A Framework for Distributing Scalable Content over Peer-to-Peer Networks

Michael Eberhard*, Amit KumarT, Silvano Mignantii, Riccardo Petrocc0§, Mikko Uitto¥
*Klagenfurt University, Klagenfurt, Austria, michael.eberhard@itec.uni-klu.ac.at
TSTMicmelectrOnics, Milan, Italy, amit-agr.kumar@ st.com
j;Universiz‘y of Rome Sapienza, Rome, Italy, silvano.mignanti@dis.uniromal.it
8Technische Universiteit Delft, Delft, The Netherlands, r.petrocco@ gmail.com
YVTT Technical Research Centre, Oulu, Finland, mikko.uitto@vtt.fi

Abstract—Peer-to-Peer systems are nowadays a very pop-
ular solution for multimedia distribution, as they provide
significant cost benefits compared with traditional server-client
distribution. Additionally, the distribution of scalable content
enables the consumption of the content in a quality suited for
the available bandwidth and the capabilities of the end-user
devices. Thus, the distribution of scalable content over Peer-
to-Peer network is a very actual research topic. This paper
presents a framework for the distribution of scalable content
in a fully distributed Peer-to-Peer network. The architectural
description includes how the scalable layers of the content are
mapped to the pieces distributed in the Peer-to-Peer system
and detailed descriptions of the producer- and consumer-site
architecture of the system. Additionally, an evaluation of the
system’s performance in different scenarios is provided. The
test series in the evaluation section assess the performance of
our layered piece-picking core and provide a comparison of
the performance of our system’s multi layer and single layer
implementations. The presented system is to our knowledge
the first open-source Peer-to-Peer network with full Scalable
Video Coding support.

Keywords-Peer-to-Peer; Scalable Video Coding; Packetizing;
Error Concealment; Performance Evaluation

I. INTRODUCTION

The streaming of content over Peer-to-Peer (P2P) net-
works becomes more important as the popularity of Internet
multimedia services is increasing and the corresponding
server costs are rising. One of the major challenges of
distributing multimedia content is that different users often
require the content in different quality. On the one hand, this
is due to the differences in the user’s network connections,
which can differ depending on the user’s location during
the content consumption. On the other hand, the users
consume the content on various terminals like TV sets or
mobile devices, which have different capabilities in terms
of resolution, processing power, or power supply.

These problems are addressed by layered streaming sys-
tems that provide the content in different qualities within
a single bitstream. The architecture of our P2P streaming
system supporting scalable content has been originally pub-
lished in [7]. This paper extends the previous system descrip-
tion and provides an additional evaluation of the system’s
performance. In this paper we are going to describe our
entire framework for the distribution of scalable content in

a fully distributed P2P network. The P2P system targeted for
the integration is the NextShare system, which is developed
within the P2P-Next project [3]. P2P-Next is a research
project partially founded by the European Commission in
the context of the Framework Program 7, within the ICT
(Information and Communication Technology) theme. The
main goal of P2P-Next is the development of an open-
source next generation P2P content delivery platform, the
NextShare system.

The NextShare system has been developed based on the
Bittorrent protocol [1] and thus provides an implementation
of a fully distributed P2P system. To support Video on De-
mand (VoD), live streaming and the distribution of scalable
content in the NextShare system, a number of modifications
to the original Bittorrent protocol have been performed
[11], as the original Bittorrent protocol does not support
streaming. The scalable codecs used within NextShare are
based on the Scalable Video Coding (SVC) extension of the
Advanced Video Coding (AVC) standard [14].

One of the main reasons for implementing SVC support
for the NextShare system is that there is to our knowledge
today no open-source P2P system supporting SVC available
that can be downloaded and tested by interested users.
The advantages of distributing scalable content compared
to simulcast approaches have been evaluated in a number
of surveys (see, e.g., [15]). Additionally, we provide a
comparison to our implementation for single layer content
in Section VI-B to illustrate the advantages of using scalable
content.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of the related work. In Section
III, the approach for the integration of the scalable content
into the NextShare system is described. In the following two
sections, the producer- and consumer-site of this architecture
are described in detail. Section VI provides an evaluation of
our implementation in terms of piece download efficiency as
well as a comparison to the traditional single layer approach.
Finally, future work is addressed in Section VII and Section
VIII concludes the paper.

II. RELATED WORK

The distribution of multimedia content over P2P networks
has been a popular research topic in recent years. Due to the
increasing popularity of streaming high-quality multimedia
content over the Internet, P2P provides a cost-efficient
alternative to reduce server costs.

The distribution of layered content over P2P systems has
also been addressed in the literature before. LayerP2P [10]
provides a well defined solution for distribution SVC content
over P2P, but does not utilize real SVC codecs for the proto-
type implementation and relies on the usage of H.264/AVC-
compatible codecs that can only be used to test one of SVC’s
scalability dimensions, the temporal scalability. Thus, one of
the goals of the NextShare implementation was to design,
implement, and distribute an open-source system with full
SVC support. Other systems supporting the distribution of
SVC content over P2P are described in [12] and [8]. PALS
[12] provides a receiver-driven solution for receiving layered
content over P2P. [8] describes how SVC can be integrated
into a tree-based P2P system. However, both approaches to
not allow an easy integration into existing P2P systems, as
the implementations have been based on proprietary systems
and protocols. Regarding compatibility an advantage of
our implementation is that it has been based on the wide
spread Bittorrent protocol and all architectural choices have
been performed while ensuring backwards compatibility to
existing Bittorrent clients. This allows an easy integration
of the new scalable video technology into existing P2P
communities. Furthermore, backwards-compatibility of the
base layer for existing Bittorrent clients is provided.

III. NEXTSHARE INTEGRATION

To fully integrate scalable content into the NextShare
system, a number of problems had to be addressed. Two
main problems, the selection of suitable scalability layers
and the mapping of the layers to Bittorrent pieces, are
described in detail within this section. While the selection
of the scalability layers tries to consider all popular qualities
and to support a number of different network connections,
the mapping to the scalability layers to the Bittorrent pieces
tries to ensure that the best trade-off between flexibility for
possible quality switches and overhead in terms of piece
management is found.

It should be noted that even though we are using SVC
within our NextShare system, all design decisions have been
made with the intention to make the architecture codec-
agnostic. Thus, if another scalable video codec is utilized
within the NextShare system, only the coding and packaging
tools need to be replaced, while the integration into the
NextShare core will remain suitable for every other layered
codec.

Table I
SCALABILITY LAYERS

Bit Rate Resolution | Quality | frame/sec
512 kbps 320x240 low 25
1024 kbps 320x240 high 25
1536 kbps 640x480 low 25
3072 kbps 640x480 high 25

A. Scalability Layers

The first step for the integration of scalable content into
the NextShare system was the selection of the desired
scalability layers. The selected layers are described in Table
L

As illustrated in Table I, four scalable layers were selected
for the integration. The main reasons for selecting this layer
structure were to maintain a good coding efficiency and to
provide all popular qualities. The possibility to add further
layers to support HD content is also fully supported by our
framework, but has been omitted for the current version due
to constraints in the upload bandwidth of our system’s users.
From the coding-efficiency point of view, the difference
between the layers in terms of bit rate should be not too low,
as the coding efficiency decreases drastically in such cases
[14], while the selected bit rates represent the most popular
qualities that are provided nowadays by multimedia portals.
Furthermore, it should be noted that the audio bitstream is
provided together with the video bitstream of the base layer.
Thus, the 512 Kbps for the base layer includes the bit rate
for the 128 Kbps audio bitstream. This is necessary to ensure
that the audio is always received in time for playback, which
can start as soon as the base layer is received.

To ingest the different layers into the P2P system the
layers need to be provided as separated files. The base layer
is multiplexed with the audio content and provided in a
proper container format. The enhancement layers are pro-
vided as separate optional files. By using this file structure,
Bittorrent clients without SVC support can still download
the H.264/AVC-compatible base layer and decide not to
download the optional enhancement layers without wasting
any bandwidth.

B. Mapping to Bittorrent Pieces

The second step of the integration process is the mapping
of the scalability layers to Bittorrent pieces. Firstly, the unit
shall represent a synchronization point for dynamic switches
between different quality layers. To achieve this goal each
unit starts with an Instantaneous Decoding Refresh (IDR)
reference frame. Secondly, it should be noted that we do not
perform a direct mapping to pieces but to a unit. This unit
represents a fixed number of frames for a specific layer and
can be mapped to a fixed number of pieces. The reason for
this approach is that the piece size might be changed in the
P2P system for various reasons, and by basing the mapping

Table II
UNIT MAPPING

time slot (mux period)

Layer | Kb/time slot KB/time slot pieces/time slot
BL 512Kbps =« | /8 ~ | 3 pieces @ 55
2.56 ~ 1.310 164K Byte KByte/time slot
6 pieces @ 55
ELI 1024Kbps * | /8 ~ | KByte/time slot (3
2.56 ~ 2.621 328 K Byte pieces in previous layers,
3 new pieces)
9 pieces @ 55
EL2 1536 Kbps * | /8 ~ | KByte/time slot (6
2.56 ~ 3.932 492K Byte pieces in previous layers,
3 new pieces)
18 pieces @ 55
EL3 3072Kbps * | /8 ~ | KByte/time slot (9
2.56 ~ 7.864 983K Byte pieces in previous layers,
9 new pieces)

on units rather than on pieces only the unit/piece-mapping
needs to be updated when the piece size is modified.

The mapping to the units has been performed based on
several criteria. First, the units need to be selected large
enough to allow for a good coding efficiency. As it should be
possible to decode each unit independently (when all lower
layer units for the same time stamp are also available) the
number of frames within one unit should be high enough to
allow for good coding efficiency. Additionally, the number
of frames within one unit should be low enough to provide
the flexibility to conveniently switch between qualities when
the network conditions change.

Based on these considerations, a mapping of 64 frames,
which represent 2.56 seconds of content at a frame rate of 25
frames/sec, has been selected. Such a unit is subsequently
mapped to three pieces; however, as noted previously, the
piece mapping can always be changed based on the require-
ments from the P2P system. The piece mapping is illustrated
in Table II.

The mapping to the 55 KByte pieces results in a small
overhead of available bits per piece. However, this overhead
is utilized to compensate the small drifts of the constant
bit rate (CBR) algorithm utilized during the SVC encoding
process (see Section IV-A).

Based on the calculations in Table II, a mapping of the
layers to Bittorrent pieces could be performed as illustrated
in Figure 1.

The figure shows that the unit for each layer can be
mapped to a specific number of actual pieces.

IV. PRODUCER-SITE ARCHITECTURE

The producer-site architecture describes all steps from
encoding the SVC bitstream to the ingestion into the core
of the P2P system. The topics addressed in this section
include the encoding process, the splitting of the bitstream,
creating metadata based on the bitstream’s supplemental
enhancement information (SEI), packetizing the bitstream,
and ingesting the bitstream into the core of the P2P system.

A
Y

n pieces | n pieces | n pieces 3n pieces

BL E1 E2 E3 | ES3 E3

Figure 1. Piece Mapping

An illustration of this architecture is provided in Figure 2,
more details on each of the processing steps are provided in
the following sections.

A. Bitstream Preparation

As the first step of the bitstream preparation process,
the raw video (i.e., the YUV video frames) is encoded by
an optimized JSVM 9.15 [4] encoder, which uses a CBR
algorithm to ensure that the pieces created from the video
content have a constant size. The CBR algorithm works at
GOP (Group of pictures) level and maintains the bit rate
at GOP level throughout the encoded bitstream. However,
the CBR algorithm still produces a small offset compared
to the desired bit rate. As a constant piece size has to be
maintained, a positive offset could results in frame dropping
while a negative offset can be easily addressed by using
padding bits during the splitting process. To ensure that no
frames are dropped in case the small drifts of the CBR
algorithm result in a positive offset, the target bit rate for
the CBR algorithm is chosen slightly lower (approx. 1-2 %
below the target bit rate). Thus, the CBR algorithm produces
only negative offset compared to the real target bit rate,
which can be easily handled.

The encoded SVC bitstream is subsequently split into the
H.264/AVC-compatible base layer (BL) and the enhance-
ment layers (EL) by the Network Abstraction Layer Unit
(NALU) demuxer. The demuxer analyzes the NALU headers
and splits the access units into separate bitstreams for each
layer. Each of these layer bitstreams consists of several
pieces of constant size. If within one bitstream the GOP
size exceeds the piece size, subsequent NALUs (frames)
would be dropped. However, as mentioned in the previous
paragraph, such a situation is avoided by setting a slightly
lower target bit rate for the CBR algorithm. If the GOP size
is less than the piece size, the remaining size bits are filled
with padding bits. Additionally, the SEI information at the
beginning of the bitstream (i.e., the scalability info message)
and the Sequence Parameter Set (SPS) and Picture Parameter
Set (PPS) are provided to the metadata creator (see Section
IV-C).

e

» SVCEL2 |:| |:| |:
SVC Encoder
» SVCES
(CBR) |:| |:| H_' NALU
B »| SVCEL1
»| SVCBL H H [
Y
Scalability .
Metadata SEl | Muxer
Metadata
NextShare Core
Torrent Creator - BL.ts
Y~ G | < EL1.dat <
EL2.dat _
! — =
Figure 2. Producer-Side Architecture

The audio data can be provided already encoded, e.g.,
as an MP3 or AAC audio file. If a raw PCM audio file is
provided, the audio content is encoded to the desired audio
coding format.

B. Bitstream Packetizing

In the bitstream packetizing step, the base layer of the
SVC bitstream is muxed with the audio into a proper
container format. The main reason for this step is that the
base layer should be provided in a backwards-compatible
way, so that also end user P2P clients or terminals that only
support H.264/AVC can successfully process the base layer.
For such a purpose two different container formats were
investigated for our system, the MPEG Transport Stream
(MPEG-TS) [5] and the MPEG-4 file format (MP4) [6].

MPEG-TS is a standard able to encapsulate audio and
video Packetized Elementary Streams (PESs) and other data
and is supported by a majority of systems and applications.
The main disadvantage in using MPEG-TS is that it usually
has a rather high overhead in terms of bit rate(10-20% in
average). An alternative muxing scheme is provided by the
MP4 format which provides functionalities similar to the
ones of MPEG-TS while having a clearly lower overhead
(~1%). Thus, MP4 is the preferred container format used
in our system, while MPEG-TS support is provided for
compatibility to older systems.

The overall architecture is codec-independent: the system
is able to recognize the container format and apply the
corresponding processing. A general problem during the
muxing phase is that the output should have a certain fixed
size to ensure that a full GOP of video content and the
corresponding audio content can be mapped to one unit.
Considering that muxing schemes can have variable over-
heads, it is in principle not possible to a priori know if the

output of the muxer for a certain audio and video input will
respect the size limits. In case the output size is smaller than
expected it will be possible to add padding bits and solve the
issue (muxing codecs usually provide routines for that). The
real problem is when the muxing output size is higher than
the allowed one: in such a case the muxer tries to change its
parameters to lower the overhead to the minimum. However,
if adjusting the muxer’s parameters is not sufficient, it would
usually not be possible to meet the size constraints. Thus, as
previously mentioned in Section IV-A, the target bit rate is
set lower than desired to ensure that only the first case (lower
output size) occurs. To avoid possibly wasting too much
bit rate on padding bits, the architecture optionally provides
support for a feedback mechanisms between the muxer and
the encoders to solve this. Thus, in case the output size
would be higher than the target size, the muxer asks the SVC
and the audio encoders to re-encode both audio and video
using a lower target bit rate. For the enhancement layers,
the padding mechanism described in the previous section is
applied.

C. Scalability Metadata Support

Although the pieces of the video stream are transmitted
over the network in a layered way, the de-packetizer at the
consumer-site needs to know the properties of the layers
for the decoding process and the decoder needs access to
the parameters from the beginning of the bitstream (the SPS
and PPS elements). Thus, the properties of the layers, which
are usually provided by the Supplemental Enhancement
Information (SEI) at the beginning of the bitstream, and the
parameter sets need to be forwarded to the consumer-site.

To store these metadata and transmit them to the de-
packetizer when needed, the SEI message and the parameters
are forwarded from the NALU demuxer to the metadata

SVC Decoder

JUsW|Ea2uU0D
Joug
A

De-
Packetizer

A

SVC ES

 E—
 E—
 E—

D<® Scalability Metadata
SDP
Metadata Converter

NextShare Core

> HTTP Socket

szl

= (11

v

L]
Jaxnwaqg

J1azneyoed
dld NIvN

Yvy

Figure 3. Consumer-Side Architecture

creator. The metadata creator subsequently parses the SEI
data and stores the properties of the layers in an XML
metadata document. Additionally, the SPS and PPS elements
are encoded in base64 to allow their storage in XML and
are added to the metadata document. The resulting metadata
document contains all the layer information and parameter
sets required by the de-packetizer and decoder modules (see
Section V for details).

D. Ingest into the Core

The NextShare core represents the P2P engine responsible
for creating and injecting the content into the network.
The main metadata file required for the ingestion of the
content into the P2P system is the torrent file. The torrent
file provides the information required for the download
of the previously encoded base and enhancement layers,
as well as metadata related to the content including the
previously created scalability metadata. The created torrent
file is compatible with the Bittorrent protocol [1] and can
therefore be processed by every peer running a Bittorrent-
compatible client. This backwards-compatibility increases
the reliability of the torrent swarm and the scalability
of the distribution costs, as the torrent file can not only
be processed by NextShare-compatible clients, but by all
Bittorrent-compatible clients.

The fact that the H.264/AVC-compatible base layer and
the audio stream are provided commonly packetized into
a proper standardized muxing format enables also clients
without SVC support to join the swarm as they are able to
consume the stream in base layer quality. Therefore, every
peer has an incentive to download at least the base layer,
which increases its availability in the swarm. As the base
layer is the most important layer (it is sufficient to start the
playback and is always required) this really helps to ensure
real-time playback for all clients in the swarm.

After the creation of the torrent file, the content is
ingested into the NextShare core (i.e., the torrent file is
distributed to other peers and the files containing the base-
and enhancement layers are seeded). During the ingestion
process, the base and enhancement layer files are split into
pieces as illustrated in Figure 1. During the mapping process
some problems have to be taken into consideration. Firstly,
the integrated CBR algorithm does not provide an exactly
constant bit rate, but allows for minor drifts. Thus, the
piece mapping is always performed with a small overhead.
Additionally, the 188 byte size utilized for the MPEG-
TS packets cannot be mapped to a power of two, while
the pieces ingested into the NextShare core should have
a multiple of two as their size. Thus, the possibility of
choosing a piece size that differs from the standard power
of two has been successfully investigated.

V. CONSUMER-SITE ARCHITECTURE

The consumer-site architecture describes all steps from
receiving the bitstream through the P2P system to decoding
the bitstream for displaying it in the media player. The
steps described include the local streaming of the received
content, the de-packetizing of the content, the signaling of
the layer properties using suitable metadata, and the merging
and decoding of the received layers. An overview of this
architecture is provided in Figure 3 and described in detail
in the subsequent sections.

A. Provision of the Received Content

When the content is accessed by the user the layers from
the NextShare swarm are downloaded in an intelligent way
in order to maximize the Quality of Experience (QoE) for
the current available download bandwidth. A great advantage
of changing quality by displaying more or less enhancement
layers regards the fall-back scenario: in a P2P system peers

are considered to have an unreliable and selfish nature, leav-
ing the swarm and decreasing the total available bandwidth
as soon as they have received the desired content.

In such a case the fall-back scenario will occur, where
the user will experience a slow decrease of the QOE, as
the download engine avoids downloading higher layers for
upcoming time slots, if enough pieces of the previous layers
are not already available. Retrieving the content from the
network is based on a modified approach of the Give-to-
Get (G2G) algorithm [11]. The main reason for using G2G
is that Bittorrent’s Tit-for-Tat algorithm is not suitable for
streaming multimedia content.

The original G2G algorithm divides the part of the piece
buffer close to the current playback position into high-
, mid-, and low-priority sets with regard to the current
playback position. The high-priority set is the part following
immediately after the playback position. The G2G algorithm
selects the pieces in the high-priority set based on their
deadline, i.e., the piece with the nearest deadline in the
high-priority set is downloaded first to ensure a continuous
playback of the content. In the mid- and low-priority set,
the pieces are selected using Bittorrent’s rarest first strategy.
Using this piece-picking policy the G2G algorithm tries to
ensure that the pieces are downloaded in time for playback
while still ensuring that piece’s that are desired by neighbour
peers are downloaded as well.

For the layered application of the G2G algorithm, the
priority sets are applied to all the active available layers
in a proportional way. Thus, for every layer a high-priority
set is created where the pieces are selected according to
their deadline while the dependency between the layers is
considered.

As discussed in the previous section, by providing back-
wards compatibility with other clients, the availability of
the base layer at all peers in the same swarm can be
assumed. Therefore, if a download bandwidth of at least the
base layer’s bit rate is provided by the peer’s connection,
it can also be assumed that the playback will never stall
(if the neighbour peer seeds the content or is ahead in its
playback position). Note that once a peer finishes watching
the content, the download engine will start retrieving the
remaining pieces of all the layers for two major reasons:
firstly, to increase the layer’s availability in the swarm,
and secondly, to enable watching the content at the highest
quality again once all the layers have been downloaded.
However, if this behaviour is not desired due to bandwidth
restrictions it can be disabled in the configuration.

After enough content has been downloaded to guarantee a
continuous playback of at least the base layer, the download
engine of the NextShare core will initialize the demuxer
module. The multimedia data is forwarded to the demuxer
utilizing an HTTP socket, which was selected to ensure
interoperability between the NextShare core and third-party
de-packetizing/decoding solutions. A persistent connection

will be established between the demuxer and the NextShare
core, allowing the demuxer module to sequentially ask for
the available content for the following time slot, depending
on the requests it receives from the decoder module. It is
important to notice that the available pieces of the following
time slot will be sent to the demuxer as late as possible,
allowing the NextShare core to manage the major buffer,
to increase the quality until the last moment and to try to
increase the quality if the user pauses the playback.

B. Bitstream Demuxing and Packetizing

As described before, the demuxer works online: it receives
from the swarm at least the stream of the base layer, which
is processed by a suitable demuxer. The demuxer firstly
removes any possible padding from the production phase
and splits the container format stream into the audio content
and the H.264/AVC-compatible base layer.

The elementary audio stream is directly encapsulated into
a Real-Time Transport Protocol (RTP) packet stream (e.g.,
according to [9] for an MP3 audio stream) and is sent to the
successive module. The elementary SVC base layer video
stream is forwarded to the NALU RTP packetizer, which
puts the base layer and the received enhancements layers into
an RTP packet stream, reordering the packets and forwarding
the RTP stream containing all layers to the next module.
Furthermore, the demuxer establishes a RTCP channel with
the player. This is useful in order to maintain essential
synchronization information among the video and the audio
layers and also to support playback control commands.

Please note that all the modules represented in Figure 3
are typically running on the same host, i.e., the peer that
receives the content. However, the main reason for selecting
the RTP protocol to convey the audio and video data was to
provide flexibility and to enable a possible integration of the
P2P network with a more traditional server-based network.
In such a server-based network the NextShare consumer-
peer could act additionally as a server, receiving the content
from the P2P network and redistributing the scalable content
within an RTP streaming network.

C. Scalability Metadata Support

To decode the layers received from the NextShare sys-
tem, the de-packetizer needs to be aware of the scalability
properties of these layers. To provide a generic signaling
mechanism for these properties, which could also be used
by third-party solutions, we have decided to provide this
information as a Session Description Protocol (SDP) docu-
ment to the de-packetizer. The SDP document is formatted
according to [13], which provides the capabilities to signal
the properties and dependencies of the scalable layers.

As the metadata is provided by the NextShare core
in a NextShare-conforming XML format, the scalability
metadata document is firstly converted to the targeted SDP
format. Subsequently, the SDP message containing the layer

A) Correctly received EL3
picture: PSNR 42,4 dB

Figure 4.

properties and the parameters sets is forwarded to the de-
packetizer.

D. Bitstream Consumption

After the demuxing and RTP packetizing of the audio
and video content, the RTP streams are forwarded. While
the audio stream is forwarded to a standard de-packetizer
and decoder, the SVC RTP stream is processed by our
customized tools.

Firstly, our SVC de-packetizer parses the RTP packets
and provides the payload and the time stamps to the
SVC decoder. To perform this extraction process, the de-
packetizer needs to have SVC layers properties along with
the audio and video RTP port information in advance. This
information is provided by the SDP file. Additionally, the
de-packetizer parses the parameter sets from the SDP and
provides them to the decoder, as they are required for the
decoding process. The SDP file contains the SVC layer
information for each layer and the de-packetizer extracts the
suitable information for the desired layer playback. Finally,
our highly optimized version of the JSVM 9.15 reference
decoder performs the real-time decoding of the SVC content
utilizing the error concealment algorithm embedded in the
decoder (described in the next section).

E. Error Handling

Error robustness in the video decoder is important since
transmission errors are very common in current (especially
wireless) video streaming and transmission systems [16].
The transmission errors can lead to very poor quality of
experience and in worst case scenario, they can lead to
decoder crashes. Usually the error concealment is performed

B) Upscaled picture from the base
layer: PSNR 31,7 dB

Upscaling Result

by monitoring the order of the NAL slices and their mac-
roblocks to see if all the NALUs are received. If NALUs
are missing suitable concealment operations for the missing
macroblocks are performed, e.g., by using a frame copy from
the previously correctly received frame [17].

The difference in the error concealment implementation in
the NextShare system to such traditional error concealment
approaches is that random frames or burst of frames cannot
occur, as each piece contains a full GOP for a specific layer.
Thus, a GOP can either be received or not received, but
single frames cannot be lost during the transmission. As
the whole GOP between the IDR pictures can either be
present or missing, this can lead to varying resolution in
the player if spatial scalability layers exist (as suggested in
Table I). However, a major advantage of the layered content
provisioning in NextShare is the awareness of the layer
dependency. The higher enhancement GOPs are not send
to the decoder if not all the pieces from the lower layer
GOPs have been previously sent for the current time slot.
Additionally, the base layer is always retrieved, which makes
the error concealment easier and more effective.

The error concealment is integrated into the optimized
JSVM 9.15, which was integrated into the VLC plug-
in. To cope with the missing spatial enhancement layers,
an upscaling functionality was integrated into the decoder
based on normative integer-based 4-tap filters. The upscaling
algorithm is provided by the JSVM reference software;
please refer to [4] for more details.

The target resolution for the sequence is defined in the
SPS NAL unit, which is compared with the received reso-
lution (the resolution of the IDR picture) when starting the

Decoder output

EL3 (VGA)
(quality)

EL2 (VGA)
(spatial)

EL1 (QVGA)
(quality)

BL (QVGA)

| —|

1 GOP = 64 frames \

_w Correctly received GOP
_y Upscaled GOP

[l Missing GOP

__» Lower quality GOP

Figure 5.

decoding for a new time slot. As mentioned earlier, the SPS
information reaches the decoder within an SDP description
from the RTP de-packetizer. If the resolutions do not match,
frames of the new time slot are up-scaled from the lower
resolution to the target resolution to maintain the preferred
resolution. Since the layer with lower spatial resolution usu-
ally provides lower quality, the upscaled picture is blurred, as
illustrated in Figure 4. However, compared to changing the
window size during video playback, the blurring is usually
the better solution.

The selected structure of layers presented in Table I sup-
ports two different resolutions for the video. In some cases
the layers for high resolution video cannot be received within
the defined time slot, even though the consumer prefers
to watch the video in higher resolution. As an example,
this could happen while streaming on a heavily congested
access point. Figure 5 shows an example situation with a
four layer SVC sequence, where the second enhancement
layer provides the spatial enhancements whereas the first and
third enhancement layers provide quality enhancements. In
Figure 5, the number of received layers decreases during the
streaming from best quality to the base layer level. In this

Upscaling Principle

case, an upscaling of the base layer quality to the higher
resolution is performed, to avoid changing the playback
window size, which is very disturbing for the consumer.
The upscaling algorithm is performed when only the base
layer or the base and first enhancement layer are received.
As soon as the second enhancement layer is received, no
upscaling is necessary as the desired resolution is already
provided.

VI. EVALUATION

To investigate the performances of our solution we per-
formed a series of experiments with the implementation of
our architecture. The experiments were performed in a lab-
only environment composed of several peers connected with
each other using heterogeneous connections. We monitored
the performance of a peer acting as leecher in the swarm,
retrieving the content from at least one seeder. Each of the
seeders provides a limited upload bandwidth capacity to the
leeching peer, which limits the download bit rate the leecher
can achieve.

For our tests we encoded a two minute video sequence
using four quality layers. The properties of these layers are

Table III
EVALUATION LAYER STRUCTURE

Bit Rate Resolution | Quality | frame/sec
512 kbps 640x480 basic 25
1024 kbps 640x480 low 25
1536 kbps 640x480 medium 25
2048 kbps 640x480 high 25

described in Table III. The properties of the sequence used
for the evaluation differ slightly from our reference layer
structure described in Table I. The main reason for using
a different layer structure for the evaluation were to keep
a simple uniform unit size for all layers. Additionally, only
quality layers were used for this evaluation to enable an easy
comparison of the received quality layers in terms of peak
signal-to-noise ratio (PSNR).

The evaluation consists of two test series. First, the
behaviour of the layered piece download algorithm is il-
lustrated in different scenarios to demonstrate the efficiency
of our layered piece-picking implementation (Section VI-A).
Second, the received quality of the layered implementation
is compared to the single layer implementation of our P2P
system to show how improvements in terms of received
quality can be achieved (Section VI-B).

For the evaluation process five scenarios for the two
minute test video sequence were defined. Four of those
scenarios were investigated for both test series, while the
first scenario is only interesting for the layered piece-picking
series. In the first three scenarios all peers remain in the
swarm for the whole time. In the other two scenarios, seeders
leave the swarm at specific time points to test the robustness
of the system against churn.

e Scenario 1: The leecher peer connects to a single
seeder, which provides sufficient bandwidth to down-
load only the base layer. This scenario is only investi-
gated for the first test series.

e Scenario 2: The leecher peer connects to three seeding
peers. Together the seeders provide enough bandwidth
to download all layers for the test video.

o Scenario 3: The leecher peer connects to two seeders,
which provide more than sufficient bandwidth for the
download of three layers, but not sufficient to constantly
download all layers.

e Scenario 4: At the beginning of this scenario two
seeders provide sufficient bandwidth to download all
layers. After 40 seconds one of the seeders leaves the
swarm and the available bandwidth is decreased.

e Scenario 5: At the beginning of this scenario three
seeding peers are in the swarm and sufficient band-
width for all layers is provided. After 30 seconds, one
seeder leaves the swarm and decreases the available
bandwidth. After 70 seconds, a new seeder joins the
swarm and increases the bandwidth.

As the player of our system can switch between qualities

without flickering (see Section V-E) for this evaluation the
playback quality is increased as soon as possible, even if
only for one time slot. This particular behaviour can be
changed to a more conservative approach that might be
needed in case the decoder/player module is replaced or
a constant quality playback is preferred. To influence the
download strategy, the piece-picking algorithm can be con-
figured to only perform switches to higher layers if a specific
number of higher layer pieces have been downloaded (this
number is one for the presented evaluation, i.e., immediate
quality switches are performed).

A. Layered Piece-Picking Test Series

In the following graphs, representing the first test series,
all five scenarios are presented to analyze the behaviour
of the piece selection when layered content is streamed.
In every graph the available upload capacity, the download
rate, and the received bit rate are presented. The upload
capacity illustrates the download bandwidth that is provided
from the seeders to the leecher peer. The download bit rate
describes at which rate the leecher peer downloads pieces
from the seeders. Please note that the download speed is
never calculated instantly, instead it is based on the piece
arrivals and therefore averaged over a small period of time.
This explains the smoothness of the download curve and
avoids spikes in the results. Finally, the received bit rate
represents the number of pieces that were received in time
for playback. It should be noted that the received bit rate
differs slightly from the actual playback bit rate of the video.
The reason for this deviation is that the CBR algorithm
of our system’s SVC encoder does not provide an exactly
constant bit rate but allows for small drifts. Thus, padding
is used to achieve the constant piece size, as described in
Section IV-A.

60

50 |

40 |

30

Bit Rate (KByte/s)

20

Download Speed ——— 1
Available Bandwidth ——
Received Bit Rate

0 20 40 80 80 100 120

Time (sec)
Figure 6. Layered Piece-Picking Series: Scenario 1

In Figure 6 the results for the first scenario are presented.
As the available download bandwidth allows to download

250

200

150

100

Bit Rate (KBytels)

50

Download Speed ———
Available Bandwidth ——
Received Bit Rate

0 20 40 60 80 100 120
Time (sec)

Figure 7. Layered Piece-Picking Series: Scenario 2

250

200

150

100

Bit Rate (KBytels)

50

Download Speed ———
Available Bandwidth ——
Received Bit Rate

0 20 40 60 80 100 120
Time (sec)

Figure 8. Layered Piece-Picking Series: Scenario 3

only the base layer, the behaviour of the piece-picking
algorithm is very simple. Only base layer pieces are down-
loaded and the playback of the base layer is started after the
initialization phase.

Figure 7 illustrates the behaviour in case of the second
scenario. As mentioned before, a switch to a higher layer
is performed as soon as the first piece of the layer is
downloaded. Thus, the leecher peer starts with the playback
of the base layer and gradually increases the quality until
the highest layer is reached. The playback remains at best
quality until the end of the scenario.

An interesting behaviour emerging from the configuration
of the piece-picking algorithm for this test series can be
seen in Figure 8. Having a download rate higher than the
first three layers combined, the piece-picking algorithm will
try to download the highest layer whenever possible. As the
available bandwidth is not sufficient to constantly download
all layers, the playback quality switches frequently. If a
constant playback quality is preferred, the piece-picking

Bit Rate (KBytels)

Download Speed ———
Available Bandwidth ——
Received Bit Rate

0 20 40 80 80 100 120

Time (sec)
Figure 9. Layered Piece-Picking Series: Scenario 4

250

200 r

150 | *

100 -

Bit Rate (KBytels)

50

Download Speed ———
Available Bandwidth ——
Received Bit Rate

0 20 40 80 80 100 120
Time (sec)

Figure 10. Layered Piece-Picking Series: Scenario 5

algorithm can be configured accordingly.

In Figure 9 the fourth scenario is presented. At the
beginning of the scenario the playback quality is gradually
increased, similar to the behaviour in the second scenario.
However, as soon as the highest playback quality is achieved,
one seeder leaves the swarm and causes a decrease of the
available bandwidth. Thus, the leecher peer cannot download
the higher layer pieces anymore and decreases the playback
quality. Nevertheless, the playback never stops and the piece-
picking algorithm stabilizes after some time and downloads
the best possible quality for the given bandwidth until
the end of the scenario (between two and three layers,
similar to the behaviour in scenario 3 but with less available
bandwidth). The results of this test scenario show that our
implementation and is robust to departing peers and can keep
the video playback going, as long as sufficient seeding peers
to download at least the base layer quality remain in the
swarm.

Figure 10 illustrates the results for the final scenario. At

the beginning the playback is again gradually increased.
However, one of the seeding peers leaves the swarm after
30 seconds and the piece-picking algorithm adjusts and
downloads the best possible quality for the new bandwidth
conditions (between two and three layers). After the joining
of the new seeder, the playback quality is increased to the
best possible quality, which can now be downloaded due
to the improved bandwidth conditions. The results of this
scenario show that our system is robust to churn and reacts
suitably to leaving and joining seeders.

Another interesting observation of this test series is the
initial playback delay when streaming layered content using
our NextShare system. The test results of all scenarios show
that the playback will start no more than ~25 seconds after
the leeching peer joins the swarm, assuming a download rate
at least as high as the base layer’s bit rate (otherwise no
real-time playback is possible). Additionally, the playback
of the base layer can start as fast as after five seconds,
if the bandwidth conditions are good. This reduces the
initial playback delay greatly compared to the single layer
implementation of our system.

B. Quality Comparison Test Series

In this test series a comparison of the single layer and
multi layer implementations of our system is performed. The
goal of this test series is to compare the received quality for
both approaches. For the evaluation process the previously
described scenarios 2-5 are investigated.

The following graphs represent the results for this test
series. Each graph illustrates the received video quality in
PSNR for the single and multi layer implementations. The
PSNR for a received piece is calculated by averaging the
PSNR of all 64 frames contained within a piece for the
multi layer implementation (the piece structure is described
in Section III). For the single layer approach, one piece
contains in average 16 frames providing similar quality as
all four layers of the multi layer approach (the same piece
size is used for both implementations). The received PSNR
is calculated by summating the PSNR of the frames in the
received pieces and dividing it by the total number of frames
for the time slot.

In Figure 11 the results for the second scenario are
displayed. During the initial phase where the quality is
gradually increased, the received quality is clearly better for
the multi layer implementation, as the base layer already
provides a decent quality, while the single layer imple-
mentation only receives a part of the frames. However,
when the highest quality playback is achieved (download of
all pieces), the single layer approach shows slightly better
results. This is due to the fact that a better PSNR can be
achieved with single layer encoding at the same bit rate, as
the multi layer encoding has a certain overhead in terms of
coding efficiency (8.6 % for the example test sequence).

40

35 ¢

30

o
Z 25t
x
=
73]
o
20 +
15 +
10 L Multi Layer
Single Layer
0 20 40 60 80 100 120
Time (sec)
Figure 11. Quality Comparison Series: Scenario 2
40
35
30 +
o
=
x 25t
=
73]
o
20 +
15 +
Multi Layer
Single Layer
10 I I L I g y:
0 20 40 60 80 100 120

Time (sec)

Figure 12. Quality Comparison Series: Scenario 3

Figure 12 shows the results for the third scenario. As the
available bandwidth is not sufficient to constantly download
all pieces, the single layer implementation has always a
lower average PSNR than the multi layer implementation.

The results of scenario four in Figure 13 are similar. As
one of the seeders leaves the swarm after 40 seconds, the
average PSNR for the single layer approach remains rather
low, while the multi layer approach can fall back to the
lower layers and in comparison does not lose much in terms
of average PSNR.

In Figure 14 the results for the fifth scenario are illus-
trated. Due to the leaving of one of the seeders after 30
seconds the average received quality of the single layer
approach stays rather low. However, after the joining of the
new seeder the quality for both implementations is increased
and at the end of the scenario the quality for the single layer
approach is slightly better, as all pieces are received in time.

Overall, the multi layer implementation has shown clearly
better performance in terms of received quality during this

40

35 r

30

[iag
=
z 5}
z
I
a
20
15
Multi Layer
Single Layer
‘]O L L L L g yw
0 20 40 60 80 100 120
Time (sec)
Figure 13. Quality Comparison Series: Scenario 4
40
a
EE EE XxEE
EEE B 5 EE X WO WK K
35+ EET L] EEK K KK K
EEEE S
30
— ooo oooo oooo oooooo
[is}
=
> 5}
=
gl
o
20 ¢
a a
ooooo ooo oo
15
Multi Layer *
Single Layer o
10 L L 1 L g yw
0 20 40 60 80 100 120
Time (sec)

Figure 14. Quality Comparison Series: Scenario 5

test series. The single layer approach can only provide better
quality if there is always more than sufficient bandwidth
to download all pieces in time and no fluctuations occur.
Additionally, for this evaluation we have only considered
rather high bandwidth scenarios where most of the pieces
can be downloaded in time. In low bandwidth scenarios the
performance of the single layer approach gets even worse
compared to the multi layer approach (only a smaller part
of the frames is received in time).

VII. FUTURE WORK

Although our framework already provides a full solution
for the streaming of scalable content over P2P networks,
there are still open possible modifications that could enhance
the viewing experience for the user.

Firstly, the current approach only utilizes the layered
scalability provided by the SVC standard, i.e., the scalability
in terms of resolution and fidelity. As a further step an ad-
ditional support of temporal scalability would be desirable.

Such a support could be realized by reordering the frames
according to the hierarchical prediction structure and by
storing the frames for different temporal levels in different
pieces. However, this would increase the complexity of
the piece-picking process and the trade-off between the
increased complexity and the enhanced viewing experience
needs to be investigated.

Another desirable further step would be the support of
medium-grain scalability. However, such a support would
require some changes to our architecture. As the piece
picking algorithm currently works on piece level, where each
piece contains a number of NALUSs, and the medium-grain
scalability allows to change the quality on NALU Ilevel,
a new algorithm has to be designed to allow the partial
download of pieces (i.e., to work on chunk level, with the
need to investigate compatibility with existing clients). The
other possibility would be to switch to dynamic piece size
and map each NALU to a different piece. However, such
a small piece such would be a bad choice with regard to
the overhead of the piece sharing and a dynamic piece size
would again break the compatibility with existing clients.

Furthermore, additional evaluations of our system will
be performed to test the system’s performance in large
scale trials of our project’s living lab [2]. Additionally,
different configurations of the piece-picking algorithm will
be evaluated to determine in which situations which piece-
picking and quality switching strategies are preferable.

VIII. CONCLUSION

In this paper a framework for the provision of scalable
content in a fully distributed P2P system was presented. In
Section II, the selection of the scalable layers was explained
and the mapping of the layers to units and subsequently
Bittorrent pieces was illustrated. The main reasons for the
choice of 64 frames per unit were to achieve a good coding
efficiency while still maintaining the flexibility to quickly
switch between layers if the network conditions change.
In Sections IIl and IV the producer- and consumer-site
architecture were presented. The producer-site architecture
includes the encoding of the SVC bitstream and splitting of
the bitstream into layers, the packetizing of the base layer
and the audio stream into a suitable container format, the
creation of the scalability metadata based on the SEI infor-
mation at the beginning of the bitstream, and the ingest of the
content into the core of the P2P system. On the consumer-
site, the modules for retrieving and consuming the content
were presented. The retrieved content is provided to the
demuxer utilizing an HTTP socket and the demuxed audio
and video streams are forwarded to the media consumption
solution using RTP. The de-packetizing and decoding of the
SVC content is subsequently performed by our customized
SVC tools utilizing the scalability information provided by
a suitable SDP document.

In the evaluation section, the performance of our P2P
system supporting scalable content was evaluated. Two test
series were performed in order to evaluate the performance
of our piece-picking algorithm and to compare the new multi
layer implementation to the already existing single layer im-
plementation in our system. The results of the first test series
show that the layered piece-picking algorithm can efficiently
utilize the available bandwidth after the initialization phase.
Additionally, the layered implementation greatly reduces the
start-up delay and is robust to churn. The second test series
showed that the multi layer implementation shows a clearly
better performance than the single layer implementation in
all situations where the bandwidths is restricted or band-
width fluctuations occur.

The presented system is to our knowledge the first open-
source P2P system with full SVC support. Additionally,
it is fully compatible with third-party media consumption
solutions due to utilizing the HTTP, RTP, and SDP protocols
for providing the content from the P2P system to the media
consumption modules. Thus, the system is easy to use and
customize for interested users.

ACKNOWLEDGMENT

This work is supported in part by the European Com-
mission in the context of the P2P-Next project (FP7-ICT-
216217) [3].

REFERENCES

[1] Bittorrent protocol 1.0. URL: http://www.bittorrent.org. Last
accessed 15-July-2011.

[2] The P2P-Next living lab. URL: http://livinglab.eu. Last
accessed 15-July-2011.

[3] The P2P-Next project. URL: http://www.p2p-next.org. Last
accessed 15-July-2011.

[4] JSVM 9.15 Software Manual, 2009.

[5] ISO/IEC 13818-1. Generic coding of moving pictures and
associated audio information: Systems, 2000.

[6] ISO/IEC 14496-1.
Version 2, 2003.

MPEG-4 Part 14: MP4 File Format

[7] N. Capovilla, M. Eberhard, S. Mignanti, R. Petrocco, and
J. Vehkapera. An architecture for distributing scalable content
over peer-to-peer networks. In Second International Con-
ferences on Advances in Multimedia (MMEDIA), pages 1-6,
2010.

[8] P. Baccichet et al. Low-delay peer-to-peer streaming using
scalable video coding. In Packet Video, pages 173-181, 2007.

[9] R. Finlayson. A more loss-tolerant RTP payload format for
MP3 audio. RCF 3119, 2001.

[10] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang.
Layerp2p: Using layered video chunks in P2P live streaming.
IEEE Transactions on Multimedia, 11(7):1340-1352, August
2009.

[11] J.J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema,
and H. J. Sips. Give-to-Get: Free-riding-resilient video-on-
demand in P2P systems. In Multimedia Computing and
Networking, volume 6818, San Jose, USA, 2008.

[12] R. Rejaie and A. Ortega. Pals: Peer-to-peer adaptive layered
streaming. In NOSSDAV Proc., pages 153-161, New York,
NY, USA, 2003.

[13] T. Schierl and S. Wenger. Signaling media decoding depen-
dency in the session description protocol. RCF 5538, 2009.

[14] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the
scalable video coding extension of the H.264/AVC standard.
1IEEE Transactions on Circuits and Systems for Video Tech-
nology, 17(9):1103-1120, September 2007.

[15] A. Sentinelli, L. Celetto, D. Lefol, C. Palazzi, G. Pau,
T. Zahariadis, and A. Jari. A survey on P2P overlay streaming
clients. In Towards the Future Internet - A European Research
Perspective, pages 273-282, 2009.

[16] T. Stockhammer, M.M. Hannuksela, and T. Wiegand.
H.264/AVC in wireless environments. [EEE Transactions on
Circuits and Systems for Video Technology, 13(7):657-673,
July 2003.

[17] M. Uitto and J.Vehkaperd. Spatial enhancement layer utilisa-
tion for SVC in base layer error concealment. In Mobimedia
’09 Proceedings of the 5th International ICST Mobile Mul-
timedia Communications Conference, London, United King-
dom, 2009.

