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Abstract

Many widely used Recommender System algorithms estimate user tastes without accounting for their evolv-
ing nature. In recent years there has been a gradual increase in methods incorporating such temporal dynam-
ics through sequential processing of user consumption histories. Some works have also included additional
temporal features such as time stamps and intervals between a given user’s interactions with the platform.
The latter, in particular, may be a strong signal providing additional context with respect to the current user
preferences. However, in previous works this source of information has only been used passingly, without
any significant analysis of its impact on recommendation. In this thesis we examine the effects of such inter-
vals, termed time gaps, on recommendation accuracy. In order to do so, we propose a family of novel Deep-
TimeDelta models, extending a state-of-the-art sequential Recurrent Neural Network based recommender.
Through the comparison of our time-dependent models to the sequential baseline we demonstrate that the
use of time gaps leads to improvements in recommendation performance, in particular for cases following
longer user inactivity. Furthermore, we examine the mechanisms regulating the model recommendation be-
haviour. Our results suggest that the above performance improvements may be achieved through increased
reliance on user long term preferences as well as strong regulation of the importance of the recently con-
sumed items. Finally, we examine the performance differences for users groups with distinct consumption
behaviours, demonstrating some improvement for groups featuring less active users as well as users consum-
ing more popular content.
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Introduction

In modern age, users are faced with more choice than ever. Many online services, such as on-demand en-
tertainment platforms, news portals and e-commerce websites have vast catalogues of content at the users’
disposal. With the amount of content added every day it has become progressively more difficult for an in-
dividual to be familiar with all the options available to them [47, 59]. This overwhelming choice has been
previously shown to have a negative impact on the user’s ability to make a good choice as well as the overall
user experience [16, 47, 59]. As a result, Recommender Systems (RS) have been proposed as a potential solu-
tion to this problem, providing each user with a tailored selection of items deemed to be the most relevant for
them. Nowadays, RS are an important component of many popular services such as Pandora!, Netflix? and
Spotify>.

A large number of widely used RS methods rely on a given user’s consumption history to estimate what
other items may be relevant to them [6, 33, 80, 89, 108, 142]. Items that are predicted to be the most preferred
by that specific user can then be presented to them in the form an ordered list of recommendations. Im-
portantly, throughout the recent history of RS, most of the commonly used algorithms have approached the
task of recommendation as a static problem [40, 89, 97]. For those models, separate instances of a customer
consuming pieces of content tend to be processed independently from one another and without any con-
sideration for the order in which the items were consumed. However, while these methods yield a satisfying
performance and often boast good computational efficiency, one may argue that the problem of recommen-
dation is inherently dynamic - users do not consume all items at once but instead sequentially, with their
tastes changing ever so slightly as the time passes. Intuitively, when predicting items that may be relevant to
the user today, the item the user consumed yesterday may be more predictive of their current needs than an
item consumed a long time ago. As such, it may be important for the model to be able to assign varying levels
of importance to different items in the user’s history based on the recency of the interaction.

In the view of the above, an increasing number of authors have started incorporating different forms of
temporal information into their models [32, 33, 50, 108]. For instance, a number of authors have chosen to
cast recommendation as a sequence prediction problem [48, 53, 114]. Given a list of items consumed by a
single user ordered by the interaction time, their aim is to predict the subsequent item at each point in the
list. Popular approaches include Hidden Markov Models [48, 114, 123] and, more recently, Recurrent Neural
Networks [33, 52, 53, 108]. Other approaches, alternatively, include the interaction time in their otherwise
static models [32, 50, 68, 79]. Different forms of including time as an additional feature are thought to al-
low models to account for the gradual changes in popularity of items, continuous shifts in user tastes over
time as well as the effects of periodicity [79]. These algorithms have been shown to perform particularly well
under custom evaluation schemes, such as the prediction of masked ratings during the Netflix prize compe-
tition [80]. However, alternative evaluation designs have also been proposed, allowing only the user’s past
rating information to be used for the prediction of the future ratings [20]. Some authors suggest that under
such more realistic scenarios these algorithms may struggle to accurately predict the future user behaviour,
potentially rendering them less valuable in practice [86].

lpandora.com
2petflix.com
3spotify.com



2 1. Introduction

Notably, there exists another potential source of temporal information not leveraged by the above works.
Intervals between consumption events, time gaps, may be an important source of information allowing to
further improve the performance of sequential models. For instance, when a user listened to two tracks
directly one after another, in many cases the first may be a relatively good predictor of the second. On the
other hand, in case the interval between two songs is longer (e.g. a month), intuitively, the expected level of
dependency between the two tracks may be lower. Moreover, as the user’s tastes may have changed during
this period, the second song may be much more more representative of what is relevant to the user now.
Conversely, if the user instead listened to the first track only for a few seconds before switching to the next
one, the duration of the interval may indicate that the first song was actually not relevant to the user.

Simple sequential models may fail to capture the above dynamics as they do not have access to temporal
information that would allow them to do so. Including time gaps in an otherwise sequential model may, on
the other hand, allow the model to learn the effect different time gaps may have on estimating shifting user
preferences. Interestingly, the few works in literature that do incorporate time gaps either address their effects
on recommendation passingly or do not discuss them at all [26, 63].

1.1. Research Questions and Scientific Contributions

We believe that time gaps may lead to improvements in prediction accuracy of recommender systems over
existing models. Moreover, we are interested in understanding how the models would leverage this temporal
information in order to do so. Motivated by the current gaps in research, we aim to answer our overarching
research question:

Research Question: Are time gaps a useful source of information for improving recommendation
accuracy in sequential recommendation?

We propose to answer this question by focusing on three key aspects. Firstly, time gaps may be included in
arecommender model in various ways and thus serve different roles in recommendation. We are interested in
determining which of those uses may improve the estimation of user preferences. As such, our first Research
Sub Question is as follows:

Research Sub Question 1: Which modes of incorporating time gaps into a sequential model lead to
an improvement of recommendation accuracy?

Secondly, we hypothesise that the implicit meaning of time gaps and how they affect recommendations
may vary depending on their value. For instance, it may be possible that certain values of time gaps may be
treated as a positive signal while some may be seen as negative. Thus, we are interested in determining the
answer to the following question:

Research Sub Question 2: How are different values of time gaps interpreted by the model and what
effects do they have on recommendation accuracy?

Moreover, it is hypothesised that users consuming content with different frequency may benefit from
inclusion of temporal information to a different extent. For instance, increased preference uncertainty for
the less active users may be potentially captured and accounted for through the leveraging of time gaps.
Furthermore, users with distinct tastes may also interact with the platform in a different fashion from one
another. Overall, it is of interest to examine the benefit of including temporal information for different users,
raising the third and final Research Sub Question:

Research Sub Question 3: Are time gaps beneficial in predicting the behaviour of specific groups of
users?

In order to address the above questions we propose a family of novel sequential time gap models. We then
contrast their performance in an offline evaluation study against a state-of-the-art sequential neural network
model, on which our model is based. Following that, we explore the model performance as well as differences
in model behaviour over smaller subsets of interactions associated with non-overlapping ranges of time gap
sizes. Finally, model performance is compared on subsets of users with distinct temporal behaviour and
content preferences.
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Overall, the scientific contributions of this work are as follows:

1. We introduce a novel time gap based recommendation algorithm along with its implementation.*

2. We perform an analysis of the benefits to the recommendation accuracy provided by the time gaps.
Moreover, we examine and interpret how distinct values of time gaps affect the process of recommen-
dation.

This thesis is structured as follows. The Background section of Chapter 2 first provides context on Recom-
mender Systems and Collaborative Filtering. This is followed by additional information on static, sequential
and time-dependent recommender models. Finally, we provide relevant information on neural networks,
which form the basis of our model as well as of our baseline. Following that, sequential and temporal neural
network based models are described in the Related Work section of Chapter 2. From then onwards, Chapter
3 describes our proposed set of models as well as the motivation behind them. The chapter also introduces
the rationale behind the experiments performed to address our overarching Research Question. Chapter 4
describes the specifics of the experimental setup, including the datasets used, data preprocessing, model
parameter selection and evaluation of the results. Subsequently, experimental results, along with our anal-
ysis, are presented to the reader in Chapter 5. We then provide our conclusions, discuss the limitations of
our approach and explore potential future work in Chapter 6. Finally, as the offline study may not fully re-
flect the recommender’s effect on the end user’s satisfaction, an online study on the user data from a video-
on-demand platform Videoland® was originally envisaged. However, due to challenges stemming from the
implementation of the experiment no significant conclusions can be reported. Ideas underlying the online
experiment, along with information on its setup, the observed results as well as a more detailed description
of the aforementioned difficulties and their impact on the progression of the thesis are included in the Ap-
pendix.

4
5
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Background and Related Work

2.1. Aim of recommender systems

The rapid growth of the internet, e-commerce and entertainment industries has led to a surge in the amount
of content available for consumption. While this growth may initially seem to be a positive phenomenon for
the consumer, it also comes with its challenges. Work by Iyengar and Lepper [59] suggests that having to select
an item from a large number options may actually decrease the customer’s motivation to make that choice.
This effect has been termed choice overload. On the other hand, a study by Hdaubl and Trifts [47] demonstrated
that having an interactive system provide the user with a tailored subset of items led to the user being able
to make better choices while expending less mental effort. Taken together, the above results suggest that
in situations featuring an excessive number of options it is important a user be provided with a pre-filtered
bespoke list of items. Methods employed for this task are collectively known as Recommender Systems (RS).
Nowadays RS are integral components of many businesses, including Pandora, Netflix and Spotify. For a
comprehensive list of benefits RS provide both to the user as well as the service platform we urge the reader
to consult Ricci et al. [115].

2.2. Basic problem setting

A recommender system, recommendation system or simply a recommender, is an algorithm or a technique
that assists a user in satisfying their informational need [92]. This may, for instance, come in the form of
suggesting a product, an article or a song that is the most appropriate to the user at the time they interact with
the system. In the classical definition, a recommender model aims to identify item or items i from the set of
all items I which would lead to the highest satisfaction R, ; of user v. Note that the above term satisfaction is
subjective and thus difficult to measure in practice. In the early RS works authors often used ratings assigned
to items as a measure of their relevance to a given user v [29, 54, 77, 78, 125]. The aim of such works is to
predict the rating 7,; that v would assign to a previously unseen item i. Learning the user’s preferences is
done by leveraging the available ratings r,, ; that the user had previously entered on the platform. The quality
of rating predictions produced by such models is often evaluated using Root Mean Squared Error (RMSE)
on a withheld set of existing ratings. At recommendation (prediction) time the model is queried for items
previously not consumed by v for which 7, ; is the highest.

On the other hand, recommendations are generally presented to the user in the form of an ordered list
reflecting the estimated relative preference of items, without the direct need for the calculation of the exact
ratings. As such, more recently, authors have found success in skipping the rating prediction altogether and
instead directly focusing on ranking the items [4, 61, 70]. This approach is particularly useful when the rating
information is not available and is discussed in Subsection 2.4.2.

2.3. Types of recommender systems

There has been a large body of work approaching the problem of recommendation from different angles.
Burke [18] lists four main types of recommender systems: collaborative, content-based, demographic and
knowledge-based. More recent types of RS also include social RS [42] and hybrid models [19]. While there
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have been developments in all the directions of recommendation, the largest amount of research effort has
gone into content-based approaches and collaborative filtering [30, 81].

Content-based approaches attempt to identify certain underlying characteristics of items and then match
them to users who exhibit affinity for those characteristics. In practice, this means that a content-based
model is often attempting to find items most similar to the ones that have previously been relevant to the
user (e.g. assigned a high rating). For example, if user positively rated a few romantic comedies, a content-
based model may identify the user’s preference for this type of movies. It may then try recommend other
items whose metadata (e.g. genre, actors, language, keywords) are similar to the previously consumed items.
However, the main limitation of such approaches is the difficulty of extracting meaningful features from the
content. It has been previously shown that only using content metadata may insufficient for producing high
quality recommendations [73]. Moreover, this dependence often makes content-based approaches rely on
custom crafted features [90], making them non-generalisable across different recommendation domains e.g.
books and music.

2.4. Collaborative Filtering

The other widespread type of models instead leverages the aggregated feedback from multiple users. For this
reason, these methods are collectively termed Collaborative Filtering (CF). They are often the go-to models
as they can be used without the need to extract and process any content-related features.

In the previously described recommendation setting, all user-item interactions can be summarised using
a user-item matrix. An example of such matrix is presented in the left part of Figure 2.1. CF models aim to
leverage the information captured by such matrix in order to provide relevant recommendations. The clas-
sical paradigm is that CF models can be split into neighbourhood-based (also known as memory-based) and
model-based methods [30]. The former can be further split into user-based and item-based neighbourhood
methods [30]. Briefly, given a user v, user-based neighbourhood methods attempt to identify other users
whose consumption patterns (e.g. ratings) are similar to those of v. They then aggregate the information
from k (hyperparameter) such neighbours in order to identify what other items may be relevant to v. Item-
based neighbourhood methods, on the other hand, employ a variation on the above approach. Given a set of
items I, consumed by v, for each item i € I, these methods calculate the similarity of i to all other items in
the dataset. An example of such similarity metric is cosine similarity of two vectors where each pair of entries
is ratings from a user who has consumed both items [119]. These similarities are then employed to recom-
mend other items similar to those already previously consumed by v. For a more comprehensive overview of
neighbourhood-based methods we suggest the work of Desrosiers and Karypis [30].

Neighbourhood models are known for their ability to identify localised relations but struggle with identi-
fying global underlying trends [78]. As an example, for a given user who previously watched Brave, Moana and
Kill Bill, a likely set of recommendations under a neighbourhood model would be (Disney) animations and
Tarantino-esque movies. On the other hand, one may argue that a successful model must also learn to infer
the underlying concepts defining the user preferences (e.g. strong lead female characters) and recommend
accordingly, in effect looking past direct neighbours for recommendation.

2.4.1. Latent factor models
The recent years, following increases in available computational power, have seen a rise in the use of the
so-called model-based or latent factor approaches [10, 43, 79, 108]. Instead of selectively focusing on parts
of the user-item matrix as with neighbourhood methods, all the information in the matrix is used in full.
The success of these models is illustrated by the work of Koren [80] winning the Netflix prize, providing 10%
lower RMSE compared to Netflix’s own algorithm at the time. Paired with the availability of computationally
efficient implementations, the model-based algorithms are widely adopted in industry [25, 58, 97, 113].

Collectively, latent factor methods attempt to model users and items as k-dimensional feature vectors. In
this formulation, each value in the item vector symbolises the extent to which the item possesses some un-
known (latent) characteristic. Similarly, each respective value in the user vector denotes the user’s preference
(or a lack thereof) for the above characteristic. This notion is shown in Figure 2.1. The reader may note that
this is conceptually similar to the idea presented in section 2.3 in the context of Content-based RS. Whilst la-
tent features are difficult to interpret, they are learned on the basis of aggregated user consumption patterns
and as such do not rely on content processing.

A number of seminal works in the area of latent factor methods draw inspiration from Single Value De-
composition (SVD) [10, 78, 107, 134]. This technique has been pivotal in the fields of Information Retrieval
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Figure 2.1: Singular Value Decomposition (SVD) of the user-item matrix. An individual entry in the rating matrix R denotes the rating
assigned by the row’s user to the column’s item. Missing values denote that a given user has not rated the chosen item. An unknown
user-item rating combination (?) can be estimated by decomposing R into a user matrix P and an item matrix Q. The inner dimension of
the two resulting matrices, denoting the dimensionality of the resulting latent user and item (embedding) vectors, is a hyperparameter
k. The missing rating is calculated as the dot-product of the latent vectors belonging to the user and the item in question.

[14] and Machine Learning [128]. User-item matrices, however, tend to be very sparsely populated as users
tend to interact with only a small proportion of available items, making the data not amenable to SVD [84].
While it is possible to impute the missing values as described in [27, 132], the imputed values are unlikely to
be reliable [147]. As such, many authors have instead focused on modelling the user behaviour solely on the
basis of existing values [10, 40, 78, 107].

One of the most studied types of latent factor models is Matrix Factorisation (MF). Its most common im-
plementation, popularised by Funk [40] and employing gradient descent, is still often employed in industry
due to its scalability and ease of implementation. Under this framework, an m x n user-item interaction ma-
trix R is decomposed into an m x k user latent vector matrix P and a k x n item latent vector matrix Q. Given
a user v and an item i one would predict v’s preference for i as the dot product between the user embed-
ding vector p, and the item embedding g;. The length of these embedding vectors k is a hyperparameter
and can be tuned on the validation set or via cross-validation. Notably, higher values of k, both for MF and
other models, may lead to improved performance at the expense of longer computation time and memory
requirements. However, too high k values may also increase the risk of overfitting [84, 97].

The main difference of this technique from the previously mentioned SVD is that in MF it is possible
to learn the user and items embeddings exclusively on the basis of the available ratings. This is done by
calculating the prediction loss on those ratings and updating the embeddings based on the extent to which
they contributed to the error. This process is then repeated until a sufficiently low disparity between predicted
and true ratings is reached. This iterative approach is known as gradient descent - for an overview of this
technique we suggest Ruder [117]. Funk’s model placed third in the Netflix Challenge and inspired a large
body of related work [78, 97, 118, 122].

2.4.2. Implicit ratings and additional features

Whilst relying on user ratings is a convenient proxy for estimating user preferences, this also comes with a
number of drawbacks. The main disadvantage of relying on the rating data is the relative scarcity of such
feedback. In fact, a number of authors, including those from YouTube, suggest that the overwhelming major-
ity of user interactions often comes from other forms of feedback [25, 51, 66, 113]. These may include click
data, user hovering over a given item’s thumbnail, textual queries, user watching a trailer for a given movie,
among many others. Consumption data (clicks), simply indicating that the user interacted with a given item,
is particularly prevalent in the majority of domains [21, 25, 58, 100]. This type of feedback is known as im-
plicit. A clear limitation of such input is that the user satisfaction, previously available in the form of ratings,
is no longer measured. However, it is likely that the user made a conscious decision to interact with the given
item, indicating potential interest in it. Moreover, they chose that item above all other available items, sug-
gesting some form of preference. As such, implicit feedback is crucial for providing an insight into the user’s
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tastes as well as partially ameliorating the data sparseness encountered when solely relying on ratings.

One of the models able to incorporate such feedback is SVD++ [78]. This approach builds on ME extend-
ing it with additional weights that model different additional types of interactions that the user may have
with the item. In their work, Koren demonstrates the superior performance of SVD++ over standard MF on
the Netflix dataset. Other works successfully leveraging implicit feedback alongside explicit ratings include
[6, 106]. Altogether, the above works underline the importance of utilising implicit feedback for prediction.

Notably, due to the drastic differences in the availability of the data, a number of authors have chosen
to focus on modelling user preferences on the basis of only implicit feedback, omitting the dependence on
ratings [58, 101, 113, 114]. Note that this task is inherently more complex compared to the rating predic-
tion as there is no clear positive or negative feedback and thus standard regression models that dominated
the Netflix challenge cannot be applied [114]. Instead, the problem is often recast as one of predicting the
preference directly (bypassing ratings), determining the preference with respect to other items (ranking) or
estimating the probability of a given item being consumed next. For example, in their work Hu et al. [58] sub-
stitute the rating of the item with the binary preference (or non-preference) for each item and an associated
vector displaying their confidence in the estimated preference. Confidence is high if a user consumed the
item in full and on multiple occasions, whereas low confidence values tend to be used if the item was only
consumed partially. Similar to rating prediction, the authors still aim to learn the user and item embeddings.
However, in contrast to ME the embedding dot-product instead models the binary user preference, with the
confidence vector weighting the interaction’s contribution to the total loss, reflecting the model’s certainty
in the correctness of the estimated preference. Rendle et al. [113], on the other hand, propose a model that
aims to learn the ranking of items by contrasting each consumed item with a random item not consumed by
the user. The authors operate under the assumption that a consumed item is preferred by the user over any
unconsumed item. While this assumption is often violated in practice (e.g. user is unaware of an item they
would have otherwise liked), the authors, regardless, demonstrate performance comparable to or better than
the state-of-the-art at the time. In fact, both of the above approaches have found widespread adoption in
industry due to their fast training times and good performance.

Note that in the formulation of SVD++ all the additional terms involve only various types of implicit feed-
back associated with the items. As previously alluded, recommendation platforms often have access to ad-
ditional information related to interactions outside of explicit and implicit feedback. This data may include
but is not limited to spatial, temporal and social information. Various works have demonstrated the impor-
tance of this additional information in increasing the recommendation quality [2, 6, 63, 91, 112, 144]. For
instance, intuitively, it is not unusual for users to watch Christmas movies in the period leading up to the
holiday season. However, it is useful for the model to incorporate the understanding of the context in which
those movies were watched e.g. as not to attempt to later recommend Christmas movies in summer. Rendle
has shown that their framework termed Factorisation Machines (FM) is able to successfully leverage many
types of such additional information for the task of the rating prediction [112]. FM is conceptually related to
ME albeit now the rating is determined via the strength of interactions not only between the item and user
but also the circumstances of interaction. Moreover, similar to ME Factorisation Machines rely on gradient
descent. In the case of FM it is used to find the most effective way of combining the multimodal information
of the interaction as to predict the rating assigned by the user to the item. An example of the input and output
of a FM model is presented in Figure 2.2.

They key aspect, in addition to allowing for any type of features, leading to the success enjoyed by the
FM, is the introduction of interactions between features. Second order FM’s (two features interacting at a
time) are frequently used due to their simplicity of implementation and good performance [88]. Blondel et al.
[15] and Xiao et al. [143] also recently demonstrated that FM’s of higher order (3+) may provide even better
results on some tasks compared to the lower-order FM’s (1 —2). More recent works by Guo et al. [45] and Loni
et al. [89] have also addressed the fact that FM’s basic implementation may perform suboptimally when used
directly on implicit feedback. With the above modification FM’s can thus be seen as a generalisation of both
MEF and SVD++. Overall, the seminal work by Rendle et al. highlights two key points:

1. Auxiliary information can be included in the model to increase the quality of recommendation.

2. Exploiting more complex relationships between input variables is highly beneficial in improving the
model’s expressiveness.

However, one limitation of FM, visible in Figure 2.2, is that FM’s do not capture certain types of temporal
information, for example the order in which items were consumed. That is, rows x! and x2 may be switched
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Figure 2.2: Factorization machines can be used to incorporate a wide range of inputs. Data is presented to the model as set of tuples «d,
yi ). Every aspect of the interaction is encoded as xi = (x1, X2, ..., Xp) using numeric or indicator variables, whilst yi is the rating assigned
by the user for that particular interaction. For each interaction the user and the movie from Figure 2.1 encoded using indicator
variables alongside the list of all items rated by the given user. The weather on a scale from 1 to 5 as well as the hour of interaction
denoted using integers. Adapted from Rendle [112].

and FM’s global optimum would be unchanged. As such, while FM’s can process a wide array of features,
some dependencies between inputs may still be handled suboptimally.

2.5. Temporal dynamics

The approach employed by MF and other standard model-based methods can be viewed as modelling the
user’s overall long-term preferences [48]. The main disadvantage of such approaches is that even the most
drastic recent changes in user behaviour may be ignored by the model, especially if the recent interactions
only make up a small percentage of the user’s history. Intuitively, the user’s most recent interactions may
reflect the user’s current needs more than their interactions a long time ago. As such, some authors have
chosen to view the items consumed by the users not as a randomly ordered sets but instead as a sequences,
with the aim of modelling the users’ short-term preferences [33, 48, 114, 129].

There appears to be no consensus in the literature in terms of the naming convention for different tempo-
ral dynamics. According to Shi et al. [126], time-dependent models exploit time as a continuously changing
feature (e.g. Unix epochs, days since a particular date etc.), whereas time-aware models would instead use
only the cyclic aspect of the temporal information (e.g. day of the week). On the other hand, Campos et al.
[20] use the term time-aware to refer to the first of the above definitions, while Du et al. [34] refer to the same
concept as time-sensitive. Finally, Donkers et al. [33] refer as time-dependent to the approaches that use the
ordering of the interactions, disregarding the actual time stamps and timespans between interactions, while
Campos et al. [20] classify such approaches as time-adaptive.

In this work, the following nomenclature is used:

¢ Time-awaremodels use temporal information as a temporal context for when a certain interaction hap-
pened or what context a prediction must be made for (Saturday, summer, Christmas). No distinction is
made between the same phase of two successive cycles (Christmas 2014 and Christmas 2015).

* Sequential models may use raw temporal information (e.g. time stamps) to establish the order of in-
teractions. However, no information conveying the time of the interaction or the time elapsed between
any two interactions is retained. As such, interactions are treated purely as an ordered sequence.

* Time-dependent models use the raw temporal information or its derivatives (binned time stamps, time
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gaps), allowing the model to determine the time of an interaction, the relative order of two interactions
or the time elapsed between them. Time is not viewed as cyclical and thus two successive Friday nights
are viewed as distinct inputs.

This work will focus on contrasting sequential and time-dependent approaches. Time-aware models,
on the other hand, are often regarded as a subtype of context-aware recommender systems [2]. As many
works have previously demonstrated the importance of leveraging (temporal) context in recommendation,
the reader is invited to familiarise themselves with [2, 6, 7].

2.5.1. Sequential models

Sequential models expand on the non-temporal models by leveraging the order in which the user consumed
the items. Interestingly, many authors do not attempt to predict the item ratings and instead focus on pre-
dicting the next item consumed by a given user given their previous items [26, 33, 34, 48, 63].

A natural angle to approach this problem is to model the last chosen item as the current state and the
next item chosen as the next state. Markov Chains have been widely used to model such interstate transi-
tions in Natural Language Processing and Information Retrieval [17, 85]. In RS, early works only provided
non-personalised time-aware recommendations [123]. These models were later combined with latent factor
models to provide personalised recommendations [48, 114].

One limitation of such models is that multiple interactions in a quick succession are treated the same
as an equal number of interactions separated by different periods of time. More broadly, while sequential
models are able to utilise the implicit ordering in the consumption events, all other temporal information is
discarded.

2.5.2. Time-dependent models

Time-dependent models are able to leverage auxiliary temporal information in addition to the implicit order-
ing. The most common type of such information are the time stamps of interactions. Hermann proposes to
use the time between consumption of two items by one user (time gap) as a measure of their similarity [50].
Ding and Li [32], instead, extend an item-based neighbourhood model with a temporal decay factor. In their
formulation, items that were consumed further in the past contribute less to the prediction compared to the
more recent interactions. Moling et al. [98], Pampalk et al. [103] demonstrated that accounting for premature
track switching (defined as a hard coded percentage of the track’s duration in [98], any listening time below
the track’s length in [103]) may lead to improved recommendation performance. Other authors have also
attempted to model the user’s return to the platform and their recurrent consumption of items via temporal
point processes and other statistical models [34, 68, 69].

Koren [79] proposed timeSVD++, decomposing the user and item embeddings into several static and
temporal components. Firstly, for dynamic components, the authors propose to include factors that model
changes in each item’s ratings over time. Secondly, the algorithm contains factors that account for changes
in each user’s ratings over time with one factor per user per day. Finally, Koren and Bell also include factors
to model each user’s change of preferences over time, similarly maintaining one factor per user per day. The
authors suggest that accounting for the dynamic nature of users and items is what allowed them to achieve
the lowest RMSE in the Netflix Prize [80].

One may notice that the above model is very intricate and tailored to the Netflix Prize problem. A common
criticism of timeSVD++ is that it does not generalise to other domains [142]. Moreover, as the authors point
out themselves [81], the model is not able to actually make future predictions directly. Instead, the authors
suggest that their model is able to decompose the user signal into separate long-term and short-term compo-
nents, allowing to interpolate between the past interactions. However, Lathia et al. [86] suggest that whilst a
model’s ability to predict missing ratings may be highly successful for the Netflix Prize, this performance does
not necessarily transfer to the problem of future rating prediction. Nevertheless, timeSVD++ demonstrates
that using temporal information may be key to leveraging the dynamically changing user behaviour.

Overall, one of the main limitations of the above approaches is that they assume specific distributions for
temporal information’s contribution to the prediction (exponential in [32] and timeSVD++, Hawkes process in
[34]). Moreover, work on Support Vector Machines [3] and Factorisation Machines, as discussed in subsection
2.4.2, suggests that models containing complex (e.g. nonlinear) interactions may be more expressive and thus
in effect able to capture the fine-grained user preferences. In recent years, a type of models leveraging the
above concepts, termed neural networks, has seen a resurgence in various fields, including Recommendation
Systems [23, 26, 33, 53, 121].
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2.6. Neural Network based models

Artificial Neural Networks (or simply Neural Networks) is a class of Machine Learning models characterised
by multiple stages of computation and the intertwined use of linear and nonlinear transformations. In a basic
neural network, the computation can be visualised as layers, where each layer applies linear and nonlinear
transformations on the output of the previous layer. A schematic of the basic implementation of a neural
network, Feed-Forward Neural Network (FFNN) is shown in Figure 2.3.
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Figure 2.3: Three layer Feed-Forward Neural Network (FENN). For any hidden layer each of its units is a linear weighted sum of the
outputs of the previous layer followed by a non-linear transformation. The output of the final layer is a linear combination of the
outputs of the last hidden layer.

In FENN, an input vector x € RY is provided to the classifier. Each of the N input values x;, xp, ..., Xy is
then combined as a weighted sum h(x) = Zﬁ\i 1 Wik * Xi + b, where by is known as the bias term. A nonlinear
transformation g(-) such as sigmoid, hyperbolic tangent (tanh) or Rectified Linear Unit (ReLU) [99] is then
applied to the sum. The combined computation g(%(x)) is referred to as a unit or a neuron. Each layer in a
neural network usually consists of multiple such neurons. In the above example the first hidden layer, pro-
cessing the input, consists of M neurons. Note that two neurons in the same layer usually do not share the
weights w and biases b, thus leading to M - N weights and M biases for a particular layer, where N denotes
the number of inputs to the layer. The main idea of neural networks is that the output of the first hidden layer
can be treated as an input to the second hidden layer, which in turn may be used as input for the third layer
etc. These stacked layers may be seen as receiving an input, extracting some underlying features, successively
combining them into progressively more sophisticated features. Finally, the features of the last hidden layer’s
may be processed as a linear combination in the output layer in order to make the prediction (e.g. classi-
fication, regression). The successive use of linearities followed by nonlinearities is what is thought to allow
neural networks to approximate any distribution [57] and perform well in various scenarios, such as object
detection [111], speech recognition [28] and sequence prediction [11]. In recent years, there has also been
a growing interest in neural networks by the RS community. Various works have approached both the static
and dynamic views of recommendation problem [23, 25, 33, 121, 139, 142].

2.6.1. Static Neural Network models

Static neural network based models can be seen as an extension to standard CF-based approaches, such as
neighbourhood methods and FM’s. For instance, [121] uses an Autoencoder to learn a user-specific mapping
for each item based on which users have consumed the item. Autoencoders are a special type of FENN, where
the input vector (e.g. ratings for one item i from each of the |U| users) is passed into a model with one hidden
layer and the task of the model is to reconstruct the original input [5]. The hidden layer is thus forced to learn
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a mapping to a latent representation for each item, which can then be used to find unavailable ratings at test
time, analogous to item-item neighbourhood models, discussed in Subsection 2.4.

Authors from YouTube propose a neural network as a generalisation of ME highlighting the ease with
which any features can be incorporated [25]. In their work the authors jointly learn item embeddings, ag-
gregated static embeddings of user watch and search histories as well as a geographic embedding. Those are
then concatenated with additional categorical and continuous features. The combined vector is then passed
through a series of forward layers, finally outputting the final user state vector. This vector is then used to ex-
tract item probabilities indicating the likelihood of any given item being chosen by the user next. The authors
also propose using sampled softmax to alleviate the computational constraint of having to score each item
at every training step, as first described in [62]. Employing this approach, the authors demonstrate improved
offline metrics and a significant increase in watch time on the platform. The latter is considered to be indica-
tive of the increased user satisfaction, which is the ultimate objective of RS. However, as previously described
in Section 2.5, while the above neural network based models may provide an improvement over the classical
MF and FM, they still fail to leverage the temporal dynamics present in the data.

2.6.2. Neural Networks for sequential data

Recurrent Neural Networks (RNN's) are a type of neural networks proposed to deal with dynamic input. Unlike
the models described in the previous section, RNN'’s process the input sequentially. These models condition
their output for the input at time step T not only on x”’ but also their inputs at time steps T —1, T -2, ...,
1. For example, when using day 7’s measurements (x'’) to predict weather for day T + 1 (output at day T),
an RNN also takes into account the measurements from all the previous days. In the simple formulation,
this historical information is summarised in a hidden state vector '™V, As shown in Figure 2.4, the output
of the model (weather prediction) o'”) at time step T depends on our latent (hidden) representation of our
knowledge h™. This latent vector in turn depends on the input (measurements) x'”) at time step T as well
as our prior knowledge vector 7=V, which in turn depends on x7~D and h'7=? etc. At each time step
the model is able to update its hidden state and output a prediction based on this hidden state. This idea
has been widely used in stock price prediction [22], Natural Language Processing [24] and many other fields

[8, 104, 109].
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Figure 2.4: Recurrent Neural Network (RNN). The hidden state at time step T depends on the hidden state at time step T — 1, which in
turn depends on the hidden state of T — 2 and so on. By explicitly denoting each step’s dependency on all the previous steps an RNN
can be unrolled into a Feed-Forward Neural Network with shared weights across all time steps. Adapted from Olah [102].

The main drawback of the simple version of RNN is the problem known as vanishing gradient. Due to the
gradient flow dynamics during training such models are often unable to learn long-distance dependencies
and can only end up correctly learning the relationship between time step 7 and a small number of preced-
ing time steps. For example, when training a model to generate a sentence, at the 20! word the model might
output a word consistent with the last five words but that would not make sense when taking into considera-
tion the first six words. An example of such situation is given in Figure 2.5.

| was born in the Netherlands. <additional text> | speak _.

Figure 2.5: Example of vanishing gradient problem. When tasked with predicting the missing word a simple RNN may be able to make a
link to the first sentence, given that the gap between the sentences is small enough. But as the gap increases the model is progressively
less likely to make that connection.

To ameliorate this issue, Cho et al. [24] proposed a modified RNN architecture termed Gated Recurrent
Unit (GRU). An example of one GRU neuron is shown in Figure 2.6. In their implementation, the input x”
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and the hidden state h'” are used to calculate r (the reset gate) and u (the update gate). These gates allow the
model to regulate the extent to which the old hidden state '’ = contributes to the new hidden state h?,
Other Recurrent models proposed to learn the longer-term dependencies include Long Short Term Memory
(LSTM) [56] with its various variants [41, 44] as well as Clockwork RNN’s [82]. Karpathy [71] suggests that the
ability of the above models to learn long-distance dependencies stems from the fact that the gradient can be
propagated through many more time steps before dying off. This behaviour, he argues, is due to the sum-
mation operation during the update of the hidden state, contrasted with the multiplicative update in RNN.
Interestingly, work by Greff et al. [44] suggests that there is little difference in terms of performance between
the above models and their variations - for example one may learn only the update gate u in GRU while set-
ting the reset gate r to be 1 —u. Nevertheless, most works opt to use either GRU or LSTM units. This is also
true for the constantly increasing number of works, addressing the problem of temporal recommendation
using Recurrent Networks [53, 63, 129, 142].

h\( h®\ (

u=o(W,h7TD xD)
r=o(W; [h(T_l),X(T)])
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Figure 2.6: Gated Recurrent Unit (GRU) cell. At each point in the sequence the hidden state of the last step is leakily combined with the
new input. Joining of arrows denotes concatenation of multiple vectors. Non-linear transformations denoted in orange. ® denotes
element-wise multiplication. Multiplication with weight matrices omitted from the schematic for clarity. Adapted from Olah [102].

2.7. Related Work

2.7.1. Recurrent Neural Networks for sequential recommendation

Recurrent networks are a natural way of tackling the problem of predicting the item to be consumed by the
user given the sequence of their past consumption events. The first work employing RNN-based recommen-
dations tackled the problem of session-based recommendation [53]. In their work, the authors attempted
to predict the next item in the sequence, given only the interactions of the current browsing session. How-
ever, whilst they demonstrate an improvement over their baselines, their approach does not rely on item
embeddings and does not provide personalised recommendations outside the scope of the given session.
The authors later extended their work with multimodal inputs (images, textual descriptions), highlighting
the flexibility of neural networks compared to their predecessors [52].

Pei et al. [108] propose a sophisticated approach combining sequential recommendation with the at-
tention architecture [138], demonstrating improved rating accuracy over their baselines, including MF and
timeSVD++. The authors also argue that the attention module allows them to have a more interpretable
model, which has been shown to increase user satisfaction [49, 136]. On the other hand, one of the draw-
backs of the above model is its general and computational complexity due to having two separate networks
to model user and item evolution.

Conversely, the model recently proposed by Donkers et al. [33] aims to learn user and item embeddings
jointly in a more straightforward fashion. The authors regulate the influence of both on the recommenda-
tions using a recommendation-specific version of GRU. In their formulation, illustrated in Figure 2.7, a gating
vector & is calculated on the basis of the current interacting user and item as well as the previous hidden
state, symbolising the current user preferences. The user and item embedding vectors contributing to the
hidden state update are then gated by & and 1 — & respectively, allowing the model to selectively balance the
influence of the two. For instance, the authors suggest that when the previous item consumed by user v was
a first part of the film series (e.g. Toy Story), the prediction may find it beneficial to give more weight to the
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item vector. This would be done as it may be likely the user would want to watch the sequel (Toy Story 2)
over other available items. Conversely, the model may determine that in another situation an item may be
an outlier, shutting down its influence on the recommendation. The function to learn the balance between
the item information and the user characteristics is learned during training. Similar to the GRU, the gated
user and item vectors are then used to leakily calculate the new hidden state h'”’, which is in turn used to
obtain the probability scores for all items. Notably, the gating mechanisms used in the model may also be
potentially seen as providing a limited degree of interpretability through the extent of their activations. The
authors demonstrate a noticeable improvement over simpler non-temporal and time-dependent models as
well as neural network based sequential recommendation models, illustrating the strength of their approach.
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Figure 2.7: Attentional User-based GRU of Donkers et al. [33]. Interacting user and item vectors are combined with the last hidden state
into the gating vector & used to balance the influence of the user and the item on hidden state update. Joining of arrows denotes
concatenation of multiple vectors. Non-linear transformations denoted in orange. ® denotes element-wise multiplication.
Multiplication with weight matrices omitted from the schematic for clarity. Note that the (weighted) summation in this model and the
matrix multiplication of concatenated inputs in GRU are conceptually equivalent linear transformations.

However, whilst improving over the traditional baselines, the above models still discards a substantial
amount of information that may be captured by time stamps and their derivatives. RNN-based time-dependent
models have thus been proposed to solve the above limitation while still providing improvements in perfor-
mance enjoyed by RNN-based sequential models.

2.7.2. Recurrent Neural Networks for time-dependent recommendation

There is currently a limited number of works in the domain of time-dependent recommendation that employ
RNN-based methods. It is expected that this will change in the coming years as neural networks find wider
adoption by the Recommendation community. Nevertheless, some authors have already employed RNN’s for
time-dependent recommendation. Wu et al. [142] propose to learn an architecture consisting of two jointly
trained RNN’s. Given a sequence of interactions, at each time step, one RNN outputs the current user state
and the other outputs the current item state. These are then also combined with the static user and item
embeddings to collectively predict the rating #,;. The authors also use the current binned time stamp to
allow the model to have a sense of where in the timeline it is. The authors argue that this allows their model
to adapt to effects such as the change to the rating scale and a movie being nominated for an award. They
argue that such events may lead to drastic changes in rating distribution for interactions following a certain
point in time and should be accounted for.

A different approach was employed by Dai et al. [26]. The authors propose their version of a two-RNN
scheme attempting to predict user’s return time for each user-item pair. In their formulation, the user (item)
state at each time step depends on four components: the state’s previous value, the state value of the item
(user) interacting, the rating and the time since the last interaction involving the user (item) - the time gap.
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The reasoning for using the time gap information or its effects on recommendation, however, were not dis-
cussed. Moreover, the authors train the hidden states to predict the parameter of a Rayleigh distribution -
restricting the expressiveness generally provided by neural networks.

Finally, Jing and Smola [63] propose the use of time gaps to estimate the return time of the user to the
platform and the items they will consume during that session. The authors calculate time gaps between the
sessions and discretise them to learn an embedding for each of the resulting bins as well as for the contextual
vectors for each hour of the week. This temporal information together with the user and item information is
then fed into an LSTM network, with the network aiming to jointly model the return time and the items to be
consumed during the next session. The authors report a noticeable improvement in performance over their
baselines. They also find that sessions following longer user absences are associated with a lower predictive
performance of the model. We aim to further expand on their analysis and investigate the additional effects
and the importance of including time gaps in the model.

2.7.3. Summary and open research directions

As presented in this chapter, Recommender Systems is an actively developing field of research. Combined
with a rise of neural networks, the development of models leveraging the dynamic nature of consumption
has led to improved capturing of evolving user tastes, paired with strong gains in performance.

A large number of successful works simply leverage the sequential nature of interactions, demonstrat-
ing substantial improvements over static models [33, 52, 53, 108]. A smaller number of works also rely on
more explicit temporal information for recommendation [142], with a few authors incorporating time gaps
into their models [26, 63]. Whilst the latter demonstrate improved performance over the chosen baselines,
the benefits of time gap information, as opposed to general improvements stemming from other changes in
model architectures, are not clear. Based on the work of Pampalk et al. [103] and Moling et al. [98] detect-
ing early track switching may be beneficial in improving the recommendation accuracy. Furthermore, the
work of Ding and Li [32], Jing and Smola [63] collectively suggests that items consumed a long time ago may
only be weakly associated with the current user tastes. Both of the above use cases may be potentially rep-
resented using time gap information. However, little research has been done on the impact of accounting
for the duration of user inactivity on the model performance and recommendation behaviour. Furthermore,
to our knowledge, the value of time gaps for subsets of users with distinct consumption behaviours has not
been previously studied. The aim of this thesis is thus to examine the effects and benefits of using temporal
information. In the next chapter we describe the main ideas underlying our analysis.






Methodology

Temporal recommendation is an emerging and rapidly advancing area of the Recommender Systems. In
recent years, in large part due to resurgence of Neural Networks, there has been a substantial increase in the
number of works addressing both sequential as well as time-dependent recommendation [33, 52, 53, 63, 108,
129]. A number of authors have demonstrated improvements over the previous state-of-the-art using their
LSTM and GRU based models, particularly in the domain of sequential recommendation [33, 52, 53, 108]. A
smaller number of works have also chosen to include additional temporal features, aiming to further increase
the models’ performance [26, 63]. Yet in most cases these features are added in tandem with other non-
temporal modifications and as such the effects of temporal information are not properly explored.

We focus on one such feature, the time gaps. In this chapter, we provide our formal definition of time
gaps. We then provide our rationale for focusing on that particular type of temporal information. Next, we
introduce our models, collectively termed DeepTimeDelta, incorporating time gaps into recommendation.
Finally, we propose a set of experiments with the goal of examining the benefits and the effects of time gaps
on recommendation.

3.1. Time gaps

Given a history of k ordered interactions from one user I,, = [i'7=V,i(7=2) jI=3 _i(T=0] we define A" as
the time interval between the starts of two subsequent interactions At” = ¢T) — t(T=D_Note that we measure
this interval between the starts of two interactions (e.g. song streams) and not between the end of the first
and the start of the second. This is done as in many publicly available datasets only the start time stamps are
available. In cases where the interaction is instantaneous and is not associated with a pair of start and end
time stamps (e.g. user rating a movie, confirming a purchase), the time gap is measured between the time
stamps recorded for such events. In this thesis, when referring to time gaps in general, the simplified notation
At is also used.

3.2. Motivation

As discussed in the previous chapter, sequential and time-dependent models appear to achieve state-of-the
art performance in the context of temporal recommendation. Whilst time gaps have been less explored over-
all, they have been featured in architectures proposed in [26, 63]. Intuitively, time gaps may provide the
model with signals otherwise unavailable to the pure sequence-based models. It is hypothesised that time
gap information may be particularly useful in contexts featuring exceptionally long or exceptionally short
times between subsequent item consumptions. For instance, in case of a movie streaming platform, users
consume content with different frequency. We propose a hypothetical user, who on average consumes one
movie per day. When such a user returns to the platform and chooses an item of a different genre to what they
normally consume, a sequential model may adjust its recommendation to some degree to indicate this po-
tential shift in user preferences. This adjustment would be identical irrespective of the duration of the user’s
last absence. However, as described by Jing and Smola [63], as the user spends more time away from the plat-
form, our confidence in the estimated preferences of that user may be decreased. Conversely, when the user
does come back to the platform after along period of inactivity, the item they consume upon their return may
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be strongly indicative of their current tastes. If this item is substantially different from the items consumed
prior to the user’s departure, this potential shift in user preferences should be immediately reflected in the
new recommendations. Moreover, users operate at different scales. An absence of one month may be con-
sidered long for a user consuming the content daily but normal for a different user consuming content every
few weeks. As such, the interpretation of the time gap should not be simply hard coded into the model and
instead vary based on additional factors [32].

Furthermore, time gaps of ~4 minutes may be standard for a user of a music streaming service as those
may indicate a continuous streaming session. Yet exceptionally short time gaps between starts of two con-
secutive tracks (e.g. 5 seconds) may indicate that the user chose to abandon the first track in favour of the
second. This negative signal towards the first item may be indicative of the user’s current preferences and
should be accounted for when generating recommendations, as suggested by work of Moling et al. [98], Pam-
palk et al. [103]. This information, however, would be ignored by a sequential model, that would simply see
that the second item was consumed at some point after the first. More generally, time gaps of various sizes
may provide a recommender system with improved feedback relating to the user’s current preferences.

A potential alternative to using the time gaps as the source of temporal feedback is using the time stamps
of interactions directly. For instance, the raw time stamps were used in the RNN-based model of Wu et al.
[142]. However, the authors suggested that the main benefit of that feature was that it allowed the model to
account for the seasonal effects and trends taking place at that point in time. It is unclear whether the models
would be able to leverage this form of feedback to identify the patterns described above. As such, we propose
incorporating the time gap information in a more explicit fashion. Moreover, the extent to which time stamps
are amenable to various embedding procedures such as those used in [26, 142] is unclear. Namely, time
stamps used at prediction time would fall outside of the range for which the embedding function was learned.
Such discrepancy between the training and testing input distributions is an example of covariate shift and is
likely to lead to suboptimal performance on at prediction time [127, 133]. For time gaps, however, most of the
input space is likely to be represented in the training set. Whilst there may be At values for which there are no
exact corresponding training examples, the model may still generalise by relying on surrounding A¢ values.
Nevertheless, we hypothesise that incorporating time stamps together with the time gap data may lead to
the model receiving an even greater amount of information. In the future work we would like to address the
extent to which either of the both features would benefit the model when used in tandem.

3.3. Model

In order to analyse the impact the time gaps may have on recommendation, it is essential to include a base-
line sequential model to which the time gap model is contrasted. Importantly, the architecture of both models
should be similar as to facilitate the direct comparison and interpretation of the results. Moreover, the base-
line architecture should ideally also be a state-of-the-art model that is simple in concept and implementation
as to allow for a more straightforward interpretation of the effects of At. For the above reasons we choose to
extend the model proposed by Donkers et al. [33] and use their model as our baseline. As previously de-
scribed in Subsection 2.7.1, in contrast to other models such as [108, 129], which consist of a user network
and item network, the model of Donkers et al. is a single RNN combining both user and item components.
Using their simpler architecture, the authors still report strong results, improving over their baselines. The
model of Donkers et al. is defined as follows:

E=oW, ,h' TV v w, E,vT +w, EiD) 3.1)
h(T—l)
[‘r‘ = [g] Winan | E0E,vD (3.2)
(1-& oE;i™
k=tanh(W,, ,roh" Y+ w, £ 0B, v\ + W, ,(1 - &) o E;itT) 3.3)
h?=1-woh”Y+uok (3.4)

In the above formulation v\’ and i’ denote one-hot vectors indicating the user and item interacting at
time step T. In turn, E, and E; represent the user and item embedding matrices. Thirdly, h‘’ V) indicates the
hidden state of the previous time step. For simplicity, embeddings, hidden state and intermediary vectors are
of the same dimensionality 7, also referred to as embedding width. The embeddings are initialised randomly
and are learned during training. Element-wise multiplication is denoted by ®. Linear transformations R”* —
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R" are denoted as W, , with bias omitted for clarity. Note that all the above weight matrices are different
and are learned independently from one another. Finally, item scores used for prediction can be extracted by
applying another linear transformation W, | to the current hidden state h'”), where | 1| is the total number of
items. Similar to the user and item embeddings, values of the hidden state may be interpreted as a position in
a (different) latent space describing user’s recent preferences. Importantly, the aim of the model at any point
in time is to predict the next item consumed by the user. Whilst not fully equivalent to recommending the
most relevant items, the estimated probability of interaction with an item is used as a proxy for relevance.

Notably, the model of Donkers et al. does not leverage time gaps nor any other temporal information
besides implicit ordering. It can, however, be extended to do so with relatively little effort.

3.3.1. Equation 1

Equation 3.1 gives the model of Donkers et al. the ability to selectively switch focus between the user and
item embeddings when updating the model state and predictions. This gating of user and item components
is done via the vector &, with user and item (embedding) vectors interacting during a given time step scaled
element-wise by & and 1 - & respectively. When a particular element &; is close to zero, the respective part
of the user embedding (E,v); is scaled to be low as well. Conversely, (E;i); is scaled by 1 - ¢ and thus stays
close to its original value.

Conceptually, this gating mechanism can be interpreted as the model being able to decide whether to
give more weight to the user or the item component in making the prediction for the next time step. The
model takes this decision on the basis of the user and item interacting (via their embeddings) as well as
the user’s recently consumed items (captured by the hidden state). Through this mechanism the model can
reduce the effect of the user embedding on the prediction if it is deemed to be less important for the decision.
Conversely, the model may instead reduce the impact of the item on the recommendation and focus on the
user component, if it is deemed more relevant.

We introduce temporal information into the model by allowing & to make use of the time gap between the
current and the previous item. In order to achieve this, Equation 3.1 is modified to be as follows:

&E=0(Wy,h "D+ W, ,E v + Wy, BT + W, En(AFT)) (3.5)

As users and items contribute to the model in the form of n-dimensional embeddings, we propose the
embedding function Ex/(At, d, f), also used as Ex((Af):

Wi At d=0
Enc(ALd, f) = f(Eat(AL,0, ) d=1 (3.6)
FWynBar(AL,d=1,1)) d>1

The temporal embedding function allows the model to capture the influence the time gap may have on
the recommendation and incorporate it into the model along with the embeddings of the user and the item.
In the above definition, d is referred to as the depth of the temporal embedding and is a hyperparameter.
Setting d to 0 leads to the model using a simple linear embedding of the time gap, as done in [26]. However,
we hypothesise that a simple linear transformation may not be sufficient to capture the effect of time on rec-
ommendation. Intuitively, when dealing time gaps on the order of months, there is little difference between
the user behaviours for At = x seconds At = x+ 30 seconds. Conversely, such minor differences may be more
important when the value of the time gap is on the order of seconds. Due to this nonlinear interpretation
of time we believe that applying an additional nonlinearity may better represent the effects of time on rec-
ommendation. By setting d = 1 we thus also apply a nonlinear function f such as ReLU, tanh or sigmoid on
top of the linear transformation. Values of d exceeding 1 imply further application of the linear and nonlin-
ear transformations, with W, ,, of different depth layers learned separately. For simplicity f is kept constant
across different depth levels. Through application of the linear transformation and f the model is able to
capture the chosen complexity with which the time gap affects the recommendation.

Through the formulation proposed in Equation 3.5 the model may now additionally selectively switch
between the user and item components based on the time since the user’s previous interaction. This may
allow the model to learn the relationship between the time gap size and the extent to which both user and
item components should be included in predicting the next item.

As hypothesised in Section 3.2, there are various contexts where the model may leverage this ability. In
particular, in case of unusually long time gaps the model may find it beneficial to reduce the values of the
components of & to be as low as possible. Shifting focus from the user’s historic preferences to the recently
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consumed item may serve as a mechanism for the model to rapidly adapt to the changing user preferences.
On the other hand, we hypothesise that the model may interpret an extraordinarily short interval between
two items as negative feedback with respect to the first one. We envisage two distinct ways how the model
may react to such input. Firstly, the model may learn to strongly augment the item component by decreasing
&. As the hidden state update cannot include the previous item directly, it may instead choose to correct its
previous hidden state update on the basis of the new item. Alternatively, the model may instead choose to
overwrite itself by applying an update with a stronger user component, representing the user’s more stable
preferences. This may be done as to undo the changes to the hidden state introduced by the previous update.
In the same vein, analogous interpretations may be learned for any given value of Az.

As previously alluded, by modifying just the first equation the time gaps are only able to influence the
the balance between the user and the item. The model’s flexibility may be further increased by allowing At
to regulate the influence of the previous hidden state h’ =V, Theoretically the model may already have the
capacity to do so indirectly via & influencing the values of u and r. As these in turn regulate h'’ =, changes
in & may also have an accompanying impact on the influence of the h'’ =) on recommendations. In practice,
however, it may be beneficial to allow At to regulate h’ =Y in a more explicit fashion.

3.3.2. Equation 2
Equation 3.2, describing the second equation of the baseline model, allows the model to use the attenuated
embeddings together with h'" =V to infer vectors r and u. The vector pair is then used to regulate the effect of
h'"=Y on hD as described in Equations 3.3 and 3.4. Namely, vector r regulates the contribution of h'" =V to
the update relative to the user and item embeddings. On the other hand, u balances the direct contribution
of h'"=Y and the update vector k to the new hidden state h'”. On a conceptual level, both u and r control the
importance of recently consumed items on the next item prediction.

By modifying the second equation of Donkers et al. the model is provided with two additional ways in
which At may affect the prediction. We propose to modify Equation 3.2 as follows:

h(T-D
ul [o E0E, v
[r _[U] Wanan | 1~ g o git" oD
Epc(At™)

In the altered formulation the update vector At may now directly affect the direction in the latent space
in which the model’s hidden state is updated. The time gap’s embedding, via u, may now dictate whether any
of the hidden state components need to be updated as well as the extent of the update. r, on the other hand,
regulates the direction of the update, which previously only depended on the (attenuated) user and item
embeddings. This effectively allows the model to regulate the extent to which the user’s recent interaction
history is taken into account relative to the user and item information.

In practice, the model is presented with a mechanism through which it can regulate the similarity of the
new predictions to the old ones based on the value of the time gap. Similar to scenario presented for the first
equation, this mechanism may be particularly beneficial in the context oflong time gaps. We hypothesise that
in such scenarios the model may learn to strongly augment the values of u as to base the prediction in most
part on the current interaction, captured by the update vector k. Similarly, we expect the model to diminish
the contribution of the hidden state to k by regulating r to be low. As such, the increased dependency on the
item for the prediction, as described for the first equation, would be inflated even further.

The mechanism may also act in a similar fashion for short time gaps, as to drive the model away from its
current hidden state, representing recommendations related to the previous item. We envisage the model up-
dating itself strongly either on the basis of the user or the item vector, in both ways overwriting the erroneous
previous update of the hidden state.

Lastly, certain time gaps may instead serve as a positive feedback with respect to the previous item. For
instance, if a user consumes a recommended sitcom episode in full and then tunes into another piece of
content, the associated time gap may serve as an additional signal that the recommendation was relevant.
In that context the model may want to increase the value of r used in the hidden state update as to reflect a
higher confidence in the estimated user preferences, modelled by the hidden state.

Note that based on the findings of Greff et al. [44], discussed in Subsection 2.6.2, u and r have arelated role
and thus may in theory be replaced by u and 1 —u without any loss in performance. In our implementation
we keep two separate variables to maintain the similarity to the baseline model. Moreover, in order to reduce
the complexity of the model, the depth and the nonlinear function of Ex; are shared across the equations.
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3.3.3. Equation 3

Finally, the third equation of baseline model (Equation 3.3), reflects how the model combines the summary
of the recent interactions via h'" ™V with the descriptors of the current interaction - the (attenuated) user
and item embeddings. We hypothesise that there may be a benefit in employing the time gap information as
another such descriptor. This is reflected in the proposed formulation for the third equation:

k=tanh(W,, ,roh" Y+ w, £ 0B, v + W, ,(1 - &) 0 E;ii'D + W), ,Ep (At D)) (3.8)

The proposed change allows the time factor to directly contribute to the update. As the term W, ,Ex,(At(D)
is shared across all users it may be interpreted as a movement in the latent space towards a certain hidden
state specific for each value of A¢. This can effectively be seen as a decay towards a baseline recommendation
associated with that time gap. For instance, there may certain popular key items in the catalogue that users
tend to return to after prolonged absences. In such cases the potential user interests may be best served by
updating the hidden state mostly on the basis of the time gap itself.

3.3.4. Combined model
Combining all the proposed modifications, the full DeepTimeDelta model can be expressed as follows:
&=o(Wynh" ™V + W, ,E,v D + W, . EAD + W, ,Ea (A D)) (3.9)
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h?=1-weh" Y +uock (3.12)

The model may leverage the temporal information at every step of the decision making by selectively
regulating the effects the user, the item and the user’s previous history exert on recommendations. Moreover,
temporal information is allowed to directly affect the change to the recommendations. Furthermore, should
the model find any such use of the time gap not useful, it may learn to switch that use off via the temporal
term’s weights in the associated equation or the embedding function itself.

Importantly, modifications to the original equations need not all be applied simultaneously. It may be,
for example, that the optimal performance is already achieved by modifying a smaller subset of equations.
Such a model, due to its lower number of learnable parameters, may also be marginally faster to train. As a
consequence, we propose the family of DeepTimeDelta models, also referred to as time delta models. For the
remainder of the thesis the models are referred by their number, as described in Table 3.1.

Table 3.1: Addition of time gap information to equations in different models. Model 0 denotes the sequential baseline model.

Model Modified equations

0 None

1 1

2 2

3 3

4 1, 2

5 1, 3

6 2, 3

7 1, 2, 3

’

3.4. Addressing research aims

As this work is exploratory in nature, we do not propose DeepTimeDelta models as the new state-of-the-art.
Instead, our goal is to use the models as a tool for analysis of temporal information, with the purpose of deter-
mining the benefits of time gaps as a feature. More precisely, our overarching Research Question is Are time
gaps a useful source of information for improving recommendation accuracy in sequential recommendation?.
We aim to leverage these models to tackle its distinct aspects, captured by our three Research Sub Questions.
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3.4.1. Research Sub Question 1

Our first Sub Question is Which modes of incorporating time gaps into a sequential model lead to an improve-
ment of recommendation accuracy? We propose to address this question by contrasting the performance of
our models with the baseline through offline evaluation across multiple datasets. Combinations of equations
leading to increases in performance may be considered beneficial for recommendation accuracy.

3.4.2. Research Sub Question 2

Following that, we aim to address Research Sub Question 2: How are different values of time gaps interpreted
by the model and what effects do they have on recommendation accuracy?. This is done by evaluating the
behaviour and performance of the above models for different values of Af. In addition to improvements
across the spectrum of various time gap values, we focus on short and long time gaps in particular. Note that
the definitions of short and long time gaps are both subjective as well as dataset and use specific - we describe
our threshold choices and their motivation in the following chapter. Our hypotheses for those two types of
time gaps, previously discussed in the context of individual equations in Subsections 3.3.1 and 3.3.2, are as
follows:

» For datasets where time stamps denote the time of consumption, short time gaps may serve as source
of negative feedback and can be exploited by time delta models to improve recommendation accuracy
for such interactions.

* For all datasets, long time gaps, indicating prolonged user absence from the platform, may serve as a
signal for a given time delta model to perform a larger update of its hidden state as to capture more
recent user preferences. Such an adaptation may then lead to improved recommendation accuracy
following those interactions.

In addition to the above, time gaps may also prove useful in the context of other types of data. Namely,
Donkers et al. evaluate their model on two datasets, one of which is a dataset of users assigning ratings to
movies. As such, the true item consumption times are unknown. Moreover, the dominant behaviour present
in the dataset is marking multiple consumed items within a short window (minutes) and returning to the
platform only after a longer absence (weeks). Whilst the true consumption order is unknown, short inter
consumption intervals may provide DeepTimeDelta with additional information, allowing it to identify cases
where the item consumption order in the data may be ambiguous. The existence of such an adaptation may
highlight further data-dependent uses of time gaps and may be accompanied by performance gains for those
interactions. Whilst such improvements may not necessarily lead to improved user satisfaction when used in
areal system, they may still indicate that the model overall has a better understanding of the underlying user
behaviour. As such, our third hypothesis is as follows:

» For datasets where time stamps denote the time when a rating was assigned, short time gaps may serve
as an indication of uncertainty with respect to the order of the item consumption. As such, they can be
leveraged by time delta models to improve models’ recommendation accuracy following those interac-
tions.

We first aim to address the above hypotheses through a more general analysis by splitting all interactions
into a limited number of categories on the basis of their time gap. Performance of time delta models for
those smaller interaction groups is to be contrasted to that of the baseline - groups of interactions for which
a significant result improvement is observed can be regarded as benefiting from the use of time gaps.

However, whilst the above the above analysis provides a quantitative overview of the effect of time gaps
on performance, it may do so at at excessively low resolution. Moreover, the above analysis does not establish
a link between the improvements in performance and specific model behaviours outlined in the hypotheses.
As such, in addition to the above, we propose to separate interactions into more fine grained groups on the
basis of At, focusing on differences in the performance and recommendation behaviour as well as internal
model responses. Discrepancies across the values of At for a single model as well as differences between
the sequential and time delta models can then be used to link improvements in performance to specific
mechanisms through which time delta models leverage the time gaps.

3.4.3. Research Sub Question 3

Lastly, we aim to answer the final Sub Question: Are time gaps beneficial in predicting the behaviour of specific
groups of users?. Such knowledge may be crucial for cases where the platform’s aim is to improve recommen-
dations for a specific set of users underserved by the current recommendation model. We propose to identify
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user groups benefiting from the use of time gaps by assessing the performance of proposed models for those
users. User groups for whom time delta models demonstrate significant improvements over the baseline can
be said to benefit from the use of temporal information.

Firstly, in our view, users with differing listening habits in terms of item consumption rate may benefit
from time delta models to a different degree. More specifically, we believe that models leveraging time gaps
may show improved performance for users consuming content infrequently, reflecting the potential improve-
ments in adapting to users developing new tastes following long periods of inactivity, as hypothesised earlier.
In a similar fashion, improvements may be observed for users consuming content with a high frequency,
mirroring the expected improvements associated with enhanced recommendation following short periods of
inactivity.

Finally, previous work also suggests that users consuming items of different popularity may benefit from
recommender systems to a different degree [9, 38]. Bauer and Schedl [9] refer to the extent to which certain
users are inclined to consume popular content as user mainstreamness. In their work, the authors suggest
that it may be more difficult to predict the behaviour (and thus provide recommendations) for users with
more niche preferences as opposed to the users consuming mostly popular content. We hypothesise that
users with different content preferences may also have a distinct temporal consumption pattern. As such, we
aim to identify the mainstreamness user groups for which time delta models exhibit improved performance
compared to the sequential baseline. The exact method of partitioning users into groups along with the setup
of the remaining parts of the experiment are presented to the reader in the following chapter.






Experimental setup

4.1. Datasets

The analysis of the effects of inclusion of temporal information in recommendation was performed on the
basis of three datasets. The first dataset, LastFM 1K user' (LastFM), represents listening habits of 992 users
for 1500661 tracks over the span of four years. An interaction between a user and an item denotes the user
commencing to listen to the specified track. Time stamps provide information on the starts of the streams
but no information is available for stream end times. At of LastFM approximately follows a log-normal dis-
tribution with a median of 239 seconds (Figure 4.1a).

Distributions of At in LastFM and MovieLens
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Figure 4.1: At distributions of LastFM and MovieLens. Note that the bins are exponentially increasing. Moreover, interactions with
At =0 are excluded. As such, the sum of bins for either dataset is lower than 1.

The second dataset, MovieLens 10M dataset? (MovieLens) [46] contains ratings from 71567 users assigned
to 10681 movies over the span of 15 years. An interaction between a user and an item denotes the user as-
signing the rating to the item on a five point scale at the time denoted by the time stamp of interaction. The
time when the item was in reality consumed is not known. Importantly, ~27% of the dataset’s rating events
take place with the same time stamp as another interaction for the same user. Without those interactions, At
values in MovieLens form a log-normal Gaussian mixture with the modes of approximately 15 seconds and
6.75 days (Figure 4.1b). The first mode suggests that a common behaviour in this dataset is to rate multiple

1 Last.fm & http://ocelma.net/MusicRecommendationDataset/lastfm-1K.htm]
2grouplens.org/datasets/movielens/10m/
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movies over a short period of time. Additional analysis of the data (not shown) demonstrates that ~60% of
the dataset’s users log in only once, rate on average ~69 items and do not return later. Users who do return
on average rate 17 items per session (with no time gap exceeding 1 hour).

The above datasets were chosen as they represent different domains in which time gaps may have differ-
ent interpretations that may be learned by our models. Moreover, these datasets are widely used in literature,
including the work of Donkers et al. [33, 51, 63, 67, 87, 108, 135, 148]. Choosing these datasets allowed for a
facilitated comparison of the proposed models to the baseline by acting as a sanity check for the correctness
of the implementation of the baseline model. As discussed in Methodology Section 3.4, interactions in Movie-
Lens may not be indicative of the true consumption times, particularly when At between two interactions is
short (e.g. seconds or minutes). As such, we choose to include the dataset to examine whether short time
gaps may be leveraged as a signal for this uncertainty. Note that we assume that items whose consumptions
are instead separated by longer periods (e.g. weeks) were in reality also consumed in that order.

The third and final dataset came from a Dutch Video on demand platform Videoland. The dataset consists
of movie and series streaming events gathered over a period of one year. An interaction between a user and
an item denotes the user starting the consumption of the item. The time stamp of interaction denotes the
start of the video stream.

4.2. Dataset specific preprocessing

Data was first preprocessed separately with distinct steps performed for each dataset. In order to increase
the computational efficiency and reduce the memory load, the training and evaluation were performed on a
sampled version of LastFM dataset, as described by Donkers et al. [33]. Namely, for each user, a random slice
of successive interactions totalling 10% of the length of their consumption history was obtained, retaining
interactions with 407128 items. Applying subsampling is essential in order to store the embedding matrices
on the GPU during training, particularly when using a high embedding width. While it is possible to store the
embeddings on the CPU, this would lead to a drastic decrease in the training speed. As such, the sampling
strategy was employed.

A different form of preprocessing was applied to MovieLens 10M. As the models evaluated in this thesis
rely on implicit and not explicit feedback, the ratings have to be converted into a implicit representation.
Under our evaluation procedure all the dataset’s interactions are kept whilst removing the rating values given,
identical to [33, 113]. While some works apply a different scheme whereby only the interactions with a rating
exceeding a certain threshold are considered [51, 60], the former was chosen as to reflect the fact that not all
implicit interactions are associated with a positive user experience. This is a important aspect of true implicit
feedback data and as such crucial to retain.

Finally, the platform of Videoland provides users with recommendations for both movies and series. How-
ever, the platform only permits recommendations of series as a whole and not of individual episodes. As such,
all episodes of a single show were instead set to be represented by the same item index. The above choice,
though, led to the dataset comprising of a high number of cases of long sequences indicating the repeated
consumption of the same item by one user. Our preliminary attempts to use such data indicated that sim-
ple sequential models (e.g. those with embedding size of 1) appeared to already achieve strong performance
by recommending the same item the user had just consumed. Whilst, in theory, such a recommendation
strategy is not inherently wrong, Videoland uses personalised recommendations to help users discover new
content. As such, any items previously seen by the user are in practice filtered out from the recommendation
strip. Employing the data without any additional modifications would thus lead to a discrepancy between the
model’s objective during training and its use at prediction time as the model’s top prediction(s) would never
be actually shown to the user in practice.

With the above considerations in mind, we propose an alternative Videoland-only training and evaluation
scheme that would encourage the model to look further than the previously consumed item when choosing
which items to recommend. Given a sequence of k interactions from one user I, = [{(T=D, ;=2 ;j(T=0]
we define the associated weights for the training set as well as for validation and test sets as follows:

x i(T) - l'(T+1)
Wrrain (T, x) = . , Osx<l1 4.1)
1 otherwise
i(T) - i(T+1)

0
Wyal test(T) = . (4.2)
1 otherwise
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Under the proposed scheme, the loss and the contribution to the evaluation metrics for a given interac-
tion (discussed in Sections 4.3 and 4.4 respectively) are scaled by the associated weight. During training, an
interaction with an item that is followed by further interactions with the same item is weighted by a hyperpa-
rameter x, whose value may be between 0 and 1. Contribution of individual interactions to the batch loss is
set to be proportional to this weight. As such, lower values of x force the model to assign more importance to
other interactions where the next item is different. This in turn, encourages the model to recommend items
different from the one consumed. Moreover, repeated interactions in validation and test sets are assigned
a weight of 0, masking their contribution to the the loss and evaluation metrics. This is done to reflect the
fact that in practice the model would not be allowed to make the recommendation of the repeated item and
should not be penalised for failing to do so.

We hypothesised that setting 0 < x < 1 (e.g. x = 0.01) may still allow the model to leverage repeated inter-
actions with the same item, indicating higher user interest in that item, analogous to the use of confidence
in [58]. However, our experiments using a holdout validation set on x € [1,0.8,0.5,0.2,107!,1072,1073,0] in-
dicated consistently higher performance for x = 0 across all models.

Other evaluation schemes, such as removing the middle interactions when the same item was repeated
3 or more times or removing all but 1 interaction were also considered. In general, it was found that explicit
removal of items from the user history led to ambiguity with respect to the choice of Af for remaining inter-
actions. Moreover, the latter alternative, corresponding to removing i3 in the above example, is in part
captured by the our chosen evaluation scheme at x = 0. Finally, we would like to stress that our proposed
scheme is only applied to the Videoland dataset as the remaining two datasets do not suffer from repeated
interactions to the same extent (3% for LastFM, 0% for MovieLens).

4.3. Further preprocessing and model training

The dataset specific preprocessing was then followed up with additional data processing steps applied to all
datasets. These steps are adapted from the preprocessing applied by Donkers et al. [33] as to maintain the
consistency of implementation and evaluation, only expanding it with steps necessary to include time gaps.

First, the interactions of each user are grouped together and ordered by the ascending time stamp of the
interaction. In order to incorporate temporal information to be used by our models, for each interaction the
time stamp of the preceding interaction is also subtracted from the current time stamp, yielding the associ-
ated time gap.3 Next, for each interaction in the user’s sequence (a triplet of v, i, At) 4 an associated target
label indicating the item the user consumed next is obtained. The user’s sequence of these input-target pairs
is then split into the training, validation and test sets. The test encompasses the most recent five percent of
the user’s feature-label pairs, rounded down. Similarly, validation set encompasses the same proportion of
interactions preceding those included in the test set. Finally, the remaining input-output pairs are assigned
to the training set. For instance, for a user’s history featuring 80 interactions, 78 feature-label pairs would be
retained after calculating At and the target labels. From those, first 72 pairs would be assigned to the training
set, 3 subsequent pairs to the validation set and the final 3 to the test set. Moreover, interactions with items
not seen in the train set are also purged from the validation and test sets as embeddings belonging to those
items would not have been learned during training. Finally, the remaining interactions for each set are then
split into non-overlapping sequences of length 20, applying padding at the ends of the sequences where nec-
essary.’. At each unpadded point in the sequence the model’s task is to predict the next item consumed by
the user, as captured by the target label.

During a training step, the model receives a shuffled batch of such sequences, generating predictions at
each time step. At the end of the sequence, softmax transformation is applied to item scores for all unpadded
time steps. These scores are then compared to the target labels in order to calculate the cross entropy loss. As
described previously in Section 4.2, losses for individual interactions of Videoland are further scaled by wirain-
The resulting losses are then averaged in order to produce the batch loss, which is in turn used to update the
parameters utilised for the processing of the next batch using ADAM [75]. For validation and test sets, no
parameter update is performed. Instead, item scores are used to return a list of the highest ranked items to
be recommended to the user.

3Tn our implementation, the the same dataset files are used for the baseline model and our time-dependent models. However, during
the data feeding the temporal information is discarded for the sequential model.

4y and i refer to an index used to denote a single user or item. v and i refer to one hot encoded user and item vectors. Conceptually, both
representations refer to the same input and as such are used interchangeably.

5We apply zero padding to ensure the same length of each sequence, as generally required for batch processing by computational frame-
works such as TensorFlow.
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We choose the above data partitioning scheme as to maintain similarity to Donkers et al. [33]. Moreover,
the scheme of partitioning user interactions into subsequences of length 20 is able to account for substantial
differences in user history lengths. Providing the model with full user histories instead of subsequences may
lead to a substantial computational time overhead. Namely, due to the disparity in the lengths of user histo-
ries a recurrent model may quickly reach the end of the batch’s shorter user histories. However, it would be
unable to start the next batch until the few remaining long users are processed. The above situation is likely to
take place with LastFM where user history lengths vary between 1 and 16480 interactions, with 25% of users
having fewer than 350 interactions and another quarter of users having consumed more than 2325 items.

We hypothesise that the sequence length value may have an effect on the training and evaluation dynam-
ics. Whilst for this work its value is set at 20, we would like to investigate the effects of varying this value as a
part of our future work. Moreover, as described in [20], it may be preferable to partition interactions between
training, validation and test sets such that all interactions that took place between two time stamps belong
to the same set. Explicitly, we only use a given user’s earlier interactions to predict their later ones. However,
some information from interactions of other users whose train set interactions happened after the first user’s
validation or test set may be reflected in the learned parameters. These could in turn provide the model with
additional information for the first user’s validation and test set interactions, which it would not have access
to during real use. As such, we would also like to extend our evaluation in our future work to be based on the
above scheme.

4.4, Metrics

In most recommendation contexts users are only recommended a certain number of items at a time. This
limit on the number of predictions must be reflected by the metrics used to evaluate the model in offline
experiments. Moreover, in our evaluation framework (and that of Donkers et al.) the model’s task is to predict
the single next item. As such, traditional metrics relying on ratings (e.g. RMSE, Mean Absolute Error) or
reflecting the presence of multiple relevant items (Mean Average Precision) are not directly applicable.

For each instance of recommendation, the model is to capture the user’s next (and the only relevant) item
among the limited number of guesses available to it. We reflect this via Recall at 20 (Recall@20), defined as
the percentage of cases where the next item consumed by the user was among the top 20 recommendations.
Moreover, in many cases not all items are presented to the user at once. For instance, recommendations may
be presented to the user in the form of a scrollable recommendation strip, where only a subset of recom-
mendations is visible at a time. As such, items that are more likely to be relevant to the user should be ranked
higher, placing them at the start of the recommendation list. This is reflected by the choice of our second met-
ric Mean Reciprocal Rank at 20 (MRR@20), defined as the mean of the Reciprocal Ranks at 20 (RR@20) over
all interactions. RR@20 itself is a measure of the correctness of a single ranking, defined as 0 if the true item
was not among the 20 recommended ones and the inverse of its rank otherwise. The above metrics reflect the
two important aspects of recommendation and as such are widely used in sequential recommendation liter-
ature [33, 52, 53]. We choose a steep ranking penalty of Reciprocal Rank in place of a more forgiving one (e.g.
Normalised Discounted Cumulative Gain) as the model’s ability to include the target item at lower position
of recommendation is already captured by Recall@20. Moreover, note that the number of recommendations
20 is chosen in order to maintain the similarity with Donkers et al.

However, a criticism can be made that the above metrics are skewed towards more active users who have
more interactions contributing to the metrics. As such we introduce two additional metrics, UserRecall@20
and UserMRR@20. These are analogous to Recall@20 and MRR@20 but are instead calculated for each user
individually and then averaged over all users. As such, users with short histories are considered to the same
extent as users with longer histories. These user based metrics, along with Recall@20 and MRR@20, are as
defined below.
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In the above formulation, U refers to the set of all users, whilst I,, denotes the ordered list of items con-
sumed by a particular user v. At each point T € Z:1 < T < |I,| the aim of the model is to predict i’ *V - the
next item user v consumed after i(7. As such, pred'” refers to the set of 20 highest scoring predicted items
returned by the model following the consumption of i”. Furthermore, rank(i"*") denotes the rank of the
target item i(7*Y among the 20 predictions made at step T. Note that the last item in the user history is not
utilised as input during evaluation due to the lack of a corresponding target item. Finally, as described in the
Section 4.2, scores obtained for individual interactions belonging to Videoland dataset are further scaled by

Wyal, test-

4.5. Regularisation

Neural Network based models are known for their susceptibility to overfitting [130, 146]. We thus propose
three aspects to regularising our model. Firstly, we applied Dropout to user, item and time embedding vec-
tors [130], with separate probabilities of keeping an individual neuron for each one of the three. Secondly, we
applied L, regularisation on the user side, as described by Donkers et al. The authors suggest that this may
serve a twofold goal of reducing overfitting as well as decreasing the effects of supplying the model with the
same user embedding at every time step. Finally, model performance on validation set was repeatedly mea-
sured during training at a predetermined frequency. Training was then stopped prematurely when a chosen
metric would fail to improve over a given number of steps. Model parameters used during the evaluation
where the model achieved the best result would be then exported as the final parameters. UserMRR@20
was chosen as the early stopping metric due to sensitivity to both correct item being present in the recom-
mendations as well as the ordering within the ranking. While this behaviour is also captured by MRR@20,
we ultimately believe that the goal of the recommender system should be to maximise the satisfaction of all
users, not the select few.

4.6. Implementation and hardware

Our models along with the baseline were implemented using TensorFlow 1.13 [1]. The implementation with
support for single GPU and multi GPU training is released alongside this publication.® We also include our
data preprocessing, training and evaluation code alongside our implementation. Training and evaluation
for MovieLens and LastFM were performed using NVIDIA GeForce GTX 1080 Ti GPU for approximately 3
hours and 20 hours per run respectively. Training and evaluation of Videoland were instead performed in the
SageMaker environment of Amazon using Tesla V100 GPU.

6www.github.com/NKNY/DeepTimeDelta



30 4. Experimental setup

4.7. Hyperparameter selection

We performed an extensive grid search using the validation sets, analogous to Donkers et al. [33].” Evalu-
ated parameter values are presented in Appendix Table B.1. Out of the evaluated values, the following set of
parameters was found to be optimal for every setting:

Table 4.1: Dataset and model agnostic hyperparameters.

Parameter Value
Optimiser ADAM
Learning rate 0.001
Initialisation distribution =~ Uniform
Initialisation range 0.1
Sampling softmax False

We chose ADAM [75] (with its TensorFlow default parameters) due to its use of momentum and learning
rate decay as well as its widespread use in literature [31, 33, 67]. It was found that the learning rate 0of 0.001 was
optimal as decreases to its value led to no improvement in performance whereas increases of the value led
to the training loss frequently diverging to infinity. Finally, sampling softmax [62] was originally considered
as a solution for dealing with the large number of items and associated memory constraints of LastFM. We
found that this improvement came at a cost of a substantial drop of performance, unless when applying low
amounts of downsampling. As such, sampled softmax was not used.

Furthermore, the choice of certain hyperparameters was influenced by computational constraints im-
posed by specific datasets. These parameters were assigned to be different for each dataset and are presented
in Table 4.2. Notably, our internal experiments generally indicated a positive correlation between the size of
the embeddings used and the performance of both the baseline as well our models. However, a high number
of users or items in a dataset was associated with high memory requirements arising from storing embedding
matrices on the GPU, as previously alluded in Section 4.2. As such, a dataset specific upper limit was set for
the embedding sizes considered.

The duration of the training and the parameter indicating the number of epochs without metric improve-
ment needed to trigger early stopping were chosen based on the shape of the loss and metric curves of the
validation set. These hyperparameters were chosen as to ensure that the training would not be stopped pre-
maturely while any metrics were still improving. Moreover, the frequency of evaluation was chosen to be
sufficiently high as to decrease the risk of skipping over parameters leading to a higher validation set perfor-
mance.

Table 4.2: Hyperparameters related to execution or chosen on the basis of computational constraints. Max num units refers to the size
of embeddings and hidden states.

Parameter LastFM MovieLens Videoland
Max num units 500 1000 200
Batch size 100 1000 2000
Max num epochs 50 50 20
Evaluation frequency (epochs) 0.25 0.25 0.5
Early stopping (epochs) 10 10 5

Finally, the best combinations of the remaining hyperparameters were chosen for each model. As there
generally was no one set of parameters optimising all metrics at once, the hyperparameter choice was made
by combining the rankings produced on the basis of each of the metrics using Borda count [37]. Unlike the
case for the stopping metric, no one metric had to be prioritised over the others. Borda count was chosen
due to its low score decay, allowing to find a consensus between four metrics. The hyperparameters chosen
for each of the datasets are shown below in Table 4.3.

“While some authors e.g. [13] suggest that using random search is preferred over grid search, we chose grid search as to perform the
parameter selection in a structured and non stochastic way.
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Table 4.3: Dataset-specific hyperparameters of different models.

Dataset Model Initial state Dropout keep probability Time embedding
At user item d f
0 0 - 0.5 0.8 - -
1 0 0.5 0.5 0.5 1 sigmoid
2 0 0.5 0.5 0.5 1 sigmoid
3 0 0.5 0.5 0.5 1 sigmoid
LasttM 4 0 0.5 0.5 0.5 0 sigmoid
5 0 0.5 0.5 0.5 1 sigmoid
6 0 0.5 0.5 0.5 1 ReLU
7 0 0.5 0.5 0.5 1 ReLU
0 0 - 0.5 0.8 - -
1 0 0.5 0.5 0.5 1 ReLU
2 0 0.5 0.5 0.8 1 sigmoid
. 3 0 1 0.5 0.8 1 sigmoid
MovieLens 4 0 1 0.5 0.8 1 sigmoid
5 0 1 0.5 0.8 1 sigmoid
6 0 0.5 0.5 0.8 1 sigmoid
7 0 1 0.5 0.8 1 sigmoid
0 Trainable - 0.5 0.8 - -
1 Trainable 0.8 0.5 0.8 1 sigmoid
2 Trainable 0.8 0.5 0.8 1 ReLU
. 3 Trainable 0.8 0.5 0.8 1 sigmoid
Videoland 4 Trainable 0.8 0.5 0.8 1 sigmoid
5 Trainable 0.8 0.5 0.8 1 ReLU
6 Trainable 0.8 0.5 0.8 1 ReLU
7 Trainable 0.5 0.5 0.8 1 ReLU

In the above table Dropout keep probabilities refer to separate probabilities of keeping each individual
neuron in the user, item and time gap embedding vectors, as discussed in Section 4.5. Trainable Initial state
refers to the model being able to learn the hidden state used as input for the first time step in each input
sequence. Alternatively, the value of 0 denotes the alternative approach, whereby the model receives the
vector of zeroes throughout the training. Allowing the model to learn the initial state may allow it to be set to
a hidden state associated with generic recommendations. In contrast, when relying on all zero initial hidden
state the model has to adapt its parameters to accept divergent inputs of the zero hidden state at the start of
the sequence and non zero values thereafter.

4.8. Statistical evaluation of Research Sub Question 1

Our first aim was to identify the best performing models, used as an indication of the beneficial modes of
incorporating time delta information. We pooled results from distinct datasets as to represent the overall
effects of temporal information on performance. Note that the below analysis was performed separately for
each metric.

First, test set results of time delta and baseline models were obtained for each of the datasets. The re-
sults were first to be evaluated via a one-way ANOVA [39] in order to identify whether there appeared to be
any significant differences across means of performances of different models. It was noted, however, that
both the means and the variances of results appeared to be highly dependent on the dataset in question and
strongly different across datasets, violating ANOVA’s assumption of homoscedasticity [94]. In order to allow
for a direct comparison, the results of different models were standardised per dataset, analogous to Kim et al.
[74], allowing a subsequent application of a one-way ANOVA to the transformed data [39]. The omnibus test
was followed by Dunnett’s test (H : time delta > baseline) in order to identify specific models demonstrating
statistically significant improvement over the baseline [36]. Dunnett’s test was chosen due to its design allow-
ing for many-to-one comparisons whilst limiting the Family Wise Error Rate (FWER) associated with multiple
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comparisons [55]. Note that the post-hoc test was only carried out for metrics for which the model factor was
associated with significant differences in means.

The standardisation procedure was chosen due to our belief that small yet constant improvements over
the baseline still indicate an overall improvement. This may be particularly relevant in cases where improve-
ments take place only on a specific range of At values, with the extent of the improvement masked by the
remaining interactions. On the other hand, the standardisation operation may also distort the obtained re-
sults to a certain degree. Namely, if the assumption that even minor improvements are significant as long
as they are constant does not hold, standardisation may inflate the differences and make insignificant differ-
ences appear substantial.

Conversely, the standardisation procedure may have a masking effect leading to an inability to detect the
presence of significant differences. For instance, all models may achieve a substantial improvement over the
baseline, with one model scoring particularly high. In the above case standardisation may actually diminish
the extent to which the remaining models are considered to be improving over the baseline. The presence
of such outliers may in some cases lead to no models being considered significantly better than the baseline,
particularly if the best results for different datasets are achieved by distinct models.

A nonparametric alternative to the above standardisation procedure is Kruskall-Wallis one way analysis
of variance [83]. This omnibus test may be followed up with post hoc analysis, such as individual Mann-
Whitney U test [93] with adjustments for FWER or related False Discovery Rate (FDR) [12]. Kruskall-Wallis test
functions by applying the rank transform to the data, removing the previously described sensitivity towards
outliers. However, the rank based approach also discards the scale of inter model differences. Whilst the
approach is less susceptible to outliers, it also loses information on the scale of relative improvement over
the baseline, which may be important to capture. With this consideration in mind we chose the procedure
relying on standardisation, as described above.

Finally, note that whilst Dunnett’s test limits the FWER within the analysis associated with one metric,
the probability of type I error may be further inflated due to presence of multiple evaluation metrics. Whilst
it may be possible to apply further adjustments, such as Bonferroni correction [35] or Benjamin-Hochberg
procedure [12], these methods may lead to a low overall power or there may exist a dependency structure
between different metrics, complicating the analysis. Moreover, a dependency structure may be also present
between different models. As such, we report p-values without any further adjustments. However, the reader
may also wish to draw their own additional conclusions on the basis of the reported results.

4.9. Time gap ranges

Following the evaluation of general performance, the focus was then shifted to identifying the hypothesised
association between particular types of time gap values and improvements in recommendation performance.
In order to address Research Sub Question 2 we first split all interactions on the basis of the time between the
given interaction and the preceding interaction. Each interaction’s Af was classified as either low, medium or
high. As described previously, a time gap of the same length may have different interpretations based on the
data from which it arises. As such, the time gap group ranges were defined separately for each of the datasets.
The assigned values are presented in Table 4.4.

Table 4.4: Time gap duration groups and their dataset-specific values.

Dataset Duration group
low medium high
LastFM Osec-2min  2min-18h  18h+

MovieLens 0Osec-37min 37min-30d 30d+
Videoland Osec - 5min 5min - 14d  14d+

The choice of thresholds for LastFM was based on two aspects. Namely, we aimed to balance the ability
to maintain an intuitive interpretation of time gaps with the need to maintain a reasonably large sample
size. For instance, for short (low) time gaps to be consistent with our interpretation outlined in Methodology
Section 3.2, their values have to be sufficiently small in order to be interpretable as negative signal. However,
using too low of a threshold between low and medium values (e.g. on the scale of a few seconds) may lead to
too few samples being assigned to the low group. As such, the 120 second cutoff point, corresponding to the
6 percentile of all time gaps, was chosen as the upper bound for time gaps belonging to the low group. On
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the other hand, the lower bound of 17.9 h (99" percentile) was set for interactions to be classified as high. As
described in Section 3.2, we hypothesise that user preferences may drift following longer periods of inactivity.
While user tastes may be less likely to drastically change following an absence of 18 hours, increasing the
threshold would further decrease the low number of interactions classified as high.

In contrast, as previously described in Section 4.1, non-zero time gaps in MovieLens are distributed with
two modes. We fit a Gaussian Mixture Model with two components on logarithmically transformed non-zero
data as to distinguish between the densities. The value of 37 minutes, at which both Gaussians had equal
densities, was chosen as the cutoff point between the two mixture components. The data from IMDb & sug-
gests that only 1.9% of the movies do not exceed 37 minutes by duration. As such, based on our interpretation
of short MovieLens time gaps described in Subsection 3.4), we propose that any interaction with a time gap
equal to or below this value (including At = 0) be assigned to the low group. On the other hand, the mini-
mum cutoff value of 30 days was chosen to represent a long user absence. We hypothesise that this period
of inactivity may be sufficient for the user preferences to drift. The high threshold was chosen due to more
frequent prolonged user absences, in contrast to the high activity of LastFM users. The total number of such
highlength interactions also amounts to one percent of dataset’s interactions.

Finally, for Videoland, the low At threshold was set at 5 minutes while the high At threshold was chosen
to be 14 days. These first limit was chosen as interactions with movies or shows of under 5 minutes may rep-
resent a user indicating their lack of preference for the content. Values below this threshold may encompass
both the user instantly switching to a different item as well as consuming the item in part and then switching
to a different one. The former may be an example of an accidental wrong click, whereas the latter may indi-
cate that the user did not like the first item. Both cases suggest potential preference of the second item over
the first. On the other hand, we chose the threshold of high duration time gaps for on the basis of the observed
user inactivity behaviour and our belief that 14 days may be sufficient for a user preference shift. Finally, note
that contrary to our publicly available datasets, threshold choices for Videoland were less influenced by the
number of interactions due to the high availability of interactions with a wide range of At values.

4.9.1. Statistical evaluation of Research Sub Question 2

Similar to the procedure used for Research Sub Question 1 (Section 4.8), the aim was to identify models pro-
viding significant changes to performance for distinct types of time gaps. First, test set results were obtained
for each metric for each dataset’s three time gap categories. A three-way ANOVA ? would not have a sufficient
number of degrees of freedom and thus could not be directly applied to the data. Analogously to Research
Sub Question 1, a two-way ANOVA ! could still not be applied to the data due to the heteroscedastic nature of
model performances across distinct time delta groups of one dataset. As such, we chose to standardise the re-
sults within a specific combination of dataset, time delta group and metric, subsequently applying a separate
two-way ANOVA '! for each of the metrics. Individual post hoc Dunnett’s tests (H; : time delta > baseline)
were then applied to the data in order to identify models exhibiting a significant improvement over the base-
line for each of the Af groups and without additional adjustments for FWER or FDR, analogous to Section
4.8.

4.9.2. Fine grained analysis of influence of time gaps

In order to gain further insight into the functioning of the baseline and time-dependent models, a qualitative
analysis focusing on the lower level relationship between time gaps and the associated model behaviour was
set up. This was done by focusing on a higher number of more compact ranges of A¢. Namely, we partitioned
interactions on the basis of At into 100 logarithmically spaced bins. Following that, for each of the statistics,
its mean value for each bin was calculated along with the associated 95% confidence interval and plotted as
a function of each bin’s time gaps. The statistics were then used as a basis of visual exploratory analysis with
the aim of identifying qualitative underlying trends between the model function and associated time gaps.
We identified three distinct groups of statistics able to provide a more detailed understanding of the model
behaviour:

8Information courtesy of IMDDb, (http://www.imdb.com). Used with permission.

9Three-way ANOVA with the dataset, time delta group and model as independent variables and a given metric as a response variable.

10Tyo-way ANOVA with time delta group and model as independent variables and a given metric as a response variable applied to data
standardised for each dataset.

U Tywo-way ANOVA with time delta group and model as independent variables and a given metric as a response variable applied to data
standardised for each dataset for each time delta group.
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* Model performance.
¢ Similarity between recommendations and previously consumed items.
¢ Gating vector activations.

Firstly, the focus was again turned to model performance. However, in this case the performance was
examined over a wider range of more concentrated time delta values. We decided to exclusively focus on
MRR@20 as it reflects both the ranking order of recommendations as well as the binary presence of the target
item in the recommendations. UserRecall@20 and UserMRR@20 were not considered for this role as users
could not be guaranteed to have a sufficient number of interactions in each of the bins.

Following that, we set out to analyse the relationship between the time gap preceding a consumption
event and the items recommended following that interaction. This was done by examining the similarity of
recommendations to the item consumed prior to generating the recommendations as well as their similarity
to the preceding item. Moreover, we also include the similarity between the user consumed items themselves
as to provide further context to the item-recommendation similarity information. The aim of the above anal-
ysis was to provide a more interpretable item focused understanding of the model behaviour as a function of
specific time gaps. We measure inter item similarity using Euclidean distance of embedding vectors. Distance
between a consumed item and the 20 recommendations generated following the consumption of that item is
calculated as the mean of individual item-recommendation distances. In theory, the item embeddings may
lie on a more complex data manifold, making them less amenable to our analysis. However, we observe that
items sharing similarities with other items also appear more likely to be close to those items in the Euclidean
space, similar to the word embeddings learned in NLP [96]. Furthermore, note that only cases where the item
before and after time gap are different are considered by the above analysis. Finally, as embeddings learned
by distinct model may differ, we use embeddings of the sequential baseline model for the analysis of inter
item distances for all models.

Thirdly, our aim was to interpret the fashion in which the size of the time gap may affect the decisions
taken by the model. DeepTimeDelta models, together with the baseline model, employ a number of gating
vectors limiting the effects of other components, guiding the hidden state update process: &, u, r. As all com-
ponents of those gating vectors lie between 0 and 1, it is possible to summarise their values using summary
statistics, describing the amount of input allowed to pass through the gate. Vector mean was considered for
this role along with the following percentiles: {5,10,25,50,75,95}. Vector mean was ultimately adopted as it
was found to provide the best insight into the observed results, with the notation £ , 1, ¥ used to denote the re-
spective means of &, u and r. The update vector k was not included in the analysis, as unlike the other vectors,
tanh cannot be simply interpreted as only letting a part of the input through, complicating the interpretation
of its effects on recommendation.

The main limitation of the above set of exploratory analyses is that they may be unable to guarantee an
exhaustive relationship between the time gap and the model behaviour. Namely, gating vector activations
may lead to complex interactions, reducing the interpretability of their effects on the recommendation. For
instance, whilst a high value of u may lead to a stronger divergence from the current hidden state and a
high value of r may lead to a strong dependency on the hidden state, the combined effect of the two is un-
clear. Such interactions may limit the interpretability of effects of changes to the activations on the final pro-
duced recommendations. Furthermore, certain components of the embedding vectors may be more crucial
in updating the hidden state than others. Our approach discards such semantics and treats all components
equally. Karpathy et al. [72] demonstrated that it is possible to identify individual neurons responsible for
specific tasks in NLP. However, their approach relies on manual discovery of such patterns. Whilst applicable
to NLP due to the generally unambiguous roles of individual words in a sentence, the use of this approach on
recommendation data is further complicated by the challenging interpretation of latent semantics of users
and items. Thirdly, in case of large differences between item embeddings originating from different models,
employing the baseline model’s item embeddings may complicate the interpretation of a given model’s acti-
vations’ effects on recommendation. However, differences between the same model’s recommendations and
mean activations for distinct time gaps may still be interpretable and may allow to examine general temporal
trends within the same model.

Finally, note that for Videoland, as described in Section 4.2, models were trained such that only cases
where the item to predict was not the item just consumed contributed to parameter updates. Analogously,
only cases where the item after the time gap and the target item were different were also included in the
analysis described above for Videoland.
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4.10. User grouping

In order to address Research Sub Question 3, two distinct user partitionings were obtained. Firstly, for a
given dataset its users were categorised on the basis of their mean time gap of all their interactions. Mean
user time gap duration (At,) was chosen above other statistics due to its ability to capture both inter as well
as intra session behaviour. For instance, LastFM users on average consume more than 2 songs per listening
session. In this case, a user’s mean time gap duration would partially reflect both the duration of their listened
songs as well as the duration of their average inactivity. On the other hand, median user A¢, another statistic
considered, would only effectively describe the song duration within the session. Note that in case of large
time gaps the mean may be skewed towards the large time gaps on the logarithmic scale. This is intended as
whilst we are interested in capturing the user intra session behaviour, we place higher emphasis on capturing
the user’s inter session behaviour. The limitation of using the mean is that multiple distinct behaviours may
result in the same mean At value. Other statistical measures such as the first or third quartiles of the user’s
At distribution may be used instead. However, as the appropriate statistic may be strongly dependent on the
user behaviour trends in each dataset, we choose At, due to its expected general applicability.

The second split was performed on the basis of the calculated mainstreamness of each user. Inspired by

the work of Bauer and Schedl [9] dealing with song mainstreamness, we adapt their mainstreamness measure

Mglgz(g (v). This measure is based on artist play counts (APC), which is a vector of length corresponding to

the number of artists. The values of APC indicate the number of times each artist’s tracks were listened to by
all users in the dataset. Moreover, the authors define a separate measure APC(v), also of dimensionality |1],
to reflect the artist’s play counts by a specific user.

As there is no defined artist available for MovieLens and Videoland, we instead define our own related
measure, replacing artist play counts with item consumption counts (ICC). As such, each user can be repre-
sented with an |I|-dimensional vector ICC(v), where an individual value ICC(v) ; corresponds to the number
of times that user consumed item ;. In a similar fashion, ICC is the measure of each item’s consumption
counts over the whole dataset, analogous to APC. With the above in mind, we propose our measure of user
mainstreamness for a given user v:

Mp,uc(v) = 7(ranks(IC(v)), ranks (1IC) (4.8)

In the above definition ranksIC(v)) denotes a rank transformation of a user v’s consumption counts. Our
measure, analogous to Bauer and Schedl [9], relies on Kendall’s Tau () to compare the such item rankings to
the global ranking. For a given user, 7 close to 1 indicates strong similarity to overall play counts (mainstream)
while values close to —1 indicate disagreement with the dataset’s total play counts (niche).

For each of the above measures every user was classified as belonging to a low, medium or high group for
that measure, similar to Research Sub Question 2. Note that in this instance the classification was performed
on the user level, as opposed to individual interactions. The thresholds between user groups were chosen
such that each group would contain one third of the user base. The thresholds for the above measures are
shown in Tables 4.5 and 4.6.

Table 4.5: Consumption frequency user groups and their dataset-specific At values. Videoland values not included due to the
sensitivity of the data.

Dataset Consumption frequency group
low medium high
LastFM Osec - 30min  30min - 77min  77min+

MovieLens 0Osec - 20sec 20sec - 18min  18min+

Note that, in theory, more dataset specific definitions of low, medium and high may instead be used for
either of the groupings. These may be chosen manually based on interpretations of the meanings of the
thresholds or via modelling techniques such as Gaussian Mixture Models, discussed in Section 4.1. However,
in our view, a mean user time gap may have a different interpretation from that of the time gap of a single
interaction. For instance, a time gap of 15 minutes before a song in LastFM likely indicates that the user
consumed a song fully or partially and then left the platform for a short period of time. However, At, = 15 min
may, in addition to the repeated behaviour described above, may also indicate a user consuming a number
of songs in succession, followed by a prolonged absence. Due to the plurality of associated scenarios At is
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Table 4.6: Mainstreamness user groups and their dataset-specific 7 values. Videoland values not included due to the sensitivity of the

data.
Dataset Mainstreamness group
low medium high
LastFM (-0.02) - 0.02 0.02-0.04 0.04-0.13

MovieLens 0-0.08 0.08-0.13 0.13-0.50

less interpretable for the more manual threshold selection, as done in Section 4.9. As such, we choose not to
select thresholds in such a way and instead use equal user numbers for each group.

Finally, model test set performance was obtained for each group of each grouping measure. Following
that, a statistical analysis, analogous to the one described in Subsection 4.9.1 was carried out. Standardisation
was applied to the results such that for a given measure, model performances for one individual group (low,
medium or high) were transformed in conjunction, separately for each dataset. This was then ultimately
followed by separate two-way ANOVA tests 1> and Dunnett’s post hoc tests (Hj : time delta > baseline) for
each metric for each user grouping measure.

12Two-way ANOVA with the given measure’s user group and model as independent variables and a given metric as a response variable
applied to results for the given grouping measure standardised for each dataset for each user group



Results and Discussion

5.1. Effect of model choice on overall performance

In order to determine beneficial modes of incorporating time gap information associated with increased per-
formance, models were evaluated on the previously withheld test sets, as described in Section 4.8. The results
of this evaluation are presented in Table 5.1. Following the above analysis, statistical evaluation consisting of
one-way ANOVA and subsequent Dunnett’s tests was performed as described in Section 4.8. The results of
the statistical analysis are presented to the reader in Appendix Table B.2 and Table 5.2.

Table 5.1: Full dataset evaluation metrics of baseline and DeepTimeDelta models.
Best performance for the given dataset in terms of the chosen metric denoted in bold.

Dataset model Recall@20 MRR@20 UserRecall@20 UserMRR@20

0 0.3313 0.2396 0.3117 0.2281

1 0.3446 0.2409 0.3349 0.2335

2 0.3396 0.2463 0.3233 0.2364

LastEM 3 0.3150 0.2185 0.2946 0.2005
4 0.3345 0.2440 0.3177 0.2338

5 0.3423 0.2386 0.3286 0.2305

6 0.3186 0.2134 0.3032 0.2003

7 0.3342 0.2318 0.3192 0.2237

0 0.2146 0.0680 0.2664 0.0899

1 0.2287 0.0734 0.2776 0.0961

2 0.2206 0.0700 0.2706 0.0913

MovieLens 3 0.2070 0.0642 0.2603 0.0869
4 0.2259 0.0728 0.2736 0.0949

5 0.2156 0.0685 0.2669 0.0920

6 0.2185 0.0677 0.2721 0.0914

7 0.2185 0.0693 0.2708 0.0922

0 0.6227 0.3551 0.5672 0.3192

1 0.6247 0.3632 0.5680 0.3234

2 0.6250 0.3640 0.5671 0.3236

Videoland 3 0.6236 0.3628 0.5655 0.3229
4 0.6239 0.3635 0.5674 0.3235

5 0.6243 0.3637 0.5676 0.3238

6 0.6249 0.3633 0.5680 0.3231

7 0.6247 0.3633 0.5679 0.3230

37
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Table 5.2: Full dataset offline evaluation Dunnett’s test p-values.

H, Recall@20 MRR@20 UserRecall@20 UserMRR@20

1>0 0.0081 0.0671 0.0042 0.0275
2>0 0.0355 0.0986 0.3805 0.1008
3>0 0.9849 0.9220 1.0000 0.9260
4>0 0.1094 0.0581 0.2369 0.0389
5>0 0.1583 0.2618 0.3122 0.1048
6>0 0.3517 0.7965 0.4410 0.6340
7>0 0.1341 0.3450 0.1864 0.2224

Firstly, we note substantial differences in the distributions of the results between different datasets, pre-
sented in Table 5.1. Namely, all models consistently demonstrate the highest mean performance on Vide-
oland across all metrics (e.g. mean UserMRR@20 of 0.323). A lower set of scores is attained for interactions of
LastFM (0.223), with MovieLens proving to be the most challenging (0.092). On the other hand, the obtained
results are also spread out the most for LastFM (UserMRR@20 o = 0.015), with inter model scores of Movie-
Lens being dispersed to a lesser extent (o = 0.015) and even less so for Videoland (o = 0.001). We hypothesise
that prediction may be easier following certain values of time gaps over the others, as reported by Jing and
Smola [63]. As time gap distributions vary between different datasets, certain datasets may contain a higher
percentage of interactions with time gaps for which models achieve a higher recommendation accuracy. Fur-
thermore, there also appears to be a minor bias towards users with long histories for LastFM and Videoland,
as all models exhibit a lower performance on user based metrics compared to their non user equivalents, with
the opposite being true for MovieLens. This observation is likely linked to the training set distribution of in-
teraction counts for each user, as consumption histories of individual MovieLens users are shorter compared
to those of the remaining datasets.

In terms of individual models, we observe that no one model or equation achieves the best result across all
datasets and metrics. A combination of models 1, 2 and 4 dominate the performance on LastFM and Movie-
Lens, with less consistent improvements also observed for models 5 and 7. Model 1, in particular, achieves the
best performance on MovieLens over all metrics, with an average increase of 6.4% over the baseline model.
The model also achieves the best results on Recall@20 and UserRecall@20 of LastFM (average improvement
of 5.7%), while MRR@20 and UserMRR@20 are best served by model 2 (average improvement of 3.2%). 1 On
the other hand, for Videoland there was no clear best model, with model 2 narrowly achieving the highest
combined performance (as measured by Borda count on the basis of all metrics), closely followed by models
5, 6, 1 and 7. Notably, with the exception of UserRecall@20, all time delta models demonstrated at least some
improvement over the baseline model. However, the extent of the improvement was also generally lower than
that observed for other datasets.

At the equation level, models modifying equations 1 and 2 appear to achieve the highest overall perfor-
mance. Changes to those equations allow the model to leverage the temporal information in order to reg-
ulate the influence of other inputs on the hidden state update. The importance of the above mechanism is
also reflected by the results of the statistical evaluation. Namely, model 1 was found to achieve a statistically
significantimprovement over the baseline in terms of Recall@20, UserRecall@20 and UserMRR@20 at 5% con-
fidence level. Moreover, statistical analysis highlighted model 2 as significantly improving on Recall@20 and
model 4 achieving the same feat on UserMRR@20. On the other hand, modifying equation 3 exhibited gen-
erally deteriorated results on both LastFM and MovieLens datasets compared to the baseline. Additionally,
whilst providing some improvement over the baseline model on Videoland, the extent of the improvement
observed for model 3 was lower than for other time delta models. Nevertheless, models 5 and 6 respectively
demonstrate the highest Videoland UserMRR@20 and UserRecall@20, with the former also achieving the sec-
ond highest Recall@20 and UserRecall@20 on LastFM. As such, effects of including time gap information in

INote that our baseline model results for MovieLens are also approximately consistent with those reported by Donkers et al. [33], with
our implementation of their model demonstrating a 4.5% improvement of Recall@20 and a 8.7% increase in MRR@20 over their re-
ported results. However, the authors’ stated results on LastFM appear to be substantially different from those reported by us. Namely,
Donkers et al. indicate 30% lower Recall@20 and 28% lower MRR@20 compared to the results for their model presented in Table 5.1.
We hypothesise that the source of the difference lies in the random user history subsampling, as described in the Experimental Setup
Section 4.1. Our internal results demonstrated a level of result variability between independent random samples, consistent with the
above difference. To our regret, the authors did not provide the sampled data nor their sampling code along with their publication nor
during private correspondence.
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equation 3 are more varied. Our interpretation of extending the above equation, as described in Subsection
3.3.3, is allowing the model to decay its recommendations towards a list associated with the given time gap
value. Based on our intuition, such an effect may be particularly beneficial for larger time gap values, whilst
being less relevant for items consumed in a quick succession. As such, we hypothesise that the differences
discussed above arise from the prevalence of sufficiently large time gaps, with sufficiency being determined
by the underlying user behaviour of the dataset.

Finally, the extent to which combining modifications to multiple equations improves recommendation
remains unclear due to its high apparent dataset specificity. For instance, model 5 combining changes to
equations 1 and 3 achieved higher Videoland MRR@20 and UserMRR@20 when contrasted with models mod-
ifying those equations in isolation. On the other hand, whilst model 4 achieves the second highest result on
MovieLens, model 1 achieves a higher performance by extending only the first equation. Analogously, whilst
further extending model 4 with a modification to equation 3 allows model 7 to achieve higher Recall@20 and
UserRecall@20 on Videoland, such an extension generally provides a negative effect on the remaining two
datasets.

5.2. Effect of time gap value on model performance

Following that, we turned to establishing which types of time gaps benefit from the use of time-dependent
models. In order to address the above, performance of all models was analysed on the basis of predictions
made following interactions with either low, medium or high duration time gaps, as defined in Section 4.9.
The results of such evaluation are presented below in Table 5.3. This was followed by ANOVA on standardised
data (as described in Subsection 4.9.1). The associated p-values and the percentage of explained variation
are presented in Appendix Table B.3. The omnibus test was then followed up with Dunnett’s post hoc tests
(Table 5.4).

Analogous to the observed discrepancies in overall mean scores achieved for individual datasets in Sec-
tion 5.1, there also exists a difference between the relative difficulties of distinct time gap groups across
datasets. For instance, models generally achieve their best LastFM results on low time gaps, with marginally
lower scores on medium interactions and a more significant loss of performance for the high group. For Vide-
oland, the relationship is comparable to the above, with more similar levels of performance achieved on low
and medium. The above observations are consistent with those of Jing and Smola [63] who report an inverse
relationship of the interval between two sessions and their model’s prediction accuracy. On the other hand,
whilst the best MovieLens results are still consistently observed for the low group, models instead demon-
strate their lowest scores on medium interactions. This in turn highlights the potential impact of the choice
of the item domain as well as the data collection on the observed results.

On the model level, models 1 and 2 appear to achieve the most consistent improvement across all datasets,
outperforming the baseline across all but one combination of datasets, metrics and groups. Models 4, 5 and
7 also demonstrate a strong performance on MovieLens and Videoland, with fewer cases of improvement on
LastFM (6 — 8 out of 12 metric-group tuples). Finally, models 3 and 6, whilst generally outperforming the
baseline on the other two datasets, fail to demonstrate any improvement on LastFM.

5.2.1. Low

In terms of individual time gap groups, inclusion of temporal information leads to no performance improve-
ment or a minor improvement over the sole use of sequential information for predictions made following low
duration inactivity. Importantly, whilst some dataset specific differences are present, models 1 and 2 are the
only ones that achieve an improvement across most metrics. Model 1 demonstrates the largest UserMRR@20
increase over the baseline of 6.9% for MovieLens, whilst model 2 achieved the largest improvements of 4.4%
and 1.6% for LastFM and Videoland respectively. These results suggest that limiting individual inputs may
provide some minor benefit in adapting to the underlying temporal behaviour associated with items con-
sumed in a quick succession. In contrast, as hypothesised earlier, the user agnostic decay term of equation
3 does not appear to provide sufficient expressiveness and as such only contributes towards smaller gains of
MRR@20 and UserMRR@20 of Videoland observed for model 3.

However, regardless, the extent of the improvement of time delta models is generally the least substantial
and the least consistent when contrasted to that of the remaining time gap groups. This is also reflected in the
results of the statistical evaluation, whereby no model was found to show significant result increase over the
baseline at 5% confidence level for any of the metrics on low time gaps. As such, no strong benefit is overall
observed in utilising A¢ information for improving prediction accuracy following short periods of inactivity.
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Table 5.3: Offline evaluation metrics of baseline and DeepTimeDelta models on distinct time gap duration groups.

Best performance for the given dataset’s time gap group in terms of the chosen metric denoted in bold.

Dataset model Recall@20 MRR@20 UserRecall@20 UserMRR@20
low medium  high low medium  high low medium  high low medium  high

0 0.3662 0.3293 0.2956  0.2807 0.2374 0.1841 0.3284 0.3111 0.2927  0.2501 0.2273 0.1836

1 0.3728  0.3429 0.3283 0.2725 0.2393 0.1916 0.3447 0.3352 0.3344 0.2537 0.2333 0.1937

2 0.3692 0.3378 0.3107 0.2850 0.2442 0.1890 0.3331 0.3227 0.3120 0.2611 0.2355 0.1925

LastEM 3 0.3291  0.3147 0.2503 0.2374  0.2179  0.1506 0.2916  0.2954  0.2501 0.2080  0.2008  0.1550
4 0.3590  0.3332  0.2994 0.2785  0.2424  0.1698 0.3245 0.3183  0.2955 0.2531  0.2333  0.1761

5 0.3488 0.3423 0.3082  0.2450 0.2386 0.1987 0.3261 0.3292 0.3099 0.2244 0.2312 0.2026

6 0.3387 0.3178 0.2704  0.2297 0.2129 0.1563  0.3034 0.3034 0.2628 0.2108 0.2004 0.1583

7 0.3556 0.3329 0.3132  0.2557 0.2306 0.1891 0.3200 0.3191 0.3061 0.2376 0.2230 0.1924

0 0.2258 0.1105 0.1706  0.0719 0.0326 0.0511 0.2673 0.1311 0.1706  0.0902 0.0400 0.0531

1 0.2405 0.1190 0.1800 0.0776 0.0351 0.0549 0.2787 0.1403 0.1813 0.0964 0.0444 0.0578

2 0.2306 0.1219 0.2035 0.0734 0.0370 0.0623  0.2710 0.1517 0.2051 0.0915 0.0478 0.0650

MovieLens 3 0.2167  0.1132  0.1834 0.0675 0.0324  0.0541 0.2609  0.1363  0.1844 0.0872  0.0418  0.0561
4 0.2360  0.1251  0.2109 0.0764 0.0377 0.0651 0.2740  0.1515 0.2121 0.0951 0.0473  0.0681

5 0.2255 0.1184 0.1961 0.0721 0.0342 0.0567 0.2672 0.1424 0.1966  0.0923 0.0434 0.0586

6 0.2280 0.1233 0.2028 0.0711 0.0346 0.0603 0.2726 0.1492 0.2017  0.0917 0.0449 0.0617

7 0.2284 0.1203 0.2023  0.0728 0.0352 0.0616  0.2712 0.1472 0.2058  0.0924 0.0453 0.0655

0 0.5659 0.6325 0.3219  0.2967 0.3644 0.1150 0.5733 0.5727 0.3305 0.3123 0.3238 0.1195

1 0.5661 0.6345 0.3428 0.3013 0.3729 0.1261 0.5742 0.5733 0.3498 0.3171 0.3283 0.1304

2 0.5660 0.6349 0.3422 0.3017 0.3737 0.1245 0.5735 0.5727 0.3488 0.3172 0.3287 0.1287

Videoland 3 0.5652  0.6333  0.3448 0.2999 0.3725 0.1264 0.5720 0.5709  0.3515 0.3155 0.3280  0.1310
4 0.5653  0.6338  0.3396 0.3007 0.3732  0.1246 0.5733  0.5727  0.3467 0.3166  0.3286  0.1288

5 0.5651 0.6340 0.3479 0.3007 0.3735 0.1276 0.5731 0.5729 0.3547 0.3164 0.3288  0.1320

6 0.5666 0.6346 0.3437 0.3011 0.3730 0.1262 0.5743 0.5733 0.3506 0.3163 0.3281 0.1305

7 0.5655 0.6345 0.3422  0.3005 0.3730 0.1249 0.5732 0.5735 0.3497 0.3161 0.3281 0.1290
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5.2.2. Medium

On the other hand, in the case of Medium time gaps, a wider range of time delta models achieved a more con-
sistent improvement over the baseline. In addition to the gains demonstrated by models 1 and 2 (up to 3.6%,
19.5% and 1.5% UserMRR@20 improvement on LastFM, MovieLens and Videoland respectively), models 4 and
5 provide comparable increases in the majority of cases. Likewise, models 6 and 7 achieve an improvement
on all metrics for MovieLens and Videoland. Notably, model 3 also demonstrates an improvement on 3 out of
4 metrics for each of the above two datasets, albeit the improvement is lower than that of the other time delta
models.

With comparable or larger improvements compared to the low group, as well as a larger number of mod-
els achieving some level of improvement, models 1 and 2 were found to achieve a statistically significant
improvement over the baseline in terms of Recall@20 at 5% significance level. Moreover, model 2, along with
model 4 were both found to have demonstrated a significant medium time gap improvement over the base-
line in terms of MRR@20 and UserMRR@20. The above thus indicates the positive effect the gating equations
1 and 2 are able to have on recommendation, with equation 3 providing a lesser or negative benefit.

5.2.3. High

Lastly, time-dependent models generally demonstrate the largest improvement following interactions with
hightime gaps. All time delta models outperform the baseline across all metrics for MovieLens and Videoland
datasets, with models 1, 2, 5 and 7 achieving the same feat for LastFM. The highest overall improvements were
observed for MovieLens, with model 4 showing a UserMRR@20 improvement of 28.2% over the baseline, fol-
lowed by those of models 2 and 7. Model 5, on the other hand, in addition to demonstrating the largest LastFM
improvements on MRR@20 and UserMRR@20 (7.9% and 10.3% respectively), also achieved the highest Vide-
oland results across all metrics, exemplified by a 10.5% UserMRR@20 increase over the baseline. Notably, and
in contrast to the remaining groups, the second highest Videoland UserMRR@20 improvement of 9.6% was
also achieved by model 3. However, the model still failed to improve on LastFM and achieved some of the
lowest improvements on MovieLens.

Out of the above models, 2, 5 and 7 achieved statistically significant mean result improvement for Re-
call@20 at 5% confidence level. The same models, along with model 4, were also found to significantly im-
prove in terms of UserRecall@20. As such, we highlight the wide array of successful time delta models and
modes of incorporating time gap information following long time gaps, including the use of non user specific
decay of equation 3.

5.2.4. Limitations

Importantly, there also exist limitations on applicability of the above conclusions, stemming from the fol-
lowing sources. Firstly, as previously suggested in Section 4.8, a model may achieve an improvement over a
given metric across all datasets. However, if there exists a model that achieves a further increase over the first
model’s performance, the standardisation procedure may decrease the overall impact of the improvement of
the first model over the baseline. If there exists a better time delta model for multiple datasets, statistical eval-
uation may be less likely to identify the first model as providing a significant improvement. We hypothesise
that, for instance, this may be the case for model 1 and its UserMRR@20 performance on high time gaps.

Likewise, the extent of the improvement over the baseline demonstrated by a certain model may be over-
shadowed by even more pronounced performance losses suffered by other models. This may be the case for
model 1 and its UserRecall@20 results on low time gap interactions. Namely, whilst the model demonstrates
the largest improvements on LastFM and MovieLens, while achieving a close second largest improvement on
Videoland, the extent of the improvements is less than the difference between the baseline and the poorer
result of model 3.

Thirdly, we hypothesise that the apparent lack of statistically significant results for low time gaps may also
partially stem from the divergent implicit meanings of low time gaps across the datasets. Namely, whilst the
shortest time gaps in Videoland may constitute an abrupt switch from one item to another, the same time
gaps in MovieLens instead signify the quick rating assignment, which may be less interpretable as any form
of positive or negative feedback. More generally, our results demonstrate the difficulty of combining datasets
from different domains and user input types.

Finally, in our view, the above evaluation may have been influenced by the subjective choice of time gap
thresholds. For instance, it may be possible that Videoland users generally take less than 14 days to exhibit
a behaviour attributed to high duration absence in Section 3.2. In that case, the medium interaction group
may also end up containing a number of such interactions, potentially skewing the results.
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5.3. Fine grained analysis of effects of time gap value on model behaviour
To further improve our understanding of the underlying model behaviour as a function of the time gap, we
proceeded to analyse the changes in models and their behaviour as a response to At partitioned into 100
exponentially increasing bins. Note that due to space and clarity constraints only a subset of models are
presented in this section, chosen on the basis of performance as well as the diversity of recommendation
behaviours and activations. Figures featuring all models are included in the Appendix.

5.3.1. LastFM
5.3.1.1 MRR@20

LastFM MRR@20 vs At
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Figure 5.1: MRR@20 and the associated 95% confidence intervals of models 0, 1, 2, 4 for varying time gap duration time on LastFM
dataset. Performance averaged over individual interactions falling into exponentially expanding bins. Model 0 presented in red,
DeepTimeDelta models presented in blue. Model 0 MRR@20 included alongside that of DeepTimeDelta for additional perspective, with
model 0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.

As seen in Figure 5.1, LastFM interactions of both sequential as well as time delta models roughly fall into
three categories on the basis of MRR@20. The overall lowest performance is observed for interactions with
At < 10' sec (30 sec), followed by a rapid performance increase and a subsequent decline at At = 10%* sec
(4 min). Finally, from At = 10?8 sec (10 min) onwards, only minor fluctuations in performance are observed.
Whilst not leveraged in this work, the above breakpoints between the bin clusters may be employed as an
alternative choice of thresholds outlined in Section 4.9.

Importantly, the apparent plateau of performance for At > 10>® sec suggests that users may overall exhibit
comparable listening patterns following any medium-to-long period of inactivity. This raises the possibility
that LastFM users may actually not interact with novel tracks even after prolonged absence, as hypothesised
earlier. Moreover, the overall performance trends exhibited by both sequential as well as time delta models
appear to be concordant. The latter suggests that user behaviour may be roughly captured by the sequential
information, with time gaps playing a role in additional fine tuning. Whilst outside the scope of the current
project, future work may wish to extend the above visual analysis to include static models as to identify the
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precise value of sequential ordering.

Nevertheless, time delta models achieve consistent increases in MRR@20 over the baseline (up to 9.1%
for model 2) for bins surrounding the mode of the interaction distribution. Likewise, time delta models, with
model 1 in particular, may also provide a level of improvement on interactions with At on the order of hours
or single days, consistent with the findings for medium and high groups in Section 5.2. However, additional
work (e.g. on the full LastFM dataset) is required to clarify the exact ranges of such larger time gaps associated
with improvements in performance,as well as for bins with Az < 10!-° sec due to the wide confidence intervals
arising from small bin counts.

5.3.1.2 Embedding distances

Following that, the focus was shifted to examining potential differences in recommendation. More precisely,
embedding vectors of items directly before and after the time gap were compared to the embeddings of rec-
ommendations produced upon consumption of the second item (p) in terms of Euclidean distance, as de-
scribed in Subsection 4.9.2. We refer to the mean distance between the item before the time gap and each of
the recommendations as |i7 =" — p|,. Analogously, |i'”) - jp|, refers to the mean distance between the item
following the time gap and the recommendations. Finally, we also include |i") — iT=D|,, denoting the dis-
tance between the two items, for additional context. Interactions were binned on the basis of associated time
gaps, as done for MRR@20.

As seen in Figure 5.2, items consumed with an interval of 3 < At < 10! sec are found to be substantially
further apart compared to any time gap range (high |i'”) —i"=V|;). In contrast, items consumed in rapid
succession from one another (At < 3 sec) are observed to be more similar. We interpret both of the above
cases as the first item not being relevant to the user. Moreover, we hypothesise that the latter may be an
example of the user immediately switching to the next track in the playlist or album, whilst the former may
also be related to the user making an active choice of the next track. However, contrary to our expectations, no
strong local divergence in terms of item-to-recommendation distances was observed between the sequential
and time-dependent models for the above interaction types. Whilst both |i'"~V — j|, as well as |i") — p|, of
model 1 are lower compared to their baseline counterparts, the same shifts are also observed across all other
At values, suggesting an overall absence of short time gap specific adaptation for time delta models.

Current item, preceding item and recommendation mean embedding distances LastFM

Model 0 Model 1

Model 2 Model 4

At (sec) Bt (sec)

Figure 5.2: Ii(T’U - Ppl2, Ii(T) — pl2 of models 0, 1, 2, 4, as well as Ii(T) —i(T-n | with their associated 95% confidence intervals for
varying time gap duration on LastFM dataset. Distances averaged over individual interactions falling into exponentially expanding

bins. Number of interactions assigned to each bin shown in grey.

For absences of longer durations, we also observe a minor and decelerating increase in the inter item as
well as item-to-prediction distances for interactions separated by more than 10%® sec. As such, as hypoth-
esised earlier, in place of novel items, we find that users generally choose to engage with the same kind of
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content they had consumed previously. Whilst users may discover new tracks during their listening session,
their inter session behaviour is reminiscent of the Filter Bubble, explored more closely in Pariser [105].

5.3.1.3 Activations

Finally, mean gating vector activations & , i and F were examined as to improve our understanding of the
impact temporal information may have on lower level decision making of time delta models. These binned
activations are presented to the reader in Figure 5.3.
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Figure 5.3: Mean ¢, u and r with their associated 95% confidence intervals of models 0, 1, 2, 4 for varying time gap duration on LastFM
dataset. Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models
presented in blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional
perspective, with model 0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.

Consistent with the observations for inter item distances, most gating vectors appear to exhibit visually
distinct patterns related to interaction types discussed in Section 5.2. However, importantly, and distinct from
prediction distances, there exist pronounced differences in the values as well as general trends of activations,
both between time-dependent and sequential models, as well as between different time delta models. Inter-
estingly, introduction of a temporal term in equation 1, used to determine the value of &, appears to have a
knock on effect on the trend exhibited by u and r wherein they depart from a baseline-like behaviour. On the
other hand, changes to equation 2 do not appear to strongly affect the distribution of responses of & , sug-
gesting that whilst theoretically those may also be altered indirectly via backpropagation through the learned
user and item embeddings, the extent of those changes is not substantial.

Notably, whilst for At < 3s the baseline model appears to perform item-focused updates (low € , high @
, medium-high r relative to other bins), time delta models employ a different strategy for the above interac-
tions. Namely, time-dependent models exhibit relatively strong levels of user dependency (high & - model 1),
lower extent of hidden state update (low @ - model 2) or both (model 4). It is not clear whether such strategy
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lends itself to improving the performance for the associated interactions due to the wide confidence intervals
described for MRR@20 as well as an apparent lack of short time gap specific differences from the baseline
in terms of recommendations. However, the above observation would suggest that, instead of reducing the
impact of i7~Y as initially hypothesised, for short At time delta models either reduce the impact of i'” or
increase the importance of the user’s long term preferences on recommendation. The above strategies are
also used by both time delta and sequential models for 3 < At < 10'° sec as well as for more prolonged ab-
sences (At > 10>8 sec). The latter, however, suggests that for LastFM time delta models do not adapt to long
periods of inactivity by strongly leveraging the item consumed upon the user’s return to the platform as hy-
pothesised originally. Instead, models progressively shift focus to static user preferences or the user’s recent
history directly preceding their departure from the platform, consistent with our previous observation that
users do not appear to consume novel content after a prolonged absence.

Note, however, that it is not fully clear whether the observed differences in activations are solely respon-
sible for the differences in performance and recommended items. For instance, a unique feature of models
1 and 4, achieving the largest MRR@20 improvements around At = 10%* sec, is the lack of increase in & seen
for a lower performing models 2 and the baseline. However, we observe no strong local differences in rec-
ommendation distance trends between any models, suggesting an alternative mechanism leading to perfor-
mance improvements, for example better parameter learning. Our analysis is also complicated by the fact
that absolute values of activations cannot be directly compared between models. This is the case due to the
observed differences in learned user and item embeddings between models. For instance, two models with
distinct activations of & may lead to the same scaled user embedding used in equation 2. In a similar vain,
values of & exceeding 0.5 do not guarantee the overall model attention being focused on the user vector as
user and item vectors distributions may be different. As such, further work, addressing the above limitations,
may gain further insight into the effects of time gaps.

5.3.2. MovieLens
5.3.2.1 MRR@20

For MovieLens, the performance of both the baseline as well as time delta models, presented in Figure 5.4
exhibits an overall parabolic trend. The highest global accuracy is observed for the shortest time gaps, with
performance decreasing to its local minimum by approximately At = 10* sec (3 h) and finally increasing for
interactions with Az > 10> sec (3 days). Note, however, that local trends for 103 < sec At < 10*7 sec as well
as At > 1058 sec are to some extent obfuscated by the wide confidence intervals arising from low numbers
of interactions in each of the associated bins. Moreover, it is not clear why there exist substantial differences
between different bins with At on the order or seconds or minutes as we do not believe users to be able to
consume new content or change their tastes over such short periods of time.

Overall, we observe that time delta models are able to provide improved performance over the baseline
across most values of time gaps. However, certain models appear to excel on different ranges of interactions.
In particular, in addition to improvements across the majority of bins, models 1 and 4, in contrast to other
time delta models, demonstrate improvements on shorter time gaps (Af < 1019 sec. On the other hand,
models 2 and 4, as well as 6 and 7 (Appendix Figure B.6), appear to improve the most for larger time gaps, with
the highest improvements observed for At > 10%7 sec (6 days). The latter is consistent with the results in Table
5.3, whereby models featuring a modified equation 2 were found to demonstrate consistent improvements
on MovieLens high duration time gaps.

5.3.2.2 Embedding distances

As seen in Figure 5.5, the distance between items i~V and i” undergoes a slow decrease, with a fluctuation
for At on the order of seconds. This is followed by a more rapid descent starting at At = 1037 sec (1.4 h) and
lasting until At = 10%7 sec, at which point additional At increases are associated with growth of |i7=D-j(T)|,.

Analogous to LastFM, item-to-prediction distances overall follow the trends of [i'T ~V-i(D|,, with recom-
mendations being generally closer to the more recently consumed item. However, compared to LastFM, we
observe a higher amount of deviation of |i'"~V - p|, and |i'? - p|, from |iT=D-i(T)|,. Unexpectedly, no pro-
nounced differences are observed for models 1 and 4 distinguishing them from other models. As such, the
mechanism for improvement on short time gaps remains unclear. On the other hand, models 2 and 4, as
well as 6 and 7 (Appendix Figure B.7), exhibit a rapid shift away from the item before the time gap (higher

[§T-D— Pl2) and closer to the item after the time gap (lower [iD — plo) for At > 101 sec, with the behaviour
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MovieLens MRR@20 vs At
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Figure 5.4: MRR@20 and the associated 95% confidence intervals of models 0, 1, 2, 4 for varying time gap duration on MovieLens
dataset. Performance averaged over individual interactions falling into exponentially expanding bins. Model 0 presented in red,
DeepTimeDelta models presented in blue. Model 0 MRR@20 included alongside that of DeepTimeDelta for additional perspective, with
model 0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.

Current item, preceding item and recommendation mean embedding distances MovieLens e ey ens

Preceding, recommendations

Model 0 Model 1

Euclidean distance

Model 2 Model 4

Euclidean distance

At (sec) At (sec)

Figure 5.5: |[A—P|y, |B— Pl of models 0, 1, 2, 4, as well as | B — Al with their associated 95% confidence intervals for varying time gap
duration on MovieLens dataset. Distances averaged over individual interactions falling into exponentially expanding bins. Number of
interactions assigned to each bin shown in grey.
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persisting for all higher A¢ values. Such swift changes are, however, not observed for models that do not fea-
ture a time gap term in their second equation, suggesting that direct regulation of the hidden state may be an
important mechanism for improving the performance following medium or long inactivity.

5.3.2.3 Activations

Finally, in terms of activations, both sequential as well as time delta models exhibit a wide array of activation
trends. These are presented in Figure 5.6.
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Figure 5.6: Mean &, u and r with their associated 95% confidence intervals of models 0, 1, 2, 4 for varying time gap duration on
MovieLens dataset. Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta
models presented in blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional

perspective, with model 0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.

For large time gaps, both the baseline as well as models 2 and 4, as well as 6 and 7 (Appendix Figures
B.8, B.9, B.10), increase the importance of the stable user preferences and the extent of the update whilst
decreasing the importance of the recently consumed items. Notably, the above time delta models exhibit a
substantially more rapid change in @ and ¥ for At < 10%* sec, quickly moving away from i’ =1, as described
in the previous subsubsection. This behaviour is not observed to the same extent in models achieving lower
performance for long time gaps and thus is likely the primary source of the observed improvements. However,
note that in spite of the above time delta models simultaneously further increasing the importance of the
static user preferences, their recommendations strongly move towards i‘” from At = 10" sec. As such, we
conclude that models utilise and balance both of the above inputs, leveraging them for recommendations
following any longer absences, especially those on the order of hours, days or months.

On the other hand, whilst we observe substantial differences of time delta models to the baseline in terms
of their activations for At < 10! sec, we are unable to determine the mechanism through which models 1
and 4 achieve the largest improvements for the above range of At values. Whilst both models rapidly alter
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their ¢ in response to minor increases in At, this change is done in opposing directions. Moreover, it is un-
known whether the activation changes truly represent time delta models interpreting short interactions as
not having the knowledge of the exact consumption order, as hypothesised in Section 3.4, or models instead
acting through a different mechanism. To that end, in Chapter 6, we propose additional methodology to fur-
ther disambiguate between the possible underlying mechanisms leading to improvements observed for short
time gaps.

5.3.3. Videoland

Finally, the above analysis was also carried out for Videoland. Note that due to the sensitivity of the data
the counts of interactions belonging to each bin are not presented to the reader as was done for the pub-
licly available datasets. As the dataset was gathered from interactions of over 600,000 users ? the number of
interactions across every range of time delta values exceeds that of the remaining datasets.

5.3.3.1 MRR@20

As presented in Figure 5.7, all models exhibit a high level of global as well as local variation in terms of their
performance across various values of At. Overall, models achieve peaks of performance at 103! sec (25 min),
106 sec (11 h) and 10°7 sec (6 days), followed by a rapid decline of results, consistent with the previously
described observation of Jing and Smola [63].

Videoland MRR@20 vs At
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Figure 5.7: MRR@20 and the associated 95% confidence intervals of models 0 — 3 for varying time gap duration on Videoland dataset.
Performance averaged over individual interactions falling into exponentially expanding bins. Model 0 presented in red, DeepTimeDelta
models presented in blue. Model 0 MRR@20 included alongside that of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity.

Contrasted to the baseline, time delta models achieve an equal or improved performance for the vast
majority of time gap values, with no model achieving performance lower than the baseline for more than
4 bins. Whilst some minor performance increases are observed for time gaps on the order of seconds or
minutes, the largest absolute extent of the improvement was observed for interactions with 10*9 sec < At <
10%9 sec (1 and 10 days respectively). The highest increase, totalling up to 10.5% of the baseline performance,
is shown by model 4 for At = 10%7 sec (Appendix Figure B.11). As Videoland features a number of shows with
weekly releases, the above improvement may be related to prediction of such weekly behaviour. This idea is
explored further in relation to item and prediction distances. Further increases to 10% sec < At < 1059 sec
(3 months) are similarly associated with improvements over the baseline, with the largest improvements of
approximately 10% observed for models 5 and 3, consistent with the ranking of models on high time gaps

Zhttps:/ /www.broadbandtvnews.com/2019/09/01/rtls-dutch-svod-service-videoland-to-add-commercials/
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in Table 5.3. However, the extent of the improvement is less clear for At > 1059 sec due to the widening
confidence intervals. Nevertheless, the above improvements confirm that time gaps are a valuable source of
information for absences of any duration and in particular for those on the order of days, weeks or months.

5.3.3.2 Embedding distances

For item and recommendation distances of Videoland, presented in Figure 5.8, we similarly observe a sub-
stantially higher variation of both item-to-item as well item-to-prediction distances compared to the previ-
ous datasets. Notably, recommendations of sequential but also time delta models appear to be closer to i7 =V
than to i'? for At < 107 sec. This observation is at odds with our original hypothesis of short time gaps be-
ing used as a negative signal towards the first item. Whilst for a number models |i'" — p|, < [T~V - p|, for
1017 sec < At < 10>* sec, the only difference between the sequential and time delta models is the marginally
higher values of |i (r-n_ pl2 of the latter - a trend not exclusive to the above At values. As such, we are unable
confirm the viability of short time gaps as a source of negative feedback for i'" = for Videoland.

Current item, preceding item and recommendation mean embedding distances Videoland

Model 0 Model 1

Euclidean distance
'
)
'

Figure 5.8: |A— Pl2, |B— P|2 of models 0 -3, as well as | B — Al with their associated 95% confidence intervals for varying time gap
duration on Videoland dataset. Distances averaged over individual interactions falling into exponentially expanding bins.

On the other hand, compared to the baseline model, |i ™ _ pl2 of time delta models undergoes a more
pronounced decline between At = 10*9 sec and At = 10%! sec (2 weeks). Analogously, |i‘7 =V - jj|, of time
delta models first declines less rapidly and later begins to increase. As such, time delta models appear to
strongly reduce the importance of the recent history (hidden state) for medium and large time gaps. Interest-
ingly, further increases of At to the order of months (105 sec) are also associated with increased movement
away from i1, suggesting that either hidden state still maintains some effect on recommendation or that
predictions are strongly influenced by the static user preferences.

Finally, the above period of 10*° sec < At < 10%! sec, coincides with improvements hypothesised to be
related to consumption of weekly content. Users with inactivity whose duration falls into the above range
appear to consume progressively more similar content to what they consumed directly before their departure
from the platform, as evidenced by a rapid decline of |i'"’ —i"=V|,. Moreover, recommendations of time delta
models also progressively become very close to both of the above items, indicating a high level of similarity
between all three. Whilst there may exist simple rule-based dependencies between two successive items (e.g.
user always watches current week’s Ex on the Beach after Temptation Island), those are likely to already be
captured by the sequential model. Whilst not shown directly, we propose that the performance improvements
for the above time gaps may instead arise from time delta models leveraging time gaps as to identify the
availability of the next episode of the related show. In the above case, however, improvements in metrics may
not necessarily translate into improved user satisfaction, as in the end the user will not have discovered any
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novel content.

5.3.3.3 Activations

Finally, mean gating vector activations, presented in Figures 5.9, 5.10 and 5.11, exhibit a higher level of inter
model similarity compared to those of the remaining datasets, particularly when At is on the order of seconds
or minutes. As such, the mechanism through which time delta models achieve performance improvements
for lower time gaps reported in Section 5.2 and Subsubsection 5.3.3.1 is unclear. Importantly, model 3, ex-
cluding any direct effect of temporal information on the gating vectors, similarly outperforms the baseline for
the above range of At values. Based on our intuition, temporal decay of equation 3 is unlikely to be beneficial
in cases with short intervals. As such, we hypothesise that explicit temporal information may also lead to im-
proved parameter learning through backpropagation, as described in Subsection 5.3.1. However, additional
work is required to confirm this interpretation.

mean & activation vs At for Videoland
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Figure 5.9: Mean & with its associated 95% confidence interval of models 0 — 3 for varying time gap duration on Videoland dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity.

Starting from Af = 103 sec (53 min) most time delta models exhibit minor decreases to :f and r as well as
increases to i . However, the most substantial changes commence between At = 105 sec and At = 105 sec
(9h to 3 days respectively), whereby existing baseline model trends are strongly amplified. Models 1, 4 and 7
(Appendix Figure B.13) substantially increase the user vector contribution, whilst all time delta models except
model 3 also increase the strength of the update. The latter is consistent with our observation whereby time
delta models were believed to reduce their dependency on the hidden state for large time gaps. Moreover, the
rapid increase in & indicates models finding that following long periods of inactivity users also benefit from
the use of their long term preferences, consistent with our observations for other datasets.

However, the exact means through which models 5 and 3 are able to achieve the highest performance
among all time delta models for high time gaps is unclear. Importantly, models modifying the third equa-
tion also directly incorporate At into the calculation of the update vector k, providing another mechanism
through which recommendations may be further improved. The reliance on this mechanism is consistent
with our observations for model 3, which only exhibits minor differences from the baseline in terms of its
activation pattern. However, generally, we believe that the mixture of reducing the hidden state contribution
as well as increasing reliance on static user preferences is what allows the remaining time delta models to
achieve particularly consistent improvements on interactions with long time gaps.
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mean u activation vs At for Videoland
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Figure 5.10: Mean u with its associated 95% confidence interval of models 0 — 3 for varying time gap duration on Videoland dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity.
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Figure 5.11: Mean r with its associated 95% confidence interval of models 0 — 3 for varying time gap duration on Videoland dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity.

5.3.4. Conclusions

Overall, we observe strong dataset specific trends, with substantial differences in performance, embeddings
and activations across different time gap values. However, overall we detect only minor improvements for
short time gaps, consistent with the results described in Section 5.2. Notably, we discern no short time gap
specific differences between the baseline and time delta models in terms of recommended items. Whilst



5.4. Effects on user groups 53

internally some differences in model behaviour may be observed, separating short time gaps from the rest,
it is not clear whether these differences relate to interpreting short time gaps as signals of negative feedback,
unknown consumption order or something else.

On the other hand, the use of time gaps overall leads to improved recommendation when user inactivity
is on the order of days or longer. As seen for all datasets, time delta models exhibited increased reliance on
static user preferences, highlighting their importance in recommendation following prolonged absences. For
two of the datasets models also strongly reduced the importance of recently consumed items, consistent with
our expectations. However, unexpectedly, for LastFM growth of At was instead associated with increases in
the influence of the recently consumed items, suggesting a link between the last listening session and the
current one.

Finally, some improvement for a wide range of time gaps may also arise from alternative mechanisms,
not considered by the above analysis, most notably decay term of modified equation 3 as well as improved
learning of user and item embeddings. Future work may choose to focus on these as to further improve our
understanding of time gaps.

5.4. Effects on user groups

5.4.1. Temporal consumption

Lastly, an investigation into which subsets of users benefit from inclusion of time delta information was car-
ried out. We first turned our attention to users with different levels of mean user time gap (At,). Note that
low values of At, signify a high interaction frequency, whereas users belonging to the high At,, category have
longer average waiting periods between their interactions, indicating a lower item consumption frequency.
The results of model evaluation are presented in Table 5.5. This was followed by statistical analysis, analogous
Section 5.2. ANOVA results are presented in Appendix Table B.4, while Dunnett’s test p-values are presented
in Table 5.6.

Similar to the analysis of individual interactions, on the user level, the relative difficulty of distinct groups
strongly depends on the choice of the dataset. Models exhibit the highest mean MovieLens and Videoland
results across all metrics as well as on UserMRR@20 of LastFM for the low At, group, with a lower perfor-
mance on medium users. On the other hand, the above order is inverted for the remaining LastFM metrics.
Nevertheless, users belonging to the high group pose the highest challenge to all models across all datasets.
We propose that the latter may be to some extent related to the activation patterns observed in Section 5.3.
Namely, prolonged user inactivity was previously found to be associated with increased leveraging of the
static user preferences, which are learned during training. Such embeddings are likely to more closely corre-
spond to the true underlying user tastes for users with higher number of interactions. Notably, such users are
also more likely to have a shorter average inactivity duration (p = —0.31), consistent with the general trend of
relative group difficulty ordering.

Similarly, we observe no uniting trend in terms of the relative size of the improvement over different user
groups across all datasets. For instance, whilst the improvements for MovieLens and Videoland are consis-
tently the smallest for the high user group, this group also enjoys the largest improvements for the LastFM
dataset. Note, however, that the extent of LastFM improvement for the high At,, user group is lower than that
observed for high interactions in Table 5.3. This observation may be related to the idea that a user’s history
is likely to feature absences of various durations. As such, the total extent of the gains for that user is likely
to lie between the smallest and the largest improvements observed for distinct interaction groups, effectively
dampening observed improvement for the high user group.

On individual model level, model 1 consistently improves over the baseline across all datasets, only fail-
ing to improve in terms of UserRecall@20 for high At, users. Analogously, model 2 improves on 34 out of 36
cases, model 4 improves on 32, whilst models 3 and 6 outperformed the baseline only for a small proportion
of dataset and user group combinations. However, only model 1 was found to achieve any statistically sig-
nificant improvements at 5% confidence level, those being observed for medium At, users in terms of Recall
based metrics as well as the high user group in terms of Recall@20.

The low extent of statistically significant differences as well as lack thereof for low At, users is likely re-
lated to the overall small size of observed improvements. In our view, whilst some improvement is observed
for certain user groups, the source of the improvement may to some extent lie in the improvement on indi-
vidual interactions, discussed in Sections 5.2 and 5.3. Furthermore, this contrast is likely in part observed due
to the plurality of possible interpretations of a single given At, value, described in Section 4.10. Moreover,
Figures in Section 5.3 highlight the pronounced differences in the way users interact with content originating
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Table 5.5: Offline evaluation metrics of baseline and DeepTimeDelta models on distinct Aty user groups.
Best performance for the given dataset’s At;, user group in terms of the chosen metric denoted in bold.

Dataset model Recall@20 MRR@20 UserRecall@20 UserMRR@20
low medium  high low medium  high low medium  high low medium  high

0 0.3207 0.3564  0.3090 0.2312 0.2572  0.2276 0.3284  0.3263  0.2799 0.2427  0.2377  0.2037

1 0.3292 0.3731 0.3321 0.2320 0.2589  0.2299 0.3398 0.3502 0.3138 0.2445 0.2418  0.2139

2 0.3267 0.3655 0.3235 0.2370 0.2640 0.2370 0.3352 0.3392 0.2948 0.2454 0.2471 0.2164

LastEM 3 0.3069 0.3356 0.2943 0.2143 0.2303 0.2048 0.3132 0.3042 0.2662  0.2207 0.2063 0.1745
4 0.3247 0.3558 0.3183 0.2375 0.2586 0.2324 0.3314 0.3298 0.2915 0.2472 0.2405 0.2135

5 0.3265  0.3721  0.3280 0.2290  0.2584  0.2257 0.3335  0.3426  0.3089 0.2402  0.2403  0.2107

6 0.3053  0.3455 03021 0.2074  0.2277  0.2005 0.3112 03179  0.2796 0.2118  0.2059  0.1832

7 0.3205 0.3615 0.3178 0.2219 0.2499 0.2243  0.3304 0.3319 0.2947  0.2377 0.2318 0.2014

0 0.3163  0.2399 0.1785 0.1074  0.0758  0.0547 0.3527  0.2505  0.2008 0.1275  0.0818  0.0624

1 0.3313 0.2564 0.1915 0.1141 0.0828 0.0592 0.3635 0.2603  0.2137 0.1341 0.0880 0.0682

2 0.3222 0.2448 0.1849 0.1087 0.0780 0.0569 0.3570 0.2539 0.2056  0.1278 0.0836 0.0645

MovieLens 3 0.3066 0.2310 0.1720 0.1024 0.0720 0.0512  0.3481 0.2434 0.1944 0.1238 0.0794 0.0596
4 0.3255 0.2512 0.1905 0.1127 0.0814 0.0592 0.3582 0.2544 0.2127  0.1329 0.0864 0.0674

5 0.3146  0.2404  0.1804 0.1080  0.0775  0.0547 0.3519  0.2486  0.2048 0.1293  0.0846  0.0642

6 0.3232  0.2439  0.1815 0.1088 0.0763  0.0537 0.3627  0.2541  0.2046 0.1310  0.0828  0.0626

7 0.3220 0.2433 0.1821 0.1097 0.0779 0.0555 0.3576 0.2542 0.2055  0.1302 0.0847 0.0639

0 0.6391  0.6269  0.5239 0.3662  0.3575 0.2901 0.5896  0.5930  0.5038 0.3321 0.3394  0.2750

1 0.6404 0.6302  0.5250 0.3732  0.3682  0.2951 0.5898  0.5955  0.5027 0.3358  0.3459  0.2764

2 0.6410 0.6307 0.5238 0.3738 0.3694 0.2953  0.5897 0.5951 0.5004 0.3361 0.3465 0.2760

Videoland 3 0.6388 0.6300 0.5238 0.3718 0.3689 0.2957 0.5864 0.5934 0.5009 0.3343 0.3459 0.2764
4 0.6390 0.6304 0.5247 0.3728 0.3695 0.2954  0.5892 0.5948 0.5023  0.3357 0.3464 0.2762

5 0.6395  0.6302 0.5255 0.3736  0.3689  0.2955 0.5890  0.5951  0.5028 0.3360 0.3466  0.2767

6 0.6409  0.6303  0.5242 0.3738 0.3680  0.2938 0.5904 0.5955  0.5021 0.3362 0.3456  0.2754

7 0.6397 0.6312 0.5254 0.3733 0.3685 0.2944  0.5895 0.5958 0.5023  0.3360 0.3456 0.2752
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from different domains. As such, users from different datasets belonging to the same At, group may exhibit
vastly differing behaviours and therefore may benefit from temporal information to a different extent. We
hypothesise that a more dataset-specific approach of partitioning users into groups may provide a clearer
separation between users in order to identify any underlying performance trends.

5.4.2. Mainstreamness

Finally, users were instead split on their mainstreamness levels. The results of model performance for users
with low, medium and high degrees of mainstreamness, as captured by Kendall’s 7, are presented in Table 5.7,
whilst the results of statistical evaluation are presented in Appendix Table B.5 and Table 5.8.

The choice of dataset is once again observed to be a key factor affecting the relative difficulty of user
groups. For instance, models demonstrate their highest mean MovieLens score on low mainstreamness users
(UserMRR@20 of 0.11), with a minor decrease in performance for the medium user group (0.10) and the low-
est performance for the most mainstream users (0.07). Conversely, the above ordering is reversed for Vide-
oland, where models achieve the highest mean result (0.35) on high users, followed by medium and low users
(0.30 and 0.23 respectively). Finally, the relative difficulty of users groups for LastFM varies between evalu-
ation metrics. The relative ease of recommendation for mainstream and difficulty of recommendation for
niche users of Videoland is consistent with prior work of Bauer and Schedl [9], Farrahi et al. [38]. Moreover, as
by definition there are many more consumption instances of popular items over the niche items, embeddings
learned for the former are more likely to correctly reflect their underlying characteristics and, by proxy, the
tastes of users consuming those items. However, as noted earlier, the above relative difficulty of mainstream-
ness user groups is not observed across all datasets, suggesting that the perceived difficulty of serving niche
users described by [9, 38, 120] is strongly dependent on the choice of the dataset, as well as the evaluation
metric.

In terms of the improvement over the baseline, there was similarly no group spanning all datasets for
which the improvements would exceed those of other user groups. On the other hand, models 1, 2 and 4
demonstrated general improvements across all user groups, datasets and metrics, generally only failing to
improve on low and medium mainstreamness users of Videoland. Models 3 and 6, conversely, achieved the
least consistent extent of improvement, consistent with our observations for At,, groups.

As evidenced by statistical evaluation, model 1 was the only one to demonstrate any statistically signifi-
cant improvements over the baseline at 5% confidence level. Such improvements were observed for Recall
based metrics of high 7 users as well as for medium users in terms of Recall@20. Notably, models 1, 2 and
4 also outperform the baseline across all dataset and metric combinations for low mainstreamness users.
However, these improvements were not deemed to be statistically significant, likely reflecting the overall
small effect size of the improvement. Moreover, it is unclear whether the observed improvements for high
mainstreamness users are beneficial in practice, as such users are likely to be served well by simple popular
item recommenders [9]. Finally, similar to our previous analysis, we hypothesise that users belonging to the
same mainstreamness group of distinct datasets may to some extent also exhibit different sets of behaviours.
As such, whilst we observe some benefit in the use of time gaps, more dataset centric analysis may provide
further insight into their effects on specific mainstreamness user groups.



57

5.4. Effects on user groups

€8¥€°0 G10€0 G8¢c’'0  9809°0 LEES0 8€I¥'0  8CLEO €02€0 ¢eECo0  vO¥9'0 1EVS0 0¢S¥°0 L
087€’0  6I0€0  00€C0 €809°0  CPES0  SSIP'O0 6CL€0  96I€0  TE€LCO0 L0P90  GevS'0  SCSP0 9
167€°0 €200 882C°0 08090 8EES0  OVIP'0 <CELE0 602€0 IVEC0 66£90 CEFPSO  SESH'O S
L8V€0 610€°0 86¢¢'0 9,090 9€€C0 YSIv'0  0€L€°0 ¥02€0 L¥E€C’'0 L6£9°0 61750 ¥EST0 14 pUB0SPIA
887€°0 2L00€°0 9922’0 12090 86¢S°0 9II¥'0  ¥¢L€0 L61€E0 TIET0  L6E9°0 66€5°0 €67v°0 € ’
06v€0 0¢0€0 062¢’0 6,090 6¢ES0 IEIV'0  SELED 80¢€E0 Iv€C0  60¥9°0 ¥evso 0€SY°0 4
L8%€0  8I0€0 16220 %8090  CPES0  6FIF0 LCLE0  ¥0CE0  6€€C0  F¥0OFP90  $EPSO  CESTO I
CIPE’0  GI0€0  6IE€C°0 09090  LS€S'0  09T¥'0 8€9€0  69I€0  92€C0 <¢8€90  GevS'0  TCSP0 0
01200 ¥860°0 8601°0 ¥6¢C0 8G8¢°0 LT0E'0 22900 ¥€60°0 GG0T°0  620C°0 €€LCO 91620 L
66900 72600 #6010 68¢C0  S2820 9¥0L0 90900 91600 SPOT'0 92020  6£L20 C¥V6C0 9
0TL0°0 98600 88010 ¢LcC0  G¢8C0  6V6C°0 €T1900 0€600 TIPOT'0O #0020  20LC°0  6£8C°0 S
05200 900170 VIIT'0O GLECO 168¢°0 G.6¢'0 69900 7960°0 €.0T°0 LIICO 9LL2°0 78820 14 SUOTOTAOIN
¥590°0 1€60°0 6701°0 8VIC0 ¥9.¢2°0 9¥62'0  12S90°0 8.80°0 G00T°'0  8061°0 ¥€9¢°0 ¥¥8¢2°0 € ’
G1.0°0 62600 ¢/L0T°0 T0€CO g68¢c’o €00€°0  €€90°0 0€60°0 ¥e€0T'0  GS0C0 8€LC0 L0620 4
¥920°0 6I0T°'0 2CIT'0 SIPC’0 82620 0C0E0 S990°0 12600 6201°0 OF¥IC0 02820  SC6C0 I
L690°0 79600  6S0T°0 9¥¢cC0  0¥8C°0  SP6C0 <¢I900  €160°0  8IOT'0 16610 <20.C0  0¥8C0 0
90¢¢C0 66€¢0 €80C'0 ¢cce0 16EE°0 L9620  ¢81¢0 28G¢0 ¢G9¢'0  68I€0 GL9€°0 109€°0 L
1€0C°0  TLTIC20  TZLT'0 690€0  00CE0 28220 9€0C°0  €FE€CO0  8IEC0 8S0€0  98%€0  C¥EEO 9
GGCC0  €E¥C0  €1¢C0  862€0  €CYE0  80IE€0 1S¢C0  S€92°0 9520 €82€0  9¢L€0  9¥9€0 S
11€C0 19v2°0 €¢¢c’0  80¢E0 ¥¢eE0 29620  80€C0 1892°0 11820 002€0 999€°0 GL6€0 14 NSeT
1902°0 661¢°0 L0L1°0  8I0€0 9¢I€0 L¥92°0  2L0C0 9¢ve0 68€C'0  8I0€0 LSVE0 €1EE0 €
6€€C’0 0c¢Sc'0 0Icc’0 LlcEO0 L6EE0 986¢°0 8I€C'0 9¢lc’0 898¢'0 S¥cE0 0v.L€0 €09€°0 4
G8CC0  ¢TvPC0 29220 96CE€0  TESE0  TLIEO0 G220 09920 66220 L92€0  6¥8€0  61LE°0 I
¢LeC0  Tebe’0  92IC0 S8IE0  T22€0  €S8C°0 6S¢C0 29920 9220 €8IE€0 €090  9ISE0 0
ysSry  wnipaw MOT ysSiy  wnipaw MOT ySiy  wnipaw MOT ySiy  wmnipaw MOT
0COTINTOsN 0Z@I1ed9y19s) 0COTIN 0coI[eI9d [opowr  Joseied

"PIOq UI PaJ0OUSP JLIIOUWI UISOYD Y} JO SULId) UI dnoid 19sn SSoUWELIISUTBW §,19skIeP UAIS oY) 10 90ouewiIoj1ad 1sag
'sdNo18 19SN SSOUWBAI)SUTEUI JOUNSIP UO S[OPOW vJjagouLL[daa( pue dUIESE( JO SOLIIIW UOHEN[BAD JUIJO :2'S d[qeL



5. Results and Discussion

58

Table 5.8: Dunnett’s test p-values for offline evaluation on distinct mainstreamness user groups.

H; Recall@20 MRR®@20 UserRecall@20 UserMRR@20
low med high low med high low med high low med high

1>0 0.0971 0.0470 0.0166 0.2362 0.0750 0.0809 0.4478 0.4320 0.0106 0.9401 0.5453 0.0669
2>0 0.4631 0.8579 0.0567 0.6516 0.1456 0.1307 0.9951 0.9995 0.2166 1.0000 0.7579 0.1885
3>0 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993
4>0 0.6299 0.9259 0.2151 0.1322 0.0802 0.0596 0.9593 0.9957 0.2286 0.9487 0.5627 0.0848
5>0 0.7980 0.8572 0.3405 0.7432 0.2796 0.5012 0.9953 0.9993 0.2276 0.9997 0.6005 0.4158
6>0 0.8881 0.9992 0.7125 0.9999 0.9986 0.9895 0.8305 0.9999 0.7349 1.0000 0.9999 0.9904
7>0 0.6454 0.8526 0.3477 0.9078 0.5079 0.6668 0.9633 0.9990 0.1553 0.9999 0.9911 0.6636




Conclusions, Limitations and Future Work

6.1. Conclusions

In this thesis we examine the effects and benefits of extending a sequential state-of-the-art model with tem-
poral information. We demonstrate that such addition, in the form of time gap information, is associated with
models achieving higher predictive performance compared to the sequential baseline model across three
datasets originating from different recommendation domains.

Moreover, we show that time-dependent models demonstrate improvements across a wide range of in-
teractions, with the largest improvements observed for cases following medium and, in particular, long user
inactivity. The largest improvements are generally observed for models incorporating temporal information
in the gating process of the input vectors, whereas the use of temporal information as its own feature in a
user agnostic fashion appears to have more dataset-specific benefits, mostly for cases of more prolonged
user absence.

Additionally, we provide a closer look at the internal model mechanisms, the resulting recommendations
and associated performance for a wide range of time gaps preceding the recommendations. Notably, different
time delta models are observed to adopt distinct strategies for various extents of user inactivity. However,
two uniting features of time delta models, observed for recommendation following longer absences across all
datasets, are the increased reliance on user long term preferences as well as strong regulation of recent user
history. Surprisingly, a large amount of the time delta model behaviour in response to varying values of the
time gap is similarly observed for the baseline model, indicating a substantial amount of information already
being encoded in the sequential ordering.

On the user level we also demonstrate some improvement of time-dependent models over the baseline
for users of low and medium activity. However, we hypothesise that those may to some extent simply reflect
the improvements observed on individual interactions. Finally, limited improvements are also observed for
users consuming medium and high popularity content, with no statistically significant improvement for more
niche users. Overall, our work demonstrates that time gaps are indeed a useful source of information for
improving recommendation accuracy.

6.2. Limitations

6.2.1. Limitations of statistical evaluation

In general, there always exist time delta models providing an improvement over the baseline for any type
of interactions, as well as for most types of users. However, we observe strong variation of user behaviour
and model performance between different datasets and across different values of the time gap within the
same dataset. Moreover, little or no similarity is seen for comparable time gap values across datasets. As
such, distinct groups of time-dependent models excel on different time gap ranges or user types of different
datasets.

This divergence, in turn, may be exerting a negative effect on our framework of statistical analysis used to
combine results from different datasets. Notably, as described in Section 4.8 and Subsection 5.2.4, differing
models excelling on distinct datasets may ultimately lead to improvements of some models being rendered
statistically insignificant. Moreover, due to nonlinear nature of combining multiple time gap modifications, it
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is overall difficult to establish a clear causative relationship between individual modifications and their effect
on performance, as well as the benefits of combining multiple modifications e.g. via multi-factor ANOVA.
Likewise, a large limitation of our statistical analysis is its focus on identifying specific models that show
statistically significant improvements in place of identifying whether improvement is shown for time gap
information as a whole. However, as observed, the same method of incorporating the time gap information
may actually lead to improvements on some datasets and losses of performance on others. As such, it may
be difficult to demonstrate the direct benefit of time gap information.

Furthermore, as outlined in Section 4.8, whilst Dunnett’s correction is applied to reduce the FWER, this is
done separately for each metric (and user/interaction group) and as such may still carry a risk of increased
Type I error. Finally, the lack of temporal cross validation [116] or multiple rounds of training and testing
may have contributed towards destabilising the observed results and thus contributed towards inflating the
probability of Type I error.

6.2.2. Dataset-specific limitations

The differences in the observed results and model behaviour are likely strongly linked to the way users in-
teract with the platform. Overall, in our view, Videoland provides the most rich source of user behaviour,
with distinct user consumption behaviours across a wide spectrum of distinct time gaps. However, whilst we
propose a scheme for dealing with consumption information relating to both movies and series, detailed in
Section 4.2, there may exist alternative approaches tackling the above problem.

LastFM, on the other hand, appears to feature mostly highly active users, with only 1% of interactions
being separated by 18 or more hours. As such, it is unclear how both time-dependent as well as sequential
models would fare on less active users and in a more realistic setting, featuring more prolonged absences.
Moreover, while on platforms such as those for movies, news or clothes users may be required to make more
active content choices, this may not necessarily be the case for music. As tracks are often consumed in the
form of albums or playlists, the user may not always be actively making the choice of the next track. Ad-
ditionally, we hypothesise that as listening to a particular track requires less commitment in terms of time
compared to movies and shows, LastFM users both tend to listen to a high number of items per session as
well as may be more willing to accept a song that does not fully reflect their needs. In the above case, models
may actually be learning to predict the output of the track or playlist based recommender system of the plat-
form, not the user’s true preferences. Furthermore, as described in Subsubsection 5.3.1.2, users of LastFM
rarely appear to branch out in terms of new tracks between listening sessions, consistent with the discussion
of filter bubbles of Pariser [105]. Additionally, the analysis of model performance on LastFM may be affected
by the sampling procedure described in Section 4.2, with sampling potentially leading to a biased estimate
of the true model performance across the analysis. Furthermore, sampling also led to the increased width of
confidence intervals, as described in Subsection 5.3.1.

Finally, MovieLens appears to be the most distinct dataset in terms of user behaviour. As briefly described
in Section 4.1, users of MovieLens show a general tendency to rate movies in quick bursts of over 50 movies
at a time, without any guarantee for the consumption order. Additionally, over a quarter of the dataset’s
rating events take place with the same time stamp as another interaction for the same user. Moreover, as
described previously, in the majority of cases users do not return to the platform following their initial session,
in contrast to the users of LastFM and Videoland. As such, whilst the interactions featured in the dataset may
be a useful source of feedback for static models, we caution the reader against the use of MovieLens data for
evaluation of sequential models, a practice currently widely prevalent in literature [33, 67, 87, 135, 148].

6.2.3. Additional limitations

Limited insight is also obtained on the improvements associated with short time gaps. No conclusions are
made with respect to time gaps on the order of seconds serving as a source of negative feedback, in part due to
wide confidence intervals arising from a low number of eligible interactions. Moreover, whilst improvements
are observed on MovieLens for interactions separated by time gaps on the order of seconds or minutes, it
remains unclear whether those are achieved due to time delta models treating time gaps as a signal of the
vagueness of the consumption order.

Likewise, whilst the higher granularity analysis provides additional information on the inner functioning
of the model, there exist limitations in the employed approach. Firstly the activation analysis is limited in its
ability to contrast different models. As different models may learn distinct user and item embeddings as well
as other weights, the same value of @, for instance, may reflect non identical updates to the hidden state and
recommendations. Analogously, for a particular model, due to differences in distributions of user and item
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embeddings (in addition to the nonlinear nature of the model), the relative impacts of the user and the item
vector on recommendation are not guaranteed to be approximately equal at & = 0.5. Furthermore, whilst we
observe strong apparent influence of the most recently consumed items on the resulting recommendations
for different At values (high correlation between item-to-item and item-to-prediction distances), we are un-
able to separate the effect of the time gap from the effects of the item choices. Moreover, our results suggest
a high amount of user behaviour already being captured by sequential data without the use of time gaps.
However, the extent of user behaviour present in the ordering of the user history over their overall underlying
preferences remains unclear due to the lack of additional static baselines. Importantly, the reliance on high
quality user and item embeddings of both time delta as well as the baseline models also suggests that both
are likely to suffer from the cold start problem.

Finally, it also remains unclear whether the observed offline metric improvements necessarily lead to im-
provements in user satisfaction. For instance, LastFM users are observed to be likely to return to familiar
items following longer periods of inactivity. Similarly, whilst time delta models demonstrate the most sub-
stantial improvement for Videoland cases of user absence of 1 week, the improved prediction may be related
to time delta models predicting the consumption of shows already familiar to the user. As such, the increase
in prediction accuracy may to a certain extent exaggerate the tangible benefit of the recommendation to the
user. Moreover, as suggested above and in Section 3.4, users likely already make certain consumption choices
on the basis of the existing recommender systems. Combined with overbearingly large amount of choice
available to the user, there can be no guarantee that any item consumed by the user was the most relevant
to them at the given time. Due to the above bias and noise in the data, increase in prediction accuracy may
not necessarily translate into increase in the user satisfaction. Whilst it was envisaged that A/B test provide
indication of the user true satisfaction with recommendations, as hinted in the Introduction. However, due
to technical challenges associated with the implementation of the experiment no conclusions can be drawn
from the observed results. The setup, results and challenges as well as the impact of the online experiment
on the thesis progression are included in Appendix Chapter A.

6.3. Future Work

Based on the observed dataset specific trends, future studies may choose focus on a lower number of datasets
or multiple datasets reflecting consumption of a single domain, such as multiple movie, song or news datasets.

For additional examination of effects of time gaps on recommendation, we believe that splitting user
histories into longer sequences or using full histories as individual samples may exert a strong effect on the
achieved performance. Additionally, initial internal testing indicated the potential benefit of training models
on the task of only predicting the item at the end of the sequence, as to reflect a more lifelike use case. A more
realistic evaluation framework, analogous to that recommended by Campos et al. [20], may also provide a
better understanding of the real life performance of the model.

Based on our intuition, time gap information may be further supplemented by additional inputs in order
to provide a further increase in performance. Firstly, future work may want to consider additional context,
such as the hour of the week embeddings used by Jing and Smola [63]. Moreover, additional temporal infor-
mation may also be presented to the model in the form of the explicit item durations, providing the model
with clear information on prematurely terminated item consumption, or interaction time stamps directly.
Furthermore, incorporating content-based features in place of or together with the item embedding vectors
may provide a partial amelioration of item version of the cold start problem [151]. Finally, newer architec-
tures, such as those relying on self-attention, may provide a further improvement over our GRU based archi-
tecture [67, 148, 150].

In terms of the analysis of the effects of the time gaps we first and foremost suggest a focus on extend-
ing our framework for comparison of activations of distinct models as to increase the interpretability of the
learned behaviour. It would be of interest to also examine whether the activation and recommendation be-
haviours observed in Section 5.3 are still present when varying the size of the time gap for a fixed recent
history and the interacting item. Moreover, additional work, featuring varying both At as well as the item
may provide further insight into the individual and combined effects of the two on the resulting recommen-
dations. Furthermore, it is of interest to examine whether time delta models are able to adapt to users with
similar preferences operating at different frequencies (e.g. two otherwise identical users, with one consuming
items hourly and the other weekly). Additionally, a repeat of the user study, described in Appendix Chapter
A, may confirm whether the observations with respect to the performance reported for the offline evaluation
are also observed in the online setting. Further work may also wish to extend the evaluation to include anal-
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ysis on the interaction or user level, analogous to Sections 5.2 and 5.4. The analysis may also benefit from
a more prolonged duration of the experiment, as to capture a higher number of more prolonged absences,
for which the main benefits were observed during the offline evaluation. Finally, both for online as well as
offline evaluation, an inclusion of further state-of-the-art baselines as well as their time delta extensions may
further clarify the importance of time gaps.

As suggested in Subsection 5.3.2, our study was unable to identify whether improved understanding of the
hidden nature of the true consumption was what allowed time-dependent models to achieve an improved
performance over the baseline on MovieLens. As such, we suggest a methodology relying on next basket
recommendation [63, 114, 140]. Sequential and time-dependent models may be trained on the objective of
predicting all items rated by the user during their next session. Models are then to be evaluated on multi-
ple shuffled permutations of the same input sequences. We hypothesise that time delta models may enjoy
improved prediction accuracy, attributable to the reduced overfitting on the last few items during a rating
session.

Finally, time delta information may instead be used as a measure of the time passed after the current
interaction, not leading up to it. In the above context, temporal information may serve as an important
source of uncertainty with respect to the user’s preferences. Prolonged inactivity may be viewed as a cause to
decay the user’s preferences as a function of the duration of the absence, for instance analogous to our use of
equation 3. Such behaviour may be particularly beneficial for users returning following a long leave from the
platform, as to capture their immediate needs without the need to interact with an item first.
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AppendixA. Online Study

In the following chapter we describe the main ideas and the setup of the online experiment introduced in the
first chapter. We then report and interpret the observed results. Following that, as alluded in the introduction,
we present the reasons for why the experiment was not successful and therefore not reported in the main part
of the thesis. Finally, we discuss the impact of the online experiment on the duration of the thesis.

A.1. Methodology of the online evaluation

Previous works have demonstrated that superior accuracy in offline experiments does not necessarily trans-
late into higher usefulness of recommendations for the end user [95, 137]. For instance, when dealing with
implicit feedback, offline data may be affected by positional bias, whereby users tend to click more on the
more highly ranked results [64]. Such bias has been shown to strongly influence the learning outcomes of
recommendation algorithms [65, 141, 149]. As described in the work of Zhao et al. [149], both the training as
well as testing data may be biased by the ranking produced by the recommendation algorithm that was em-
ployed during the data collection. As such, good performance in the offline experiment may, to some extent,
simply indicate the new model successfully learning to predict the output of the old one. As such, we pro-
pose an online user study, also referred to as an A/B test, on a Dutch video-on-demand platform Videoland
in order to evaluate whether employing time delta information truly leads to higher user satisfaction. This
is done by contrasting the performance of the time delta model to that of the sequential baseline as well as
the platform’s static production recommender, with improvements indicating the benefit of time delta infor-
mation. Moreover, a useful side effect of the above evaluation is that improvements of the sequential model
over the static production model would also corroborate the benefit of accounting for temporal dynamics via
sequential recommendation. For a comprehensive review on user experiments in RS we refer the reader to
Knijnenburg and Willemsen [76].

A.2. Experimental setup of the online evaluation

A percentage of Videoland'’s users received recommendations generated by our best performing model, as
determined during offline evaluation. Performance of the time-dependent model was then contrasted to the
performance of our baseline model as well as the platform’s production algorithm. This algorithm does not
employ neural networks and does not leverage temporal dynamics.

New recommendations were calculated and served to users daily for the period of 20 days. Each day, all
models were retrained on the basis of viewing data spanning a one year period preceding that day. A single
user would be served recommendations by the same model for the duration of the experiment. A user was
randomly assigned to receive recommendations from DeepTimeDelta with probability of 0.2, our sequential
baseline with 0.2 and the production baseline with probability of 0.6. The choice of DeepTimeDelta model
was made based on the overall performance on Videoland offline dataset, as measured by Borda count on the
basis of all metrics.

A.2.1. Changes to data preprocessing and evaluation

Additional consideration was given to the limitations imposed by the requirements of online recommen-
dation and the platform used. Firstly, in place of training, validation and test split used during the offline
evaluation, only train and validation sets were produced, with validation set totalling up to 10% of a user’s
interactions (rounded down). Additionally, in order to generate recommendations shown to the user at serv-
ing time, each user’s 20 most recent interactions were obtained to be used as input for a trained model. The
neural network’s hidden state after the processing of the last item was then used to calculate item scores. If a
user had fewer than 20 interactions, all their interactions were used as input at serving time and the recom-
mendations were generated on the basis of their last available interaction.

Secondly, the personalised recommendation strip of Videoland contains 25 items shown to the user at any
given time. As such, the number of predictions on the basis of which the model was evaluated during daily
training was increased to 25. Similarly, the number of recommendations produced by the trained model at
serving time was also set to 25.
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Finally, items the user had previously interacted with were also excluded from the recommendations as
the purpose of the recommendation strip was to help users discover new items. Moreover, not all items
that had previously existed on the platform were available for consumption in the item catalogue during the
experiment. As such, while the unavailable items were used during training, they were excluded from the
ranking when producing the final 25 recommendations.

A.2.2. Online evaluation metrics

Note that the recommendation procedure described above was performed once per day. This in contrast
to the offline evaluation, where the aim was to predict the next item every time a given user consumed an
item. As users may consume multiple items in one day, metrics described in Section 4.4 are no longer directly
applicable.

Whilst it may be possible to adapt the above metrics to the case of multiple target items, click based met-
rics also fail to capture the distinct level of commitment for different types of content in terms of time required
by the user. As such, we instead choose to focus on metrics measuring the duration of the interaction. More
precisely, we measure the user engagement via the time users spend on platform (watch time), as well as the
proportion of time spent watching recommended items (rec time %), defined below. For a given model, the
metrics are calculated daily on the basis of interactions made by the model’s users on that day.

1 Ul
watch time= — ) )" time, (i) A1)

| |v:1i€1v
YUy ., time,(i)-i€ pred
v=14&i€ly, v p v

U] . . (A.2)
Yo Lier, time, (i)

rec time % =

Extending the definitions used in Section 4.4, U refers to the set of users assigned to a given model active
on the given day. Furthermore, time, (i) refers to the time user v spent watching item i on that day. Addi-
tionally, i € pred,, is a step function indicating presence of item i in the set of recommendations for user v.
Notably, due to additional constraints, only cases where the user consumed 80% or more of the item on a
given day were included in the user history I,,.

A.2.3. Online evaluation statistical analysis

The above metrics were recorded daily for the duration of the experiment, with the aim of determining pairs
of models where there exists a significant improvement of the mean of one model over the other. Due to the
likelihood of existence of periodical effects (e.g. higher user engagement on certain days of the week), results
from pairs of models were grouped together. Results of one model were then subtracted from the other, with
the resulting differences being subjected to Shapiro-Wilk normality test [124]. This test was chosen due to its
reported highest power among all normality tests [110]. This was then finally followed by three paired one-
sample t-tests on the differenced data [131], with the following alternate hypotheses: time delta > production,
sequential > production and time delta > sequential. Bonferroni correction with m = 3 was applied to the
resulting p-values in order to offset the increased chance of Type I error.

A.3. Results and Discussion of the online evaluation

Based on the results of the offline evaluation model 2 was chosen to evaluate its effect on Videoland user
behaviour and to be contrasted to model 0 and the platform’s production algorithm. The experiment lasted
20 days, with the daily mean watch time and rec time % for three model types presented in Figure A.1. Note
that, for visualisation purposes, the scores of all models for any given day are scaled by the performance of
the production baseline as to eliminate the weekly seasonality trends.

As observed, users receiving recommendations from sequential and time delta models exhibit an activ-
ity ranging from 98.9 to 100.2 percent of that of the users receiving recommendations from the production
algorithm in terms of watch time. The exact extent varies per day and per model. However, neither of the
temporal models achieves an increase in the user watch time over the production baseline on more than 3
out of the 20 days. Lastly, there exists a high level of inter day variation between the sequential and the time
delta models, with no model clearly outperforming the other.

On the other hand, rec time % of temporal models varies between 86 and 163 percent of the values ob-
tained for the production baseline. Whilst both temporal models achieve a worse result compared to the
production model on the first day of the experiment, no performance below 107% of the production level is
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Figure A.1: Online experiment daily metrics for different models. Presented values scaled for a any given day scaled by the performance
of the production model.

achieved by these models on any of the subsequent days. Furthermore, between days 8 and 9, both temporal
models appear to undergo an ascent from levels of ~1.1 of the production’s rec time % to ~1.2. This is fol-
lowed by another increase to ~1.3 of the production’s performance between days 11 and 13 as well as a more
rapid increase to > 1.5 of the production’s rec time % between days 15 and 17. Notably, whilst for days 1, 2,
7,9, 10 and 20 time delta model also demonstrates a minor improvement over the sequential model, the lat-
ter outperforms the former on the remaining days, showing a particularly consistent trend of improvement
between days 12 and 19.

Subsequent Shapiro-Wilk normality tests for daily differences of pairs of models were unable to reject
the null hypothesis of the resulting distributions being normal at 5% confidence level. This was the followed
by subsequent t-tests of the above pairs. The p-values for both types of tests are presented in Table A.1. In
terms of time spent on the platform, the null hypotheses of the true mean difference between either of the
temporal models and the production model being 0 or lower could not be rejected at 5% confidence level.
Analogously, we could not reject the null hypothesis that the true mean difference between the time delta
and the sequential did not exceed 0. On the other hand, the mean rec time % difference between either of the
temporal models and the static model was found to be significantly higher than 0 at 5% confidence interval.
Finally, the null hypothesis for mean rec time % difference between the time delta and the sequential model
being 0 or lower could not be rejected at 5% confidence level.

Table A.1: Online experiment Shapiro-Wilk and t-test p-values for paired daily performances of different recommendation algorithms.
t-test Hy : u < 0, where p denotes the mean difference of a given pair of daily results.

Test Distribution watch time rec time %
sequential - production 0.1941 0.3796
Shapiro-Wilk time delta - production 0.9133 0.3018
time delta - sequential 0.4742 0.9222
sequential - production 0.9999 <0.0001
t-test time delta - production 1.0000 <0.0001
time delta - sequential 0.6007 0.9767

As such, overall, we do not observe a significant increase in terms of watch time of temporal models over
the static model. Analogously, no improvement is observed for the time delta model over the sequential
model. Conversely, users receiving recommendations from either sequential or time delta models appear to
actually consume a marginally lower amount of content. However, the differences between the models are
fairly minor, and as such additional work is required to corroborate the above observation.

On the other hand, both the sequential as well as time delta models appear to lead to a significant increase
of the proportion of the watch time users spent watching recommendations compared to the static baseline.
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Notably, however, the use of time delta information was not shown to provide a significant benefit over the
sole use of sequential information. Moreover, we instead observe a trend of increasing improvement of se-
quential model over the baseline in the second half of the online experiment, with the exception of the final
day. It may be that users require a certain amount of adaptation time before starting to consume recommen-
dations of a new recommender more actively, suggesting an progressively increasing validity of the results of
the latter days as a measure of true user satisfaction. This notion is also consistent with the observed relative
increase in the recommendation consumption of both temporal models after ~1 week, as users may have
been previously accustomed to the recommendations of the production algorithm.

Importantly, the observed results may be affected by additional seasonal user consumption trends not
related to the weekly changes in user activity. We are unaware of any such trends having taken place over the
duration of the experiment. However, paired with the seemingly unstabilised rec time %, a longer duration ex-
periment may have allowed us to get a better understanding of long term effects of different recommenders.
Notwithstanding the above limitation, the results are likely further distorted by additional limitations associ-
ated with model training. Firstly, the exact set of hyperparameters of the time delta model used in the online
experiment was different from those reported in Table 4.3 and used in the offline evaluation. This is due to
the fact that following making the choice of the hyperparameters used in the online experiment, a number
of adjustments were made to the data preprocessing pipeline. Holdout method, performed following the
completion of the A/B test, indicated suboptimal performance of the original parameters on the adjusted
data. However, a subsequent rerun of the online experiment with the parameters used in the offline evalu-
ation was not completed successfully due to platform instability issues and thus cannot reported. Secondly,
a later analysis of the production model also revealed a separate error in the data preprocessing pipeline of
the production algorithm. This is suspected to have potentially had a negative impact on the performance
of the static baseline during the original run of the online experiment. As such, altogether, no conclusions
with respect to the benefit of the use of time delta information over the solely sequential or static data can be
drawn from these results.

A.4. Impact of online experiment on thesis duration

Finally, the inclusion of the A/B test may have also had a negative impact on the length of the thesis. Orig-
inally, prior to the decision to incorporate the analysis of Videoland offline and online data alongside the
public datasets, taken 7 months after the start of this project, a Tensorflow implementation of time delta
models was already available. However, due to the requirements of Amazon SageMaker at the time, the model
had to be reimplemented using Tensorflow Estimator API. Moreover, due to the recency of the availability of
SageMaker, only limited documentation on the use of the platform and its interactions with TensorFlow was
available.

Additionally, we encountered difficulties in obtaining historical offline as well as online data. The former
was made available 6 months into the duration of the internship, whilst a process allowing access to the daily
batches of data from the previous day was functional with an additional delay of 3 — 4 months.

Furthermore, due to the limited and varying amount of time between the availability of the fresh data and
the deadline for producing the recommendations, a substantial effort was made into optimising the daily data
preprocessing, model training and recommendation serving pipeline. As such, model training was highly
optimised in terms of both the efficiency of the implementation as well the hyperparameters affecting the
speed and convergence of training. Simultaneously, the other two steps saw a substantial effort being put
into optimising Spark code [145].

Extra time was also spent monitoring the correctness of the incorporation of sequential and temporal rec-
ommendations into the final set of recommendations presented on the platform. Finally, further few weeks
were later dedicated to identifying and confirming the discrepancy between the produced recommendations
and the recommendations visible to the end users, ultimately leading to our inability to report results from
the rerun of the online experiment, referenced above.

As such, we estimate that the total time consumption of the experiment amounted to 12 — 15 months.
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Table B.1: Grid Search hyperparameter values. Dropout keep probability denotes values considered for Dropout of the user, item and
temporal embedding vector (64 combinations). Embedding sizes were considered up to the dataset-specific upper limit, presented in

Table 4.2
Hyperparameter Values
Dropout keep probability {0, 0.5, 0.8, 1.0}
Trainable initial state {True, False}
Learning rate {0.1, 0.01, 0.001, 0.0001}

Temporal embedding d {0, 1, 2}
Temporal embedding f {sigmoid, tanh, ReLU}

Embedding width {50, 100, 200, 500, 1000}
Initialisation range {0.2, 0.1, 0.01}
Sampling softmax {True, False}

Table B.2: Full dataset offline evaluation ANOVA p-values of the model factor and R2.

Statistic Recall@20 MRR®@20 UserRecall@20 UserMRR@20

p-value 0.0100 0.0683 0.0002 0.0366
R? 0.48 0.30 0.71 0.37

Table B.3: ANOVA p-values of the significance of the model factor and R? for offline evaluation on distinct time gap duration groups.

Statistic Recall@20 MRR®@20 UserRecall@20 UserMRR@20

p-value  <0.0001 0.0001 <0.0001 <0.0001
R? 0.37 0.24 0.43 0.30
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LastFM MRR@20 vs At
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Figure B.1: MRR@20 and the associated 95% confidence intervals of models 0 — 7 for varying time gap duration time on LastFM dataset.
Performance averaged over individual interactions falling into exponentially expanding bins. Model 0 presented in red, DeepTimeDelta
models presented in blue. Model 0 MRR@20 included alongside that of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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mean & activation vs At for LastFM
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Figure B.3: Mean & with its associated 95% confidence interval of models 1 — 7 for varying time gap duration on LastFM dataset. Mean
activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in blue.
Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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mean u activation vs At for LastFM
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Figure B.4: Mean u with its associated 95% confidence interval of models 1 — 7 for varying time gap duration on LastFM dataset. Mean
activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in blue.
Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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mean r activation vs At for LastFM
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Figure B.5: Mean r with its associated 95% confidence interval of models 1 — 7 for varying time gap duration on LastFM dataset. Mean
activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in blue.
Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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MovieLens MRR@20 vs At
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Figure B.6: MRR@20 and the associated 95% confidence intervals of models 0 — 7 for varying time gap duration on MovieLens dataset.
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Performance averaged over individual interactions falling into exponentially expanding bins. Model 0 presented in red, DeepTimeDelta
models presented in blue. Model 0 MRR@20 included alongside that of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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mean & activation vs At for MovieLens
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Figure B.8: Mean & with its associated 95% confidence interval of models 1 — 7 for varying time gap duration on MovieLens dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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mean u activation vs At for MovieLens
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Figure B.9: Mean u with its associated 95% confidence interval of models 1 — 7 for varying time gap duration on MovieLens dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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Figure B.10: Mean r with its associated 95% confidence interval of models 1 — 7 for varying time gap duration on MovieLens dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity. Number of interactions assigned to each bin shown in grey.
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Figure B.11: MRR@20 and the associated 95% confidence intervals of models 0 — 7 for varying time gap duration on Videoland dataset.
Performance averaged over individual interactions falling into exponentially expanding bins. Model 0 presented in red, DeepTimeDelta
models presented in blue. Model 0 MRR@20 included alongside that of DeepTimeDelta for additional perspective, with model 0
confidence intervals omitted for clarity.
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Figure B.13: Mean & with its associated 95% confidence interval of models 0 — 7 for varying time gap duration on Videoland dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model
0 confidence intervals omitted for clarity.
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Figure B.14: Mean u with its associated 95% confidence interval of models 0 — 7 for varying time gap duration on Videoland dataset
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model

0 confidence intervals omitted for clarity.
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Figure B.15: Mean r with its associated 95% confidence interval of models 0 — 7 for varying time gap duration on Videoland dataset.
Mean activations averaged over individual interactions falling into exponentially expanding bins. DeepTimeDelta models presented in
blue. Model 0 mean activations presented in red and included alongside those of DeepTimeDelta for additional perspective, with model

0 confidence intervals omitted for clarity.



85

Table B.4: ANOVA p-values of the significance of the model factor and R? for offline evaluation on distinct Az, user groups.

Statistic Recall@20 MRR®@20 UserRecall@20 UserMRR@20

p-value <0.0001 <0.0001 <0.0001 <0.0001
R? 0.44 0.27 0.52 0.34

Table B.5: ANOVA p-values of the significance of the model factor and R? for offline evaluation on distinct mainstreamness user groups.

Statistic Recall@20 MRR®@20 UserRecall@20 UserMRR@20

p-value <0.0001 <0.0001 <0.0001 <0.0001
R? 0.48 0.43 0.44 0.40
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