
DEPARTMENT OF SOFTWARE ENGINEERING (EEMCS)

DELFT UNIVERSITY OF TECHNOLOGY

BuddyFuse

Bachelor project (IN3405)

Yousef El-Dardiry (1332686)

1/26/2009

2 BuddyFuse project overview

Summary

BuddyFuse is a software product that seamlessly integrates the Dutch social network

Hyves into the popular instant messaging client Windows Live Messenger. It aims to

enable its users to interact with all of his friends from an application he is already

familiar with. The product has been developed as a bachelor graduation project at the

Delft University of Technology.

The project started off by conducting a research study. During this study, three

questions have been answered to establish a solid base for the rest of the project. In this

study an agile software development methodology has been chosen for use in the project.

The main technological challenge of the project has been to extend a proprietary

software application with additional functionality. The concept of function interception

has been investigated extensively in the research study and serves as a basis to

overcome this challenge. Furthermore, so-called Application Programming Interfaces

(APIs) have been explored to see what methods of integration Windows Live Messenger

and Hyves natively expose to third party developers.

After the requirements of the project had been agreed upon, time was spent on the

high-level design of the application. This has led to a well thought through and

documented architectural design, on which the development iterations have been

designed and implemented.

This document serves as an introductory overview of the entire project. After a brief

introduction into the ideas behind the application, the project plan and description are

being discussed. Afterwards, all different phases and continuous processes such as

quality assurance of the project are described. Several references are made to the

original documents describing each phase, which have been included as appendices. At

the end, I conclude with a personal reflection on the project and my perspectives for this

product in the future.

The result of this project is that at the moment of writing all essential features have

been implemented and tested. For a quick impression one is encouraged to take a look at

the image walkthrough (APPENDIX F). The application is currently in a private beta test

and scheduled to be released in the first quarter of this year.

3 BuddyFuse project overview

Preface

This document gives an overview of my bachelor graduation project at the Delft

University of Technology. The project is about an idea for a software product I have had

in mind since the beginning of 2008. I always have had a number of ideas for new

products, which is the main reason I have always been attracted to computer science; it

enables one to quickly turn ideas into actual products relative to other fields of science.

The idea that I worked on during this project, is to integrate the Dutch social

network Hyves into Windows Live Messenger. Social media has always been one of my

primary fields of interest, and this idea obviously fits well into that category. I also have

a lot of experience developing on the Windows Live platform, for which I have been

awarded the Microsoft Most Valuable Professional award in 2007 and 2008. I also

worked at the Windows Live Platform Incubation team for three months as a summer

intern at the Microsoft Corporation headquarters in Redmond, USA. I would like to

thank the people at Microsoft for playing a major role in my education as a software

engineer and the opportunities, inspiration and experiences they have given to me.

During the course of this project I have had assistance from a number of people I

would like to thank. I developed the project together with Jeroen Bransen with whom I

discussed about every aspect of it; the project would not be where it is now without his

assistance. Michel van den Berg has been of great assistance during the initial software

design phase of the project. I would like to thank the study advisors and my mentor

Bernard Sodoyer from the Delft University of Technology for the great flexibility they

have shown allowing me to use this project in my curriculum. I would also like to thank

the latter for guiding me throughout the project and regularly reviewing every aspect of

it. Last but not least, my parents and brothers have been of great assistance not only by

reviewing the documentation, but also by guiding me through the months spent on the

project personally.

Although I have successfully taken part in a number of different software

development competitions with my concepts over the last five years, most of the ideas

have never been completely finished. By working on this project as a university project I

hope to have structured it in a way it can fully live up to its potential.

Yousef El-Dardiry

Delft, the Netherlands

December 15th, 2008

4 BuddyFuse project overview

Table of Contents

Summary .. 2

Preface .. 3

1 Introduction ... 5

1.1 Project description .. 5

1.1.1 Hyves .. 6

1.1.2 Windows Live Messenger .. 6

1.2 Project plan ... 6

2 Project execution ... 7

2.1 Research ... 7

2.1.1 Software development methodology ... 7

2.1.2 Integrating with existing applications ... 8

2.1.3 Interaction with applications .. 8

2.2 Requirements analysis ... 9

2.2.1 Must haves ... 9

2.2.2 Should haves .. 9

2.2.3 Could haves .. 9

2.2.4 Would haves ... 9

2.3 Design and implementation ... 10

2.3.1 Initial design .. 10

2.3.2 Development iterations ... 11

2.3.3 Development techniques and tools ... 11

2.3.4 Third party libraries used ... 12

2.4 Quality assurance and testing ... 13

2.4.1 Unit testing .. 13

2.4.2 Integration testing ... 13

2.4.3 Alpha testing ... 13

3 Conclusions ... 14

3.1 Final application .. 14

3.2 Road ahead ... 14

3.3 Reflection .. 15

Bibliography ... 16

Appendix A: Project description ..

Appendix B: Project plan ...

Appendix C: Research study ..

Appendix D: Requirements analysis ...

Appendix E: Design and implementation ...

Appendix F: Image walkthrough ...

5 BuddyFuse project overview

1 Introduction
Nowadays, an increasing number of computer applications are trying to enhance the

way people interact with each other. Social networks have significantly changed the way

their users interact with their friends. At the core of all these social applications (social

media related software) lies the social graph; a graph representing individuals and their

relations with each other. It can be seen as the data social applications are built upon.

Brad Fitzpatrick was one of the first to use the term social graph in (Fitzpatrick &

Recordon, 2007), where he explains his thoughts on various problems social applications

are facing.

Perhaps in an ideal world, there would be a single comprehensive representation of

the social graph easily accessible by any application. The social applications built on top

of it would be interacting with the same graph and therefore indirectly interacting with

each other. However, the reality is nowadays there are hundreds of different

(incomplete) social graphs, built on different technologies and often difficultly accessible

by third party applications.

A number of initiatives have been started to tackle this problem. Over the last few

years, we have seen many large social networks exposing data about their users via

Application Programming Interfaces (APIs) to third parties. In other words, the walls

around the different social graph silos are slowly being torn down.

A lot of mashups (a web application hybrid combining data from different sources)

have been created adding functionality on top of the exposed data. However, the APIs

available are still very diverse across different services, making it a cumbersome task to

truly interconnect different social networks.

Besides the technical difficulties, often there is not enough business value for

companies in integrating their own social graph with another company’s. Even when

standard data formats would have been agreed upon and costs to implement

interconnections between the different social applications would be irrelevant, it is

doubtful a single comprehensive social graph will ever be created. After all, a company

creates value by differentiating its products from its competitors’.

Although this makes sense from their perspective, it results in an end user having to

enter the same information in different social applications again and again. Next to the

duplicate task of entering information, he also is required to access different applications

to interact with different parts of his social graph, in a way specific to that particular

application.

The goal of this project is to integrate different social applications. However, as

opposed to creating another social application aggregating data from different services,

the goal is to pro-actively integrate one social application into another. Using the APIs

exposed by different services where possible, we want to bring the functionality exposed

by different social networks to different parts of the user’s computer experience.

1.1 Project description

Because the above problem statement and goal definition remains somewhat vague,

it is important to narrow the scope of the project. The first version will consist of an

integration of the Dutch social network Hyves into Windows Live Messenger. Because of

the large overlapping user base (most users on Hyves also use Windows Live Messenger)

6 BuddyFuse project overview

this seems to be a good starting point. Before continuing discussing different aspects of

this project, let us briefly introduce both services.

1.1.1 Hyves

 Since its release in 2004 the social network Hyves of Dutch origin has quickly grown

to the most popular social network in its home country (more than six million users)

(NU.nl/Wieland van Dijk, 2007). Creating connections and staying in contact with

friends is the main focus of the website. The latest developments include support for

instant messaging and the availability of APIs third parties can leverage.

1.1.2 Windows Live Messenger

Windows Live Messenger is an instant messaging application developed by Microsoft.

Formerly known as MSN Messenger, it is currently the most popular instant messaging

client in the Netherlands, and one of the most popular worldwide. Over the years, many

features have been added to the application, including a different number of APIs.

Social networks and instant messaging applications are closely related to each other.

After all, they are all built upon information from a user’s social graph. This project will

focus on integrating features from Hyves into Windows Live Messenger in the form of an

extension program built on top of Messenger. The main requirement of this integration

is that it must be realized in a seamless way. In other words; the end-user should barely

notice he is using an additional add-on on top of the Messenger client he is already

familiar with. The original Dutch project description has been included as APPENDIX A.

1.2 Project plan

The PROJECT PLAN (APPENDIX B) introduces the basic ideas by which the project will

be executed. The project consists of a number of different phases. In the research phase,

a number of research questions will be answered to ensure there is enough knowledge on

these areas to continue with the other phases. Before it is possible to start with the

design and implementation of the project, it is important to have all requirements

documented. This is the goal of the requirements phase.

Based on the software development method chosen in the research phase, the design

and implementation phase will embark. In this phase the application will be designed,

built and tested.

Figure 1-1: overview of the project phases

•Software design
methodology

•Function interception

•Integration with
services

Research
study

•Features

•User Stories

•MoSCoW

•Non-functional
requirements

Requirements
analysis •Feature dependencies

•Architectural design

•Core module design

Initial design

•Design and
development of user
story.

•Testing

Development
iterations

Feedback

7 BuddyFuse project overview

Figure 1-1 shows an overview of the different project phases. The last phase (design

and implementation) has been split up between initial design and the actual

development iterations. The feedback arrow indicates how new experiences during later

phases have been incorporated into previous documents.

The project plan also specifies the tools to be used and guidelines to be followed, the

final project deliverables and introduces the people involved in the project (the project

team consists of two developers). Also, the project plan contains a planning continuously

updated throughout the project.

2 Project execution
This chapter will covers the execution of the project. It discusses the different phases

of the project and summarizes the results of every phase.

2.1 Research

About the first three weeks of the project were spent on conducting a research study.

In this study, three questions have been answered to establish a solid base for the rest of

the project:

 Which software development methodology is most applicable for use in this

project?

 How can one add functionalities to existing compiled programs beyond the

possibilities of exposed extensibility-APIs and without access to its source

code?

 What are the technologies behind Messenger and Hyves, and what kind of

APIs do these services expose?

Below the answers to these questions as found in the RESEARCH STUDY (APPENDIX C)

are summarized.

2.1.1 Software development methodology

The goal of this research study was to choose a suitable software development

methodology for the project. The traditional waterfall model and two models in the agile

programming family have been taken into consideration, namely extreme programming

and feature driven development.

The pros and cons of every methodology have been taken into account and compared

to each other. The conclusions of this comparison have been projected onto the nature of

the project, and based on this a suitable methodology was chosen.

The waterfall model did not seem to be suitable for use because of the possibly

changing requirements. Next to that, it would have been hard to plan for technically

difficult areas in the design that might require prototyping up front.

Eventually, the extreme programming methodology was chosen with a couple of

adjustments. The user stories should be divided into different domains, similar as how

features are categorized in feature driven development. Before starting on a task

8 BuddyFuse project overview

belonging to a particular domain, that domain should be properly designed and an

underlying framework required by all the tasks belonging to the domain should be built

first. The global design of the different domains should be well documented. Just like in

feature driven development, a task should be completely tested before moving on to the

next task.

2.1.2 Integrating with existing applications

Without the source code of an existing application / program, it is a cumbersome task

to add new functionality to it (beyond the possibilities exposed by APIs). For this project

Windows Live Messenger has to be extended with new buttons, contacts and other

functionality. The goal of the second part of the research study was to explain the

concept of function interception by which this can be accomplished.

In the study, three different methods to implement function interception are being

explained and compared (proxy libraries, import address table modification and in-

memory function modification). Since two of these methods require the intercepting

function to modify the memory of the target application, first the concept of DLL

injection is being introduced. By using DLL injection, the intercepting function can be

executed in the target process and therefore modify the memory of this target process.

After explaining the ideas and techniques behind function interception, a simple

application of the method is given as an example. We explain how function interception

can be used to monitor and modify the network traffic of an application by intercepting

Winsock and WinInet functions.

2.1.3 Interaction with applications

Since the application being built has to interact with two other programs / services, it

is important to give an introduction to these programs and the way third party programs

can interact with them. In the last part of the research study, we take a closer look at

both Windows Live Messenger and Hyves, the technologies they are built upon, and the

Application Programming Interfaces (APIs) they expose for third party applications.

2.1.3.1 Windows Live Messenger

Although Windows Live Messenger is proprietary software and its source code is not

publicly available, there are a number of possibilities to integrate either with the

software directly via APIs, or via the technologies it is built upon. The APIs exposed by

Windows Live Messenger do not appear to expose the advanced level of functionality

required for this project. Mainly, the APIs allow a third party to extend existing

scenarios of the application (such as adding a game or a chat robot). Next to the

Windows Live Messenger APIs themselves, the Windows Live Platform exposes a

number of different APIs to talk to the data source (social graph) Messenger has been

built upon.

The protocol used by Windows Live Messenger to communicate with the Microsoft

chat servers is TCP based and known as MSNP. Specifics about the protocol have been

investigated by hobbyists and made available on the internet (MSNPiki), (Mintz).

Windows Live Messenger also uses a proprietary UI framework called Direct UI, about

which not much information is available.

9 BuddyFuse project overview

2.1.3.2 Hyves

Hyves is a web application and does not run on the desktop of the end user. This

means the technology used in their platform will mostly be irrelevant for us, since we

will not be able to integrate with these technologies directly. We can only interact with

the APIs exposed by the service. Hyves currently exposes three different ways to third

parties to interact with its service, namely their web based API, chat platform and

gadget platform.

The web based API exposes methods to interact with Hyves on behalf of the end user.

The chat platform used by Hyves is built upon open standards and also accessible by

third parties. The Hyves gadget platform enables developers to create small gadgets

Hyves users can embed on their profile page.

2.2 Requirements analysis

In the REQUIREMENTS ANALYSIS DOCUMENT (APPENDIX D), both the functional as non-

functional requirements of the project are specified. Most important is the feature list of

the product. After a brainstorm, user stories have been defined for all features applicable

to the application. These user stories have been categorized using the MoSCoW method

as follows:

2.2.1 Must haves

 Coupling of Hyves accounts to messenger accounts (ACCOUNTS)

 Loading Hyves friends in Messenger (CONTACTS)

 Notifications of activity on Hyves via alerts (ALERTS)

 Access to Hyves user profiles from Messenger (PROFILES)

2.2.2 Should haves

 Mechanism to check for updates (UPDATES)

 Showing status of Hyves friends (STATUS)

 Enabling chat interoperability between Hyves friends and the Messenger

client (CHAT)

 Show Hyves WhoWhatWhere (WWW)

2.2.3 Could haves

 Update Hyves WhoWhatWhere when changing PSM (WWWPSM)

 Show Hyves display pictures (AVATAR)

 Posting scraps to Hyves users (SCRAPS)

 Posting “tikken” to Hyves users (TIKKEN)

 Access to a mini-Hyves website (MINI)

2.2.4 Would haves

 Match Hyves contacts with Windows Live buddies and show them as a

single user (MATCH)

 “Smart messenger groups” based on profile information in Hyves

(GROUPS)

 Show latest blog posts and photos of Hyves users (ACTIVITY)

 Add support for all XMPP networks (XMPP)

 Integration with other social networks

10 BuddyFuse project overview

This feature list has been used as a guideline throughout the entire project. The

development iterations have been planned based on the above list.

2.3 Design and implementation

Once the development guidelines had been established in the requirements analysis

and the most important research studies had been conducted, the design and

implementation phase was ready to embark. In the DESIGN AND IMPLEMENTATION

(APPENDIX E) the overall application design and implementation specifics are being

discussed.

2.3.1 Initial design

To develop an initial design of the application, we started out by analyzing the

features as they had been composed in the requirements analysis. Based on the user

stories, four key pillars have been selected: network traffic interception, UI integration,

the Messenger API and the Hyves API. Nearly all features depend on one or more of

these key building blocks.

The overall application architecture has been developed based on this feature

dependency analysis. An architectural overview can be seen in Figure 2-1, which is

further explained in APPENDIX E.

Figure 2-1: an architectural overview of the application

Based on the architectural design, the packages and their dependencies have been

defined. Overall, the project contains four different packages / projects. Loader is the

package responsible for loading our application when Windows Live Messenger starts.

UIWrapper and Hooks are so-called mixed-mode assemblies written in a mix of managed

and unmanaged C++ to expose native functionality to managed assemblies. UIWrapper

functions as an interoperability layer managed assemblies can use to access Direct UI

functions. The Hooks package exposes functionality for function interception to managed

code. The Core package is where the main application logic resides. It is written

completely in C# and combines functionality exposed by the UIWrapper and Hooks

packages.

Win32, COM and .NET Framework

Hooking library for function interception

UI integration

DirectUI Win32

Network traffic
interception

WinInet Winsock

Messenger
API

Hyves API

HTTP XMPP Chat

Platform
frameworks

Low level
libraries

Modules to
build

features
upon

Subsets of
libraries

11 BuddyFuse project overview

Because the Core package implements most of the application functionality, the

design of this package has been explained more thoroughly. The Core design overview

explains how the different tiers of the package communicate with each other. In the class

overview the most important classes are being introduced and their relationships with

each other can be seen in the class diagram (APPENDIX E).

2.3.2 Development iterations

After the overall application design had been agreed upon, the actual implementation

phase was ready to start. According to the software development methodology chosen, in

every development iteration a single user story would be completely implemented and

tested. During the planning of the development iterations it was important to consider in

what stage the building blocks (introduced above) required for every user story would be

completed.

A development iteration in this project has been defined as developing and testing a

complete user story together with the missing (parts of) building blocks the user story

depends upon. This means development of the first user story requiring a particular

building block would obviously take longer than when this building block has already

been created during an earlier iteration.

2.3.3 Development techniques and tools

For the development of the application we have chosen to work with a toolset based

upon Microsoft technology. Visual Studio 2008 has been used as integrated development

environment (IDE), and all the packages are contained as projects within one solution.

The Microsoft Detours library as introduced in the RESEARCH STUDY (APPENDIX B) is

being used for function interception. C# has been chosen as the main development

language, but C++ is being used for parts that could only not (easily) be implemented in

managed code. The Microsoft Design Guidelines for Class Library Developers have been

used as a guideline during the design and implementation phase.

Below is a list shortly describing other tools used during the development of the

application:

 Resharper (JetBrains)

Resharper is an add-on for Visual Studio which aids development in this IDE in

various ways.

 NUnit (NUnit.org)

NUnit is a xUnit based unit testing tool for .NET languages. The unit tests in the

project use this tool.

 Dependency walker (Microsoft)

Dependency Walker is a utility that scans any Windows modules and builds a

hierarchical tree diagram of all dependent modules. For each module found, it

lists all the functions that are exported by that module, and which of those

functions are actually being called by other modules. This is particularly useful

when looking which functions are used by a program so these can be intercepted.

 Resource hacker (Angus Johnson)

Resource hacker is a tool with which resources can be extracted from windows

executables. This has been useful to extract type libraries from Windows Live

Messenger and to examine Direct UI related resource scripts.

12 BuddyFuse project overview

 HttpAnalyzer (IEInspector)

HttpAnalyzer does not only list all HTTP requests made on a system, it can also

decrypt HTTPS traffic. This has been useful to see which HTTP requests would

be useful by our application to intercept, and whether custom data had been

injected correctly.

 EtherDetect Packet Sniffer (EtherDetect)

A tool similar to HttpAnalyzer, but EtherDetect detects all network traffic, as

opposed to only HTTP traffic. This tool has been useful to monitor MSNP data.

 .NET Memory Profiler (SciTech Software)

.NET Memory Profiler is a tool for finding memory leaks and optimizing the

memory usage in programs written in .NET. This tool gives a good insight in

which objects are and which are not being garbage collected and for which reason.

 Spy++ (Microsoft)

This tool can be used to monitor windows and window messages on the Windows

operating system. It has mainly been used as a diagnostic tool to monitor window

messages sent with information about asynchronous sockets.

 Wrappit (Michael Chourdakis)

Wrappit is a tool to generate so-called proxy DLLs (APPENDIX C) dynamically.

This has been used to create the Loader projects.

Throughout the entire project, subversion (SVN) has been used as a version control

system. Besides all source code, also the related documents have been checked in to the

repository.

2.3.4 Third party libraries used

Besides third party tools to aid in the development process, the final application also

depends on three third party libraries, namely:

 Detours (Microsoft Research)

The Detours library intercepts Win32 functions by re-writing the in-memory code

of target functions (APPENDIX C).

 BeeNET (Arian Geertsema)

Bee.NET is a Hyves development toolkit designed for .NET applications. It is

being used by the application to communicate with the Hyves API.

 jabber-net (open source, multiple contributors)

jabber-net is a set of .NET controls for sending and receiving Extensible

Messaging and Presence Protocol (XMPP), also known as Jabber. It is being used

by our application to connect to the Hyves chat servers.

13 BuddyFuse project overview

2.4 Quality assurance and testing

This part explains what ways have been used to test the application code in order to

assure the quality of the final product. So far, three different methods of testing have

been used, namely unit testing, integration testing and alpha testing.

2.4.1 Unit testing

At the start of the project, the idea was to use unit testing for most of the classes.

During the actual implementation phase however, we quickly found out this would be

difficult to realize. The main difficulty is a substantial part of the application code relies

on the behavior of Windows Live Messenger itself. The code that directly depends on the

behavior of Messenger either successfully integrates with the application or it does not.

In the latter case, this will be quickly noticed when running the application. Creating

unit tests for these kinds of integration scenarios would be difficult because it is likely

the testing code itself would also depend on the Messenger application. Other parts

heavily integrating with third party libraries can therefore also be hard to write unit

tests for.

Because of these conditions the effort to write a useful unit test for some scenarios

would be out of proportion compared to the advantages. Therefore, it was decided to

change the conditions in which to apply unit testing. The unit tests that have now been

written mostly cover components that could be easily isolated from the rest of the

application and Windows Live Messenger. Also, when a bug was encountered that was of

a typical unit-testable nature (like an algorithmic error), unit tests have been written for

the containing class before fixing the bug.

2.4.2 Integration testing

The advantage of using an iterative development process based on user stories is that

the system is developed incrementally. After the completion of every user story a fully

working application is available. This enabled us to use a working version of the

application ever since the first user story had been completed. Whenever a development

iteration was completed, the user story it was based on could immediately be tested for

successful integration.

A particular advantage of continuously being able to run integration tests is the

easiness to test the application on different platform configurations. As stated in the

REQUIREMENTS ANALYSIS (APPENDIX D), it has been important for this project to be

compatible with different versions of Windows Live Messenger. Integration testing aided

us in this process. One developer, Jeroen, was continuously using version 8.5 of

messenger, whereas Yousef had been using the version 9 beta. In this way we have made

sure our extension is robust enough to support multiple versions of the underlying

application.

2.4.3 Alpha testing

At the moment of writing, the application is also handed out to a small group of close

friends of the developers. This will enable us to see how actual users (as opposed to

developers) interact with the application. Also, it enables us to monitor the stability of

the extension on even more platform configurations.

14 BuddyFuse project overview

3 Conclusions
After finishing the phases related to the execution of the project as described above,

what has been accomplished, what is there left to do, and how do I personally look back

on the project? In this chapter these questions will be answered one-by-one.

3.1 Final application

At the time of writing, all must-have features have been completely implemented. All

of the should-haves have also been implemented, except for an automatic update

mechanism. Next to this, the Hyves display pictures of contacts are also being shown

(could-have). This means we have been able to implement the most important

functionality of the program.

One of the main non-functional requirements is to enable seamless integration of the

extension with Windows Live Messenger. To see how this has been accomplished, a

screenshot impression of the final application has been included as APPENDIX F.

3.2 Road ahead

Not only the most fundamental features have been implemented, but also all

technical challenges encountered have been overcome. A comprehensive framework has

been built to extend Windows Live Messenger, and it should now be relatively

straightforward to build new features leveraging the existing codebase. This also means

however, that the stability of the current version of the application will be key to the

application’s success.

To ensure this stability on different platform configurations, we plan to run a private

beta test in December and January. About ten to thirty people should test the

application during this period. This will give us time to work on a website presenting the

product, add some additional features (which should be easy to test ourselves) and of

course to fix issues encountered by testers.

Before starting the private beta it is essential to add enough tracing and exception

handling code to ensure we can get a proper insight into bugs encountered. Also, when

the application contains more features it will be necessary to write down scenarios (test

cards) for acceptance tests, which until now have been executed without a storyboard.

After the private beta test a public or perhaps invitation-only beta version will be

released on the website. During this period we also expect to be able to start

incorporating support for other networks such as Google Talk and Facebook. Again, we

do not expect to run into big problems while implementing features such as these once

the stability of the underlying framework has been assured.

At this moment there are already several ideas for related products. One of them is to

create a browser-based version of this project (similar to eBuddy or Meebo), allowing

users to access their networks from any place at any time. Combined with this project (a

desktop application) this can open up interesting scenarios such as cross-client settings /

chat log synchronization. Another advantage of a browser-based application is that it

will be easier to monetize using advertisements.

15 BuddyFuse project overview

3.3 Reflection

This project has been different than any project I have done before in a couple of

different ways.

First of all, the nature of the project has been relatively large and technically

complicated. During the project, I have learned new things about a couple of different

technologies such as mixed code, function interception and the Windows platform in

general. I have been able to quickly incorporate these new technologies in my toolset and

leverage them for the technical design of the project. The outcome of the project fulfills

my expectations, although it has not been an easy job to extend Windows Live

Messenger the way I have chosen too (on average I think I have spent about 45 – 55

hours a week on the project, resulting in about 70 pages of documentation and nearly

11000 lines of code). However, I expected this in advance and took this into account

when choosing to work on this project.

The scope of the project for the first time made me experience the importance of a

well thought through class design. Creating working prototypes is one thing, but

incorporating them into production code in a scalable and understandable way is a

completely different step, on which I have spent quite some time during this project.

This has been a really positive experience for me and made me think more about the

architectural difficulties of software design, and has sparked me to dive deeper into ideas

behind different software design patterns.

Also, because this project functions as my bachelor graduation project, I have

probably spent more time on documenting the different aspects of the project than I

would have done otherwise. This has sometimes been difficult for me, because I

generally prefer to spend this time thinking about new ideas or solving technical

challenges. However, now most of the documentation has been completed, I can say

writing and maintaining it has overall been a positive experience. I expect the

documentation will be really helpful when other people have to get up to speed with the

project, which has been the primary goal of writing it. The next time I work on a similar

project, I suspect to write a similar document about the project plan, requirements and

design and implementation as I have done in this project. It will depend on the nature of

that project whether an extensive research study will be necessary as well, or whether a

document with snippets from and references to other resources will satisfy.

16 BuddyFuse project overview

Bibliography

(n.d.). Retrieved September 30, 2008, from MSNPiki: http://msnpiki.msnfanatic.com/

"kirin". (2005, September 26). Hooking MSN Messenger 7 with VC++, A tutorial on how

to hook MSN Messenger. Retrieved September 30, 200, from Mess.be user forums:

http://forum.mess.be/index.php?showtopic=11966

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software

Development Methods: Review and Analysis. VTT Publications.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et

al. (2001). Retrieved September 17, 2008, from Manifesto for Agile Software

Development: http://www.agilemanifesto.org/

Boehm, B., & Turner, R. A. (2004). Balancing Agility and Discipline: A Guide for the

Perplexed. Addison-Wesley.

CACE Technologies. (n.d.). WinPcap, The Packet Capture and Network Monitoring

Library for Windows. Retrieved October 2, 2008, from http://www.winpcap.org

Fitzpatrick, B., & Recordon, D. (2007, August 17). Thoughts on the Social Graph.

Retrieved December 15, 2008, from http://www.bradfitz.com/social-graph-problem/

Hunt, G., & Brubacher, D. (1999). Detours: Binary Interception of Win32 Functions.

Redmond: Microsoft Research.

Laganière, R., & Lethbridge, T. C. (2001). Object-Orienented Software Engineering.

McGraw-Hill.

Levy, K. (n.d.). Windows Live Messenger Add-ins beta feature for developers. Retrieved

September 28, 2008, from Ken Levy's Blog:

http://blogs.msdn.com/klevy/archive/2006/05/10/Windows_Live_Messenger_Addins_beta_

feature_for_developers.aspx

McConnel, S. (1996). Rapid Development: Taming Wild Software Schedules. Microsoft

Press.

Microsoft Corporation. (2007, November). Initalization of Mixed Assemblies. Retrieved

October 2, 2008, from Microsoft Developer Network: http://msdn.microsoft.com/en-

us/library/ms173266.aspx

Microsoft Corporation. (n.d.). Overview of the Windows Live Messenger Activity API.

Retrieved September 28, 2008, from http://msdn.microsoft.com/en-

us/library/aa751014.aspx

Mintz, M. (n.d.). Retrieved September 30, 2008, from MSN Messenger Protocol:

http://www.hypothetic.org/docs/msn/

17 BuddyFuse project overview

NU.nl/Wieland van Dijk. (2007, August 1). "Hyves is groter dan Google". Retrieved

October 2, 2008, from nu.nl:

http://www.nu.nl/news/1179455/50/%27Hyves_is_groter_dan_Google%27.html

Palmer, S. R., & Felsing, J. M. (2002). A Practical Guide to Feature-Driven Development.

Prentice-Hall.

Wells, D. (1999). The Rules and Practices of Extreme Programming. Retrieved September

17, 2008, from Extreme Programming: http://www.extremeprogramming.org/rules.html

Wells, D. (1999). What is Extreme Programming. Retrieved September 17, 2008, from

Extreme Programming: http://www.extremeprogramming.org/what.html

Wikipedia contributors. (2008, October 21). Mediator pattern. Retrieved October 27,

2008, from Wikipedia, the free encyclopedia:

http://en.wikipedia.org/w/index.php?title=Mediator_pattern&oldid=246699775

 BuddyFuse project overview

Appendix A: Project description

(Dutch)

Voorstel bachelorproject Yousef El-Dardiry (9 september 2008)

Voor mijn bachelorproject wil ik één van mijn eigen ideeën uitwerken tot een

daadwerkelijk project. Hiervoor zal ik alle stappen moeten doorlopen in het Software

Design traject en contact moeten onderhouden met het bedrijfsleven, een contactpersoon

binnen de TU Delft, en een programmeur van een andere universiteit. In dit document

zal ik het project inhoudelijk beschrijven.

Inleiding

Het idee dat ik heb is om sociale netwerken (zoals Hyves en Facebook) te integreren in

de desktop-ervaring van een gebruiker. In dit specifieke geval wil ik beginnen met het

integreren van Hyves in Windows Live Messenger. Vanwege de grote overlappende

gebruikersgroep zie ik dit als een goed startpunt. De opkomst van open standaarden,

“mashups”, “social graph API’s” en discussies over “data portability” maken dit project

tot een actueel idee in de internetwereld. Voordat ik in ga op de specifieke functies die ik

voor ogen heb zal ik eerst een beschrijving geven van de twee betrokken diensten.

Betrokken diensten

Windows Live Messenger

Dit programma, voorheen bekend onder de naam “MSN Messenger”, is met meer dan 5,5

miljoen gebruikers veruit het meest gebruikte chatprogramma in Nederland.

Techniek: Windows Live Messenger maakt gebruik van een eigen chatprotocol (MSNP)

om met de servers van Microsoft te communiceren. Er zijn API’s beschikbaar om

contactgegevens op te halen, chatrobots te maken, en om kleine spelletjes / applicaties te

maken die binnen het programma kunnen draaien.

Hyves

Hyves is in 2004 in Nederland opgericht en sindsdien uitgegroeid tot het meest populaire

sociale netwerk van Nederland (ca. 6 miljoen gebruikers). Het contact maken en

onderhouden van vriendschapsrelaties staat bij deze website centraal. Sinds kort kan

men ook de status zien van Hyvers, en kunnen er gesprekken worden gestart (het

zogenaamde kwekken) wanneer vrienden tegelijkertijd online zijn.

Techniek: Hyves stelt sinds kort applicaties van derden in staat met behulp van een

API gegevens op te halen van haar gebruikers. Tevens kunnen er op profielen gadgets

geplaatst worden die ontwikkeld zijn op het OpenSocial platform van Google. Het

chatsysteem van Hyves is gebaseerd op de open standaard XMPP (voorheen Jabber) en

daardoor gemakkelijk toegankelijk voor derde partijen.

 BuddyFuse project overview

Het combineren van functionaliteit

Omdat sociale netwerken en instant messaging clients dicht bij elkaar liggen (en steeds

dichter naar elkaar toe groeien) is het denkbaar de de functionaliteit van de ene dienst

geïntegreerd kan worden met die van de andere. Dit is precies wat ik voor ogen heb met

mijn project; het integreren van het vriendennetwerk Hyves in het chatprogramma

Windows Live Messenger. De volgende functies zou ik willen verwezenlijken:

 Het koppelen van een Hyves account aan een Windows Live ID, zodat

wanneer men inlogt in Messenger, direct ook inlogt bij Hyves.

 Het laden van Hyves vrienden in de Windows Live Messenger contactlijst.

 Het reflecteren van de status van Hyves vrienden in Windows Live

Messenger. En vice versa; het reflecteren van de Live Messenger status in

Hyves.

 Het laden van schermafbeeldingen van Hyves, en associëren met de in

Messenger geladen Hyves vrienden.

 Notificaties van activiteit op Hyves in de vorm van een MSN Alert.

 Het kunnen chatten met Hyves gebruikers vanuit Live Messenger.

 Het laden van profielinformatie van Hyves vrienden in Live Messenger.

 Het kunnen “krabbelen” (een berichtje op Hyves achterlaten) van Hyves

vrienden vanuit Messenger.

 Et cetera. Er zijn nog talloze functies bedenkbaar die in een later stadium

gecombineerd kunnen worden.

Dit alles moet worden gerealiseerd in de vorm van een uitbreiding op Live Messenger.

Nadat de gebruiker deze uitbreiding heeft gedownload en geïnstalleerd, moet alle

functionaliteit op een dusdanige manier integreren met Messenger zodat de gebruiker bij

wijze van spreken nauwelijks merkt dat er een uitbreiding op de achtergrond meedraait.

Technische realisatie

Een grote uitdaging in dit project ligt bij het daadwerkelijk toevoegen van functionaliteit

aan een bestaand programma, in dit geval Windows Live Messenger. Er zijn diverse

API’s beschikbaar om functionaliteit toe te voegen aan dit programma, maar geen van

deze interfaces is toereikend genoeg om het niveau van integratie benodigd voor de

bovenstaande functies te kunnen verwezenlijken. Hierdoor zal ik terug moeten grijpen

naar een meer low-level aanpak.

Function detouring

Door middel van functie detouring is het mogelijk om functies die Messenger aanroept te

onderscheppen, en te vervangen door eigen code. Door de juiste functies te

onderscheppen moet het mogelijk zijn om aanpassingen te maken in de layout van het

programma, en bijvoorbeeld de registratie van interne COM-interfaces te

onderscheppen. Ik zou hiervoor een eigen detouring module kunnen schrijven, of gebruik

kunnen maken van een bestaande library zoals Detours van Microsoft Research.

Netwerkverkeer onderscheppen

Met behulp van detouring is het ook mogelijk het netwerkverkeer van elke willekeurige

applicatie te onderscheppen. Hierdoor kan de communicatie van Live Messenger met de

 BuddyFuse project overview

servers van Microsoft worden onderschept, en kan er op de juiste plekken eigen “hyves-

data” worden ingevoegd. Om dit te realiseren zal ik hiervoor een eigen module moeten

schrijven.

Uiteindelijk doel

Het einddoel van dit project is dat de hierboven beschreven applicatie verwezenlijkt

wordt, en op internet wordt uitgebracht. Alle stadia die worden doorlopen zullen

nauwkeurig gedocumenteerd moeten worden, zodat het project later zou kunnen worden

overgedragen naar een derde partij.

 BuddyFuse project overview

Appendix B: Project plan

(Included separately)

 BuddyFuse project overview

Appendix C: Research study

(Included separately)

 BuddyFuse project overview

Appendix D: Requirements analysis

(Included separately)

 BuddyFuse project overview

Appendix E: Design and

implementation

(Included separately)

 BuddyFuse project overview

Appendix F: Image walkthrough

Figure F-1: the sign in screen with the added option to select an associated Hyves account.

Figure F-2: the main window contains a Hyves button exposing several options of the extensions

 BuddyFuse project overview

Figure F-3: the manage accounts dialog is at this moment the only dialog added by the extension.

It allows the user to add and remove Hyves accounts associated with his Live ID.

Figure F-4: After signing in with a Hyves account Hyves friends are added to the contact list.

Statuses are reflected and notifications are shown in the same way as for regular Messenger

contacts.

 BuddyFuse project overview

Figure F-5: chatting with online Hyves contacts works seamlessly. Neither the Messenger user

(right window) nor the Hyves user (left / background window) notices he is talking to a user

using another client. The Hyves picture of the contact is shown as Messenger display picture.

Figure F-6: a button is added to the conversation window indicating a Messenger to Hyves

conversation (top left). Upon clicking the button, a Messenger activity is loaded showing the

contact his Hyves profile.

9 september 2008

Projectomschrijving

Voorstel bachelorproject Yousef El-Dardiry

Voor mijn bachelorproject wil ik één van mijn eigen ideeën uitwerken tot een

daadwerkelijk project. Hiervoor zal ik alle stappen moeten doorlopen in het Software

Design traject en contact moeten onderhouden met het bedrijfsleven, een contactpersoon

binnen de TU Delft, en een programmeur van een andere universiteit. In dit document

zal ik het project inhoudelijk beschrijven.

Inleiding

Het idee dat ik heb is om sociale netwerken (zoals Hyves en Facebook) te integreren in

de desktop-ervaring van een gebruiker. In dit specifieke geval wil ik beginnen met het

integreren van Hyves in Windows Live Messenger. Vanwege de grote overlappende

gebruikersgroep zie ik dit als een goed startpunt. De opkomst van open standaarden,

“mashups”, “social graph API’s” en discussies over “data portability” maken dit project

tot een actueel idee in de internetwereld. Voordat ik in ga op de specifieke functies die ik

voor ogen heb zal ik eerst een beschrijving geven van de twee betrokken diensten.

Betrokken diensten

Windows Live Messenger

Dit programma, voorheen bekend onder de naam “MSN Messenger”, is met meer dan 5,5

miljoen gebruikers veruit het meest gebruikte chatprogramma in Nederland.

Techniek: Windows Live Messenger maakt gebruik van een eigen chatprotocol (MSNP)

om met de servers van Microsoft te communiceren. Er zijn API’s beschikbaar om

contactgegevens op te halen, chatrobots te maken, en om kleine spelletjes / applicaties te

maken die binnen het programma kunnen draaien.

Hyves

Hyves is in 2004 in Nederland opgericht en sindsdien uitgegroeid tot het meest populaire

sociale netwerk van Nederland (ca. 6 miljoen gebruikers). Het contact maken en

onderhouden van vriendschapsrelaties staat bij deze website centraal. Sinds kort kan

men ook de status zien van Hyvers, en kunnen er gesprekken worden gestart (het

zogenaamde kwekken) wanneer vrienden tegelijkertijd online zijn.

Techniek: Hyves stelt sinds kort applicaties van derden in staat met behulp van een

API gegevens op te halen van haar gebruikers. Tevens kunnen er op profielen gadgets

geplaatst worden die ontwikkeld zijn op het OpenSocial platform van Google. Het

chatsysteem van Hyves is gebaseerd op de open standaard XMPP (voorheen Jabber) en

daardoor gemakkelijk toegankelijk voor derde partijen.

Het combineren van functionaliteit

Omdat sociale netwerken en instant messaging clients dicht bij elkaar liggen (en steeds

dichter naar elkaar toe groeien) is het denkbaar de de functionaliteit van de ene dienst

geïntegreerd kan worden met die van de andere. Dit is precies wat ik voor ogen heb met

mijn project; het integreren van het vriendennetwerk Hyves in het chatprogramma

Windows Live Messenger. De volgende functies zou ik willen verwezenlijken:

 Het koppelen van een Hyves account aan een Windows Live ID, zodat

wanneer men inlogt in Messenger, direct ook inlogt bij Hyves.

 Het laden van Hyves vrienden in de Windows Live Messenger contactlijst.

 Het reflecteren van de status van Hyves vrienden in Windows Live

Messenger. En vice versa; het reflecteren van de Live Messenger status in

Hyves.

 Het laden van schermafbeeldingen van Hyves, en associëren met de in

Messenger geladen Hyves vrienden.

 Notificaties van activiteit op Hyves in de vorm van een MSN Alert.

 Het kunnen chatten met Hyves gebruikers vanuit Live Messenger.

 Het laden van profielinformatie van Hyves vrienden in Live Messenger.

 Het kunnen “krabbelen” (een berichtje op Hyves achterlaten) van Hyves

vrienden vanuit Messenger.

 Et cetera. Er zijn nog talloze functies bedenkbaar die in een later stadium

gecombineerd kunnen worden.

Dit alles moet worden gerealiseerd in de vorm van een uitbreiding op Live Messenger.

Nadat de gebruiker deze uitbreiding heeft gedownload en geïnstalleerd, moet alle

functionaliteit op een dusdanige manier integreren met Messenger zodat de gebruiker bij

wijze van spreken nauwelijks merkt dat er een uitbreiding op de achtergrond meedraait.

Technische realisatie

Een grote uitdaging in dit project ligt bij het daadwerkelijk toevoegen van functionaliteit

aan een bestaand programma, in dit geval Windows Live Messenger. Er zijn diverse

API’s beschikbaar om functionaliteit toe te voegen aan dit programma, maar geen van

deze interfaces is toereikend genoeg om het niveau van integratie benodigd voor de

bovenstaande functies te kunnen verwezenlijken. Hierdoor zal ik terug moeten grijpen

naar een meer low-level aanpak.

Function detouring

Door middel van functie detouring is het mogelijk om functies die Messenger aanroept te

onderscheppen, en te vervangen door eigen code. Door de juiste functies te

onderscheppen moet het mogelijk zijn om aanpassingen te maken in de layout van het

programma, en bijvoorbeeld de registratie van interne COM-interfaces te

onderscheppen. Ik zou hiervoor een eigen detouring module kunnen schrijven, of gebruik

kunnen maken van een bestaande library zoals Detours van Microsoft Research.

Netwerkverkeer onderscheppen

Met behulp van detouring is het ook mogelijk het netwerkverkeer van elke willekeurige

applicatie te onderscheppen. Hierdoor kan de communicatie van Live Messenger met de

servers van Microsoft worden onderschept, en kan er op de juiste plekken eigen “hyves-

data” worden ingevoegd. Om dit te realiseren zal ik hiervoor een eigen module moeten

schrijven.

Uiteindelijk doel

Het einddoel van dit project is dat de hierboven beschreven applicatie verwezenlijkt

wordt, en op internet wordt uitgebracht. Alle stadia die worden doorlopen zullen

nauwkeurig gedocumenteerd moeten worden, zodat het project later zou kunnen worden

overgedragen naar een derde partij.

DEPARTMENT OF SOFTWARE ENGINEERING (EEMCS)

DELFT UNIVERSITY OF TECHNOLOGY

B. Project plan

BuddyFuse

Yousef El-Dardiry (1332686)

9/29/2008

2 BuddyFuse appendix B: Project plan

Project plan

The project plan describes the basic setup of the project. The main project phases will

be discussed, guidelines will be set on tools to be used and the people involved in the

project will be introduced. Finally, the project plan contains a planning which will be

adjusted during the course of the project.

Project Phases
The project consists of a number of different phases. In the research phase, a number

of research questions will be answered to ensure there is enough knowledge on these

areas to continue with the other phases.

Before we can start with the design and implementation of the project, it is important

to have all requirements documented. This is the goal of the requirements phase.

Based on the software development method chosen in the research phase, the design

and implementation phase will embark. In this phase the application will be designed,

built and tested. Let us take a closer look at the three main phases.

Research phase

As previously stated, in this phase a couple of questions will be answered to establish

a proper base for the rest of the project. The following three questions should be

answered in a research study of about 3-5 pages per question.

 Which software design method is most applicable for use in this project?

 What are the technologies behind Messenger and Hyves, and what kind of APIs

do these services expose?

 How can one add functionalities to existing compiled programs beyond the

possibilities of exposed extensibility-APIs and without access to its source code?

Requirements phase

In the requirements phase all up-front requirements will be gathered. The final

deliverable of this phase is a requirements analysis document including a project

description and a so-called MoSCoW document listing the features by priority.

Depending on the software development method chosen, other prerequisites for the next

phase can be included in the requirements analysis document.

Design, implementation, and testing phases

In this phase the actual application will be developed and tested. The end product of

this phase is a cleanly designed, working and thoroughly tested application fulfilling the

requirements analyzed in the previous phase. Although the software development

methodology to use is still to be chosen in the research study, due to the size of the

project and team it is likely an iterative way of designing and developing will be used.

The planning accompanying this document is based on this idea. Each development

iteration should be summarized in the report, and if necessary technologic difficulties

must be documented.

3 BuddyFuse appendix B: Project plan

Tools and guidelines
It is important to set some guidelines on the tools and standards to be used in the

project, so the team members will work with a toolset familiar to everyone involved.

Documentation

The documentation produced as a result of the different phases will be composed

using Microsoft Word 2007. The layout of all documents must be consistent, at this

moment the theme “Oriel” is in use. All documentation must be written in English.

Documents will also be checked in to source control in .docx format as a way to easy

back up important files. Documents will be exported to PDF for reviewing.

Development

A list of tools to be used during the implementation and testing phase:

 Source control system: Subversion. All developers will have full access.

 Preferred programming language: The preferred language of both developers

involved in the project is C#. When a lower level language is required we can fall

back to C++.

 Programming standards: Microsoft .NET Design Guidelines for Class Library

Developers.

 Development tools: Microsoft Visual Studio Professional 2008.

 Testing tools: NUnit.

 Network analysis tools: HttpAnalyzer and Etherdetect, or any similar tool.

 Other tools that might become useful: Dependency walker, Spy++, Resource

Hacker.

Testing

Although the exact method of testing will be specified later on, it will be useful to

discuss a couple of testing guidelines already. As mentioned above we will use the NUnit

testing framework for unit testing. Next to unit testing, we plan on releasing a beta test

of the software towards the end of the project. This way we can make sure the software

functions properly on different computer configurations.

Deliverables
At the end of the project, the following documents should be contained in the final

report:

 Project plan

 Research document

 Requirements analysis document, including MoSCoW and project description

 Design overview

 Reports of development iterations

 Review

 Code of final application

4 BuddyFuse appendix B: Project plan

Since the intention of the project is to create a commercially viable product, the

deliverables should give the impression they were created during a real-world

commercial project. However, this does not impose academic aspects of the project should

be neglected, but for example overhead in documentation should be kept at a minimum

level. The intent of the report is to function as a reference for people involved in the

project, and in the future for new team members to be able to get up to speed with the

project quickly.

People involved and availability

Yousef El-Dardiry

As the project leader, I will be overall responsible for the project. It will be my task to

assure all phases will be finished successfully. Most of the documentation, design and

development will be done by me. Since the project is also my own idea, I will also

function as main customer of the project. I will be available almost full-time until the

end of the year.

Jeroen Bransen

Jeroen is a master student Cognitive Artificial Intelligence at the Utrecht University.

He will assist in the development phase of the project. Since he does not play an active

role in writing the report, he will also function as a mentor supervising the documents I

write. Jeroen will be available about 3-4 days a week as a programmer until the end of

the year.

Ir. B.R. Sodoyer

As the coordinator of bachelor projects at the Department of Software Technology Mr.

Sodoyer will be my primary contact person at the Delft University of Technology. I

intend to schedule a meeting with him at least once every two weeks to discuss the

project progress. Every document written should be reviewed by and discussed with Mr.

Sodoyer.

5 BuddyFuse appendix B: Project plan

Planning
A rough planning is listed below. It will be updated with more details as the project

progresses.

Week 1, 15/9 – 19/9

- First version of project plan

Week 2, 22/9 – 23/9 (abroad 24/9 – 27/9)

- Final version of project plan

Week 3, 29/9 – 3/10

- End of research phase

Week 4, 6/10 – 10/10

- First version of requirements document

- Initial design phase

Week 5, 13/10 – 17/10

- Final version of requirements document

- Start development iterations (Loader, Hooks & UIWrapper)

Week 6, 20/10 – 24/10

- Loader, Hooks & UIWrapper

- Development iterations (User stories 1-3)

Week 7, 27/10 – 1/11

- Development iterations (User stories 1-3)

- 22/10: hand in documents for checkpoint review

Week 8, 3/11 – 7/11

- Development iterations (Finish stories 1-3, user stories 4, 6, 8)

- Checkpoint review

Week 9, 10/11 – 14/11 – abroad

- Development iterations (Finish user stories 4, 6, 8)

Week 10, 17/11 – 21/11

- Development iterations (User story 7)

- Draft overview document

Week 11, 24/11 – 28/11

- Development iterations (Finish user stories 1-8)

- Acceptance testing

- Code walkthrough, review overview document draft

Week 12, 1/12 – 5/12

- Development iterations (User stories 10)

- Acceptance testing

Week 13, 8/12 – 12/12

- System testing

- End development iterations (User stories 10), review all code

- Hand in final code and documentation

Week 14, 15/12 – 19/12

6 BuddyFuse appendix B: Project plan

- 17/12: Review with Jeroen and Dhr. Sodoyer

January 27: Presentation

DEPARTMENT OF SOFTWARE ENGINEERING (EEMCS)

DELFT UNIVERSITY OF TECHNOLOGY

C. Research study

BuddyFuse

Yousef El-Dardiry (1332686)

12/15/2008

2 BuddyFuse appendix C: Research study

Table of Contents

Introduction .. 3

Part 1: Software development model .. 4

1 Introduction of models .. 4

1.1 Waterfall model .. 4

1.2 Agile methods ... 5

1.2.1 Extreme Programming (XP) .. 6

1.2.2 Feature Driven Development (FDD) .. 7

2 Comparison ... 8

3 Software development method applicable ... 9

3.1 Project nature ... 9

3.2 Conclusion .. 9

Part 2: Integrating with existing applications .. 11

1 DLL injection ... 12

2 Intercepting function calls .. 12

2.1 Proxy libraries .. 13

2.2 Import Address Table modification ... 13

2.3 Modifying a target function in-memory .. 15

3 Intercepting the network traffic of an application .. 15

3.1 Winsock ... 15

3.2 WinInet ... 16

Part 3: Interaction with services ... 18

1 Windows Live Messenger ... 18

1.1 Technologies ... 18

1.1.1 Windows Live Platform ... 18

1.1.2 Communication .. 18

1.1.3 UI Platform .. 19

1.2 Application Programming Interfaces .. 19

1.2.1 Activity API ... 19

1.2.2 Windows Live Agents .. 19

1.2.3 Windows Messenger API ... 19

1.2.4 Add-in SDK .. 20

1.2.5 Windows Live Contacts API .. 20

1.2.6 Windows Live Alerts ... 20

2 Hyves ... 20

2.1 Application Programming Interfaces .. 20

2.1.1 Hyves API .. 20

2.1.2 Chat platform .. 21

2.1.3 OpenSocial ... 21

3 BuddyFuse appendix C: Research study

Introduction

The goal of this research study is to answer three questions important to the project.

The results of this study will be used during the development of the application. For the

design and development phase, it is important to know exactly what software

development methodology we will follow during the course of the project. In part one,

three different methodologies will be studied. Afterwards the decision will be made on

what methodology to use in this project.

For the development of the program, we need to be able to deeply integrate our

program with an existing application, Windows Live Messenger. How exactly can one

deeply integrate into an existing application without access to its source code? To answer

this question, function interception will be studied in part two.

Part three will take a look at the Hyves website and Windows Live Messenger

application. Since we are planning to integrate these two services, it is important to

know in what way we can connect with them. We will take a look at what APIs these

services expose, and what techniques they are based upon we might be able to integrate

with.

4 BuddyFuse appendix C: Research study

Part 1: Software development model

Which software development methodology is most applicable for use in

this project?

Before we can start the design phase of the project, it is important to choose the most

suitable software development method for the project. In this part we will take a number

of different methods into consideration and compare them with each other. Then the

nature of the project will be taken into consideration to find out what model is most

applicable.

1 Introduction of models
Three different software development models will be compared in this chapter.

Different software development models describe different perspectives of the software

development process. Some focus on describing team coordination, whereas others focus

on the design and development phases. Since this project only has a limited timeframe

(three months) and a small team, three models will be compared focusing on the design

and implementation phases.

The traditional waterfall model and two models in the agile programming family will

be taken into consideration, namely extreme programming and feature driven

development. Each of the models will be introduced with a short description, and their

pros and cons will be listed.

1.1 Waterfall model

The waterfall model is considered

to be the classic development

methodology for software

engineering. It is a model where one

transitions from one phase to the

next in a sequential way (Figure 1-1).

 The waterfall model requires the

completion of a detailed

documentation during the

requirements and design phases

before the implementation can start.

In this way it tries to minimize the

chance of running into any surprises

at a later stage. However, it does

recognize that sometimes one has to

step back to an earlier stage when you encounter problems in a later stage (Laganière &

Lethbridge, 2001).

Figure 1-1, the waterfall model

5 BuddyFuse appendix C: Research study

Arguments for

A well thought through documentation process ensures that as much problems as

possible will be identified up front. According to (McConnel, 1996): “a requirements defect

that is left undetected until construction or maintenance will cost 50 to 200 times as much

to fix as it would have cost to fix at requirements time.”. This means that the time you

spend on the documentation up front will be returned since you will not run into as

much surprises later on, when repairing these problems takes a lot of effort time.

Another argument in favor of the detailed documentation process of the waterfall

model is that when the team changes during the project, it should be easy for new team

members to get up to speed with the project (just by examining the documentation).

Arguments against

(Laganière & Lethbridge, 2001) have mentioned two important disadvantages of the

waterfall model.

First, when following the waterfall model one has to complete the requirements and

specifications before the design starts and the design before the implementation.

However, this means that all requirements should be known up front, and cannot change

during the project.

The second problem with the model is that it assumes one can get the requirements

and design right simply by writing them down. Many software projects are not of such a

simple nature to make this possible. These projects require a sort of trials such as

prototyping to help in gathering requirements from the users and to find out what the

proper use of the development tools and technologies is.

1.2 Agile methods

In contrast to sequential development methods such as the waterfall model, agile

software development methodologies promote software development in an iterative way.

The main ideas behind agile software development are stated in the Manifesto for Agile

Software Development (Beck, et al., 2001):

“We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.”

While the basis of the waterfall model consists of comprehensive documentation and

a detailed plan, agile development methodologies tend to be more lightweight. However,

6 BuddyFuse appendix C: Research study

this does not mean that the agile projects follow the so-called opportunistic approach of

software development (modifying an initial prototype until satisfied).

Different agile methodologies have been developed to ensure agile projects follow a

specified path to realize the final product. In this section two of these agile

methodologies will be examined, namely extreme programming (XP) and feature driven

development (FDD).

Agile methodologies tend to be useful for projects of a different nature than plan-

driven methodologies such as the waterfall model. According to (Boehm & Turner, 2004)

both types of software development have their own home ground:

Agile Plan-driven

 Low criticality

 Senior developers

 Requirements change very often

 Small number of developers

 Culture that thrives on chaos

 High criticality

 Junior developers

 Requirements don't change too often

 Large number of developers

 Culture that demands order

1.2.1 Extreme Programming (XP)

Extreme programming tries to improve software development in four essential

aspects: communication, simplicity, feedback and courage (Wells, What is Extreme

Programming, 1999). Extreme Programming favors frequent communication about

project requirements over extensive documentation. Simplicity in the project is

established by starting with building the simplest solution. Extra functionality can be

implemented later on, and should not be taken into account during early design and

development. Feedback is gathered by writing unit tests early on and also by delivering

a first version of the application to the customer as early as possible. Developers

following the extreme programming methodology should be able to react to changing

requirements and technology courageously, and they must know when to refactor or

throw away existing code.

So-called user stories are created by the customer and are used as a guideline in

release and iteration planning. A user story is a description of a feature in a couple of

lines, not containing any technical terms. Programming tasks are created out of the user

stories and assigned to different programmers.

A set of rules and practices for extreme programming have been composed and are

divided into four main categories; planning, designing, coding and testing (Wells, The

Rules and Practices of Extreme Programming, 1999). However, the method

acknowledges not all rules might be useful for every project and states rules should be

changed if they turn out not to work properly during the course of a particular project.

Arguments for

Arguments in favor of extreme programming tend to be quite straightforward. The

product delivered at the end of the extreme programming trajectory has been thoroughly

tested and the code should be as simple as possible. The customer is involved during the

entire development process, so it should be easier to achieve a high level of customer

7 BuddyFuse appendix C: Research study

satisfaction. Being one of the agile software methodologies, projects following the

extreme programming method can also quickly respond to changing requirements.

Arguments against

The lack of comprehensive documentation and design might not be suitable for large

or mission critical projects. It also makes it harder for new team members to get up to

speed with the project.

Another important criticism on extreme programming is the lack of detailed

guidelines. Methods used in extreme programming are only briefly described and it

acknowledges not all practices have to be used in the same project. This might result in

practitioners to only adopt the rules they like, instead of adopting the rules the project

would favor from most.

1.2.2 Feature Driven Development (FDD)

Feature driven development focuses on the design and implementation phases of a

project. It differentiates five such phases (Figure 1-2, Feature Driven Development). In

the first phase, an overall model of the application design is being developed. Based on a

high-level description of the system (called a walkthrough), the system is divided into a

number of sub domains. Object models for the different domains are designed, as well as

an overall model for the system.

In the next step a comprehensive list of customer-valued features is composed.

Features are divided in different sets and they must be reviewed by the customer to

ensure completeness. During the plan by feature phase the features are ranked

according to their priority and dependencies. Every feature will be assigned to a

programmer (or team).

During the next two iterative processes, every feature is designed, build and tested

one at a time (or in parallel when different people can work on a different feature).

Programmers do not start working on a next feature unless the feature they have been

working on has been completely tested. Every iteration takes from a couple of days to a

maximum of two weeks.

Figure 1-2, Feature Driven Development (Palmer & Felsing, 2002)

8 BuddyFuse appendix C: Research study

Arguments for

Similar to most agile programming methods, FDD delivers a completely working and

tested program at the end of every iteration. In this way customers can stay involved

with the project by reviewing the product during development.

In contrast to most other agile methods, feature driven development also claims to be

suitable for large and critical systems (Palmer & Felsing, 2002). The two design phases

(the first phase of the project, and the first phase of every development iteration) make

sure a lot of design is done up-front, which makes FDD one of the more planned agile

methods.

Arguments against

These comprehensive design phases can also be a source of critique on FDD, since it

might not be as agile as methods like extreme programming. Another argument against

FDD is that all the design happening up front is for code to be implemented within at

most a couple of months, but design flaws might take longer to surface.

2 Comparison
A comparison between the different methodologies can be made based upon the above

descriptions. The methodologies will be compared by their ability to respond to changing

requirements, ability to respond to changes in the development team, their suitability for

small teams and short projects and suitability for critical projects.

Methodology Response to

changing

requirements

Ability

to adopt

new

team

members

Suitability

for small

teams

Suitability

for short

projects

Suitability

for

critical

projects

Waterfall -- ++ - - ++

FDD + + + + +

XP ++ - ++ ++ --
Table 1, a comparison of different software methodologies (-- very bad, - bad, + good, ++ very

good)

The results of our study above have been summarized in Table 1. The waterfall

method tends to be more suitable for mission critical projects, and is able to support

changes in the development team because of its extensive documentation. However, this

same documentation makes it not very suitable for small teams and short projects, and

makes it hard to quickly adopt changing requirements.

The Extreme Programming practice in contrast handles changing requirements very

well, and has been developed to be used by small teams. Its ability to adopt new team

members has been based on these small team sizes. It is not sufficient enough for a new

developer to read through the documentation to get up to speed with the project. As

stated above, XP also is not suitable for very large, critical projects.

Feature Driven Development tends to be in the middle of XP and the waterfall model.

Its documentation is more comprehensive than in XP, and causes the method to be

suitable for larger and mission critical projects as well. The same documentation also

means it is able to respond more effectively to changes in the project team formation.

9 BuddyFuse appendix C: Research study

Being an iterative agile development methodology, it is also able to respond to changing

requirements and suitable for small teams and projects.

3 Software development method applicable
Now we have learned about different software development methodologies, it is time

to reflect on their positive and negative values combined with the nature of the project to

be developed.

3.1 Project nature

As described in the PROJECT PLAN, the project has a couple of constraints. The

programming work will be done by only two people and it should be finished within three

months. The lead developer also takes on the role as customer and project manager.

The PROJECT DESCRIPTION also puts us in front of a number of challenges.

Integrating the software product into a third party application (Windows Live

Messenger) might become a technical challenge requiring deep Windows programming

knowledge and quite some experimentation up front. Most of the features in the

application will have to be built based on these experiments. New releases of Windows

Live Messenger or the Hyves API might affect the requirements during the course of the

project.

3.2 Conclusion

The project nature described above has a couple of similarities with the agile home

ground introduced in paragraph 1.2 above. A small team will execute the project and

requirements can change during development. Although the programmers on the project

might not be considered as senior programmers, both of them are expert in application

development on top of the Windows Live platform and in this way they will bring a lot of

experience.

The waterfall model does not seem to be suitable to be used because of the possibly

changing requirements. Next to that, it will be hard to plan for technically difficult areas

in the design that might require prototyping up front.

This means one of the agile methodologies might be more suitable for this project.

The biggest differences between extreme programming and feature driven development

are the more comprehensive design phases in the latter. Since most of the features

require deep integration with the Messenger application, it seems to be a good idea to

build a basic framework exposing the kind of integration needed. It makes sense to

design such a framework up front, so features can be built on top of the framework more

effectively later on. In contrast to FDD’s design phases extreme programming’s “simplest

implementation first” approach does not seem very suitable for this part.

However, FDD has also been designed to be used in large teams and projects. Since

we are dealing with a small project and a small team, some ideas of extreme

programming might also be useful. For example, because the role of project leader will be

fulfilled by the same person who will implement most of the program, it seems

reasonable for him to make adjustments to the code on the fly by refactoring (like

promoted in XP). Thus, it might be useful to combine some of the ideas of FDD with

extreme programming. This seems feasible to do because the user stories based approach

10 BuddyFuse appendix C: Research study

of extreme programming has a lot of similarities with the feature based approach

described in FDD.

Based on the above discussion, we propose to follow the extreme programming

methodology with a couple of adjustments. The tasks composed of the user stories should

be divided into different domains, similar as how features are categorized in FDD. Before

starting on a task belonging to a particular domain, that domain should be properly

designed and an underlying framework required by all the tasks belonging to the domain

should have been built first. The global design of the different domains should be well

documented. Just like in feature driven development, a task should be completely tested

before moving on to the next task.

11 BuddyFuse appendix C: Research study

Part 2: Integrating with existing

applications

How can one add functionalities to existing compiled programs beyond

the possibilities of exposed extensibility-APIs and without access to its

source code?

Without the source code of an existing application / program, it is a cumbersome task

to add new functionality to it. For our project we will need to extend Windows Live

Messenger with new buttons, contacts and other functionality. In this study we will take

a look at a method to accomplish this called function interception. It should be

mentioned other methods exist to modify an application’s functionality. For example,

binary patching of executables is often used to make small adjustments to a program.

Sometimes, the operating system provides methods to “hook” into a running application;

this method is used by for example computer based training or accessibility applications.

We have chosen to focus on function interception since it seems the most suitable

method for the level of integration required. Next to this, existing extensions for

Windows Live Messenger based on function interception have already proven this

method is suitable.

Because of the nature of our project we will also focus on programs written for the

Win32 platform, but the ideas behind the described methods should be applicable to

other platforms as well.

What do we actually mean by adding functionalities to an existing application or

program? Normally, when one wants to add functionality to a program you modify its

source code and add or modify its procedures. Different procedures get called during the

execution of a program, and the execution order of these procedures defines the behavior

of the program. This means that if we can make modifications to the execution of

different procedures, we essentially can modify the functionality of a program.

A lot of these procedures are contained within the program. Because it is difficult to

find out what the task of such an internal procedure is without the source code or its

documentation, it is hard to modify calls to and from these procedures in a meaningful

way. However, the majority of procedures called during the execution of a program

reside in other libraries. These libraries might contain well documented functions, for

example those exposed by the underlying operating system. At least they almost always

have a meaningful name by which other programs can address them. We hope that by

monitoring and modifying these function calls and their return values we can eventually

change the functionality of the program. Let us take a look at different methods to

accomplish intercepting these function calls. Afterwards, the techniques studied will be

used to explain how we can monitor the network traffic in a target application.

12 BuddyFuse appendix C: Research study

1 DLL injection
Before we can explain techniques to accomplish function interception in the next

section, it is important to introduce the concept of code injection. Two of the methods to

intercept function calls described below, will require writing to the memory space of the

target application. This cannot be achieved however, when the interception code does not

reside in the address space of the target process. A number of different methods exist to

force loading of a dynamic link library into another process on the Windows platform, a

technique referred to as DLL injection.

 Register the DLL as an AppInit DLL in the system registry. DLLs listed here

will be automatically loaded into every process that loads the operating

system library User32.dll.

 Use the SetWindowsHookEx or CreateRemoteThread functions to force

injection of a DLL into an already running process.

 Place a DLL with the same name as a library loaded by the target application

in the directory of that application. This proxy DLL will now be loaded instead

of the original one. Be sure to forward function calls to the original library, so

the proxy DLL does not break the target application its functionality.

The disadvantage of the first method is the DLL to be injected will be loaded into

every process loading User32.dll. This can waste memory of the computer if DLL

injection was only necessary to inject into a single process. In a similar way the second

method might be unsuitable if one wants to inject into a target process every time it is

loaded, since one must monitor whenever it is running to initiate the hooking process.

The third method is more suitable for this task, since the target application will load it

automatically.

2 Intercepting function calls
Table 2 shows what happens exactly when an application makes a call to a function

residing in a dynamically linked external library. It uses the Win32 function

SendMessageW - which resides in the user32.dll library - as an example. When the

application code calls the function, it does not do this directly, since there is no way for it

to know where the function has been loaded in memory. Instead, the program changes

execution to the entry for the imported function in the Import Address Table (IAT). This

table contains entries for all functions residing in external libraries imported by the

program. When the executable is being run, the dynamic linker fills in the slots in the

IAT of every linked function with an unconditional jump to the address of the actual

function code. Using this table we will explain three different methods of function

interception, namely proxy libraries, modification of an application’s Import Address

Table (IAT) and modification of the target function.

13 BuddyFuse appendix C: Research study

Type Address Data Description

Import Address
Table

0x00000010 jmp 0x10000000 USER32.SendMessageW IAT entry

 … …

Application code 0x00000100 call 0x0000010 call USER32.SendMessageW

 … …

User32.dll code 0x10000000 push ebx start of SendMessageW

 … …

2.1 Proxy libraries

One way to intercept the intermodular call would be to write a dynamic link library

similar to the one containing the function we are trying to intercept. The target

application must then load this proxy DLL instead of the original one. This can be

enforced by naming the proxy DLL the same as the original one and copying it to the

application’s directory, possibly overwriting the original version. To make sure the target

application will still behave normally, the proxy DLL must expose the same functions as

the original DLL, and forward all function calls to the original DLL. If we look at Table

2, this would mean that the address 0x10000000 would not contain the code of the

original User32.dll file, but the code of the proxy DLL. This process is essentially the

same as described above as a method of DLL injection.

Since all function calls to the target library will be rerouted via the proxy DLL, it is

possible to change the way the call will be handled. The code in the proxy DLL can

modify parameters, return values, or choose not to forward the call at all.

The advantage of this method is that it is relatively simple to accomplish. As soon as

we have written the proxy DLL, the operating system DLL loader makes sure calls are

forwarded to our DLL. There is no advanced technique involved such as modifying the

application’s memory. However, it requires us to write separate DLLs for every module

imported, and these DLLs might be difficult to maintain.

2.2 Import Address Table modification

Another method to achieve function interception is to modify the target application’s

Import Address Table during runtime. In Table 2 this means overwriting the data at

0x00000010 with an unconditional jump to a replacement function. When the application

now calls the target function, the replacement function will be called instead. The

replacement function can then execute custom code, and if necessary call the original

function before returning execution to the caller.

Function interception by this method does however not intercept every function call

to the target method, but depends on how the function is invoked. Figure 2-1, displays a

schematic view of how a function pointer can be obtained to a function (TargetFunction)

in a dynamically loaded module (TargetModule) can be retrieved (and thus invoked).

With this figure it can be shown what function calls can be intercepted by modifying

the Import Address Table of Executable.exe. When the entry of “TargetFunction” is

modified, only the dashed pointer will point to a new function. This means only

Table 2, simplified view of a call to SendMessageW in USER32.dll

14 BuddyFuse appendix C: Research study

invocations using this pointer will be intercepted. As can be seen, there are still two

other pointers pointing to the original not intercepted function.

One of these pointers is located in the Import Address Table of another module

(Module.dll) loaded by the process. When a function compiled in Executable.exe calls

ModuleFunction residing in this other module, ModuleFunction function might call

TargetFunction by looking up its address in the non-modified address table of

Module.dll. This means indirect calls to TargetFunction are not intercepted, unless the

Import Address Tables of all loaded modules are modified.

The other pointer comes from Kernel32.dll. This operating system library can be used

to dynamically link a module at run-time. With the LoadLibrary function, a module can

be loaded at run-time. Then when this library is loaded, function pointers of exported

functions can be retrieved with the GetProcAddress function. In the figure, when a

function in Executable.exe uses GetProcAddress to obtain a function pointer to

TargetFunction, function calls to this pointer will not be intercepted. This can be

overcome by modifying the IAT-entry of GetProcAddress itself to point to an interception

function returning the address of the interception function for TargetFunction instead of

the original value.

Depending on the goal of the interception function, it can be either a disadvantage or

an advantage that not every function call to the target function is intercepted. For

example, if function interception is used to instrument all calls originating from

Executable.exe to TargetFunction, IAT-modification can play a useful role. However, if

one wants to intercept each and every call from a specific process to TargetFunction, it

might be a cumbersome task to accomplish using IAT-modification.

Kernel32.dll

Module.dll

TargetModule.dll

TargetFunction

Executable.exe

Import Adress Table

...

ModuleFunction

TargetFunction

GetProcAddress

Import Adress Table

TargetFunction

ModuleFunction

GetProcAddress

...

Return value for “TargetFunction”:

Figure 2-1, different ways a dynamically linked procedure can be invoked inside a single process

15 BuddyFuse appendix C: Research study

2.3 Modifying a target function in-memory

The third way we

discuss to intercept

functions involves

modifying the data at

the address of the

target function. By

overwriting the first

couple of bytes of the

target function with

an unconditional jump to a replacement function, function calls to the target function

will be intercepted. In Table 2, this would mean writing the binary code of an

unconditional jump at memory address 0x10000000. The difficulty in this method comes

when the replacement function needs to call the original function, since the first few

bytes of the target function have been overwritten with a jump instruction. This means

these bytes must be backed up, and executed before continuing execution at the

remaining part of the intercepted function.

Detours is a library developed by Microsoft Research that accomplishes this using a

so-called trampoline function. The trampoline function is a function that can be called by

the replacement function (detour function) which executes the overwritten bytes and

then calls the remainder of the original target function (Figure 2-2). The Detours library

is available freely for non-commercial use. A disadvantage of using Detours is the

licensing costs for commercial uses. The main advantage of modifying the actual target

function is that it works regardless of the method the application uses to locate the

target function. (Hunt & Brubacher, 1999)

3 Intercepting the network traffic of an application
We can now apply the techniques described above to intercept the network traffic of a

target application. Let us see how we can intercept TCP and HTTP traffic of a target

application.

3.1 Winsock

On the Windows platform, most applications use the Winsock libraries to create TCP

and UDP sockets. A socket is created using the socket function. After creation, the socket

can connect to a server using connect. When the connection has been established, the

send and recv functions are used to respectively send and receive data packets. The last

three functions will normally block the application execution until new information

arrives from the network driver. However, the WSAAsyncSelect function can be used to

enable asynchronous functionality. This will make the calls non-blocking, and a window-

message will be posted to the application’s window procedure when new information is

available (for example, when a new packet arrives). The WSAEventSelect puts the socket

into non-blocking mode in a similar way, but in this section we will not take this function

into consideration for the sake of simplicity.

Figure 2-2, invocation of a detoured function (Hunt & Brubacher,

1999)

16 BuddyFuse appendix C: Research study

By intercepting function calls to recv and send (located in Ws2_32.dll), it is now

possible to intercept incoming and outgoing data. The injected function can even modify

the buffer before it is sent to the original function, or modify the incoming buffer before it

is sent to the application. This process is illustrated in Figure 3-1.

Network cardApplication code Injected codeWS2_32.dll library code

Send(s, buf, len, flags)

Hook(s, buf, len, flags)

ModifyData(buf)

SendTrampoline(s, buf, len, flags)

SendData

SendRemainder(s, buf, len, flags)

Figure 3-1, A schematic view of an injected process sending data using Winsock

If the application needs to inject its own data into the socket, it can do so by

intercepting calls to recv, resulting in a similar execution flow as illustrated in Figure

3-1 for send. However, in case of an asynchronous socket it is likely the target

application will only call the recv function when receiving a FD_READ message into its

window procedure. This means it is not possible to inject receiving data an arbitrary

moment, since the recv hook might not be called at that moment.

It is possible however to trigger the host application to call recv. This can be achieved

by manually sending the FD_READ message to the target application. To find out to

what window this message must be sent and with which parameters, it is possible to

intercept the WSAAsyncSelect function. By doing so, one can also find out which sockets

and which operations are selected for asynchronous behavior.

3.2 WinInet

Although Winsock hooking seems suitable to intercept most network traffic,

sometimes it might be easier to apply a hook at a higher level. In this section we will

introduce a different way to intercept HTTP requests made by a process.

17 BuddyFuse appendix C: Research study

Most applications on the Windows platform use the WinInet library provided by

Microsoft Internet Explorer to make HTTP requests. The WinInet library exposes

features to create HTTP, FTP and Gopher requests. The idea to intercept HTTP requests

executed by the WinInet library is slightly different than the idea we of intercepting raw

Winsock packets described above.

A similar method to intercepting calls to recv and send, would be to intercept WinInet

functions InternetReadFile and InternetWriteFile. However, the target application might

read and write requests part by part, synchronously or asynchronously, while most likely

the injecting application needs to know details of all parts before it can forward the

original function call.

A different approach would be to intercept calls made to InternetConnect. This

function takes eight parameters, two of them being the target server name and port

number. By hosting a (local) proxy server and changing the server name and port to the

configuration of this proxy server, all calls will be rerouted to the proxy server. In this

way the proxy server can take care of forwarding requests and responses, with the

ability to modify sent and received.

With these two examples we have shown two different applications of function

interception and explained this method can be useful to intercept both low and high level

API calls. Note that there are other ways to intercept network traffic, for example by

writing a low level driver, an approach taken by the widely used WinPcap library (CACE

Technologies).

18 BuddyFuse appendix C: Research study

Part 3: Interaction with services

What are the technologies behind Messenger and Hyves, and what kind

of APIs do these services expose?

Since the application we are about to develop is going to interact with two programs,

it is important to give an introduction to these programs and the way we can interact

with them. We will take a closer look at both Windows Live Messenger and Hyves, the

technologies they are built upon, and the Application Programming Interfaces (APIs)

they expose for third party applications.

1 Windows Live Messenger
Windows Live Messenger is an instant messaging application developed by Microsoft.

Formerly known as MSN Messenger, it is currently the most popular instant messaging

client in the Netherlands, and one of the most popular worldwide. Over the years, many

features have been added to the application, including a different number of APIs. Let us

take a closer look at the technologies used by the application itself, and then explore the

different interfaces the application exposes for third party applications.

1.1 Technologies

Since Windows Live Messenger is closed software, it is a difficult task to acquire

information about its inner workings. We will have to use a number of different third

party tools to find out more about it, and leverage information on the internet other

developers have already found out about the program.

By using a tool like Dependency Walker, one can quickly find out what libraries and

functions are used by a specific executable on the Windows platform. Spy++ is a tool that

can supply us with information about the Win32 windows created by the messenger

process, and messages sent to the different windows. Resource Hacker can expose the

resources embedded inside Win32 PE files. Finally, we can use a tool like Etherdetect to

monitor the network traffic of a computer, and thus find out how and what information

the application communicates over the network.

1.1.1 Windows Live Platform

Windows Live Messenger is part of the Windows Live platform. It makes heavy use

of services exposed on the Windows Live platform, and exposes its own services under

this umbrella. This means it uses other Windows Live technologies to store different

kinds of information. Windows Live Contacts is the platform used to store contact list

information. Products such as Mail, Spaces and Alerts are integrated in the client.

1.1.2 Communication

The instant Messaging protocol Messenger uses is called MSNP. MSNP is not an

open standard, so again we are facing the problem no official information is available

about it. However, over the years a lot of research has been done by third parties on the

protocol, and most of it is documented at websites such as (MSNPiki) and (Mintz).

19 BuddyFuse appendix C: Research study

Additional information about the protocol can be gathered by examining network traffic

with a tool like Etherdetect.

1.1.3 UI Platform

When we use Spy++ to obtain information about the windows created by messenger,

we see most of the window names contain “DirectUI”. Next to this, Spy++ does not

recognize any of the subwindows or buttons of the application. This means the controls

drawn by messenger are so-called windowless controls. Messenger does not use a

publicly available library such as Windows Forms or Windows Presentation Foundation

to generate its user interface. Instead, it uses a library called DirectUI. DirectUI is an

internal Microsoft product used in parts of Windows XP and Windows Vista, and not

much information is publicly available about it. Using dependency walker, we can see

that Messenger uses the libraries ux*.dll and msncore.dll (depending on the application

version) to render its user interface.

By referencing these functions and intercepting the calls Messenger makes to them

(described in Intercepting function calls above) it is hoped our application can make

modifications to the Messenger user interface.

1.2 Application Programming Interfaces

Over the years Microsoft has released a different number of APIs for Windows Live

Messenger and the Windows Live platform. Here is an overview of APIs that might

become useful in the development of our application.

1.2.1 Activity API

The Windows Live Messenger Activity API allows developers to build applications

that take advantage of the multiuser communication functionality provided by Windows

Live Messenger. Developers can design applications using this simplified connection

model.

The application in the activity window is a web page that interacts with Windows

Live Messenger through the application programming interface that is defined in the

software development kit (SDK). The web page can provide any functionality that can be

present in a normal Web page. The web page is hosted in a messenger conversation

window. (Microsoft Corporation)

1.2.2 Windows Live Agents

A Windows Live Agent is an interactive robot that analyzes an end-user's queries

and matches them to the topic questions that are stored in the knowledge database.

Windows Live Agents can run on the Messenger network. In this way, an Agent

“simulates” a regular instant messaging contact.

1.2.3 Windows Messenger API

A different version of Windows Live Messenger, called Windows Messenger, exposes

an advanced COM-based API allowing third parties to interact with the core components

of Messenger. Although support for these APIs has been discontinued, the COM Type

Libraries are still embedded in the latest versions of Windows Live Messenger.

Using resource hacker, we have been able to extract all type libraries embedded in

the main Windows Live Messenger executable msnmsgr.exe. Using the Visual Studio

20 BuddyFuse appendix C: Research study

Object Browser tool, we can explore the types contained in the library. It turns out

Windows Live Messenger still uses these APIs internally. As described by ("kirin", 2005),

an application can take hold of these interfaces by intercepting calls to the Component

Object Model (COM) CoRegisterClassObject function.

1.2.4 Add-in SDK

Similar to the Windows Messenger API described in 1.2.3 above, Microsoft also

released a tryout version of an Add-In SDK in version 8 of Windows Live Messenger

(Levy). However, support for this extensibility model has been discontinued as well.

1.2.5 Windows Live Contacts API

Using the Windows Live Contacts API, developers can use the functionality of the

Windows Live Contacts address book service. Since Windows Live Messenger loads its

address book from this service, changes made to the Windows Live Contacts address

book will also be reflected in the messenger client.

1.2.6 Windows Live Alerts

Windows Live Alerts is a service that can be used by third parties to deliver

notifications to subscribed Windows Live users. Windows Live Messenger is one of the

platforms where alerts will be delivered, in the form of so-called toast-popups.

2 Hyves
Hyves is a social networking tool similar to MySpace or Facebook. It is primarily

used in the Netherlands, where it has grown to one of the country’s most popular web

sites. (NU.nl/Wieland van Dijk, 2007)

Hyves is a web application and does not run on the desktop of the end user. This

means the technology used in their platform will mostly be irrelevant for us, since we

will not be able to integrate with these technologies directly. Besides screen-scraping the

website which is not approved by Hyves, we can only interact with the APIs exposed by

the service, so let us take a closer look at these services.

2.1 Application Programming Interfaces

After the success of the Facebook application platform released in 2007, other social

networks around the world followed its example. In this section we will take a look at

three different ways Hyves currently allows us to interact with its service, being with

their web based API, Chat platform and gadget platform.

2.1.1 Hyves API

The Hyves API is a request based interface to retrieve and submit information from

and to the Hyves platform. Using the OAuth authorization protocol, third party

applications can make requests on behalf of the end user. Information programs can

interact with using the Hyves API are photos, blog posts, friends, gadgets, hangouts,

tips, scraps, and WWWs (“WhoWhatWhere” information).

Another feature of the Hyves API is to request an authentication token for the Hyves

Chat platform described below.

21 BuddyFuse appendix C: Research study

2.1.2 Chat platform

Using a Hyves chat authentication token the application can sign in to the Hyves

chat service on the end user’s behalf. The chat server is based on the Extensible

Messaging and Presence Protocol (XMPP, formerly known as jabber), an open standard

for real time communication.

Using the chat platform applications can send instant messages to Hyves friends.

The XMPP server also notifies connected applications of the presence of Hyves friends.

2.1.3 OpenSocial

On November 1st 2007 Google announced the release of OpenSocial - a set of common

APIs for building social applications across the web - for developers of social applications

and for websites that would like to add social features. OpenSocial defines a common

API for social applications across multiple websites. With standard JavaScript and

HTML, developers can create applications that access a social network's friends and

update feeds.

Hyves is one of the first platforms supporting the OpenSocial specifications. This

means OpenSocial based gadgets can be created for the Hyves platform. Hyves users can

then add these gadgets to their Hyves home page or profile page. The gadgets built on

the platform can access a limited amount of information from the Hyves user and his

friends.

DEPARTMENT OF SOFTWARE ENGINEERING (EEMCS)

DELFT UNIVERSITY OF TECHNOLOGY

D. Requirements

analysis
BuddyFuse

Yousef El-Dardiry (1332686)

10/27/2008

2 BuddyFuse appendix D: Requirements analysis

Table of Contents
Features .. 3

1 MoSCoW .. 3

1.1 Must haves.. 3

1.2 Should haves... 3

1.3 Could haves .. 3

1.4 Would haves ... 3

2 User stories ... 4

2.1 Coupling of Hyves accounts to messenger accounts ... 4

2.2 Loading Hyves friends in Messenger .. 4

2.3 Notifications of activity on Hyves via alerts ... 4

2.4 Access to Hyves user profiles from Messenger ... 4

2.5 Mechanism to check for updates and install them if necessary ... 4

2.6 Showing status of Hyves friends ... 4

2.7 Enabling chat interoperability between Hyves friends and the Messenger client........................ 4

2.8 Show Hyves WhoWhatWhere .. 4

2.9 Update Hyves WhoWhatWhere when changing PSM .. 4

2.10 Show Hyves display picture ... 5

2.11 Posting scraps to Hyves users ... 5

2.12 Posting “tikken” to Hyves users .. 5

2.13 Access to a mini-Hyves website ... 5

2.14 Match Hyves contacts with Windows Live buddies and show them as a single user 5

2.15 “Smart messenger groups” based on profile information in Hyves .. 5

2.16 Show latest blog posts and photos of Hyves users .. 5

2.17 Add support for all XMPP networks.. 5

2.18 Integration with other social networks ... 5

Non-functional requirements .. 6

1 User documentation & usability .. 6

2 Legal aspects ... 6

3 Compatibility ... 6

4 Programming language .. 6

5 Language ... 6

6 User interface .. 7

3 BuddyFuse appendix D: Requirements analysis

Features

1 MoSCoW
The MoSCoW overview below divides the features of the application into must haves,

should haves, could haves and would haves. The capitalized word after every feature

functions as a name the features can be referenced by from other documents and code.

1.1 Must haves

1. Coupling of Hyves accounts to messenger accounts (ACCOUNTS)

2. Loading Hyves friends in Messenger (CONTACTS)

3. Notifications of activity on Hyves via alerts (ALERTS)

4. Access to Hyves user profiles from Messenger (PROFILES)

1.2 Should haves

5. Mechanism to check for updates (UPDATES)

6. Showing status of Hyves friends (STATUS)

7. Enabling chat interoperability between Hyves friends and the Messenger client

(CHAT)

8. Show Hyves WhoWhatWhere (WWW)

1.3 Could haves

9. Update Hyves WhoWhatWhere when changing PSM (WWWPSM)

10. Show Hyves display pictures (AVATAR)

11. Posting scraps to Hyves users (SCRAPS)

12. Posting “tikken” to Hyves users (TIKKEN)

13. Access to a mini-Hyves website (MINI)

1.4 Would haves

14. Match Hyves contacts with Windows Live buddies and show them as a single

user (MATCH)

15. “Smart messenger groups” based on profile information in Hyves (GROUPS)

16. Show latest blog posts and photos of Hyves users (ACTIVITY)

17. Add support for all XMPP networks (XMPP)

18. Integration with other social networks

4 BuddyFuse appendix D: Requirements analysis

2 User stories

2.1 Coupling of Hyves accounts to messenger accounts

The user should be able to associate and authenticate his Hyves account with a

specific Windows Live Messenger account. He also must be able to sign in and sign out

with the associated accounts.

2.2 Loading Hyves friends in Messenger

Hyves friends of the signed in Hyves user should be displayed in messenger.

2.3 Notifications of activity on Hyves via alerts

Alerts must popup when the signed in Hyves user receives a new scrap or private

message on Hyves.

2.4 Access to Hyves user profiles from Messenger

A basic view of the Hyves user profiles of Hyves friends should be accessible from

within the messenger client.

2.5 Mechanism to check for updates

The application should periodically check for updates at a web server. Updates

should be able to be mandatory or optional, and the application should behave according

to this.

2.6 Showing status of Hyves friends

When a Hyves friend changes his status on Hyves Chat, his status should be shown

in the Messenger client. Vice versa, the status of the Messenger user should be reflected

in Hyves Chat.

2.7 Enabling chat interoperability between Hyves friends and the

Messenger client

The user should be able to open a conversation with an online Hyves friend and send

and receive messages in this conversation. The user’s messenger status should be

reflected on Hyves, so Hyves users can also start a chat with the Hyves user using the

messenger client.

2.8 Show Hyves WhoWhatWhere

Show the WhoWhatWhere message of Hyves in the Messenger client, similar to how

the Personal Status Message is shown of regular users. Update this message when an

Hyves user posted a new WWW.

2.9 Update Hyves WhoWhatWhere when changing PSM

When the messenger user updates his or her Personal Status Message, he should be

able to select whether he wants to push it to Hyves. If so, update the user’s Hyves WWW

simultaneously with the PSM.

5 BuddyFuse appendix D: Requirements analysis

2.10 Show Hyves display picture

Load the display picture of every online user from Hyves, and show this picture in

the user interface.

2.11 Posting scraps to Hyves users

The user should be able to post Hyves scraps to his friends from the messenger

interface.

2.12 Posting “tikken” to Hyves users

The user should be able to send “tikken” to Hyves friends.

2.13 Access to a mini-Hyves website

The user should be able to access a small version of the Hyves website with the most

important functionality inside the messenger client.

2.14 Match Hyves contacts with Windows Live buddies and show

them as a single user

Instead of adding all Hyves contacts to the contact list, all Hyves buddies are

matched with Windows Live contacts. If the end user already added the Hyves friend as

Windows Live contact, do not add a new user, but copy Hyves functionality to the

existing user.

2.15 “Smart messenger groups” based on profile information in

Hyves

Let the user organize their contacts using “smart groups”. These are groups based on

Hyves profile information. For example, the user would be able to group contacts by high

school.

2.16 Show latest blog posts and photos of Hyves users

Show Hyves blog items and latest photos of Hyves contacts similar to how contact

cards show this information of regular contacts.

2.17 Add support for all XMPP networks

The user can select other IM networks based on XMPP to sign in with

simultaneously. Contacts from these networks will be loaded as well, and available for

instant messaging.

2.18 Integration with other social networks

Add similar functionality for other social networks such as Facebook.

6 BuddyFuse appendix D: Requirements analysis

Non-functional requirements

1 User documentation & usability
One of the goals of the application is seamless integration, which means the end-user

should only notice very basic changes in the user experience. This means no end-user

documentation is necessary for the application. However, a web page with frequently

asked questions will be useful, to explain the product to potential users.

2 Legal aspects
Since the application is meant to be distributed via the internet, it is important it

does not violate any laws / licenses. All third party source code used in the application

must be checked for an accompanying license, and if it does not serve commercial

purposes one must be purchased, or we have to switch to another library.

Before final release, it will also be important to write a user license agreement to

accompany the installer. Probably, this process must be supervised by a law firm.

3 Compatibility
The application should be compatible with all versions of Windows Live Messenger 8

and up. It must be tested to work with 32-bit versions of the XP and later Windows

operating systems. 64-bit is to be supported in a future release.

The application should also be compatible with other extensions for Windows Live

Messenger, mainly Messenger Plus! Live. It should also be checked for compatibility

with add-ons such as StuffPlug and Messenger Discovery.

4 Programming language
As mentioned in the PROJECT PLAN, the preferred programming language for both

involved developers is C#. This language is widely adopted, and relatively easy to learn

for someone with experience in object-oriented programming. Therefore, it should be

relatively easy to find additional team members future if necessary.

Low level parts of the application will be written using C++ and Managed C++, if

necessary in combination with inline assembly. C# remains the preferred language

however, and other languages should only be used to expose functionality which cannot

be implemented with C#.

5 Language
The first version of the product must support English and Dutch as user interface

languages. However, during development we must keep in might future releases should

be able to contain more languages.

7 BuddyFuse appendix D: Requirements analysis

6 User interface
The application will integrate most of its features into Windows Live Messenger in a

seamless way as described above. This means for most features the user interface

provided by Windows Live Messenger will be reused. If additional dialogs are found to be

necessary, WinForms technology can be used. Dialogs can be designed at the beginning

of development iterations.

DEPARTMENT OF SOFTWARE ENGINEERING (EEMCS)

DELFT UNIVERSITY OF TECHNOLOGY

E. Design and

implementation
BuddyFuse

Yousef El-Dardiry (1332686)

1/26/2009

2 BuddyFuse appendix E: Design and implementation

Table of Contents
Introduction .. 3

Initial design phase .. 4

1 Feature dependencies ... 4

2 Architectural design.. 6

2.1 Overview ... 6

2.2 Packages ... 7

2.2.1 Hooks.. 7

2.2.2 Loader .. 7

2.2.3 Core .. 8

2.2.4 UIWrapper ... 8

3 Core .. 9

3.1 Design overview.. 9

3.1.1 Controllers ... 9

3.1.2 User interface .. 9

3.2 Class overview .. 10

3.2.1 Mashenger and IntegrationManager classes ... 10

3.2.2 Window classes .. 10

3.2.3 HyvesClient and Contact classes .. 10

3.2.4 MessengerClient .. 10

3.2.5 Network interception classes .. 10

3.2.6 AccountManager and UserAccount classes .. 11

3.3 Protocol interception design... 12

3.3.1 Direct Winsock connections .. 12

3.3.2 Gateway-relayed connections .. 12

3.3.3 Using ISockets ... 13

User stories implementation ... 14

1 Coupling of Hyves accounts to messenger accounts .. 14

1.1 User interface ... 14

1.2 Class implementation .. 15

2 Loading Hyves friends in messenger ... 17

2.1 Injecting contacts ... 17

2.1.1 wlcomm.exe .. 17

2.2 Class implementation .. 17

3 Showing status of Hyves friends .. 19

3.1 Class dependencies ... 19

4 Enabling chat interoperability between Hyves friends and the Messenger client 20

4.1 Class dependencies ... 21

3 BuddyFuse appendix E: Design and implementation

Introduction

In this document the overall application design and implementation specifics are

discussed. The first part starts by analyzing the user stories and the building blocks

required for every feature to be built upon. Based on this analysis, an architectural

design will be explained and the different packages are introduced. Then the overall

design of the main application classes will be discussed, as well as some specifics on

classes related to functionality the user stories will be built upon.

The second part discusses the implementation and design of every specific user story.

Story by story, it discusses the overall idea behind that particular stories

implementation as well as a short description of the related classes.

For a proper understanding of the technical parts in this document, it is important to

have read the RESEARCH STUDY. A general knowledge of the Windows Live Messenger

service architecture and MSNP protocol is also recommended

(http://msnpiki.msnfanatic.com, http://hypothetic.org/docs/msn/).

4 BuddyFuse appendix E: Design and implementation

Initial design phase

Before we start discussing the actual development iterations where every part of the

software will be designed, developed and tested on a per feature basis, we take a look at

the initial design. This includes looking at the overall architecture, and decomposing the

application into different packages.

1 Feature dependencies
By examining the list of features in the REQUIREMENTS ANALYSIS, four common

libraries can be determined where the development of these features will depend on.

First of all, many of the features will depend on integrating with the Messenger user

interfaces. To develop these features, a library will be required to integrate with the

DirectUI UI framework Messenger has been built upon. Possibly, we also need to

integrate into Win32 features used in the user interface, such as the creation of menu

items.

Another key pillar of the program will be network traffic interception. Features such

as adding contacts to the contact list, or enabling chat interoperability cannot be

achieved using any of the exposed APIs. We can achieve this however by injecting our

own data into the MSNP protocol Messenger uses to communicate with the chat servers.

HTTP requests to web services can also be intercepted to inject our own data.

Both the UI integration and network traffic interception modules should make use of

function detouring to achieve their functionality. This means a library should be written

to expose function interception to the other modules. This functionality should be

exposed to both C++ and .NET languages, so the libraries built on top of it do not have

any language restriction.

The next module features will be built upon is the internal Messenger API. Although

this API officially has been deprecated, we can still get a hold of it by intercepting the

Component Object Model (COM) CoRegisterClassObject function, as described in the

RESEARCH STUDY. In this function we can get a hold of the IMessenger interface,

exposing objects, methods and events which might become useful during the

development of a different number of features.

The last pillar is of course the Hyves API. A module to connect with both the HTTP

based Hyves API and the Hyves Chat platform will be necessary to integrate Messenger

with Hyves. Most features will depend upon at least one of these four domains. In Table

1 on the next page, the expected dependencies of every feature are shown.

5 BuddyFuse appendix E: Design and implementation

Depends upon

Feature

UI Integration

Network

traffic

interception

Hyves API Messenger API

1. Coupling of Hyves

accounts to messenger

accounts

2. Loading Hyves friends

in Messenger

3. Notifications of

activity on Hyves via

alerts

4. Access to Hyves user

profiles from

Messenger

5. Mechanism to check

for updates

6. Showing status of

Hyves friends

7. Enabling chat

interoperability

between Hyves friends

and the Messenger

client

8. Show Hyves

WhoWhatWhere

9. Update Hyves

WhoWhatWhere when

changing PSM

10. Show Hyves display

pictures

11. Posting scraps to

Hyves users

12. Posting “tikken” to

Hyves users

13. Access to a mini-

Hyves website

14. Match Hyves contacts

with Windows Live

buddies and show

them as a single user

15. “Smart messenger

groups” based on

profile information in

Hyves

16. Show latest blog posts

and photos of Hyves

users

17. Add support for all

XMPP networks

18. Integration with other

social networks

Table 1, dependencies of features upon four main domains, a green cell indicates a dependency,

and a yellow cell a possible dependency

6 BuddyFuse appendix E: Design and implementation

One of the first things one might notice when looking at Table 1, is not many features

depend upon the original Messenger API. Although not a lot of features might strictly

depend on it up-front, it is likely features of the API will be used throughout the code for

scenarios such as looking up contacts or conversation windows. This should become

clearer when we advance to the first development iterations.

2 Architectural design
In this part an architectural overview of the design will be discussed. Next, the

system will be divided into different packages, and these will be briefly introduced.

2.1 Overview

Figure 2-1, shows us an architectural overview of the system. First, there is the

framework level. The main components will be built on top of the .NET Framework.

However, since the original Messenger API is built on top of the Component Object

Model object based-framework, this is also listed as one of the platforms. The Win32

APIs will be used for low-level integration with the Messenger client.

On top of the underlying frameworks, a hooking library for function interception

must be built. This library will expose functionality to intercept function calls made by

the Messenger application to other modules.

On the next level are the modules which will be directly used to build features upon.

These are the four domains introduced in Feature dependencies above. All modules

except the Hyves API module will require the functionality exposed by the hooking

library to implement their features.

The UI integration module can be separated into two subsets, a part to integrate

with the Messenger DirectUI library and a part to integrate with Win32 UI functions.

The network traffic interception module must intercept both Winsock and WinInet

communication, described in the RESEARCH STUDY. For the integration with Hyves, both

the chat platform and HTTP-based API will be used.

Figure 2-1, an architectural overview of the application

Win32, COM and .NET Framework

Hooking library for function interception

UI integration

DirectUI Win32

Network traffic interception

WinInet Winsock

Messenger
API

Hyves API

HTTP XMPP Chat

Platform
frameworks

Low level
libraries

Modules to
build

features
upon

Subsets of
libraries

7 BuddyFuse appendix E: Design and implementation

2.2 Packages

Now the different modules required to implement features upon have been identified,

packages can be defined to decide where to locate every module. Every package will

correspond to a project in the Visual Studio Solution, and will be built separately. This

means eventually every package will be located in a different DLL library or executable.

One constraint in defining packages is the language used to write different modules.

C++ code cannot be combined with C# code in the same package. C++ code can however

be mixed with Managed C++ (MC++) to enable integration with the .NET Framework.

Combining C++ and MC++ will be referred to as Mixed Code.

In this section four different packages will be introduced, namely the Loader, Core,

UIWrapper and Hooks packages. As a reference, their dependencies upon each other are

shown in Figure 2-2 below.

LoaderUIWrapper Core

Hooks

Figure 2-2, package dependencies

2.2.1 Hooks

As can be seen in Figure 2-1, the hooking library for function interception will be the

basis for most of the functionality in the application. This library must expose functions

to enable function interception, both to C++ and .NET based languages. Since feature

interception is an advanced task requiring low level language functionality, this library

will be written in C++ (if necessary Inline Assembly will be used as well).

2.2.2 Loader

One area not discussed as of yet, is how our extension application will be loaded by

Windows Live Messenger. To integrate our application into Messenger, our libraries

should be loaded into the Messenger process. This can be achieved in a couple of

different ways, as described in the RESEARCH STUDY. The most suitable method to use

would be to use a proxy DLL. In this way we do not need to monitor the system to see

when the Windows Live Messenger process (msnmsgr.exe) is started, since our library

will be loaded automatically when it does.

To achieve this, the proxy DLL must be written. Because this DLL will be responsible

for loading the rest of our application, we will call it the Loader DLL, or package. It must

be written in C++, because .NET code cannot be loaded during the startup of a process.

For more information on this refer to (Microsoft Corporation, 2007).

8 BuddyFuse appendix E: Design and implementation

2.2.3 Core

The actual user stories / features will be implemented in one module. Since this

module will be the one where most of the application logic resides, this module will be

named Core. As described in the REQUIREMENTS ANALYSIS, C# is the preferred language

for use in this project. The Core module will therefore be written in this language.

Functionality that cannot be written in C# will reside in one of the other packages.

With Managed C++, wrappers can be written to expose native functions to any .NET

language. This way native functions can be used in the Core project. Another method to

accomplish this is defining native functions directly in C# using P/Invoke (Platform

Invocation Services).

2.2.4 UIWrapper

To implement the user interface integration module, introduced above, our

application must integrate with the DirectUI user interface framework used by

Messenger. In the RESEARCH STUDY, we found out this library resides in one or more

DLLs in the Messenger installation directory. Since the DirectUI framework is a

framework written in native code, we must find a way to interact with it from our

managed code Core module. This can be accomplished by creating managed wrapper

classes in Managed C++ around the required native classes and methods exported by the

DirectUI library.

These wrapper classes will have to reside in a different package than the core

application functionality since it must be written in Managed C++ and C++ (mixed code).

We will name this wrapper package UIWrapper. It will only be necessary to wrap

functionality required by one of the other packages, and will therefore grow

incrementally as more user stories are going to be implemented.

9 BuddyFuse appendix E: Design and implementation

3 Core
This part introduces the design overview and class overview of the main package of

the application, Core.

3.1 Design overview

The Core module’s main task is to bind the Hyves and Windows Live Messenger

services. To implement this, classes must be implemented to interact with both of these

services, and to present information about the application’s state to the user. Based on

this idea the components in Core can be divided into three categories. The first category

consists of components exposing functionality of other programs / services (Hyves,

Windows Live Messenger), these components will be referred to as APIs because they

expose programming interfaces of existing programs. The other categories consist of

components interacting with the user interface, and the main components to tie the

others together.

3.1.1 Controllers

Although the APIs could talk directly to each

other, we have chosen to use a design based on the

mediator-pattern to loosen coupling (Wikipedia

contributors, 2008). In this design, all functionality

depending on one or more of the APIs will be

represented in its own Controller, which talks to the

APIs. By enforcing loose coupling between

components it should be easier to add new features

to the program, for example enabling support for

other social networks.

Every controller has a single responsibility to

control a particular function or coupling of one or

more APIs. For example, the SampleController in

Figure 3-1 could be responsible for logging out the

HyvesClient user whenever the MessengerClient

user logs out.

By following this single responsibility principle, we prevent the need of having a

difficult to maintain bloated manager-class binding the different components of the

application together. Every controller is expected to be a relatively lightweight class,

which makes them easy to test and maintain.

3.1.2 User interface

As described in the REQUIREMENTS ANALYSIS, the application tries to extend the

Windows Live Messenger application in a seamless way, which means most of the

features are expected to become visible to the user via the existing interface. It is

expected only small dialogs and buttons will be added to the application, which means

the UI layer of the application will be relatively small.

Based on this expectation it seems reasonable for the user interface components to

interact with the API layer in much the same way as the controllers do. User interface

patterns such as the MVC (model-view-controller) or MVP (model-view-presenter)

HyvesClient MessengerClient

SampleController

Figure 3-1: communication

between APIs via a controller.

Solid lines indicate direct

communication, and the dashed

lines indirect communication

(via events).

10 BuddyFuse appendix E: Design and implementation

pattern seem inapplicable because in most cases the actual View part of these patterns

will be provided by Windows Live Messenger itself. By giving the user interface layer a

little more power than conventional in most patterns we expect to save a lot of time that

would be spend on enforcing one of these patterns. The saved time is paid for by a slight

decrease in the loose coupling of the user interface layer. However, since this layer is

expected to be small, this price seems reasonable.

3.2 Class overview

With the overall design in mind, we can now discuss a basic class diagram showing

the relations among the most important classes to be implemented (Figure 3-2). Note

that this is a conceptual diagram of what the classes and their relationships will look

like. It is expected changes will be made during the development iterations, since we

have chosen not to design everything in advance, but to design incrementally during the

development iterations instead.

3.2.1 Mashenger and IntegrationManager classes

“Mashenger” will function as a temporary name for the project, and also be the

namespace the classes will reside in. The Mashenger class will be the entry point for the

extension, and will be initialized by the Loader. The entry point will load the

IntegrationManager class which manages the initialization of the actual extension.

3.2.2 Window classes

Similar to other window-based applications, every window will be represented in its

own class. The difference here is the actual design of the window has been implemented

by Messenger already, so these Window classes will only contain the logic added by the

extension. The Window classes used (in the diagram MainWindow, LoginWindow and

ConversationWindow) all inherit from the abstract Window class which keeps a

relationship with the original DirectUI window element.

3.2.3 HyvesClient and Contact classes

The HyvesClient class manages communication with the Hyves API and Hyves Chat.

For this functionality third party libraries will be used, namely Bee.NET for the Hyves

API, and jabber-net for communication with the chat server.

The HyvesClient class keeps track of the friends of the signed-in Hyves user

represented in HyvesContact classes. The HyvesContact classes derive from a Contact

class so other chat networks can be supported in the future. For the same reason

HyvesClient implements an IChatService.

3.2.4 MessengerClient

The MessengerClient class is the API module exposing functionality required to

integrate with Windows Live Messenger functionality unrelated to its user interface. It

utilizes the COM-based Messenger API (discussed in the RESEARCH STUDY) as well as

the network interception classes discussed below.

3.2.5 Network interception classes

Interception of HTTP(s) requests is taken care of by the WebProxy class, it raises

events to the Mashenger class whenever it intercepts an outgoing request.

11 BuddyFuse appendix E: Design and implementation

Interception of WinSock traffic is taken care of by the Socket and SocketManager

classes. The NotificationManager and Conversation classes use a Socket object to

intercept network traffic to the main Messenger server (Notification Server) and

conversation servers (Switchboard Servers).

3.2.6 AccountManager and UserAccount classes

The user account related classes contain information about accounts used by the end-

user. The AccountManager class manages the collection of activated chat clients

associated with different user accounts.

Mashenger

«interface»

IChatClient

HyvesClient

HyvesContact

Contact

MessengerContact

1

*

jabber-net

Bee.NET

1

*

UIWrapper

Hooks

Hooks::ManagedHook

LoginWindow MainWindowConversationWindow

Window

1

1

1

1

1

1

WebProxy

1

*

11

UIWrapper::DirectUI::Element

«uses»

«uses»

SocketNotificationManager

1

1

1 1

SocketManager1*

1
1

UserAccount

HyvesAccount MessengerAccount

*

*

AccountManager

1
*

«interface»

IAccountManager

1 1

IntegrationManager

SampleController

«interface»

IController

1

*

MessengerClient

1

*

1

1

1

1

1

1

1

1

Messenger

API

«uses»

1 1

Conversation

1

1

1

*

*

2..*

Figure 3-2, class overview of the Core package

12 BuddyFuse appendix E: Design and implementation

3.3 Protocol interception design

Perhaps one of the most complex parts of the Core module is the design of the

interception of MSNP (communication protocol used by Messenger) traffic. Messenger

communicates MSNP messages with the Notification (NS) and Switchboard (SB) chat-

servers either directly over TCP sockets, or indirectly via an HTTP gateway server. In

this part we will discuss how both communication channels are intercepted.

3.3.1 Direct Winsock connections

Almost in every configuration, the Messenger client will communicate with the

Messenger NS and SB servers directly over a TCP connection. This traffic can be

intercepted as described in RESEARCH STUDY (intercepting network traffic, Winsock). In

this part the class design of the Winsock interception will be discussed.

Note that the current design only supports asynchronous sockets configured with the

WSAAsyncSelect function.

NetworkInterception.Socket

The Socket class represents a single Winsock socket. It exposes events indicating

data is being read from or written to the socket. When another component handles these

events it can choose whether or not to forward them to the real socket object, and modify

data sent / received if necessary. The Socket class also exposes an event indicating the

socket is being closed.

Arguably the most important function of the Socket class is to be able to trigger the

host application to read from the socket, and then inject custom data. This functionality

is exposed via the ReceiveData method.

NetworkInterception.Socket.SocketMonitor

The SocketMonitor class registers hooks to intercept function calls to relevant

Winsock functions (WSAAsyncSelect, recv, send, close and connect). In most cases it then

notifies the targeted Socket object of this call (it keeps track of a collection of Socket

objects). SocketMonitor is implemented as a nested class inside Socket so it can forward

calls to intercepted functions to private methods of the Socket class (similar to a C++

friend class).

Networks.Messenger.MessengerSocketMonitor

A Messenger-specific SocketMonitor, which exposes events for the creation of a

Socket connected to either a switchboard or notification server.

3.3.2 Gateway-relayed connections

When the Messenger client cannot directly connect to the chat servers (for example,

due to firewall restrictions), it switches to what we will refer to as gateway mode. In this

case it connects to a HTTP web server which functions as a proxy to the actual chat

servers. The Messenger client polls to this web server at a regular interval to see

whether any new MSNP data is available (Mintz). This technique is similar to what

numerous AJAX enabled web applications use to simulate socket connection using HTTP

requests. As the matter of fact, the specific HTTP gateway servers are also being used by

web-based Messenger API’s such as the Windows Live Messenger Client Library.

13 BuddyFuse appendix E: Design and implementation

To make sure our extension supports all configurations of Messenger, it must also

support gateway mode. To develop the support for this configuration, one can block

outgoing TCP connections to a server with port 1863 (used by NS and SB servers) in his

firewall to force the Messenger client to use the HTTP gateway.

Since the HTTP gateway connections basically represent a socket connection, we can

base the class design of gateway mode interception upon the design used for direct

Winsock connections. The difference in technical implementation is that we need to

intercept WinInet traffic as opposed to Winsock traffic. This can be accomplished as

described in the RESEARCH STUDY (intercepting network traffic, WinInet). Below are the

classes relevant to gateway mode socket interception.

NetworkInterception.ISocket

Now we have identified two types of socket connections, their common operations can

be defined in the ISocket interface. An ISocket represents a data connection exposing

events when data is sent to and read from the underlying connection. Also, data can be

injected into the connection.

NetworkInterception.Socket also implements ISocket.

Networks.Messenger.GatewaySocket

GatewaySocket is the ISocket implementation for HTTP gateway connections. It

requires a WebProxy object as source for the HTTP traffic it operates upon.

Networks.Messenger.GatewaySocketMonitor

The GatewaySocketMonitor monitors a WebProxy to see whether new gateway

connections to a NS or SB server are created. When they are, it creates a new

GatewaySocket and fires an event to notify listeners about this instantiation.

3.3.3 Using ISockets

Now the classes to intercept MSNP connections have been defined, let us see how

they can be used to expose functionality to other classes.

Networks.Messenger.NSConnection / Networks.Messenger.SBConnection

These classes operate upon an ISocket object connected to a notification server or a

switchboard server respectively. Both classes expose functionality to other classes which

requires them to insert or monitor MSNP protocol data transmitted through the socket.

14 BuddyFuse appendix E: Design and implementation

User stories implementation

1 Coupling of Hyves accounts to messenger accounts
The sign in experience can be seen as the “entry point” of the application extension in

the eyes of the end-user. The end-user must be able to authenticate his Hyves account so

the Hyves API layer can make requests to the Hyves service. This user story can be

divided into two main parts:

 Managing associated Hyves accounts

o Adding and authenticating a Hyves account

o Remove an associated Hyves account

 Sign in / sign out from an associated Hyves account

o From the messenger main window

o From the messenger login window

Hyves accounts can be associated with a particular Windows Live ID. A user can only

manage/add his associated accounts after he has been signed in. This prevents other

users from changing accounts associated with that particular Live ID. When associating

a new Hyves account, the user must be directed to an authorization page on the Hyves

website.

Once an account has been associated with a messenger account (Live ID), the user

can choose to sign in with this account. This can be done from the main window, as well

as from the login window.

1.1 User interface

To present the above functionality to the user, a couple of modifications must be

made to the messenger interface. A button is added to the messenger main window from

where a dropdown menu pops up. From this dropdown menu, the user can select to

manage his accounts, and sign in to / out from already associated accounts. When he

selects to manage his accounts, a dialog will pop up similar to the one shown in Figure

1-1.

Figure 1-1: the manage accounts dialog

15 BuddyFuse appendix E: Design and implementation

Pressing the Add-button will pop up a form

hosting the Hyves website API authorization

page where the user can select to allow our

application to sign in on his behalf. After

authorizing a Hyves account, the option will be

added to sign in / out from this account from the

Hyves-button in the main window.

Also, when the same Live ID account is

selected in the messenger login window, an

option will be shown to sign in with an associated

Hyves account simultaneously (Figure 1-2).

1.2 Class implementation

Below the tasks of different classes are described to implement the ACCOUNTS user

story.

Networks.Messenger.MessengerAccount / Networks.Messenger.HyvesAccount /

Networks.AccountDictionary

Classes containing no logic, but only information about the associated accounts.

These are serializable so the information can be persisted in the user settings.

ManageAccountsForm provides a user interface to operate on the data provided by these

classes.

Networks.Hyves.HyvesAccountDialog

WinForms implementation of the dialog showing the Hyves API authorization page.

Upon success, this provides a new HyvesAccount object the user authenticated with.

Networks.Hyves.HyvesClient

HyvesClient is the main class responsible for communication with the Hyves API and

Hyves XMPP server. It exposes a sign in and sign out method to be called when the user

clicks the corresponding button, or when an account is selected in the main window for

simultaneous sign in.

Networks.AccountManager

Manages the mapping between UserAccounts and IChatClients (HyvesClient).

Exposes methods to activate and deactivate a user account, and events objects can

subscribe to, to be notified of chat client activation / deactivation.

Controllers.LoginController

Binds HyvesClient and AccountManager so the HyvesClient signs in whenever the

corresponding user account is activated, and signs out whenever it is deactivated.

UI.LoginWindow

Adds the associated account information similar Figure 1-2.

UI.MainWindow

Adds the button and corresponding dropdown menu to the main window, as

discussed above.

Figure 1-2: simultaneous sign in

16 BuddyFuse appendix E: Design and implementation

UI.ManageAccountsForm

The form to manage associated accounts, similar to the one shown in Figure 1-1.

17 BuddyFuse appendix E: Design and implementation

2 Loading Hyves friends in messenger
Now Hyves accounts can be associated with a messenger account and the user can

choose to sign in with one of these associated accounts, we can continue with the

integration of this account with Messenger. The first step is to find a way to show the

Hyves contacts of the signed-in Hyves account in Messenger.

The ideal way to accomplish this would be to show the Hyves contacts inside the

Messenger buddy list, since this would be the most seamless way for the end user.

2.1 Injecting contacts

Unfortunately, neither the Messenger API or DirectUI modules expose an easy way

to inject contacts to this buddy list (without adding them to the Windows Live address

book as well). However, it is possible to trick Messenger into thinking the currently

signed in user has added Hyves contacts to its address book.

With a tool such as HTTPAnalyzer, we can see Messenger uses HTTP SOAP requests

to synchronize its address book with the central Windows Live ABCH (Address Book

Clearing House) servers. For example, when a user adds a contact to his address book on

Live Hotmail, Messenger will receive a notification that the address book has a new

update. It will then contact the ABCH to receive the latest synchronization information.

Using the techniques described in the RESEARCH STUDY on WinInet hooking, it is

possible to intercept the ABCH requests and inject additional contact information.

2.1.1 wlcomm.exe

Since the version 9 beta of the Windows Live Messenger (released in 2008), the

ABCH SOAP requests are not carried out by the Messenger process itself anymore.

Instead, a separate process, the Windows Live Communication Platform (wlcomm.exe)

takes care of synchronizing the address book with the ABCH. This means that we now

must also inject into this process to intercept its HTTP requests.

2.2 Class implementation

Below the tasks of different classes are described to implement the CONTACTS user

story.

Networks.Contact / Networks.Hyves.HyvesContact

The abstract Contact class is a unified way to represent a contact across the

application. It exposes the information required by MessengerClient to interact with

contacts. HyvesContact is the Hyves-specific implementation of the Contact class.

Networks.IChatClient

IChatClient exposes an event to indicate contacts of the signed in user have been

loaded, and a property to retrieve the loaded contacts.

Controllers.ContactController

The ContactController controller is responsible for loading contacts of a chat client to

the messenger client.

18 BuddyFuse appendix E: Design and implementation

Networks.Messenger.ContactManager

Loads and removes additional contacts into Messenger. Loading of contacts is

achieved by listening for proxy requests related to contact synchronization. Contacts are

removed directly via the Messenger API. The Messenger API is also used to monitor

whether Messenger has loaded / unloaded a contact from the buddy list.

NetworkInterception.WebMonitor

WebMonitor monitors WinInet web requests made by the application. It redirects

requests to the ABCH to a local address.

NetworkInterception.WebProxy

WebProxy is a lightweight HTTP server where HTTP requests can be redirected to

(by WebMonitor). It fires an event for every incoming requests so the received request or

response to return can be modified.

Mashenger

The “startup” Mashenger class must now also instantiate a WebMonitor when it is

loaded into the wlcomm.exe process.

19 BuddyFuse appendix E: Design and implementation

3 Showing status of Hyves friends
Now Hyves contacts are loaded inside the Messenger buddy list, we want to make

sure their statuses reflect their status on the Hyves XMPP servers. To accomplish this,

we need to be able to trick the Messenger client into thinking one of the contacts

changed his or her status. This can be achieved by letting the active NSConnection

insert a contact status changed message for the affected contact.

The other way around, we must make sure that the IChatClient signed in user

always reflects the status of the signed in Messenger user.

3.1 Class dependencies

Networks.IChatClient / Networks.Hyves.HyvesClient

Exposes an event to notifiy handlers one of the contacts of the signed in user changed

his or her status. HyvesClient now listens to a XMPP event for presence information to

implement this feature.

Controllers.StatusController

The StatusController monitors an IChatClient for status change events and forces

the MessengerClient to reflect these status changes. Vice versa, the IChatClient is told

to change its status when the Messenger user changed his or her status.

Networks.Messenger.MessengerClient

Because of the asynchronous nature of contacts injection (CONTACTS),

MessengerClient must make sure that once Messenger successfully added a contact, its

initial status will be reflected properly.

MessengerClient now also triggers an event when the Messenger user changed his or

her status.

Networks.Messenger.NSConnection

The NSConnection exposes a function to insert a contact status change MSNP

command (NLN) into the Notification server socket stream.

20 BuddyFuse appendix E: Design and implementation

4 Enabling chat interoperability between Hyves friends and

the Messenger client
Since the status of Hyves contacts is now being reflected in the Messenger buddy list,

the user should be able to commence a conversation with his online Hyves friends and

vice versa. This can be accomplished by intercepting MSNP messages responsible for

setting up and maintaining a conversation.

In MSNP, a connection to the switchboard (SB) server represents a conversation

connection. Let us say a user (Alice) wants to start a conversation with one of her

friends, Bob. This scenario is illustrated in Figure 4-1; Alice first requests a new

switchboard connection from the notification server (1, 2). When she has authenticated

with the switchboard given to her, she can invite her friend Bob (3). Bob will be notified

of this invitation via the existing connection it has to the notification server (4). He can

then respond to this notification by connecting to the same switchboard session Alice is

in (5). The switchboard then notifies Alice Bob has joined the conversation, and from now

on the two can send messages to each other.

Switchboard Server (SB)

Notification Server (NS)

Alice
Bob

1. XFR (request SB)

3. CAL Bob

4. RNG Alice

3.a "invite bob"

5. USR (authenticate)

6. JOI Bob

2. XFR (invite to SB)

Figure 4-1: a schematic overview of how conversations are established in MSNP. In this scenario,

Alice starts a conversation with Bob.

By examining the figure we can determine two scenarios our application must be able

to handle. In the first scenario, the end-user starts a conversation with a Hyves contact.

Our application can see this when step 3 in the figure is executed with a Hyves contact

as parameter. From this point, the application must “hijack” the switchboard server

connection and act as if Bob has entered the conversation. It must then monitor for

conversation messages and forward them to the right endpoint.

In the other scenario a Hyves friend starts a conversation with Bob. We want to force

the Messenger client to show a conversation window with this message, so we must

21 BuddyFuse appendix E: Design and implementation

inject data simulating the MSNP switchboard invite (step 4). Of course, we must also

accept the connection Bob will attempt to make to the switchboard and forward any

messages sent to and from it.

4.1 Class dependencies

Functionality added to classes specifically for this user story is described below. Most

functionality has already been described above in the protocol interception design.

Networks.IChatClient / Networks.Hyves.HyvesClient

Exposes an event to notify handlers of incoming conversational messages.

HyvesClient now listens to a XMPP event for message information to implement this

feature. It also exposes a method to send a message to a particular contact.

Networks.Messenger.MessengerClient

Likewise, the MessengerClient class exposes methods to receive a message from a

particular contact, and an event when the user sends a message to an injected contact.

Controllers.ConversationController

The ConversationController monitors an IChatClient for incoming messages events

forwards these to the MessengerClient and vice versa.

Networks.Messenger.ConversationManager

The MessengerClient class holds a reference to a ConversationManager. This class is

responsible for monitoring and managing SBConnections.

Networks.Messenger.SBConnection

The SBConnection object encapsulates a socket connected to a switchboard server. It

monitors MSNP messages related to conversations and exposes related functionality to

other objects.

Networks.Messenger.NSConnection

The NSConnection exposes a function to trick Messenger into connecting to a

switchboard server, as described above.

	Overview
	A. Projectomschrijving
	B. Project plan
	C. Research study
	D. Requirements analysis
	E. Design and implementation

