On the other hand, drivers might sometimes purposely avoid 
eye contact with pedestrians to assert their intention to not yield and claim right of 
way. Thus, it may be said that the action of eye contact (or lack thereof) is often 
accompanied by an unspoken transfer of the responsibility of safety in the interaction 
from one road user onto the other. Where initially this responsibility might have been 
borne equally by both road users, upon negotiation via (an avoidance of) eye 
contact, it shifts to fall largely on one party, who then modifies their behavior 
accordingly. 
 
It may not even matter that many pedestrians are often unable to discern the eyes of 
drivers due to visibility challenges such as windshield glare, nighttime darkness, or 
poor cabin illumination (AlAdawy et al., 2019). What may matter more is that 
pedestrians (and possibly also drivers) think they have made eye contact (while 
having only looked at the silhouette of the other person and not actually discerned 
their eyes or registered the mutual gaze). In other words, performing the 
actions/motions of eye contact, e.g., head turning and gazing at the other road user, 
might be more important than mentally processing and acknowledging its 
occurrence. This illusion of eye contact alone might be sufficient to generate any 
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desired feelings of safety and help drive interactions forward smoothly. Broadly 
speaking, it may be more important to pedestrians to feel in a general sense that 
they have been noticed by drivers or AVs, than needing to explicitly see and 
acknowledge a pair of eyes looking back at them. This observation might be useful 
to narrow down the set of concept designs for eye contact substitutes in 
AV-pedestrian interactions and avoid over-engineering a solution.  
 
Of course, the alternate approach would be to simply not engineer a replacement for 
eye contact in AVs and trust that road users will, in time, get accustomed to not 
having this cue. This is the simplest and most cost-effective route, but sacrifices the 
human/human-like element of interactions that offers a reassurance of safety. Thus, 
while it is likely that pedestrians will be able to adapt their crossing behavior to rely 
solely on vehicle motion cues in order to negotiate interactions with AVs, this would 
not be ideal in terms of comfort and pleasure. Therefore, it may be said that in terms 
of the MoSCoW prioritization method (Agile Business Consortium, 2014), the illusion 
of eye contact, or by extension, a well-chosen eye contact substitute, is a  
“should-have” in traffic interactions. A well-designed replacement for eye contact in 
AV-pedestrian interactions might also have the added benefit of simultaneously 
substituting other missing forms of driver non-verbal communication too, e.g., hand 
gestures and nodding. So, to answer the questions above: 
 
A1. The extra benefits brought by eye contact in traffic concern perceived safety in 

the minds of drivers and pedestrians, and are significant in practice. 
A2. Driver-pedestrian eye contact is worth studying further, especially in naturalistic 

settings, to maximize the aforementioned safety benefits and improve the quality 
of road interactions. 

A3. Instead of artificial substitutes that imitate eye contact, e.g., anthropomorphic 
eyes on AVs (Chang et al., 2017; Jaguar Land Rover, 2018), it may be more 
effective to maintain/increase perceived safety levels via alternate cues (thereby 
rendering (the illusion of) eye contact superfluous), e.g., textual, icon, or light 
pattern eHMIs, to ensure the continuation of any added safety benefits in 
AV-pedestrian interactions. Moreover, this choice might also help avoid any 
‘uncanny valley’ effects associated with the former approach, that may even 
prove detrimental to perceived safety. 

 
Now, as discussed above, if it is the actions/motions of eye contact and its timing in 
traffic that really matter, then there is incentive to study and detect this phenomenon 
as accurately as possible. Therefore, this thesis evaluates, and subsequently makes 
use of, one of the most versatile and reliable gaze measurement techniques 
available, viz. (mobile) eye-tracking to objectively operationalize driver-pedestrian 
eye contact (Chapters 3, 4). With regard to the performance of Tobii mobile 
eye-trackers, the thesis found that accuracy was worse for targets at an eccentricity, 
but not necessarily for dynamic conditions, e.g., head turning or walking. Thus, the 
use of chinrests with mobile eye-trackers, e.g., in staged or simulated driver 
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eye-tracking studies, is not advisable because any potential improvements in 
accuracy from reduced head movement are insufficient to offset losses in accuracy 
from gazing at targets eccentrically. The newer Tobii 3 eye-tracker also consistently 
outperformed the older Tobii 2 model in terms of accuracy, especially with eccentric 
targets and in dynamic, walking conditions. It is therefore the better choice for future 
traffic studies, e.g., of naturalistic driver-pedestrian gaze interactions or individual 
road user gaze behavior. 
 
However, mobile eye-tracking accuracies were found to be poorer than the 
manufacturer’s specifications, which is in line with previous research (Niehorster et 
al., 2020). This might serve as a reminder to traffic researchers employing 
eye-tracking to exercise caution when taking published reports by manufacturers at 
face value, especially since the latter may have a vested interest in reporting 
favorable outcomes (Ioannidis, 2005). Open data will therefore be crucial to ensure 
that other researchers can reproduce and replicate findings in eye-tracking, traffic 
research, and beyond. In this thesis, all chapters are accompanied by open data and 
source code for the sake of transparency and to contribute unconditionally to the 
body of scientific knowledge. 
 
With regard to the operationalization of eye contact in traffic, this thesis objectively 
and bi-directionally detects it for the first time, using dual, synchronized eye-tracking 
of a driver and a pedestrian, combined with computer vision techniques to estimate 
their locations relative to each other (Chapter 4). Partial automation of the 
eye-tracking analysis, with future potential for real-time applications, was a useful 
by-product of this endeavor, offering a viable alternative to the traditional approach to 
eye-tracking analysis that is manual and labor-intensive. 
 
This thesis’ definition of driver-pedestrian eye contact as mutual gaze within 4° of 
each road user’s eyes, helps to classify interactions as either involving the cue or 
not. Geometrically, the 4° is the half-angle of an imaginary cone of gaze/eye contact, 
whose base lies around the eyes of one road user, e.g., the driver, and whose apex 
lies at the eyes of the other road user, e.g., the pedestrian (see Gamer & Hecht, 
2007). The (apex) angle of this cone would therefore be 8°, demarcating the limits of 
gaze that could be considered eye contact, i.e., by the circumference of the base of 
the cone. A similar cone exists simultaneously in the opposite direction, i.e., with its 
apex at the driver’s eyes and its base at the pedestrian’s. Such precision in detecting 
eye contact would be useful for future safety systems to differentiate the former from 
gazes in the general directions of road users i.e., to ascertain whether an eye 
contact cue was given and intended to negotiate a road interaction. That said, it is 
worth remembering that this 4° threshold for eye contact was determined via a 
staged driver-pedestrian interaction at a representative distance; it would need to be 
validated across a broader range of naturalistic traffic scenarios and interaction 
distances before it could be applied in practice. 
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It is also worth noting that this 4° threshold for eye contact includes any inaccuracies 
in the eye-tracker itself. For example, the eye-tracking accuracy was as poor as 3.5° 
for pedestrians in a walking scenario (see Chapter 3). This, in turn, implies that the 
gaze of a walking pedestrian on a driver is likely quite accurate (i.e., 0.5°, assuming 
an additive relationship between human error and eye-tracker accuracy). In other 
words, pedestrians in Chapter 4 made eye contact with the driver by bringing him to 
the center of their foveal vision, and not by using their parafoveal or peripheral 
vision. 
 
As mentioned earlier, such an objective operationalization cannot determine whether 
road users are consciously aware of eye contact. However, since an illusion of eye 
contact may be what ultimately matters, the potential lack of awareness is internal 
and likely irrelevant, since only external behavior is observable. In other words, any 
future sensor or practical application will rely on precisely detected eye movements 
and not cognitive models. In future studies, it might be interesting to use a 
think-aloud method or event recorders to examine what drivers and pedestrians 
experience moment-to-moment in an interaction (e.g., “I feel like I am being 
watched”, “The other person is making eye contact with me”, “I feel safe”), and to 
relate these introspections to their gaze directions and head orientations. 
 
Objectivity of gaze measurements could potentially aid future ADAS, smart wearable 
devices, and AV control modules in maintaining road safety. In the future, an AV 
might be able to directly track or indirectly obtain the gaze directions of a pedestrian 
and its own “driver”/occupant, and factor events such as eye contact when deciding 
its kinematic and eHMI display behaviors. Eye-tracking performance would be critical 
in such scenarios, as false positives or false negatives when detecting eye contact 
could lead to confusion in the AV due to misalignment with other cues, e.g., ego 
vehicle/pedestrian kinematics, which in turn could lead to collisions or near crashes. 
Finally, it might be possible in the future that a network of connected AVs and 
AI-powered wearable devices, all capable of mobile/remote eye-tracking, could 
intercommunicate and exchange detections of road user gaze and other non-verbal 
cues, for optimal negotiation of interactions and road safety. Such a network might 
also include other vulnerable road users such as cyclists and motorcyclists, but will 
likely first have to contend with the challenges of mixed traffic in the immediate 
future. 
 
In connection with the aforementioned wearable devices for future road (user) safety, 
this thesis presents four interrelated concepts of such systems that use a mixture of 
mobile eye-tracking, object detection, and AI (Chapter 5). These concepts arose 
from logically extending the idea of automatically detecting the target of a 
driver’s/pedestrian’s gaze and eye contact (Chapter 4), to the more broad application 
of real-time detection of a road user’s/vehicle’s view, the gaze target (if any), and the 
context of the traffic scene, to provide risk assessments and feedback to improve 
traffic safety. For example, the feedback might be regarding whether or not a 
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pedestrian noticed an oncoming car before crossing a street, or regarding which 
moments of driving/cycling in an urban environment pose a collision risk. Such 
feedback in real-time could prompt behavioral changes in road users such as 
reducing speed, stopping, or communicating via non-verbal means, e.g., visual 
scanning, eye contact, gestures, or eHMI display changes. In other situations, 
feedback might not be required, e.g., when the traffic environment as a whole is not 
dangerous, there are no hazards in the vicinity, or the road user is already attentive, 
in which cases, feedback should not be provided as it, by itself, might be a 
distraction. 
 
The four concepts help take the frontiers of traffic research forward from post-hoc 
eye-tracking and context analyses of staged interactions to (partially) real-time 
analyses of live interactions, while identifying bottlenecks, e.g., GPT-4V inference 
times that, if resolved, would open the doors to truly real-time, deployable, and 
wearable safety systems in traffic. This thesis shows that GPT-4V’s assessments of 
traffic risk already strongly resemble those of humans, although there is still room for 
the former’s improvement in terms of hallucinations, identifying details, and 
understanding the influence of 3D space and time in traffic interactions. Combining 
GPT-4V with YOLOv8 helped mitigate some of these drawbacks, showing promise 
for future safety systems built into wearables. The goal of real-time operation may 
even be feasible within the next decade, given the rapid advancements in 
head-mounted eye-tracking, object detection, and AI. One promising example of this 
progress is the launch of the Apple Vision Pro mixed-reality headset, capable of 
eye-tracking (Apple Inc., 2024). Another is the fact that GPT has only been available 
since the last 2 years, and can already handle text, code, tabular data, documents, 
audio, images, and video (OpenAI, 2024). 
 
Given the exponential trend of technological progress (Kurzweil, 2024), it is 
conceivable that in a couple of decades, vehicles (and machines in general) will be 
able to accurately assess the state of persons in their vicinity, e.g., drivers, 
pedestrians, factory workers, just as humans do with each other. These 
developments will have major implications for how the world is shaped, in the 
automotive domain and beyond. For instance, traffic interactions may change from 
human-human negotiations to human-machine and machine-machine negotiations, 
with pedestrians merely following action prompts, e.g., “Cross now” or “Don’t cross”, 
from smart traffic lights, XR headsets, or eHMI displays, and AV passengers being 
notified about interactions over which they have no direct control, e.g., via in-vehicle 
displays and speakers. In other fields, such as manufacturing, construction, surgery, 
and search-and-rescue, humans may assume entirely supervisory roles, and 
occasionally train or direct artificially intelligent machines using their gaze and 
eye-tracking. In the fields of education, psychotherapy, marketing, entertainment, 
professional sports, social interaction, and human-computer interaction, eye-tracking 
and AI might be used to understand the needs and preferences of people and tailor 
solutions and products accordingly. That said, affordability will also be necessary for 
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widespread adoption, since the technologies employed and their operating costs are 
currently too expensive for daily use by the average (road) user. 
 
Finally, based on the results of the individual papers in this thesis, the general 
discussion, and recent trends in technology, some recommendations for future 
research into eye contact and eye-tracking are listed as follows: 
 

1. Investigating the effect of (the timing of) pedestrians’ eye contact on drivers, 
as a complementary study to Chapter 2. 
 

2. Combining eye-tracking of road users with think-aloud protocols and event 
recorders to supplement objective detections of gaze with subjective reports 
of the awareness of gaze. This would help gain a better understanding of the 
psychological significance of eye contact in traffic, to supplement the more 
objective approach used in this thesis. 
 

3. Detecting driver-pedestrian eye contact using dual eye-tracking in naturalistic 
conditions. This would be the logical next step from the staged scenarios in 
this thesis. 
 

4. Validating the gaze threshold for driver-pedestrian eye contact across a range 
of interaction scenarios, distances, and configurations. This would supplement 
the finding of the 4° threshold in this thesis and form an important step 
forward towards practical applications. 
 

5. Developing fully automated and real-time eye contact detection systems that 
can be deployed in traffic to improve safety. 
 

6. Inventing methods to remotely and accurately detect the gaze and eye 
contact of pedestrians from a vehicle, thereby freeing them of the need to 
wear an eye-tracker. 
 

7. Developing real-time assistance systems built into wearable devices that can 
analyze user gaze and the surroundings to provide appropriate feedback in a 
variety of tasks and environments. This idea may advance human safety and 
productivity and be a step towards human-machine symbiosis, but ethical and 
privacy concerns will likely arise. 
 

8. Creating eye-tracking controlled and artificially intelligent systems that allow 
users to interact with them, perform complex virtual and physical actions, or 
assume a supervisory role using just their gaze. 

 
In conclusion, this thesis provides insight into the importance and functional 
relevance of eye contact in traffic, benchmarks the accuracy of tools required to 
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objectively detect eye contact, operationalizes driver-pedestrian eye contact, 
presents prototypes of a real-time safety system that uses eye-tracking, object 
detection, and AI to provide feedback to road users, synthesizes the findings of the 
above four papers, offers recommendations for further research, and reflects on the 
future of mobile eye-tracking and AI. 
 

6.6. Epilogue 
Some of the findings of this thesis show that driver-pedestrian eye contact is a 
complex and dynamic phenomenon and not just a simple binary cue. In a recent, 
related study, in which I was not the first author, eye contact between drivers was 
explored to further the understanding of eye contact in traffic. The study found that 
driver-driver eye contact is employed (and avoided) for a variety of reasons, both 
prosocial and antisocial. 
 
In short, an online survey was conducted with 3,857 respondents spread across 20 
countries. Participants were shown an image of a busy roundabout and asked about 
their eye contact behavior (if any) and its likelihood in such a scenario. A 
free-response item recorded their rationale behind their responses. The answers of 
600 respondents (199 from Mexico, 200 from the United States, and 201 from the 
Netherlands) were subsequently annotated, with the annotator unaware of the 
respondents’ countries of origin. 
 
The results in Figure 6.1 show the percentages of respondents for 15 categories 
annotated from the answers. The precise definitions of the response categories are 
provided in Table 6.1 below. Figure 6.1 reveals that reasons for eye contact range 
from gathering information about the other person’s state or making oneself known, 
to assertively asking for or even enforcing right of way. 
 
It is also noteworthy that drivers sometimes purposely avoid eye contact. For 
example, participants reported they do this to better focus on traffic (consistent with 
the earlier notion that implicit communication is more important than eye contact). 
Some drivers also reported avoiding eye contact due to it being stressful or 
uncomfortable, or to avoid conflict. A particularly interesting category is the 
avoidance of eye contact to pretend that another competing driver has not been 
noticed. This manipulative tactic is but one strategy to claim right of way. Many of 
these reasons for making and avoiding eye contact were also mentioned in the 
general discussion earlier. 
 
Figure 6.1 also shows that there are statistically significant cultural differences. In 
Mexico, drivers are more likely to use eye contact, or the avoidance of it, to achieve 
their goals, while in the United States and the Netherlands, traffic rules often suffice. 
This may be because traffic is more strictly regulated by formal rules in wealthier 
countries, and so, non-verbal communication is less used. 
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Figure 6.1. Percentage of responses categorized through a categorical content analysis for 
an open-ended question, in which respondents were asked to explain why they would make 
or avoid eye contact when driving in the given roundabout scenario. The figure includes 95% 
confidence intervals, and indicates statistical significance (p < 0.05) for comparisons 
between Mexico and the United States, and between Mexico and the Netherlands. 
 
These findings suggest that automated vehicles will need a high level of social 
intelligence to operate effectively on today’s roads, and eye-tracking and 
vision-language models could be useful to achieve this goal (cf. Chapter 5). 
 
The current additional study also relates to earlier findings presented in Chapter 2 
about drivers’ eye contact having an impact on pedestrians’ decisions when there is 
a crossing conflict. The present study also suggests that eye contact is more than 
just for gathering information, conveying presence, and making decisions; it can also 
be actively used, or actively avoided, to enforce outcomes in traffic. 
 
In the end, it should be remembered that the experiments in both Chapters 2 and 5 
were conducted in online environments. This offers strong potential for cross-cultural 
comparisons and standardization of measurements, but it remains somewhat 
arbitrary in nature and disconnected from real traffic. Further research into eye 
contact measurements in real-world settings, as in Chapters 4 (staged scenarios) 
and 5 (staged and naturalistic scenarios) will remain important. 
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Table 6.1 
Categories into which the 600 responses to the open-ended question were annotated. 
 Category Category 
1 Avoids - focus Avoids eye contact in order to focus on the road / minimize distractions / out 

of safety considerations 
Example: “Eye contact can be a distraction and can cause accidents.” 

2 Avoids - stress Avoids eye contact because it is stressful / uncomfortable / not liking eye 
contact in general 
Example: “eye contact on its own is stressful...eye contact in a high stress environment 
like the described scenario, would drive me mad.” 

3 Avoids - obtain Avoids eye contact to prevent yielding right of way / increase chance to enter 
Example: “if you focus on your car and their car and don't make eye contact they are 
more likely to let you in” 

4 Avoids - prevent Avoids eye contact to prevent irritating the other driver / getting intimidated 
Example: “other drivers might be aggressive so I definitely avoid eye contact at any 
moment while driving.” 

5 Avoids - not needed Does not use eye contact because is not needed; kinematics / blinkers / rules 
give the necessary information / it is safer to rely on objective information 
Example: “I don't really make eye contact with other drivers in those situations. I just 
look at car's positions and make decisions based on that.” 

6 Avoids - impossible Does not make eye contact as it is not physically possible because of e.g., 
distance, speed, or window glare 
Example: “Some vehicles also have darker tint than others, or drivers may be wearing 
sunglasses, so I might not be able to make eye contact.” 

7 Makes - politeness Makes eye contact to achieve mutual awareness / out of politeness / 
reciprocation 
Example: “I find more success on the road when I make eye contact with drivers to 
convey understanding and to be polite and considerate.” 

8 Makes - noticeable Makes eye contact to indicate intentions / make oneself noticeable / indicate 
to the other drivers they have been noticed 
Example: “I feel that making eye contact ensures the other driver sees you and know 
you are there” 

9 Makes - receive Makes eye contact to receive information about the other driver’s intentions or 
state / to see if the other driver has noticed them 
Example: “might make eye contact to see what the other driver would do'” 

10 Makes - ask Makes eye contact to increase the chance to get right of way / ask permission 
Example: “giving eye contact in my opinion increases your chance of getting into the 
roundabout because other drivers can see that you’re trying to enter.” 

11 Makes - safety Makes eye contact for safety reasons 
Example: “Eye contact is a good way to avoid an accident” 

12 Makes - feedback Makes eye contact to thank or criticize an action already taken 
Example: “I don’t like to make eye contact I just do it when they do something wrong” 

13 No effect Eye contact might not have an effect / can happen accidentally / not on 
purpose 
Example: “'I don't feel that eye contact should change the flow of traffic” 

14 It depends Makes or avoids eye contact depending on the situation or culture 
Example: “Everything depends on the way the roundabout works and the place you 
are driving” 

15 Other Non-specific / unclear / other 
Example: “Eye contact is very important when you drive” 
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The abstract of this paper is provided below: 
 
Abstract 
The advent of self-driving cars has sparked discussions about eye contact in traffic, 
particularly due to challenges automated vehicles face in non-verbal communication 
with human road users. In his 1992 book, Turn Signals Are The Facial Expressions 
Of Automobiles, Don Norman describes how drivers in Mexico City deliberately avoid 
eye contact when entering a roundabout to create uncertainty in the minds of other 
drivers, leading the latter to yield right of way. Norman also argued that such 
manipulative or aggressive behavior would not be tolerated in the United States. In 
the present study, we tested these claims through an online survey involving 3,857 
respondents from 20 countries. The results confirmed that Mexican drivers reported 
a higher frequency of non-speeding ‘aggressive’ violations compared to those from 
most other countries. Regarding eye contact in roundabout scenarios, national 
differences were found not so much in the frequency of eye contact but in the 
reasons behind its use, or lack thereof. Mexican drivers tended to avoid eye contact 
to reduce tension or avoid conflict with other drivers. However, they also frequently 
reported making eye contact to assert or subtly enforce their right of way. In 
higher-income countries like the United States, driver-driver eye contact is often 
deemed unnecessary. In conclusion, our findings partially correspond with Norman’s 
anecdote based on his experiences in 1950s Mexico City. These results may have 
implications for understanding the stability of traffic cultures and the challenges 
related to eye contact and non-verbal communication faced by developers of 
automated vehicles. 
 
Citation: 
De Winter, J. C. F., Onkhar, V., & Dodou. (2025). Cross-national differences in 
drivers’ eye contact and traffic violations: An online survey across 20 countries. 
Transportation Research Part F: Traffic Psychology and Behaviour, 109, 711–725. 
https://doi.org/10.1016/j.trf.2024.12.021 
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