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Abstract

Background: Large discrepancies in signature composition and outcome concordance have been
observed between different microarray breast cancer expression profiling studies. This is often
ascribed to differences in array platform as well as biological variability. We conjecture that other
reasons for the observed discrepancies are the measurement error associated with each feature
and the choice of preprocessing method. Microarray data are known to be subject to technical
variation and the confidence intervals around individual point estimates of expression levels can be
wide. Furthermore, the estimated expression values also vary depending on the selected
preprocessing scheme. In microarray breast cancer classification studies, however, these two forms
of feature variability are almost always ignored and hence their exact role is unclear.

Results: We have performed a comprehensive sensitivity analysis of microarray breast cancer
classification under the two types of feature variability mentioned above. We used data from six
state of the art preprocessing methods, using a compendium consisting of eight diferent datasets,
involving | 131 hybridizations, containing data from both one and two-color array technology. For
a wide range of classifiers, we performed a joint study on performance, concordance and stability.
In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed
expression profiles that are based on uncertainty information directly related to the preprocessing
methods. Our results indicate that signature composition is strongly influenced by feature
variability, even if the array platform and the stratification of patient samples are identical. In
addition, we show that there is often a high level of discordance between individual class
assignments for signatures constructed on data coming from different preprocessing schemes, even
if the actual signature composition is identical.

Conclusion: Feature variability can have a strong impact on breast cancer signature composition,
as well as the classification of individual patient samples. We therefore strongly recommend that
feature variability is considered in analyzing data from microarray breast cancer expression profiling
experiments.
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Background

Microarrays are a powerful tool for biologists as they ena-
ble the simultaneous measurement of the expression lev-
els of thousands of genes per tissue sample [1]. One of the
interesting applications of gene expression profiling is the
identification of compact gene signatures for diagnostic or
prognostic purposes, such as cancer classification. One of
the first studies in this regard was the work of Van 't Veer
etal. [2], in which a prognostic 70-gene signature is iden-
tified, that can be used to assess whether a breast tumor is
likely to metastasize or not. Signatures like the 70-gene
signature of Van 't Veer are, in essence, comprised of two
parts: a limited set of features and a classifier that maps a
vector of feature values to a class label. Limiting the
number of features has several advantages. For one, using
too many features with flexible classifiers quickly leads to
overfitted decision rules. The inclusion of irrelevant fea-
tures can also substantially degrade the performance of
some classifiers. Furthermore, understandability, effi-
ciency, and cost also benefit from more compact rules.

Microarray breast cancer event prediction, however, has
proven to be difficult, as few classification rules are able to
obtain a balanced accuracy rate of over 70%, when prop-
erly validated [3,4]. These performance indicators are also
often associated with wide confidence intervals [5]. Fur-
thermore, Ein-Dor et al. [6] showed that signature compo-
sition strongly depends on the subset of patient samples
used for feature selection. In recent years many different
signatures have been proposed, mostly derived using dif-
ferent patient populations and/or array technologies.
Although the overall performance of these signatures is
comparable, there is often a high level of inconsistency
between class assignments obtained using different signa-
tures, as was recently reported in [7]. This poses significant
challenges for the use of gene expression classifiers in clin-
ical routine. Although biological variability is conjectured
to play a major role in the observed discrepancies, in this
paper we show that even in a very controlled setting, using
identical arrays, patient samples, signature composition,
and classifiers, still large discrepancies in performance
and individual class assignments can be observed under
two types of variability.

One of the challenging aspects of microarray data is that
they are subject to various sources of technical variation,
arising from the many experimental laboratory steps
needed to get from a tissue sample to an array scan, such
as array batch variability, dye incorporation, uneven
hybridizations, probe-failure caused by dust or scratches,
or washing conditions [8]. Some noise factors bias large
groups of measurements in a systematic way. Fortunately,
most of this bias can be removed by proper preprocessing.
Many preprocessing methods have been proposed to
address these systematic biases. The effectiveness of such
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procedures and the plausibility of their assumptions,
however, depends on factors such as study design, the
array technology being used, and the biological phenom-
enon under study [9]. Furthermore, even after correction
for systematic effects by the preprocessing method, there
remains a residual variance that is both array and feature
specific and that can be substantial [10]. Detailed error
models have been proposed that attempt to quantify such
uncertainty around the expression data point estimates,
e.g. the Rosetta error model [11]. Such uncertainty infor-
mation has been incorporated in differential gene expres-
sion analysis methods [12], as well as in clustering
analysis [13], and principal component analysis [14],
often leading to more consistent results.

The impact of noise on the outcome of the statistical anal-
ysis of microarray data has been a subject of debate. Tu et
al. [15] performed a detailed sensitivity analysis to sepa-
rate noise caused by sample preparation from noise
related to the hybridization process. The latter was identi-
fied to be the more dominant of the two. In addition, a
strong dependence of hybridization noise on the expres-
sion level was reported. Based on data from the MAQC
study [16], however, Klebanov et al. [17] claim that for
Affymetrix arrays the magnitude of technical variation has
been gravely exaggerated in the literature and that the
effects on the results of statistical inference from Affyme-
trix GeneChip microarray data are negligibly small. How-
ever, contradictory findings have been reported in [18],
based on the very same data. In addition, the MAQC study
itself has been criticized for presenting their case in a best
case scenario, using too few and overly clean reference
samples [19]. With regard to the impact of the choice of
preprocessing method, it has been observed in differential
expression studies that preprocessing can strongly influ-
ence whether a gene is detected to be differentially
expressed or not [20,21]. Similar observations have been
made for the influence of preprocessing on classification
[22,23], albeit in a different and much smaller setting
than the work presented here.

Although microarray data is known to be subject to the
sources of variation described above, in microarray breast
cancer classification studies the influence of the choice of
preprocessing scheme and of the uncertainty around
expression data point estimates are almost always
ignored. In this paper, we study the effect of these two
types of variability of expression data on breast cancer
classification in detail. We define preprocessing variability as
the variation in the value of a feature as induced by
switching to an alternative preprocessing scheme. Pertur-
bation variability is defined as the variation in the value of
a feature as caused by adding noise based on the uncer-
tainty information associated with the expression data
point estimates. Furthermore, feature variability is under-
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stood to be the variation in the value of a feature as caused
by either preprocessing or perturbation variability.

We have performed a comprehensive sensitivity analysis
of microarray breast cancer classification under feature
variability. We used a large breast cancer compendium
consisting of eight different datasets, involving 1131
hybridizations, and containing data from both one and
two-color array technology. We studied the impact of pre-
processing and perturbation variability on feature selec-
tion, classification performance, and classification
concordance for six different preprocessing methods. In
addition, we performed a comprehensive stability analy-
sis for a diverse set of classifiers, by explicitly testing these
classifiers for their noise tolerance. Stability was quanti-
fied by the variation in class assignment of perturbed
expression profiles, where the amount of perturbation is
based on uncertainty information directly related to the
selected preprocessing strategy. Our results indicate that
even when using identical arrays and sample populations,
preprocessing and perturbation variability have a strong
impact on the classification of individual breast cancer
samples, as well as on the composition of breast cancer
signatures, especially when the number of features is low.

Methods

Data

The datasets we consider in this paper share a common
theme, i.e., they have been used to predict whether a
breast tumor will metastasize within five years (poor prog-
nosis) or not (good prognosis), based on gene expression
data inferred from removed tumor tissue. We performed
our sensitivity analysis using a compendium of eight pub-
licly available datasets. In total, the compendium contains
microarray data from 1131 hybridizations and for 907
samples class label information was available (Table 1).
Some of the eight datasets initially had an overlap, either
in patient samples or in hybridizations. The compendium
of 907 arrays, however, contains no overlap, as all dupli-
cate cases were removed. Data from the studies of Van 't

Table |I: Dataset overview
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Veer and Van de Vijver were obtained using two-color cus-
tom ink-jet oligonucleotide arrays produced by Agilent.
Processed data for these datasets can be downloaded from
http://www.rii.com/publications/2002/default.html. Like
the original authors, we combined the two datasets. We
refer to this combined dataset as the Rosetta dataset. The
Rosetta dataset consists of 87 lymph-node negative sam-
ples of the Van de Vijver dataset and of the 78 training and
19 validation samples of the Van 't Veer dataset. Data for
all other datasets was obtained using Affymetrix Gene-
Chips and CEL files were downloaded from GEO [24] and
ArrayExpress [25]. A more comprehensive overview of the
selected hybridizations for the Affymetrix datasets, includ-
ing class label information, can be found in Additional
File 1. Additional File 2 gives an overview of the 87 cases
of the Van de Vijver dataset that were added to the Van 't
Veer dataset.

Preprocessing

For the Van 't Veer and Van de Vijver datasets, we used the
publicly available expression estimates and correspond-
ing error information based on the Rosetta error model
[11]. In principle, the Rosetta error model is applicable to
both one and two-color arrays. However, for this model
no freely available implementation exists and hence for
the Affymetrix datasets this model was not applied. For
the datasets using Affymetrix GeneChips we generated
expression data from the available CEL files based on five
different, frequently used preprocessing strategies: MAS
5.0, mgMOS, its multi-chip version mmgMOS, RMA, and
dChip. For preprocessing, all available hybridizations
were used. This is especially relevant for the multi-chip
models dChip, RMA, and mmgMOS, which benefit from
having more arrays assuming all hybridizations are of
similar quality. The dChip expression estimates are con-
structed using only the information of the PM-probes,
which is the default choice for dChip. Affymetrix datasets
were log-transformed and all probesets were median cen-
tered after preprocessing, for each dataset separately. The
validity and benefits of this step are further discussed in

author year  total labeled Good  poor array platform repository accession ref
Desmedt 2007 147 120 9l 21 Affymetrix HG-U133A GEO GSE 7390 [49]
Minn 2005 96 62 41 21 Affymetrix HG-U133A GEO GSE 2603 [50]
Miller 2005 247 193 156 37 Affymetrix HG-U133A GEO GSE 3494 [51]
Pawitan 2005 156 142 120 22 Affymetrix HG-U133A GEO GSE 1456 [52]
Loi 2007 178 120 92 28 Affymetrix HG-U133A GEO GSE 6532 [53]
Chin 2006 123 86 63 23 Affymetrix HG-U133A ArrayExpress E-TABM-158 [54]
Van't Veer 2002 97 97 51 46 Agilent 2-color custom - - [2]
Van de Vijver 2002 87 87 75 12 Agilent 2-color custom - - [34]

The column total contains the total number of hybridizations available, while the column labeled shows the number of samples that have a properly
defined class label. The next two columns indicate the decomposition of this number into good and poor prognosis cases. The columns repository
and accession list in what repository and under which accession number each dataset can be found.
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[4] and [26]. Preprocessing for the Affymetrix datasets was
performed in R [27] using Bioconductor [28] packages
affy [29] and puma [30]. Table 2 provides a summary of
the six preprocessing methods used.

Perturbation

After preprocessing, we get an expression estimate X;; for
each array i and each feature (gene) j. In fact, x;; is usually
stochastic, following some distribution D;;with mean y;=
x; and standard deviation o reflecting the measurement
uncertainty associated with the point estimate x;;. In this

paper, we utilized the uncertainty information as captured
by the distributions D;; to generate perturbed expression
profiles as alternatives for expression point estimates x;;, in
a similar fashion as presented in [13]. For each sample i,
for each genej in a given signature, we simply draw a new
data point X;; by sampling from the corresponding distri-

bution D;. Complete perturbed training and validation

sets can be constructed by repeating this process for all
samples and genes.

The Rosetta model, mgMOS, and mmgMOS are specifi-
cally designed to provide a gj; that reflects the uncertainty
of the complete preprocessing cascade. In these three
models Dj; is a Gaussian distribution. For mgMOS and
mmgMOS, the corresponding o values were obtained
using the R package puma[30]. For the Van 't Veer and Van
de Vijver datasets, we used the published expression val-
ues. For the Van de Vijver data, the standard deviations o,
as estimated by the Rosetta error model, were reported
directly. For the Van 't Veer data o; was not provided
directly, but o; could be recovered from the published p-
value information (see Additional File 3). MAS 5.0, dChip
and RMA are not specifically designed to provide detailed
error estimates, although some of the uncertainty associ-

ated with the point estimates can be derived from the

Table 2: Preprocessing overview

method package function log, o reference
RMA affy Expresso yes  yes [55]
mgMOS puma justmgMOS yes  yes [56]
mmgMOS puma justmmgMOS  yes yes [57]
dChip affy expresso no yes [58]
MAS5.0 affy expresso no no [59]
Rosetta - - - - [

The column package indicates which R package was used to obtain the
expression values, while the column function provides the name of the
function used from the package. Column log, indicates if the
expression estimates as returned by the function are already on log,
scale or not. The column ¢indicates if the function directly computes
uncertainty information or not.
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summarization step in the preprocessing cascade. For
RMA and dChip, the uncertainty corresponding to the
summarization step can again be modeled by a Gaussian
distribution. The estimated oj;values for these two models
were obtained using the R package affy[29]. For MAS 5.0
it turns out that the estimates follow a distribution closely
related to a t-distribution. Although error information for
MAS 5.0 is not available from affy directly, it can be
computed from the information afty provides (see Addi-
tional File 3).

Stability measure: minority assignment percentage
Classification instability occurs when for a given classifier
and a given sample, perturbed expression profiles are not
all assigned to the same class. In order to quantify the
instability over a large number of perturbed datasets, we
propose the following simple stability measure, which we
refer to as the minority assignment percentage (map) score.
For a given sample and feature, we denote the percentage
of perturbed datasets that lead to a classification into class
0 by p,, and the percentage leading to a class label 1 by p;.
Then the minority assignment percentage is equal to
min{p,, p,}. In the ideal case, a map-score is equal to zero,
indicating that all perturbed datasets lead to the same clas-
sification for this specific sample. In the worst case, it
equals 50%, indicating that classification is purely ran-
dom. Note that this observation is independent of the
choice of dataset, perturbation mechanism, classifier or
number of features. In the remainder of the paper we will
consider a classification to be unstable if the map-score
exceeds a conservative threshold of 35%, meaning an
almost random classification.

Sensitivity analysis protocol

All classification results are obtained in a systematic fash-
ion, closely related to the protocol proposed in [3]. Figure
1 provides a schematic overview of our workflow. Assume
we have obtained expression values x; and the corre-
sponding o;; values, for a given measure of expression, for
some set of samples and a set of genes, using the methods
described in the previous sections. In addition, assume we
have selected an appropriate classifier, which we need to
train. In the first step, we create a stratified split of the
available data, in which 80% is used as a training set,
while the remaining 20% serves as a validation set. In step
2, we create P = 1000 perturbed versions of the validation
set. In step 3, we rank the features based on their Signal-
to-Noise Ratio (SNR, see next section) on the (unper-
turbed) training set. In the next step, we use the top-100
ranked features to construct a sequence of 100 classifiers,
where the nth classifier is constructed on the training data,
using only the top-n ranked genes. At step 5, we invoke
each classifier to obtain class assignments for both the
unperturbed validation set, and for all perturbed versions.
In step 6, we obtain a performance estimate for the unper-
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Sensitivity analysis protocol. For an explanation, see the running text.

turbed validation data by computing the balanced accu-
racy rate, that is, the average of the sensitivity and
specificity. In step 7, we use the class assignments of the
1000 perturbed validation sets, as obtained in step 5, to
compute the associated map-scores and collect them in a
map-matrix, where the entry at row i and column n repre-
sents the map-score of validation sample i, for a classifier
trained on the top-n ranked features. To ensure that results
are not split-specific, steps 1 to 7 are repeated R = 50 times
(inner loop). At step 8, we compute a performance curve,
referred to as the P-curve, which for each signature size n €
{1,...,100}, displays the average balanced accuracy over
the R splits. Furthermore, as mentioned, for a given sam-
ple we consider a class assignment to be unstable if the
corresponding map-score is larger than some threshold T
= 35. For a given threshold, in step 9 we compute the sta-
bility curve, referred to as the S-curve, which for each sig-
nature size tells us the average percentage of cases, over R
splits, that had a map-score larger than the selected thresh-
old T. Note that ideally the S-curve should be zero for all
entries. The whole procedure described above is repeated
for each preprocessing method (outer loop). In order to
compare results for different classifiers and preprocessing
methods, for a given dataset and for each repeat of the
inner loop we always used the same set of stratified splits.
Finally, in step 10 we generate a discordance curve,
referred to as the D-curve, for all distinct preprocessing
method pairs. For a preprocessing method pair (m, m')
and given classifier, the corresponding D-curve tells us for
each signature size the average percentage of cases, over R
splits, of inconsistent class assignments on the (unper-

turbed) validation sets. Similarly to the S-curve, ideally a
D-curve is zero for all entries. Note that the map-scores
used for the S-curves can also be viewed as a measure of
concordance, under perturbation variability.

SNR-based feature rankings

As stated in previous section, in the third step of our pro-
tocol we rank the available features based on their signal-
to-noise ratios. For a given feature, let 1,and y, denote the
mean intensity value for class 0 and class 1, respectively,
and let oy and o7 be the corresponding standard devia-
tions. Then the SNR is equal to

Ho—H1
oy 0
0'0 +O'1

SNR =

Let SNR; ,, denote the SNR value corresponding to gene j,
based on data corresponding to preprocessing method m.
In the construction of a signature we typically select the
top-n features from such a ranking.

Let F, ,, denote the top-n genes, obtained using data from
preprocessing method m, for a particular split. Different
preprocessing methods may lead to different lists of top-n
genes. For two different methods m and m', a trivial meas-
ure to compare the lists F,, ,, and F,, . would be to look at
their intersection. From a classification standpoint, how-
ever, we would at least hope to obtain two lists that are of
comparable strength. Let the total strength of a feature set
F with respect to method m be defined as
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S,,(F) = ZSNR i 2)

jeF

To compare two gene lists of cardinality n, we introduce
the concept of relative strength, given by

Sm(Fn,m’)
Sm(Fn,m)

The relative strength compares the total strength with
respect to m for a selection based on m' to the selection
based on preprocessing method m itself. As the latter gives
the maximal total strength for a set of size n with respect
to method m, the resulting relative strength will always be
at most 100.

RS, (m,m")=100- 3)

Furthermore, since SNR values are non-negative, the rela-
tive strength is also non-negative. Note that a high relative
strength implies that we expect a similar performance
when using F, ,.as when using F,, . It does not imply that
this performance is high per se.

Classifiers

In order to investigate whether the impact of variability is
classifier specific, we employed a broad range of classifi-
ers, being the nearest centroid (NC) classifier, k-Nearest
Neighbors (k-NN) with k € {1, 3}, a Support Vector
Machine (SVM) with a linear kernel (SVMlin) and radial
basis function kernel (SVMrbf), and the Random Forest
(RF) classifier. For descriptions of the individual methods,
see [31,32]. The NC and k-NN used a cosine based dis-
tance function (see Additional File 3). All SVM results
were obtained using the R package e1071 and for each
feature set a grid search was performed to find the best
hyperparameter values. Classification results for RF were
obtained using the R package randomForest. Further
details are presented in Additional File 3.

Computing environment

Although our proposed protocol is conceptually quite
simple, it is computationally demanding to obtain results,
since for each dataset, preprocessing method, split and
signature size, a classifier needs to be trained and vali-
dated. In addition, performing perturbation experiments
for certain classifiers such as nearest neighbors can be time
consuming as well. One benefit of our protocol is that it
lends itself well to parallelization. In order to perform our
computations we used a grid with over 1600 cores,
divided over 206 Dell PowerEdge blade servers, each with
2 Intel XEON L5420 Quadcore CPU's, with 16GiB FDB
Dual Rank memory. All computations were performed
using R [27] and Bioconductor [28].
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Results

The aim of our work is to get a comprehensive overview of
the impact of feature variability on microarray breast can-
cer classification. We will operate under the null hypothe-
sis that preprocessing and perturbation variability have no
effect on feature selection and classification. Under this
null hypothesis we expect that for different preprocessing
methods or for perturbed versions of a dataset we 1) typi-
cally select the same features, 2) obtain identical class
assignments and as a consequence 3) obtain overlapping
P-curves and 4) obtain D-curves that are flat and close to
zero. In addition, we expect to 5) obtain S-curves that are
flat and close to zero as well. We first report our results of
studying the impact of perturbation and preprocessing
variability on feature selection, before moving on to their
influence on classification.

Impact of feature variability on feature selection

In this paper we focus on compact gene signatures. Unfor-
tunately, feature selection on high-dimensional datasets,
like the ones associated with microarray-based expression
profiling, is typically unstable as different subsets of sam-
ples frequently lead to the identification of different fea-
ture sets [6]. From a classification perspective, such a
difference does not necessarily signal a problem, as long
as the performances of the sets are similar, although from
a biological perspective it makes reasoning about the data
much more challenging.

It has been observed that the impact of preprocessing
strategies on differential expression detection is high [20].
Note that feature selection strategies in microarray litera-
ture are often based on univariate ranking strategies, e.g.
based on SNR-statistics or t-tests [3]. One would expect
that genes that are strongly differentially expressed are
also highly ranked by univariate selection procedures and
hence that feature selection is also influenced by feature
variability. In this section we show several examples of the
influence of perturbation and preprocessing variability on
signature composition, i.e. feature selection. For the
Rosetta data it was not possible to assess the influence of
preprocessing variability, as for this dataset only proc-
essed data is publicly available.

Van 't Veer breast cancer signature composition is sensitive to
perturbation variability

As a first example, consider the feature selection step used
to identify the 70-gene breast cancer signature by Van 't
Veer et al. [2]. This signature is comprised of the top-70
genes with an absolute Pearson correlation coefficient
with the class label (0 or 1) larger than 0.3 as obtained
from the 78 training samples of Van 't Veer. Note that the
computation of correlation coefficients can be very sensi-
tive to the presence of outliers. To test the sensitivity of
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this feature selection step, we created 1000 perturbed
instances of the training set, using the Rosetta uncertainty
estimates (see Methods section and Additional File 3) and
recomputed the Pearson correlation coefficients.

Figure 2 shows the sensitivity results of the feature selec-
tion step to perturbation variability. We see that perturba-
tion generally weakens the correlation of a gene with the
class label vector. This is reflected by the red points, which
were always located in the tails of the distributions. We
also see that the correlations of weaker genes sometimes
shrink to zero, indicating that they lose the connection
with the class label vector. Although most genes will still
be selected for most perturbations, there are ten genes,
indicated by blue boxes, that would not have been
selected for the majority of the perturbed training sets.
Furthermore, the ranges of the correlation coefficients for
the genes are quite large, implying that rankings based on
them are unstable, as in [6].

High impact of perturbation variability on feature rankings for
Affymetrix datasets

In the previous example, the composition of the signature
was given. In practice, however, the identification of a
suitable set of marker genes is part of the discovery proc-
ess. Our protocol, similarly to the protocol suggested in
[3], employs a signal-to-noise ratio based ranking on each

0.6

o
=
I

Pearson correlation coefficient

!

S

=
I

-0.6

Genes

Figure 2

Impact of perturbation variability on feature selec-
tion criterion of 70-gene signature. Distributions are
shown of the feature ranking criterion (Pearson correlation)
calculated over 1000 perturbations of the 78 training samples
of the Van 't Veer dataset. The dashed purple lines indicate
the used absolute threshold of 0.3. Blue boxes indicate genes
that do not meet this filter criterion in more than 50% of the
perturbations. The red dots indicate the correlations
obtained using the unperturbed expression values.
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training split, in order to identify useful features for signa-
ture construction. This implies that the composition of
our signatures is fully determined by the outcome of the
ranking step and independent of the classifier used.

We examine the overlap between SNR-based rankings
obtained using an unperturbed and a perturbed version of
a dataset. Let F, | denote the top-n ranked genes, using

data from preprocessing method m, for split & and let

F, m1 be the ranking obtained using a perturbed version.

Although a complete overlap between these lists is prefer-
able, we would at least hope to find a substantial part of
the top half of one list in the other list. How large these
parts are, is shown in Figure 3.

For most preprocessing methods the impact of perturba-
tion noise appears to be large. Although the overlap
increases when signature size increases, the overlap
between a ranking based on unperturbed data and one
based on perturbed expression data is generally less than
50%. In the Desmedt dataset there were two genes that
almost always appeared at top of the SNR rankings in each
split, which is the reason of the shape irregularity seen in
the (blue) overlap curves for the study by Desmedt. For
RMA, the overlap between rankings based on unperturbed
and perturbed versions is much larger, with overlaps
between 80 and 90%. In comparison to the other preproc-
essing methods RMA appears to give lower estimates on
the measurement errors, although on the basis of our data
one cannot tell if RMA underestimates the errors or if the
other methods typically overestimate the errors.

Note that a lack in overlap does not necessarily signal a
problem if the selected feature sets are of equal strength.
Although the overlap for most preprocessing methods is
quite low, the related relative strengths (see Methods sec-
tion) are still high, with values of over 80% for most pre-
processing schemes and values of over 95% for RMA,
indicating that the performance for signatures based on
the different rankings is expected to be comparable. A sim-
ilar observation was made in [6], which for instance
shows that on the Van 't Veer data the performance of the
second best 70 genes was very comparable to the perform-
ance achieved by selecting the top-70 genes. Note that the
latter two lists by construction have an overlap of zero. For
some datasets many equally performing signatures exist,
as was also noted in [33].

Affymetrix breast cancer signature composition is sensitive to
preprocessing variability

Here we inspect the overlap between top-ranked feature
lists, as obtained using different preprocessing methods
i.e. we consider preprocessing variability. Consider two
top-ranked feature lists, based on two different preproc-
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Fo m xand ﬁZn,m,k and between ﬁn,m,k and F,, . , was determined, yielding 50-50-2 = 5000 overlap estimates for each list size

n. The blue curves provide for each n € {l,...,100} the mean overlap taken over all corresponding estimates. The red curves

indicate the associated average relative strengths between the feature sets F, | ,and ﬁn,m,k .

Page 8 of 22

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:389 http://www.biomedcentral.com/1471-2105/10/389

essing schemes m and m/, say of size 100, i.e. Fjy, ,and  is high, although for the dataset of Loi there is already
Fio0, - Similarly to the example in the previous section,  quite a discrepancy. For the remaining pairs we see that
we would hope to find a substantial part of the top half of  the overlap between top-ranked feature lists can be quite
one list in the other list. Figure 4A shows the overlap of  low. The overlap between different preprocessing families
the top-50 of one list in the top-100 of the other. for the various datasets lies between 30 and 80%. The

highest overlap between methods from different families
Different preprocessing strategies give rise to the selection ~ was found between rankings based on dChip and RMA,
of different features as well, as for all preprocessing pairs ~ with a median overlap of 70% over six datasets. The over-
again none have a complete overlap. Within the same pre-  lap between RMA and MAS is lower, with a median of
processing family, i.e. mgMOS and mmgMOS, the overlap  only 56% over all six datasets. From the last block, we can
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Figure 4

Impact of preprocessing variability on feature selection for the Affymetrix datasets. Comparison of top-100
ranked features lists F oy ,, ,and Fjqg v 1, as obtained using different preprocessing strategies m and m', for different splits k. A)
Percentage of the top-half of one list that is found in the other list, and vice vera. Each boxplot represents the distribution of
such percentages over 50 splits, for a specific pair (m, m') (indicated on top of the figure). For each split, we determine the per-
centage of Fg, . found in Fyo, . and the percentage of Fy, . found in F g . . Each distribution thus contains 50-2 = 100
points. All boxplots corresponding to the same preprocessing pair are colored similarly. In total there are |5 distinct pairs. The
pairs are ordered by the observed median overlap over all six datasets. B) Distributions of the relative strength scores for top-
ranked feature lists corresponding to the various preprocessing pairs. C) Relative strength of the top-100 multi-ranked gene
lists with respect to the original rankings, for each preprocessing method and each Affymetrix dataset.
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see that even though dChip and mmgMOS are both
multi-chip preprocessing strategies, they usually tend to
pick different feature sets, with a median of 44% over six
studies. Excluding the (mgMOS, mmgMOS) pair, the
median overlap over all data sets and splits is 52%. Note
that this lack in overlap is completely due to the preproc-
essing method chosen, as the feature selection criterion,
the array platform, and the set of samples (and hence the
sample handling and hybridization conditions) are all
identical. Comparing the overlap from Figure 4A (pre-
processing variability) to that in Figure 3 (perturbation
variability) we see that the scores have a similar range, i.e.
around 50%.

Relative strength of Affymetrix-based breast cancer signatures is
more robust against preprocessing variability

In the previous section, we saw that the use of a different
preprocessing strategy typically leads to the identification
of a different feature set and that the overlap between top-
ranked feature sets for different preprocessing pairs can be
quite poor. Figure 4B shows the distribution of the relative
strengths for top-ranked feature lists from the example in
Figure 4A. The order of the boxplots in panel B is the same
as in panel A. Comparing the two panels, we see that a
lower overlap is typically associated with a lower relative
strength as well. However, although the overlap between
top-ranked features sets can be quite poor, the relative
strengths are reasonably high. The highest scores are again
obtained between preprocessing pairs from the same fam-
ily. Since the (m)mgMOS models have a large overlap in
top-ranked lists, their relative strengths are high as well,
with values of over 90%. Even for the Loi dataset, the
median relative strength over 50 splits is still above 89%,
while the actual overlap is quite poor with a median of
60%. Furthermore, distributions of relative strengths for
the Minn dataset, for pairs of preprocessing strategies
from different families (all blocks except the first one), are
mostly wider and have a lower tail than the other distribu-
tions. This is probably caused by the small number of
samples in the Minn dataset. Comparing the relative
strengths from Figure 4B (preprocessing variability) to
those in Figure 3 (perturbation variability) we see that the
scores are similar, with a mean relative strength of 85.1%
taken over all entries in Figure 4B to a mean relative
strength of 84.2% taken over all entries corresponding to
Figure 3 atn = 100.

Preprocessing-neutral top gene lists

The lack of overlap between top-ranked lists correspond-
ing to different preprocessing methods, as observed in Fig-
ure 4A, presents an additional complication in comparing
performances between signatures based on such lists as
we then cannot know whether a difference in perform-
ance is due to a difference in selected features, or due to a
difference in feature values as obtained from the preproc-

http://www.biomedcentral.com/1471-2105/10/389

essing method. In order to compare the performances of
signatures constructed on data from different methods,
ideally we would like to use the same set of features. Here,
we show that we can obtain a ranking with a high relative
strength over all preprocessing methods by combining the
ranking information associated with the different pre-
processing methods. In the previous sections, each top-
ranked feature set was based on data from a single pre-
processing method. For a given method m € M we will
refer to this ranking as a single-rank feature list. The
strength of a feature i for method m, denoted by S,,(i), was
measured by SNR; ,,. Here we base the strength of feature
i on the average of the individual strengths, as obtained by
the different preprocessing methods in M, i.e., we use a
strength

. 1 .
SO=1 Y Suli) (4)
meM

In the remainder we will refer to the ranking based on this
combined strength S(i) as a multi-rank list. For each split k
and for each dataset, we computed the top-100 ranked
feature list based on this multi-rank strategy and deter-
mined its relative strength in the top-rank list Fy, ,, ; for
each preprocessing method m. Figure 4C gives for each
dataset the distribution of these relative strengths. Relative
strengths of the multi-ranked lists are high, with a median
score of over 90% for all datasets. In order to decouple the
effect of feature selection from the impact of perturbation
and preprocessing variability on classification perform-
ance, we will therefore mainly use multi-rank gene lists,
although all experiments on the Affymetrix datasets were
also performed using the single-rank lists.

Impact of feature variability on classification

We start our investigation of the effects of feature variabil-
ity on classification by taking an in-depth look into the
Van 't Veer [2] and van de Vijver [34] expression data,
which is based on the Rosetta error model. Starting from
a single split of the data and using only features as consid-
ered in the original publications, we progress towards a
more sophisticated setting, ending up in using the full
sensitivity analysis protocol and applying it on all Affyme-
trix datasets using multiple preprocessing strategies and
multiple classifiers.

Van 't Veer signature is sensitive to perturbation variability

We investigated the classification stability of the original
70-gene signature of Van 't Veer et al. [2]. The classifier
used for the construction of their signature is a nearest
centroid classifier. Classification for this classifier can be
linked to a discriminant score (see Additional File 3), by
which we assign a sample to the good prognosis class if
the discriminant score is positive, and to the poor progno-
sis class otherwise. We use the original Van 't Veer training
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set of 78 samples to estimate the class centroids. As a val-
idation set we took the 106 remaining samples in the
Rosetta dataset. Next, using the uncertainty information
estimated by the Rosetta error model (see Method section
and Additional File 3), we created 1000 perturbed ver-
sions of the validation set and classified these with the
classifier built on the original training data.

Figure 5 shows the impact of perturbation variability on
the discriminant scores for each of the 106 cases. Note
that a validation sample is stably classified if the discrimi-
nant score is either positive for all its perturbed instances,
or negative for all its perturbed instances. For some sam-
ples the variation of the corresponding discriminant score
is small, while for others it is quite large, reflecting the fact
that measurements for the same probe on different arrays
are associated with different measurement errors. In addi-
tion, the individual distributions are quite symmetric,
which stems from the fact that the classifier is linear and
we added symmetrical noise. Perturbation variability can
indeed disrupt the classification process, since for seven
samples (indicated in blue) the box-and-whisker plots
cross the horizontal threshold line at height zero. Note
that the boxes in a box-and-whisker plot indicate the
interquartile range of a distribution and thus these seven
samples have an associated map-score of at least 25%.

Discriminant score

106 validation samples

Figure 5

Impact of perturbation variability on discriminant
score. Distributions are shown of the discriminant score
xTw for each of the 106 validation samples of the Rosetta
dataset, when using a nearest centroid classifier built on the
70-gene profile of [2], over 1000 perturbations. Perturbed
expression data is based on the Rosetta error model. Red
dots indicate the discriminant scores corresponding to the
unperturbed expression data. The blue boxes indicate sam-
ples with a map-score of at least 25%.
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A map-matrix example for the Rosetta dataset

Now we extend the example of the previous section by
considering a sequence of 100 signatures constructed
using the top-100 ranked features from the Van 't Veer
data and zoom in on the impact of perturbation variabil-
ity on classifications of individual samples from the
Rosetta data by taking an in-depth look at a map-matrix,
such as the ones obtained from our sensitivity analysis
protocol. Classifications are again performed using the
nearest centroid classifier. The n' signature is constructed
using only the top-n features. Note that this setting is sim-
ilar to our protocol, in which at step 2 we take the 78 train-
ing cases of Van 't Veer data as a training set, the 106
remaining samples as a validation set, at step 3 take the
top-100 features as described above and at step 4 train a
sequence of 100 NC classifiers, thus yielding 100 signa-
tures. Following the protocol, at step 7 we obtain a map-
matrix, which in this case is a 106 by 100 matrix, where
the entry at row k and column n contains the map-score of
sample k using a signature involving the top-n features.

Figure 6 visualizes the map-matrix of this example by
means of a heatmap. Here white entries indicate com-
pletely stable assignments, i.e. the map-score is zero,
while black entries indicate random class assignments.

Validation cases

40

50 60 70 80 920 100
Signature size

Figure 6

A map-matrix example for the Rosetta dataset. The
minimum assignment percentages (white = 0%, black = 50%)
for the 106 validation samples and signatures of increasing
size, determined over 1000 perturbations of the validation
data. The column indicated by the dashed lines corresponds
to the original 70-gene signature.
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From the figure we see more dark areas on the left than on
the right, indicating that classification is generally less sta-
ble if fewer genes are used. In addition, for very small sig-
nature sizes i.e. less than 10, the classification of virtually
all samples can be disrupted by perturbation variability,
as almost none of the corresponding cells are completely
white. Furthermore, we observe that for some samples,
adding features may first reduce the impact of variability,
whereas adding more features later increases the impact of
variability again and vice versa. This may be due to the fact
that either features are added that are quite noisy for such
a sample, or that such features draw these samples closer
to the decision boundary. Finally, even for large signatures
the classification of some samples can still be affected by
perturbation variability, although the number of such
cases is typically low.

Performance and stability curves for the Rosetta dataset

In the previous section, results were obtained using only a
single split of the data in a training and validation set.
Here we apply the full sensitivity analysis protocol to the
Rosetta dataset consisting of 184 samples. Figure 7 shows
the resulting performance (P) and stability (S) curves for
five classifiers, based on 50 splits of the data. The NC clas-
sifier performs best and clearly increases its performance

http://www.biomedcentral.com/1471-2105/10/389

when using more features with a highest performance of
around 65%. This is comparable to the estimates reported
in [3-5]. Furthermore, on this dataset the NC classifier
also had the best S-curve. S-curves generally improve
when using more features, however, none are flat and
close to zero, indicating that perturbation variability can
consistently disrupt these classifications. For the NC clas-
sifier the impact of perturbation variability on this dataset
quickly diminishes, with an average number of unstable
assignments leveling off around only 2.5% at a signature
size of 100. For other classifiers we see that the impact of
perturbation variability is higher than for the NC classifier
and especially the 1-nearest neighbor seemed very sensi-
tive at small signature sizes, only leveling off around 10%
at a size of 100 features. Although stability is a desirable
characteristic, we should not directly link ascending P-
curves to descending S-curves and simply attribute the
higher performance of the NC classifier to perceived noise
tolerance. Although the S-curves typically decrease when
the signature size increases, the P-curve does not generally
show such a monotonic behavior. For instance, the near-
est neighbor classifier shows a decreasing P-curve for
larger signature sizes and is indeed known to be intolerant
to the inclusion of irrelevant features.

NC SVMiin 1NN 5NN RF
66 4
64
62
P 60
58 1
56
204
15
S MWW
s
o
10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 920
.
Figure 7

Performance and stability curves for the Rosetta dataset. P and S-curves for the Rosetta data for various classifiers.
The x-axis shows the signature size, the y-axis in the upper panel gives the average balanced accuracy over 50 splits and the y-
axis in the lower panel gives the average percentage of cases over 50 splits with a map-score larger than 35. Each column

shows the results for a different classifier.
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Impact of feature variability for Affymetrix datasets

In order to investigate the impact of both preprocessing
variability and perturbation variability on Affymetrix
GeneChip data, we ran our complete protocol, for each of
the six Affymetrix datasets, five different preprocessing
methods (mgMOS, mmgMOS, MAS5.0, dChip, and
RMA), and six classifiers (NC, 1NN, 3NN, SVMlin,
SVMrbf, and RF). Each dataset was analyzed with 50 dif-
ferent splits into a training and validation set. Fach valida-
tion set was perturbed 1000 times in order to infer the S-
curves. Furthermore, the experiments were performed
using both the single-rank and multi-rank sets.

From Figure 4A we saw that different preprocessing meth-
ods tend to pick different features and that the overlap
between rankings can be low. Hence, if we use single-rank
sets, we will observe a combined effect where differences
between curves corresponding to different preprocessing
methods can be due to a difference in signature composi-
tion, as well as due to feature variability. The advantage of
the multi-rank approach is that for a given dataset-classi-
fier pair, observed differences in performance, discord-
ance (D, see Methods section), and stability curves are not
due to a difference in signature composition, but solely
due to feature variability. Using a signature based on a
multi-rank set effectively decouples the impact of feature
selection from the effect of feature variability on classifica-
tion performance. Given the high relative strengths of the
multi-rank sets, as observed in Figure 4C, we therefore
show in the main text only the figures corresponding to
these multi-rank sets. Figures 8, 9 and 10 show the result-
ing P, D and S-curves, respectively, for all 36 classifier-
dataset combinations. The corresponding P, D and S-
curves for the single-rank sets are shown in Additional
Files 4, 5 and 6, respectively.

Lack of overlap in performance curves on Affymetrix datasets

Figure 8 shows the P-curves for the multi-rank based
experiments. Note that we are less concerned with the
actual shape of the performance curves, but we are mainly
interested if different preprocessing methods lead to over-
lapping curves. For most dataset-classifier pairs the corre-
sponding P-curves indeed show the same trends. In direct
contradiction to our null hypothesis, however, several
large deviations can be seen, most notably on the Pawitan
dataset for multiple classifiers (NC, 1NN, 3NN, RF). On
this dataset there seems a clear advantage in using dChip
or RMA expression estimates. Although RMA usually per-
forms well, it does not consistently give the best perform-
ance curves. In fact, no preprocessing method is clearly
superior to all other methods. On the datasets of Desmedt
and Minn, for instance, MAS often outperforms both RMA
and dChip. On most datasets balanced accuracy rates
between 60 and 75% could be achieved, depending on
the classifiers and signature size. In most cases the per-

http://www.biomedcentral.com/1471-2105/10/389

formance increases for larger sized signatures, although
on the dataset of Desmedt high accuracies could be
achieved using only a few features. Although certain pre-
processing-classifier pairs have a good performance for
some datasets, such performance advantages cannot be
maintained on the other datasets. When comparing clas-
sifiers, we see that simple classification models like the
NC classifier and the NN classifiers typically perform at
least as well as more complex classifiers like SVM or RF.
Similar observations on the performance of simple versus
more complex classifiers in the context of microarray data
have been made in [3,4,35]. In our experiments the SVM
classifiers did not perform well. For instance, even though
SVMIin and NC are both linear classifiers, the NC classi-
fier is clearly superior. Although a large grid of hyperpa-
rameter values was attempted for SVM, it proved hard to
find the correct hyperparameter values.

Different preprocessing methods produce discordant class
assignments

In the previous section we observed that in several studies
there was a lack in overlap between performance curves
for different preprocessing methods, clearly indicating a
discordance in outcome prediction. Even in the case of
overlapping performance curves, however, one cannot
ascertain that the individual class assignments are con-
cordant. Figure 9 shows for several classifiers (NC, 3NN,
SVMlin, RF) the discordance curves corresponding to the
P-curves of Figure 8. For all preprocessing pairs clear dis-
crepancies can be seen, which is in direct disagreement
with our null hypothesis. The highest D-curves for the
selected classifiers are observed for the 3NN and SVMlin
classifier, with an overall median discordance (over all
signature sizes and splits) of 12.6% and 14.2%, respec-
tively. The NC and RF classifiers show lower numbers of
discordant class assignments with an overall median dis-
cordance of 8.4% and 7.5%, respectively. For the latter
two classifiers the discordance also clearly decreases with
larger signature sizes, leveling off at a signature size of 100
with an overall median discordance of 6.8% and 6.4%,
respectively. The discordance is often larger in the poor
prognosis group than in the good prognosis group (see
Additional Files 7 and 8, respectively). Note that in most
breast cancer datasets, the former group is also much
smaller than the latter. When using balanced performance
indicators, a discordance in the poor prognosis group is
then more heavily penalized than a discordance in the
good prognosis group. For instance, in Figure 8 a clear dif-
ference in performance curves can be seen for the preproc-
essing pair (dChip, MAS), when applying the RF classifier
on the Pawitan dataset. From Figure 9, however, the lack
in concordance for the preprocessing pair (dChip, MAS)
does not seem much larger than on other datasets. From
Additional File 7, we can see that for this preprocessing
pair and dataset the number of discordant cases for the RF
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Performance curves for the Affymetrix datasets. Rows represent curves obtained using different classifiers, while col-
umns represent curves for different datasets. Within each cell, performance curves associated with different preprocessing
methods are shown in separate colors. The color scheme is shown at the bottom of the figure. Within a cell the x-axis pro-
vides the signature size, while the y-axis gives the average balanced accuracy over 50 splits. For each dataset and split, the top-
100 feature set was computed using the multi-rank strategy and this ranking was subsequently used for all classifiers in order to
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ct signatures.
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axis gives the average percentage of cases, over 50 splits, of inconsistent class assignments on the unperturbed validation sets.
For each dataset and split, the top-100 feature set was computed using the multi-rank strategy and this ranking was subse-

quently used for all classifiers in order to construct signatures.
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Stability curves for the Affymetrix datasets. Rows represent curves obtained using different classifiers, while columns
represent curves for different datasets. Within each cell, stability curves associated with different preprocessing methods are
shown in separate colors. The color scheme is shown at the bottom of the figure. Within a cell the x-axis provides the signa-
ture size, while the y-axis gives the average percentage of cases over 50 splits with a map-score larger than 35. For each dataset
and split, the top-100 feature set was computed using the multi-rank strategy and this ranking was subsequently used for all

classifiers in order to construct signatures.
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classifier in the poor prognosis group is indeed higher,
with an overall median of 18.7% compared to an overall
median of 8.5% on the remaining datasets.

High impact of perturbation variability for small signature sizes on
Affymetrix datasets

Figure 10 shows the stability curves associated with the
class assignments of Figure 8. None of the S-curves are flat
and located near zero, which is again in direct contradic-
tion with our null hypothesis. For most classifiers and pre-
processing methods the impact of perturbation variability
is high at small signature sizes, in which over 10% of the
assignments are unstable. Similarly to Figure 7, the impact
of perturbation variability quickly diminishes for increas-
ing signature sizes, although for most classifiers approxi-
mately 5% of the assignments are still unstable at a
signature size of 100. The perturbations corresponding to
RMA appear to be smaller compared to those of the other
preprocessing methods, as RMA consistently gives the
lowest S-curves. These S-curves cannot always be associ-
ated with the best P-curves though. When comparing clas-
sifiers we see that the impact of perturbation variability
can be quite different for different classifiers. Certain clas-
sifiers like SVMs [36] and RF [32] have been claimed to be
noise tolerant. We did not find clear evidence that SVM or
RF are more tolerant to the types of perturbation variabil-
ity as discussed here. Although the SVMrbf indeed appears
very stable on some datasets, its performance is also very
poor compared to other models (Figure 8). The S-curves
corresponding to SVMlin are notably different and the
class assignments seem particulary sensitive to perturba-
tion variability. No satisfactory answer was found that
could explain this observed behavior. Furthermore, in our
experiment the RF classifier is not more noise tolerant
than for instance the NC classifier. For small signature
sizes, i.e. fewer than 10 genes, the average number of
unstable assignments (taken over all studies and all pre-
processing methods except RMA) is 11.8% for RF, com-
pared to only 10.1% for the NC classifier. At a size of 100,
the average number of unstable assignments for RF and
NC is 5.3% and 4.6%, respectively. Finally, the impact of
perturbation variability for the nearest neighbor classifiers
appears to be larger. For INN and 3NN the average
number of unstable assignments at signature sizes less
than 10 is 15.5% and 11.3%, respectively, and at size 100
itis 10.6% and 8.8%, respectively.

Discussion

Finding high-quality stable biomarkers in breast cancer
applications using microarray expression profiling has
proven to be quite challenging with reported balanced
accuracy rates for most breast cancer signatures some-
where between 60 and 70%. Signature composition
strongly depends on the subset of patient samples used for
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feature selection [6]. Furthermore, a high level of incon-
sistency between individual class assignments between
different signatures has recently been reported [7]. Differ-
ences in array platforms as well as biological variability
have been conjectured to play a major role in these dis-
crepancies.

We designed an experimental protocol to evaluate the
impact of two other types of variability, namely preproc-
essing and perturbation variability, on signature composi-
tion and classification. For this purpose several state of the
art and frequently applied preprocessing methods were
selected. Complementary to Ein-Dor et al. [6], we showed
that signature composition is strongly influenced by per-
turbation variability and preprocessing variability, even if
the array platform and the stratification of patient samples
are identical. In addition, using our multi-rank feature sets
we showed that there is often a high level of discordance
between individual class assignments for signatures con-
structed on data coming from different preprocessing
schemes, even if the actual signature composition is iden-
tical. For the single-rank feature sets, the observed discrep-
ancies were even larger. No preprocessing scheme,
however, yielded data that was clearly superior for classi-
fication purposes. When comparing preprocessing varia-
bility to perturbation variability, we found their impact
on feature selection to be equally strong. On classifica-

Performance
low high
high Scenario 1 Scenario 2
Stability
low Scenario 3 Scenario 4
Figure 11

Trade-off dilemma of performance versus stability.
Different scenarios are shown for the performance of a clas-
sifier versus its stability. Scenario |: Stable yet poor perform-
ance, always achievable by a decision rule that assigns all
samples to the same class; Scenario 2: Preferred scenario;
Scenario 3: Random classifier; Scenario 4: Unrealistic pertur-
bations, likely to happen when using jitter.
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tion, however, the impact of preprocessing variability
often remained strong with increasing signature size,
whereas the impact of perturbation variability quickly
diminished.

Preprocessing noise is mainly caused by different underly-
ing assumptions that are made on the data and on the
available sources of information that are used. Some
methods deliberately ignore some sources of information
or exclude certain steps. RMA, for instance, does not use
mismatch probe information to infer expression levels,
while standard applications of dChip do not perform a
background correction step. Note that the latter can have
great implications on the final expression data for both
one [37] and two-color array data [38].

Our stability analysis performs explicit noise tolerance
tests for a diverse set of classification routines, by using
the class assignments of perturbed expression profiles.
The results indicate that all classifiers considered were sen-
sitive to perturbation variability, although the impact was
much stronger at small signature sizes and quickly dimin-
ished for larger signature sizes. Furthermore, in most cases
we found the level of noise tolerance for the NC, SVMrbf,
and RF classifiers to be very comparable.

We chose to use realistic estimates of gene-wise measure-
ment error in the stability analyses. Methods like the
Rosetta error model, but also the mgMOS and mmgMOS
models, are specifically designed to obtain such uncer-
tainty information associated with the fitted expression
data. Methods like dChip, RMA, and MAS 5.0 are not
designed with this goal in mind. However, some uncer-
tainty information can be derived from the summariza-
tion step, as performed in the preprocessing cascade.
Although the uncertainty estimates for dChip, RMA and
MAS are based on the same type of information, we found
that perturbations corresponding to RMA seemed much
less severe than those based on other methods; cf [21]. For
the Affymetrix preprocessing methods a potential prob-
lem with basing uncertainty estimates solely on the sum-
marization step is that most probesets consist of a small
number of probes, with a median size of 11 for the Gene-
Chips used here, which can make the standard error esti-
mates less reliable. Although the stability curves for MAS
and dChip were closer to those of the mgMOS and mmg-
MOS models, from our experiments one cannot tell if
RMA underestimates the errors or if the other methods
overestimate the errors.

Our results also show that a high stability and a good per-
formance do not always go hand in hand (Figures 8 and
10). Although stability is a desirable property, it is some-
times conflicting with achieving a high performance,
which presents us with a dilemma, similar to the bias-var-
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iance dilemma [31]. To this end, consider Figure 11. From
a classification standpoint, the second scenario is obvi-
ously the preferred scenario, while scenario three is equal
to tossing a coin. Note that scenario one can always be
achieved by using a rule that assigns all samples to the
same class. Such a rule is extremely stable, yet when using
balanced accuracy rates, will also have a poor perform-
ance. This scenario was sometimes observed for the SVM
classifiers. For both linear and non-linear SVMs, parame-
ter estimation was hard. This might be an explanation for
the observed poor performance, although our perform-
ance estimates on single datasets for SVM were often com-
parable to those reported earlier [4,26]. Finally, scenario
four would be a strong indicator that the perturbed
expression profiles are not very realistic, given the fact that
performance and stability are both measured on the same
validation data. This scenario was, however, not observed
in our experiments. We did encounter this scenario in
attempts to base perturbed expression profiles on jitter i.e.
artificial noise estimates. The main problem in using jitter
is that such estimates are either much too low or much too
high and therefore this type of perturbation was not fur-
ther pursued here.

Note that our goal was not to compare classifiers or even
to find optimal biomarkers per se and it is likely that the
performance of some classifiers can be further improved
e.g. by changing the feature selection step in our protocol,
which in our case was based on univariate signal-to-noise-
ratio statistics. Alternative univariate ranking strategies
such as those based on the t-test, Mann-Whitney u-test,
and Mahalanobis distance were reported to perform sim-
ilarly [3] and were therefore not pursued here. Note that
the former methods all construct rankings based on
binary class-label information. Survival information on
which the class labels are based could be incorporated in
the ranking step as well. For instance, in [39] a 76-breast
cancer gene signature was derived using a ranking step
based on information from univariate Cox proportional-
hazards regression models using the length of distant
metastasis free survival.

For some classifiers it might be advantageous to resort to
multivariate wrapper-based feature selection methods.
Perhaps the simplest computationally efficient multivari-
ate wrapper is the Top-Scoring-Pair (TSP) classifier [40],
which performs its classifications on the basis of the
expression values of just two genes. On several classical
tumor data sets e.g. leukemia [41], colon [42], lymphoma
[43], and prostate [44], the TSP was able to obtain bal-
anced accuracy rates well over 90%; see [45]. In [40] the
TSP is claimed to be invariant to pre-processing changes,
as it is invariant to any monotonic transformation of the
expression data. Although our forms of feature variability
are very realistic, they can certainly not be considered as
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monotonic transformations of the raw expression data.
Initial experiments with the TSP on the Affymetrix breast
cancer datasets revealed that the classifier was extremely
sensitive to feature variability, with corresponding bal-
anced accuracy rates often close to 50% (data not shown).
On the Rosetta data a similar observation on the perform-
ance of the TSP was reported in [46]. As the TSP uses only
two genes, these results are in agreement with our obser-
vation that breast cancer signatures comprised of few
genes seem very susceptible to feature variability. In addi-
tion, in [46] several alternative multivariate approaches
were benchmarked, with the main conclusion that multi-
variate variate selection approaches often do not lead to
consistently better results than univariate approaches.
Moreover, compared to multivariate approaches, univari-
ate ranking procedures have the benefit of a considerable
computational speed up, which in our case was very
important considering the large number of experiments
performed.

Our sensitivity analysis was performed on a sizable collec-
tion of patient sample hybridizations and in a breast can-
cer classification context, which is different from the small
scale spike-in and dilution studies on which most previ-
ous microarray sensitivity analyses were performed
[47,48]. One advantage of the latter two types of studies is
that the ground truth is known, which for most breast can-
cer studies is less obvious. In our framework, however,
under the null hypothesis we also know exactly what
should be expected, i.e. for different preprocessing meth-
ods or for perturbed versions of a dataset we should have
selected the same features, had overlapping P-curves and
obtained D-curves and S-curves that were zero for all sig-
nature sizes, as stated in our null hypothesis. Based on the
outcome of our experiments, however, we conclude that
this is not the case, and hence we conclude that in micro-
array breast cancer studies feature variability can have a
strong impact on both feature selection and classification.
We conjecture feature variability to be less of an issue in
microarray studies for which a high performance can be
obtained such as for the classical tumor datasets men-
tioned above. Note that these studies all deal with tissue-
type recognition problems, which are considerably easier
classification problems than event prediction studies,
such as the breast cancer studies treated here; see also [3].

Finally, the focus of this paper has been of a descriptive
nature, analyzing the impact of feature variability. Obvi-
ously, one would next like to enhance the performance
and stability of classifiers by exploiting the feature varia-
bility information. For instance, in the context of point
injection techniques, one can use the perturbed expres-
sion profiles as additional candidates to be injected,
instead of the rather artificial candidates obtained by lin-

http://www.biomedcentral.com/1471-2105/10/389

ear interpolation [35]. Another avenue that one may take
is to directly increase classification concordance by explic-
itly enforcing it, for instance in a wrapper framework.

Conclusion

We performed an extensive sensitivity analysis of microar-
ray breast cancer classification under feature variability.
Our results indicate that signature composition is strongly
influenced by preprocessing variability and perturbation
variability, even if the array platform and the stratification
of patient samples are identical. In addition, we show that
there is often a high level of discordance between individ-
ual class assignments for signatures constructed on data
coming from different preprocessing schemes, even if the
actual signature composition is identical.

We presented evidence of discrepancies induced by tech-
nical variation that cannot be considered negligible, as
previously claimed by some researchers [17]. We therefore
strongly recommend that feature variability is taken into
account during the construction of a signature, especially
when using microarray technology for the classification of
individual patients. In addition, measures should be
taken to minimize the technical variation of microarray
procedures when used for such high impact applications
as cancer diagnostics.
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