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ABSTRACT 
 
Multi-objective-optimization-based positioning of houses in a residential 
neighborhood is described. The task is the placement of the buildings in a favorable 
configuration constrained by two objectives, which are garden performance and 
visual privacy performance requirements. The method used is evolutionary 
computation with the Pareto front based on a weighted function of the objectives. It is 
found that greedy non-dominated solution search is inferior to the relaxed counterpart. 
The analysis of the Pareto-front formation is described in detail and satisfactory 
operation of the algorithm is presented. 
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INTRODUCTION 
 
Optimization is an important concept in science and engineering. The construction 
industry is one of the prominent areas benefiting from it for efficient and effective 
execution of projects, for instance. Optimization is applied in the design and 
scheduling of HVAC systems [1, 2], the design of structural systems and components 
[3-6], building layout [7-9], acoustic design[10], and the design of construction site 
layout [11]. With respect to HVAC systems optimization usually concerns the 
minimization of energy use. In structural design optimization usually concerns 
simultaneous minimization of material and construction cost and maximization of 
stability, stiffness and strength. With respect to building layout, optimization usually 
concerns maximization of accessibility and reachability as well as satisfaction of 
perceptual requirements, such as visual openness and privacy. Simultaneously 
compactness of the shape of a building’s perimeter may be subject to maximization 
due to energy loss considerations. In acoustic design optimization usually concerns 
minimization of reverb time. In the layout of construction sites reachability is 
generally subject to maximization. Although optimization is a traditionally well-
known concept, in many instances it is treated in single objective form, where the 
objective is known to be ‘the cost function’. As an extension of this is the optimization 
where one or more constraints are simultaneously satisfied next to the minimization of 
the cost function. In the construction industry the essential concern is to reach 
optimality with a number of objective functions, in place of only minimizing a cost 
function. In the former case the functions involved are simultaneously minimized (or 
maximized) [12, 13]. The accomplishment of this task is due to the methodology 



known as multi-objective optimization (MO) [14].  The MO is gaining gravity 
especially in the last decade due to the increasing technological demand of 
optimization in many diverse areas. For instance in building design the building costs 
and the energy consumption of a building during its lifecycles are subject to 
minimization simultaneously [15]. With respect to the construction industry, there are 
many instances where multi-objectivity is an important computational aid for effective 
project executions. This is easily understood considering that in building design many 
criteria are conflicting and subject to optimal satisfaction, such as cost, functionality, 
aesthetic appeal, and sustainability. 
 
The present research demonstrates the importance of multi-objective optimization in 
the construction industry. For this it briefly explains Pareto optimality, which is a well 
established concept but not commonly known in the building industry. It describes a 
new method carried out for the improvement of the Pareto based multi-objective 
optimality. As an emerging area of computation of the modern era, MO algorithms are 
being increasingly investigated for solving MO problems. The MO problem can be 
challenging due to the high dimensionality of the objectives. To deal with this 
complexity, evolutionary algorithms are outstandingly convenient [14, 16]. Some 
important features of the latest generation multi-objective evolutionary algorithms 
(MOEAs) address the selection of the potential solutions during the optimization 
process, and diversity-preserving strategies in objective space. MO problems of low 
dimensionality are successfully treated with traditional optimization methods. 
However, considering the complexity of the engineering and construction projects in 
the building industry, evolutionary optimization becomes important. In this respect 
MOEAs can play an important role in the higher-dimensional optimization tasks 
involving material, perception aspects, time, etc. The research aims to exemplify the 
utilization of the MOEA method taking an example from the design of a residential 
neighborhood and demonstrates the design alternatives within the Pareto concept 
where visual human perception [17] is central in the objectives and ensuing 
alternatives. 
 
 
MULTI-OBJECTIVE OPTIMIZATION 
 
Multi-objective optimization deals with optimization where several objectives are 
involved. For a single objective case there are traditionally many algorithms in 
continuous search space, where gradient-based algorithms are most suitable in many 
instances. In discrete search spaces, in the last decade evolutionary algorithms are 
ubiquitously used for optimization, where genetic algorithms (GA) are predominantly 
applied. However, in many real engineering or design problems, more than two 
objectives need to be optimized simultaneously. To deal with multi-objectivity it is 
not difficult to realize that evolutionary algorithms are effective in defining the search 
direction. Basically, in a multi-objective case the search direction is not one but may 
be many, so that during the search a single preferred direction cannot be identified. In 
this case a population of candidate solutions can easily hint about the desired 
directions of the search and let the candidate solutions be more probable for the 
ultimate goal. Next to the principles of GA optimization, in MO algorithms, in many 
cases the use of Pareto ranking is a fundamental selection method. Its affectivity is 
clearly demonstrated for a moderate number of objectives, which are subject to 
optimization simultaneously [18]. Pareto ranking refers to a solution surface in a 



multidimensional solution space formed by multiple criteria representing the 
objectives. On this surface, the solutions are diverse but they are assumed to be 
equivalently valid in Pareto sense. Selection of one of the solutions among those many 
is based on some higher order preferences, which require more insight into the 
problem at hand. This is necessary in order to make more refined decisions before 
selecting any solution represented along the Pareto surface. 
 
In this work, the formation of the Pareto front is based on a weighted function of the 
objectives which are of the form [19] 

)(,...,2,1),()()(
,1

objectivesNifafF j
ijj

ijii =+= ∑
≠=

xxx     (1) 

where aij is the amount of gain in the j-th objective function for a loss of one unit in 
the i-th objective function. The above set of equations require fixing the matrix a, 
which has a one in its diagonal elements. For the Pareto front we assume that, a 
solution x1 dominates another solution x2 if F(x1)≥F(x2) for all objectives, and a 
contingent equality is not valid for at least one objective.  
 
Figure 1 shows the contour lines corresponding to two linear functions for a two-
objective MO case. In the case the contour lines are horizontal and vertical aij 
becomes zero and F(x)=f(x). Please note that the modification of the contour lines 
departing from horizontal and vertical ones defines a modified solution space, which 
includes the domains of relaxation shown in the figure as hatched areas. For this 
modified solution space the area of non-existent solutions in the convex hull is 
diminished at the expense of deviating from the strict non-dominated solution 
condition as shown in figure 1. 
 

 
 (a) (b)  

Figure 1 Contour lines defining the dominated region with respect to the 
point P: greedy dominance (a); relaxed dominance (b) 

 
From the figure it should be noted that in case the strict non-domination condition is 
relaxed the area of non-existent solutions is smaller compared to the case of greedy 
search. However, this might be compensated during the Pareto front formation 
through the algorithm itself by moving the Pareto surface forward and making the 
front larger at the final stage of the search. This is demonstrated in the next section. 
Although the Pareto front concept is well defined, the formation of this front is 
dependent on the implementation of the MO algorithm and also the nature of 
application. Especially, for the greedy application of the MO algorithm, one uses the 
orthogonal contour lines as shown in figure 1a, so that many potential favourable 
solutions are prematurely excluded from the search process. To avoid this, a relaxed 



dominance concept should be implemented as shown in figure 1b where the angle θ  
can be considered as the angle of tolerance. The wider the angle beyond π/2 the more 
tolerant the search process is. 
 
 
IMPLEMENTATION 
 
Fuzzy neural tree as fitness function 
 
In the following implementation being presented we aim to compare the sensitivity of 
the Pareto optimal front on a greedy vs. a relaxed Pareto ranking. For this purpose we 
implement genetic algorithm for the Pareto-optimal design of a housing 
neighbourhood. This is an existing lot for residences, which belongs to one of the 
largest areas in the Netherlands subject to development, named Leidsche Rijn. The 
design task is the identification of optimal locations of a number of housing units on 
their respective plots. Figure 2 shows 20 houses. 17 of them are subject to optimal 
positioning, since 3 of them, namely houses E1, E2, and E3, already exist on the site. 
 

 
Figure 2 The buildings subject to optimal positioning; the buildings E1, 

E2, and E3 are existing buildings that are not subject to positioning 
 
The optimality is based only on the perceptual considerations pertinent to each 
individual house unit aiming to arrive at a compromise among various conflicting 
performance scores of all units. Namely, it concerns two main perceptual variables in 
objective space, namely the performance of the garden in south direction of each 
house and the visual privacy experienced for the south façade of a house. These 
aspects form the design performance in this design implementation. The relations 
among the design performance, its sub-aspects and their respective relevant design 
parameters are complex. Therefore it is formidably difficult to specify accurately the 
relative importance of individual requirements in an ad-hoc manner. To treat this issue 
we employ a special knowledge model in this work. The model is a fuzzy neural tree 
[20]. It is able to handle both the complexity of the relations among design aspects as 
well as imprecision involved in the assessment of requirement satisfaction. The 
essential methodologies that are responsible for these properties are neural tree 
structure and embedded fuzzy logic processing. The former treats the complexity of 
the relations, while the latter takes care of the imprecision of the information subject 
to processing. This combination yields a knowledge model that is able to evaluate 
different designs with rationale. The model employed in the present design 
implementation is shown in figure 3. The model output is labelled as node 6 and it 



represents the design performance. The inputs of the tree are shown as arrows pointing 
to square shaped nodes that are termed leaf nodes in the terminology of neural tree. In 
the leaf nodes the requirement satisfaction is computed concerning the garden and 
visual privacy performance for each house in the neighbourhood.  

 
Figure 3 Neural tree structure for assessment of design performance 

 
This means the relevant properties of a particular housing design, e.g. the size of the 
garden, is mapped to values between zero and one, reflecting satisfaction of an 
elemental design requirement. As the model used is entirely knowledge driven this 
mapping is accomplished by means of fuzzy membership functions provided by the 
designer, and it is referred to as fuzzification in the terminology of fuzzy logic. An 
example of the membership functions used is shown in figure 4. This function 
quantifies the satisfaction of the visual privacy requirements for the houses H1, H2, 
and H4 as marked in figure 3. In this example visual privacy is required to be value 6 
or greater as an ideal situation. Then the leaf node output is unity. If the privacy is less 
than 6 the output of the respective leaf node is less than 1 as specified by the 
membership function. 

 
Figure 4 Membership functions at the terminal nodes. 

 
The visual privacy is computed using a probabilistic perception model [17]. This is 
illustrated in figure 5. Visual privacy of a façade is considered the reciprocal of the 
sum of attention “impinging” on the facade. In other words it quantifies how low (or 
high) the degree of perception of a façade is. The garden performance belonging to a 
house is calculated by dividing the extent of a garden in south direction by the 
maximum extent the garden can have considering the boundary of the house’s plot. 
The garden extent is denoted g, and the maximum extent gmax in figure 5b. This is 
shown in figure 5b. The garden performance of a house is given by g/gmax.  
 
In the fuzzy neural tree the designer specifies the relative importance of aspects in the 
form of weights denoted by wi in figure 3. During evaluation of a design alternative 
the tree is stimulated at its leaf nodes involving the fuzzification process described 
above. The resulting information is then processed by the nodes labelled 1, 2, 3, 4, and 



5 in this figure. These nodes perform fuzzy logic AND operations using Gaussian 
membership functions, finally yielding the design performance at the output of the 
model. The detailed structure of node connections is shown in figure 6. 

   
 (a)  (b)  

Figure 5 Illustration of the computation of visual privacy based on a 
probabilistic model of human visual perception (a); Calculation of the 

garden performance g/gmax (b) 
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Figure 6 The detailed structure of a neural tree with respect to different 
type of node connections: leaf node to inner node (a); inner node to 

inner node (b) 
 
The fuzzy logic computations at node j shown in figure 6b is given by [21] 
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where Oi denotes the output of node i; wij is the connection weight between node i and 
node j; and σj Please note that the logic operators are tuned in a particular way, so that 
the model behaves consistently in logical reasoning sense. This tuning refers the 
adjustment of the widths of the Gaussians at the inner nodes. It is accomplished by a 
training algorithm [20]. After training the model provides conclusions about design 
performance with a rationale, consistent with the expert knowledge embedded in the 
model. Next to the evaluation of the design performance, due to the fuzzy logic 
operations at the inner nodes of the tree, the performance of any sub-aspect is obtained 
as well. This is a desirable feature in design, which is referred to as transparency. 
Having established the performance evaluation model it is used in an evolutionary 
search process aiming to identify designs with maximal design performance. In our 
case garden performance and visual privacy performance are to be maximized 
simultaneously, and we are interested in a variety of alternative solutions that are 
equal in Pareto sense. The design is therefore treated as a multi-objective optimization 
as opposed to a non-constrained optimization, where exclusively the design 



performance would be subject to maximization. In the multi-objective implementation 
the outputs of the nodes 4 and 5 of the neural tree are subject to maximization. Their 
values are used in the fitness determination procedure of the genetic algorithm. 
Employing the fuzzy neural tree in this way the genetic search is equipped with 
human-like reasoning capabilities during the search.  
 
 
Analysis of the Pareto front 
 
The results obtained from the optimality search based on Pareto-front are shown in 
figure 7, where the Pareto fronts are clearly seen. 
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Figure 7 Garden and privacy performance of the solutions after 15 
generations; angle of tolerance θ=90° (a); θ=150° (b) 

 
In figure 7a the solutions are more scattered compared to those in figure 7b due to 
greedy dominance of the search process. Figures 7a and 7b are combined and 
shown in figure 8 for comparison. 

 
 

Figure 8 Comparison of the Pareto optimal frontiers for the angle of 
tolerance θ=90° vs. θ=150° after 15 generations. 



 
From figure 8 we clearly see the different Pareto fronts for different values of θ. For 
the angle of tolerance θ=150o the Pareto front is more at the front compared to θ=90o. 
In figure 8 some design performance scores belonging to respective design solutions 
are shown. Performance score is defined in this work as the weighted summation of 
the garden and privacy performance as shown in figure 3 and named as design 
performance. This means the score is the output value at the root node of the tree 
shown in figure 3. The scores of the total number of solutions are separately shown in 
figures 9a and 9b. It is observed that the scores fluctuate in a relatively narrow 
domain, so that the solutions along the Pareto surfaces are all approximately equally 
valid providing flexibility in the design. 
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Figure 9 The design performance values of the different chromosomes 
for angle of tolerance θ=150° (a) vs. θ=90° (b) 

 
Two resulting Pareto-optimal designs are shown in figure 10. The designs belong to 
different regions on the Pareto front. In figure 8 the solution indicated by a circle 
pointed at by an arrow corresponds to figure 10a and the one indicated by a square 
pointed at by an arrow belongs to figure 10b. 
 

  
                                    (a)                                                            (b) 

Figure 10  Two Pareto-optimal designs found by the genetic algorithm; 
(a) corresponds to the solution marked by a circle in figure 8; (b) 

corresponds to the solution marked by a box in figure 8 
 
Although, the design described above might be seen as reductionistic in nature, i.e. 
using two design parameters, namely garden performance and visual privacy 
performance. These are two major determinants of the design. Therefore the analysis 



of the design performance in terms of these parameters is highly significant. 
Moreover, in such an analysis there are a number of influential design issues in the 
lower level(s) and the input layer of the neural tree seen in figure 3. Identifying the 
final design in the light of influential design issues already has important merits, 
because of their due integration into the design process. Being commensurate with the 
complexity which might be afforded in the design, there can be more design 
determinants in the upper layer of the tree, whose weighted composition determines 
the design performance, such as accessibility. One should also note that the tree model 
of the performance is context depended, and therefore for each independent aspect of 
a design a new tree can be formed, so that complexity is distributed among several 
tree models. In the present demonstrative design exercise the context is restricted to 
the perception aspects, while the rationales in the design can be traced with careful 
observation of the results and some deliberation. It should be noted that in the design 
process exemplified above the design determinants are rather soft and they need 
special methods and techniques to be dealt with, in particular soft computing for that 
matter.  
 
From the building construction viewpoint, the design method is highly significant for 
two major reasons. Firstly, design performance in a particular context is a major 
concern in construction since eventually the building is meant to have a high 
performance. The design performance should be analysed in different perspectives 
and eventually each perspective should give a contribution to the final outcome. 
Secondly, the neural tree approach applied to design can also be applied to various 
decision-making issues on constructions. Knowledge management can be one of such 
application examples. In this case the neural-tree concept remains the same and only 
the quantities involved at the inputs and the nodes take different aspects of concern. 
Therefore, fuzzy neural-tree should be seen as a generic concept with its associated 
paradigm which is, among others, design performance as described in this research. 
 
 
CONCLUSION 
 
Multi-objective-optimization-based positioning of houses in a residential 
neighborhood is described. The method used is evolutionary computation with the 
Pareto front based on a weighted function of the objectives. As result of this method 
the analysis revealed that greedy non-dominated solution search is inferior to the 
relaxed counterpart. This means the relaxation of the strict non-dominated domain 
search favours for the potential solutions, so that they are not prematurely excluded in 
the search process. Also the Pareto front is moved forward, i.e. more favourable 
position towards the non-dominated regions. The fitness function in the genetic search 
makes use of a neural tree for the computation of the objectives. The computations are 
based on fuzzy logical AND operations by means of Gaussians at the neural tree 
nodes providing rationale for the design. Combining multi-objective optimization with 
neural tree together with relaxed dominance makes the research a unique 
implementation with intelligent computational features yielding enhanced design. 
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