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Abstract
A novel 2D finite element method (FEM) on unstructured grid for nonlinear time-dependent deforma-
tion of materials is developed. The objective is to model the complex deformation behavior of the rock
salt, inside which caverns are mined to store green fuels (such as hydrogen). The analyses and the
developments of the present work allow for quantification of the state of the stress of the cavern, and
assess the safety and reliability of the storage structure over time. The novelty of the approach is in
using minimization of the potential energy principle in conjunction with nonlinear creep deformation
physics. While the available FEM-based simulators offer tools only for solving linear and non-linear elas-
tic models, the developed simulator takes into account cyclic loading and material’s damage evolution
in time with possibility to predict the material’s failure. Apart from that, the stored product (hydro-
gen) density is taken into account, which affects cavern’s pressure variation with depth. Impurities,
causing heterogeneous rock salt properties, are also considered in the developed model. Multivariate
Gaussian distribution is utilized to generate distribution of the heterogeneous mechanical properties.
Eulerian strains are introduced in the model to take into account deformation of the mesh. As such,
the computational grid changes its geometry according to the deformation. Several numerical test cases
are studied. Firstly, a consistency (verification) study is performed, to validate the linear elastic model.
Remark that the linear elastic deformation model casts the basis of the non-linear model with creep
physics. Then, several studies have been performed to analyse, quantify and approximate the deforma-
tion of the salt cavern under the gas pressure change, including the time-dependent creep physics. It is
emphasised that the following modelling constitutive laws and assumptions are utilized in this project:

• Minimal total potential energy principle.

• Generalized Hooks law.

• Infinitesimal deformation theory.

• 2D Finite Element Method (FEM/FEA).

• Unstructured mesh with constant strain triangle (CST) elements.

• Euler forward (explicit) and backward (implicit) time discretization.

• Associated flow rule and the flow potential.

• Norton-Baileys power law to model the creep.
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1
Introduction

1.1. Overview of the Hydrogen Salt Cavern Storage Technology
Hydrogen salt cavern storage is one of the energy storage technologies which allows to preserve energy
for later use (figure 1.1). It usually represents a system of caverns, which are artificially created by the
controlled dissolution of rock salt by injection of water during the solution mining process [27]. This
process is called leaching and, as a result, caverns with volumes up to 300,000-500,000 m3 and outliers
up to 2,000,000 m3 can be created [40]. Such caverns provide very high deliverability, i.e. excellent
injection and production characteristics, and have (almost) perfect sealing properties [12, 13].

Figure 1.1: Salt cavern storage site [40].

The salt cavern construction focuses primarily on the salt diapirs - a type of structural domes,
formed when a part of thick bed of salt migrates vertically into the surrounding rock strata. Primary
depth target for salt cavern construction lies within 1,000-1,500 m depth range [27]. Within this depth
range, the rock salt material behaves reasonably stable and permanent caverns can be constructed. The
maximum depth limit is defined by the plastic behaviour of the salt at higher depths, as constructed
cavities within those deep formations will eventually tend to close after the extraction. The minimum
depth limit is usually defined by the cavern’s operating pressure and strength characteristics of the rock
salt.

The caverns usually have an elongated cylindrical shape with height from tens to a few hundred
meters [12, 13, 27]. Such geometry is chosen because of its good stability. Spherical or pear-shaped
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2 1. Introduction

caverns usually are created in the depth range of 500 to 1,000 m [27]. If the salt layer has limited
thickness then bell-shaped caverns with height up to 100 m can be formed [40].

Speaking of hydrogen, it is worth to highlight that hydrogen is an energy carrier, but not an energy
source. It represents a green fuel, which can be consumed in fuel cells to produce electricity, water and
heat. It can be also burned in domestic and industrial scales.

Hydrogen storage in salt caverns is considered as a large-scale storage with purpose to level down
the difference between the demand and supply in the power grid. When an excessive amount of energy
is produced on a windmill or solar panel power plant, electricity is used in electrolyzer to split water
into hydrogen and oxygen with the use of electrolysis reaction. Afterwards, the produced hydrogen
is compressed and injected into the subsurface cavern, where it is stored until it will be required to
compensate the energy shortage in the power grid. In that case, the cavern is depleted and hydrogen
is utilized either in a hydrogen fuel cell to generate electricity, or in the gas combustion unit, where it
is usually burned in a mixture with methane. Then the generated electricity is supplied to the power
grid.

1.2. Modeling the Salt Cavern Storage Deformation Behavior
When a salt cavern is excavated in a salt formation and filled with gas, it will be exposed to a load, which
originates from the pressure difference between the cavern’s operational pressure and the overburden
(lithostatic) pressure. This pressure difference will deform the cavern and its surroundings. Therefore,
modeling and predicting such deformations and corresponding stress distribution around the cavern is
a crucial part of the cavern’s reliability and safety analysis. The challenging part in modeling the salt
rock deformation behaviour lies in its ability to creep – phenomenon when a solid material permanently
deforms under the influence of persistent mechanical stresses. Moreover, the aforementioned cyclic
loading conditions, to which the salt cavern is exposed in case when it is used as a hydrogen storage or
buffer, bring additional engineering challenges, which need to be solved to predict the material failure
and damage evolution.

1.2.1. Overview of the creep phenomenon

Essentially, after applying an external load, the material consistently goes through three stages of creep.
These three creep stages are often called transient (primary or reduced) creep , steady (secondary or
stationary) creep , and tertiary (accelerated) creep (figure 1.2). The primary creep stage is characterized
by a monotonic decrease in the rate of the creep. Secondary creep is characterized by constant creep rate.
Deformations of the secondary creep are large and of a similar nature to pure plastic deformations. The
tertiary creep phase involves the formation of microscopic cracks, which subsequently lead to damage
evolution and rupture of the material [2].

Figure 1.2: Creep Curve. ᎒Ꮂ - instantaneous elastic strain [35].
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1.2.2. Creep mechanisms
Creep often occurs within the temperature range of 20-200 °C [28]. The deformation mechanics are gov-
erned by dislocation within crystal and grain boundaries. There are two main deformation mechanisms
that were investigated by means of the laboratory tests, displacement analysis and microstructural
analysis. One is the dislocation creep mechanism, which is the primary objective in the modeling of
rock salt creep behavior in the present work. It describes the dislocation effect caused by crystal defects
and was studied in details in a number of laboratory experiments [1, 18, 34]. The dominant factor of
the dislocation creep is temperature.

The other creep mechanism is diffusion creep or solution-precipitation creep, when a crystal grain
slides along the crystal boundary. The dominant factors of this type of creep are the grains size of the
rock salt crystals and temperature. The diffusion creep is considered to be dominant with decrease in
the deformation rate or temperature [21]. The two aforementioned creep mechanisms as well as material
failure are shown in figure 1.3.

Figure 1.3: Illustration of different creep mechanisms of rock salt under confining test (top left picture). Different shades
of green represent differently oriented crystals [41].

1.2.3. Utilization of existing models
In the past years, several numerical studies [7–9, 24, 25, 29, 30, 37, 38, 42] were published to describe salt
structures deformation behavior on a large scale, modeling salt layers deformation and diapirs shaping
processes. More recently, Multiscale Finite Element Method (MSFEM) based models [5, 6, 26, 39] were
developed for solving linear and non-linear elastic problems in geomechanics. Finite Element Method
(FEM) based models [23, 32] were developed to simulate salt cavern storage deformation behavior, which
incorporate cyclic storage loading conditions and heat transfer between the cavern and its surroundings.
The latter one utilizes and compares different existing rock salt constitutive models, namely Cristescu
[11] and Lux/Hou [19, 31].

Within the framework of the current study, Gunther/Salzer [16] constitutive model is adopted to
describe the rock salt material behavior. It can be used to describe all three creep stages and predict
material damage by utilizing internal state (damage) parameters. The model is based on the power law
creep relationship derived by quantifying the dislocation creep processes, observed in the laboratory
tests [17, 20, 36]. Both implicit and explicit simulation models are developed to predict linear-elastic
and non-linear creep response. The governing equations are discretized by FEM approach with the
use of non uniform triangular mesh with constant strain triangle (CST) elements. Local linear basis
functions are solved for displacements, considering boundary conditions. Then strains are recovered
from nodal displacements for every element. Stress-strain constitutive relation is used to quantify the
stress distribution, which is used to calculate creep strain rate for every finite element when solving
problems with creep physics.
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The model is further expanded by incorporating Eulerian strains and consideration of the stored
product (hydrogen) density and corresponding hydrostatic pressure. Moreover, in comparison to other
numerical models, irregular shaped cavern and heterogeneous domain are considered in the present work
to study their effect on the cavern’s state of the stress and nonlinear (time-dependent) deformation.



2
Methodology

2.1. Problem statement
To analyse the reliability and safety of the salt cavern structure, it is required to assess and quantify
the degree of deformation of the cavern’s surroundings and the corresponding stress distribution. To
perform this task, a proper mathematical model needs to be developed. The core of the model lies in
the theory of elasticity, which relates the forces applied to an object and the resulting deformations.

To demonstrate the concept, utilized in the present work to evaluate deformations of salt cavern
surroundings, figure 2.1 is given, which shows an arbitrary solid body, exposed to external distributed
loads 𝑤(𝑥) and point external loads 𝐹. Under the influence of the external loads, the body will deform
with displacements 𝑢 and 𝐷 on the surface of the solid in compliance with the supporting reactions.
As a consequence, internal stresses 𝜎 and strains 𝜀 will be created throughout the volume of the body.
These stresses will trigger the creep phenomenon as it was described in the previous chapters. As
a result, fictitious internal creep body forces 𝐹፫ will appear within the body, which will cause the
time-dependent creep deformation with a certain creep strain rate.

Figure 2.1: Arbitrary solid body exposed to external loads [35].

The given input of the problem is represented by the external loads and the sought solution is
represented by the distribution of the displacements, strains and stresses throughout the volume of the
body and their evolution in time.

5



6 2. Methodology

2.2. Assumptions and Constitutive Relations
To develop the salt creep constitutive model, the following assumptions and constitutive relations are
considered, some of which can be relaxed as will be shown in the following chapters:

• Infinitesimal deformation theory is valid.

• Generalized Hook’s law is valid.

• Material is isotropic.

• Linear elastic response is instant (instant equilibrium).

• No chemical reactions between hydrogen and the rock salt occurs.

• No diffusion of hydrogen into the rock salt can happen.

• Cavern is instantly excavated and loaded at time 𝑡 = 0. In case of cyclic load, pressure change is
instantaneous.

• Adiabatic process, i.e. no heat transfer.

2.3. Potential Energy
Within the theory of elasticity, minimization of potential energy principle allows to derive the governing
force balance equation. The total potential energy is represented by the sum of the strain energy stored
in the deformed body in the form of stresses and the potential energy associated to the applied external
and body forces:

Π = 𝑈 + 𝑉, (2.1)

where 𝑈 is the internal strain energy, and 𝑉 is the potential energy, associated with the applied forces.
The internal strain energy is calculated as:

𝑈 = 1
2 ∫ፕ

𝜀ፓ𝜎𝑑𝑉, (2.2)

where 𝜎 is the stress tensor, and 𝜀፞፥ is the strain tensor.
The potential energy, associated with the applied loads is given as:

𝑉 = −𝑊 = −∫
ፒ
𝑢ፓ𝑓𝑑𝑆 − ∫

ፕ
𝑢ፓ𝑓𝑑𝑉, (2.3)

where𝑊 is the work of the external forces, 𝑢 is the vector of displacements, 𝑓 is the vector of distributed
forces acting on the part 𝑆 of the surface, and 𝑓 is the vector of body forces.

2.4. Minimization of Potential Energy
The minimum potential energy principle states that among all possible displacements and configurations
of a conservative system that satisfies the equations of equilibrium, the correct state of the system is
the one which minimizes the total potential energy [10], i.e.,

𝛿Π = 𝛿(𝑈 + 𝑉) = 0. (2.4)

2.5. Total Strain
The unknowns in the equation (2.2) are stress and strain tensors. To derive the force balance governing
equation, it is necessary to express them through displacements by utilizing constitutive relations.
Under the assumption of small strains (infinitesimal deformation), it is possible to decompose the total
strain into elastic and inelastic strains, i.e., [35]:

𝜀 = 𝜀፞፥ + 𝜀።፞ , (2.5)

where inelastic strain can be represented as summation of thermal, plastic, creep and other types of
strains, depending on the phenomena which governs the material behavior.
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Within the framework of the current study, the main accent is put on modeling the steady state
creep behavior of rock salt, as it is considered to be the most dominant one, after the elastic response.
Therefore, the total strain will consist of elastic and creep components, and the elastic strain can be
expressed as:

𝜀፞፥ = 𝜀 − 𝜀፫ , (2.6)

or in terms of strain rates:

̇𝜀፞፥ = ̇𝜀 − ̇𝜀፫ . (2.7)

2.6. Stress-Strain Constitutive Relation and Material Parameters
The constitutive relation between the stress and strain tensors can be expressed in the form of the
generalized Hook’s law, i.e.,

𝜎 = 𝐶 ∶ 𝜀፞፥ , (2.8)

where 𝐶 is the 4፭፡ rank elasticity or stiffness tensor. For a 2D isotropic homogeneous material it can
be expressed through the Lame’s constants as

𝐶።፣፤፥ = 𝜆𝛿።፣𝛿፤፥ + 𝜇(𝛿።፤𝛿፣፥ + 𝛿።፥𝛿፣፤), (2.9)

or in matrix notation as

𝐶 = [
𝜆 + 2𝜇 𝜆 0
𝜆 𝜆 + 2𝜇 0
0 0 𝜇

] , (2.10)

where 𝛿 is the Kronecker delta.
The Lame’s constants can be expressed through the material parameters as

𝜇 = 𝐺 = 𝐸
2(1 + 𝜈) , and 𝜆 = 𝜈𝐸

(1 + 𝜈)(1 − 2𝜈) , (2.11)

where 𝐸 is the Young’s modulus, 𝐺 is the shear modulus and 𝜈 is the Poisson’s ratio.

2.7. Creep Strain Constitutive Relation
The starting point in developing creep strain rate constitutive relation is the assumption that the creep
strain is a function of stress and temperature [35], which in general notation can be written as

̇𝜀፫ = 𝑓(𝜎፞፪)𝑓ፓ(𝑇). (2.12)

Here, 𝜎፞፪ and 𝑇 are the equivalent stress and temperature respectively.
It has bee shown that for rock salts, the power law stress function gives accurate curve fitting results

with the lab experiments [4]. The function can be written as

𝑓(𝜎፞፪) = 𝑎𝜎፧፞፪ . (2.13)

The temperature dependency is expressed by the Arrhenius law as

𝑓ፓ(𝑇) = exp [−𝑄/𝑅𝑇]. (2.14)

Assuming the Norton-Bailey type potential and von Mises type equivalent stress, the above equations
can be written as

̇𝜀፫ =
3
2𝑒

ዅ ᑈ
ᑉᑋ 𝑎𝜎፧ዅኻ፯ፌ 𝑠, (2.15)

where 𝜎፯ፌ is the von Mises equivalent stress, 𝑠 is deviatoric part of the stress tensor, 𝑎 and 𝑛 are
the material dependent constants, and finally 𝑄, 𝑅 and 𝑇 denote the activation energy, Boltzmann’s
constant and temperature, respectively.
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2.8. Strain-Displacement Relation
Under the assumption of infinitesimal deformations, it is possible to neglect the difference between the
true stresses and strains and engineering stresses and strains. In terms of displacement gradient, the
strain tensor can be written in general form as

𝜀 = 1
2(∇𝑢 + ∇𝑢

ፓ + ∇𝑢ፓ∇𝑢). (2.16)

Taking into account the mentioned above assumption of infinitesimal deformations and isotropic mate-
rial properties, the equation (2.16) further simplifies to

𝜀 = ∇፬𝑢, (2.17)

where ∇፬ represents the symmetric gradient operator.
In this work both Lagrangian and Eulerian strains are considered in the model, which means that

the derivatives of displacements are taken with respect to the original and deformed mesh, respectively.
The developed code allows the user to flexibly choose between the two systems.

2.9. Tertiary Creep and Damage Evolution
The creep damage equations were proposed by L. Kachanov and Rabotnov [22]. Rabotnov introduced
the damage variable 𝜔. He assumed that the creep rate is not only a function of stress, but also it
depends on the current damage state, i.e., the constitutive creep equation is of the form

̇𝜀፫ = ̇𝜀፫(𝜎, 𝜔), (2.18)

where the damage state variable is expressed through the evolution equation as

�̇� = �̇�(𝜎, 𝜔), 𝜔|፭ኺ = 0, 𝜔 < 𝜔∗. (2.19)

Here, 𝜔∗ is the critical value of the damage, at which the given material breaks, and �̇� is the damage
evolution rate. The damage evolution rate is expressed as

�̇� = 𝑏𝜎፤
(1 − 𝜔)፥ . (2.20)

Finally, the creep strain rate can be stated as

̇𝜀፫ =
𝑎𝜎፧

(1 − 𝜔)፦ . (2.21)

Variables 𝑎, 𝑏, 𝑛,𝑚, 𝑙 and 𝑘 in the equations (2.20) and (2.21) above represent the material dependent
constants. It is also important to note that in the case of 𝜔 = 0, equations (2.21) represents the well
known power law constitutive equation.



3
Simulation Results

This chapter presents numerical results of a series of 2D test cases to demonstrate the capabilities of the
developed simulator: (1) Linear elastic model under constant load, (2) Validation of the linear elastic
model results, (3) Creep model under constant load, (4) Creep model under cyclic load, (5) Complex
heterogeneous model, (6) Irregular cavern shape model with and without heterogeneity, (7) Tertiary
creep and material failure, (8) Multi-caern system. The geometry and the mesh (as shown in figure 3.1)
were generated using the open source software Gmsh [15], which allows to refine the elements where it
is necessary, e.g. near the cavern’s wall. The values of the input parameters used in the simulator are
summarized in the table 3.1 with corresponding references.

Table 3.1: Input parameters for simulation

Parameter Value
Overburden rock density, [kg/mኽ] 2200
Rock salt density, [kg/mኽ] 2200 [33]
Rock salt bulk modulus, [GPa] 24.3 [33]
Rock salt shear modulus, [GPa] 7.5 [33]
Depth of the top of the salt layer, [m] 500
Hanging wall thickness, [m] 200 [13]
Foot wall thickness, [m] 200 [13]
Cavern’s volume, [1000 mኽ] 500 [13]
NL Temperature gradient, [°C/km] 31.3 [3]
Creep constant a, [Pa፧] 8.10E-26 [4]
Creep exponent n, [-] 3.5 [4]
Creep activation energy Q, [J/mol] 51600 [4]

9



10 3. Simulation Results

Figure 3.1: Vertical cross-sections of the geometry of the model and the generated mesh using Gmsh.

3.1. Defining the Load for the Boundary Conditions
To reflect the loading conditions as close to the reality as possible, the cavern’s pressure and lithostatic
pressure are considered. According to [13], the cavern’s pressure should not exceed 24%-80% of litho-
static pressure. As such, the minimum allowable pressure difference between the cavern’s pressure and
lithostatic pressure will be at the cavern’s roof location when it is charged and the maximum will be at
the bottom of it when it is depleted (points 1 and 2 in the left figure 3.2, respectively). This makes the
cavern’s pressure a function of overburden rock density, rock salt density and depth of the roof and the
bottom of the cavern.

Once minimum and maximum allowable cavern pressure and corresponding pressure difference are
estimated, their values are used to calculate equivalent surface forces acting on the cavern’s wall (figure
3.2 right). These surface forces then converted into equivalent nodal forces to be used in the numerical
model as an input.

Figure 3.2: Pressure gradients and safe pressure range within the salt domain (left) and Implied numerical model
boundary conditions (right).
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3.2. Numerical Test Cases
3.2.1. Linear elastic model under constant load
First of all, a solution for linear elastic model (𝐹፫ = 0) under constant load is calculated. The results
of the numerical simulation are given in figure 3.3. Figures show the instantaneous system response
to the external load acting on the cavern’s wall. As a result, the system is deformed (𝑎, 𝑏), developed
strains (𝑑 − 𝑓) and the external forces are balanced with internal stresses (𝑔 − 𝑖).

(a) Displacement in x direction. (b) Displacement in y direction.

(c) Von Mises Stress.

(d) X component of strain. (e) Y component of strain. (f) Shear component of strain.

(g) X component of stress. (h) Y component of stress. (i) Shear component of stress.

Figure 3.3: Results of solving the linear elastic model under constant load.
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3.2.2. Validation of the linear elastic model results
The validation of the numerical solution from the previous section 3.2.1 is done by comparing it with
synthetic analytical results as it was done in [39]. For this purpose, displacements in x and y directions
are defined as arbitrary functions of coordinates:

𝑢(𝑥, 𝑦) = sin(𝜋𝑥𝐿 ) sin(
𝜋𝑦
𝑊 )

𝑣(𝑥, 𝑦) = sin(𝜋𝑥𝐿 ) sin(
𝜋𝑦
𝑊 ) (3.1)

where 𝐿 = 𝑊 = 1000 m - are the domain’s length and width respectively.
With known displacement functions, strains, stresses and nodal forces can be easily calculated.

These analytically retrieved nodal forces then used as an input to calculate numerical solution for the
mentioned parameters. Comparison of the analytical and numerical solutions (figure 3.4) is done by
taking the absolute value of their difference as demonstrated in figure 3.5.

Figure 3.4: Synthetic analytical and numerical solutions. 56 elements.
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Figure 3.5: Difference between synthetic analytical and numerical solutions. 56 elements.

The mentioned above procedure was repeated three more times with the consequent mesh refinement
at every step, in such a way that an arbitrary finite element is split into smaller elements by reducing
each edge of the original element by half as it is shown in figure 3.6. The finest mesh grid results are
given in the appendix (figures A.3-A.4).

(a) Original mesh, 56 elements. (b) 1 times refined mesh, 224 elements.

Figure 3.6: Grid refinement.
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After every refinement, an error of the numerical approximation is calculated as the two norm of
the difference between the analytical and numerical solutions:

𝑒 = ||𝑔(𝑥) − �̂�(𝑥)||ኼ (3.2)

where 𝑔(𝑥) is the analytical synthetic (exact) solution of a certain parameter (displacement, strain,
stress), and ̂𝑔(𝑥) is the numerical approximation. Then the order of numerical approximation is esti-
mated according to

𝑃 = ln (𝑒፧ዄኻ) − ln (𝑒፧)
ln (𝑑𝑥፧ዄኻ) − ln (𝑑𝑥፧)

. (3.3)

Here, 𝑑𝑥 is representative finite element size, with subscripts 𝑛 + 1 and 𝑛 denoting two subsequent
refinements of the mesh.

The rate at which the error of the numerical solution decreases is represented by a slope of the line
𝑒 = 𝑓(𝑑𝑥) in the loglog scale as shown in figure 3.7. As it can be seen, the resulting solution for the
displacement is 2nd order accurate in space, while solution for the strain and stress is 1st order accurate.

Figure 3.7: Error of the numerical solution vs finite element size.
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3.2.3. Creep model under constant load
After solving the problem for linear elastic model, fictitious creep forces are introduced to the governing
equations. This makes the output solution time dependent. The rest of the parameters are kept the
same as in the model in the section 3.2.1. Figures 3.8 𝑎 −𝑏 show displacement evolution over time in x
direction, figure 3.8 𝑐 shows von Mises stress distribution. Figure 3.9 shows strain evolution (𝑎) under
the constant stress (𝑏) for an arbitrary point of the domain.

(a) Displacement in x at the first time step. (b) Displacement in x at the last time step.

(c) Von Mises stress.

Figure 3.8: Solution obtained by solving the creep model.

(a) Strain evolution. (b) Stress evolution.

Figure 3.9: Constant stress, secondary creep model.
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3.2.4. Creep model under cyclic load
To take into account cyclic loading, the cavern’s pressure is assumed to be a function of time as
a discrete periodic time signal that can take two values: maximum cavern’s pressure and minimum
cavern’s pressure over a certain time period (figure 3.10). Figures 3.11 𝑎, 𝑑 show the displacement, 𝑏, 𝑒
- strain and 𝑐, 𝑓 - fictitious creep forces evolution over time for an arbitrary point of the domain under
the cyclic loading conditions. The full cycle of the cavern’s loading unloading in the given results is set
to 6 days.

The high peak values are related to instantaneous elastic response of the rock salt material, after
which there is a short period of creep development with slope of the line representing the magnitude of
the creep rate, just like in the previous case with constant load. The higher the load, the steeper creep
strain line is observed (higher creep rate).

Figure 3.10: Pressure variation over time as discrete periodic signal.

(a) X component of displacement
evolution in time. 25 time steps.

(b) X component of strain evolution in
time. 25 time steps.

(c) X component of creep forces
evolution in time. 25 time steps.

(d) X component of displacement
evolution in time. 150 time steps.

(e) X component of strain evolution in
time. 150 time steps.

(f) X component of creep forces
evolution in time. 150 time steps.

Figure 3.11: Solution obtained by solving the cyclic load model.
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3.2.5. Irregular cavern shape model
Heterogeneity of the salt rock may affect the solution mining process, which in its turn will affect the
shape of the constructed cavern. Figures 3.12 represents results simulation model with such irregular
cavern shape. From the figures it can be seen, that the maximum amplitude of displacement is increased
in comparison to the regular shaped cavern, which can be explained by increased equivalent surface forces
due to increased surface of the cavern. Also the pattern of the displacements is changed, which can be
explained by the increased stiffness of the arch-shaped convex parts of the cavern – displacements are
less in the magnitude at the top and bottom of the cavern.

(a) Displacement in x at the last time step. (b) Displacement in y at the last time step.

(c) Von Mises stress.

Figure 3.12: Solution obtained by solving the creep model for irregular bell shaped cavern.
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3.2.6. Heterogeneity implementation for irregular cavern shape case
A multivariate Gaussian distribution was used to generate a variation of mechanical properties, namely
Young modulus and Poisson ratio as shown in the left figure 3.13 for halite. The range for Poisson ratio
is taken 0.10-0.43 with mean value of 0.3 and Young modulus 27.2-58.7 GPa with mean value of 44.4
GPa [14].

In a similar approach more minerals with different mechanical properties were introduced, such
as anhydrite, potassium salt and shale rock, with corresponding Young modulus and Poisson ratio
correlation as shown in the left figure 3.13. The right figure 3.13 shows the resulting test case with
potassium salt lens and a shale layer.

Figure 3.13: Rock properties distribution (left) and numerical model with potash lens and shale layer impurities (right).

Figures 3.14 𝑏 − 𝑒 show comparison of the simulation results of the two cases – with and without
heterogeneity. The effect of the more plastic potash salt is obvious in both directions: the displacement
both in the x and y directions is now bigger in magnitude in the upper part of the cavern. The shale
layer, on the other hand, does not show any significant effect on mechanical response of the cavern’s
surroundings. The rest parameters of the two simulations are given in the appendix figures A.5 and
A.6.
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(a) Displacement in x at the last time step.
Homogeneous Domain.

(b) Displacement in x at the last time step.
Heterogeneous domain.

(c) Displacement in y at the last time step.
Homogeneous Domain.

(d) Displacement in y at the last time step.
Heterogeneous domain.

Figure 3.14: Solution obtained by solving the creep model for irregular bell shaped cavern with impurities.
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3.2.7. Tertiary creep and material failure
Last scenario represents a test case with damage evolution parameters. Figure 3.15 shows transition
from secondary creep to tertiary state and subsequent material failure. The given example shows the
solution for a point of a maximum strain, i.e. the first nodal point, where the failure of the material
will begin. For a simple case, excluding heterogeneity of the rock salt, such point will be always on a
cavern’s wall, but in real life it will not be always the case.

(a) Displacement in x direction evolution.

(b) X component of creep strain. (c) X component of creep forces.

Figure 3.15: Solution obtained by solving the creep model with damage evolution.
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3.2.8. Multi-cavern system
Figure 3.16 shows the results for a multi-cavern system, which are provided to further demonstrate the
capabilities of the developed simulator. As in the previous cases, deformation, strains and corresponding
stresses are calculated, which can be used to further calculations to estimate the safe distance between
the caverns (cavern wall). In the given example, homogeneous domain is considered. In the first case
the distance between the caverns is 500 m, in the second case 150 m.

From the results it can be seen, that the second case with reduced cavern wall undergoes more
significant deformation and the corresponding stress has higher magnitude due to the reduced stiffness
of the system. It confirms the fact, that in the real life, caverns significantly affect each other and the
overall stability of the system [27].

(a) Displacement in x direction, case 1. (b) Displacement in x direction, case 2.

(c) Displacement in y direction, case 1. (d) Displacement in y direction, case 2.

(e) Von Mises stress, case 1. (f) Von Mises stress, case 2.

Figure 3.16: Results of solving the multi-cavern system model.
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3.3. Sensitivity Analysis
To test the sensitivity of the model, the response of the system was studied by changing the input
parameters of the base case from table 3.1. The system’s response is studied on displacement results
for an arbitrary point A of the domain (figure 3.17 left).

As it can be seen from the results, the closer the analysed finite element is to the cavern’s boundary
the more it is subjected to deformation (figure 3.17 right). The depth of the roof of the cavern (figure
3.18 (a)) and shear modulus (figure 3.19 (b)) have noticeable significant impact both on elastic and
creep response of the system. Temperature has impact only on the creep rate, which exponentially
increases with increasing temperature (figure 3.18 (b)). Bulk modulus variations are almost negligible
(figure 3.19 (a)). Sensitivity results of the heterogeneous model (figure 3.19 (c)) show that the more
plastic potash lens has an effect on the cavern’s roof behaviour: there is noticeable difference between
points A and A2, which are located close to the cavern’s roof, where the potash lens is placed. Shale
layer on the other hand does not show any significant effect: peripheral points B and B2 does not show
significant difference in their behaviour. However important thing to note here that only mechanical
behaviour is considered in this test. In real life other than mechanical unfavourable effects can be
related to shale layer, such as leakage for example.

Figure 3.17: Analysed nodes (left) and Displacement results (right).

(a) Depth of the cavern. (b) Temperature of the surrounding rock salt.

Figure 3.18: Sensitivity results of the model.
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(a) Bulk modulus. (b) Shear modulus.

(c) Heterogeneity sensitivity.

Figure 3.19: Sensitivity results of the model.

To emphasise the effect of temperature on creep, the figure 3.20 is provided. It shows how the creep
strain rate is changing with changing temperature for different pressure regimes. In a rough estimation,
the variation in temperature of 10 °C gives 10 times increase in creep strain rate. The difference in creep
strain rate at temperatures of 20 °C and 120 °C is more than 100 times. The same temperature effect
was observed in many laboratory experiments [1, 18, 34]. Based on these experiments a database was
build by Shi-Yuan Li in [28], who observed that for every 50 °C temperature increase, the corresponding
increase of the strain rate is around 1.5-2 orders of magnitude, which is in compliance with the results
of the current work.

Figure 3.20: Temperature effect on the creep strain rate.





4
Conclusions

In this work, first 2D finite element method for rock salt creep behaviour modeling on unstructured grid
was developed. The unique characteristics of the present work are following: 1) the secondary creep
behaviour is introduced into the initial linear elastic model by using the vector of fictitious creep forces
in the mathematical model, which is based on minimization of the potential energy principle, 2) the
tertiary creep behaviour is introduced into the model by utilizing the damage evolution parameters,
allowing to predict failure of the material 3) cyclic loading is taken into account by using a discrete time
signal to model the pressure variations in the cavern, 4) various types of the rock salt heterogeneity is
taken into account, 5) both Lagrangian and Eulerian strains are utilized in the simulation.

A consistency check was done, showing the validity of the numerical model solution. Two time
discretization methods are proposed, namely both Euler forward and backwards, which allows to 1) use
explicit method with high computational performance for simple scenarios and 2) use implicit method,
when it is required to get rid off the CFL constraints and increase the time step size.

The developed simulator was extensively tested on various models: linear elastic and non-linear
creep, homogeneous and heterogeneous, varying loading conditions, with and without damage evolution,
also different boundary conditions were tested. Test cases with irregular cavern shapes demonstrated,
that the simulator is also capable to take into account the geometry and its effect on the stiffness of the
structure. Moreover, the simulator can be used for deformation and corresponding stress evaluation in
multi-cavern system, which can be used as a reference during design of the salt cavern energy storage,
caverns dimensions and distances between them.

Speaking about creep, all test cases showed that it is a very slow process and on a short time scale it
is insignificant, sometimes almost negligible in comparison to the linear elastic response of the system.
However, on a scale of several years the effect of creep becomes obvious, especially on the stage when
tertiary creep starts to develop.

4.1. Future Work
The developed simulator showed descent stability and absence of convergence issues on a broad variety
of different test case scenarios. In this section, topics for further improvements of the different aspects
of the developed simulator are highlighted.

4.1.1. 3D FEM
With 2D simulator showing reliable results, it is absolutely necessary to have a 3D expansion before
drawing accurate conclusions about real life rock salt behaviour. With complex geometry and material
heterogeneity and anisotropy, expanding the simulator to three dimensional space will definitely show
more complex material behaviour, which may be missing in 2D version and which may significantly
change the material fatigue or damage evolution physics.

4.1.2. Optimization and efficiency
With descent performance of the developed 2D simulator, even without moving to the three dimensional
space, there are plenty of aspects where the performance and efficiency can be improved.

25
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Amount of elements of the mesh grid plays a significant role on the performance. However there
is no algorithm which would control the elements size, it was arbitrary chosen beforehand. However,
using adaptive mesh refinement it could be possible to always keep the optimum number of elements,
which would still give results of the desired accuracy and without convergence issues and at maximum
performance.

The slowest performance was shown when using Eulerian strains in combination with implicit time
integration as coordinates were updated at every time step and every iteration. As a result, all of the
finite elements with respective properties, e.g. mechanical properties, elasticity tensor etc. needed to
be initialized again with every coordinate update which in the end heavily affected the performance
of the algorithm. One of the proposed solutions could be transfer to more suitable computational
environment such as C++ and using parallel thread programming algorithms such as Compute Unified
Device Architecture (CUDA by nvidia), which will significantly increase the performance, as all finite
elements can be initialized simultaneously using the parallel programming, instead of using the ’for’
loop.

4.1.3. Improved Physics
The simulator is written in object oriented programming finite elements methods (OOPFEM) structure,
which allows for wide possibilities of easy modular physics expansion. As such, for example viscoplas-
ticity behaviour or diffusion of hydrogen into the rock salt effect on mechanical properties can be added
as expansion modules.

As it was shown in the sensitivity analysis, temperature plays a crucial role in the creep deformation
mechanism. However, at this point only adiabatic process is considered in the present work. Therefore,
one can think about further physics improvement by taking into account heat transfer between the
stored gas and the cavern surroundings.

4.1.4. Tertiary Creep
Tertiary creep and damage evolution were presented in the current work by utilizing Gunther/Salzer
[16] constitutive model. However it is important to note here, that at this point it was not possible to
validate the results of the tertiary creep model due to absence of the material parameters for the rock salt
that are used in the governing equation - parameters 𝑏, 𝑘, 𝑙, 𝑚 in the equations (2.20, 2.21). Therefore,
it is recommended to perform relevant multi-axial laboratory tests to derive these parameters. In this
work arbitrary parameters were used just to demonstrate the simulator capabilities.



A
Finite Element Method and Code

Implementation

A.1. Finite Element Method
A.1.1. 2D Triangular Elements
To solve the problem formulated in the previous chapter numerically, it is necessary to discretize the
domain with finite elements. Numerical solution for the displacements will be sought at nodal locations
of each element, whereas strains and stresses will be recovered for the entire element from the Gauss
points. Such elements are called Constant Strain Triangle (CST) elements (figure A.1) and widely used
in the structural mechanics.

Figure A.1: 2D finite element with nodal displacements.

Let us write the local displacement vector for arbitrary finite element as:

𝑞 = {𝑞ኻ 𝑞ኼ 𝑞ኽ 𝑞ኾ 𝑞 𝑞ዀ}ፓ (A.1)

where odd indexes denote the displacements in the 𝑥 direction and even indexes - in the 𝑦 direction.
For the whole domain, the global displacement vector can be written as:

𝑄 = {𝑄ኻ 𝑄ኼ... 𝑄ኼ።ዅኻ 𝑄ኼ። ... 𝑄ኼ፧ዅኻ 𝑄ኼ፧}ፓ (A.2)

where 𝑛 - is the total number of nodes.

27
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A.1.2. Shape Functions
To compute the displacements for an arbitrary point inside the triangle (figure A.2) linear shape func-
tions are utilized to interpolate the nodal displacement values. For the triangular element in plane

Figure A.2: Interior point interpolation.

stress, the discretized displacement vector field can be written as follows:

𝑢(𝑥, 𝑦) = 𝑁ኻ(𝑥, 𝑦)𝑞ኻ + 𝑁ኼ(𝑥, 𝑦)𝑞ኽ + 𝑁ኽ(𝑥, 𝑦)𝑞 = [𝑁]{𝑢}
𝑣(𝑥, 𝑦) = 𝑁ኻ(𝑥, 𝑦)𝑞ኼ + 𝑁ኼ(𝑥, 𝑦)𝑞ኾ + 𝑁ኽ(𝑥, 𝑦)𝑞ዀ = [𝑁]{𝑣} (A.3)

where 𝑁። - are the interpolation functions, 𝑢 and 𝑣 - displacements of an arbitrary interior point in the
𝑥 and 𝑦 directions respectively.

The shape functions can be derived as follows:

𝑁። =
𝐴።
𝐴 (A.4)

where 𝐴። - is the area of the triangular element, opposed to the node 𝑖. Code implementation of the
shape functions class is shown in A.1.

1 class Shapefns(object):
2 ”””
3 Define shape functions
4 These will be defined on the local coordinates xi and tau
5 Shapefns()
6 eval(n,xi): phi[n](xi, tau)
7 ddxi(n): dphi[n](xi, tau)
8 ddtau(n): dphi[n](xi, tau)
9 size(): number of nodes for these shape functions

10 ”””
11

12 def __init__(self):
13 ”””
14 an array of functions for phi and deriv phi
15 ”””
16 # linear shape functions
17 self.__phi = [lambda xi, tau: xi,
18 lambda xi, tau: tau,
19 lambda xi, tau: 1 - xi - tau]
20 # and derivatives of phi w.r.t. xi and tau
21 self.__dphidxi = [1, 0, -1]
22 self.__dphidtau = [0, 1, -1]
23 self.__N = 3 # number of nodes in element
24

25 def eval(self, n, xi, tau):
26 ”””
27 the function phi[n](xi, tau), for any xi and tau
28 ”””
29 return self.__phi[n](xi, tau)
30

31 def ddxi(self, n):
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32 ”””
33 the function dphidxi[n]
34 ”””
35 return self.__dphidxi[n]
36

37 def ddtau(self, n):
38 ”””
39 the function dphidtau[n]
40 ”””
41 return self.__dphidtau[n]
42

43 def size(self):
44 ”””
45 the number of points
46 ”””
47 return self.__N

Listing A.1: Shape functions and their derivatives

As it can be seen from figure A.2 and equation (A.4) the sum of all shape functions in the element
equals to one, which means, that they are not independent and by knowing two shape functions it is
possible to define the other one. As such, let us express the shape functions through local coordinates
as follows:

𝑁ኻ = 𝜉, 𝑁ኼ = 𝜂, 𝑁ኽ = 1 − 𝜉 − 𝜂 (A.5)

Substituting (A.5) into (A.3) yields:

𝑢(𝑥, 𝑦) = (𝑞ኻ − 𝑞)𝜉 + (𝑞ኽ − 𝑞)𝜂 + 𝑞
𝑣(𝑥, 𝑦) = (𝑞ኼ − 𝑞ዀ)𝜉 + (𝑞ኾ − 𝑞ዀ)𝜂 + 𝑞ዀ (A.6)

The same shape functions can be utilized to compute the global coordinates of an arbitrary interior
point as follows:

𝑥 = 𝑁ኻ𝑥ኻ + 𝑁ኼ𝑥ኼ + 𝑁ኽ𝑥ኽ = (𝑥ኻ − 𝑥ኽ)𝜉 + (𝑥ኼ − 𝑥ኽ)𝜂 + 𝑥ኽ
𝑦 = 𝑁ኻ𝑦ኻ + 𝑁ኼ𝑦ኼ + 𝑁ኽ𝑦ኽ = (𝑦ኻ − 𝑦ኽ)𝜉 + (𝑦ኼ − 𝑦ኽ)𝜂 + 𝑦ኽ (A.7)

where 𝑥።, 𝑦። - coordinates of 𝑖፭፡ node of the element.

A.1.3. Strain-Displacement Relation
Given 𝑢 and 𝑣 as displacements in the 𝑥 and 𝑦 directions respectively, the strain can be written as
follows:

𝜀 = [
𝜀፱
𝜀፲
𝜀Ꭱ
] =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑢
𝜕𝑥𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥

⎤
⎥
⎥
⎥
⎥
⎦

(A.8)

Let us use the chain rule and write derivatives of displacement 𝑢 with respect to local coordinates as
follows:

𝜕𝑢
𝜕𝜉 =

𝜕𝑢
𝜕𝑥
𝜕𝑥
𝜕𝜉 +

𝜕𝑢
𝜕𝑦
𝜕𝑦
𝜕𝜉

𝜕𝑢
𝜕𝜂 =

𝜕𝑢
𝜕𝑥
𝜕𝑥
𝜕𝜂 +

𝜕𝑢
𝜕𝑦
𝜕𝑦
𝜕𝜂 (A.9)

In the matrix form it can be written as:

[
𝜕𝑢
𝜕𝜉
𝜕𝑢
𝜕𝜂
] = [

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂
] [
𝜕𝑢
𝜕𝑥𝜕𝑢
𝜕𝑦
] (A.10)
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or

[
𝜕𝑢
𝜕𝑥𝜕𝑢
𝜕𝑦
] = [

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂
]

ዅኻ

[
𝜕𝑢
𝜕𝜉
𝜕𝑢
𝜕𝜂
] (A.11)

The above matrix is called Jacobian matrix. Its components can be defined from the equations (A.7):

𝜕𝑥
𝜕𝜉 = 𝑥ኻ − 𝑥ኽ (A.12)

𝜕𝑥
𝜕𝜂 = 𝑥ኼ − 𝑥ኽ (A.13)

𝜕𝑦
𝜕𝜉 = 𝑦ኻ − 𝑦ኽ (A.14)

𝜕𝑦
𝜕𝜂 = 𝑦ኼ − 𝑦ኽ (A.15)

Code implementation of the jacobian and jacobian invariant calculations are shown in A.2.

1 def jacobi(self, inv=False):
2 ”””calculate J to perform local to global coordinates transformation
3 x,y: coordinates
4 jacobi(inv=False): jacobian
5 jacobi(inv=True): invariant of the jacobian
6 ”””
7

8 x, y = self.__endpts
9 xc = np.zeros((3, 3))

10 yc = np.zeros((3, 3))
11

12 for i in range(3):
13 for j in range(3):
14 xc[i, j] = x[i] - x[j]
15 yc[i, j] = y[i] - y[j]
16

17 j = [[xc[0, 2], yc[0, 2]],
18 [xc[1, 2], yc[1, 2]]]
19

20 if inv:
21 return np.linalg.inv(j)
22 else:
23 return j

Listing A.2: Jacobian and its invariant

For compaction we can write:

𝑥።፣ = 𝑥። − 𝑥፣ (A.16)
𝑦።፣ = 𝑦። − 𝑦፣ (A.17)

Equation (A.11) can be written:

[
𝜕𝑢
𝜕𝑥𝜕𝑢
𝜕𝑦
] = 𝐽ዅኻ [

𝜕𝑢
𝜕𝜉
𝜕𝑢
𝜕𝜂
] (A.18)

From the linear algebra we know that if

𝐴 = [𝑎ኻኻ 𝑎ኻኼ
𝑎ኼኻ 𝑎ኼኼ] (A.19)
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then

𝐴ዅኻ = 1
det𝐴 [

𝑎ኼኼ −𝑎ኻኼ
−𝑎ኼኻ 𝑎ኻኻ ] (A.20)

Therefore (A.18) can be written as:

[
𝜕𝑢
𝜕𝑥𝜕𝑢
𝜕𝑦
] = 1

det 𝐽 [
𝑦ኼኽ −𝑦ኻኽ
−𝑥ኼኽ 𝑥ኻኽ ] [

𝜕𝑢
𝜕𝜉
𝜕𝑢
𝜕𝜂
] (A.21)

After multiplying the terms, the expression above will have the following form:

𝜕𝑢
𝜕𝑥 =

1
det 𝐽 (𝑦ኼኽ(𝑞ኻ − 𝑞) − 𝑦ኻኽ(𝑞ኽ − 𝑞)) (A.22)

𝜕𝑢
𝜕𝑦 =

1
det 𝐽 (−𝑥ኼኽ(𝑞ኻ − 𝑞) + 𝑥ኻኽ(𝑞ኽ − 𝑞)) (A.23)

Using a similar process, corresponding equations for 𝑣 are derived resulting in:

𝜕𝑣
𝜕𝑥 =

1
det 𝐽 (𝑦ኼኽ(𝑞ኼ − 𝑞ዀ) − 𝑦ኻኽ(𝑞ኾ − 𝑞ዀ)) (A.24)

𝜕𝑣
𝜕𝑦 =

1
det 𝐽 (−𝑥ኼኽ(𝑞ኼ − 𝑞ዀ) + 𝑥ኻኽ(𝑞ኾ − 𝑞ዀ)) (A.25)

Finally the equation (A.8) can be written as follows:

𝜀 = [
𝜀፱
𝜀፲
𝜀Ꭱ
] =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑢
𝜕𝑥𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥

⎤
⎥
⎥
⎥
⎥
⎦

= 1
det 𝐽 [

𝑦ኼኽ(𝑞ኻ − 𝑞) − 𝑦ኻኽ(𝑞ኽ − 𝑞)
−𝑥ኼኽ(𝑞ኼ − 𝑞ዀ) + 𝑥ኻኽ(𝑞ኾ − 𝑞ዀ)

−𝑥ኼኽ(𝑞ኻ − 𝑞) + 𝑥ኻኽ(𝑞ኽ − 𝑞) + 𝑦ኼኽ(𝑞ኼ − 𝑞ዀ) − 𝑦ኻኽ(𝑞ኾ − 𝑞ዀ)
] (A.26)

Which after simplifying can be written as:

𝜀 = [
𝜀፱
𝜀፲
𝜀Ꭱ
] =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑢
𝜕𝑥𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥

⎤
⎥
⎥
⎥
⎥
⎦

= 1
det 𝐽 [

𝑦ኼኽ𝑞ኻ + 𝑦ኽኻ𝑞ኽ + 𝑦ኻኼ𝑞
𝑥ኽኼ𝑞ኼ + 𝑥ኻኽ𝑞ኾ + 𝑥ኼኻ𝑞

𝑥ኽኼ𝑞ኻ + 𝑦ኼኽ𝑞ኼ + 𝑥ኻኽ𝑞ኽ + 𝑦ኽኻ𝑞ኾ + 𝑥ኼኻ𝑞 + 𝑦ኻኼ𝑞ዀ
] (A.27)

In matrix notation it will be:

𝜀 = 𝐵𝑞 (A.28)

Where 𝐵 is a matrix relating 3 strains over an element to 6 nodal displacements:

𝐵 = 1
det 𝐽 [

𝑦ኼኽ 0 𝑦ኽኻ 0 𝑦ኻኼ 0
0 𝑥ኽኼ 0 𝑥ኻኽ 0 𝑥ኼኻ
𝑥ኽኼ 𝑦ኼኽ 𝑥ኻኽ 𝑦ኽኻ 𝑥ኼኻ 𝑦ኻኼ

] (A.29)

Code implementation of the element wise strain-displacement matrix is shown in A.3.
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1 def strain_disp_matrix(self, eltno):
2 ”””
3 Assemble strain-displacement matrix
4 Nl: shape functions of the current element
5 dNl: derivatives of the shape functions of the current element
6 B: strain-displacement matrix
7 ”””
8 B = np.zeros((3, 2))
9 for i in range(3):

10 # access shape functions derivatives
11 dNl = self.__elts[eltno].derivative(i)
12 # transfer shape functions from local to global coordinates
13 dN = np.dot(self.__elts[eltno].jacobi(inv=True), dNl)
14 Bi = np.array([[dN[0], 0],
15 [0, dN[1]],
16 [dN[1], dN[0]]])
17 # assemble strain-displacement matrix
18 B = np.append(B, Bi, axis=1)
19 B = np.delete(B, [0, 1], axis=1)
20 return B

Listing A.3: Strain-displacement matrix

Code implementation of the element wise calculation of strains and stresses for every CST element is
shown in A.4.

1 # calculate strain at gaussian point within a given CST element
2 def gauss_strain(self, u):
3 ”””
4 Element wise calculated strain.
5 nele: total number of elements of the mesh grid
6 ”””
7

8 strain = np.zeros((3, self.__nele))
9 for elt in self.__elts:

10 # create an array of nodes indexes of the current element
11 node = elt.nodes()
12 # assemble strain-displacement matrix for the current element
13 B = self.strain_disp_matrix(elt.eltno())
14 # access nodal displacement values of the current element
15 q = np.array([u[node[0] * 2], u[node[0] * 2 + 1],
16 u[node[1] * 2], u[node[1] * 2 + 1],
17 u[node[2] * 2], u[node[2] * 2 + 1], ])
18 strain[:, [elt.eltno()]] = np.dot(B, q)
19

20 return strain
21

22 # calculate strain at Gaussian point within a given CST element
23 def gauss_stress(self, straing):
24

25 stressg = np.zeros((3, self.__nele))
26 for elt in self.__elts:
27 stressg[:, elt.eltno()] = np.dot(elt.el_tenz(), straing[:, elt.eltno()])
28

29 return stressg

Listing A.4: Strain and stress calculation per element

A.1.4. Governing Equations
Substituting the above strain-displacement relation (A.28) into (2.6) then to (2.8) and subsequently to
(2.2) the expression for strain energy can be written as:

𝑈 = 1
2 ∫ፕ

𝑞ፓ𝐵ፓ𝐷(𝐵𝑞 − 𝜀፫)𝑑𝑉 (A.30)

Replacing the integral over the volume 𝑉 with integral over area 𝐴 by introducing thickness 𝑡, it is
possible to write the last expression for a single triangular element as:

𝑈፞ =
1
2 ∫፞

𝑞ፓ𝐵ፓ𝐷(𝐵𝑞 − 𝜀፫)𝑡፞𝑑𝐴 (A.31)
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It can be seen that all terms inside the integral in the equation above are constants, which gives the
possibility to take them out:

𝑈፞ =
1
2𝑞

ፓ𝐵ፓ𝐷(𝐵𝑞 − 𝜀፫)𝑡፞∫
፞
𝑑𝐴 (A.32)

where ∫፞ 𝑑𝐴 - simply the area of the triangular element:

𝑈፞ =
1
2𝑞

ፓ𝐵ፓ𝐷(𝐵𝑞 − 𝜀፫)𝑡፞𝐴፞ =
1
2𝑞

ፓ𝐵ፓ𝐷𝐵𝑞𝑡፞𝐴፞ −
1
2𝑞

ፓ𝐵ፓ𝐷𝜀፫𝑡፞𝐴፞ (A.33)

For the sake of compaction, let us introduce stiffness matrix 𝑘 and creep forces vector 𝑓፫ as:

𝑘፞ = 𝑡፞𝐴፞𝐵ፓ𝐷𝐵

𝑓(፫)፞ =
1
2𝑡፞𝐴፞𝐵

ፓ𝐷𝜀፫ (A.34)

Now the expression for an arbitrary element’s potential energy can be written as:

𝑈፞ =
1
2𝑞

ፓ𝑘፞𝑞 − 𝑞ፓ𝑓(፫)፞ (A.35)

The total potential energy of the whole domain will be a summation of potential energies of the finite
elements it consists of:

𝑈 =∑
፞
(12𝑞

ፓ𝑘፞𝑞 − 𝑞ፓ𝑓(፫)፞) (A.36)

or

𝑈 = 1
2𝑄

ፓ𝐾𝑄 − 𝑄ፓ𝐹፫ (A.37)

where 𝑄 and 𝐾 represent the global displacement vector and global stiffness matrix respectively.
By omitting the body forces, and converting all distributed external loads to nodal forces, the

expression for the external work done by the external forces (2.3) can be written as follows:

𝑊 = 𝑄ፓ𝐹 (A.38)

The total potential energy:

Π = 𝑈 −𝑊 = 1
2𝑄

ፓ𝐾𝑄 − 𝑄ፓ𝐹፫ − 𝑄ፓ𝐹 (A.39)

Applying the minimization of the potential energy principle 𝛿Π = 0 to (A.39) yields:

𝐾𝑄 = 𝐹 + 𝐹፫ , 𝑥 ∈ Ω (A.40)

As it can be seen from the expression above, in absence of creep, i.e. 𝐹፫ = 0, the model simplifies to
linear elastic model. Code routine for assembling the stiffness matrix, load vector and fictitious forces
vector are shown in A.5, A.6 and A.7 respectively.

1 def stiff_matrix(self, th=1):
2 ”””
3 assemble stiffness matrix
4 nDofs: total number of degrees of freedom
5 D: elasticity tenzor
6 B: strain-displacement matrix
7 ind: indexes of the degrees of freedom of the current element
8 area: area of the current element
9 ke: current element stiffness matrix

10 ixgrid: indexes of the dofs of the current element stiffness matrix in the global
stiffness matrix

11 k: global stiffness matrix
12 ”””
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13 nDofs = self.__nDOFs
14 k = np.zeros((nDofs, nDofs))
15 for elt in self.__elts:
16 D = elt.el_tenz()
17 B = self.strain_disp_matrix(elt.eltno())
18 ind = elt.dofnos()
19 area = elt.area()
20 ke = th * area * np.dot(B.transpose(), (np.dot(D, B)))
21 ixgrid = np.ix_(ind, ind)
22 k[ixgrid] += ke
23 return k

Listing A.5: Stiffness matrix

1 def load_vector(self, p, temp, g, depth, th, et, i, sign, pressure, boundary):
2 ”””
3 assemble load vector
4 x,y: nodal coordinates
5 ”””
6 x, y = self.__mesh.coordinates()
7

8 if boundary == ’cavern’:
9 # d - vector of lengths between nodes on the cavern’s wall

10 d, alpha = self.nodal_forces()
11 # indexes of the nodes of the cavern(s)
12 nind_c, nind_c1, nind_c2 = self.cavern_nodes_ind()
13 # depths of the roof of the cavern(s)
14 d_cav_top = depth + max(y) - max(y[nind_c])
15 d_cav_bot = depth + max(y) - min(y[nind_c])
16 # minimum and maximum allowable cavern pressures
17 pc_min = 0.2 * p * d_cav_bot
18 pc_max = 0.8 * p * d_cav_top
19

20 if pressure == ’max’:
21 pc = pc_max
22 elif pressure == ’min’:
23 pc = pc_min
24

25 # hydrogen density calculated using the coolprop library
26 rho_h2 = PropsSI(’D’, ’T’, temp, ’P’, pc, ’hydrogen’)
27

28 # initialize the forces vector
29 f = np.zeros((2 * self.__nnodes, 1))
30

31 # assemble the forces vector
32 for elt in self.__elts:
33 node = elt.nodes()
34 ind = elt.dofnos()
35 fe = np.zeros(6)
36

37 for i in range(3):
38 # Applying Neumann’s B.C. on cavern’s wall
39 if boundary == ’cavern’:
40 if node[i] in nind_c:
41 # calculate the lithostatic and cavern pressure difference
42 dp = (pc + rho_h2 * g * (max(y[nind_c] - y[node[i]])) - p * (depth +

max(y) - y[node[i]])) * \
43 d[np.where(nind_c == node[i])] * th
44 fe[2 * i] += dp * np.cos(alpha[np.where(nind_c == node[i])])
45 fe[2 * i + 1] += dp * np.sin(alpha[np.where(nind_c == node[i])])
46

47 f[ind] = fe.reshape((6, 1))
48

49 return f, sign

Listing A.6: Load vector
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1 def creep_load_vector(self, dt, a, n, q, r, temp, stress, strain_crg, arrhenius=None, th
=1):

2 ”””
3 assemble creep load vector
4 :return:
5 ”””
6

7 def deviatoric_stress():
8 ”””
9 calculate deviatoric stress

10 ”””
11 dstressx = stress[0] - 0.5 * (stress[0] + stress[1])
12 dstressy = stress[1] - 0.5 * (stress[0] + stress[1])
13

14 return np.array([dstressx, dstressy, stress[2]])
15

16 def assemble_creep_forces_vector():
17 ”””
18 assemble the global fictitious creep forces vector
19 ”””
20 fcr = np.zeros((self.__nDOFs, 1))
21

22 for elt in self.__elts:
23 area = elt.area()
24 ind = elt.dofnos()
25 B = self.strain_disp_matrix(elt.eltno())
26 D = elt.el_tenz()
27 fcre = 1 / 2 * th * area * np.dot(np.transpose(B), np.dot(D, strain_crg[:,

elt.eltno()]))
28 fcr[ind] += fcre.reshape((6, 1))
29

30 return fcr
31

32 # deviatoric stress at gauss points
33 dstressg = deviatoric_stress()
34 # von mises stress at gauss points
35 svmg = von_mises_stress(stress)
36 # take into account Arrhenius term if required
37 if arrhenius is not None:
38 arr = np.exp(- q / (r * temp))
39 else:
40 arr = 1
41

42 # calculate the creep strain
43 g_crg = 3 / 2 * a * abs(np.power(svmg, n - 2)) * svmg * dstressg * arr
44 strain_crg = strain_crg + g_crg * dt
45

46 # assemble the global fictitious creep forces vector
47 f_cr = assemble_creep_forces_vector()
48

49 return f_cr, strain_crg

Listing A.7: Fictitious forces vector

A.1.5. Boundary Conditions
In order to make the described above problem well posed, it is necessary that the solution of (A.40)
would satisfy boundary conditions:

𝑞 = 0, 𝑥 ∈ Γ፡
𝜎 ⋅ 𝑛 = 𝑓, 𝑥 ∈ Γ፬ (A.41)

where 𝑛 is an outward unit normal vector to the surface Γ፬, 𝑓 - applied surface traction on the boundary
Γ፬.

The boundary condition on Γ፡ is called the displacement or Dirichlet essential boundary condition,
whereas the boundary condition on Γ፬ is called traction or Neumann natural boundary condition. The
latter one is already "naturally" introduced in the problem in the form of the vector of the external loads
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𝐹 incorporated in the governing equation (A.40). The Dirichlet boundary condition is implemented by
modifying the corresponding elements of the stiffness matrix 𝐾.

In the code implementation, first, indexes of the required degrees of freedom, where Dirichlet bound-
ary conditions needs to be applied, are accessed as shown in A.8.

1 def extract_bnd(self, lx=None, ly=None, rx=None, ry=None, tx=None, ty=None, bx=None, by=
None):

2 ”””
3 Extracts indices of dof on the domain’s boundary, such that L_bnd and R_bnd contain x

-dof indices and B_bnd and T_bnd contain y-dof indices.
4 d_bnd: array of dof indexes, where dbc will be implied
5 x,y: nodal coordinates
6 ”””
7

8 l_bnd_x = np.array([], dtype=’i’)
9 l_bnd_y = np.array([], dtype=’i’)

10 r_bnd_x = np.array([], dtype=’i’)
11 r_bnd_y = np.array([], dtype=’i’)
12 b_bnd_x = np.array([], dtype=’i’)
13 b_bnd_y = np.array([], dtype=’i’)
14 t_bnd_x = np.array([], dtype=’i’)
15 t_bnd_y = np.array([], dtype=’i’)
16 d_bnd = np.array([], dtype=’i’)
17 x, y = self.__nodes
18

19 for i in range(self.__Nnodes):
20 # dofs of the left edge
21 if x[i] == np.min(x):
22 l_bnd_x = np.append(l_bnd_x, i * 2)
23 l_bnd_y = np.append(l_bnd_y, i * 2 + 1)
24 # dofs of the bottom edge
25 if y[i] == np.min(y):
26 b_bnd_x = np.append(b_bnd_x, i * 2)
27 b_bnd_y = np.append(b_bnd_y, i * 2 + 1)
28 # dofs of the right edge
29 if x[i] == np.max(x):
30 r_bnd_x = np.append(r_bnd_x, i * 2)
31 r_bnd_y = np.append(r_bnd_y, i * 2 + 1)
32 # dofs of the top edge
33 if y[i] == np.max(y):
34 t_bnd_x = np.append(t_bnd_x, i * 2)
35 t_bnd_y = np.append(t_bnd_y, i * 2 + 1)
36

37 # after dofs of the left, right, bottom and top edges are accessed, the function will
return only the array of the dofs of the edges, where dbc are chosen to be implemented
by the user’s choice.

38 if not (lx == False):
39 d_bnd = np.concatenate((d_bnd, l_bnd_x))
40 if not (ly == False):
41 d_bnd = np.concatenate((d_bnd, l_bnd_y))
42 if not (rx == False):
43 d_bnd = np.concatenate((d_bnd, r_bnd_x))
44 if not (ry == False):
45 d_bnd = np.concatenate((d_bnd, r_bnd_y))
46 if not (bx == False):
47 d_bnd = np.concatenate((d_bnd, b_bnd_x))
48 if not (by == False):
49 d_bnd = np.concatenate((d_bnd, b_bnd_y))
50 if not (tx == False):
51 d_bnd = np.concatenate((d_bnd, t_bnd_x))
52 if not (ty == False):
53 d_bnd = np.concatenate((d_bnd, t_bnd_y))
54

55 return d_bnd

Listing A.8: Indexes of the degrees of freedom where DBC will be implemented
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After the degrees of freedom subjected to Dirichlet boundary conditions are defined, the implemen-
tation is simply done using the code routine shown in A.9.

1 def impose_dirichlet(k, f, d_bnd):
2 ”””Impose Dirichlet boundary conditions.
3 k: stiffness matrix
4 f: load vector
5 ”””
6

7 k[d_bnd, :] = 0
8 k[:, d_bnd] = 0
9 k[d_bnd, d_bnd] = 1

10 f[d_bnd] = 0
11

12 return k, f

Listing A.9: Implying DBC

A.1.6. Time Discretization
Let us write down the time dependent term (2.15) in the following form:

𝜕𝜀፫
𝜕𝑡 = 3

2𝑒
ዅ ᑈ
ᑉᑋ 𝑎𝜎፧ዅኻ፯ፌ 𝑠 (A.42)

or for simplicity one can write:

𝜕𝜀፫
𝜕𝑡 = 𝑓(𝑇)𝑔(𝜎)

𝜀፧ዄኻ፫ − 𝜀፧፫
Δ𝑡 = 𝑓(𝑇)𝑔(𝜎)
𝜀፧ዄኻ፫ = 𝜀፧፫ + 𝑓(𝑇)𝑔(𝜎)Δ𝑡 (A.43)

where superscripts (𝑛 + 1) and 𝑛 denote the value of property at the next and current time step
respectively.

As it can be seen, in order to incorporate the creep strain in the mathematical model and solve the
problem numerically, it is necessary to discretize the creep term in time domain. In the current study
it is done in two ways: using the Euler forward time discretization scheme, i.e. explicit method and
using the Euler backward time discretization scheme, i.e. implicit method. The first method yields the
following expression of (A.43):

𝜀፧ዄኻ፫ = 𝜀፧፫ + 𝑓(𝑇)𝑔(𝜎፧)Δ𝑡 (A.44)

After substituting the obtained expression (A.44) into (A.40) the system of linear algebraic equations
can be solved for every time step directly using the Gaussian elimination:

𝐾𝑄፧ዄኻ = 𝐹 + 𝐹፧፫ (A.45)

The code routine for the mentioned above procedure with time dependent solution is shown in A.10.
1 # check number of timesteps > 1
2 if nt > 1:
3 # iterate through each time step
4 for i in tqdm(range(nt - 1)):
5 # assemble the load vector
6 fo, sign = V.load_vector()
7 # assemble the fictitious creep forces vector
8 f_cr, strain_crg = V.creep_load_vector()
9 # extrapolate gauss points creep strain to nodal points

10 strain_cr = V.nodal_extrapolation(strain_crg)
11 f = fo + f_cr
12 # imply DBC
13 f[d_bnd] = 0
14 # find solution for the displacement
15 u = solve_disp(k, f)
16 # evaluate gauss strains
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17 straing = V.gauss_strain(u)
18 # interpolate gauss point strain values to nodal points
19 strain = V.nodal_extrapolation(straing)
20 if (i % freq == 0) and i != 0:
21 # if cyclic load is defined, recalculate stresses every freq_th timestep,
22 # freq=1, 2, 3... etc
23 stressg = V.gauss_stress(straing - strain_crg)
24 # interpolate gauss point stress values to nodal points
25 stress = V.nodal_extrapolation(stressg)

Listing A.10: Creep time dependent model, explicit method

Using the implicit time discretizaton scheme, the following expression is obtained from (A.43):

𝜀፧ዄኻ፫ = 𝜀፧፫ + 𝑓(𝑇)𝑔(𝜎፧ዄኻ)Δ𝑡 (A.46)

There are now two unknown terms in the governing equation and it is not possible to solve it directly:

𝐾𝑄፧ዄኻ = 𝐹 + 𝐹፧ዄኻ፫ (A.47)

In this case the Newton-Raphson iterative approach is proposed to solve the problem. The code routine
for the approach is shown in A.11

1 # set jacobian to be equal stiffness matrix
2 J = k
3 # check number of timesteps > 1
4 if nt > 1:
5 # iterate through each time step
6 for i in tqdm(range(nt - 1)):
7 # print(’\nTime step {}, dt = {} s:’.format(i + 1, dt))
8 converged = 0
9 iter = 0

10 # set maximum number of iterations
11 max_iter = 5
12 # set convergence criteria
13 conv = 1e-4
14

15 while converged == 0:
16 # update mesh coordinates
17 mesh.update_mesh(u)
18 FunctionSpace(mesh, sfns, mu, kb)
19 # assemble the fictitious creep forces vector
20 f_cr, strain_crg = V.creep_load_vector()
21 # extrapolate gauss points creep strain to nodal points
22 strain_cr = V.nodal_extrapolation(strain_crg)
23 f = fo + f_cr
24 # imply DBC
25 f[d_bnd] = 0
26 # calculate residual
27 residual = np.dot(k, u) - f
28 # calculate displacement increment
29 delta_u = - np.linalg.solve(J, residual)
30 # update the displacement
31 u = u + delta_u
32

33 # evaluate gauss strains
34 straing = V.gauss_strain(u)
35 # interpolate gauss point strain values to nodal points
36 strain = V.nodal_extrapolation(straing)
37 if (i % freq == 0) and i != 0:
38 # if cyclic load is defined, recalculate stresses every freq_th timestep,
39 # freq=1, 2, 3... etc
40 stressg = V.gauss_stress(straing - strain_crg)
41 # interpolate gauss point stress values to nodal points
42 stress = V.nodal_extrapolation(stressg)
43

44 # elapsed time
45 et = np.append(et, et[-1] + dt)
46

47 # check the residual
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48 residual = np.dot(k, u) - f
49 res = np.linalg.norm(residual)
50 iter += 1
51

52 # print(”\nIteration {}, norm(residual) = {}.”.format(iter, res))
53 # check the maximum iterations and convergence threshold criteria
54 if iter == max_iter and res >= conv:
55 print(”\nMaximum iterations reached.”)
56 if res < conv or iter >= max_iter:
57 converged = 1

Listing A.11: Creep time dependent model, implicit method
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A.2. Figures
A.2.1. Simulation results: Consistency analysis

Figure A.3: Synthetic analytical and numerical solutions. 3584 elements.

Figure A.4: Difference between synthetic analytical and numerical solutions. 3584 elements.
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A.2.2. Simulation results: Irregular cavern

(a) Displacement in x direction. (b) Displacement in y direction.

(c) Von Mises Stress.

(d) X component of strain. (e) Y component of strain. (f) Shear component of strain.

(g) X component of stress. (h) Y component of stress. (i) Shear component of stress.

Figure A.5: Results of solving the irregular cavern model.
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A.2.3. Simulation results: Irregular cavern with heterogeneity

(a) Displacement in x direction. (b) Displacement in y direction.

(c) Von Mises Stress.

(d) X component of strain. (e) Y component of strain. (f) Shear component of strain.

(g) X component of stress. (h) Y component of stress. (i) Shear component of stress.

Figure A.6: Results of solving the irregular cavern with heterogeneity model.
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