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Abstract

This research tackles the Train Unit Shunting Problem
(TUSP) in train maintenance service sites. Many researches
focus on producing feasible solutions, but only a few of them
concentrate on the robustness of solutions. In reality, it
is preferred to generate robust plans against unpredictable
disturbances. Besides, the approach is expected to replan if
disturbances occur while performing the plan. We propose
this Decision Tree (DT)-based sequential approach (DTS)
that solves the TUSP by sequentially making a sub-decision
according to the DT prediction. It generates solutions that
are both feasible and robust. Furthermore, it operates fast
using the pre-trained model. We conduct experiments and
compare its performance with a heuristic algorithm and the
Local Search algorithm (LS). The proposed approach DTS
solves fewer problems than LS and the heuristic, but it out-
performs others by generating more robust solutions.

1. Introduction
The trains need to be cleaned and maintained at regu-

lar intervals to ensure a pleasant and safe journey for more
than 1.1 million train passengers every day in the Nether-
lands [16]. Those cleaning and maintenance tasks are per-
formed in service sites. Due to the limited space in service
sites, a reasonable plan and schedule should be designed
and performed satisfying all requirements and constraints.
Currently, the plans and schedules are manually generated
by experienced planners. The rolling stock is on service
during the rush hours. Outside of those, only a small por-
tion is needed for the reduced transportation demands. The
surplus of the rolling stock park at service sites nearby ma-
jor stations. Trains arrive in the evening and park at avail-
able tracks, then leave in the next morning. They will shunt
to perform service tasks if there are some, and park at idle
tracks after tasks are finished.

In this study, we tackle a limited version of TUSP con-
taining parking, matching and routing subproblems. Note
that parking a sequence of trains at tracks resembles the
Bin Packing Problem which is well-known to be NP-hard

Figure 1: The randomness in the parking solutions to an example
set of instances. All problem instances share the same arrival and
departure sequence in the example set. An orange block is a train
with material id 1 and a blue one with materail id 2. The sequence
of “Arrival” and “Departure” is the list of trains represented by
their material id. The sequence of “parking” is the parking assign-
ment indicating the track id in the order of arrivals. The red “3” in
“parking: 2334” means the third arrived train is parked at Track 3.
In 27 out of 79 times LS generates the first parking solution and
the rest 52 times it creates the second one.

[22]. Dutch Railways (Nederlandse Spoorwegen;
NS) has conducted several researches and succeeded in pro-
ducing feasible solutions to TUSP. However, the solutions
have a lack of robustness (see an example in Figure 1). In
practice, it is preferred to obtain robust solutions to shunt-
ing problems so that it can cope with unpredictable uncer-
tainty(e.g., train arrival delays).

Shunting problems have been studied along 2 main di-
rections. One is the standard optimization that requires
complete input information about incoming and outgoing
sequences of train units. Many proposed algorithms for
TUSP succeed in finding feasible solutions by this method
[10, 11, 12, 13, 14, 15, 21, 23]. However, these are not
able to cope with disturbances in the input information that
makes the original plan infeasible. The other algorithms
model the shunting problem as an online planning problem
to cope with arrival delays [9, 26]. It makes decisions on
the basis of each event (e.g., arrival/departure) and reacts
fast against disruptions.

1
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Figure 2: The system design and application algorithm

The research goal of this study is to investigate whether
it is possible to generate robust solutions to TUSP using
machine learning techniques. The fundamental task is to
develop a solution approach that is capable of producing so-
lutions both feasible and robust with interpretable machine
learning techniques. We propose an approach that makes
schedules using Decision Trees in a sequential manner. The
proposed approach consists of 2 phases, design and applica-
tion (see Figure 2). In the design phase, we collect training
data and construct the DT models, which subsequently are
applied for making schedules in the future period.

We employ the Decision Tree (DT) as the classification
method because of several reasons. Firstly, it provides the
direct insight into the principles and characters that lead
to decisions. This property of interpretability is essential
for human planners to understand its output. Secondly, a
DT model is capable of distinguishing between multiple
classes. The labels in the training set are the track ids. The
number of classes is the number of tracks. At last, a DT
model can take multiple types of parameters as input in-
cluding categorical data, such as the material type of trains.

We evaluate the performance according to the number
of instances it solves and the robustness of solutions. In
robustness optimization, the robustness is measured as the
trade-off between the performance of the robust solution
and the performance of the optimal solution [3, 8]. To
the best of our knowledge, there is not a standard quality
measurement for a single feasible solution to TUSP. There-
fore, we propose to count the number of unique solutions
as a measurement of the robustness. A robust algorithm
can generate feasible solutions that stay unchanged in ev-
ery likely scene. In a fixed scenario, an algorithm is more
robust if it solves problems with fewer unique solutions.

Our main contributions are three-fold:

1. We develop an approach that generates solutions se-
quentially for the train shunting problem in service
sites. From experiments it demonstrates a high capa-
bility to produce solutions that are both feasible and

robust.

2. We demonstrate how to use the Decision Tree (DT)
classifier in predicting actions in each intermediate
state and interpret the decision rules by visualizing the
tree structure.

3. We provide a feature set that captures necessary infor-
mation to make schedules by machine learning tech-
niques.

The remaining paper is organized as follows. Related
work is addressed in section 2, followed by the problem
definition and the system design in section 3 and the pro-
posed algorithm in section 4. The experiments settings and
results are explained in section 5. In the end, we conclude
and discuss the research project in section 6.

2. Related Work
In this section, we review related work in the train unit

shunting problem, intelligent scheduling, robustness, and
Decision Tree.

2.1. Train Unit Shunting Problem

The Train Unit Shunting Problem (TUSP) is first intro-
duced by Freling et al.[10] and it consists of 5 subproblems,
namely matching, parking, service scheduling, routing and
crew planning. In some researches, they make a decompo-
sition of the complete problem and solve subproblems se-
quentially [10, 15, 14, 23]. In contrast, there are also several
integrated approaches that solve the whole problem together
[13, 21, 12, 11].

In a sequential approach, the matching subproblem is
solved first by modeling as a Mixed Integer Programming
problem in [10, 15, 14]. Then a parking plan is generated
by a column generation approach [10]. Afterward, one ex-
tension is to solve the routing subproblem by estimating the
routing cost through a graph representation of the shunt-
ing yard [15]. It reduces the computation time for generat-
ing acceptable solutions through decomposition, but it also
causes the loss of global optimality.

As for the integrated approach to the combined match-
ing and parking subproblems, one can group the massive
amount of crossing constraints in clique constraints in the
mathematical formulation [13]. A second approach is an
exact dynamic programming algorithm taking the solutions
from a greedy heuristic [21]. Besides, the combined sub-
problems can also be solved by genetic algorithms [12] or
heuristics [11]. It takes a longer computation time for inte-
grated approaches, from 10 minutes up to hours, due to the
increased problem complexity.

The best approach so far in NS is an integrated Local
Search approach presented by Van den Broek which solves
the 4 subproblems for instances with 23 trains composed

3



of 27 train units in 4 minutes [22]. It is a simulated an-
nealing algorithm that starts with an initial plan. Then, it
explores through the search space by evaluating each sub-
problem and simultaneously constructs the shunting plan.
The algorithm starts with a random initial solution every
time we run it. After iterations, it leads to different final so-
lutions. Because of the assumption, that the service site is
empty and no train is parking at the beginning of planning, it
can not replan after trains arrival. Thus it fails when a small
delay occurs resulting in the original plan to be infeasible
during the plan operation.

2.2. Intelligent Scheduling

For a scheduling problem, one method is static schedul-
ing which generates a detailed operations plan at the begin-
ning of the planning horizon in order to achieve global op-
timization [27]. Several scheduling approaches apply this
method in the train shunting problem [22, 11, 6, 10, 12,
13, 14, 15, 21, 23]. This standard optimization approach
needs perfect knowledge about the arrival, departure timeta-
bles and the all relevant information about the train units for
scheduling in train shunting yards.

The dynamic dispatching means that we generate one
next action in each time when an operation process is fin-
ished and some candidate operations are available [27].
This approach is usually applied in real time planning cases,
for example in online dispatching rule selection in the man-
ufacturing system [19], container transportation planning to
inland services [24] and online dispatching of train units or
trams [9, 26]. Real-time scheduling does not require com-
plete knowledge for specific planning horizon like standard
optimization approaches. It can generate plans dynamically
under uncertainties.

The proposed approach takes all given information as in-
put to achieve the feasibility in the solution. It also follows
the sequential scheduling manner as in online planning to
react fast against uncertainty.

2.3. Robustness

The robustness has long been a focus of the scheduling
problem, but a general definition of the robustness is still
missing. Informally speaking, the robustness is the attribute
of the schedules to remain insensitive against disturbances
during operations [6]. There are 2 main focuses of robust
models, robustness optimization (RO) and stochastic pro-
gramming. In RO, one aims to find solutions that are feasi-
ble for any realization of uncertainty in a given set in which
the disruptions are determined and set-based. Bertsimas et
al. [2] give several examples of RO to obtain solutions with
different desired properties, like sparsity, stability, and sta-
tistical consistency. Cicerone et al. propose a recoverable
robust model for the shunting problem and measure the ro-
bust solutions by the price of robustness [3] that determines

Figure 3: An example of the Decision Tree application show-
ing the decision process of turning on or off of the battery saving
mode. If the input is associated with ’battery power’ less than 20%
and not charging, the tree will navigate it to an ’ON’ decision by
following the rightmost path.

the tradeoff between an optimal solution and a robust one
[7, 8]. Entropy is also applied as a measurement of the con-
sistency in solutions [17]. Stochastic programming requires
the probability distribution of the disruption scenarios (see
Birge and Louveaux 2011 [4]) which is not trivial to obtain
in practice. In this project, we aim to react fast and keep
robustness in plans when arrival delays occur during opera-
tion. Thus, we would not rely on the probability distribution
of the disturbances but restrict in a fixed set of scenarios.

2.4. Decision Tree

A Decision Tree classifier is a method applied to con-
struct complex decision-making. It is expressed as a rooted
tree that can recursively partition among the instance space
which is the set of all possible examples. It represents the
general relationship between the input attributes and target
attributes [18] (see an example in Figure 3).

The Decision Tree model is applied dynamically to
choose the appropriate dispatching rule given a set of sys-
tem attributes in the manufacturing system [19]. Then a
hybrid model delivers better generalization ability that em-
ploys an artificial neural network to identify the significant
system attributes [20]. DT is also applied to solve the opti-
mal ordering problem in sequential auctions to obtain good
orderings with high revenues [25].

For the train shunting problem, the search space is vast
as the number of choices of candidate trains and actions is
rather large. This amount grows as more and more trains
involved, which makes it challenging to formulate the prob-
lem and generate plans.

2.5. Summary

To summarize, the approach to generate robust solutions
to TUSP is missing. We propose to design an algorithm in
a sequential manner like dynamic dispatching to cope with
uncertainty. Machine learning techniques are able to find
the common patterns and rules from historical data to make
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predictions so that it leads to robust solutions. Especially,
the Decision Tree algorithm, as a white box method, is ca-
pable of processing multiclasses data and categorical fea-
tures.

3. System Design
In this section, we provide a formal problem definition of

TUSP in our study followed by the introduction of our sys-
tem design. The system design consists of 3 steps as shown
in Figure 4. Firstly, we assemble training data from the sim-
ulation system provided by NS. An instance generator gen-
erates real-life scenarios of arrivals and departures with a
timetable and train material types. Then we employ the Lo-
cal Search Algorithm [22] to generate solutions for problem
instances. After the assembly of instances and solutions, we
process the feature engineering to prepare the training data
for DT classifiers, details in subsection 3.2. Subsequently,
DT classifiers are inducted by taking the training data as
input from step 2, details in subsection 3.3.

3.1. Problem Definition

In this research, a fictional shunting yard is designed in
our experiments which is in a ’shuffleboard’ structure. TR
denotes the parking tracks set in which there are r First-
In-Last-Out tracks each with a length tl. There is one
gate track connected to all r parking tracks. We define
a set of arrival trains AT , in which each train ati is as-
sociated with an arrival time attmi , a material type attpi , a
train length atli and a parking track atpi (i = 1, .., n). There
is a departures set DT in which each departure dt is as-
signed with a departure time dttmi and a material type dttpi
(i = 1, ..., n). We assume each train consists of one train
unit. Then the train material type equals to the train unit
subtype, e.g., ICM-4 represents a train that consists of 4
carriages of material ICM ( = Intercity Material).

Given AT,DT and TR, we aim to find (1) a parking
assignment for all arrival trains to parking locations; (2) a
matching assignment for all parking trains to departure po-
sitions such that

n∑
j=1

atlj ≤ tli if atpj = tri for i = 1, ..., r (1)

, the sum of parking trains length in one track is no larger
than the track length,

attp = dttpj for j = 1, ..., n (2)

, the material type matches for each departure.
For each arrival, a specific train unit is assigned in the

input. For each departure, it only requires the train mate-
rial type but not a physical train unit. There is flexibility
to choose from several trains as long as the material type
matchs with the departure requirement.

3.2. Feature Engineering

Intuitively, one may predict a complete plan for each
problem instance. However, machine learning models are
not capable of predicting among the enormous amount of
unique solutions. Thus, we propose this DT based sequen-
tial approach which makes predictions for each event to re-
duce the prediction space. Each arrival and departure is
taken as an event for which the model predicts an action that
leads to feasible and consistent solutions. For each event,
we collect the current track occupation, future events, and
the trigger information, which we call a State, as input fea-
tures to the DT classifier. It will output a vector of proba-
bilities of each Action. One main advantage of this (State,
Action) modeling is that the model can start planning at any
time point by collecting the current State.

State: There are 3 components of State attributes, the
track occupation, future events and trigger information.
The first one provides detailed information about whether
a parking position is occupied, and if true by which train
material type. Besides, we also calculate several aggregated
features to give a direct insight into the current situation. It
is necessary to consider the track occupation to avoid the
track lengths violation due to the limited track length. The
future events part presents the information about the mate-
rial type of next arrivals and departures. The model should
take it into account so that the parking assignment will not
cause obstructions while departing. The trigger part de-
scribes necessary details of the current event.

Track Occupation: Based on our observation of his-
torical solutions, the parking capacity for a track is 3 trains.
Therefore, we define 3r parking position features in a shunt-
ing yard with r parking tracks. Its value is the material
type id of the train that is parking at that track position.
For example, “track 1 position 0” with value equals to “1”
means a train with material type id 1 is parking in track 1
at position 0. Besides, there are two aggregated features de-
scribing the track occupation. “parking trainunits” provides
the number of parking train units in the shunting yard, and
“empty tracks” records the number of unoccupied tracks.

Future Events: We consider the next n events of arrivals
and departures respectively, and it is 2n features in total.
The value of a next arrival is the material type id of that
arrival train. For a next departure, its value is the required
material type id of that departure. There is an additional
aggregated feature, “arriving trainunits”, giving the exact
number of future arriving train units.

Trigger Information: “trigger type” indicates the event
type of the current one, e.g. 1 = a departure and 2 = an ar-
rival. “trigger material” shows the material type id that is
associated to this event. “state id” records an integer num-
ber showing the rate of progress in solving the problem.

Action: We define the target set H as the set of all park-
ing tracks (tr1, ..., trr) in the shunting yard. An action is

5



Figure 4: System design process. We collect a set of problem instances and their solutions, which subsequently are used to generate 2
training sets by feature engineering. Then, we construct 2 predictive models from those 2 training sets.

defined as “move a train from a start track trA to an end
track trB”. For each event, since we know the associated
train, the DT classifier only outputs a vector of the proba-
bility distribution over r tracks. If the event is an arrival, we
select one parking track from the set H , as the end track trB
in the action. For a departure event, a train will leave from
the selected track trA to the gate track. When there are
several trains parking at the selected track, the one parking
at the front will be chosen to depart.

3.3. Decision Tree Inference

In order to obtain a model that performs well in all cir-
cumstances, we construct an individual DT classifier for ar-
rivals and departures respectively. The feature sets of two
events are identical. However, the value of some features
distributes with a significant difference. For example, as we
assume that all trains arrive before the first departure, the
value of the next arrivals features is always None in depar-
ture events but not None in arrival events. A difference like
this may cause additional misclassification. Therefore, we
separate two events and construct two different classifiers.

We utilize the CART algorithm [5] as the DT inference
method with Gini splitting criterion. It partitions the in-
stance space recursively in each node by selecting the fea-
ture that gives the least impurity in child nodes according to
the Gini Index [18]. The tree inference continues partition-
ing until a stopping criterion fulfilled: in this case, we set
it as the maximum tree depth d. According to Breiman [5],
the tree complexity shows a crucial influence on its perfor-
mance. We choose the maximum tree depth and the number
of nodes to measure the tree complexity. The final d will be
determined considering the performance of solving problem
instances.

For each leaf node, it is associated with a vector of class
distribution of all observations classified in that node. If all
observations belong to a single class and Gini Index equals
to 0, the leaf will be assigned to that class. If the Gini Index
is positive indicating some impurity, the leaf node will be
designated to the largest class.

4. DT Based Sequential algorithm(DTS) in
TUSP

In this section, we introduce our proposed algorithm
DTS and one variant DTS 1. The categorical features are
encoded as integers in DTS, and we transform them by one-
hot encoding in DTS 1.

Algorithm 1 DTS
1: procedure BUILD SOLUTION(AT,DT, TR, gate track)
2: Sort arrivals AT by time desc
3: Sort departures DT by time desc
4: Initialize current state s
5: Initialize an action list A
6: while AT and DT not empty do
7: if current event is an arrival then
8: predict track probabilities Pr by arrival DT
9: target tracks H ← TR sorted by Pr

10: trB ←pop the track with max Pr from H
11: trA ← gate track
12: while Action(trA, trB) not valid and H not empty do
13: trB ←pop the track with max Pr from H

14: else if current event is a departure then
15: predict track probabilities Pr by departure DT
16: target tracks H ← TR sorted by Pr

17: trA ←pop the track with max Pr from H
18: trB ← gate track
19: while Action(trA, trB) not valid and H not empty do
20: trA ←pop the track with max Pr from H

21: if Action(trA, trB) not valid then
22: break
23: else
24: add Action(trA, trB) to A

25: Compute s′, AT ′, DT ′

26: return the action list A

The algorithm starts from building an initial state from
the problem state as shown in Figure 5. It utilizes the
DT classifiers on a per event basis and generates the so-
lution sequentially(see algorithm 1). Firstly, the algorithm
assembles the current problem State s and identifies the
event type. The arrival state features will be sent to the
arrival DT whose output is a vector of possibilities of
each track. The selection of tracks follows a greedy man-
ner. The track with the highest probability will be chosen
first as the parking track. Then it forms an action a of mov-
ing the arrival train from the gate track to the predicted
parking track trB . If the action a is not valid in this state s,
a second track will be selected until the action is valid or all
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Figure 5: DTS working flow chart. For a problem instance, the
DTS forms an initial state as the start. The state will be sent to
the corresponding DT model according to the event type, and the
model predicts a list of probabilities for different actions. DTS
selects the action with the highest probability and checks if the
action is valid. It transfers to the next state if the action is valid, or
choose another one if not.

possible parking tracks are checked. For an arrival event,
we check whether the remaining tracks length is enough to
park the arrival train. Likewise arrivals, a departure state
will be classified by the departure DT whose output is
the probability distribution of all tracks. The action for de-
parture events is defined as “move the front train from the
predicted track trA to the gate track”. For a departure, the
model will check whether the train material type matches
with the request. We obtain a feasible solution if all actions
are valid in that state and the construction ends in a final
state with no remaining arrivals or departures. The algo-
rithm fails if it can not find any valid action in a state during
the construction.

DTS with Onehot Encoded Features: There are several
categorical features in our feature set, e.g., the next arrivals
whose value is the train material type, “SLT-4”. In our basic
version of implementation, we encode those features as in-
tegers, which means each category is represented by an inte-
ger. Decision Tree is capable of processing integer encoded
categorical features. However, it will assume there are ordi-
nal relationships existing and it might result in poor perfor-
mance or unexpected outcomes. Therefore, we implement
another version of the proposed approach with the categori-
cal features transformed by one-hot encoding, shortened as
DTS 1 in the results tables. For a feature with m categorical
values, a binary variable is introduced for each unique cat-
egory, and the old categorical feature is removed. We avoid
the assumption of natural ordering between integer values,
and it also improves the interpretability of the Decision Tree
models. A shortcoming is that the increased number of fea-
tures may result in overfitting.

5. Experiments

In this section, we conduct extensive experiments by ap-
plying DT based sequential approach on an elaborate sce-
nario. We use the solutions generated by the Local Search
algorithm [22] in the training data. Then we compare
the performance of the Local Seach algorithm, a heuristic
method, DTS, and DTS 1. The comparison results are ana-
lyzed in subsection 5.5.

5.1. Scenario

In this scenario, we design 2 subsets of 200 instances
of medium and difficult according to the difficulty level of
solving the problems. For a problem instance of medium
level, the number of trains is slightly larger than the number
of tracks. In a few tracks, there are 2 or more trains park-
ing that results in certain flexibility in solutions. That is the
main scenario that our model focuses on. In difficult prob-
lem instances, there are more trains and the usage of track
length is rather high. For each instance, there are only a few
solutions with limited flexibility.

We design a shunting yard with r = 9 FILO tracks
and one gate track according to the shunting yard layout in
Kleine Binckorst [22]. There are 6 different material types
whose train lengths and the arrival ratio are settled regard-
ing the daily timetable in Kleine Binckhorst (see Table 1).
We define two subsets of the problem instances, one with
n = 10 train units and the other with n = 12. The set
of trains material type of instance with problem size 10 is
(2 x SLT-4, 2 x SLT-6, 2 x VIRM-4, VIRM-6, 2 x ICM-3,
ICM-4). The track usage rate for 10 and 12 train units is
56% and 65% respectively. For this layout, a track can park
at most 2 - 3 train units, and there are 23 parking positions
in total. For the future events, we provide the next k = n
arrivals and departures individually. The target set is the set
of all parking tracks (tr1, ..., tr9). To induct the DT clas-
sifiers, we generate 2k problem instances and solutions for
each subset. Then we obtain a training set of 20k to 24k
samples for each DT classifier. This set is split into a train-
ing set and a test set by 8:2 and the prediction accuracy is
averaged after cross-validation.

5.2. Evaluation

The goal of this study is to generate robust and feasible
solutions to TUSP. Therefore, we evaluate the model perfor-
mance according to the number of instances solved (NF ),
and the robustness in the solutions. The parking assignment
affects the departures assignment significantly. In contrast,
the departure events show less influence on further plan-
ning. Therefore, the robustness evaluation focuses on the
parking assignment that is called “solution” in the remain-
ing section. We count the number of unique solutions NU
to all solved instances in the test set. The parking solution is
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Table 1: Train unit information. The arriving ratio shows the ap-
pearance probability of a train with that material type in one in-
stance.

material type train length (m) arrival ratio
SLT-4 70 0.21
SLT-6 101 0.25

VIRM-4 109 0.18
VIRM-6 162 0.05
ICM-3 81 0.21
ICM-4 107 0.10

a sequence of end tracks that the arrival trains are assigned
to park. Two solutions are considered the same if two se-
quences are identical. It measures the model’s ability to
generate robust solutions for instances with the same prob-
lem size. The fewer number of unique solutions, the more
robust. Besides, we also compute the ratio between NF
and NU to reflect the robustness in the solutions shorted as
RUF . The smaller RUF , the more robust. Overall, the
objective of the algorithm is to solve more problems with
fewer unique solutions.

5.3. Baseline Algorithms

In order to present a better understanding of the perfor-
mance of the proposed approach, we make a comparison
among the Local Search algorithm [22], a heuristic algo-
rithm and 2 versions of the proposed algorithm. The Heuris-
tic works as the benchmark of number of instances solved.
It may not solve all instances, but the solutions would be
robust. The LS algorithm is expected to solve the most
amount of instances but the solutions are rather random.

Heuristic: This heuristic algorithm is adjusted based on
the solution method developed by Beerthuizen [1]. It fol-
lows a residence time strategy and acts as following rules.
For parking assignment, each arrival train is labeled with a
priority index according to the departure request , e.g.1 =
the first to depart. Each arrival train is associated with the
first departure with the same material type. When a train
arrives, it will be parked at a track where the train parking
at back has a larger priority index and the least difference in
priority. Otherwise, it will park the train in an empty track.

DTS+LS: The proposed algorithm is expected to solve
problem with few unique solutions. However, it may show
poor performance in terms of the number of solved prob-
lems when the instance turns difficult. Therefore, we pro-
pose to combine DTS with LS to achieve a better perfor-
mance. For a problem instance, we first run DTS. If no
feasible solution found, we use LS to solve the problem.

Figure 6: Comparison of Decision Trees for arrival events(left)
and departure events(right) with different max tree depths in in-
stances subset with 12 train units.

5.4. Parametric Exploration

To obtain appropriate DT models that lead to robust and
feasible solutions, the maximum tree depth needed to be
determined. With the instances subset of 12 train units, we
explore through max tree depth dA in the range of (5,12)
for the arrival DT and dV in the range of (8,14) for the
departure DT . From Figure 6, we notice the prediction
accuracy of the arrival DT rises till dA = 8, and drops
afterward, indicating possible overfitting when dA > 9. For
the departure DT , the prediction accuracy increases as the
tree depth dV arises. As a result, we reset the parameters
range as dA ∈ (5, ..., 9) and dV ∈ (8, ..., 14) in the further
exploration.

We investigate the impact of max tree depth on the al-
gorithm’s performance regarding the number of instances
solved (NF ), the number of unique solutions (NU ), and
the ratio of unique solutions to feasible solutions (RUF )
(results in Figure 7). We test it on a validation set of 200
instances with 12 train units. In each row, for a fixed dA,
NF reaches the peak when dV = 8 or 9 (the highest blue
bar). NU does not vary obviously, so the lowest RUF lo-
cates at dV = 8 or 9 (highlighted in orange squares and the
RUF value in red). For a fixed dV (e.g., dV = 8), NF
fluctuates for different dA, but NU arises dramatically as
dA increases (see the green bar rises in a column). RUF
shows a huge jump from the top row to bottom.

To sum up, we select (dA = 5, dV = 8) to train the DT
models in DTS for the instances subset with 12 train units.
A same process applies to other subsets and the combination
(dA = 5, dV = 8) is chosen for all of them .

5.5. Results

We compare the performance of 4 algorithms concern-
ing the number of instances solved, the number of unique
solutions, the ratio of unique solutions to feasible solutions,
and the average runtime (results in Table 2). The model per-
forms best if it solves more problem instances, with fewer
unique solutions. For problems with 10 train units, DTS and
DTS 1 solve around 112 instances with only 3 unique so-
lutions. Heuristic solves more problems with more unique
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Figure 7: Comparing the performance of DTS with different max
tree depth in the instances subset with 12 train units. For trees with
a larger max depth, the model can solve more problems as the blue
bar raises. But the number of unique solutions also increases with
trees with a larger max depth as the green bar grows. For a fixed
arrival DT max depth, the best corresponding departure DT max
depth is highlighted by the yellow rectangle. The ratio of unique
solutions to feasible solutions rises with tree grows indicating the
decrease of robustness in solutions.

solutions. And LS solves all instances with 200 different
solutions. The best one is LS+DTS, which solves all 200
problems with 91 unique solutions. For problems with 12
train units, DTS and DTS 1 generate the fewest amount of
unique solutions, but DTS solves slightly more instances
than DTS 1. Heuristic solves 2 times as many instances as
DTS but with 3 times as many unique solutions as DTS.
LS provides a unique feasible solution to each of the 200
instances. The best one is still DTS+LS which solves all in-
stances with 153 unique solutions. The run time of different

Table 2: Performance comparison of algorithms in test set of 10
train units and 12 train units. The ratio is between the number of
unique solutions and the number of feasible solutions. “H” repre-
sents the “Heuristic”.

Alg DTS DTS 1 H LS DTS+LS

10 train
units

solved 112 114 187 200 200
unique 3 4 157 200 91

ratio (%) 2.67 3.51 84.0 100.0 45.5
runtime (s) 0.94 1.28 1.32 1.77 1.72

12 train
units

solved 61 57 134 200 200
unique 14 13 133 200 153

ratio (%) 23.0 22.8 99.3 100.0 76.5
runtime (s) 0.96 1.17 1.37 2.48 2.68

algorithms does not differ significantly in this test set. DTS
and DTS 1 are rather time efficient than other algorithms.

Interpretability of DT models: We visualize the in-
ferred arrival DT applied in DTS and DTS 1 in Figure
8. The top structure of 2 trees demonstrates a same logic
but in slightly different representations. The tree from one-
hot encoded features is more comprehensive since it avoids
the assumption of natural ordering in integer values.

6. Conclusion and Discussion
In this study, we propose a DT based sequential ap-

proach to generate robust and feasible solutions to TUSP.
In the design phase, we collect training data generated from
the instance generator and Local Search algorithm in NS.
Then, we build DTS and DTS 1 algorithms with pre-trained
DT models. In the experiments, two proposed algorithms
outperform the Heuristic and LS regarding the number of
unique solutions that indicates strong robustness. There
is no apparent difference in the performance of DTS and
DTS 1 showing that the encoding method has little effect in
this case.

The proposed DTS and DTS 1 solve relatively fewer in-
stances than other methods. One reason is that there exists
randomness in the training data from LS. Then the labels
attached to the samples are not guaranteed to be the ground
truth in the training set. DT infers the decision rules con-
sidering those labels which make it difficult to induce an
accurate DT model. The second reason is that errors ac-
cumulation during sequential scheduling. The algorithm’s
failure in one state may result from an inappropriate action
in previous states, and there is no mechanism to correct it.
The third reason could be that we make a tradeoff between
solving more instances and generating fewer unique solu-
tions during DT models construction. A small DT model
loses some details to plan less common cases, but it leads to
robust solutions.

Considering the limitation in solving more instances,
firstly we suggest to collect less random solutions as train-
ing data to the DT model. For example, assemble the solu-
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(a) arrival DT in DTS. (b) arrival DT in DTS 1 (onehot encoded features).

Figure 8: arrival DT top structure for the training set with 12 train units (tree depth = 5). In the tree at left, the root node checks the value
of feature ‘next arrival 7’. If it is no larger than 0.5 (means there is no 7th arrival train), then it goes to the left child node. In the tree at
right, the root nodes checks whether the next arrival 7 material id equals 0 (means there is no 7th arrival train). If true, then it goes to left
child node to check whether there is a train parking at track 8 position 0.

tions generated by DTS to reduce the noise in the training
set. The second suggestion is allowing temporary reloca-
tion during planning. We could cope with the obstruction
while departing or track length violation during arrivals by
enabling a train to relocate at another available track in the
shunting yard. An alternative way is to allow the algorithm
to move few states back and select a different action if it
fails to find a valid action at the current state. Thirdly, we
can create initial solutions by DTS to LS since the random-
ness comes from the arbitrarily selected start point. LS may
produce robust solutions by starting with a robust one.
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2
Introduction

This research is operated as my master thesis project during my internship in NS Techniek, that is a
subsidiary of Nederlandse Spoorwegen (Dutch Railways; NS), the largest railway operator in the
Netherlands. NS Techniek is in charge of the maintenance, cleaning, and refurbishment of rolling stock
in NS. Currently, the plans and schedules are manually generated by experienced planners. It is not
a trivial task even for experienced planners to generate a schedule. It is becoming more tedious and
time-consuming because of the increasing rolling stock.

We focus on the Train Unit Shunting problem(TUSP) in the service site in this study. Given the lay-
out of the service site, the timetable of the trains’ arrival and departure, and the service tasks needed
to perform, the planners generate a schedule for trains in a 24-hour horizon. A complete schedule
contains the assignment of trains parking locations, the start time and the location of each service
task, the matching of the departure positions, and a shunting plan of all movements. There are several
constraints when constructing a schedule. For example, a train can only park at a track if its length
is shorter than the track useful length. The service tasks can only perform at specific tracks that are
equipped with required facilities. There are also requirements for each departure about the train units
material type and the train composition.

Some researches have succeeded to find feasible solutions to TUSP. However, those approaches
either fall short in lack of consideration of real-life situations or take hours of computation time. The
best approach in NS is the Local Search algorithm designed by Roel van den Broek [1] that can generate
a solution for easy problems within 2 minutes. The computation time rises to 10 minutes when the
problem becomes more complicated. The existing approaches mainly focus on solving problems in a
short computation time. The robustness of solutions is still missing. One property we want to obtain in
the approach is to replan. When disturbances occur during the plan operation and the plan becomes
infeasible, we generate a new plan from the failing point. Another property is the ability of remaining
robustness against a low level of disruption(e.g. arrival delays). In other words, when there is a small
disturbance, we would like to make little adjustments to the original plan.

2.1. Randomness in the Solutions
The Local Search approach searches through the solution spaces by starting from a random initial start
point in each iteration. So, when there are some delays while execution and the original solution be-
comes unfeasible, we need to rerun the algorithm and it may generate a new schedule with radical
changes compared to the original one. One example is visualized to give a thorough perception of the
randomness. First, we introduce the problem settings and assumptions for one problem instance, then
explain the randomness through visualizations of the solutions.
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14 2. Introduction

2.1.1. Problem Description
A problem instance consists of several components collectively providing complete information that
needs to consider in scheduling. We introduce each segment through an example in the following
section. In the end, there is an example solution for the example problem instance.

Service Site Layout:
In this example, there are three tracks for parking and one gate track for arrivals and departures as in
figure 2.1. Trains arrive from the gate track in the evening by a certain order and park at one of those
tracks. All of them leave by departure requirements in the next morning. In this case, only the right
sides of parking tracks are open sides. Trains can only shunt to parking tracks from the right side of
tracks following a rule of First In Last Out.

Figure 2.1: The service site layout with 3 parking tracks (Track 2/3/4) and 1 gate track (Track 1). Trains can not
park at the gate track. The number following the track id is its useful length.

Train and train unit:
In the example problem instance, there are four trains and each of them consists of one single train
unit. There are 2 types of train unit with different material type and lengths. More details are given in
the table 2.1.

Table 2.1: The details of the trains in the example.

material id material type length amount in one instance
1 ICM-3 82m 3
2 ICM-4 107m 1

Timetable:
For a problem instance, there is an arrival timetable indicating the trains’ id, arrival time, material type
and train composition, etc. For departures, there are departures time, their material types and trains
composition. It only requires the material type and train composition, but not any physical train unit
in departures. So there is a certain level of flexibility to assign a train to a departure position as long
as the requirements satisfied. Here are example timetables for arrivals 2.2 and departures 2.3.

Table 2.2: An example timetable (arrivals).

train_id train_unit_id material id material type length arrival time
2000 4002 1 ICM-3 82m 20:45
1000 4001 1 ICM-3 82m 20:51
4000 4201 2 ICM-4 107m 20:54
3000 4003 1 ICM-3 82m 21:12

Solution:
A schedule for this problem is a sequence of movements indicating which train moves to which track.
Given the information above, an example solution generated by the local search approach is provided in
table 2.4. It shows a detailed schedule including the exact time point and location for each movement.
In this case, there are eight movements in total, in which the first four related to parking.
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Table 2.3: An example timetable (departures). In column ”train composition (by material id)”, a ”1” means it
requires a train composed of a train unit with materail id 1. In column ”departure time”, ”+1” means it is the time
on the second day.

train_id train composition (by material id) departure time
52000 1 5:23 +1
51000 1 5:44 +1
53000 1 5:47 +1
54000 2 6:03 +1

Table 2.4: An example solution for the example problem instance.The ”+1” means the time in the next morning
in column ”start time” and ”end time”.

train_id start time end time start track end track
2000 20:45 20:48 1 2
1000 20:51 20:54 1 3
4000 20:54 20:57 1 4
3000 21:12 21:15 1 4
1000 5:20 +1 5:23 +1 3 1
2000 5:41 +1 5:44 +1 2 1
3000 5:44 +1 5:47 +1 4 1
4000 6:00 +1 6:03 +1 4 1

2.1.2. Randomness in Solutions
We have a set of 79 problem instances, and all of them share the same settings and assumptions. The
example problem instance explained above is one of them, and the remaining 78 only differ in arrivals
and departures time. The arrivals and departures sequence remains the same according to material
type and train composition. The arrivals and departures of all instances are visualized in the scatter
plot 2.2.

Each dot in the figure represents a trigger for an event (arrival/departure), and the color indicates
the material type of the train unit. On the X-axis it records the time point for the trigger in minutes
(18:00 equals to time 0 ). On the Y-axis it displays the instance id, in other words, triggers belong
to one instance share the same value on the Y-axis. There is an obvious gap between time 500 -
650 indicating the last arrival happens before time 500 and the first departure after time 650. If we
choose one as an original instance, the remaining ones are the deviations with disturbances in time.
The instances remain comparable from a human perspective.

We run the local search algorithm for all instances under the same settings. It generates two
different parking assignments with a fraction of 27:52 given in the figure 2.3. The difference happens
when the third train arrives, either parking it in Track 3 or Track 4. This distinction leads to a significant
difference in the overall schedules. At the time of the third arrival, the track occupation and remaining
events in the timetable are relatively comparable in all instances. From a human aspect, one prefers to
make the same decision and keep the consistency among solutions. Therefore, we propose a scheme
of sequential scheduling for purpose of global consistency by achieving it locally.

2.2. Research Questions
In this section, we propose and discuss the research questions.

Can Decision Trees improve the robustness in solutions to the train unit shunting prob-
lem?

Instead of formulating the TUSP explicitly, we propose to utilize a training set of problem instances
and solutions, then translate the planning rules automatically. It is not practical to construct an expert
system for TUSP by interviewing human planners. A complete system requires a large number of rules
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Figure 2.2: Timetable visualization for instances in the example set. A yellow dot is a train with material_id 1
and a blue dot is with material_id 2.On the X-axis it records the time point for the trigger in minutes (18:00 equals
to time 0 ). On the Y-axis it displays the instance id.

in order to generate feasible solutions. As a result, the inference of all rules is expensive and time-
consuming. Thus, we use the machine learning technique to automate the rule induction phase. The
characteristics of this scheduling problem do not change over time, giving rise to periodicity, e.g., weekly
timetable. Therefore, analytics on historical information can be used to find patterns and construct a
machine learning model. More specifically, we would like to utilize the Decision Tree among all machine
learning models because we can interpret the decision rules from the Decision Tree explicitly.

The solution space for train shunting problem is enormous, and it is not likely to make predic-
tions efficiently using Decision Trees. Therefore, we propose to generate solutions sequentially by
predicting one action from the current state in each step. By sequential scheduling, it reduces the
prediction space and improves the prediction accuracy of the machine learning model. When a new
event occurs (e.g., an arrival), the machine learning model can predict an action using the precepts
learned from training data. This model needs little computation time after pre-training and can start
at any time point in planning. Consequently, it can also react fast to disturbances such as arrival delays.

Subquestion: 1. How to represent a problem state for train unit shunting problem?

Feature engineering is fundamental to the application of machine learning, both difficult and expen-
sive. A generalized data representation is an essential pre-process for feature engineering. The solution
provided by the local search approach is a sequence of the movements for all the trains. However,
we would like to decompose the solution to movements and each time predict one next movement for
current problem state. So, an appropriate representation is crucial to describe the problem state as the
input of the further process. It should describe the current location of the trains at tracks, the future
tasks to be performed for each train, etc. The problem state is a hidden knowledge and unstructured
which makes it a non-trivial task.

There are 2 main entities in the state, namely trains and tracks. An initial idea about the state
representation is to store all information in a fixed size matrix (table). However, it will result in a large
number of features and a sparse dataset. The high dimensional dataset is likely to cause overfitting
in the Decision Tree. Hence, we propose to design a track based feature set to record necessary
information based on each track. Then we can fix a general feature set given a shunting yard layout.

The tricky issue is the similarity measurement of the problem states. Because the problem state
representation consists of various data types, such as binary, continuous and categorical. We need a
classifier that can process different types of features or do pre-processing to normalize the features.
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Figure 2.3: The parking assignments for instances in the example set. A yellow block is a train with material_id
1 and a blue one with materail_id 2. The sequence of ”Arrival” and ”Departure” is the order of train by material
id. The sequence of ”parking” is the parking assignment indicating the track id in the order of arrivals. The red
”3” in ”parking: 2334” means the third arrived train is parked at Track 3.

We propose 2 ways of encoding the categorical features; one is to encode by integers, the other is to
transform by onehot encoding.

Subquestion: 2. How to model the labels of the features to predict actions for a prob-
lem state?

There are several features and one label for each sample in the training data. In this case, the
features are problem states and the label for one problem state is the next action to be taken by a
train. The amount of the label can be n r at the maximum when there are at most n trains and r
possible actions to choose from. This large amount of target classes makes it difficult to construct an
efficient and accurate machine learning model. We need to reduce the prediction space for machine
learning models by domain knowledge.

We would like to design an interpretable model which could explain the principle applied to classify
the problem states. So, an effective method is needed to compare problem states accurately and
reasonably. Inspired by the human’s planning process, some features make a more noticeable effect
than others in a planning and scheduling task. Consequently, we propose the hierarchical tree model
that is both interpretable and efficient.

The main structure of the tree model will be constructed based on the domain knowledge and the
feature engineering. There will be decision switches at each node, and most significant features will
be considered at nodes closer to the root node. In each leaf node, several similar states are sharing
one or more actions. During the planning, the most promising action with the highest frequency will
be selected for the state that ends to that leaf node.

Subquestion: 3. How can we combine the proposed approach with Local Search algo-
rithm to generate robust and feasible solutions?

The Local Search algorithm demonstrates the ability to generate feasible solutions for complex
problems in few minutes. Out proposed approach is expected to produce robust solutions is a short
computation time. One concern to our approach is that it may not be able to solve complex problems.
Therefore, we would like to find a method to combine these 2 approaches to utilize their advantages.





3
Literature Review

In this section, a detailed literature review related in this problem scope will be discussed including
Train Unit Shunting Problem (TUSP) and Decision Tree.

3.1. Train Unit Shunting Problem
The Train Unit Shunting Problem (TUSP) is first introduced by Freling et al.[2] and it consists of 5
subproblems, namely matching, parking, service scheduling, routing and crew planning. The matching
is an assignment of arriving train units to departure positions. A train consists of one or more train
units. Splitting or combining of trains may be needed depends on the departure requirements and
the matching assignment. For the service scheduling, the cleaning and other short-term maintenance
tasks are planned to perform at specific tracks. Routing is a planning of paths of all movements within
the service site. The crew planning is the scheduling of all mechanics who are capable of performing
specific service tasks. Besides service operation, train units are parking at empty tracks.

One method is to solve the problem by solving each component sequentially. In Freling et al. work
[2], they develop a 2-step solution approach for matching and parking subproblems. The matching
problem is modeled as a Mixed Integer Programming (MIP) problem and solved by CPLEX solver. A
column generation approach is employed to find a feasible parking plan. Then the parking plan is
adjusted through dynamic programming so that each train can fit in the assigned track and park on
time without being blocked by other trains. Lentink et al. employ a similar approach to Freling et
al. [2] but including the routing subproblem and decompose the problem in 4 steps [3]. After the
matching assignment in step 1, a graph representation of the shunting yard is generated to estimate
the routing cost from and to each track in step 2. These estimations are taken as the input to step 3,
the parking subproblem. At last, the actual routing costs are computed given the graph representation
and track occupation from previous steps. Later, Lentink extends the problem scope by including one
service task, the cleaning [4]. The first 3 subproblems are solved by the same approach in the previous
work [3]. Then the cleaning subproblem is modeled as a crew scheduling problem and solved by using
CPLEX solver. Van Dommelen develops an approach for matching, parking, routing and service tasks in
a decomposed manner [5]. The matching problem is solved firstly. Then the service tasks scheduling
is modeled as a flow shop problem and solved by CPLEX solver. Given the parking intervals from the
previous step, OPG, a tool developed in NS, computes both the parking locations and the routes. It
reduces the computation time for generating acceptable solutions through decomposition, but it also
causes the loss of global optimality.

The other method is to invest in integrated approaches that could solve all subproblems simulta-
neously. The problem complexity increases distinctly in the integrated method. Kroon et al. have
investigated an integrated method for the combined matching and parking subproblems [6]. They
group the massive amount of crossing constraints in clique constraints in the mathematical formula-
tion. It is practical for a solver to find feasible solutions within a reasonable time with the reduction in
constraints. However, the computation time increases significantly in larger problems. Van den Akker
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et al. also construct solutions for the integrated matching and parking subproblems [7]. An exact
dynamic programming algorithm takes the solutions from a greedy heuristic, and conduct pruning in
the dynamic programming network to reduce the computation time. Jekker proposed 2 genetic algo-
rithms (GA) for the combined matching and parking subproblems [8]. Jacobsen and Pisinger construct
solutions for the parking and service scheduling through 3 heuristics, Guided Local Search, Guided
Fast Local Search and Simulated Annealing [9]. It takes a longer computation time for integrated ap-
proaches, from 10 minutes up to hours, due to the increased problem complexity.

The best approach so far in NS is an integrated Local Search approach presented by Van den Broek
which solves the 4 subproblems for instances with 23 trains composed of 27 train units in 4 minutes
[1]. It is a simulated annealing algorithm that starts with an initial plan. Then, it explores through
the search space by evaluating each subproblem and simultaneously constructs the shunting plan. A
shortcoming of this approach is the lack of robustness. More specifically, small delays can cause radical
changes in the original plan.

3.2. Decision Tree
A Decision Tree classifier is a method applied to construct complex decision-making. It is expressed as
a rooted tree that can recursively partition among the instance space which is the set of all possible
examples. The root node, without any incoming node, is the start point of the partitioning. All other
nodes with only one incoming node are child nodes. Those with no child node are called leaves. A
Decision Tree classifier is a model that It represents the general relationship between the input at-
tributes and target attributes [10]. Each internal node is associated with one or more input attributes
that is employed to split the instance space into two or more subspaces. Each leaf node is assigned
to a class with a most appropriate target value. When classifying the instances with a decision tree, it
will navigate the instances from the root node down to a leaf by checking their input attributes in each
internal node along the path. The model will output the class assigned to the leaf where the instance
is classified.

Typically, the goal is to construct an optimal decision tree with minimum generalization error, which
is the misclassification rate over the distribution of the target attributes. Induction of an optimal model
from a given training set is NP-hard, and it is only possible in small problems [10]. We can estimate
the topology of the tree and the decision rule at each node empirically by using real-world data with
the labeled targets, i.e., supervised learning.

An entity, the inducer, performs the induction of the tree structure and the decision rule. Most often
the tree induction follows a top-down manner, like in ID3 [11], C4.5 [12], and CART [13]. Generally,
the tree is constructed through a growing phase followed by a pruning phase. During tree construction
in a top-down manner, a discrete function of the input attributes is utilized to partition the instance
space recursively. In each iteration, a most appropriate function is selected according to some split
measures. After the selection, each node subdivides the instance space into subspaces considering the
outcome of the discrete function, until no split gains sufficient split measures or one stopping criterion
is fulfilled. In most cases, there is only a single input attribute as the splitting criterion in the discrete
function. Chandra and Verghese [14] mention two commonly used standard splitting measures, Gini
index [13] and Gain ratio [12].

The scheduling problem can be modeled as a Rule-Based process by incorporating the scheduling
knowledge into IF-THEN rule and form an expert system. This approach also called inductive learning,
which can be defined as the process of inferring the description of the class from the description
of the individuals belongs to that class [15]. Shaw et al. apply a sequence of the IF-THEN rule to
define a class in dispatching rule selection in the manufacturing system to achieve a better overall
performance. They first classify the distinct manufacturing patterns, then generate a decision tree
with decision nodes related to the system current processing state [15]. The model can dynamically
choose the appropriate dispatching rule given a set of system attributes. Then Shiue et al. develop
a hybrid model which employs an artificial neural network to identify the significant system attributes
and use the decision tree to learn the whole set of the training sets with essential attributes to improve
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the knowledge representation [16]. The results demonstrate that the systems attributes identification
process delivers better generalization ability.





4
Feature Engineering

We present the process of defining the feature set by comparing the two different feature sets regarding
the performance in a toy test in section 4.1. Also, we explain the difference of the integer encoding
and the onehot encoding at section 4.2.

4.1. Feature Set
We aim to design a feature set that captures necessary information of current state to make predictions
of actions. An appropriate feature set will represent similar states in similar values so that it leads to
the same robust solutions. There are 2 main entities to consider in a state, namely trains and tracks.
We present 2 feature sets based on trains and tracks respectively. Then we compare their performance
on a toy test set.

4.1.1. Train Based Features
Track Occupation & Future Events

• arriving_trainunits: numerical. The amount of future arrivals.

• empty_tracks: numerical. the amount of empty tracks.

• parking_trainunits: numerical. the amount of parking train units.

There are 𝑛 trains in each problem instances and each train has following 8 features to describe its
location, its train material type, and future arriving and departure details.

• train_1_arrival: continuous. When the train will arrive? (0–arrived; 151 > 0 : arriving in 151
min)

• train_1_departure: continuous. When is the earliest possible time for this train to depart? (it
can depart as long as the material_id matches the requirement.)

• train_1_material_id: categorical.

• train_1_position: categorical. The position of the train unit in this train.(A train may consists
of 1-2 train units.)

• train_1_track_id: categorical. The track id of the train located.(1–gate track, 2/3/4–parking
track)

• train_1_train_id: categorical

• train_1_train_position: categorical. The location of the train in that track. (2 trains may be
parked in one track.)
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• train_1_trainunit_id: categorical.

Trigger Information

• trigger_type: categorical; 1—departure, 2 —arrival.

• trigger_material: categorical, the value is material_id.

• trigger_train: categorical, the value is train_id.

• state_id: numerical, the value is the current state index.

4.1.2. Track Based Features
This feature set consists of track occupation, future events, and trigger information. The track oc-
cupation part contains information about whether a track is occupied and by what material type of
train. The following list gives an overview of the feature set we designed for the shunting yard used in
experiments. There are 𝑟 = 3 parking tracks, and each of them can park 1 to 2 train units. Suppose
there are 𝑛 arrivals and 𝑛 departures in each problem instances.

Track Occupation

• track_2_position_0: categorical. The value is train material_id.

• ...

• track_4_position_1

• arriving_trainunits: numerical. The amount of future arrivals.

• empty_tracks: numerical. The amount of empty tracks.

• parking_trainunits: numerical. The amount of parking train units.

Future Events

• next_arrival_1: categorical. The value is train material_id.

• ...

• next_arrival_n

• next_departure_1: categorical. The value is train material_id.

• ...

• next_departure_n

Trigger Information

• trigger_type: categorical; 1—departure, 2 —arrival.

• trigger_material: categorical. The value is material_id.

• state_id: numerical. The value is the current state index.

4.1.3. Comparison of Feature Sets
We test the algorithms with 2 different feature sets on a toy problem and compare the performance
according to the number of instances solved. There 200 instances in this test set, and there are 4 trains
in each instance. The shunting yard contains 3 dead-end parking tracks and one gate track. From the
results in Table 4.1, the algorithm with tracked based features solves much more instances than that
with train based features. It shows the track based features is more beneficial to this scheduling
problem. Hence we decide to use the track based feature set as the feature set for this scheduling
problem.
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algorithm DTS with train based features DTS with train based features
solved instances 133 200

Table 4.1: Comparison the performance of different feature sets in terms of the number of instances solved in
the toy test.

4.2. Onehot Encoding for Categorical Features
There are several categorical features in the proposed feature set such as “next_arrival_1”. They are
encoded as integers in our dataset. Typically, a machine learning model assumes that there exists a
natural ordering in the numerical values, such as “3” is larger than “1”. It may lead to misclassification
with this assumption when there is no such relation in the features. Therefore, we propose to transform
the categorical features by onehot encoding. Here is an example explaining the difference between
categorical features and onehot encoded features.

Suppose there is 4 possible values for the feature “next_arrival_1”, and they have been encoded
as (1, 2, 3, 4) as in Table 4.2. By onehot encoding, there will be 4 new features, and the values are
binary as in Table 4.3. If the value in the feature “next_arrival_1” equals to “1”, then in the new
columns, the value of “next_arrival_1 == 1” is 1. There is only one column has value equals 1 in the
onehot encoded features. In this way, we avoid the assumption of natural ordering in integer encoded
categorical features. It may lead to more accurate prediction and result in better overall performance.

Table 4.2: Categorical feature in integers. The value to “next_arrival_1” is the material type id of that arrival
train.

index next_arrival_1
1 1
2 2
3 3
4 4

Table 4.3: Onehot encoded features for “next_arrival_1”.

index next_arrival_1 == 1 next_arrival_1 = 2 next_arrival_1 == 3 next_arrival_1 == 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1





5
Additional Experiments

In this chapter, we explain the detailed results and observations in 2 scenarios. We validate our pro-
posed algorithm in a toy scenario, scenario 1 in section 5.1. In section 5.2 we analyze the construction
of Decision Trees for Scenario 2 (the same scenario in the scientific paper). For each scenario, we
design 2 subsets of 200 instances of medium and difficult according to the difficulty level of solving
the problems. For a problem instance of medium level, the number of trains is slightly larger than the
number of tracks. In a few tracks, there are 2 or more trains parking that results in certain flexibility in
solutions. In difficult problem instances, there are more trains and the usage of track length is rather
high. For each instance, there are only a few solutions with limited flexibility.

5.1. Scenario 1
In this scenario, we design a shunting yard with three First In Last Out tracks and one gate track. There
are two types of train material involved, namely ICM-3 and ICM-4, of which details are in table 5.1.
There are two subsets of the problem instances, one with 4 train units and the other with 5. For this
layout, there are five parking positions, one at track 1 and two at track 3 and 4 respectively. For the
future events, we provide the next k = 5 arrivals and departures individually. The target set is the set
of all parking tracks (2,3,4). We generate 800 problem instances for each problem size as training data.

For instances with 4 train units, the train units set composes of 3 trains with material ICM-3 and
one with material ICM-4. There are 16 possible combinations of the arriving and departure sequence
by ignoring the exact time. The usage of total parking track length is 71.7%. We consider it as a
medium instance according to the difficulty level. For instances with 5 train units, there are 3 trains
with material ICM-3 and two with material ICM-4. It can make 100 different combinations of the arrival
and departure sequence. All trains occupy 91.9% of the parking track length in total. Problems are
relatively tricky in this set with 5 train units.

Criteria:
We compare the performance regarding the number of instances solved (𝑁𝐹), the number of unique
solutions (𝑁𝑈), and the ratio of unique solutions to feasible solutions (𝑅𝑈𝐹). The algorithm is consid-
ered the best if it solves more problem instances with fewer unique solutions.

Baseline Algorithms:
We conduct experiments among the proposed DTS, DTS_1 (onehot encoded features), a heuristic
(designed based on the algorithm in [17]) and the Local Search algorithm [1]. The heuristic algorithm
is expected to be rather robust that solves problems with fewer unique solutions. The Local Search will
solve most problems but with more unique solutions.

5.1.1. Results
In this scenario with 4 trainunits, DTS and DTS 1 solve the same amount of problem instances with
the same amount of unique solutions from table 5.2. They solve all the problem instances as LS but
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Table 5.1: Train unit information in Scenario 1. The arriving ratio shows the appearance probability of a train
with that material type in one instance.

material type train length (m) arrival ratio
ICM-3 81 0.64
ICM-4 107 0.36

Table 5.2: Performance comparison in Scenario 1. The ratio is between the number of unique solutions and the
number of feasible solutions.

Alg DTS DTS_1 Heuristic LS

size_4
solved 200 200 163 200
unique 6 6 4 30
ratio (%) 3 3 2.4 15

size_5
solved 157 162 36 162
unique 15 14 4 30
ratio (%) 9.6 8.6 11.1 18.5

outperform LS with fewer unique solutions. The heuristic produces the fewest unique solutions and
solves the fewest problem instances.

When the problem size increases to 5 train units, DTS 1 solves the same amount of problem in-
stances as LS but with a half amount of unique solutions. DTS underperforms slightly than DTS 1 with
5 fewer solved instances and 1 more unique solutions. The heuristic again solves the smallest amount
of problem instances with the fewest unique solutions.

5.2. Scenario 2
In this scenario, we test our approach in a shunting yard with 9 First In Last Out tracks with trains
distributed in 6 different material types. There are 2 subsets of instances, each of them contains
10 and 12 trains respectively. We generate the 2000 problem instances for each subset as training
data. We also set 200 instances for validation among different Decision Tree settings because of the
following reasons. First, the problem size and complexity increasing leads to the extension of the
training set volume, the feature set, and the target class set. It may result in DT overfitting and
construct a complex tree with less generalization ability. Second, when the tree size goes enormous,
it loses the interpretability since it is too complicated to read the rules. For these reasons, we set a
stopping criterion, the max tree depth, to constrain the tree structure. In the remaining section, we
study the impact of different DT models in the performance of solving problems in the validation set.
We experiment the impact of max tree depth on the algorithm’s performance regarding the number
of instances solved (𝑁𝐹), the number of unique solutions (𝑁𝑈), and the ratio of unique solutions to
feasible solutions (𝑅𝑈𝐹).

5.2.1. Scenario 2 with 10 trainunits
DTS performance

In Figure 5.1 at left, in each row with a fixed arrival DT max depth 𝑑 , the blue bars fluctuate
slightly in the range of 51% to 59%. The number of instances solved (𝑁𝐹) reaches the peak when
the departure DT max depth 𝑑 = 8 or 9 (the highest blue bar). The number of unique solutions (𝑁𝑈)
does not diversify obviously, so the lowest 𝑅𝑈𝐹 locates at 𝑑 =8 or 9. For a fixed 𝑑 (e.g., 𝑑 = 8), 𝑁𝐹
fluctuates for different 𝑑 in a range of 55% to 57%, but 𝑁𝑈 arises dramatically as 𝑑 increases(see
the green bar rises in a column). The ratio of unique solutions to feasible solutions 𝑅𝑈𝐹 shows a huge
jump from the top row to the bottom. To sum up, we select (𝑑 = 5, 𝑑 = 8) to train the DT models
in DTS for the instances subset with 10 train units. The model with that setting solves 113 instances
with 3 unique solutions in the validation set of 200 instances.
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(a) categorical features (b) onehot encoded features

Figure 5.1: Comparing the performance of DTS with different DT settings in Scenario 2 with 10 train units. For
trees with a larger max depth, the model can solve more problems as the blue bar raises from top to down also
left to right. However, the number of unique solutions also increases with trees with a larger max depth as the
green bar grows. It indicates the decreasing of consistency in solutions.

DTS_1 performance
In Figure 5.1 at right, in each row with a fixed arrival DT max depth 𝑑 , the blue bars fluctuate

slightly in the range of 51% to 58%. The number of instances solved 𝑁𝐹 reaches the peak when the
departure DT max depth 𝑑 = 8 or 9 (the highest blue bar). 𝑁𝑈 does not differ obviously, so the lowest
RUF locates at 𝑑 =8 or 9. For a fixed 𝑑 (e.g., 𝑑 = 8), 𝑁𝐹 fluctuates for different 𝑑 in a range of
53% to 57%, but 𝑁𝑈 arises dramatically as 𝑑 increases(see the green bar rises in a column). The
ratio of unique solutions to feasible solutions 𝑅𝑈𝐹 shows a huge jump from the top row to the bottom.
To sum up, we select (𝑑 = 5, 𝑑 = 8) to train the DT models in DTS_1 for the instances subset with 10
train units. The model with that setting solves 113 instances with 4 unique solutions in the validation
set of 200 instances.

5.2.2. Scenario 2 with 12 trainunits
DTS performance

In Figure 5.4 at left, in each row with a fixed arrival DT max depth 𝑑 , the blue bars fluctuate
slightly and the difference is in between 3% to 10%. The number of instances solved (𝑁𝐹) reaches
the peak when the departure DT max depth 𝑑 = 8 or 9 (the highest blue bar). The number of unique
solutions (𝑁𝑈) does not vary obviously, so the lowest 𝑅𝑈𝐹 locates at 𝑑 =8 or 9. For a fixed 𝑑 (e.g.,
𝑑 = 8), 𝑁𝐹 fluctuates for different 𝑑 in a range of 35% to 44%, but 𝑁𝑈 arises significantly as 𝑑
increases(see the green bar rises in a column). The ratio of unique solutions to feasible solutions 𝑅𝑈𝐹
shows a sharp increase from the top row to the bottom. To sum up, we select (𝑑 = 5, 𝑑 = 8) to train
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Figure 5.2: Comparison of Decision Trees for arrival events (left) and departure events (right) with different
settings in Scenario 2 with 10 train units. The total number of nodes is in blue, and the prediction accuracy is in
red.

Figure 5.3: Comparison of Decision Trees for arrival events (left) and departure events (right) with different
settings in Scenario 2 with 10 train units (onehot encoded features). The total number of nodes is in blue, and
the prediction accuracy is in red.

the DT models in DTS for the instances subset with 12 train units. The model with that setting solves
70 instances with 15 unique solutions in the validation set of 200 instances.

DTS_1 performance
In Figure 5.4 at right, in each row with a fixed arrival DT max depth 𝑑 , the blue bars fluctuate

slightly and the difference is in between 5% and 8%. The number of instances solved 𝑁𝐹 reaches
the peak when the departure DT max depth 𝑑 = 8 or 9 (the highest blue bar). 𝑁𝑈 does not vary
obviously, so the lowest RUF locates at 𝑑 =8 or 9. For a fixed 𝑑 (e.g., 𝑑 = 8), 𝑁𝐹 fluctuates for
different 𝑑 in a range of 35% to 42%, but 𝑁𝑈 arises dramatically as 𝑑 increases(see the green bar
rises in a column). The ratio of unique solutions to feasible solutions 𝑅𝑈𝐹 shows a huge jump from the
top row to the bottom. To sum up, we again select (𝑑 = 5, 𝑑 = 8) to train the DT models in DTS_1
for the instances subset with 12 train units. The model with that setting solves 78 instances with 19
unique solutions in the validation set of 200 instances.

5.2.3. Summary
We conduct experiments in 2 subsets of problem instances to investigate the impact of different tree
depths on the overall performance. Generally, a larger arrival DT model leads to more unique solutions
and a smaller departure DT model results in solving more problems. Although the prediction accuracy
of a smaller DT model in lower than that of a larger one. At last, we deliver a combination of (𝑑 =
5, 𝑑 = 8) to all subsets and both DTS and DTS_1 for the best performance of solving more problems
with fewer unique solutions.
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(a) origin features (b) onehot encoded features

Figure 5.4: Comparing the performance of DTS with different DT settings in Scenario 2 with 12 train units. For
trees with a larger max depth, the model can solve more problems as the blue bar raises. However, the number
of unique solutions also increases with trees with a larger max depth as the green bar grows. It indicates the
decreasing of consistency in solutions.

Figure 5.5: Comparison of Decision Trees for arrival events (left) and departure events (right) with different
settings in Scenario 2 with 12 train units. The total number of nodes is in blue, and the prediction accuracy is in
red.
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Figure 5.6: Comparison of Decision Trees for arrival events (left) and departure events (right) with different
settings in Scenario 2 with 12 trainunits(onehot encoded features). The total number of nodes is in blue and the
prediction accuracy is in red.



6
Conclusions and Discussions

6.1. Conclusions
Many researches have succeeded in finding feasible solutions to TUSP. However, few of them focus on
the robustness of solutions. In reality, it is preferred to obtain robust solutions to deal with uncertainty
such as arrival delays. To this end, we developed a sequential approach to solve TUSP using machine
learning techniques, more specifically, the Decision Tree Classifier. We conduct extensive experiments
to compare the performance of the proposed approach, a heuristic algorithm, and the Local Search
algorithm. Our proposed approach outperforms those benchmark algorithms according to the robust-
ness although it solves fewer problems than others in the scenario with more trains. DTS and DTS_1
demonstrate similar performance in both test sets indicating that the feature encoding method has no
apparent effect on the final results in this problem.

Although we only conducted experiments on one shunting yard, this framework can be transformed
and applied to other similar shunting yards with some adjustments. As long as we have historical data
about problem instances and solutions, we can construct appropriate Decision Trees to make predictions
and build solutions. This sequential framework can also be generalized to other scheduling problems
that require robustness in solutions, such as metro or tram scheduling. The critical issue is to design
an appropriate feature set.

6.2. Research Questions
We discuss and answer the research questions through experiment results in this section.

Can Decision Trees improve the robustness in solutions of the train unit shunting prob-
lem?

We have demonstrated our approach by transforming historical solutions into data sets for learning
decision trees, which subsequently are used to predict the actions of arrivals and departures for new
train shunting problems. We ran an extensive set of experiments with different problem sizes. Although
solving train shunting problem is a hard problem, our proposed methods obtained feasible solutions
for 50% problems with very few unique solutions, significantly outperforming other approaches from
the literature concerning robustness.

Subquestion: 1. How to represent a problem state for train unit shunting problem?

Those features to the machine learning model are intended to capture necessary information for
predicting valid actions and making schedules. We designed a track based feature set containing in-
formation about track occupation, future events, and trigger information. There are different types
of features, e.g., binary and categorical. We implement 2 versions of the feature set; one encodes
the categorical features as integers, the other transforms categorical data by onehot encoding. From
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the overall performance, there is no apparent difference caused by different encoding methods. One
advantage of using onehot encoding is that it brings more interpretability by avoiding the assumption
of natural ordering in integer encoded categorical features.

Subquestion: 2. How to model the labels of the features to predict actions for a prob-
lem state?

We designed a hierarchical structure to reduce the prediction space. Firstly, we use separate DT
models to predict actions for arrivals and departures. Secondly, for an action, we predict only one track
id by fixing the target train. In this way, we determined the target class as the parking track set in the
shunting yard.

Subquestion: 3. How can we combine the Local Search algorithm with proposed ap-
proach to generate feasible and robust solutions to TUSP?

The proposed approach is promising in generating robust solutions in a few seconds but fails to
produce feasible solutions to complex problems with more trains. The Local Search is capable of
solving complex problems. Therefore, we propose an idea of using 2 approaches in combination to
achieve better results. For an instance, we first run the proposed algorithm to find a robust solution. If
no solution found, we use the Local Search algorithm instead. From the experiment results, we notice
this combination demonstrates the strong ability to solve problems with robust solutions.

6.3. Limitation and Future Work
Solving More Problem Instances:

The proposed DTS and DTS_1 solve relatively fewer instances than other methods. We list the
possible reasons and discuss potential solutions. One reason is that there exists randomness in the
solutions from LS. The labels attached to the samples are not guaranteed to be the ground truth in the
training data. However, DT infers the decision rules considering those labels which makes it difficult to
induce an accurate DT model. Our suggestion is to collect less random solutions as training data to the
DT model. For example, assemble the solutions generated by DTS to reduce the noise in the training
set.

The second reason is the errors accumulation during the sequential scheduling. The algorithm fails
when it can not find a valid action at a state, but it may result from an inappropriate action earlier.
This influence can be reduced by allowing some recovery mechanisms. Currently, the algorithm has
several chances to choose another action if it fails at the first attempt at that state. One option is
to extend the recovery chances to one or two states back. If it can not find any valid action in the
current state, then we allow it to take a different action in the previous state. The other option is to
allow the temporary relocation in the shunting yard. Mostly the algorithm fails when parking the last
arriving train or departing blocked by trains parking in front. If it can temporarily relocate trains when
necessary, then we could find feasible solutions for more problem instances.

The third reason could be that we make a tradeoff between solving more instances and generate
fewer unique solutions during DT models construction. A small DT model loses some details to plan
less common cases, but it leads to robust solutions. One way is to combine the proposed approach
with the Local Search algorithm to utilize their advantages. From the experiments, we verified this
combination could solve more problems with robust solutions.

Extend the Problem Scope:

The current structure does not take the service scheduling into account. So we could not yet
apply it directly in practice. One possible application can be generating initial solutions to the Local
Search algorithm. Our proposed approach can generate robust solutions for TUSP without the service
scheduling. We expect a robust initial solution can lead to a robust final solution.
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