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Abstract
Because the demand for green energy increases rapidly, it is expected that solar and wind energy
will dominate future power generation. New in this field is the development of offshore floating solar
systems, consisting of multiple interconnected platforms that are covered with PV panels. Besides
satisfying the demand for electricity, these floating solar systems may have a beneficial impact on their
wave environment. If waves are attenuated, down­wave shadow zones could be useful for other ma­
rine activities such as aquaculture or for the protection of a harbour, and therefore create opportunities
for offshore multi use. The overall research objective of this study is to research the effect of an inter­
connected multi­body floating solar structure on the transmission of wave height. This was done using
a scale model test and a numerical model, in a two­dimensional setting.

From the scale model tests, wave transmission showed to be highly dependent on the wave frequency,
and thus the wavelength, of the incident waves. The floating solar system acts as a low pass filter: it
lets the low frequency waves pass through, whereas the waves with higher frequency are attenuated
by the structure. This dependence is governed by the ratio between the incident wavelength and the
length of the rigid platforms that the solar structure consists of, measured in parallel to the wave prop­
agation direction. When the wavelengths were smaller than twice the length of a platform, waves were
almost fully attenuated. Apart from the dependence on frequency, the basin test results also showed
that the amount of wave attenuation increases linearly with the total length of the system, but only with
a small slope. Furthermore, analysis of the reflected wave signal indicated that higher order dissipative
effects are likely needed to describe the decrease in transmission accurately, because the amount of
wave energy that was reflected by the structure was limited.

A proof­of­concept for applying a linear numerical boundary element diffraction model to a fixed shal­
low solar structure was carried out. The wave surface elevation could be obtained, and these solutions
were in accordance with the physical expectations. The results showed similar trends to the basin
test results, but did not match quantitatively. This difference could lie in the model approach, where
a two­dimensional transmission coefficient is determined from three­dimensional simulations. It could
also be that the scattering effects alone cannot approximate the transmission behaviour of the system,
because linear radiation effects or higher order dissipation effects might be of similar importance and
are therefore required for an accurate simulation. Radiation could be included in a linear diffraction
model, but dissipation requires higher order wave theory.

Regarding the multi­use context, a down­wave shadow zone can form if the incident waves are short
enough. For the North Sea location considered, where waves are typically longer than 25 m, the float­
ing solar structure might not have the breakwater performance that is desired to protect other offshore
activities.
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1
Introduction

1.1. Context & Motivation
Because environmental issues rapidly increase the urge for green energy, it is expected that solar and
wind energy will dominate future power generation. In 2019, only 19% of the European energy con­
sumption was renewable [16, 20]. To increase this share to the expected 70% in 2050, wind and solar
energy are highly promoted.

Until now, PV panels have been installed on land or at inshore waters, but this space is often scarce.
Therefore, moving solar farms to the oceans and seas could be a major opportunity to increase the
green energy production in a minimally invasive way, and even to fully satisfy the future energy de­
mand. Additionally, floating solar PV panels are likely to have a higher efficiency than onshore solar
farms due to the cooling effect of the water. The average annual output energy is more than 10% higher
at sea [9, 22]. In combination with wind energy farms, the space at sea can be used efficiently. Also,
using these energy resources together can offer a more stable and continuous power supply.

Besides satisfying the demand for electricity, floating solar farms may have an impact on their wave
environment, reducing the wave height in certain locations. In this case, the solar system would have
breakwater­like properties and a shadow zone could form down­wave of the floating structure. This
could have benefits for other offshore activities, such as aquaculture, wind farms and protection of
shores or harbours. Firstly, a location with smaller waves could be well suitable for aquaculture, for
example seaweed cultivation. A seaweed farm system can handle waves up to certain wave heights or
wave loads, above which the system can break down [23]. Therefore, a sheltered location is favourable
as the farm is more likely to survive. Wind farms could also have benefits from deploying floating solar
in between the wind turbines, such that they suffer lower wave loads. Lastly, if the solar structure is
of significant size and would be deployed near shore, it could act as a floating breakwater to prevent
coastal erosion or to protect harbours. For different stakeholders it could become important to predict
the impact of the solar structure on the wave environment and the locations of potential shadow zones.

1.2. Existing research
Because offshore floating solar is still a young field of research and various system designs are con­
sidered, there have not yet been any studies on its wave attenuation properties. Therefore, other fields
where wave­structure interaction is analysed form the basis of the existing literature.

Wave attenuation due to floating objects has previously been researched in the field of floating break­
waters. These are large structures that are installed to protect their leeward area of severe wave
conditions. This way, a harbour, moored vessel, or part of a shoreline can be protected from excessive
incident wave energy. The dynamics and performance of these floating structures have been studied
intensively from the 1970s until now, see [12, 25] for reviews. Studies with scale model tests [32, 43],
as well as ones exploring analytical solutions [24, 39, 58–60] and numerical models [24, 42, 44, 48],
gave an extensive literature background to study the influence of a floating body on the wave field.

1



2 1. Introduction

The scale model studies often measured the breakwater attenuation performance in a two­dimensional
setting, with regular and irregular unidirectional plane waves (which means the wavefronts are paral­
lel planes normal to the uniform propagation direction). Wave attenuation is quantified by means of
a transmission coefficient 𝐾𝑡, which is defined as the transmitted wave height 𝐻𝑡 (behind the floating
object) over the incident wave height 𝐻𝑖

𝐾𝑡 =
𝐻𝑡
𝐻𝑖

(1.1)

Because breakwaters are passive systems which do not create wave energy, 𝐻𝑡 ≤ 𝐻𝑖 and therefore
𝐾𝑡 ∈ [0, 1]. This is true for the entirely two­dimensional setting; if three­dimensional diffraction effects
are present the transmitted wave behind the breakwater can be higher than the incident wave. When
the object does not attenuate the incident waves 𝐾𝑡 = 1, if the waves are fully blocked 𝐾𝑡 = 0. Similarly,
a reflection coefficient 𝐾𝑟 is defined to measure the redirection of waves as

𝐾𝑟 =
𝐻𝑟
𝐻𝑖

(1.2)

where 𝐻𝑟 is the wave height for the reflected waves coming back from the floating object. This co­
efficient gives an indication whether the reflection of waves has caused the decreased transmission.
By energy conservation, it should hold that the total incident wave energy is equal to the sum of the
transmitted, redirected and dissipated wave energy: 𝐸𝑖 = 𝐸𝑡 +𝐸𝑟 +𝐸𝑑. Because wave energy 𝐸 ∝ 𝐻2,
it must hold that [32]

𝐾2𝑡 + 𝐾2𝑟 + 𝐾2𝑑 = 1 (1.3)
Thus, the relation between 𝐾𝑡 and 𝐾𝑟 shows the cause for any lack of transmission; if 𝐾2𝑡 + 𝐾2𝑟 < 1,
there must be dissipation effects present.

In the analytical and numerical breakwater studies, linear wave theory is used to describe the wave­
structure interaction. Non­linear dissipative effects such as wave­breaking, overtopping and eddies are
neglected in this approach. Linear velocity potential theory is used to describe the radiation and scat­
tering effects, which together form the linear hydrodynamics. A schematic overview of wave­structure
interaction is given in Figure 1.1.

Figure 1.1: Schematic overview of effects that describe wave­structure interaction.

In a two dimensional setting, the linear effects of the structure will reflect and/or radiate part of the
incident waves in opposite direction. Non­linear effects can dissipate the incident wave energy, and
thus work as an energy sink. A schematic diagram of these effects is given in Figure 1.2

Figure 1.2: Schematic diagram of incident 𝑖, transmitted 𝑡, reflected 𝑟 and dissipated 𝑑 waves by influence of a floating object.
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The radiation and scattering of waves by the breakwater can be solved analytically for the most simple
cases, such as a floating pontoon breakwater over a flat bottom [24, 58, 60]. For other breakwater
configurations, a boundary element method (BEM, also known as panel method) diffraction model can
be used to find a description of the linear hydrodynamics. Such a model is designed to compute the
hydrodynamic coefficients of a floating object, often a ship, which describe its motion and the wave
loads.

Existing research on breakwater performance shows dependence on structural parameters, such as
breakwater length, draft and mooring line stiffness, as well as wave environment parameters, such as
wave height, wave period or wavelength and water depth. In case of multiple floating breakwaters, the
spacing between the objects and the number of objects also determines the decreased wave transmis­
sion.

Although these breakwater studies give a framework to study wave­structure interaction and atten­
uation performance, it is not trivial if and how this wave analysis can be applied to the floating solar
structure. For instance, the floating solar system consists of platforms with a relatively small draft,
whereas breakwaters have a much larger draft as they are designed to reduce wave height. Also, this
thesis focuses on the impact on the wave environment rather than a description of the object motion.
Therefore, it should be investigated how the surrounding wave field or wave surface elevation can be
derived from a diffraction model output. Moreover, BEM diffraction models are naturally designed to
model one or a few floating objects at the time. Extending the calculations to a large number of objects
can therefore bring challenges.

1.3. UNITED project and North Sea Pilot
The UNITED project is a European research project which aims to provide evidence that the devel­
opment of multi­use platforms or co­location of different activities in a marine and ocean space is a
viable approach (economically, socially and environmentally) for European maritime industry and local
ecosystems.1 Developing knowledge on the potential for upscaling floating solar wave attenuation for
multi­use is one of the aims of the project. In total, 26 European partners participate in the UNITED
consortium. Deltares coordinates the full project as well as the technological pillar.

The main activities centre around five pillars: technology, economy, environment, society and le­
gal/policy/governance. This research fits well in the technological pillar (’how could the solar structure
be optimised to create shallow wave conditions for multi­use?’) and the environmental pillar (’what is
the effect of the floating solar structure on the wave­environment?’).

The project is based on five pilot demonstrators, which combine different kinds of offshore activities.
The Dutch pilot, located 15 km offshore from Scheveningen, consists of an offshore wind farm, floating
solar and seaweed cultivation.

The floating solar system is developed and maintained by Oceans of Energy, and was installed in
2019 as the first offshore solar farm on the North Sea. It consists of multiple interconnected rigid plat­
forms covered with PV panels. A picture of the system is shown in Figure 1.3, a schematic top­view
of a 4×2 floater system in Figure 1.4. The rigid platforms move as wave followers on the sea waves
and the system is held in place with mooring lines. When the system is scaled up to a larger number
of floaters, it could potentially bring shelter from incident waves for the wind or seaweed farms.
1UNITED is a European research project funded by the European Union Horizon 2020 programme under Grant Agreement num­
ber 862915. It stands for ”multi­Use platforms and co­locatioN pilots boosting cost­effecTive, and Eco­friendly and sustainable
production in marine environments”. For more information on the UNITED project, see https://www.h2020united.eu/

https://www.h2020united.eu/


4 1. Introduction

Figure 1.3: Oceans of Energy’s floating solar system.
Figure 1.4: Schematic top view of the floating solar sys­
tem, in a 4×2 floater configuration.

1.4. Research objective
The aim of this thesis is to research the effect of floating solar on surrounding wave field. Because
wave attenuation due to the floating system can be caused by various physical processes, which either
redirect or dissipate wave energy, the parameter that is investigated is the transmission of the waves.
The overall long term research objective within the context of this study is defined as:

What is the effect of an interconnected multi­body floating solar structure
on the transmission of wave height?

In this thesis, a first step will be taken towards an answer to this question by using scale model test­
ing and numerical modelling. A basin test will give an indication of the transmission through the solar
structure, which physical effects are involved and what parameters govern the transmission behaviour.
The numerical model could predict the wave environment around the floating solar structure, in various
configurations and system sizes. This thesis will investigate a proof of concept for applying a linear
boundary element method diffraction model to the floating solar structure, restricted to scattering only
(see Figure 1.1). Finally, the results of both approaches will be compared.

To restrict the scope of this research, the focus will be on the near­field wave environment of the
solar structure in intermediate water depth with a horizontal seabed. The wave transmission will be
studied in a two dimensional setting, for regular and irregular (spectral) waves. Thus, the transmission
of unidirectional plane waves (which means the wavefronts are parallel planes normal to the uniform
propagation direction) through an interconnected, multi­body floating solar structure is considered. This
setup is shown in Figure 1.5.

Within these restrictions, the following research questions will be investigated in this thesis:

1. How do the transmission and reflection coefficients, 𝐾𝑡 and 𝐾𝑟, depend on the incident wave
frequency 𝑓 (and thus wavelength 𝜆), the incident wave height 𝐻 and the number of rows of
floaters the model consists of 𝑛𝐹𝐿? ⋆⋄

2. How well does the scattering solution of a linear boundary element method diffraction model
describe the wave transmission through a multi­body floating solar structure? ⋆⋄

(a) Physically: to what extent do linear effects, thus the redirection of wave energy, explain a
decreased transmission? ⋆

(b) Numerically: can a linear boundary element method diffraction model be applied to a shallow
multi­body floating solar structure? ⋄

⋆ ­ question answered with basin test results
⋄ ­ question answered with numerical model results

For the numerical model, the focus was on answering question 2 by showing a proof­of­concept for
modelling wave transmission by diffraction around a shallow floating object. Confidence lies in answer­
ing this question in the physical sense especially, the numerical applicability is discussed briefly with
preliminary findings on mesh sensitivity.
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Figure 1.5: Schematic diagram of two­dimensional setup with horizontal seabed, number of floater rows 𝑛𝐹𝐿 = 3. Incident waves
(solid arrow) propagate in positive 𝑥­direction through the floating solar system, and become transmitted waves (dashed arrow).

1.5. Research approach
The effect of the floating solar structure on the wave environment is researched in various ways. As a
first step, the problem definition was specified mathematically. Linear velocity potential theory, focused
on the diffraction of waves around a floating body, was used to formulate the physical problem into a
mathematical description. The derivation of this description and the assumptions needed were studied
and are described in Chapter 2.

This problem is then studied by using four different approaches, as illustrated in Figure 1.6. Central to
these research lines is the problem definition.

Figure 1.6: Diagram of the research approach.

The four research approaches are shortly explained below.

1. Literature review
A hypothesis on the overall impact is formed by literature review on floating breakwaters. This
also gives an insight in the parameter dependence of the problem and the way transmission can
be defined.

2. Analytical solutions
Linear velocity potential diffraction problem can be solved analytically in a two­dimensional setting
for a single rigid barge and regular (harmonic) waves.

3. Numerical model
The boundary element method diffraction model computes the surface elevation around the float­
ing solar structure. A transmission coefficient is computed, dependent on frequency, for an ap­
proximately two­dimensional setup. Only the diffraction problem will be studied, where the object
is fixed and affected by regular (harmonic) waves.

4. Basin test
A basin test is done in a wave flume, where the effect of a floating solar scale model on regular
and irregular waves is measured in a two­dimensional setup.

The results from these four pillars will be combined and compared. It should be noted that the analytical
solution method is studied, but the final solutions have not been obtained completely. The basin test
gives insights in the actual physical behaviour of the structure and shows the response in irregular
weaves representing a JONSWAP spectrum [26, 28], which simulate the North Sea conditions. A
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numerical model gives the opportunity to vary parameters easily and to predict the effect of the structure
in different configurations or large sizes. Therefore, the combination gives a more complete description
and creates the opportunity to validate the model with the basin test results.

1.6. Structure of report
This report will start by introducing the mathematical problem description in chapter 2, which explains
how to describe ocean waves, linear wave theory and wave­structure interaction. After that, chapter
3 will briefly discuss the literature review on floating breakwaters, which was mainly used to form a
frame of reference for studying wave attenuation. Chapter 4 will dive into the scale model tests that
were performed, followed by the numerical model in chapter 5. Here, the linear boundary element
method diffraction model is introduced and a proof­of­concept is presented for simulating the wave
environment around floating solar platform. The discussion in chapter 6 will combine the obtained
results, present reflections on the work and give suggestions for further research. Finally, chapter 7
will state the conclusions of this research.



2
Mathematical problem description

The goal of this chapter is to give the mathematical description of the interaction between a floating
multi­body (solar) structure and ocean waves. In order to formulate this problem, ocean waves will be
described with first order velocity potential theory.

This chapter is structured in the following way. First, the description of ocean waves is introduced
briefly. Linear potential flow theory for free surface waves in finite depth water is explained in section
2.2. After that, the equation of motion for rigid body dynamics is discussed in section 2.3. Lastly, the
velocity potential theory and the rigid body dynamics are combined in section 2.4 on wave­structure
interaction section.

2.1. Description of ocean waves
In order to describe ocean waves mathematically, a few definitions will be introduced first, based on
Holthuijsen (2007) [28] and Journée and Massie (2008) [30].

The surface elevation 𝜂(𝑡) is defined as the instantaneous elevation of the sea surface relative to
some reference level, often taken as the still­water level. The surface elevation profile between two
downward zero­crossings is called a wave, shown in grey in Figure 2.1. Its wave height is then defined
as the vertical distance between the highest and lowest surface elevation in the wave. Its wave period
is defined as the time between two downward zero­crossings of the surface elevation.

Figure 2.1: The definition of wave height 𝐻 and wave period 𝑇 in a time­record of surface elevation. [28]

The significant wave height is defined as the mean of the highest third of the waves in a record of
observations. This is the wave height which is close to the visually estimated wave height, and is given
by

𝐻𝑠 =
1
𝑁/3

𝑁/3

∑
𝑗=1

𝐻𝑗 (2.1)

7
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In this definition, 𝑗 is the rank number of the wave based on its wave height (𝑗 = 1 corresponds to the
highest wave, 𝑗 = 𝑁 to the lowest wave) and 𝑁 is the total number of waves in the record.

2.1.1. Wave spectrum
When analysing ocean waves, they are often described by a wave spectrum. Observations of the
surface elevation are formally treated as realisations of a stochastic process, therefore as time series.
This treatment is based on the random­phase/amplitude model, which is explained in detail in Appendix
A. The variance density spectrum gives a full description of the surface elevation of ocean waves in a
statistical sense, as a function of time in one geographic location. It is given by

𝐸𝑣𝑎𝑟(𝑓) = lim
Δ𝑓→0

𝔼{12𝑎
2}

Δ𝑓 (2.2)

under the assumption that the surface elevation can be seen as a stationary Gaussian process. In
this equation, 𝑓 is the oscillation frequency of the surface elevation considered and Δ𝑓 the frequency
interval around it (which is send to 0 as a continuous spectrum is desired). 𝔼{12𝑎

2} shows the variance
of the random wave component amplitude 𝑎, which is Rayleigh distributed (see Appendix A).

The variance density spectrum gives insight in the distribution of waves over the frequencies and its
units are [m2/Hz]. All statistical characteristics of the wave field can be expressed in terms of 𝐸𝑣𝑎𝑟(𝑓).
For example, the energy density spectrum can be derived from the variance density spectrum by mul­
tiplication with the water density 𝜌 and gravitational constant 𝑔.

𝐸𝑒𝑛𝑒𝑟𝑔𝑦(𝑓) = 𝜌𝑔𝐸𝑣𝑎𝑟(𝑓) (2.3)

Note that the unit of this energy density spectrum quantity is [kg/s], therefore the spectrum gives the
distribution of energy [kg m2/s2] per unit surface area ⋅[m−2] over the frequencies ⋅ [Hz−1] = [s]. The
shape of the energy density curve is thus the same as the variance density curve, only the values are
scaled with a constant factor.

The total energy per unit ocean surface area of the wave spectrum is obtained in the following way, by
integration over all frequencies

E = ∫
∞

0
𝐸𝑒𝑛𝑒𝑟𝑔𝑦(𝑓)𝑑𝑓 = ∫

∞

0
𝑔𝜌𝐸𝑣𝑎𝑟(𝑓)𝑑𝑓 (2.4)

which is given in [kg/s2].

From these wave spectra, the peak period 𝑇𝑝 is defined as the wave period with the highest energy.
This period thus translates to the frequency where the peak of the spectrum is located.

2.2. Linear potential flow theory
The derivation of the linear wave theory equations from the mass and momentum conservation are
presented in Appendix B. The linear potential flow theory for free surface waves in finite­depth water
will be central in the mathematical definition of the wave­structure interaction and is used in the numer­
ical diffraction model

The assumptions that underlie the linear potential flow equations and their boundary conditions are
the following:

1. small amplitude approximation: the wave amplitudes should be small compared to their wave­
length as well as the water depth

2. water is assumed to be an ideal fluid: incompressible, with constant density and no viscosity

3. water body is continuous, so there are no air bubbles in the water domain considered
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4. free wave assumption: the only force acting on the water is gravity force (wind­induced pressure
and surface tension are thus excluded)

5. water particles cannot leave the water surface, i.e. no splashing or wave breaking

6. water particles cannot penetrate the bottom of the sea

Before the equations for linear potential flow theory can be introduced, a domain has to be defined.
For a free­surface wave in Cartesian coordinates, the domain to solve for the water particle velocity 𝑢
(and velocity potential 𝜙, which will be introduced shortly) will be (𝑥, 𝑦) ∈ ℝ2, 𝑧 ∈ [−ℎ, 0]. The surface
elevation 𝜂(𝑥, 𝑦) is taken relative to the still water level at 𝑧 = 0. A two­dimensional cross section in
(𝑥, 𝑧) is shown in Figure 2.2 of a part of this domain.

Figure 2.2: Domain of a free surface wave setup, shown in (𝑥, 𝑧), with water depth ℎ(𝑥, 𝑦), unit vector normal to the seabed
�̂�(𝑥, 𝑦), and surface elevation 𝜂(𝑥, 𝑦). This example shows plane waves propagating in +𝑥 direction, thus with propagation
angle 𝛽 = 0.

The linear wave equations are expressed in terms of the velocity potential function Φ(𝑥, 𝑦, 𝑧, 𝑡), which
is defined such that:

𝑢𝑥 =
𝜕Φ
𝜕𝑥 , 𝑢𝑦 =

𝜕Φ
𝜕𝑦 , 𝑢𝑧 =

𝜕Φ
𝜕𝑧 (2.5)

where 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the particle velocities in 𝑥, 𝑦 and 𝑧­direction respectively. The resulting conti­
nuity equation is given by the Laplace equation for Φ, which is

∇2Φ = 𝜕2Φ
𝜕𝑥2 +

𝜕2Φ
𝜕𝑦2 +

𝜕2Φ
𝜕𝑧2 = 0 (2.6)

It can be solved for Φ using the kinematic boundary conditions (related to the motion of the wa­
ter particles). These boundary conditions are linearised around the equilibrium water surface, taken
𝜂(𝑥, 𝑦, 𝑡) = 0 at 𝑧 = 0, which results into the expression

𝜕Φ
𝜕𝑧 =

𝜕𝜂
𝜕𝑡 at 𝑧 = 0 (2.7)

for the surface boundary condition. When the water depth is assumed to be finite, defined as 𝑧 =
−ℎ(𝑥, 𝑦), the kinematic boundary condition at the bottom is equal to

∇Φ ⋅ n̂ = 𝜕Φ
𝜕𝑛 = 0 at 𝑧 = −ℎ(𝑥, 𝑦) (2.8)

where n̂ is the unit vector normal to the seabed. Note that when the seabed is assumed to be horizon­
tal, this results in 𝜕Φ

𝜕𝑧 = 0.

The Laplace equation (2.6) and the (linearised) kinematic boundary conditions (2.7) and (2.8) are
enough to solve for the velocity potential and hence all kinematic aspects of the waves. The dynamic
behaviour of the waves (related to the forces acting on the water particles) can be found by using the
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linearised Bernoulli equation for unsteady flow, in combination with the dynamic surface boundary con­
dition. This linearised Bernoulli equation follows from the momentum balance equation (see Appendix
B), and is given by

𝜕Φ
𝜕𝑡 +

𝑝
𝜌 + 𝑔𝑧 = 0 (2.9)

where 𝑝 is the pressure in the fluid relative to atmospheric pressure, 𝜌 is the water density (assumed
to be constant) and 𝑔 is the gravitational acceleration constant. The linearised dynamic boundary
condition is as follows

𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0 at 𝑧 = 0 (2.10)

2.2.1. Propagating harmonic free­surface wave
If the motion described is assumed to be time­harmonic with a specified frequency, the velocity potential
can be split in a complex position dependent potential 𝜙(𝑥, 𝑦, 𝑧) and a time dependent part

Φ(𝑥, 𝑦, 𝑧, 𝑡) = Re{𝜙(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡} (2.11)

In this case, the Laplace equation (2.6) should be satisfied by 𝜙(𝑥, 𝑦, 𝑧) throughout the fluid domain.

∇2𝜙 = 0 (2.12)

In terms of 𝜙, the linearised free­surface condition becomes

𝜕𝜙
𝜕𝑧 = 𝐾𝜙 on 𝑧 = 0 (2.13)

where 𝐾 = 𝜔2/𝑔, and the bed condition (2.8) becomes

𝜕𝜙
𝜕𝑛𝐵

= 0 on 𝑧 = −ℎ(𝑥, 𝑦) (2.14)

The free­surface wave solution, for equations (2.12) ­ (2.14), is a plane wave of amplitude 𝐴 and
wavenumber 𝑘. In cylindrical coordinates, it is expressed by the following potential 𝜙(𝑟, 𝜃, 𝑧) ∈ ℂ

𝜙 = − 𝑖𝑔𝐴
𝜔 cosh 𝑘ℎ𝑒

𝑖𝑘𝑟 cos(𝜃−𝛽) cosh 𝑘(𝑧 + ℎ) (2.15)

where its propagation angle is denoted with the angular coordinate 𝜃 = 𝛽 from the 𝑥­axis. This velocity
potential corresponds to the free­surface elevation below, derived from the dynamic condition (2.10).

𝜂 = 𝐴𝑒𝑖𝑘𝑟 cos(𝜃−𝛽) (2.16)

To let this solution satisfy the free surface condition (2.13), 𝐾 = 𝜔2/𝑔 and 𝑘 have to be related by the
dispersion relation as

𝐾 = 𝑘 tanh(𝑘ℎ) (2.17)

2.3. Rigid body dynamics
To describe the dynamics of structures in water, a rigid body is the simplest structure to start with. A
free floating, rectangular, impermeable rigid structure with appropriate dimensions can be seen as a
simplified model of a floating solar structure. Therefore, it is relevant to start the study of rigid body
dynamics in the first place.

The dynamics of a floating rigid body can be described with an equation of motion, based on New­
ton’s second law. First, the degrees of freedom of a floating object are defined in section 2.3.1. After
that, the equations of motion in frequency domain are introduced in section 2.3.2. In Appendix C, the
rigid body dynamics are described in more detail.
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2.3.1. Degrees of freedom
Six degrees of freedom are used to describe motion of an object at sea. The three translational di­
rections in 𝑥, 𝑦, 𝑧 are called surge, sway and heave. The three corresponding rotational directions are
called roll, pitch and yaw respectively. An illustration of the definitions for these six degrees of freedom
is given in Figure 2.3, the origin located at the object’s centre of gravity.

Figure 2.3: The 6 degrees of freedom of the centre of gravity: roll, pitch, yaw, heave, sway and surge. [14]

The object velocity of a point on the surface of the structure, measured normal to the surface, is given
by 𝑉𝑛 (see Appendix C). This velocity can be rewritten in terms of the modes of motion for these six
degrees of freedom as

𝑉𝑛 =
6

∑
𝑗=1
𝑈𝑗𝑛𝑗 (2.18)

In this expression, 𝑈𝑗 = Re(𝑢𝑗𝑒−𝑖𝜔𝑡) for time­harmonic motion with the single frequency 𝜔, and 𝑢𝑗 the
complex amplitude of the oscillations in mode 𝑗. The normals {𝑛𝑗 , 𝑗 = 1, 2, 3} are the 𝑥, 𝑦, 𝑧 components
of the unit normal vector �⃗� to the structure and {𝑛𝑗 , 𝑗 = 4, 5, 6} are the components of the cross product
𝑟 × �⃗� with 𝑟 the position vector for the centre of rotation.

2.3.2. Equations of motion
To describe the movement of a floating object, the linear equation of motion in time domain can be
derived with Newton’s second law, �⃗� = 𝑚�⃗�. This equation is often referred to as Cummins equation
[10], an extensive explanation can be found in Journée & Massie (2008) [30]. It is difficult to use this
equation to obtain the object velocity, because a convolution of the object velocity and a retardation
function is used to evaluate the hydrodynamic damping force, which makes it difficult to solve. As this
thesis focuses on wave attenuation in equilibruim state and there is no specific interest in the exact
time­dependence, the frequency domain equations of motions are looked at instead.

The equation of motion for a floating object in frequency domain is given by [30]

{−𝜔2(𝑀 + 𝐴(𝜔)) + 𝑖𝜔𝐵(𝜔) + 𝐶}𝑈(𝜔, 𝜃) = 𝐹(𝜔, 𝜃) (2.19)

This equation consists of matrices and vectors, because the object velocity 𝑈 is a vector that includes
the oscillation modes in each degree of freedom, as introduced in section 2.3.1. In this equation, 𝐶 is
the structure stiffness matrix, 𝐵(𝜔) the hydrodynamic damping matrix,𝑀 the mass matrix of the floating
structure, 𝐴(𝜔) is the hydrodynamic added mass matrix and 𝐹(𝜔, 𝜃) is the hydrodynamic force vector.
The exact definitions and derivations of these matrices and vectors are given in Appendix C and they
will be briefly explained here.

The equation of motion is used to solve for the body motion 𝑈 = (𝑈1, 𝑈2, ..., 𝑈6), included in equa­
tion (2.18) to express the velocity of the object. It is dependent on both the wave frequency 𝜔 and
the incident wave angle 𝜃. The matrices 𝑀 and 𝐶 ∈ ℝ6 × ℝ6 are defined from the body dimensions,
body mass, gravitational constant 𝑔 and water density 𝜌 and are thus constant. The added mass 𝐴,
hydrodynamic damping matrix 𝐵 and exciting force 𝐹 can be found from linear velocity potential theory,
their exact definitions will be explained in section 2.4.3. These coefficients are often computed using a
boundary element diffraction model, which is introduced in Chapter 5. The physical properties of these
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matrices are as follows.

The added mass 𝐴 ∈ ℝ6 × ℝ6 can be explained as the mass of the water that is forced to move
with the motion of the object considered. Thus, when an object oscillates in still water, the surrounding
water volume that is caused to move due to acceleration of the body is considered to be the added
mass. Added mass is given in [kg], is frequency dependent, and its value can differ per degree of
freedom if the object considered is not symmetrical. The matrix element 𝐴𝑖𝑗 shows the effect of a unit
amplitude motion of the object in degree of freedom 𝑖 on the additional mass that has to be considered
the equation of motion of mode 𝑗.

The hydrodynamic radiation damping 𝐵 ∈ ℝ6 × ℝ6 can be thought of as the damping due to the wave
energy that radiates outward, away from a moving structure. The unit used to express radiation damp­
ing is [Ns/m] and it is dependent on the frequency 𝜔. Again, if the object is not symmetrical, this will
be different for movement in the various modes. The matrix element 𝐵𝑖𝑗 shows the damping effect of a
unit amplitude motion of the object in degree of freedom 𝑖 on the movement of the object motion mode 𝑗.

The hydrodynamic force 𝐹 ∈ ℂ6, also known as exciting force, is the force due to wave loads of the
incoming and reflected waves. It gives the force or moment generated by a unit amplitude wave with
wave frequency 𝜔 and incoming angle 𝜃. This force is a combination of the Froude­Krylov and the
diffraction force, which will be explained in section 2.4.3. The vector elements 𝐹𝑖 give the force (for
𝑖 ∈ {1, 2, 3}) or moment (for 𝑖 ∈ {4, 5, 6}) ating on the object in the direction of the degree of freedom 𝑖.
This force includes a phase term and is therefore complex valued.

All matrices are sized 𝑛𝐷𝑂𝐹×𝑛𝐷𝑂𝐹 when considering a single frequency 𝜔. Here, 𝑛𝐷𝑂𝐹 is the number of
degrees of freedom that the body is assumed to have. If a rigid body can move freely in all directions,
𝑛𝐷𝑂𝐹 = 6, as explained in section 2.3.1. However, if an object is restricted in its movement and can
perform only heave motion for example, the matrix vector equation will be restricted to a scalar equation
as 𝑛𝐷𝑂𝐹 = 1.

2.4. Wave­structure interaction
Wave­structure interaction can be studied using linear velocity potential theory, for example to predict
the motion of a ship or floating breakwater. An introduction has been given in section 1.2, with an
overview of the effects present in Figure 1.1. In this section, these effects are discussed one by one:
scattering in 2.4.1, radiation in 2.4.2 and dissipation in 2.4.4. Section 2.4.3 explains how the hydro­
dynamic coefficients in the equation of motion (2.19) can be derived from the complex spatial velocity
potential 𝜙.

Linear potential flow theory has been introduced for free surface waves in section 2.2. This theory
can also be used to describe wave­structure interaction, by introducing different boundary conditions
to the Laplace equation (2.6). Figure 1.1 already introduced the two types of linear wave­structure in­
teraction: scattering and radiation. The scattering problem solves the velocity potential for a restrained
object in water that is exposed to incoming waves; the object is held in fixed position and reflects the
waves fully at its boundaries. The radiation problem expresses the velocity potential in case the object
oscillates in water that is initially still. The addition of these descriptions will give back the total motion
of an object in waves. This is visualised in Figure 2.4.

Figure 2.4: Motion in waves can be split up in a radiation problem, where waves radiate outward from an oscillating object in still
water, and a scattering problem, where waves diffract around a fixed structure [30].
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This way of mathematically splitting up the problem is possible due to the linearity of the velocity po­
tential theory. This results in the following expression

Φ = Φ𝑆 +Φ𝑅 = Φ𝐼 +Φ𝐷 +Φ𝑅 (2.20)

In this equation, Φ𝑆 is the solution of the scattering problem, in which the structure is held fixed in the
waves. The scattered potential Φ𝑆 may be decomposed into the incident undisturbed wave potential
Φ𝐼 and the diffracted wave potential Φ𝐷. Φ𝐼 describes the free surface waves that are initially present,
Φ𝐼 + Φ𝐷 the resulting wave field when waves are diffracted and reflected by the object. The radiated
wave potential Φ𝑅 is the solution of the radiation problem, in which the structure is forced to oscillate
in the absence of an incident wave.

Note that for time­harmonic motions, the time and space dependent parts can again be split by sepa­
ration of variables into

Φ𝐼 = Re{𝜙𝐼𝑒−𝑖𝜔𝑡}, Φ𝐷 = Re{𝜙𝐷𝑒−𝑖𝜔𝑡}, Φ𝑅 = Re{𝜙𝑅𝑒−𝑖𝜔𝑡} (2.21)

Here, Φ𝐼, 𝜙𝐷 and 𝜙𝑅 are complex valued functions of position only. The undisturbed incident wave
potential 𝜙𝐼 is defined as the harmonic free­surface wave solution in equation (2.15). Thus, Φ𝐼 is a
known potential:

Φ𝐼 = Re {− 𝑖𝑔𝐴
𝜔 cosh 𝑘ℎ𝑒

𝑖𝑘𝑟 cos(𝜃−𝛽) cosh 𝑘(𝑧 + ℎ)𝑒−𝑖𝜔𝑡} (2.22)

Φ𝐷 and Φ𝑅 have to be found from the Laplace equations with appropriate boundary conditions, which
will be introduced in the next subsections. Remember that the numerical model will be restricted to the
scattering solutions, Φ𝐼 +Φ𝐷.

The domain in which this linear wave­structure interaction will be studied is shown in Figure 2.5. It
is characterised by an intermediate water depth with horizontal seabed at 𝑧 = −ℎ. The wetted surface
of the object in equilibrium state (𝜂 = 0) is defined as 𝑆𝐵, the body velocity by �⃗� and the normal vectors
on the structure surface, directed out of the fluid, by �̂�𝐵. The complete domain is given by (𝑥, 𝑦) ∈ ℝ2,
𝑧 ∈ [−ℎ, 0] for the free surface wave areas, 𝑧 ∈ [−ℎ,−𝑑] underneath the object.

Figure 2.5: Domain for linear wave­structure interaction, shown as a cross section in (𝑥, 𝑧), with horizontal seabed at 𝑧 = −ℎ
and unit vector normal to the seabed �̂�. The body has a centre of gravity at 𝒪, a velocity �⃗�, wetted surface 𝑆𝐵 and normal vectors
directed out of the fluid �̂�𝐵. This example shows plane waves propagating in +𝑥 direction, thus with propagation angle 𝛽 = 0.
The incident waves are pictured with the solid arrow, transmitted waves with the dashed arrow.

2.4.1. Diffraction problem
In the diffraction or scattering problem, the structure is assumed to be fixed at a certain location and
it will not perform any motion. Therefore, the velocity of the water normal to any structure boundary
must be zero (water will not penetrate the structure and the structure doesn’t move). When the total
velocity potential of this scattering subproblem is denoted by 𝜙𝑆, the boundary condition that should
hold is therefore

∇𝜙𝑠 ⋅ n̂𝐵 =
𝜕𝜙𝑆
𝜕𝑛𝐵

= 0 on 𝑆𝐵 (2.23)
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Using 𝜙𝑆 = 𝜙𝐼 + 𝜙𝐷, this implies that for the diffraction potential

𝜕𝜙𝐷
𝜕𝑛𝐵

= −𝜕𝜙𝐼𝜕𝑛𝐵
on 𝑆𝐵 (2.24)

The scattering problem is thus solving the Laplace equation (2.12) for 𝜙𝐷 within the fluid domains. It
should satisfy the free­surface condition (2.13), the bed condition (2.14) and the fixed structure condi­
tion above (2.24).

To ensure a unique solution, the radiation condition must be satisfied as well. This condition spec­
ifies that the waves corresponding to the diffraction potential 𝜙𝐷 propagate outward; away from the
structure. Infinitely far away from the structure, an undisturbed wave field should be present as the
influence of the structure decreases far away. The same condition is also required for the radiation
problem 𝜙𝑅, explained in section 2.4.2. The mathematical description of this condition in two dimen­
sions is as follows

lim
𝑘𝑥→±∞

(𝜕𝜙𝜕𝑥 ∓ 𝑖𝑘𝜙) = 0 (2.25)

for 𝜙 = 𝜙𝐷 (or 𝜙 = 𝜙𝑅) . If the problem is three dimensional, cylindrical coordinates are used in the 𝑥, 𝑦
plane so that the radiation condition becomes

lim
𝑘𝑟→∞√𝑟(

𝜕𝜙
𝜕𝑟 − 𝑖𝑘𝜙) = 0 (2.26)

The diffraction problem can be solved analytically for a two­dimensional setup, with an infinitely wide
fixed barge [24, 39, 59, 60]. Appendix D explains the derivation of this analytical solution, based on
separation of variables and a matched eigenfunction expansion in three subdomains. In the end, an
infinite set of integral equations is obtained to find the complex weights for the eigenfunction modes.
This can be truncated to a linear system of complex equations and solved numerically to approximate
the analytical solution for the diffraction potential 𝜙𝐷.

2.4.2. Radiation problem
In the radiation problem, the object moves in still water, which causes waves radiating outwards. For
harmonic motion, the problem results in solving the Laplace equation (2.12) for 𝜙𝑅 within the fluid
domains. 𝜙𝑅 is defined as in (2.21). It should satisfy the free­surface condition (2.13), the bed condition
(2.14) and the body surface boundary condition (2.27) below. To ensure a unique solution, the radiating
condition (2.25) or (2.26) should be satisfied for 𝜙𝑅 as well.

𝜕𝜙𝑅
𝜕𝑛𝐵

= 𝑉𝑛 on 𝑆𝐵 (2.27)

In this boundary condition, 𝑉𝑛 is the component of the structural velocity in the direction of the normal
coordinate 𝑛 directed out of the fluid (equation (2.18)). This normal velocity is generally normalised
at 𝑉𝑛 = 1 in all directions, and can then be scaled with a motion amplitude afterwards because the
problem is linear.

Using the complex amplitude of the oscillations in mode 𝑢𝑗 as introduced in section 2.3.1, the radi­
ation velocity potential 𝜙𝑅 can also be decomposed using linear superposition

𝜙𝑅 =
6

∑
𝑗=1
𝑢𝑗𝜙𝑅,𝑗 (2.28)

where 𝜙𝑅,𝑗 describes the wave field due to oscillations in mode 𝑗 with unit velocity amplitude.

The object boundary condition (2.27) is satisfied with 𝑉𝑛 given by (2.18) if

𝜕𝜙𝑅,𝑗
𝜕𝑛𝐵

= 𝑛𝑗 on 𝑆𝐵 , for 𝑗 = 1, 2, ..., 6 (2.29)
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Again, 𝜙𝑅,𝑗 describes the wave field due to oscillations in mode 𝑗 with unit velocity amplitude. This
velocity potential should satisfy the free surface boundary condition (2.13), the bed condition (2.14)
and additionally the radiation condition (2.25) or (2.26) to ensure a unique solution.

To find the normal velocity that results from the forces of the incident waves, and thus to determine the
complex oscillation amplitude 𝑢𝑗, the equation of motion (2.19) has to be solved. Because this requires
the (initially unknown) hydrodynamic coefficients, as described in section 2.4.3, the radiation problem
is first solved with 𝑉𝑛 = 1. The final velocity potential solution that expresses the actual wave­structure
interaction is then found in second instance with the appropriate velocity components obtained.

This problem can also be solved using the matched eigenfunction expansion method, which is de­
scribed for the diffraction solution in Appendix D [24, 60].

2.4.3. Hydrodynamic forces and moments
Now that the linear velocity potential theory for wave­structure interaction has been introduced com­
pletely in the previous sections, it is possible to connect this theory with the definition of the hydrody­
namic coefficients. These were coefficients in the equation of motion (2.19) introduced in section 2.3.2.
From the velocity potential solutions 𝜙𝐼,𝜙𝐷 and 𝜙𝑅, it is possible to derive the frequency dependent co­
efficients 𝐴, 𝐵, and 𝐹.

Recall that in the diffraction problem, the floating object is kept still and the wave loads of incident
and diffracted waves on the rigid, impermeable body are determined. These loads correspond to the
exciting force 𝐹 in the equation of motion. Therefore, it is possible to obtain 𝐹 from the diffraction ve­
locity potential 𝜙𝐷 and the incident undisturbed wave potential 𝜙𝐼. Similarly, it is possible to derive the
added mass 𝐴 and radiation damping 𝐵 for a rigid floating object from the radiation potential 𝜙𝑅.

The integration of the dynamic pressure along the wetted surface of the body 𝑆𝐵 is used to find the
total hydrodynamic forces and moments. From the linearised Bernoulli equation (2.9), one can see
that the hydrodynamic pressure term reads

𝑝 = −𝜌𝜕𝜙𝜕𝑡 for 𝑧 ≈ 0 (2.30)

The total force on a submerged structure is found by integrating this dynamic pressure multiplied by
the unit normal vector along the wetted structure surface 𝑆𝐵. Because the linear problem can be split
up in 𝜙 = 𝜙𝐼 + 𝜙𝐷 + 𝜙𝑅, we obtain the hydrodynamic force

ℱ𝑒,𝑖 = −∫
𝑆𝐵
𝜌𝜕Φ𝐼𝜕𝑡 𝑛𝑖 d 𝑆 − ∫𝑆𝐵

𝜌𝜕Φ𝐷𝜕𝑡 𝑛𝑖 d 𝑆 − ∫𝑆𝐵
𝜌𝜕Φ𝑅𝜕𝑡 𝑛𝑖 d 𝑆 (2.31)

for each degree of freedom 𝑖 ∈ {1, 2, ..., 6}. In this expression, the first term is the Froude­Krylov force
and the second the diffraction force. Together, these forces combine to the excitation force vector 𝐹
in the equation of motion (2.19). The third term is the radiation term, from which the added mass 𝐴
and radiation damping 𝐵 can be derived directly. The added mass is proportional to the accelera­
tion and the radiation damping is proportional to the velocity. For time­harmonic motion, we can write
ℱ𝑒,𝑖 = Re(𝐹𝑒,𝑖𝑒−𝑖𝜔𝑡).

To conclude, we obtain the expressions to find the hydrodynamic coefficients from section 2.3 from the
linear velocity potential theory. For time­harmonic motion, such that Φ = 𝜙𝑒−𝑖𝜔𝑡 and 𝜕Φ/𝜕𝑡 = −i𝜔𝜙,
these expressions are

𝐹𝑖(𝜔) = i𝜔𝜌∫
𝑆𝐵
(𝜙𝐼 + 𝜙𝐷)𝑛𝑖 d 𝑆 (2.32)

for the exciting force 𝐹 and

𝐴𝑖𝑗(𝜔) +
i𝐵𝑖𝑗
𝜔 = 𝜌∫

𝑆𝐵
𝜙𝑅,𝑖𝑛𝑖 d 𝑆 (2.33)

for the added mass 𝐴 and radiation damping 𝐵. 𝜙𝑅,𝑖 is the radiation potential for a unit amplitude oscil­
lation in degree of freedom 𝑖.
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A complete derivation of the hydrodynamic coefficients can be found in for example [36, 39].

2.4.4. Dissipation effects
In this research, linear velocity potential theory is applied to describe the wave­structure interaction.
With this approach, all the dissipative effects are neglected and excluded from the model. This section
aims to point out some of these higher­order, dissipative effects that could play a role in the wave­
structure interaction.

Non­linear flow
When considering a single barge, viscous flow, vortex shedding and even turbulence could be effects
that are present. When a barge with limited height (and thus small freeboard) is exposed to waves,
these waves will tend to flow over the structure (overtopping), giving rise to friction and viscous flow
therefore dissipating wave energy. Additionally, when the water will flow around the rigid structure,
non­linear currents will show depending on the shape of the structure. With rectangular floaters, ed­
dies will likely form at the corners for example. Reading on the causes for dissipation of a single barge
or an array of independent barges can start with the references [11, 21, 30, 38, 42].

Mooring and interconnectors
When looking further into the solutions for interconnected and moored solar platforms, this will intro­
duce even more possible dissipation effects such as water coming up through the gaps between the
platforms and dissipation in the mooring lines or interconnectors through heat generation. Line friction
on the sea bed and drag forces normal to the mooring line due to the motion of the lines through the
water can also cause mooring line damping, but will be less influential in case horizontal mooring is
assumed.



3
Floating breakwaters

Wave attenuation due to floating objects has previously been researched in the field of floating breakwa­
ters. These are large structures that are installed to protect its leeward area of severe wave conditions.
This way, a harbour, moored vessel, or even part of a shoreline can be protected from excessive inci­
dent wave energy.

The dynamics and performance of these floating structures has been studied intensively from the 1970s
until this moment. Literature reviews that give an overview of the research performed are for exam­
ple [12, 25]. Studies with scale model tests [32, 43], as well as ones exploring analytical solutions
[24, 39, 58–60] and numerical models [17, 24, 42, 44, 48], gave an extensive literature background to
study the influence of a floating body on the wave field.

A hypothesis on the impact of the floating offshore solar structure is formed by literature review on
floating breakwater studies. First, the way breakwater performance is defined and studied will be ex­
plained in section 3.1. Then, section 3.2 presents the parameter dependence of this performance.

3.1. Breakwater performance: transmission coefficient
As floating breakwaters are designed to block or dampen out waves in order to protect a certain area,
the wave field surrounding this breakwater is often a focus of their studies. In numerical or analyti­
cal research where linear, harmonic waves are considered, the wave field around the floating object
is expressed in terms of either the complex spatial velocity potential 𝜙(𝑥, 𝑦, 𝑧) or the complex sur­
face elevation 𝜂(𝑥, 𝑦, 𝑧). Their definitions have been explained in Chapter 2, based on Φ(𝑥, 𝑦, 𝑧, 𝑡) =
𝜙(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡.

In model tests or field tests however, it is not possible to derive the full surface elevation around the
structure. Only at a few positions in space the surface elevation is measured. Therefore, it is conve­
nient to describe the performance of a floating breakwater in terms of the wave height 𝐻 in front and
behind the structure. Namely, this wave height can be reconstructed from a collection of surface ele­
vation measurements at a fixed location. Note that if the wave is regular and harmonic, the analytical
or numerical expressions of 𝜂(𝑥, 𝑦, 𝑧) ∈ ℂ can also give the wave height as twice the amplitude of the
complex surface elevation.

In terms of wave height, the performance of a floating breakwater can be defined by means of the
transmission coefficient 𝐾𝑡 = 𝐻𝑡/𝐻𝑖, introduced in section 1.2. This measure is introduced to quantify
the effect of the breakwater, without defining what the physical effect is that attenuates the waves. In
other words, a transmission of less than 100% indicates the breakwater has an effect on the wave
height behind the structure, but does not specify whether this is caused by for example reflection or
dissipation.

From the transmission coefficient 𝐾𝑡 it is also possible to derive the energy transmission (and thus
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the wave energy loss). Notice that wave energy 𝐸 ∝ 𝐻2 in linear wave theory, such that 𝐾2𝑡 gives an
indication of the transmitted wave energy through the breakwater.

This transmission coefficient is dependent on many factors, which will be explained in section 3.2.
The breakwater dimensions, water depth and wavelengths considered all influence the value of 𝐾𝑡.
An exact expression is given by Macagno (1953) [45], based on linear wave theory and assuming no
motion of the breakwater, no overtopping of water and a constant water depth [12, 25]

𝐾𝑡 =
1

√1 + [ 𝑘𝑖𝑊 sinh(𝑘𝑖ℎ)
2 cosh(𝑘𝑖ℎ−𝑘𝑖𝑑)

]
2

(3.1)

In this expression, 𝑘𝑖 = 2𝜋/𝜆 is the incident wave number, 𝑊 the breakwater width, ℎ the constant
water depth and 𝑑 the draft of the breakwater. This relation already indicates some of the important
parameters that influence the wave transmission, which will be discussed in section 3.2 further.

3.2. Parameter dependence
Parametric studies which investigate breakwater performance for various wave and structural param­
eters were reviewed. Examples of the most relevant papers are [17, 58, 59]. Breakwater performance
depends on wave environment and structure properties, and is often measured by the transmission
coefficient 𝐾𝑡 introduced in equation (1.1). The most important parameters that determine the wave
transmission were found to be the following:

• length 𝐿 (parallel to the incident wave direction)

• draft 𝑑

• mooring line stiffness 𝐾

• wave height 𝐻

• wave period 𝑇 / wavelength 𝜆

• water depth ℎ

• regular / irregular waves

• direction of incident waves 𝜃

Notice that the effect of the mass of the object is indirectly included through the combination of the
object dimensions and the draft. In case of multiple floating breakwaters, the additional parameters
were:

• spacing between adjacent breakwaters 𝑎

• number of breakwaters 𝑛𝐹𝐿 (parallel to the incident wave direction)

Most studies considered multiple breakwaters that were not connected to each other. However, if this
would be the case, the dynamic properties of the connecting elements might also be of importance.

Some of the conclusions of these parameter studies that are relevant for this research were:

1. Floating breakwaters are most effective in low wave energy environments. [58]

2. Especially the ratio between the length parallel to the wave direction and the incident wavelength
𝐿/𝜆 determines the breakwater performance. [17, 25]

3. Wave reflection properties of the structures depend strongly on their width, draft and spacing and
the mooring line stiffnesses, while their excess buoyancy is of lesser importance. [58]
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The general relations between the transmission coefficient 𝐾𝑡 and the parameters introduced above
were intuitive: a larger breakwater length 𝐿, draft 𝑑 or number of breakwaters 𝑛𝐹𝐿 leads to less transmis­
sion and thus a better breakwater performance. However, the performance showed to be determined
mainly by the ratio between the wave and the structure properties; the higher 𝑑/ℎ or 𝐿/𝜆, the better the
performance.

For the spacing between floaters 𝑎, in line with the incident wave direction, it could be concluded
that narrow spacing is effective for reflecting long waves. The breakwater behaves as if it is continued
in length, leading to more effective attenuation. For short waves however, a wider spacing is preferred
because the floating bodies act as independent breakwaters in a sequence. [12, 58]

Regarding the mooring line stiffness 𝐾, the breakwater was more effective in reflecting long waves
with a smaller stiffness, but this also leads to a more narrow wave frequency band where the break­
water performance is good. For short waves, the mooring stiffness does not have as much impact,
although the motion of the floater should be restrained [12, 58]. Also, the eigenfrequency of the floating
object is approximately equal to 𝜔 = √𝐾/𝑚, with 𝑚 the mass of the object. If the floating structure is
subject to incident waves with this frequency, resonant behaviour can occur and the amplitude of this
object oscillation mode can increase. This could lead to an increased transmission, because of the
waves radiating outward. Therefore, it is convenient if the eigenfrequency of the mooring system is
outside the intended performance interval of the breakwater.

The incoming wave angle 𝜃 can increase or decrease the efficiency of the breakwater because the
𝐿/𝜆 ratio changes if the waves come in at an angle. For a single breakwater, an orientation of 45 de­
grees with respect to the incoming wave leads to the most efficient behaviour because 𝐿/𝜆 is larger [12].

Especially the dependence on the incident wavelength (and thus wave frequency or wave period) is
investigated in this study, which will be discussed in the next section.

3.2.1. Floater length to wavelength ratio
Because the wavelength dependency will be studied in both the numerical model and the basin test,
the ratio 𝐿/𝜆 is relevant to look into further. Because the breakwater (and eventually the floating solar
structure) consists of rigid rectangular platforms, the waves will be forced to pass underneath. In gen­
eral, the longer the breakwater with respect to the wavelength, the lower the transmission coefficient.
A narrow breakwater is almost transparent for the long waves; it has a negligible impact.

Literature review by Hales (1981) [25] concluded that the wave attenuation features improve markedly
and net result of forces on mooring and anchoring system becomes substantially less for 𝐿/𝜆 > 0.5.
This is because wave dynamics are exerting forces on a part of the structure in a direction opposite to
those forces on other parts of the breakwater. Because the breakwater is assumed to be rigid, these
forces lead to deformation of the wave; the floating structure cannot follow the wave neatly any longer.
More recent literature review by Dai et al. (2018) [12] confirms this rule of thumb for various types
of floating breakwaters; the length has to be at least half the wavelength. For smaller structures, the
waves can pass underneath the floating breakwater, such that it acts as a wave follower.

From the experimental study by Wang et al. (2010) [57], it followed that transmission decreases below
𝐾𝑡 < 0.5 for a length to wavelength ratio 𝐿/𝜆 = 0.35. Note however that the exact transmission coeffi­
cient depends onmore parameters. The experiments presented in [32] for a fixed breakwater in shallow
and intermediate waters showed that the efficiency of the structure is considered satisfactory for a ratio
𝐿/𝜆 ≥ 0.25. Examples of exact transmission plots as a function of wavelength 𝜆, dimensionless wave­
length 𝜆/𝐿, or dimensionless parameter 𝑘ℎ can be found in the following papers [12, 18, 25, 58, 59].





4
Basin test

A basin test was carried out as part of this thesis, with the goal to research the effect of the floating
interconnected multi­body solar system on the waves. This effect can be subdivided in transmission,
reflection and dissipation of the waves, and could be used as a comparison or validation for the numer­
ical results.

First, the method is explained in section 4.1. After that, the test results are presented in section 4.2
and summarised in 4.3. The points of discussion, as well as the comparison with the numerical model
results, will be discussed later in Chapter 6.

4.1. Method
The first part of this method section will explain experimental method of the basin test, in section 4.1.1.
This includes a brief explanation of the design of the model, the flume setup and the wave conditions.
Thereafter, the analysis method is presented in section 4.1.2.

4.1.1. Experimental setup
The scale model test was done in the Scheldt flume1 at Deltares on a scale of 1:25. Froude scaling was
used because the inertial effects were assumed to be more important in the floater dynamics than the
viscous effects, see Appendix G. In this experimental setup section, all dimensions are given at basin
test scale, unless stated otherwise. When the results are presented in section 4.2, all dimensions are
translated to full (offshore) scale so that the results can be compared to offshore wave conditions and
the numerical results of Chapter 5 more easily.

The wave attenuation caused by the floating solar structure was found by measuring the wave height
in a two dimensional setup. The surface elevation was measured by 8 wave gauges in total, 4 in front
and 4 behind the floating structure. These measurements were done for various wave conditions and
floating solar system sizes, to test how the wave transmission depends on

• the wave frequency 𝑓, and therefore the wave period 𝑇 and wavelength 𝜆

• the wave height 𝐻

• the system size, thus then number of platforms the model consists of

Calibration tests were done in the empty flume such that effects on the waves that were not caused by
the floaters could be eliminated.

In this section, the total setup of the tests will be discussed in more detail. The flume setup, model
design, floater configurations and wave conditions will be explained.
1For more information on the Scheldt flume, see https://www.deltares.nl/nl/faciliteiten/scheldegoot/
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Flume setup
A schematic overview of the configuration of the floating solar system, its mooring points, and the mea­
surement devices in the Scheldt flume is presented in Figure 4.1. A picture of the setup is shown in
Figure 4.2, and the exact positions of the objects present in the flume, measured from the wave paddle,
are given in Table 4.1.

The setup was (approximately) two dimensional as the waves propagate along the 50 m long flume.
The water depth was set to 0.85 m. Plane waves propagate in 𝑥­direction along the length of the basin.
They have a surface elevation in 𝑧­direction and are considered constant in 𝑦­direction. Therefore, only
one (orthogonal) incoming angle 𝜃 = 0 is considered.

The waves are created by the wave paddle and propagate through the first set of wave gauges (WHM
1­4) towards the system. Behind the system, the waves are measured again with the second set of
wave height meters (WHM 5­8). At the end of the flume, the waves are dampened out for the largest
part. A reflected wave will travel back through the system, but can be filtered out in the result analysis.
Any reflected waves that end up at the beginning of the flume are actively dampened out by the wave
paddle; the Active Reflection Compensation (ARC) is used.

For all tests, second order steering was used for the wave paddle. This compensates for spurious
waves and creates much of an airy wave as possible.

Figure 4.1: Schematic top­view of setup in the Scheldt flume. Wave paddle generates a wave propagating to the right. Surface
elevation of the water measured by wave height meters WHM1­8, centred in the middle of the flume. Minimum system size of 6
rows of floater arrays and maximum system size of 33 rows of floater arrays are shown. The positions of these objects are also
given in Table 4.1.

Figure 4.2: Picture of the flume setup with a configuration of 12 by 8 floaters.
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object position [m]
wave paddle 0.0
WHM 1 8.0
WHM 2 8.6
WHM 3 8.9
WHM 4 9.9
mooring point front (33 rows) 11.4
fore system (33 rows) 13.0
mooring point front (6 rows) 24.4
fore system (6 rows) 26.0
aft system 28.9
mooring point back 30.5
WHM 5 31.0
WHM 6 31.6
WHM 7 31.9
WHM 8 32.9
wave dampener 50.0

Table 4.1: Position of objects in Scheldt flume, measured from the wave paddle.

In Appendix H, the setup of the measurement devices, the floating model and the mooring connection
are explained in more detail.

Design of the model
For the design of the model, the floating solar system of Oceans of Energy was taken as basis. Its
properties were scaled back to the model scale, see Table 4.2. Together with the dimensions of the
flume, this also imposed the maximum number of floaters that would fit into the width of the basin,
which was 8. These rows of 8 floaters were installed perpendicular to the wave propagation direction
and then connected together in the direction parallel to the flume. The top view of such a setup is
shown in Figure 4.2.

physical parameter full size model size (desired) model size (realised)
floater length [m] 11.75 0.47 0.47
floater width [m] 2.13 0.085 0.085
floater height [m] 0.22 0.009 0.012
floater mass [kg] 2400 0.154 0.20∗
floater draft [m] 0.093 0.004 0.004
gap size [m] 0.3 0.012 0.012
water depth [m] 21.25 0.85 0.85
max wave height [m] 8.0 0.32 0.32

Table 4.2: Basin test model parameters, shown for full scale and model scale. The middle column gives the desired model
dimensions by using scaling, the right column gives the actual realised dimensions.
* The weight of a single floater with interconnectors attached was measured at 0.17 kg when dry, 0.20 kg when water was
absorbed (into the concrete layer).

The floater height and mass were realised slightly different from the intended parameters, but this dif­
ference is small enough. Namely, a realistic simulation of the offshore floating structure is still realised
as the growth of additional mussels would also lead to increased mass and draft.

The floaters were made of XPS2 isolation panels with a concrete top and bottom layer. This material
approximately had the desired density, was easy to work with and not too expensive. The interconnec­
tors in between the floaters were simulated using NBR rubber cord with a 4 mm diameter. These were
attached on top of the floaters with zip ties, at the same location of the floaters as the full scale system.
2Extruded polystyrene, consists of closed cells and therefore offers higher stiffness and less water absorption than expanded
polystyrene (’piepschuim’ in Dutch).
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Floater configurations
To determine the effect of the system size, the number of floater rowswas gradually increased during the
tests. This was done to investigate the influence of the number of floater rows 𝑛𝐹𝐿 on the transmission
𝐾𝑡. During the tests, the system was expanded with new floater blocks in direction of the wave paddle
(as can be seen in Figure 4.1). The system size configurations that were used during the tests are
show in Table 4.3.

test file label number of floater arrays total number of floaters
A 0 0
B 6 48
C 12 96
D 18 144
E 24 192
F 33 256

Table 4.3: System size configurations used during the basin tests. The first column shows the name of the test series, denoted
by a letter. The second column shows the number of floater rows present in these tests. The third column shows the total number
of floaters which are then present, which is equal to 8 times the number of floater arrays.

Wave conditions
In total, 32 different wave conditions were tested for each floater configuration. The majority of these
tests were regular waves, to see exactly what happens for a singe frequency or wavelength and speci­
fied wave height. These are the kind of waves that the diffraction model (Chapter 5) will also describe,
and are therefore well suitable for comparison. Spectral wave conditions were tested to see what the
response is to the actual North Sea conditions. A JONSWAP spectrum is used to simulate the wave
environment at the offshore test site.

The 25 regular wave conditions that were tested are given in Appendix I, Table I.1. These were chosen
such that the dependencies on the wave height, wave period (or wavelength) and system size could
be isolated from the results. Wave heights varied from 𝐻 = 0.04 m to 𝐻 = 0.32 m at basin scale, trans­
lating with scale factor 𝑠 = 25 to waves in between 𝐻 = 1 m and 𝐻 = 8 m. Wave periods were chosen
in between 𝑇 = 0.6 s and 𝑇 = 5 s, which scales with a factor of √𝑠 to 𝑇 = 3 s and 𝑇 = 25 s (swell waves).

For the irregular wave tests, the exact conditions are given in Appendix I, Table I.2. Five North Sea
conditions with increasing wave energy were chosen, based on measurement data of most occurring
sea states [1]. Their significant wave heights varied from 𝐻𝑠 = 0.04 m to 𝐻𝑠 = 0.20 m, which corre­
sponds to 𝐻𝑠 = 1.0 m up to 𝐻𝑠 = 5.0 m at offshore scale. The peak periods were minimally 𝑇𝑝 = 1 s
and maximally 𝑇𝑝 = 2 s, which translates to 𝑇𝑝 = 5 s and 𝑇𝑝 = 10 s on full scale. Two additional tests
were added with less steep waves.

For more information on the choice of these wave conditions, please see Appendix I.

4.1.2. Analysis method
Time series analysis
Now that the experimental setup has been introduced, the method to obtain transmission and reflection
results from the raw measurement data is explained in this section.

In every wave test, the surface elevation is measured with a frequency of 400 Hz by 8 wave gauges. The
resulting time series data is combined and processed to filter out forward and backward propagating
waves. Both the first set of wave gauges, wave height meters 1­4, and the second set of wave gauges,
wave height meters 5­8, will give a forward and backward propagating wave signal each. Therefore,
the time series analysis results into four signals:

• Forward propagating waves in front of system (WHM 1­4) ­ 𝑝1

• Forward propagating waves behind floating system (WHM 5­8) ­ 𝑝2

• Backward propagating (reflected) waves in front of system (WHM 1­4) ­ 𝑟1
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• Backward propagating (reflected) waves behind floating system (WHM 5­8) ­ 𝑟2

In Figure 4.3, a schematic diagram of these wave signals is given. The definitions of the wave heights
𝐻𝑝1, 𝐻𝑟1, 𝐻𝑝2 and 𝐻𝑟2 are shown.

Figure 4.3: Schematic diagram of the four wave signals that are found from the time series measurements by the wave gauges.
The arrows show the propagation direction of the wave signal.

The separation into the wave signals that propagate in opposite direction is needed because the reflec­
tions from the back of the flume and from the floating object would influence the wave height measured.
These wave signals were obtained by using the phase shift of the waves in between the wave gauges.
With a known distance between the sensors (given in Table 4.1) a single wave signal can be recon­
structed from four time series of surface elevation using the phase difference. For the regular wave
analysis, the leading order harmonic coefficients are determined by least squares fit of the amplitudes
as described in the appendix of Jacobsen et al. (2011) [29]. For irregular wave analysis, the non­linear
ELA separation method is used [19]. Both methods are briefly explained in Appendix J.

Regular wave parameters
In the regular wave tests, the same wave signal is created over the whole duration of the test. There­
fore, when averaging over time, a single set of wave heights that correspond to the four wave signals
𝐻𝑝1, 𝐻𝑟1, 𝐻𝑝2 and 𝐻𝑟2 (Figure 4.3) describes the full behaviour of the equilibrium wave environment.
With these wave heights, an analysis can be done on the influence of the floating model on the waves.
To begin, the transmission coefficient, defined before in equation (1.1), indicates what portion of the
waves is transmitted through the structure. For the regular wave tests, it is computed by

𝐾𝑡 =
𝐻𝑝2
𝐻𝑝1

(4.1)

For reflection, one would wish to define a reflection coefficient (1.2) that shows the amount of reflection
that is caused by the floating structure. However, the backward propagating signal 𝐻𝑟1 is largely influ­
enced by reflections from the back of the flume, as the wave dampener still reflects about one third. The
objective is now to filter out the backward propagating wave signal which was caused by the system,
and not by the reflections from the back of the flume.

In the diagram in Figure 4.4, the various measured wave signals are shown in a schematic way. The
measured wave heights 𝐻𝑝1, 𝐻𝑟1, 𝐻𝑝2 and 𝐻𝑟2 (as introduced above, Figure 4.3) are split up into differ­
ent physical processes present in the flume.
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Figure 4.4: Schematic diagram of the wave heights measured in the Scheldt flume tests.

In Figure 4.4, the wave paddle is positioned on the left. It creates forward propagating waves, which are
shown in with the arrow a. These waves are part of the measured wave signal 𝐻𝑝1 and are therefore
included in its dashed box. When these waves propagate further and encounter the floating object,
they can partially reflect from the front of the structure. The part of a which is reflected back to the
wave paddle is shown by b. The remaining part of the waves propagates through the floating structure,
and will be measured as a transmitted wave d by the second set of wave gauges once it arrives there.

Along the way, dissipation by friction from the structure might take place, thus b and d do not have
to add up to the value of a. The arrow d thus displays the portion of initial waves a which is transmitted
by the system. It is part of the wave height 𝐻𝑝2, as it is propagating in positive 𝑥­direction at location 2
(behind the structure).

Once these waves reach the end of the flume, they will be dampened out by the wave dampener.
However, still around 30% of the wave signal will be reflected from the back of the flume.3 The part of
d which is reflected is denoted by f.

If the reflections from the wave dampener f are nonzero and propagate in opposite direction through
the flume, these waves influence the wave heights at both positions in the flume. This is why the filter­
ing methods are used to split the waves that propagate in opposite directions. Because f propagates
in negative 𝑥­direction, back to the wave paddle, it is part of the filtered 𝐻𝑟2 wave height. When it
propagates further, the same physical processes that wave a encountered will happen to wave f as
well, in opposite direction. It is assumed that the reflection from the object as well as the dissipation
and thus transmission are independent of propagation direction. Thus, f will be split up into a reflected
part (caused by the object) giving signal e and a transmitted part c.

Finally, the reflection parameter is now defined as the proportion of incoming waves that are being
reflected by the structure

𝐾𝑟 =
𝐻𝑏
𝐻𝑎

(4.2)

where 𝐻𝑏 is the wave height of the reflections from the structure (denoted by b in Figure 4.4) and 𝐻𝑎
the incident wave height (denoted by a in Figure 4.4).

The backward propagating signal in front of the system 𝐻𝑟1 includes both the reflection from the object
b, as well as the transmitted reflection from the end of the flume c. Therefore, 𝐻𝑏 does not immediately
3The wave dampener at the end of the flume was not an active wave dampener but an artificial beach where the waves would
break.
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follow from the (filtered) wave height measurements. A system of equations is set up to find this un­
known parameter b or b/a.

The system of equations to solve for 𝐾𝑟 in the regular wave tests, equation (4.2), is defined as fol­
lows

𝑎 = 𝐻𝑝1 (4.3)
𝑏 + 𝑐 = 𝐻𝑟1 (4.4)
𝑑 + 𝑒 = 𝐻𝑝2 (4.5)

𝑓 = 𝐻𝑟2 (4.6)
𝑏
𝑎 =

𝑒
𝑓 (4.7)

𝑑
𝑎 =

𝑐
𝑓 (4.8)

The first equations (4.3) ­ (4.6) are simply the definitions of the filtered wave heights, where the as­
sumptions are made that g=h=0. This means that the reflections at the front of the flume are assumed
to be dampened out completely by the ARC of the wave paddle (g=0), and only first order reflections
from the back of the flume are included (h=0). Equation (4.7) follows from the assumption that the
reflection from the object is symmetric; the proportion of incoming waves which is reflected from the
object is the same for waves propagating in both directions. This assumption is supported by the fact
that the floating object and its mooring were completely symmetric. Equation (4.8) is based on a sim­
ilar reasoning, namely that the proportion of a wave that is being transmitted through the structure is
symmetric.

This system of 6 equations for the 6 unknowns a ­ f can be solved. The expression that follows for the
transmission coefficient in terms of the measured wave signals 𝐻𝑝1 ­ 𝐻𝑟2 is

𝐾𝑟 =
𝐻𝑟1𝐻𝑝1 − 𝐻𝑝2𝐻𝑟2

𝐻2𝑝1 − 𝐻2𝑟2
(4.9)

The assumptions that form the basis of these equations are:

• No reflection from wave paddle

• Only first order reflection from back of the flume

• Reflection from the system is exactly the same at both ends of the floating object

• Transmission through the system is exactly the same for wave propagation in both directions

The validity of these assumptions can be doubted, especially omitting the higher order reflections from
the wave dampener end of the flume while it is known that reflection is around 30%. These points of
discussion are explained further in the discussion Chapter 6.

Irregular wave analysis
The irregular wave analysis starts with the comparison of the variance density spectra for the incident
and transmitted waves. After that, the total wave energy transmission is studied by means of a global
transmission coefficient. The final, frequency dependent, spectral transmission coefficient is defined
by splitting up the spectrum into frequency intervals. Each step will be explained shortly in this section.

Variance density spectra
As explained in section 4.1.2, the 8 time series measurements are transformed into a forward and
backward wave signal for each location in the flume. This analysis was done using the ELA separation
method [3], explained in Appendix J.2. From the froward propagating time signals, 𝐻𝑝1 and 𝐻𝑝2, the
variance density spectra are obtained using a Fast Fourier Transform.4 Thus for each test, an incident
4The analysis to obtain the variance density spectra were done by Deltares. I received the variance density spectra and the
measurement time series, and worked with the former.
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(𝑝1) and a transmitted (𝑝2) variance density spectrum are determined, which will be denoted by 𝐸𝑖 and
𝐸𝑡 respectively.

The variance density spectra were smoothened using 5­point triangular smoothing filter5, which con­
serves area under the curve, which represents energy.

Energy density spectra and total energy
To see what proportion of energy is being transmitted by the floating object in North Sea test condi­
tions, we look into the differences in the wave energy density spectra. This spectrum is obtained by
multiplication of variance density spectrum with the additional factor 𝑔𝜌 (see section 2.1.1, equation
(2.3)). Therefore, the shape of the energy density curve is the same as the variance density curves.
The energy density curve is integrated over frequency to compute the area under the energy density
curve, which gives the total energy per unit water surface E in [kg/s2], by equation (2.4). To recall,

E = ∫
∞

0
𝐸𝑒𝑛𝑒𝑟𝑔𝑦(𝑓)𝑑𝑓 = ∫

∞

0
𝑔𝜌𝐸𝑣𝑎𝑟(𝑓)𝑑𝑓

The integration of the variance density curve is done numerically with the trapezoidal method.

Global transmission coefficient
From the values for the total energy per square meter water surface, a global transmission coefficient
can be defined in the following manner

�̄�𝑡𝑛𝐹𝐿 = (
E𝑡,𝑛𝐹𝐿
E𝑖,𝑛𝐹𝐿

)
0.5

(4.11)

where E𝑡,𝑛𝐹𝐿 is the transmitted energy per surface area for the test with 𝑛𝐹𝐿 floater arrays, and E𝑖,𝑛𝐹𝐿
is the same for the incident energy per suface area. The square root is taken in this definition as trans­
mission coefficient is defined as ratio between wave heights (equation (1.1)), and the relation between
wave energy and wave height is E ∝ 𝐻2. �̄�2𝑡 gives the percentage of wave energy that is transmitted.

Frequency dependent transmission coefficient
To investigate how the wave energy transmission depends on the frequency, the spectral transmission
coefficient is defined over a number of frequency intervals. Its definition is shown in equation (4.12).
This equation is similar to the global transmission coefficient, equation (4.11), but for a frequency inter­
val 𝑗 defined as [𝑓𝑗−1, 𝑓𝑗] for 𝑗 ∈ {1, 2, ..., 𝑛𝑏𝑖𝑛𝑠}. This analysis allows for comparison between the regular
and irregular wave transmission results.

The spectral transmission coefficient 𝐾𝑡 is defined for each interval 𝑗 with a system setup of 𝑛𝐹𝐿 floater
arrays

𝐾𝑡(𝑗, 𝑛𝐹𝐿) = (
∫𝑓𝑗𝑓𝑗−1 𝜌𝑔𝐸𝑡,𝑛𝐹𝐿(𝑓)𝑑𝑓

∫𝑓𝑗𝑓𝑗−1 𝜌𝑔𝐸𝑖,𝑛𝐹𝐿(𝑓)𝑑𝑓
)
0.5
= (

[E𝑡,𝑛𝐹𝐿]𝑗
[E𝑖,𝑛𝐹𝐿]𝑗

)
0.5

(4.12)

where 𝑓𝑗 is the upper bound of the frequency interval, 𝑓𝑗−1 is the lower bound of the frequency interval,
𝐸𝑡,𝑛𝐹𝐿(𝑓) is the variance density of the transmitted wave signal for the setup with 𝑛𝐹𝐿 floater arrays
and 𝐸𝑖,𝑛𝐹𝐿(𝑓) is the same for the incident wave signal. In the second part of this equation, the total
transmitted energy per unit ocean surface area in frequency interval 𝑗 is denoted by [E𝑡,𝑛𝐹𝐿]𝑗, the total
incident energy by [E𝑖,𝑛𝐹𝐿]𝑗.

The integration had to be done before the division because the variance density spectra of the inci­
dent and transmitted wave signal were not given for exactly the same frequencies.
5A triangular smoothing filter is a way to smoothen a curve while keeping the area under the curve constant. The implemented
weighted smoothing function is as follows

𝑠𝑗 =
𝑦𝑗−2 + 2𝑦𝑗−1 + 3𝑦𝑗 + 2𝑦𝑗+1 + 𝑦𝑗+2

9 (4.10)
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4.2. Results
In this section, the results of the Scheldt flume model tests will be discussed. The time series mea­
surements of the wave gauges were used to compute transmission and reflection coefficients for each
regular wave test. The irregular wave test results were used to evaluate the variance density spectra
and a frequency dependent transmission coefficient as well.

All results will be presented on full scale dimensions, unless stated otherwise. The regular wave test
results will be discussed in section 4.2.1, the irregular wave tests in section 4.2.2.

4.2.1. Regular wave test results
In this section, the results from the regular wave tests will be presented. This constitutes of an analysis
of the wave transmission and wave reflection in presence of the floating multi­body solar structure.
The dependence of these parameters on the wavelength, wave height and system configuration are
analysed one by one. Lastly, some remarks can be made on the influence of dissipation on wave at­
tenuation.

Transmission
The transmission coefficient 𝐾𝑡 for regular waves, equation (4.1), was computed for every regular wave
test. The value of 𝐾𝑡 varied strongly depending on the wave condition, as theoretically expected from
floating breakwater literature (see section 3.2).

When the floating structure was present, 87% of the tests still showed a high transmission of 𝐾𝑡 > 0.9.
This gives a first indication that the structure acts as a wave follower and had little impact on the wave
environment. Only the two tests with the highest frequency and shortest wavelengths within the testing
programme (tests 15 and 32: see Table I.1) showed 𝐾𝑡 < 0.8. To investigate the dependence of 𝐾𝑡
on the wave properties further, the dependence on wavelength 𝜆 (and thus wave frequency 𝑓), wave
height 𝐻 and the number of floater arrays 𝑛𝐹𝐿 are considered below.

Wavelength dependence
To isolate the relation between transmission and wavelength, the tests with a constant wave height of
𝐻 = 1 m (full scale) are considered. For these tests, the transmission coefficients are plotted in Figure
4.5 as a function of the dimensionless wavelength 𝜆/𝐿𝑓. Here, 𝐿𝑓 the length of a rigid floater along
the propagation direction. 𝐿𝑓 = 12 m on offshore scale, and 𝜆 follows from the nonlinear dispersion
relation (2.17).

Figure 4.5: Transmission coefficient defined as in equation (4.1), as a function of the dimensionless wavelength 𝜆/𝐿𝑓 (wavelength
over floater length). Plotted for regular waves with constant wave height of 𝐻 = 1 m on offshore scale, for different system sizes
𝑛𝐹𝐿.
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From this plot, it can be seen that for longer wavelengths, 𝜆/𝐿𝑓 ≥ 3, the transmission is almost 1 for all
system configurations. The waves are thus able to pass through underneath the structure, and are not
affected by the floating solar platforms. When the wavelength is long in comparison to the rigid parts
of the structure (𝜆/𝐿𝑓 > 3), the system can follow along with the wave. This creates a motion where
the floating multi­body structure moves as a ’patchwork’ of blocks over the wave.

For the shorter wavelengths, 𝜆/𝐿𝑓 ≤ 2, there is a clear difference between the calibration test (shown
in blue for the 0 floater arrays) and the other tests where the floating system was present in the flume.
This confirms the hypothesis and rule of thumb introduced in Chapter 3, section 3.2, which states that
the transmission is low for wavelengths shorter than 2𝐿𝑓 because of opposite forces acting on the rigid
body. For 𝜆/𝐿𝑓 < 2, the transmission could be a uniformly increasing function of 𝜆/𝐿𝑓. However, the
amount of measurement points to support this possible relation is only 3 per configuration. All test
showed a transmission of almost 0 for the test with 𝜆 = 14 m, 𝜆/𝐿𝑓 = 1.17.

Notice the presence of fluctuations and variations in Figure 4.5 (and later in Figure 4.6 as well) in
the the value of 𝐾𝑡 over the desired parameter. These fluctuations are in the order of magnitude of
0.05, and will not be studied in detail. It could be that there are actual differences in physical behaviour
between the tests that lead to a different transmission, such as a specified oscillation mode. However,
it could also be that these fluctuations fit in the uncertainty interval around the transmission values or
are caused by three dimensional effects. Therefore, conclusions for the regular wave tests are focused
on the trends of the transmission, rather than on these smaller scale variations.

Wave height dependence
The dependence of the wave transmission on the wave height was tested by varying the wave height
over the tests while leaving the wave period (and thus wavelength) constant. These tests showed no
clear wave height dependence. Both for the regular tests with constant period 𝑇 = 7 s (𝜆/𝐿𝑓 = 6.2) and
the ones with 𝑇 = 10 s (𝜆/𝐿𝑓 = 10.5) on full scale, the values of the transmission coefficient differed
minimally between the tests. The transmission coefficients 𝐾𝑡 were plotted over the dimensionless
wave height 𝐻/𝐻𝑓, which is defined as wave height over floater height. On full scale, the floater height
was 𝐻𝑓 = 0.3 m. The plots are shown in Figure 4.6.

(a) Constant wave period 𝑇 = 7 s (b) Constant wave period 𝑇 = 10 s

Figure 4.6: Transmission coefficient defined as in equation (4.1), as a function of the dimensionless waveheight 𝐻/𝐻𝑓 (wave
height over floater height). Plotted for regular wave tests with constant wave period 𝑇, for different system sizes 𝑛𝐹𝐿.

Note the scale of the transmission coefficient axis is in between 𝐾𝑡 ∈ [0.9, 1]. Thus, the transmission
was almost constant when the wave height was varied. The difference between the tests with various
wave heights was maximally 5% for a certain number of floater arrays. Moreover, this was even the
case for the calibration test as well. Therefore, any difference in transmission due to the changing wave
height could be smaller than the impact of side effects such as flume friction (which were present in the
calibration test).
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To look more closely into wave height dependence, it might be better to look at tests with a (constant)
period in the range where the transmission is actually lowered by the system. For the wave conditions
tested with differing wave height, the transmission was almost full. Therefore, the influence of higher
waves is maybe small because there is no impact of the system at all. In the irregular wave tests,
steepness or wave height dependence can be studied by looking at the tests which had the same peak
period but a different significant wave height. These results are discussed in section 4.2.2. //
System size dependence
All tests were repeated for the different configurations of floater arrays 𝑛𝐹𝐿. In general, it was often true
that the largest system configuration of 33×8 floaters had the lowest transmission value 𝐾𝑡 per test.
However, the difference in transmission values between these various system configurations is small.

In Figure 4.5, the lines that correspond with different 𝑛𝐹𝐿 lie relatively close together. This indicates
that influence of the system size is limited, especially in comparison with the influence of the incident
wavelength or wave frequency. The dependence on the wavelength is clearly much more dominant
than the dependence on the number of floaters present. For the smallest wavelength where 𝐾𝑡 → 0,
the difference between the floater configurations was largest (in the order of 0.1 or 10%).

In Figure 4.6, the difference in transmission for a different the number of floater arrays present 𝑛𝐹𝐿 ∈
{6, 12, 18, 24, 33} was maximally 0.05. This difference is within the margins of the fluctuations between
the tests and might therefore might lie within the uncertainty range of the results. Furthermore, when
transmission is almost 1 it did also happen that smaller system configurations show lower transmission
than the largest system configuration with 𝑛𝐹𝐿 = 33. An example can be seen in the values for 𝐾𝑡 when
𝐻/𝐻𝑓 ≈ 3 in Figure 4.6b (which corresponds to test­ID 6).//
In conclusion, the number of floating platforms included in the regular wave tests did not have a large
impact on the wave transmission.

Reflection
The reflection coefficient 𝐾𝑟, as defined by equation (4.9), is plotted as a function of the dimensionless
wavelength 𝜆/𝐿𝑓 in Figure 4.7. Similarly to the transmission in Figure 4.5, only the tests with a constant
wave height of 𝐻 = 1 m were taken into account.

(a) All system sizes 𝑛𝐹𝐿 = 0, 6, 12, 18, 25, 33 (b) Calibration test and average over 𝑛𝐹𝐿 = 6, 12, 18, 24, 33 tests.

Figure 4.7: Reflection coefficient 𝐾𝑟 as a function of wavelength over floater length 𝜆/𝐿𝑓, shown for tests with a different number
of floater arrays and the calibration test. Tests had a constant wave height of 𝐻 = 1m full scale.

Figure 4.7 shows that for the large wavelengths, 𝜆/𝐿𝑓 ≥ 3 the reflection is close to 0. That would mean
the reflections from the front of the floating solar structure were negligible in relation to the incoming
wave height. In this region, the transmission was close to one, 𝐾𝑡 ≈ 1, see Figure 4.5. Furthermore,
for 2 < 𝜆/𝐿𝑓 < 8, the lack of transmission could also be partially explained by friction from the sides of
the flumes. Therefore, it was indeed expected that the reflection coefficient 𝐾𝑟 was relatively small in
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his range.

For short wavelengths, 𝜆/𝐿𝑓 ≤ 2, reflection increases to values up to 𝐾𝑟 = 0.3. Transmission was
lower in this region, and it can now be concluded that part of the wave energy attenuated has been
redirected back in opposite direction. To visualise whether this reflection can explain the lack of trans­
mission fully, the reflection and transmission coefficients have been plotted together with 𝐾2𝑡 + 𝐾2𝑟 in
Figure 4.8.

The uncertainties in this reflection parameter 𝐾𝑟 could be high in relation to the result values however,
possibly in the order of ±0.05, which is more than 25%. There are three reasons to be critical about
the reflection results shown in Figure 4.7. First, the reflection takes negative values, which cannot be
physically explained. Second, the reflection values for the calibration tests show fluctuations around
its expected value 𝐾𝑟 = 0. Third, there are quite some differences between the results for different
floater configurations 𝑛𝐹𝐿 (more than in case of the transmission parameter results 𝐾𝑡). This might be
explained by errors in the assumptions for filtering out the reflected waves from the back of the flume,
and will be discussed in Chapter 6.

Energy conservation: transmission, reflection and dissipation
The reflection and transmission coefficients, 𝐾𝑟 and 𝐾𝑡, have been shown as a function of the di­
mensionless wavelength 𝜆/𝐿𝑓 in Figures 4.5 and 4.7. To complete the description of wave­structure
interaction, the non­linear effects can be collected into a similar dissipation coefficient 𝐾𝑑. From energy
conservation in presence of a passive system, it follows that the sum of squared coefficients should
add up to one 𝐾2𝑡 + 𝐾2𝑟 + 𝐾2𝑑 = 1. Namely, all incident energy had to be either transmitted, redirected
(reflected) or dissipated. Therefore, the amount of wave energy dissipation can be derived from the
transmission and reflection results.

The analysis should be compensated for the friction by the flume however, which can be found from
the calibration tests. When there was no system present, the transmission coefficient was decreased
up to 𝐾𝑡0 = 0.9 already for the high­frequent waves, which indicates a significant decrease in wave
energy of 19% between the two sets of wave gauges. To include this effect in the energy analysis, an
additional parameter 𝐾𝑑,𝑓 is defined from the transmission results, as 𝐾𝑑,𝑓 = √1 − 𝐾2𝑡0. This dissipation
term, which was not caused by the floating structure, has to be considered in the energy conservation
equation as well.

Finally, the dissipation effects caused by the system can be defined as the rest term𝐾𝑑 = √1 − 𝐾2𝑡 − 𝐾2𝑟 − 𝐾2𝑑,𝑓.
All coefficients 𝐾𝑡, 𝐾𝑟, 𝐾𝑑,𝑓 and 𝐾𝑑 have been plotted as a function of the wave frequency 𝑓 in Figure
4.8.
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Figure 4.8: Transmission 𝐾𝑡, reflection 𝐾𝑟, flume dissipation 𝐾𝑑,𝑓 and structure dissipation 𝐾𝑑 coefficients, as a function of
incident wave frequency 𝑓 [Hz]. Plotted for regular waves with constant wave height of 𝐻 = 1 m on offshore scale, averaged
over the different system size configurations 𝑛𝐹𝐿.

From Figure 4.8, it can be observed that the low frequency range 𝑓 ≤ 0.15 Hz (which is equal to
𝜆/𝐿𝑓 ≥ 6) shows almost full transmission. For frequencies higher than this value, the transmission
coefficient decreased uniformly in 𝑓. This decrease in transmission is explained by an increased re­
flection, an increased flume dissipation as well as an increased dissipation by the floating model. The
measured flume dissipation and wave reflection did not add up to the total decrease in wave energy. In
fact, the regular wave results indicate that frequency dependent dissipation effects might be dominant
over the linear effects in the cause for wave energy attenuation. This is an important conclusion with
respect to the model approach as well, as linear wave theory can only describe the redirection of waves
and not the dissipation due to higher order effects.

The fluctuations in the dissipation coefficient for 𝑓 ≤ 0.15 Hz reflect the high uncertainty of this method,
as dissipation is not assumed vary so much over a small difference in incident wave frequency. Any
errors in 𝐾𝑟 and 𝐾𝑑,𝑓 will automatically show in the rest term 𝐾𝑑 as well. Especially the reflection coef­
ficient is likely to have included errors, which will be discussed in Chapter 6. These could have lead to
an underestimation of 𝐾𝑟, which translates to an overestimation of 𝐾𝑑.

Some dissipative effects could indeed be observed during the regular wave tests. Overtopping was
visible: the waves splashed over the first arrays of floaters, leaving these wet. Friction effects and
turbulent flows might have therefore dissipated some of the incident wave energy. Also, the gaps in
between the floaters filled and emptied when waves passed by. Thirdly, the structure itself and the
mooring springs were deformed slightly over the test runs.

4.2.2. Irregular wave test results
In this section, the results from the irregular wave tests will be presented. These consist of the analysis
of the variance density spectra first, followed by an analysis on energy transmission. Again, especially
the frequency dependence of this transmission is looked into. Short observations are presented on the
system size and wave height dependence as well.

In Figure 4.9, the variance density spectra 𝐸(𝑓) are shown for all irregular wave tests with wave condi­
tions 𝐻𝑠 = 1m and 𝑇𝑝 = 5 s (full scale, corresponds to test­ID 25). Each subfigure shows the spectrum
for one of the system configurations, with 𝑛𝐹𝐿 the number of floater arrays. For each test, the incident
and transmitted spectra are plotted. The incident spectrum is the forward propagating spectrum in
front of the system, from wave gauges 1­4 (previously denoted as 𝑝1). The transmitted spectrum is the
forward propagating spectrum behind the system, from wave gauges 5­8 (previously denoted as 𝑝2).
The JONSWAP curve at which the test was initialised shows in the plots as well.
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(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure 4.9: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 25 (𝐻𝑠 = 1 m,
𝑇𝑝 = 5 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.

Note that the spectral plots have been cut off at 𝑓 = 0.5 Hz. Higher frequencies were included as well,
but the variance density was low. Observations on the calibration test results in 4.9a will be discussed
first, followed by the effects of the floating solar structure by looking at Figures 4.9b­f.

Calibration test
A couple of observations can be made on the calibration test variance density spectrum shown Figure
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4.9a. Firstly, the incident and transmitted spectrum do not overlap perfectly. For the peak frequency
𝑓𝑝 = 0.2 Hz and the higher frequencies the transmitted variance density is a bit lower. Thus, when
propagating through the flume the (shorter) waves lose a bit of energy, due to friction by the flume
boundaries (which was also observed in the regular wave tests). This could also be the reason for the
difference with the intended JONSWAP spectrum for 𝑓 ≥ 0.2 Hz.

What can furthermore be observed is the peak at 𝑓 = 0.36 Hz in both the incident and transmitted
spectrum, corresponding to a wavelength of 𝜆 = 12 m. This higher variance density was also visible
in the (calibration) tests 26 (with a JONSWAP spectrum for 𝐻𝑠 = 2 m and 𝑇𝑝 = 6 s). For the other
irregular tests, additional peaks in incident (and transmitted) calibration spectra were found at 𝑓 = 0.25
Hz (𝜆 = 25 m), and 𝑓 = 0.29 Hz (𝜆 = 18 m). Notice that the additional peaks also show in the tests
with floating systems present. Because the higher values in the variance density spectra show up con­
sistently, it is unlikely that this is a random error. The presence of additional incident waves at certain
frequencies will be discussed further in Chapter 6.

Effects of floating object
When comparing the tests with a floating solar system present (Figure 4.9b­f) to the calibration test
spectrum discussed before (Figure 4.9a), there are differences in the incident wave spectrum as well
as the transmitted wave spectrum.

The most important observation is that for higher frequencies (𝑓 > 0.26 Hz, which translates to 𝜆 < 23
m) the variance density of the transmitted wave is decreased almost fully to 0. Thus, there are very
few waves left in the resulting signal for these higher frequencies. The floating system shows to work
as a low­pass filter: low frequencies (𝑓 ≤ 0.26 Hz) are not really affected by the object whereas the
high frequencies (𝑓 > 0.26 Hz) are attenuated completely. The transition frequency corresponds to the
wavelengths 𝜆/𝐿𝑓 = 2 m, which is in accordance with the literature (section 3.2) and the regular test
results (section 4.2.1).

The only exception in this low­pass filter is the frequency 𝑓 = 0.36 Hz, where 𝜆/𝐿𝑓 = 1, which shows up
in the transmitted spectrum for all tests with varying system size. This peaks is the same as the incident
spectrum peak, but is not dampened out entirely whereas the other (peak) frequencies are. Therefore,
this could indicate a frequency that fits the system well and might easily be transmitted. However, a
system mode which generates waves with 𝜆 = 𝐿𝑓 is not an intuitive motion.

Effects of system size
For same wave spectrum but different system sizes (number of floater arrays), the incident and trans­
mitted variance density spectra look very much alike. The effect of a floating solar system of 6×8
floaters on the waves is similar to the effect of a 33×8 floater system. The conclusion that can be taken
is that the wave attenuation does not scale one­to­one with the number of floaters / system size.

The three differences that can be seen when increasing the number of floaters were the following.
Firstly, the transmitted variance density for the peak frequency 𝑓𝑝 = 0.2 Hz decreases further when the
system is enlarged. Secondly, the peak in transmitted spectrum at 𝑓 = 0.3 Hz, which is present for
𝑛𝐹𝐿 = 6, fully disappears for the larger system. Thirdly, the peak in the incident wave spectrum at this
frequency increases further when more floaters were present.

Different wave conditions
Apart from the irregular wave test 25 (𝐻𝑠 = 1 m and 𝑇𝑝 = 5 s) discussed previously, six other irreg­
ular wave conditions were tested. These were four more severe North sea conditions as well as two
additional tests with less wave steepness (higher 𝑇𝑝 with same 𝐻𝑠). The plots of all variance density
spectra obtained from the irregular basin tests are given in Appendix K.

In general, similar behaviour to Figure 4.9 could be seen for the other irregular wave tests. For higher
wave frequencies, the spectra are changed visibly whereas the part of the spectrum with the lower
frequencies remains unchanged. The difference between incident and transmitted spectra was largest
for test 25 (in percentages): a lower proportion of the variance density (or wave energy) was attenuated
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in the other tests. This is in accordance with expectations because all other irregular tests had their
spectra distributed around a lower peak frequency (as the peak wave period was longer). As higher
frequencies are affected more, the impact of the floating object is smaller when these are less present
in the incident wave spectrum. Additionally, extra peaks in both the incident and transmitted spectra
showed to be smaller.

To summarise the observations from the variance density spectra, the most important conclusion is
that the higher frequency waves are attenuated by the system whereas the low frequency waves are
not influenced as much. For the wavelengths smaller than twice the floater length, the transmitted vari­
ance density goes to zero. Only when the wavelength is equal to the floater length, these high frequent
waves still show in the transmitted wave spectrum. The effect of enlarging floating solar system to a
higher number of floaters was small, as the transmitted spectra were almost identical. For the different
wave conditions tested, the overall behaviour showed the same. The percentual difference between
the incident and transmitted wave spectrum was smaller for the rougher sea states, thus the impact of
the floating solar structure seemed smaller.

Energy transmission
The values for the total energy per unit ocean surface area E are computed for each incident and
transmitted wave spectrum, and are given in Table 4.4.

TestID E𝑖0 E𝑖6 E𝑖12 E𝑖18 E𝑖24 E𝑖33 E𝑡0 E𝑡6 E𝑡12 E𝑡18 E𝑡24 E𝑡33
25 0.56 0.59 0.59 0.61 0.60 0.63 0.44 0.34 0.32 0.30 0.29 0.27
26 2.45 2.57 2.59 2.62 2.62 2.67 2.09 1.84 1.77 1.71 1.67 1.58
27 5.78 5.95 5.90 5.95 5.99 6.00 5.24 5.06 4.98 4.86 4.79 4.69
28 10.06 10.17 10.11 10.18 10.18 10.24 9.28 9.00 8.74 8.63 8.43 8.30
29 15.58 15.65 15.66 15.73 15.76 15.74 14.38 14.12 13.80 13.67 13.46 13.18
30 0.66 0.68 0.67 0.68 0.68 0.68 0.60 0.58 0.57 0.56 0.56 0.55
31 2.55 2.56 2.55 2.56 2.57 2.58 2.38 2.34 2.31 2.28 2.28 2.26

Table 4.4: Total wave energy per m2 water surface, for the irregular wave tests. Each test­ID stands for a wave condition tested
as defined in Table I.2. The energy values for the incident wave field with 𝑛𝐹𝐿 floater arrays present are shown as E𝑖𝑛𝐹𝐿 , and for
the transmitted wave field as E𝑡𝑛𝐹𝐿 . The energy per unit surface is given in [kg/s

2]. Note that these values have been derived
from the forward propagating wave spectrum, so all reflection propagating in opposite direction has been filtered out.

For all irregular wave tests, the transmitted wave energy E𝑡𝑛𝐹𝐿 is lower than the incident wave energy
E𝑖𝑛𝐹𝐿 . Therefore, we can again conclude that the waves are attenuated, even in the calibration tests.
Also, for all tests there is a (positive) difference between the incident wave energy for the test with a
floating object present E𝑖𝑛𝐹𝐿 for 𝑛𝐹𝐿 = 6, 12, 18, 24, 33 and the incident wave energy for the calibra­
tion tests E𝑖0. This means that there is more incident wave energy for the tests with a system present,
whereas the wave paddle was sending out waves with exactly the same steering file. This phenomenon
is observed previously and will be discussed in Chapter 6.

The values of this global transmission coefficient, see equation (4.11), for all irregular wave tests are
shown in Table 4.5. The square of this transmission coefficient gives the amount of wave energy that
is being transmitted.6 Clearly, the transmission percentage for the total wave energy was lowest for
the first two irregular wave tests. These were tests with lower (significant) wave heights and shorter
(peak) wave periods (𝐻𝑠 = 1 m, 𝑇𝑝 = 5 s and 𝐻𝑠 = 2 m, 𝑇𝑝 = 6 s for test 25 and 26 respectively). This
conclusion was also drawn from the variance density spectra, and was explained by the fact that these
tests had more waves in the region where wave attenuation is present (𝜆𝑓 < 2).
6For example, with the maximum system and North sea wave conditions of test 25 (𝐻𝑠 = 1m, 𝑇𝑝 = 5 s), a calculation of 1−�̄�2𝑡33
gives that 57% of the total wave energy is attenuated. Note that this includes approximately 21% of wave energy dissipation
by friction in the flume, 1 − �̄�2𝑡0.
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TestID �̄�𝑡0 �̄�𝑡6 �̄�𝑡12 �̄�𝑡18 �̄�𝑡24 �̄�𝑡33
25 0.89 0.76 0.74 0.71 0.69 0.65
26 0.92 0.85 0.83 0.81 0.80 0.77
27 0.95 0.92 0.92 0.90 0.89 0.88
28 0.96 0.94 0.93 0.92 0.91 0.90
29 0.96 0.95 0.94 0.93 0.92 0.91
30 0.95 0.93 0.92 0.91 0.91 0.89
31 0.97 0.96 0.95 0.94 0.94 0.94

Table 4.5: Global transmission coefficients �̄�𝑡𝑛𝐹𝐿 for each irregular wave test with 𝑛𝐹𝐿 floater arrays present. Defined from the
total transmitted over total incident total wave energy shown in Table 4.4. Each test­ID stands for a wave condition tested as
defined in Table I.2.

For the tests where transmission was lowest, the differences between the various number of floater
arrays were also largest. The differences between �̄�𝑡6 and �̄�𝑡33 are largest for tests 25 and 26. It is
intuitive that if the system of 6 floater arrays has a nearly negligible effect on the waves, enlarging the
system will not change the results as much. On the other hand, if the transmission is significantly lower
because of the small system, the dependence on the number of floaters is higher.

The exact dependence of the global transmission coefficient on the system size is shown in Figure
4.10.

Figure 4.10: Global transmission coefficient �̄�𝑡𝑛𝐹𝐿 as a function of the number of floater arrays present 𝑛𝐹𝐿 shown for all seven
irregular wave tests 25­31 (with wave conditions shown in I.1).

In this plot of the global transmission coefficients (Table 4.5), it can be seen that the transmission of the
total wave energy is linearly dependent on the number of floaters. However, the slope of this relation
differs per wave condition and is maximally 0.004. If the impact on the waves is large (test 25), the
transmission is more dependent on the number of floaters.

To investigate further whether the difference in the global transmission coefficient among the irreg­
ular tests was indeed caused by the difference in wave periods or frequencies that were present in the
spectrum, the frequency dependence of the energy transmission is discussed in the next section.

Frequency dependence
In Figure 4.11, the transmission coefficients as defined by equation (4.12) are plotted against the fre­
quency. The transmission coefficient for the irregular calibration tests are given in subfigure (a) and
the irregular tests with the largest floating system present (33×8) in subfigure (b). The number of bins
taken for this computation was 𝑛𝑏𝑖𝑛𝑠 = 60 distributed over the interval 𝑓 ∈ [0.1, 0.3] Hz. The transmis­
sion coefficient plots for the other floating system configurations (𝑛𝐹𝐿 = 6, 12, 18, 24) are included in
Appendix L.
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Only the frequency interval between 𝑓 = 0.1 Hz and 𝑓 = 0.3 Hz is looked at, as these are the val­
ues for which the incident variance density or energy density values were not too close to zero for the
irregular tests 25­31. In other words, these are the frequencies where the energy was present. When
one would look at the transmission coefficient over a larger frequency interval, the 𝐾𝑡 values differ a lot
per test and can lie far from 1 (e.g. 𝐾𝑡 = 3). This can be explained by the small values of 𝐸𝑖(𝑓) ≈ 0 for
𝑓 > 0.3 Hz. From the definition of the transmission coefficient it follows that one will then divide by a
small number, which gives rise to large errors. In this part of the spectra there is not that much energy
present; the number of waves with these frequencies were limited and thus a large error can occur in
computation based on these values.

(a) Calibration tests, 𝑛𝐹𝐿 = 0

.

(b) Maximum system size, 𝑛𝐹𝐿 = 33

Figure 4.11: Transmission coefficient 𝐾𝑡 computed in each frequency interval with upper bound 𝑓𝑗 for the irregular wave tests.
Values for each irregular wave test are shown, with test­IDs 25­31 corresponding to the wave conditions given in Table I.2. The
mean over these transmission values is shown in black.

In Figure 4.11a, the transmission coefficient is relatively close to 𝐾𝑡 = 1 for all frequencies. When no
floating object was present in the flume to influence the incoming wave spectrum, it was expected that
all wave energy is being transmitted.

In Figure 4.11b, the transmission curve shows for the tests with the floating model present. It can
be concluded that for the low frequencies, thus large wavelengths, the transmission is close to one as
well; the system does not decrease wave energy. For the higher frequencies, as discussed before, the
transmission does go down.

The peak in transmission around 𝑓 = 0.25 Hz (𝜆 = 25m) is caused by additional peaks in the transmit­
ted energy spectrum around this frequency. This increased transmission can be seen in all spectra of
Appendix K as an exception to the high frequency wave attenuation. With a corresponding wavelength
of 𝜆 = 25 m, this frequency matches the system motion of 2 floaters that fit into a single wavelength.
This movement was also observed in regular wave test 15, and can be visualised as in Figure 4.12.
When the wave height and thus the angle between the floaters is small, the two floaters will fit into one
wavelength. With this motion, the full system of connected rigid floating bodies is able to follow the
wave well. Therefore, the wave transmission is not reduced to 0.

Figure 4.12: Schematic diagram of the movement of the floaters when 𝜆 ≈ 2𝐿𝑓.

In Figure 4.11, the mean value shows the average over all 7 irregular wave tests that were done. The
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spread of the other lines plotted gives an insight in the uncertainty present in this average value. When
the spread between the other lines is large, it could be that either something physically different hap­
pens for the various wave conditions, or there is a larger uncertainty in the the computation of the
transmission coefficient. The latter option is likely to happen for the larger frequency values; for some
wave tests the spectra did not have much incoming wave energy for frequencies larger than 0.2 Hz.
This is also why, even in the calibration test, the spread around the average line is more than 10%.

For the higher frequencies, more confidence can lay in the transmission information of test 25 and
26, as these tests included more waves with these frequencies in incident spectrum 7. The same rea­
soning holds for test 28 ­ 31 for the lower frequencies, as these tests included more waves with these
longer wavelengths. Taking this into account, the transmission coefficient is likely to be closer to 0 for
the frequencies 𝑓 > 0.26 Hz, as the transmitted wave energy is close to 0 for tests 25 and 26, where
incident wave energy in this part of the spectrum was nonzero. Taking a weighted average per fre­
quency, with respect to the amount of incident energy present in the spectrum for the respective test,
could be an improvement in further analysis.

System size dependence
For the other system configurations (𝑛𝐹𝐿 = 6, 12, 18, 24), the plots of the transmission coefficient over
the frequency are very similar to Figure 4.11b where 𝑛𝐹𝐿 = 33. These plots have been included in Ap­
pendix L, Figure L.1. The full length of the system thus does not have that much impact on the shape
of the transmission curve. This indicates that the influence of only 6 floater arrays is comparable to the
influence of systems with a larger number of floaters connected together, for this (2D) irregular wave
test setup. This is in agreement with the results presented for the regular wave tests.

Wave height dependence
A short note on the comparison between tests 27 and 30 (both 𝑇𝑝 = 8 s) or tests 29 and 31 (both
𝑇𝑝 = 10 s) can be made, which have the same peak period but different wave heights. There was not
really an observable difference in the transmission of waves between these tests. The global transmis­
sion coefficients were approximately the same (see Table 4.5), and the transmission curves in Figure
4.11 lie close together. Therefore, the influence of the significant wave height of the spectrum seems
limited.

4.2.3. Comparison to regular and irregular wave test results
From the regular wave test results shown in section 4.2.1, it could be concluded that the wave trans­
mission was mainly dependent on the wavelength or frequency of the waves. This dependence was
also studied in section 4.2.2 for the irregular wave results. To make a comparison between these re­
sults, Figure 4.7 is adapted to show the transmission coefficient 𝐾𝑡 as a function of the frequency 𝑓,
similarly to the plots in Figure 4.11 and Figure L.1 in the appendix. That way, a comparison could
be made whether the irregular wave tests indeed showed the same physical behaviour as the regular
wave tests. The irregular lines show the transmission coefficient for the calibration test, 𝑛𝐹𝐿 = 0, and
the test with maximum system size, 𝑛𝐹𝐿 = 33, averaged over the 7 spectral tests that were carried out.
The regular lines show the transmission coefficient for the various system sizes that were tested. Each
point thus represents a regular wave test with 𝐻 = 1 m and the frequency 𝑓 = 1/𝑇.
7See total overview of variance density plots in Appendix K for the spread of the variance density spectra over the frequency.
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Figure 4.13: Transmission coefficient 𝐾𝑡 as a function of frequency 𝑓 at offshore scale. Both regular and irregular wave test
results are shown.

In this plot, the transmission coefficients for the regular and irregular wave tests are shown to over­
lap quite well. The calibration test stays close to one, whereas the tests with floaters present show a
decrease in transmission when the frequency is higher. The only difference between the regular and
spectral transmission shows for the frequency 𝑓 = 0.2 Hz; the basin test results show a higher trans­
mission than the spectral results.

In both regular and irregular results presented, the dependency on the wave height and the number of
floaters was small with respect to the influence of wavelength or frequency.

4.3. Result summary
The basin tests showed that the effect of the floating solar structure ranges from almost full transmis­
sion to almost full attenuation. The wave attenuation was highly dependent on the wave frequency 𝑓
and thus the wavelength 𝜆.

From the regular and the irregular wave tests, it was shown that there is almost full transmission for the
long wavelengths and low wave frequencies. From a wavelength larger than six times the floater length
onwards, 𝜆 ≥ 6𝐿𝑓 the transmission with the floating solar model present was almost the same as the
transmission in the calibration tests. For shorter wavelengths and higher frequencies, the transmission
decreased linearly in 𝑓. In the tests where the highest frequencies were present, where 𝜆 < 2𝐿𝑓, the
transmission even became close to 0, which meant the waves are fully blocked by the system. The
floating solar system thus acts as a low pass filter: it lets the waves of low frequency pass through (or
actually underneath), whereas the waves with higher frequency are being attenuated by the structure.
This is in accordance with the literature findings on floating breakwaters.

The only exception for the decrease in transmission for wavelengths smaller than twice the floater
length showed for a frequency of 𝑓 = 0.25 Hz, 𝑇 = 4 s, 𝜆 = 25 m (on offshore scale). In the irregular
wave tests, the transmitted forward propagating wave spectra showed a peak for this frequency. This
can be explained by the movement of the floaters; the rigid bodies can follow the waves quite well when
two floaters fit into one wavelength exactly.

In the regular wave tests where the incident wave height was varied and the wave period was kept
constant, the transmission coefficient showed to be nearly constant when the wave height was var­
ied. This was also true a comparison was made between the irregular wave tests which had the same
peak period but a different significant wave height. However, all these tests were done in the frequency
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range where the transmission was close to 1 and the system did not have as much effect on the waves.
Therefore, looking into wave height dependence in a range where the waves are attenuated more could
give more information on the wave height dependence and might give rise to a different conclusion.

The transmission coefficient showed to depend on the number of floater arrays slightly. In both the
regular and the irregular tests, the different system configurations showed to have similar transmis­
sion percentages. The transmission curves for the regular wave tests overlapped quite well, and the
variance or energy density spectra for the irregular wave tests looked very much alike. In general,
when looking at a frequency regime where waves were attenuated, the largest system size did show
the most wave attenuation. The global transmission coefficient, defined as the square root of the total
transmitted over the total incident wave energy, showed to be linearly dependent on the system size,
with a slope that depended on the amount of attenuation. For a test where the waves were attenuated
more, the transmission decreased more as a function of the number of floater arrays.

The reflection analysis showed that the reflections from the floating object did increase with the wave
frequency 𝑓, but could not explain the decrease transmitted of wave energy. Moreover, frequency
dependent dissipation effects might be dominant over the linear effects in the cause for wave energy
attenuation. This is an important conclusion with respect to the model approach as well, as linear wave
theory can only describe the redirection of waves and not the dissipation due to higher order effects.
The filtering method to obtain the reflected wave height could be questioned however, therefore possi­
ble underestimation of the reflection could have lead to an overestimation of dissipation contributions.





5
Numerical diffraction model

This chapter will discuss the numerical diffraction model and its scattering solution. The theory section
5.1 will explain how a boundary element method diffraction model works in general and gives a short
introduction of Capytaine, which is the model that was used. Also, it explains how the surface elevation,
transmission coefficient and reflection coefficient can be obtained from the usual Capytaine output.
After that, section 5.2 will state the model method, followed by the results in section 5.3. Lastly, a
summary of the obtained results is given in section 5.4.

5.1. Theory
5.1.1. Panel method
The mathematical description of wave­structure interaction in linear potential theory consists of the
scattering and radiation problem, as explained in sections 2.4.1 and 2.4.2. The Laplace equation, with
the appropriate boundary conditions, can be solved numerically using an integral, boundary element
method approach, also known as the panel method. In general, a boundary element method approx­
imates the solution of a partial differential equation by looking at the solution on the boundary, found
from an integral equation using Green’s functions. This surface boundary solution can then be used to
find the solution inside the domain [33].

The boundary value problem for 𝜙(𝑥, 𝑦, 𝑧) introduced in section 2.4 can be rewritten into an integral
equation problem using Green’s second identity [37]. This can be done for the diffracted velocity po­
tential 𝜙𝐷 and for the radiation potential in each degree of freedom, 𝜙𝑅,𝑗 for 𝑗 ∈ {1, 2, ..., 6}. Remember
that the incident wave velocity potential 𝜙𝐼 is a given function, which is equal to (2.15).1 Because
this integral equation has to be solved on the wetted surface of an object only, the numerical domain
changes from an (infinite) three dimensional water volume to a two dimensional object surface. The
approach to convert the boundary value problem into a the integral equation for the velocity potential
is explained in more detail in for example [36, 39, 50, 58].

These integral equations can be solved analytically in some cases, for example diffraction around an
infinite cylinder [40] or the wave interaction with a rectangular long floating structure over a horizontal
seabed [58]. The numerical approach to solve the diffraction and radiation problem in integral form
uses the 3D panel method, with the source­sink technique [15, 30, 36].

The velocity potential 𝜙 at a point (𝑥, 𝑦, 𝑧) on the mean wetted surface of the object 𝑆𝐵 can be rep­
resented by a continuous distribution of single sources on the body surface [30, 34]. This gives

𝜙(𝑥, 𝑦, 𝑧) = 1
4𝜋 ∫𝑆𝐵

𝜎(�̂�, �̂�, �̂�) ⋅ 𝐺(𝑥, 𝑦, 𝑧, �̂�, �̂�, �̂�)𝑑𝑆 for (𝑥, 𝑦, 𝑧) on 𝑆𝐵 (5.1)

1The exact definition of for example the propagation direction might differ per model, but Capytaine uses exactly this expression
in case the problem is solved for intermediate water depth. In infinite water depth, the incident velocity potential will be different
because the boundary conditions for the free surface wave change.

43
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for 𝜙 = 𝜙𝑅,𝑗 or 𝜙 = 𝜙𝐷. In this equation, 𝜎(�̂�, �̂�, �̂�) is the source strenght at point (�̂�, �̂�, �̂�) on the mean
wetted surface 𝑆𝐵 and 𝐺(𝑥, 𝑦, 𝑧, �̂�, �̂�, �̂�) is the Green’s function, which shows the influence of a pulsating
source 𝜎 at (�̂�, �̂�, �̂�) on the potential 𝜙 at location (𝑥, 𝑦, 𝑧), and is singular for (�̂�, �̂�, �̂�) = (𝑥, 𝑦, 𝑧). This
function satisfies the Laplace equation, the linearised boundary conditions on the free surface and the
seabed, and the radiation condition at ±∞. The exact expressions for the Green’s functions are stated
in Journée & Massie (2008) [30].

The differentiation of (5.1) can give the water velocities normal to the object surface, which have to
satisfy the boundary conditions at 𝑆𝐵. This gives the following expression

𝜕𝜙
𝜕𝑛𝐵

= −12𝜎(𝑥, 𝑦, 𝑧) +
1
4𝜋 ∫𝑆𝐵

𝜎(�̂�, �̂�, �̂�) ⋅ 𝜕𝐺(𝑥, 𝑦, 𝑧, �̂�, �̂�, �̂�)𝜕𝑛𝐵
𝑑𝑆 (5.2)

where 𝜕/𝜕𝑛𝐵 is defined as the gradient in direction normal to the body surface.
To solve for the velocity potential numerically, the wetted surface of the floating body is converted into
a mesh consisting of 𝑁𝑝 quadrilateral panels or grid cells. On these panels, the source strengths are
assumed homogeneous, which leads to the following discretised version of (5.2):

− 12𝜎𝑚 +
1
4𝜋

𝑁

∑
𝑛=1

𝜎𝑛
𝜕𝐺𝑚𝑛
𝜕𝑛𝐵

Δ𝑆𝑛 = 𝑛𝑚 for 𝑚 = 1, ..., 𝑁𝑝 and 𝑛 ≠ 𝑚 (5.3)

This equation expresses the interaction between a source strength 𝜎𝑚 on panel 𝑚 and the sources 𝜎𝑛
on all other panels 𝑛. The normal velocity requirement can only be met at a single point on the panel,
called the collocation point. This is chosen to be the centroid of the quadrilateral.

The discretised equation (5.3) can be transformed into an 𝑁𝑝 × 𝑁𝑝 linear system (for each problem
𝜙𝐷 or 𝜙𝑅,𝑗), to find the unknown complex source strengths 𝜎𝑛 , 𝑛 ∈ {1, 2, ..., 𝑁𝑝}. These source strengths
can then be translated to a velocity potential at each location (𝑥, 𝑦, 𝑧) on 𝑆𝐵.

The solution methods for this linear system will be discussed in section 5.1.3. The mesh that is used
to describe the floater surface is discussed in section 5.2.2. First, the different numerical diffraction
models available will be discussed.

5.1.2. Diffraction models & Capytaine
Diffraction models solve for wave­structure interactions using a boundary element method, introduced
in section 5.1.1. A selection of numerical diffraction models that use this panel method to compute
wave loads on offshore structures are Capytaine [2], Nemoh [15], WAMIT [36], Diffrac [46] and An­
sys Aqwa [4]. Comparison studies between the various models show good agreement between the
codes, for example [15, 31, 52, 54]. One of the large differences is that WAMIT and Ansys Aqwa offer
the inclusion of second order wave effects, whereas the other models are purely linear. Furthermore,
Nemoh might have difficulties with very thin elements [54].

Both Nemoh and Capytaine were initially explored, as they are the only open source diffraction codes.
Themodels showed comparable results for various floater configurations: their mutual differences were
smaller than the influence of further mesh refinement. Capytaine was selected for the rest of the work,
as it is still commonly used and supported at this moment, unlike Nemoh. It was developed by rebuild­
ing the open source BEM solver Nemoh in Python.2 Documentation on Capytaine is quite extensive
but informal, often referring to Nemoh documentation as it started as an exact copy of this code.

5.1.3. Solving the linear system
The linear system that solves the velocity potential functions for each of the grid cells (as explained in
section 5.1.1) is defined with an 𝑁𝑝 ×𝑁𝑝 full matrix, where the value 𝑁𝑝 denotes the number of panels
2”Capytaine is a Python package for the simulation of the interaction between water waves and floating bodies in frequency
domain. It is built around a full rewrite of the open source Boundary Element Method (BEM) solver Nemoh for the linear potential
flow wave theory.” More information and documentation can be found on https://ancell.in/capytaine/latest/ and
https://github.com/mancellin/capytaine.

https://ancell.in/capytaine/latest/
https://github.com/mancellin/capytaine
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or grid cells the mesh consists of. Namely, the matrix describes the interaction between each grid cell
and all other grid cells. In the floater configuration described in section 5.2.1, with mesh described in
section 5.2.2, 𝑁𝑝 was approximately 6⋅103.

This linear problem can be solved using a direct method, such as the LU decomposition (matrix form of
Gauss elimination method). In this case, a computational effort of 𝒪(𝑁3𝑝) is required [30, 41]. The other
option that Capytaine provides is using an iterative method; the generalised minimal residual (GMRES)
solver. This can reduce the effort to 𝒪(𝑁2𝑝), which is especially faster if the number of panels exceeds
500 [30] and will therefore be used in this study.

5.1.4. General output: hydrodynamic coefficients
The usual output for a boundary element method diffraction model are the hydrodynamic coefficients
𝐴, 𝐵 and 𝐹𝑒 of the object(s) considered, which have been previously introduced in sections 2.3.2 and
2.4.3. These parameters represent physical properties of the floating body which are needed to solve
for the motion of the object (in frequency domain) by equation (2.19).

The exciting force 𝐹𝑒 [N] is derived from the incident wave velocity potential 𝜙𝐼 and the panel method
solution for the diffracted velocity potential 𝜙𝐷, through equation (2.32). The added mass 𝐴 [kg] and the
radiation damping 𝐵 [Ns/m] are derived from the panel method radiation solutions 𝜙𝑅,𝑗 in each degree
of freedom 𝑗 ∈ {1, 2, ..., 6}, through equation (2.33). Recall that for a single wave frequency 𝑓, and if
all 6 degrees of freedom 𝑗 are considered, we have matrices 𝐴, 𝐵 ∈ ℝ6 × ℝ6 and exciting force vector
𝐹𝑒 ∈ ℂ6, as this latter coefficients includes a phase. Therefore, the general Capytaine output is a real
𝑛𝐷𝑂𝐹 × 𝑛𝐷𝑂𝐹 × 𝑛𝑓 array for 𝐴 and 𝐵, and a complex 𝑛𝐷𝑂𝐹 × 𝑛𝑓 array for 𝐹𝑒.

5.1.5. Obtaining the surface elevation
The general diffraction model output described in the previous section is focused on

These are not the quantities of interest for this research however, as the objective is to determine
the influence of the floating solar platforms on the waves. The physical quantities of interest are wave
height and wave energy of the surrounding water surface area. These can be used to determine the
breakwater­like performance of the floating solar structure by means of a transmission coefficient.

In case of a regular harmonic wave, the surface elevation of the free surface gravity waves is described
by 𝜂(𝑥, 𝑦) ∈ ℂ (see section 2.2). The amplitude of this complex surface elevation |𝜂(𝑥, 𝑦)| shows the
oscillation amplitude of the water surface at a certain position in the water surface domain. The real
part Re|𝜂(𝑥, 𝑦)| shows the surface elevation at 𝑡 = 0. The surface elevation 𝜂 is thus the quantity that
gives insight in the wave height and wave energy in the environment around the floating object.

In order to compute the surface elevation, the velocity potential solution 𝜙 = 𝜙𝐼 +𝜙𝐷(+𝜙𝑅) is used. To
get from the diffraction or radiation result to the surface elevation, two steps have to be taken.

1. 𝜙|𝑆𝐵 → 𝜙(𝑥, 𝑦, 𝑧)
Whereas the general output of a diffraction model gives the hydrodynamic coefficients 𝐴, 𝐵 and
𝐹𝑒, the model first solves for the (complex, position dependent) velocity potential for the diffraction
or radiation problem considered on the wetted surface of the object , 𝜙𝐷|𝑆𝐵 or 𝜙𝑅|𝑆𝐵 . This was
explained previously in section 5.1.4. To obtain the velocity potential in an arbitrary position
𝜙(𝑥, 𝑦, 𝑧), part of the integral problem can be solved again with the known results on the wetted
surface as extra input parameters. In Capytaine, one can define a mesh on which 𝜙(𝑥, 𝑦, 𝑧)will be
calculated from a previously obtained result. A free surface mesh is chosen, such that the velocity
potential at 𝑧 = 0 is computed for a certain (𝑥, 𝑦)­domain. This procedure is done with the function
get_potential_on_mesh, which needs the desired mesh and a diffraction or radiation result
as input. It will then give the complex potential on the given mesh.

2. 𝜙(𝑥, 𝑦, 𝑧 = 0) → 𝜂(𝑥, 𝑦)
From the velocity potential on this free surface mesh, the surface elevation 𝜂(𝑥, 𝑦) can be com­
puted by using the free surface boundary condition (2.10). The relation between the surface
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elevation 𝜂 ∈ ℂ and the velocity potential 𝜙 ∈ ℂ is as follows

𝜂 = 𝑖𝜔𝑔𝜙 (5.4)

with 𝑔 the gravitational acceleration constant, 𝜔 the angular frequency considered and 𝑖 = √−1.
This is the case for harmonic waves, where the oscillations are described with a complex ex­
ponential 𝑒−𝑖𝜔𝑡. The Capytaine function get_free_surface_elevation can perform both
steps at once, such that the complex surface elevation is found at a given mesh from a previously
obtained diffraction or radiation result.

Because the wave theory is assumed to be completely linear, surface elevations 𝜂𝐼 and 𝜂𝐷 can simply
be added together to form the complete description of the diffraction problem. Furthermore, all motion
amplitudes 𝜂 are freely scalable. Thus, if the incident wave surface elevation amplitude |𝜂𝐼| ≠ 1, a
scaling factor can be introduced to obtain the total result 𝜂𝐼 + 𝜂𝐷.

The free surface mesh chosen in the first step determines on what domain the surface elevation will
be computed. When a large domain in 𝑥 and 𝑦 is chosen, and split up in grid cells, the 3D results of
the floating object can be visualised. When interested in the 2D effects only, one can look at a mesh
defined at 𝑦 = 0, for a range in 𝑥.

For this surface elevation mesh, a resolution or grid size has to be chosen again. Here, a larger number
of grid cells will give a more accurate visualisation of the resulting wave field, but also increases the
computation time. Especially for the meshes that show the 3D effects, a high number of cells in both
𝑥 and 𝑦 direction can lead to long calculations. The grid size for the visualisation (the water surface
mesh) was always chosen to be larger or equal than the grid size used for the object surface in the
computation of the initial results (which is discussed in section 5.2.2).

5.1.6. Definition transmission and reflection coefficients
When the resulting surface elevation amplitude |𝜂𝐼 + 𝜂𝐷| from the scattering solution is known, this
will be used to define the transmission coefficient 𝐾𝑡 = 𝐻𝑡/𝐻𝑖. The incident wave height is fixed, and
the resulting wave height 𝐻𝑡 is derived from the resulting surface elevation amplitude |𝜂𝐼 + 𝜂𝐷| be­
hind the object. This is not trivial, because the wave amplitude is not constant over the water surface
(𝑥, 𝑦) due to the interference of incident and reflected or diffracted waves. The wave height behind the
floater is not constant (in position), because nodes and anti­nodes are present in the wave environment.

The transmitted wave height is derived from the surface elevation amplitude by taking the average over
the sheltered wave area of interest. Because the objective is to look at approximate two­dimensional
attenuation performance, surface elevation at 𝑦 = 0 is considered. The average surface elevation
amplitude |𝜂𝐼 + 𝜂𝐷| over the interval 0.5𝐿𝑓 < 𝑥 < 100 m is taken as a measure for 𝐻𝑡. This interval is
chosen as close to the floater as possible, such that the impact of possible three­dimensional effects
are reduced. Taking the average over a sheltered area of interest to measure global transmissibility
was also done in [49, 55] for floating breakwater performance. This choice will be reviewed in the dis­
cussion section 6.

The reflection coefficient 𝐾𝑟 = 𝐻𝑟/𝐻𝑖 requires a reflected wave height, which is also position­dependent
due to the interference of the incident and reflected waves. 𝐻𝑟 is defined as first local maximum of the
surface elevation |𝜂𝐷 + 𝜂𝐼| in front of the structure, minus the incident wave amplitude |𝜂𝐼| = 1. The
anti­node which is located closest to the floating object is taken as a representative for 𝐻𝑟, because the
three­dimensional effects caused by limited floater width in 𝑦­direction are smallest.

5.2. Method
The first order boundary element method diffraction model Capytaine is used to determine the sur­
face elevation and wave transmission in presence of a floating solar platform. The scope is limited to
the approximately two­dimensional scattering problem, with a horizontal seabed at intermediate water
depth and incident waves parallel to the structure length. This was chosen such that the results could
be compared to the basin test results presented in section 4, which were two­dimensional. Because
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the diffraction model is based on a 3D panel method, 2D results were approximated by increasing the
floater width.

The floater configuration and mesh choice are described in sections 5.2.1 and 5.2.2. After that, the
wave conditions chosen for the incident waves are stated in section 5.2.3.

5.2.1. Floater configuration
To test the wave transmission through a fixed submerged floater, the floater configuration shown in
Figure 5.1 was used. The floater dimensions are 12× 200× 0.5 m. This size was based on replication
of the offshore floater with a length of 12 m and a height of 0.5 m. The large width was chosen to ap­
proximate a two dimensional setup. In the central 𝑦 = 0 axis, the velocity potential or surface elevation
profile will approximate the response of an infinitely long floater.

The object’s gravitational centre was located at (0, 0, −0.083) m. The floater draft was taken two third
of the floater, which is realistic for Oceans of Energy’s offshore floating solar platforms [31]. This lead
to a centre slightly below the equilibrium water surface level 𝑧 = 0.

(a) Floater dimensions in 𝑥, 𝑦: top view (b) Floater dimensions in 𝑥, 𝑧: side view.

Figure 5.1: Configuration of the floater for the BEM diffraction model.

The water depth was taken ℎ = 24m, to simulate the offshore water depth at the North Sea site location.
Overall, the floater dimensions and water environment were similar to the basin test setup. The only
large difference in the configuration is the floater width to simulate the 2 dimensional setup, and the
number of floaters included in the tests.

5.2.2. Mesh & resolution
The floater described in section 5.2.1 had to be converted into a mesh for the numerical BEM computa­
tion method, as explained in section 5.1.1. A minimum amount of panels or grid cells per wavelength is
needed to describe a wave properly. For linear quadrilateral elements, the maximum size of a grid cell
is 1/10𝜆, where 𝜆 is the incident wavelength [56]. The range of wavelengths investigated is in between
17 and 129 m, see Table 5.1. This means that theoretically, a mesh size of 1.5 m or less should be
sufficient to solve the integral problem numerically.

The mesh was chosen as fine as possible, with the following restrictions:
• Memory
Capytaine has to save the full matrix in ℂ𝑁𝑝 ×ℂ𝑁𝑝 that constitutes the linear problem (see section
5.1.3), where 𝑁𝑝 is the number of panels or grid cells that the floater mesh consists of. From a
certain number of panels onwards, 𝑁𝑝 ≈ 104, the model will give a memory error.3 This does
depend on the memory available on the PC that is used.

• Running time
The higher the number of grid cells used, the longer the computation time 𝜏 needed to solve the

3𝑁𝑝 = 104 requires a memory of 104 ⋅ 104 ⋅ 2 ⋅ 64 ≈ 1010 bytes, thus 10GB. A lower float precision could have been used to
represent the complex values however, to reduce to 1GB.
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BEM diffraction problem. Running times were kept at less than 15 minutes per diffraction compu­
tation, for a single wave frequency 𝑓. This restriction was often similar to the limit of the memory
available.

To study how wave transmission depends on the wave frequency or wavelength, the diffraction
computations have to be repeated for different wave conditions. Furthermore, the derivation of
the surface elevation amplitude on a desired (water surface) mesh took additional computation
time 𝜏𝜂, especially for the three­dimensional results. This depended on the visualisation mesh
used, but was in the order of one hour for the finest three­dimensional surface elevation. There­
fore, the total computation time needed was longer: 𝑛𝜔 ⋅ 𝜏 to solve the diffraction problems and
𝑛𝜔 ⋅ 𝜏𝜂 to solve for the surface elevation.

The final computations for the floater configuration in Figure 5.1 were done with grid cell dimensions
of 0.75 m, 1.25 m and 0.033 m in 𝑥, 𝑦 and 𝑧 directions respectively. Therefore, the 12 × 200 × 0.5 m
floater was divided into 16 grid cells in 𝑥­direction, 160 in y­direction and 15 in 𝑧­direction. Because the
diffraction problem only requires the wetted surface area below the equilibrium water level 𝑧 = 0, the
body surface above 𝑧 = 0 is removed. This leaves 6080 panels in total for the diffraction computation.
Some illustrations of the floater mesh are given in Figure 5.2. The differences in grid size dimension
relate to the floater configuration and the wave propagation in 𝑥­direction, and were based on error
analysis in a mesh sensitivity study (see section 5.3.4).

Figure 5.2: Illustrations of the floater mesh used for the BEM diffraction model. Top view and side view are shown.

Because the object is meshed first and then divided into a part above and below the equilibrium water
level, the number of grid cells in 𝑧­directions should be chosen carefully to ensure an integer amount of
grid cells are used to compose the submerged body mesh. Because the floater draft was set to 2/3𝐻𝑓,
the amount of grid cells used to describe the floater in 𝑧­direction had to be a multiple of 3. If this were
not the case, the numerical errors in the surface elevation increased (in the order of ±5%).

A convergence study was done to see the relation between the mesh resolution and the numerical
errors. These results will be presented in section 5.3.4.

5.2.3. Wave conditions
The diffraction model assumes harmonic incident waves with a specified (angular) frequency 𝜔 = 2𝜋𝑓
and scaled wave amplitude 𝐴, described by velocity potential (2.15). Thus, a separate scattering prob­
lem is solved for each wave frequency considered.

The incident wave amplitude is chosen 𝐴 = |𝜂𝐼| = 1m, because of easy normalisation. Notice that this
does not yield the same wave height as in the basin tests, becuase 𝐻𝑖 = 2 m and the regular basin
tests with varying frequency had 𝐻𝑖 = 1 m on offshore scale (see wave conditions in Appendix I). The
diffraction results can always be scaled by a factor 1/2, because the model is entirely linear.
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The incident wave frequencies 𝑓 were chosen in the range 𝑓 ∈ [0.1, 0.3] Hz, thus 𝑇 ∈ [3.33, 10] s.
These conditions are similar to offshore North Sea wave conditions, which have 𝑇𝑝 ∈ [3, 10] s for 95%
of the time [1]. Furthermore, this was the range in which the regular and irregular wave tests were
chosen for the basin test, see section 4. Because linear wave theory is used, the wavelength 𝜆 can
be computed from the wave period 𝑇 and water depth ℎ = 24 m with the linear dispersion relationship,
equation (2.17). The five main wave conditions tested are shown in Table 5.1, with the corresponding
wavelength.

𝑓 [Hz] 𝑇 [s] 𝜆 [m]
0.1 10 129
0.15 6.67 68
0.2 5 39
0.25 4 25
0.3 3.33 17

Table 5.1: Wave conditions for numerical BEM diffraction model in ℎ = 24 m water depth, incident wave amplitude 𝐴 = 1 m.

5.3. Results
5.3.1. Approximate 2D diffraction results single floater
The two­dimensional diffraction surface amplitudes |𝜂𝐼+𝜂𝐷|𝑦=0 for wave frequencies 𝑓 = 0.1, 0.15, 0.2, 0.25, 0.3
Hz are included in Appendix E. The surface elevation for the longest wave, 𝑓 = 0.1 Hz and 𝜆 = 129
m, is shown in Figure 5.3 as a function of the position 𝑥. Remember that the incident wave height
amplitude was set to |𝜂𝐼| = 1 everywhere.

Figure 5.3: Amplitude of surface elevation |𝜂𝐼 + 𝜂𝐷| for the 2D diffraction model as a function of 𝑥 at 𝑦 = 0. The dotted lines
show the edges of the submerged body. The incoming waves had a frequency 𝑓 = 0.1 Hz, wavelength 𝜆 = 129 m, wave height
𝐻 = |𝜂𝐼| = 1 m. The water depth was ℎ = 24 m.

This figure shows a standing wave in front of the floating object (𝑥 < −6 m), and a decreased wave
amplitude behind it (𝑥 > 6 m). This also showed for the other wave frequencies tested.

Standing waves in front of structure
The resulting surface elevation amplitude |𝜂𝐼 + 𝜂𝐷| for the approximate 2D scattering problem showed
an oscillation around |𝜂𝐼 + 𝜂𝐷| = 1 m in front of the floating structure (𝑥 < −6 m). This shows the
surface elevation at a specified location (𝑥1, 0), oscillates in time between different values in compar­
ison to another location (𝑥2, 0). The minima in surface elevation amplitude correspond to the nodes
of a standing wave, the maxima to the anti­nodes. This standing wave pattern can be explained by
interference of the incident and reflected waves; waves that reflect from the object surface have the
same wave frequency and opposite propagation direction in comparison to the incident ones.
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In Figure 5.3, the node closest to the structure shows that the surface elevation oscillates in between
0.55 and ­0.55 m at this given location (𝑥, 𝑦) = (−52, 0). The anti­node closest to the structure shows
that the surface elevation oscillates in between 1.37 and ­1.37 m at this location (𝑥, 𝑦) = (−19, 0).
Notice that the distance between two consecutive nodes (or anti­nodes) is indeed exactly 𝜆/2, as ex­
pected for a standing wave.

Notice that the standing wave pattern is not constant over the domain in front of the structure, which
is shown over a larger distance as well in Figure 5.5. This is likely the result of 3D diffraction effects,
which causes the standing waves to diffract wave energy to the sides, 𝑦 > 100 m and 𝑦 < −100 m. If
the problem would be entirely two­dimensional, the nodes and anti­nodes would have a constant value
over the whole domain 𝑥 < −6 m, because only reflection and transmission are modelled. Because
dissipation is disregarded in linear wave theory, the incident and reflected waves have a constant wave
height over their propagation path, and would thus add up to a constant interference pattern. To confirm
the three dimensional effects, Figure 5.9 in section 5.3.3 shows surface elevation over a large domain
in (𝑥, 𝑦).

Decreased wave amplitude behind structure
The surface elevation amplitudes behind the floater (𝑥 > 6 m) have values |𝜂𝐼 + 𝜂𝐷| < 1 everywhere,
except just behind the floating object for the waves with lowest frequency (and thus largest wavelength).
To look further into wave transmission, the surface elevation amplitudes behind the floater are plotted
for various wave frequencies 𝑓 in Figure 5.4.

Figure 5.4: Surface elevation |𝜂𝐼 + 𝜂𝐷| for the 2D diffraction model as a function of 𝑥 at 𝑦 = 0 for various incoming wave
frequencies and thus wavelengths. The dotted line shows the edge of the floater.

The decreased surface elevation amplitude |𝜂𝐼 + 𝜂𝐷| < 1 for 𝑥 ∈ [6, 200] m indeed shows for the other
wave conditions plotted. Scattering of the incident wave for a fixed rigid barge thus leads to a decrease
in wave transmission for all wave conditions, as expected.

From the transmitted surface elevation amplitude for these five wave conditions it already seems that
the surface elevation amplitudes decrease more for the higher wave frequencies. Namely, both the
maxima and minima are generally lower for 𝑓 = 0.25 and 𝑓 = 0.3 Hz. Thus, the impact of the sub­
merged object is different for the short and long waves, as theoretically was expected from studies on
floating breakwaters (see section 3). Namely, length floater 𝐿𝑓 = 12 m stayed constant, and the wave­
length 𝜆 varied between 129 and 17m according to table 5.1. Long waves are reflected less (see also
the standing wave patterns in front of the structure in Appendix E) and transmitted more, in comparison
to the shorter ones. This relation will be examined further in section 5.3.2.

The observation that the wave surface amplitude just behind the floater was greater than the unit in­
cident amplitude for 𝑓 = 0.1 Hz was also observed in [51] for the long waves, and is likely explained
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by 3D diffraction effects from the two ends of the object at 𝑦 = −100 and 𝑦 = 100 m. This will be
discussed further in section 5.3.3 and the discussion in Chapter 6.

Oscillations in surface elevation behind structure
The surface elevation amplitude is not constant in 𝑥 in the region behind the floater. As ripples on the
generally decreased surface elevation, oscillations show behind the structure. In Figure 5.4, this is
visible for the higher frequencies. For the long waves, 𝑓 = 0.1 Hz and 𝜆 = 129 m, the oscillations are
present as well but over a longer distance in 𝑥 and further away from the object. This can bee seen in
Figure 5.5, where the surface elevation amplitude is shown over a larger range in 𝑥.

Figure 5.5: Surface elevation amplitude |𝜂𝐼 +𝜂𝐷| for the 2D diffraction model as a function of 𝑥 at 𝑦 = 0. The dotted lines show
the edges of the submerged body. The incoming waves had a frequency 𝑓 = 0.1 Hz, wavelength 𝜆 = 129 m, the water depth
was ℎ = 24 m.

The oscillations in |𝜂𝐼 + 𝜂𝐷| have a period (node­to­node distance) that corresponds exactly to the
incident wavelength 𝜆 = 129m. Thus, this oscillation has a period which is twice as long as the standing
wave in front of the object. These ripples at 𝑦 = 0 are part of a three­dimensional interference pattern
behind the floater, which is shown in section 5.3.3 and Appendix F. In these sections, the oscillations
will be discussed in further detail.

5.3.2. Parameter study: 𝐾𝑡 and 𝐾𝑟
To investigate the parameter dependence of the wave transmission and wave reflection further, the
transmission coefficient 𝐾𝑡, and reflection coefficient 𝐾𝑟 were studied. The main parameter of interest
was the incident wave frequency 𝑓. After these results, short remarks will be made on the dependence
on the number of floaters included 𝑛𝐹𝐿 and the incident wave height 𝐻.

Frequency dependence
The transmission and reflection coefficients 𝐾𝑡 and 𝐾𝑟 were defined as introduced in section 5.1.6, and
computed for the scattering solutions with different incident wave frequencies 𝑓. These are plotted
Figure 5.6, together with the quadratic sum of the two 𝐾2𝑡 + 𝐾2𝑟 .

From this figure, it can be seen that the wave transmission decreases as a function of the incident
wave frequency, whereas the reflection increases. This was expected, as the lack of wave transmis­
sion can be caused by either reflection or diffraction in a BEM diffraction model. From a frequency of
0.13 Hz onwards, reflection increased and transmission decreased. This corresponds to a wavelength
to floater length ratio of 𝜆/𝐿𝑓 ≈ 7.

What can be seen is that the sum 𝐾2𝑡 + 𝐾2𝑟 , which was theoretically expected equal to one, is not
constant over the frequencies and shows quite a lot of values 𝐾2𝑡 + 𝐾2𝑟 > 1 for both low and high fre­
quent waves. This gives a perspective on how well the transmission and reflection were defined, and
will be discussed further in the discussion, Chapter 6, also in relation to the basin test results.
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Figure 5.6: Transmission coefficient 𝐾𝑡, reflection coefficient 𝐾𝑟 and quadratic sum 𝐾2𝑡 + 𝐾2𝑟 as a function of incident wave
frequency 𝑓 for the approximate 2D diffraction problem.

System size dependence
To investigate the dependence of wave transmission 𝐾𝑡 on the system size, 𝑛𝐹𝐿, one would like to
increase the number of floaters included in the configuration and compute the scattering results again.
However, it could be seen that increasing the number of floaters to 𝑛 yielded approximately the same
results as enlarging the floater length to 𝑛𝐿𝑓. This is because the spacing between the floaters was
small in comparison to the floater length (only 0.3 m whereas 𝐿𝑓 was 12 m). As the objects are not able
to move in the scattering problem considered, the incident waves encounter these separate floaters as
if it were one large platform which the water has to move around or underneath. Therefore, in the ap­
proximately two­dimensional scattering model, the dependence of 𝐾𝑡 and 𝐾𝑟 on 𝑛𝐹𝐿 was approximately
the same as the dependence on the floater length 𝐿𝑓 for a single floater. This latter approach has a
lower computational cost, and avoids possible gap resonance effects (see for example [8, 18, 44]) in
the solutions.

The system size dependence 𝑛𝐹𝐿 was first investigated with the frequency analysis results that were
already available. Because the problem is entirely linear, the wave transmission depends specifically
on the relative floater length 𝐿𝑓/𝜆 in the propagation direction of the waves [18, 32]. By changing the
frequency and thus wavelength of the incident wave, the parameter dependency on 𝐿𝑓/𝜆 was found.
The dependence of 𝐾𝑡 on the dimensionless floater length 𝐿𝑓/𝜆 is plotted in Figure 5.7 for the typical
floater configuration, where 𝐿𝑓 = 12 m, in blue.

Adapting 𝐿𝑓 would theoretically yield the same results in terms of this dimensionless parameter (if
the problem were entirely two­dimensional), but requires more memory and longer computation times
as more grid cells are needed to model a larger floater in the same mesh resolution. The similarity with
results for 𝐿𝑓 = 24 m (simulating 2 floaters) and 𝐾𝑓 = 36 m (simulating 3 floaters) was checked by
computing the transmission coefficient for these floater configurations as well. These results are also
shown in Figure 5.7.

As expected, the transmission is shown to decrease with increasing relative floater length 𝐿𝑓/𝜆. Trans­
lating this back to the dependence on the number of floaters included 𝑛𝐹𝐿 (in parallel to the wave
propagation direction), Figure 5.7 shows that a larger number of floaters will cause an approximately
linear decrease the wave transmission for 𝐿𝑓/𝜆 ∈ [0.2, 0.8]. Notice that for example for 𝜆 = 100 m, the
number of floaters considered in Figure 5.7 would be 10 to 100, so the range 𝐿𝑓/𝜆 ∈ [0.1, 1.0] is more
justified for the smaller wavelengths. This high number of floaters is not expected to be well simulated
by the scattering around a single (fixed) rigid floater.
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Figure 5.7: Transmission coefficient 𝐾𝑡 as a function of the floater length over wavelength 𝐿𝑓/𝜆 for the approximate 2D diffraction
problem, computed with various floater lengths 𝐿𝑓 = 12, 24 and 36 m.

Because the problem was not entirely two­dimensional however, the scalability of the results in Figure
5.7 is not entirely valid. The diffraction from the ends of the floater cause differences in transmission
between the two possible approaches for varying the dimensionless parameter 𝐿𝑓/𝜆. Using a different
floater length will lead to an altered object shape, as the floater width was kept 𝑊𝑓 = 200 m. The dif­
ferences between the results for various values of 𝐿𝑓 show that computing the transmission coefficient
by decreasing the wavelength or by increasing floater length indeed gives different results.

5.3.3. 3D effects
The setup for the diffraction problem, described in section 5.2, was approximately two dimensional.
The results in section 5.3.1 showed oscillations in the surface elevation amplitude behind the structure
at 𝑦 = 0, which indicated an interference pattern to be present because of oscillations in the wave
heights behind the floater. Thus, the 200 m wide floating structure used to approximate an infinitely
long object in 𝑦­direction, still has three dimensional diffraction effects present around the structure.

To investigate the 3D effects that were present in these simulations, the surface elevation was com­
puted on a two dimensional mesh in the (𝑥, 𝑦)­plane. The three dimensional effects in the resulting
surface elevation at are given over the domain (𝑥, 𝑦) ∈ [−50, 200]× [−125, 125]. This is shown for five
wave frequencies tested for 𝑓 ∈ [0.1, 0.3] Hz (see Table 5.1) in Appendix F. The plots for incident wave
conditions 𝑓 = 0.1 and 𝑓 = 0.25 are shown in Figures 5.8a and 5.8b respectively.

(a) 𝑓 = 0.1 Hz, 𝜆 = 129 m (b) 𝑓 = 0.25 Hz, 𝜆 = 25 m

Figure 5.8: Amplitude of complex surface elevation |𝜂𝐼 + 𝜂𝐷| for the diffraction model over the domain (𝑥, 𝑦) ∈ [−50, 200] ×
[−125, 125] for incident waves with frequency 𝑓 and wavelength 𝜆. The dotted lines show the edges of the submerged body.



54 5. Numerical diffraction model

The results show that interference patterns are present behind the structure for both wave conditions,
which can explain the oscillations in surface elevation behind the structure at 𝑦 = 0, see Figure 5.4.
The diffraction patterns show agreement with results for diffraction around 200 m wide floating break­
waters in [5, 51].

The main result that the overall transmission decreases as the ratio 𝐿𝑓/𝜆 increases holds in general for
the area behind the floating object. Remember that the normalised wave elevation amplitude reflects
the transmission coefficient, and therefore shows the transmission coefficient is spatially dependent,
as introduced in 5.1.6.

When the wavelength decreases further (see Figure F.1e for 𝑓 = 0.3 Hz, 𝜆 = 17 m, Appendix F)
the interference pattern shows less variation in wave surface amplitude. The shadow zone behind
the floater is more uniform the in (decreased) transmission when𝑊𝑓/𝜆 increases, because waves can
diffract around the structure less. This is confirmed by for example the Sommerfeld diffraction solution
around a semi­infinite breakwater [28] and was already observed in [51]. It indicates that the high­
frequency results will be closer to the theoretical two­dimensional solutions, in case the floater width is
kept constant.

To demonstrate the far field diffraction effects, the surface elevation is determined over a larger do­
main (𝑥, 𝑦) ∈ [−1000, 1000] × [−200, 200]. These results are shown in Figure 5.9, for incident wave
frequency 𝑓 = 0.25 Hz..

Figure 5.9: Amplitude of complex surface elevation |𝜂𝐼 +𝜂𝐷| for the diffraction model over the domain (𝑥, 𝑦) ∈ [−1000, 1000] ×
[−200, 200] for incident waves with frequency 𝑓 = 0.25 Hz and wavelength 𝜆 = 25 m. The dotted lines show the edges of the
submerged body.

Indeed, the wave energy in the standing wave front seems to spread out to the sides of the floater
𝑦 < −100 m and 𝑦 > 100 m, which leaves a standing wave pattern which is less wide than the floater
(𝑊𝑓 = 200 m). This likely caused the standing wave amplitudes further in front of the structure to de­
crease.

The implications of the three­dimensional diffraction on the approximate two­dimensional transmission
analysis will be discussed further in the discussion, Chapter 6.

5.3.4. Mesh sensitivity
To study the numerical errors that might be present in the model, the mesh sensitivity of the diffraction
solutions is looked into. Remember that the wetted surface of the floating object is meshed into rect­
angular grid cells, as presented in section 5.2.2. The total number of grid cells used is restricted by the
memory needed for the linear problem, as well was the computation time required.
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The effect of grid refinement on the surface elevation amplitude is visualised in Figure 5.10. In these
plots, |𝜂𝐼 + 𝜂𝐷| at 𝑦 = 0 is plotted as a function of 𝑥 in Figure 5.10 for different body mesh sizes. Here,
the combined effect of refining the grid in all three 𝑥, 𝑦, 𝑧 directions is visualised for 𝑓 = 0.1 Hz and
𝑓 = 0.3 Hz waves. In both cases, the curves lie closer together for the finer mesh choices, thus the
solutions indeed seem to converge.

(a) 𝑓 = 0.1 Hz, 𝜆 = 129 m (b) 𝑓 = 0.3 Hz, 𝜆 = 17 m

Figure 5.10: Surface elevation amplitude |𝜂𝐼 +𝜂𝐷| at 𝑦 = 0 as a function of 𝑥 for various mesh sizes. The dotted lines show the
edges of the submerged body.

The difference in surface elevation for the coarser grid sizes are larger for 𝑓 = 0.3 Hz, shown in Figure
5.10b. This larger error for the higher frequency wave condition was expected, as the number of grid
cells in comparison to the wavelength 𝜆 determines the accuracy. Notice that from a grid size of 1.0
m × 1.667 m × 0.056 m onwards, it is difficult to distinguish the solutions for 𝑓 = 0.3 Hz. This is in
accordance with the rule of thumb to use grid sizes smaller than 1/10𝜆 ≈ 1.7 m.

The grid size ℎ is defined differently for each of the three directions, based on the floater configu­
ration (section 5.2.1) and the propagation of the incident wave in 𝑥­direction. The effect of refinement
in each of these three directions separately will be studied below.

To quantify the mesh sensitivity of the diffraction solution, the normalised root mean square error
(NRMSE) is studied, which is defined as

𝑁𝑅𝑀𝑆𝐸 = 1
𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛

√∑
𝑁
𝑛=1(�̂�𝑛 − 𝛾𝑛)2

𝑁 (5.5)

In this equation, �̂�𝑛 is the estimate of 𝛾𝑛, for each point 𝑛 ∈ {1, 2, ..., 𝑁} in the domain considered. 𝛾𝑚𝑎𝑥
and 𝛾𝑚𝑖𝑛 are the maximum and minimum value that 𝛾 attains in this dataset.

The differences in surface elevation amplitude results are quantified using this error measure. The
surface elevation amplitude solution obtained with the finest body mesh resolution is used as the refer­
ence solution 𝛾. The normalised root mean square errors are thus defined with respect to this finest­grid
solution. The surface elevation |𝜂𝐼+𝜂𝐷| was computed for the domain 𝑥 ∈ [−200, 200], 𝑦 = 0. This re­
gion is divided into a water surface mesh of 𝑁×1 grid cells. The squared error (�̂�𝑛−𝛾𝑛)2 for the surface
elevation at positions 𝑥𝑛, 𝑛 = 1, 2, ..., 𝑁, was thus computed for the solutions �̂� with a coarser object grid.

The normalised root mean square error with respect to the finest grid solution for the wave surface
elevation is plotted as a function of the grid size ℎ in Figure 5.11. For each plot, the grid size is refined
in one direction (ℎ𝑥 , ℎ𝑦 or ℎ𝑧), while the grid size in the other two directions is kept constant. The figure
shows the error for the two wave frequencies 𝑓 = 0.1 and 𝑓 = 0.3 Hz. Wave conditions with lower
frequencies (𝑓 = 0.1 Hz) have a smaller normalised mean square error compared to the high frequent
waves (𝑓 = 0.3 Hz) because the amount of grid cells per wavelength is larger.
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(a) Resolution refinement 𝑥 (b) Resolution refinement 𝑦 (c) Resolution refinement 𝑧

Figure 5.11: Plots of the normalised residual mean square error as a function of the grid size ℎ [m] when refining the mesh in a
single direction. Constant grid size values were 0.75 m in 𝑥­direction for subfigures b and c, 1.25 m in 𝑦­direction for subfigures
a and c, 0.033 m in 𝑧­direction for subfigures a and b.

From Figure 5.11 it can be concluded that refining the mesh will give a more accurate result for all three
directions. The solutions converge to the finest­mesh solution as the grid size ℎ decreases. There is a
difference in the shape of the curve for ℎ𝑧 and the curves for ℎ𝑥 and ℎ𝑦. To investigate the convergence
rates of these numerical errors, a (double) logarithmic plot is shown in Figure 5.12.

Figure 5.12: Logarithmic plot of the normalised residual mean square error as a function of the grid size ℎ [m] for refinement in
the 𝑥, 𝑦 and 𝑧 direction. The reference lines ℎ, ℎ2 and ℎ3 are shown as well.

From this figure, it looks as if the normalised root mean square errors show super­linear convergence
in all three directions, because the slopes of the NRMSE curves are steeper than the reference line ℎ.
Notice that the errors have not converged yet to the numerical precision error of 10−6. The boundary
element method is expected to converge in second order because the basis functions for 𝜙 are linear.

The final grid sizes used to obtain the results of sections 5.3.1­5.3.3 were ℎ𝑥=0.75 m, ℎ𝑦=1.25 m
and ℎ𝑧=0.033 m. The normalised root mean square errors for these mesh choices were less than 1%
for the longest waves with 𝑓 = 0.1 Hz, and 2% for the shortest waves with 𝑓 = 0.3 Hz. Because this
error is averaged over the domain locations 𝑥𝑛, the error could locally be higher. Because the model
has not converged yet, and the error is computed with respect to a numerical approximation as well,
no guarantees can be given for the error bounds in mathematical sense.

With respect to the objective of this research, a numerical error of 2% is workable. Firstly, the gen­
eral wave attenuation behaviour is of interest, thus the exact surface elevation values for a specified
position are less important. Moreover, the effect of other errors in the model approach are expected to
be larger. The model assumptions, such as the small angle approximation and the ideal properties of
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the fluid, will likely contribute to an error in the estimations with a larger order of magnitude.

Even for the finest resolutions possible for this floating object due to the restrictions in memory, the
order of magnitude of the normalised root means square error is still 10−3. This gives an indication for
the numerical error bounds for the 2D diffraction results, when applied to an object of these dimensions.

5.4. Result summary
This thesis investigates a proof of concept for applying a linear boundary element method diffraction
model to a floating solar structure, restricted to scattering only. The near­field wave environment of the
solar structure, for constant intermediate water depth ℎ = 24 m, was investigated in an approximate
two­dimensional setting in this chapter.

The BEM diffraction model could be applied to the shallow floating solar structure to compute the linear
diffraction solution. Then, the surface elevation amplitude |𝜂𝐼 + 𝜂𝐷| could obtained from the incident
and diffracted velocity potential solutions. The results were in accordance with the expectations, as the
surface elevation showed an overall decrease in amplitude behind the object and standing waves in
front of the floating object. Therefore, the diffraction solutions demonstrated a decreased wave trans­
mission due to the reflection of waves in opposite direction.

By simulating different wave conditions, the wave transmission coefficient 𝐾𝑡 showed to decrease as
a function of the incident wave frequency 𝑓 (and thus for decreasing wavelength 𝜆). This relation was
approximately linear in the region 𝑓 ∈ [0.13, 0.27] Hz, thus from 𝜆/𝐿𝑓 ≈ 7 onwards. The transmission
dependence on the number of floaters parallel to the propagation direction, 𝑛𝐹𝐿, was investigated by
enlarging the floater length 𝐿𝑓. The results showed a decrease in wave transmission as a function of
the relative floater length 𝐿𝑓/𝜆.

The wave reflection 𝐾𝑟 increased as a function of the incident wave frequency 𝑓 (and thus for de­
creasing wavelength 𝜆). The quadratic sum relation 𝐾2𝑡 + 𝐾2𝑟 = 1 that was theoretically expected from
wave energy conservation reasoning did however not hold for most of the wave conditions tested. The
observation 𝐾2𝑡 + 𝐾1𝑟 > 1 gives an indication that the definitions of 𝐾𝑡 and 𝐾𝑟 in this approximately
two­dimensional setting might not be an accurate representation, mainly because of three­dimensional
diffraction effects.

A mesh sensitivity study showed that the results had not been numerically converged yet. Even when
the maximum resolution was used for this model setup, numerical errors were of the order 10−3. Mem­
ory restrictions limited further mesh refinement for the wide object, leaving the obtained results with
an average numerical error of 2% over the surface elevation domain. This still leaves the obtained
results workable, as the model assumptions are assumed to have a larger impact. The influence of
high aspect ratios for the grid cells should be looked into, as mesh convergence in 𝑥 and 𝑦­direction
showed to be different from the 𝑧­direction.
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Discussion

In this chapter, the discussion points for the basin test and the numerical model will be presented first,
in sections 6.1 and 6.2 respectively. After that, these results are compared in 6.3 to see how well wave
transmission can be predicted by the numerical diffraction model. The implications of this research
for offshore floating solar and multi­use will be discussed in 6.4, followed by suggestions for further
research in 6.5.

6.1. Basin test
For the basin test results, presented in chapter 4, the most important points of discussion are:

• Uncertainty in the results for the short wavelengths (𝜆 < 6𝐿𝑓) due to a limited amount of tests and
resonance effects

• Additional incident wave energy in the irregular wave tests with a floating system present

• Possible errors in the time series analysis for regular wave surface elevation measurements

• Possible errors in reflection analysis

These effects will be discussed one by one in sections 6.1.1­6.1.4. Further discussion points and
recommendations for improving the basin test procedure are given in Appendix M.

6.1.1. Uncertainty in short wavelength regime
From the basin test results, it was concluded that transmission decreased for the short wavelengths
(from 𝜆 < 6𝐿𝑓 onwards). In this regime however, only a limited amount of tests were performed, which
leads to an increased uncertainty in both the transmission and reflection coefficient.

For the wavelengths 𝜆/𝐿𝑓 < 2 (thus 𝑓 > 0.25 Hz), where attenuation decreased to zero, only two
regular wave conditions were tested and could give information on the decreased wave transmission.
These results showed some time­dependency in the wave surface elevation, which does not show in
the wave height results 𝐻𝑝1, 𝐻𝑟1, 𝐻𝑝2 and 𝐻𝑟2. It is difficult to quantify the possible error this could have
brought in the transmission coefficient, but it can be noted that the error bounds are likely to be larger
for the high frequency regime. An estimate is made at 𝐾𝑡 ± 0.1, which was also based on the spread
between the repeated tests for different system sizes.

One of these regular wave tests, test 15 with 𝐻 = 1.0m, 𝑇 = 4 s and 𝜆 = 25m at full scale, could not be
used in transmission results for the full system size with 𝑛𝐹𝐿 = 33 floaters due to resonant behaviour.
The surface elevation signal varied over time, shown in Figure 6.1. Also, there was a difference in
wave amplitude between the four wave height meters within a set.

59
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(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 33

Figure 6.1: First 200 seconds of the surface elevation measurements in [m] at basin test scale, measured by WHM 4 for regular
wave test 15. Test conditions were 𝐻 = 0.04 m on basin scale, 𝐻 = 1 m full scale, 𝑇 = 0.8 s on basin scale, 𝑇 = 4 s full scale.

Figure 6.1b shows a surface elevation which increased over time when the largest floating system
(𝑛𝐹𝐿 = 33) was present. Upon repetition of test 15, approximately the same results were found, which
makes a coincidental (measurement) error improbable. The calibration test did not show a variation
in surface elevation, see Figure 6.1a. It is therefore unlikely that the increase in wave amplitude was
caused by standing waves over the total length of the flume. Linear resonance seems to occur in front
of the floating object, likely caused by wave reflections between the wave paddle and the floating sys­
tem. The wave paddle’s Active Reflection Compensation (ARC) might not have picked up the short
waves, therefore reflecting them back as additional incident waves. This could occur especially for
short waves, because these are present at the upper part of the water column only. The wave paddle
can only compensate reflected waves by moving the whole water column, and might therefore have
difficulties with the dampening out high frequent waves.

In future research, more regular wave tests with shorter wavelength would be a valuable addition to the
testing programme. This was not possible within the setup used in this thesis however, as the steep­
ness restrictions constrained the wave conditions with short periods for the minimally required wave
height of 𝐻 = 1.0 m and water depth ℎ = 21.25 m (both full scale). A possible solution to overcome
these restrictions would be choosing a smaller scaling parameter, and thus enlarging the length of the
floaters in the model such that 𝜆 < 2𝐿𝑓 could be tested more.

6.1.2. Additional incident wave energy
The irregular wave spectra showed an increase of incident wave energy in comparison to the calibra­
tion tests, especially around 𝑓 = 0.3 Hz (see Figure 4.9 and Appendix K). This increased wave energy
has an influence on the transmission results, because 𝐾𝑡 is defined with the ratio of the incident and
transmitted wave energy, see equation (4.12). The transmission coefficient still shows the proportion
of transmitted waves correctly, also if the floating system is present, but the incident wave spectrum
did not match the intended JONSWAP spectrum properly.

The difference between the incident wave variance density spectra is shown in Figure 6.2. When this
difference in incident variance density is strictly positive for a certain frequency 𝑓, 𝐸33(𝑓) − 𝐸0(𝑓) > 0,
this implies that more waves with this frequency were measured in the incident wave spectrum when
the floating object was present.
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Figure 6.2: Difference in variance density 𝐸(𝑓) for the incident wave spectra of the calibration test 𝐸0, and the tests with the full
system of 33 floater arrays present 𝐸33, as a function of the frequency 𝑓. Shown for all 7 irregular wave conditions tested; each
test­ID in the legend corresponds to the different irregular wave characteristics tested, given in Table I.2.

The additional incident wave energy E33 − E0 was between 7% and 13% of the total incident wave
energy E0, and shows to be present especially around 𝑓 = 0.3 Hz and 𝑓 = 0.25 Hz (which correspond
to 𝜆/𝐿𝑓 ≈ 1.45 and 𝜆/𝐿𝑓 ≈ 2). These extra waves in the forward propagating wave spectrum cannot be
explained by the resonance frequency of the mooring system, as the wave frequencies for which the
spectrum showed an increase did not match the resonance frequency (𝑓𝑟 ∈ [0.05, 0.12] Hz, depending
on the size and therefore mass of the floating system). Neither did the wavelengths correspond to
possible radiation modes of the floating structure (because for 𝑓 = 0.3 Hz, 𝜆/𝐿𝑓 ≈ 1.45, 𝜆/𝑊𝑓 ≈ 0.9).

The additional waves might have been caused by the ARC, which performed active dampening in­
correctly, causing the reflected waves to propagate back towards the structure. In this explanation, it
might seem peculiar that the additional wave energy shows for certain frequencies only. This could
be explained by frequency­dependence of the system reflection, rather than the reflection from the
ARC. Namely, if waves with 𝑓 = 0.3 Hz are often redirected backwards towards the wave paddle, and
the ARC is not able to dampen them out, they will show up in the spectra as additional incident wave
energy.

6.1.3. Time series analysis
For the regular wave tests, the time series analysis was done with the least squares method as ex­
plained in Appendix J, based on [29]. This analysis could have included errors, resulting in different
values for the wave heights 𝐻𝑝1, 𝐻𝑝2, 𝐻𝑟1 and 𝐻𝑟2.

The harmonic modes which are fitted to the surface elevation data are defined for a fixed frequency 𝜔
and its higher harmonics. If the wave phase does not propagate with the initialised 𝜔 through the entire
flume, the backward propagating signals 𝐻𝑟1 might be out of phase with the forward propagating signal
𝐻𝑝1, such that the least squares method does not work accurately. This could happen if the wavelength
and thus frequency is not constant along the flume, for example because it is deformed when passing
underneath the structure. This could be checked by adding pressure sensors in the flume underneath
the structure.

The choice of the time interval for which the surface elevation data was analysed and the possible
wave amplitude variations between the wave height meters could have had influence on the wave
height results as well. Variations in time interval did not lead to different results however, and the
difference in surface elevation between the wave gauges was estimated at maximally 1.1%.

6.1.4. Reflection analysis
To see whether redirection of waves by the floating system could explain the decreased wave trans­
mission, the reflected waves from the front of the floating structure were filtered out (see section 4.1.2).
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The definition of the reflection coefficient 𝐾𝑟 that followed could be questioned based on the following
three observations. Firstly, in around half of the regular wave tests analysed, slightly negative values
𝐾𝑟 ∈ [−0.04, 0] were found, which does not have a physical interpretation (see Figure 4.7). Secondly,
the reflection parameter 𝐾𝑟 showed variations of ±0.03 with respect to the expected value 𝐾𝑟 = 0.
These values seem small, but when considered as a minimal error bar in comparison to the values
𝐾𝑟 ∈ [−0.04, 0.18], the error percentage is quite significant. Thirdly, the reflection coefficient showed
not to explain the lack of wave transmission, as energy analysis gave 𝐾2𝑡 + 𝐾2𝑟 < 1 for the higher fre­
quencies especially (see Figure 4.8). This would indicate the dissipation coefficient 𝐾𝑑 = √1 − 𝐾2𝑡 − 𝐾2𝑟
to be highly frequency dependent, which is questionable to this extent. The shorter waves might indeed
suffer more from friction effects, as also showed for the friction from the sides of the flume. However,
the long waves would have 𝐾𝑑 ≈ 0, which shows a large range of difference between 𝐾𝑑 ≈ 0.84 for the
shortest wave condition tested.

Therefore, one could reconsider the definition and derivation of the reflection coefficient, given in equa­
tion (4.9). Because the reflections from the floaters 𝐻𝑟 might be small, the errors made in the assump­
tions might not be negligible in comparison to the wave signal of interest. The two contributions that
should be looked at critically are the reflections from the wave paddle and the second order reflections
from the back of the flume.

1. The reflections from the back of the flume were known to be around 30%, thus in second order
maximally 9% (if the reflected waves are redirected fully again towards the wave dampener).
This is a significant value in comparison to the reflections from the floating solar system, as these
are of the same order of magnitude. In future research, addition of these second order effects
could give a more accurate expression for 𝐾𝑡, but would require a larger system of equations to
be solved. Notice that the reflections have to be truncated at some point, but that the effect of
increasing the order of reflections included could be investigated.

2. The reflections from the wave paddle were minimised by using the wave paddle’s ARC: the re­
flected waves are measured and actively dampened out. This device might not have worked
perfectly however, especially for the short waves. For example, it took around five minutes for
the water to become still again after a (regular) wave test was performed, so the waves had to
pass through the flume a number of times until they disappeared.

Both of these contributions were assumed to be negligible and thus set to 0 in the system of equations
that was solved for 𝐾𝑟. However, if they are of the same order of magnitude as the variable of interest,
this could have caused errors.

Another way of filtering out the reflections from the floating object is by looking at the time series data
for 𝑡 < 𝑡𝑟𝑒𝑓, where 𝑡𝑟𝑒𝑓 is the time it takes for the waves to travel towards the end of the flume and
back to the first set of wave gauges. This time window is therefore free from reflections from the back
of the flume and shows reflections from the object only. When this method was applied, the calibration
tests already showed a backward propagating wave of the same order of magnitude as the tests with a
floater present, which was not expected. The reflected wave heights were all in the order of millimetres,
thus small in comparison to the incident wave height 𝐻𝑖 ≥ 0.04 m. Possibly, errors in the time series
analysis could make it difficult to filter out the reflected waves. It should be noted that this approach
would not measure the wave response of the equilibrium state of the system, because the oscillation
movement of the floaters still changes in time.

Besides the uncertainty in the reflection parameter, it should be noted that all backward propagating
waves were now defined as reflected waves. However, waves that propagate in opposite direction can
also be caused by radiated waves from the oscillations of the structure. No distinction has been made
between these possible causes for the redirected waves, as both are caused by linear effects and could
therefore potentially be captured in a linear BEM model. It would however be interesting to see what
the transmission would be when considering reflection only, because only scattering is implemented
in the numerical model at this point. The distinction between radiative and reflective effects is difficult
to measure, but analysis on the movement of the floating structure could be helpful in distinguishing
radiative modes.
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6.2. Numerical model
For the transmission analysis from the numerical model, presented in chapter 5, the most important
points of discussion are:

• Numerical errors and memory limitations

• The influence of three­dimensional diffraction effects

• Definition of transmission and reflection coefficient for space­dependent surface elevation
The numerical errors and memory limitations are effects that are inherent to the BEM diffraction model,
whereas the other two are discussion points regarding the approximate 2D transmission analysis.
These three effects will be discussed sections 6.2.1­6.2.3.

6.2.1. Numerical errors and memory limitations
From the mesh sensitivity study, it could be concluded that the wave surface elevation results still
included a normalised root mean square error of 1­2%, depending on the incident wavelength. This in­
dicates that the model has not yet converged numerically, and choosing a higher resolution would lead
to more accurate results. However, the ratio between the (large) wetted surface area and the (small)
grid size resolution needed brought large memory and computation costs. Especially when trying to
approximate a two­dimensional setting by using a very wide floating object, the number of grid cells
increases. For the finest resolutions possible in a single direction, numerical errors cannot decrease
further than the order of magnitude of 10−3 due to memory restrictions. This gives an indication for
the numerical error bounds on the 2D diffraction results when a floating object of these dimensions is
considered.

These mesh resolutions were compared to other studies that modelled wide floating breakwaters.
• Biesheuvel (2013) [5] modelled a floating barge with the dimensions 2× 350× 0.67 m (below the
equilibrium water level) using the linear BEM diffraction model Ansys Aqwa. In total, 5862­17550
panels were used to describe the 1171.68 m2 wetted surface area. This translates to grid cells
of 0.07­0.20 m2, which were enough to describe waves with 𝜆 ≥ 8 m.

• Nguyen et al. (2021) [51] modelled a floating barge with the dimensions 20 × 10 × 200 m (below
the equilibrium water level) using a non­commercial linear BEM diffraction model. Grid cells of 4
­ 25 m2 were used to describe waves with 𝜆 ≥ 30 m. In this study, eight­node linear serendipity
elements were used in discretization.

The average mesh size used to describe the 2D floating solar body in this study was 0.42 m2, where
the largest mesh cells in the 𝑥, 𝑦­plane had a surface area of 0.93m2 to describe wavelengths up to
𝜆 ≥ 17 m. This shows the grid cells were larger than the ones used in Biesheuvel (2013) and might
therefore include more numerical errors. The maximum amount of panels is 18000 in Ansys Aqwa,
which indicates that the commercial Aqwa code has less memory limitations than Capytaine. Nguyen
et al. (2021) used different a different type of grid cells, which likely allowed for faster convergence.
It was difficult to compare numerical errors however, as the studies only included plots that showed
the transmission coefficient for different mesh sizes to show that the solutions had converged. In fu­
ture studies, other numerical diffraction models could be considered, as they can either include more
grid cells in the computations or use higher order elements. This will be discussed further in section 6.5.

A difference in comparison to the floating breakwater studies was the shape of the grid cells. These
were not chosen to be square shaped, due to the small height of the floating object. Dividing the floater
draft into a fine mesh lead to grid sizes in 𝑧 in the order of 10−2 m, whereas the grid size in 𝑥 and 𝑦 were
chosen in the order of 1 m due to the large object dimensions and memory restrictions. Therefore, the
grid cells were rectangular shaped, with a high aspect ratio. It should be researched further whether
a high aspect ratio could lead to additional numerical errors, as the mesh convergence in 𝑥 and 𝑦­
direction showed different from the 𝑧­direction. Indications that problems might arise for thin elements
in Nemoh were found in for example [54]. In general, problems related to thin BEM elements arise in
research on acoustics or elasticity theory when the thickness­to­length ratio is in the order of 10−6 or
10−9 . For the floating structure, as well as the grid cells for its mesh, the thickness­to­length ratio is
always larger or equal to 10−4, therefore not in the regime considered.
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6.2.2. Three­dimensional diffraction effects
Results in section 5.3.3 and Appendix F showed that there were three dimensional effects present in
the surface elevation, whereas a two dimensional situation was aimed at. The waves diffract around
the structure, which causes a different wave amplitude pattern behind the floater compared to a fully
two­dimensional simulation. Also, the standing waves in front of the structure will diffract wave energy
to the sides, leading to a decrease in standing wave amplitude in comparison to a fully two­dimensional
situation. Note that these 3D effects might be undesired in this research, they would be essential in
describing a realistic offshore situation. This discussion should therefore not be regarded as inherent
to applying a numerical BEM method to an offshore floating solar system, but reflects on the two­
dimensional transmission analysis performed.

Especially the long waves will bend around the structure, because the width­to­wavelength ratio 𝑊𝑓/𝜆
is smaller. However, increasing the width of the floater would require a larger number of grid cells to
obtain the same resolution. Therefore, a balance was chosen between the memory and computation
costs on the one hand and the width of the floater on the other hand.

For the wave conditions considered, the floater width to wavelength ratio was 𝑊𝑓/𝜆 ∈ [1.6, 11.8].
The Sommerfeld solution for diffraction around a semi­infinite breakwater can give an indication of
the amount of diffraction influence on the resulting wave height. Figure 6.3 shows the diffracted wave
height around and behind a breakwater. Note that this breakwater is not floating but fixed over the
entire water depth, and thus fully blocks the incident waves.

Figure 6.3: Sommerfeld solution for the diffracted wave height over incident wave height around a semi­infinite breakwater. [28]

The Sommerfeld solution shows that the diffracted wave height that bends around the structure is below
20% of the incident wave height for𝑊𝑓/𝜆 > 1. However, the floating object in this thesis has diffraction
around both ends, and could therefore have a diffracted wave height that is up to 40% of the incident
wave height. For the longer waves where 𝑊𝑓/𝜆 > 5, it follows that the diffracted wave height is maxi­
mally 20% at the centre of the floater (for 𝑦 = 0). Indeed, the differences in surface elevation between
nodes and anti­nodes behind the object were largest for the longer waves, in the order of 0.25 m. It
can be concluded that for the swell waves with large wavelengths (for example 𝑇 ≈ 20 s, 𝑓 ≈ 0.05 Hz,
𝜆 ≈ 280 m), a very wide floater (𝑊𝑓 in the order of 104 m) is required to minimize the diffraction effects
to 20%, which is still a high contribution.

The three­dimensional effects influence the surface elevation, and therefore the transmission and re­
flection coefficients, up to around 20%. This was estimated from the surface elevation differences in
the interference patterns behind the floater. The values for the nodes and anti­nodes can become
more extreme when waves from different directions interfere and add up, causing the surface elevation
amplitudes in front of the floater to be larger than 2, |𝜙𝐼 + 𝜙𝐷|𝑥<−𝐿𝑓 > 2, or behind the floater to be
larger than one |𝜙𝐼 + 𝜙𝐷|𝑥>𝐿𝑓 > 1.



6.2. Numerical model 65

6.2.3. Definition transmission and reflection coefficient
The chosen definitions for the transmission and reflection coefficient will be discussed separately first,
after which the energy conservation 𝐾2𝑡 +𝐾2𝑟 is analysed to provide a reference for these choices. Again,
this discussion reflects on the two­dimensional transmission analysis performed, and is not inherent to
applying a numerical BEM method to an offshore floating solar system.

Transmission coefficient 𝐾𝑡
Because the surface elevation amplitude behind the object |𝜂𝐼+𝜂𝐷| is dependent on the position (𝑥, 𝑦),
the definition of a valid transmission coefficient is not trivial. Using the average surface elevation value
over an area of interest gave an adequate idea of the overall attenuation performance, and has been
commonly used in breakwater studies, for example [49, 55]. Also, the undesired 3D diffraction effects
were averaged out in this definition and therefore had a smaller impact on 𝐾𝑡. It should be noted how­
ever, that the transmission might only be smaller or equal to this value in a part of the area of interest.

The area of interest for the floating solar structure was defined as the first 100 m behind the object, in
the direction of wave propagation. Only the wave height at 𝑦 = 0was considered, as a two­dimensional
situation was approximated. The averaging domain was chosen as close to the floater as possible, to
reduce the influence of three­dimensional diffraction effects. Still, there were variations in the surface
elevation due to these interference patterns behind the floaters. The combination of a fixed area of in­
terest and 3D effects which depended on the incident wavelength could thus have lead to an additional
error in 𝐾𝑡, because the surface elevation oscillations were cut off at a fixed point. In future research,
it might therefore be better to define the area of interest with respect to the incident wavelength 𝜆.

Other definitions for a representative three­dimensional transmission coefficient were suggested by
Nguyen et al. (2021) [51], for example using the maximum surface elevation value. This would yield
an upper bound on the wave heights behind the object, which could be beneficial from a safety point
of view. In a multi­use context, this seems like the value of interest for the possible limit state of the
seaweed farm or harbour entrance. However, the 3D diffraction effects that caused the high­valued
anti­nodes were not realistic, as a 2D setting was simulated. When a three­dimensional floating solar
system is modelled, this could be a suggestion for defining 𝐾𝑡.

Reflection coefficient 𝐾𝑟
The reflected wave height 𝐻𝑟 used in the definition for the reflection coefficient 𝐾𝑟 was defined as local
maximum of the surface elevation |𝜂𝐷 +𝜂𝐼| in front of the structure, minus the incident wave amplitude
|𝜂𝐼|. The anti­node closest to the floating object was taken as a representative for 𝐻𝑟 because the
three­dimensional effects were smallest. However, this choice could be reconsidered based on the
following discussion points.

Firstly, the standing waves in front of the structure did not show constant values for the surface eleva­
tion at the anti­nodes. In fact, for the higher wave heights, the first standing wave amplitudes showed
alternation between two values in the region close to the structure 𝑥 ∈ [−100,−𝐿𝑓] (see Figure F.1e,
Appendix F). The value closest to the object was often the higher peak value, which was then used
as the measure for 𝐾𝑟 (see section 5.1.6). This might have lead to an over­estimation of 𝐾𝑟. For the
higher frequencies 𝑓, the difference in surface elevation between the first and second anti­node were
largest, and might thus have caused a bigger error.

Secondly, the reflected wave height increased to 𝐻𝑟 > 1 for the frequencies 𝑓 > 0.25, which would
never be observed in a two­dimensional basin test. It is unclear what exactly caused the high surface
elevation |𝜂𝐷 + 𝜂𝐼| near the object boundary. It could be that the translation from the velocity potential
solution on the object surface to a grid cell near this surface creates errors.

Energy conservation 𝐾2𝑡 + 𝐾2𝑟
Because the diffraction model is entirely based on linear wave theory, wave energy should be con­
served. That is, the wave energy that was not transmitted had been reflected or diffracted in different
propagation directions. When the problem would be entirely two­dimensional, only reflection would
occur. The sum of the squared transmission and reflection coefficients, shown in Figure 5.6, did not
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show 𝐾2𝑡 + 𝐾2𝑟 = 1 as would be expected in a two­dimensional situation. Therefore, the numerical
transmission and reflection results might not be one­to­one comparable to the 2D wave height mea­
surements for basin tests. Within the frequency domain of interest, the values 𝐾2𝑡 +𝐾2𝑟 ∈ [0.9, 1.3] show
a reference setting for the entire analysis. The fact that the sum is higher than one and also shows
variability over the frequency domain 𝑓 indicates one should be critical in using this method to predict
two­dimensional transmission and reflection through a floating solar structure.

6.3. Comparison of results
To see whether the scattering solution of the linear BEM diffraction model can be used to predict two­
dimensional transmission through the floating solar structure, the results from the basin test (chapter
4) and the diffraction model (chapter 5) will be compared in this section.

The transmission, reflection and flume dissipation coefficients, 𝐾𝑡 , 𝐾𝑟 and 𝐾𝑑,𝑓, are plotted as a func­
tion of the incident wave frequency 𝑓 [Hz] in Figure 6.4, for the basin test and the numerical diffraction
model. Recall that these results are all determined with incident wave height 𝐻 = 1 m on offshore
scale, and a water depth of ℎ = 21.25 m in the basin test and ℎ = 24 m in the numerical model.
The coefficients were determined for each frequency separately, for (approximately) linear waves. The
basin test results were averaged over the different system size configurations 𝑛𝐹𝐿, numerical results
had 𝑛𝐹𝐿 = 1.

Figure 6.4: Transmission 𝐾𝑡, reflection 𝐾𝑟 and flume dissipation 𝐾𝑑,𝑓 and model dissipation 𝐾𝑑 coefficients from the basin test,
as a function of incident wave frequency 𝑓 [Hz], shown with the solid line. Transmission 𝐾𝑡, reflection 𝐾𝑟, and squared sum
𝐾2𝑡 +𝐾2𝑟 coefficients from the numerical diffraction model, as a function of incident wave frequency 𝑓 [Hz], shown with the dashed
line. Configurations and wave conditions as described in Figures 4.8 and 5.6.

Qualitatively, the overall trends for the transmission and reflection results do confirm frequency de­
pendent behaviour: transmission decreases with 𝑓 and reflection increases with 𝑓. Furthermore, a
decrease in transmission seems to start around a similar frequency value 𝑓 > 0.14 Hz.

Quantitatively on the other hand, the values for 𝐾𝑡 and especially 𝐾𝑟 show large differences between
the basin test and model predictions. Reflection is overestimated by the diffraction model, whereas
transmission is underestimated. It was not necessarily expected that the model and basin test results
would show good agreement, as the model was limited to the scattering result only. The radiation and
dissipation effects that were present in the flume are not included in the model simulations.

Dissipation showed to be accountable for the largest part of the decrease in transmission, based on
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the regular test results. Although there are errors in the reflection analysis, it is likely that the share of
dissipation effects is not negligible. Therefore, a numerical boundary element method diffraction model
might not be able to predict the exact wave transmission through an interconnected multi­body solar
structure.

However, using the complete linear description of the wave­structure interaction by adding the radiation
effects might bring the transmission predictions closer to the basin test observations. It is expected that
adding radiation effects could increase transmission and reduce reflection in the model results, which
would bring them closer to the test observations. Also, because the model results were influenced
by three­dimensional effects and a space­dependent transmission, the values for 𝐾𝑡 and 𝐾𝑟 from the
model results would shift quite a lot depending on the choices for floater configuration and coefficient
definitions. A three­dimensional model approach might give results that resemble 3D test results or
offshore observations more accurately.

The diffraction results could better be validated with other studies that compute the diffracted wave
field, such as Nguyen et al. (2021) [51]. Although this study did include two plots where the diffraction
results were isolated, there were no numerical transmission values that could be taken as a reference
solution. Also, the draft of the floating breakwater was incomparable with the floating solar platform
used in this study. Similarly to most other floating breakwaters studies, mostly the results for the com­
bined diffraction and radiation solutions are presented. The diffraction results available showed similar
interference patterns and surface elevation values to the results presented in this study. Therefore, the
overall effects are confirmed.

6.3.1. Model assumptions
Remember that the assumptions which underlie the linear potential flow theory, stated in section 2.2,
should hold for the diffraction model. If these assumptions differ significantly from the basin test setting,
this can be a cause for the differences between the obtained results. In this light, especially the validity
of the small amplitude approximation could be questioned. This assumption implies airy waves as well
as no overtopping over the freeboard or air gaps below object.

Airy waves
The computations of the linear diffraction model are based on the small amplitude approximation: the
wave amplitudes should be small compared with their wave length 𝜆 as well as the water depth ℎ. Be­
cause the model is linear, the surface elevation results can be scaled to match any input value for the
incident wave height (in case of the scattering problem) or the radiation amplitude of the object (in case
of the radiation problem). Therefore, the model solutions might not give an appropriate description of
the physical waves for the incident wave amplitude 𝐴=1 m that was used because offshore or basin­test
waves might not be airy in this regime, especially for the smaller wavelengths.

Because the diffraction model assumes linear waves, a better comparison can be made if the basin
test conditions were also chosen as airy as possible. The ratios 𝐻/𝜆 and 𝐻/ℎ were kept as small as
possible for the regular wave tests, but were restricted by the minimal wave height in the Scheldt flume
of 𝐻 = 0.04 m. To verify how well these waves can be approximated with linear wave theory, the valid­
ity regimes of different wave theories are shown in Figure 6.5 [27, 35]. The dimensionless parameters
𝐻/𝑔𝑇2 and ℎ/𝑔𝑇2 were calculated for the regular wave test conditions and have been plotted as red
’+’ marks.
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Figure 6.5: Regions of validity for various theories which describe periodic water waves. Defined in terms of dimensionless wave
height parameter 𝐻/𝑔𝑇2 and depth parameter ℎ/𝑔𝑇2. [35] Regular wave test conditions are plotted as red ’+’. Tests 10 and 15
have been indicated with a square and circle respectively, their wave spectra are shown in Figure 6.6.

From this figure, it is clear that most of the wave conditions that were tested are best described with sec­
ond order Stokes theory and are therefore weakly non­linear. When spectral analysis was performed
on the regular wave measurements, the wave spectrum only showed a non­zero variance density for
the desired frequency 𝑓 in most cases. Therefore, the presence of the higher harmonic modes was
limited. As an example, the wave spectrum for test 15 (encircled in Figure 6.5) is shown in Figure 6.6a
below. Only for the wave conditions with increased wave height, small excitations for the higher har­
monics showed as well. Figure 6.6b shows an example of a variance density spectrum that did include
the first and second higher harmonics, for test 10 (shown with a square in Figure 6.5). Notice that the
higher harmonics are indeed located at 2𝑓 and 3𝑓, with 𝑓 the main incident wave frequency.

Recall that only the tests with constant wave height 𝐻 = 1.0 m (offshore scale) were used in the
calculations of 𝐾𝑡(𝑓) and 𝐾𝑟(𝑓). Because these all lay in the Stokes second order regime and show
almost no higher order excitations in the wave spectrum, the basin test waves were close to airy and
can therefore be used as comparison for the linear numerical results.

(a) Regular wave test 15: 𝐻 = 1 m, 𝑇 = 4 s, 𝜆 = 25 m at offshore scale (b) Regular wave test 10: 𝐻 = 8 m, 𝑇 = 12.5 s, 𝜆 = 156 m at offshore
scale

Figure 6.6: Incident and transmitted variance density spectra 𝐸 [m2/Hz] as a function of the wave frequency 𝑓 [Hz] for two regular
wave tests, with the largest system size 𝑛𝐹𝐿 = 33 .
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It can also be observed from this figure that there is no frequency spreading present caused by the
floating solar system. The incident variance density is decreased, but there are no waves of different
frequency formed in the transmitted spectrum. The absence of physical effects that spread incident
wave energy over different frequencies does show agreement with a linear diffraction model, which
considers one frequency at the time.

Overtopping and air gaps
Because the height of the floating solar platform is relatively small, scaling the wave amplitude to 𝐴=1 m
might misrepresent the wave­structure interaction. The small amplitude approximation for linear wave
theory implies that wave will not flow over the structure’s freeboard or that no air gaps are formed un­
derneath the structure. Namely, the velocity potential is calculated with a very small surface elevation
displacement, therefore also small with respect to the object height. However, in the basin test and for
the offshore wave conditions, the small freeboard would lead to overtopping and the limited draft will
allow for air gaps underneath the floater. These effects are illustrated in Figure 6.7, and are examples
of effects that cannot be described by the linear diffraction model.

Figure 6.7: Illustration of two effects that are not simulated in a linear boundary element method diffraction model.

6.4. Implications for offshore floating solar
In the multi­use context, if would be beneficial if the floating solar structure has a wave attenuation effect
such that other offshore activities can benefit from the possible shadow zone leeward of the structure.
In short, the basin test results showed that the structure acts as a wave follower for the long waves.
Therefore, the low frequent wave energy is transmitted. From a certain frequency onwards, 𝑓 ≤ 0.15
Hz, depending on the ratio between the wavelength and the rigid parts of the structure, the wave energy
is attenuated.

Irregular wave tests that simulated the North Sea wave conditions showed wave energy attenuation
between 37% and 9% when the largest floating system was present. This percentage depended on
the wave conditions tested (𝑇𝑝 and 𝐻𝑠) and was corrected for the flume dissipation. The system has
a large impact on the waves for very calm sea states with short wave period and low wave height.
When a weighted average is computed with respect to the occurrence of the tested sea states at the
North Sea location [1], the total amount of wave energy attenuation is approximately 27%. This is true
if waves would always be propagating in parallel with the length of the rigid floaters and cannot move
around the object on the sides. Therefore, the percentage can be interpreted as a maximal value for
wave attenuation at the North Sea offshore location. The transmitted wave spectra will still have a lot
of large waves however, and the smaller ones will be filtered out.

At the current North Sea location, for a water depth around 21 m, the structure might not have the
attenuation performance that is desired for a breakwater to protect other offshore activities. Seaweed
farms and harbours will have to be protected from the waves with largest wave heights especially,
because these can cause most structural damage. As the wavelength and wave height are highly cor­
related in the North Sea conditions and the long waves were transmitted by the system, this means the
roughest sea states will be influenced to less extent by the floating solar structure.

The structure’s wave attenuation properties might however be well suitable for other locations, either
offshore or on inland waters. If the most common wave spectrum consists of waves with shorter wave­
lengths, the attenuation performance would be better. The floating solar farm will likely have more
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impact on the wave environment in North Sea locations with a lower water depth, where the waves
are shorter, or at for example Mediterranean seas where the smaller fetch also leads to smaller wave­
lengths. Furthermore, for applications where it would be convenient to filter out the short waves espe­
cially, the system would be well suitable for multi­use.

In addition, the wave­structure interaction also shows that the system itself will have to endure less
structure loads in comparison to an actual floating breakwater. Namely, if the structure is able to move
along the waves and does not decrease the wave energy as much, this indicates that forces on for
example the mooring lines or the interconnectors that hold the platforms together are not increased by
opposite forces acting on the system.

6.5. Further research suggestions
In this research, first conclusions were found on the wave attenuation by an interconnected multi­body
solar structure. Now that the global effects are clearer, it would be beneficial to have a model which
predicts the wave environment around an interconnected multi­body floating solar system accurately.
It could especially be valuable for design purposes and the predictions for large­scale systems, which
are difficult and time­consuming to test in a basin test for example. A numerical model would be easily
adaptable for other system configurations and floater dimensions, as well as different incident wave
characteristics and water depth. The first steps were done in this direction by showing a proof of con­
cept for applying a linear boundary element method diffraction model to model the wave interaction
with the floating solar structure. The scattering solution was used to obtain wave transmission in an
approximately two­dimensional setting. The limitations that arose in this approach have been discussed
previously and bring incentives for four main further research directions, which will be discussed below.
Notice that the list of discussion points included in Appendix M gives a list of suggestions for research
improvements as well.

Including the radiation solution
The first and foremost step in modelling the wave transmission more accurately, is by including the
linear velocity potential radiation solutions in the model. This will complete the linear description of
wave­structure interaction, such that all first order effects are included. Because this allows the float­
ing object to move, the increased transmission for the structure’s radiative modes could be simulated.
Overall, including radiation effects will likely increase the transmission, as waves will be able to pass
underneath the structure and resonant motion modes can be simulated. After these modification, the
diffraction model results could perhaps be validated with the basin test wave transmission.

In order to include the radiation effect in the surface elevation amplitude, a Response Amplitude Op­
erator is needed to combine the radiation and diffraction potentials into a total surface elevation field
𝜂𝐼+𝜂𝐷+𝜂𝑅. This RAO is an operator that represents the motion amplitude per unit wave amplitude and
the phase difference between the object and the water motion. Capytaine can solve for this function
in each desired degree of freedom, such that the body motion is simulated. The object’s mass and
hydrodynamic stiffness matrices are needed as additional input, see Appendix C. A stiffness matrix for
mooring stiffness and an operational dissipation matrix may be added to the equation of motion as well.
For a restrained object, the degrees of freedom could be limited. In case of the offshore floating solar
structure, heave is expected to be the main oscillation mode and therefore the most important degree
of freedom to add to the diffraction solution.

Solving the memory limitations
The second suggestion regards the numerical diffraction model limits due to the memory needed for the
interaction matrix. New approaches that could be explored to minimise memory usage and decrease
computation costs could be using a hierarchical matrix approximation, where the interaction between
grid cells that are far apart will be disregarded, or using different boundary elements, such as higher
order panel methods [51] or B­splines [13]. Some of the commercial software available (WAMIT, Ansys
Aqwa) are likely to have one or both of these options available already, so it would be relevant to verify
the diffraction results and see if they show better performance.
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Solving this memory problem is relevant in the first place for simulating a wider floater or to include
side walls, such that two­dimensional results can be approximated in a better way. It is also required to
simulate a 3D offshore solar structure however, because increasing the number of rigid bodies within
the structure will lead to a large number of grid cells as well. With the resolutions used in this research,
modelling a floating solar structure with more than 40 platforms (sized 12× 2×0.33 m) is not possible.
With respect to the 1MW system that Oceans of Energy is developing at the North Sea in the coming
years, which consists of over 200 platforms, this limitation makes the diffraction model as it is unsuit­
able to predict the system’s wave environment. Hierarchical Toeplitz matrices could be implemented
in Capytaine, where the interaction between grid cells that are far apart will be disregarded. It can be
assumed that the floaters that are very far apart will not be influenced by each other as much.

Determining the share of influence by reflection, radiation and dissipation
The third research suggestion would be to investigate the share of influence of reflection, radiation and
dissipation on the wave transmission further. The cause for a decreased transmission is important to
see whether a linear model will be able to capture the most important effects. It was difficult to indi­
cate what the relative influence was from reflection effects versus the radiation and dissipation effects,
which would have been helpful to give a reference frame or expectation for the numerical results. From
the basin test results, it seemed as if dissipation effects were at least equally important as the linear
wave­structure interaction and can therefore not be neglected. However, these results were not en­
tirely conclusive because of possible errors in the reflection analysis and the small amount of tests that
were done in the high frequency regime where 𝐾𝑡 < 1. This analysis should therefore be improved, for
example by choosing a different scale and setup such that the regime around 𝜆/𝐿𝑓 ≈ 2 can be tested
extensively or deriving the reflection coefficient with a different method. If the influence of the higher
order dissipative effects is similar to the linear effects, non­linear descriptions might be needed to model
wave transmission. Implementation could be difficult within potential flow theory, but combining linear
wave theory and dissipation effects is done before in research on wave energy converters, for example
[7, 47].

Including diffraction model solutions into a spectral wave model
Finally, once the diffraction model results can provide an accurate description of the near­field wave
surface elevation, it would be relevant to look how the effect of the floating solar structure could be
implemented in a spectral wave model such as SWAN. This would enable the inclusion of far field ef­
fects for a large solar farm in a large North Sea wave model, such that possible effects on the sea and
coastline environment can be predicted. The interaction between linear diffraction results and a spec­
tral domain model will likely entail a redirection term for the wave energy that is frequency dependent,
possibly in combination with a sink term to simulate dissipation effects.
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Conclusions

The overall aim of this thesis was to research the effect of floating solar on the surrounding wave
field. If waves would be attenuated by the solar structure, down­wave shadow zones could be useful
for offshore multi use. The transmission of waves through an interconnected multi­body floating solar
structure was studied in a two­dimensional setting, with a basin test and a numerical model. The two
research questions that were posed will be answered in this conclusion.

To come back to the overall research aim first, the effect of an interconnected multi­body floating solar
structure on the wave transmission showed to be large for short waves and small for long waves. The
short waves are attenuated, which leads to a decrease in transmitted wave energy. Therefore, the
floating solar system will form a down­wave shadow zone if the incident wave spectrum consists of
waves with short wavelengths.

For the wave conditions at the North Sea location, with a water depth around 21 m, the average de­
crease in wave energy was found to be maximally 27% for a 400 m long system. Because the highest
waves with largest wave loads are in the transmission regime however, the structure might not have
the breakwater performance that is desired to protect other offshore activities at this location.

1. How do wave transmission and wave reflection depend on the incident wave frequency (and thus
wavelength), the incident wave height and the number of rows of floaters the model consists of?

Wave transmission showed to be highly dependent on the wave frequency 𝑓 and thus the wavelength
𝜆 in the basin test results. The floating solar system acted as a low pass filter: it lets the low frequency
waves pass through, whereas the waves with higher frequency are attenuated by the structure. The
system consists of multiple rigid floaters, which have a length 𝐿𝑓 in parallel to the incident waves. From
a wavelength smaller than six times the floater length onwards, 𝜆 < 6𝐿𝑓, the transmission decreased
linearly as a function of 𝑓. For the very short wavelengths 𝜆 < 2𝐿𝑓, waves were almost fully attenuated
such that 𝐾𝑡 ≈ 0.1. This behaviour was expected, as the structure is not able to follow the wave surface
elevation if the rigid parts are large in comparison to the wavelength. Only if the wavelength was exactly
twice the floater length, 𝜆 = 2𝐿𝑓, there was an increased transmission in the wave spectra due to the
oscillation mode of the floaters. In this case, the rigid bodies can follow the waves well and transmit a
larger share of the incident wave energy.

The wave height and the number of floater rows the model consists of had less impact on the wave
transmission. Transmission did not seem to depend on the incident wave height, but this was tested in
the long wavelength regime only, where the floating system transmitted the waves regardless of their
wave height. Transmission decreased linearly as a function of the number of floater arrays included
parallel to the wave propagation, where the slope of this relation differed per wavelength tested.

Wave reflection showed to increase with frequency. In the basin tests, wave reflection showed for
𝜆 < 2𝐿𝑓, but was more difficult to analyse because the reflections from the back of the flume had to be
filtered out from the backward propagating wave signal. The diffraction model showed standing waves
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in front of the floating structure, caused by the interference of incident and reflected waves. Reflection
increased for 𝜆 < 7𝐿𝑓.

2. How well does the scattering solution of a linear boundary element method diffraction model
describe the wave transmission through a multi­body floating solar structure?

Overall, the transmission and reflection analysis did show comparable, frequency dependent, qualita­
tive results for the basin test and the numerical diffraction model. Quantitatively, the diffraction solution
does not predict the transmission and reflection coefficients correctly.

(a) To what extent do linear effects, thus the redirection of wave energy, explain a decreased
transmission?

This question was investigated by considering the energy conservation: the incident wave energy has
to be either transmitted, redirected, which could be due to reflection or radiation, or dissipated by the
floating structure. The basin test results showed that reflection did indeed increase when transmission
decreased, but the transmitted and reflected wave energy were still smaller than the incident wave
energy. If this difference is assumed to be caused by dissipation effects, dissipation showed to be
dominant over the linear effects in the cause for wave energy attenuation.

The basin test results thus indicated that higher order dissipative effects are likely needed to describe
the decrease in transmission accurately, especially for the higher wave frequencies. Therefore, a linear
velocity potential diffraction model might not describe the wave transmission in an accurate manner.
However, the reflected wave signal results which lead to this conclusion were questioned because the
reflections from the back of the flume influenced the wave analysis. Therefore, an improved reflec­
tion analysis and further research on the dissipative effectswould be needed to conclude that wave
transmission cannot be described with linear effects only.

(b) Can a linear boundary element method diffraction model be applied to a shallow multi­body
floating solar structure?

The obtained solutions showed that the wave response around the shallow floating solar structure was
in accordance with the physical expectations. When the mesh for the object was chosen correctly, the
wave field around a simple floating object could be determined with the BEM diffraction model. How­
ever, twomodel limitations were found when applying the diffractionmodel to the floating solar structure.

Firstly, the ratio between the (large) wetted surface area and the (small) grid size resolution needed
brought large memory and computation costs. With respect to the incident wavelength, the model setup
required small grid sizes, to describe the surface elevation accurately and reduce numerical errors, and
a large object width, to approximate a two­dimensional solution. For the final setup, there was still an
average numerical error in the wave surface elevation of around 2%, which shows the diffraction results
had not been fully converged. Memory requirements thus limit the resolution and object dimensions
that can be simulated, because a maximum of 104 panels cells could be used to describe the object’s
wetted surface area. Possible solutions could lie in a hierarchical matrix approximation, where the in­
teraction between grid cells that are far apart will be disregarded.

Secondly, the aspect ratio of the grid cells could have increased numerical errors when an object with
small draft is considered. Dividing the small draft into a fine mesh lead to grid sizes in 𝑧 in the order
of 10−2 m, whereas the grid size in 𝑥 and 𝑦 were chosen in the order of 1 m, due to the large object
dimensions and memory restrictions. This might have lead to numerical errors, as the mesh conver­
gence in 𝑥 and 𝑦­direction was different from the 𝑧­direction.

Using the scattering solution of a linear boundary element diffraction model as a prediction for wave
transmission showed the following shortcomings in simulating the basin test results:

• Only first order effects are included, whereas higher order dissipationmight be of similar or greater
importance in decreasing wave transmission.
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• Memory requirements limit the numerical accuracy and the dimensions of the object’s wetted
surface.

• The two­dimensional transmission results were influenced by thee­dimensional diffraction effects,
in the order of 20%.

• The wave transmission was position dependent, because nodes and anti­nodes occur in the
surface elevation. Therefore, converting the diffraction model results into a single transmission
coefficient was not trivial and thus difficult for accurate comparison.

• When only the scattering solution is used, increased transmission due to the structure’s oscillation
modes will not be included. To describe the movement of the structure, the radiation part of linear
velocity potential theory is needed as well.

Notice that the last three of these points are not shortcomings of the diffraction model, but of the two­
dimensional analysis method.





A
Derivation of the wave spectrum

When analysing ocean waves, they are often described by a wave spectrum. The derivation of the
variance density wave spectrum is given here, based on Holthuijsen (2007) [28].

An observation of the surface elevation is formally treated as a realisation of a stochastic process.
Therefore, the realisation 𝜂(𝑡) at one specific location can be seen as a time series. This stochastic
treatment is based on the random­phase/amplitude model.

Consider the moving surface elevation of an irregular sea state at a single location, 𝜂(𝑡), which is
a random variable.1 In the random­phase/amplitude model, this surface elevation can be expressed in
terms of a Fourier series; the sum of a large number of harmonic components. Each harmonic compo­
nent has a constant amplitude and phase, which are chosen randomly for each realisation of the time
record.

𝜂(𝑡) =
𝑁

∑
𝑖=1
𝑎𝑖 cos(2𝜋𝑓𝑖𝑡 + 𝛼𝑖) (A.1)

where 𝑁 is the total number of harmonic components, 𝑎𝑖 is the amplitude, 𝑓𝑖 the wave frequency and𝛼𝑖 the wave phase. Each harmonic component describes an oscillatory motion with its frequency 𝑓𝑖.
The amplitude spectrum and phase spectrum can be derived from Fourier analysis. When they are
substituted into the Fourier series, the exact surface elevation record is reproduced.

The phase 𝛼𝑖 is assumed to be a uniform distribution over all phase angles in (0, 2𝜋]. The ampli­
tude spectrum is the one which characterises the wave record, and which will eventually lead to the
energy density spectrum. It is assumed to be Rayleigh distributed.

𝑝(𝛼𝑖) =
1
2𝜋 for 0 < 𝛼𝑖 ≤ 2𝜋 (A.2)

𝑝(𝑎𝑖) =
𝜋
2
𝑎𝑖
𝜇2𝑖

exp ( − 𝜋𝑎
2
𝑖

4𝜇2𝑖
) for 𝑎𝑖 ≥ 0 (A.3)

Here, the only parameter varying over the frequencies is the expected value of the amplitude 𝜇𝑖 = 𝔼{𝑎𝑖}.
The statistical characteristics of the amplitude of harmonic component 𝑖 are thus purely defined by this
expectation. It can be approximated by taking the average over a lot of amplitude realisations of wave
elevation records.

The amplitude spectrum is then defined as the expected value of the amplitude 𝔼{𝑎𝑖} as a function
of frequency 𝑓𝑖. It is visualised in the upper graph of Figure A.1.

1Notation: an underscore will represent a random variable.
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With the information of the amplitude spectrum, one can describe the sea­surface elevation realisti­
cally as a stationary, Gaussian process. However, the information can also be presented in a more
relevant way. Namely, the statistical quantity of interest is actually the variance of this wave compo­
nent amplitude 𝔼{12𝑎

2
𝑖 }, shown in the second plot of Figure A.1. This is because of two reasons. Firstly,

from the linear theory for surface gravity waves (see section 2.2) it can be concluded that the energy
of the waves is proportional to the variance. Secondly, the variance is a quantity that can be added for
various wave components; the sum of the variances of the wave components is equal to the variance
of the sum of the wave components. Therefore, the variance spectrum will be considered instead of
the amplitude spectrum.

Up to this point, the amplitude spectrum and the variance spectrum have been introduced as spec­
tra based on discrete frequencies. At sea, the number of frequency components present will not be
limited to 𝑁; all frequencies are present at sea. Therefore, a conversion has to be made from the dis­
crete case to a continuous spectrum of frequencies. This is done in two steps. Firstly, the variance
density is be defined by distributing the variance 𝔼{12𝑎

2
𝑖 } over the frequency interval Δ𝑓𝑖 at frequency 𝑓𝑖:

𝐸∗(𝑓𝑖) =
𝔼{12𝑎

2
𝑖 }

Δ𝑓𝑖
(A.4)

All frequencies are now included because they all fall into a frequency interval Δ𝑓𝑖, but the value is
constant over this interval. In other words, the variance density is discontinuous from one frequency
band to the next. A visualisation is given in the third graph of Figure A.1. The second step is therefore
taking the limit of frequency intervals to zero, which makes the variance density spectrum continuous.
The variance density spectrum is thus defined as

𝐸(𝑓) = lim
Δ𝑓→0

𝔼{12𝑎
2}

Δ𝑓 (A.5)

𝐸(𝑓) describes the surface elevation of ocean waves in a statistical sense, as a function of time at one
geographic location.
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Figure A.1: Transformation of discrete amplitude spectrum of the random/phase amplitude model to the continuous variance
density spectrum. [28]

The connection between the variance density spectrum and the actual wave characteristics can be
made in two ways. Firstly, the connection between the variance density spectrum 𝐸(𝑓) and the total
variance of the the surface­elevation 𝜂2 is given by equation (A.6). This shows the degree of irregularity
is determined by the width of the variance density spectrum. Namely, if 𝐸(𝑓) is a delta peak, the
resulting surface elevation will be a harmonic wave. On the other hand, if the spectrum 𝐸(𝑓) is wide,
the waves will show to be irregular, because they consist of a lot of harmonic modes together.

𝜂2 = ∫
∞

0
𝐸(𝑓)𝑑𝑓 (A.6)

Secondly, the connection to a physical quantity can be made through the energy density spectrum. It
is derived from the variance density spectrum by multiplying with 𝜌𝑔

𝐸𝑒𝑛𝑒𝑟𝑔𝑦(𝑓) = 𝜌𝑔𝐸𝑣𝑎𝑟(𝑓) (A.7)

The assumptions of the random­phase/amplitude model and the cases for which these assumptions
are justified are the following: [28]

1. The model generates a stationary 2 (Gaussian) process, which is only (approximately) true for
real sea states when limited amount of time is considered.

2. Harmonic wave components are assumed to be independent from one another, which is not really
the case for sea states because these components interact to some degree. If waves are not too
steep and in not too shallow water, these interactions are weak enough to be ignored.

2A stationary process is a process for which all statistical characteristics are independent of time, but may still depend on time
intervals. In other words, the a stationary process is a stochastic process whose unconditional joint probability distribution does
not change when shifted in time.
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Where the description of surface gravity waves above were for stationary, Gaussian surface elevation
at one geographic location, three­dimensional moving waves can be described by adding an extra
horizontal dimension. If the waves are not plane waves and the surface elevation depends on the
angle of incidence 𝜃 as well, a frequency­direction spectrum can be defined. This spectrum includes
the spread of waves over the frequencies and angles of incidence, but will not be needed in this thesis.
For reading on the frequency direction spectrum, see Holthuijsen (2007) [28].



B
Derivation of the linear velocity potential

theory equations
In order to describe surface gravity waves, two balance equations are central: the mass balance equa­
tion and the momentum balance equation. The linearised versions of these equations, together with
boundary conditions, give a complete description of the waves in fist order. The linear wave theory, also
known as the Airy wave theory, holds for waves where the amplitude is small in comparison with the
wavelength and the water depth. The conservation equations are then expressed in terms of a velocity
potential Φ to make computations easier, which results in the Laplace and the (linearised) Bernoulli
equations. In this appendix, the derivations of these equations and their (linearised) boundary condi­
tions are given, based on for example [28, 39].

It is important to first state the assumptions that linear velocity potential theory is based upon:

1. small amplitude approximation: the wave amplitudes should be small compared to their wave­
length as well as the water depth

2. water is assumed to be an ideal fluid: incompressible, with constant density and no viscosity

3. water body is continuous, so there are no air bubbles in the water domain considered

4. free wave assumption: the only force acting on the water is gravity force (wind­induced pressure
and surface tension are thus excluded)

5. water particles cannot leave the water surface, i.e. no splashing or wave breaking

6. water particles cannot penetrate the bottom of the sea

The equations for surface gravity waves in a finite (but deep) sea environment will be derived below.

The mass balance equation describes the mass conservation of an infinitesimally small water volume
mathematically in the following way

𝜕𝜌
𝜕𝑡 +

𝜕𝜌𝑢𝑥
𝜕𝑥 +

𝜕𝜌𝑢𝑦
𝜕𝑦 + 𝜕𝜌𝑢𝑧𝜕𝑧 = 𝑆𝜌 (B.1)

with 𝜌 the water density, 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 the velocity of the water particles in 𝑥, 𝑦 and 𝑧­direction. The
first term on the left side of the equation shows the local rate of change in density, the other three
terms show the effect of mass transportation. The term on the right hand side is called the source term,
which would mean production of mass. Therefore, when assuming the density of the water is constant
and there is no production of water (𝑆𝜌 = 0), the continuity equation follows from the mass balance
equation:

𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑦
𝜕𝑦 + 𝜕𝑢𝑧𝜕𝑧 = 0 (B.2)
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Note that this equation is linear in the water particle velocities 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧.

The second equation considered is the momentum balance equation. Since momentum is a vector
quantity, the momentum balance equation is composed of three equations, one for each direction. The
momentum density is defined as �⃗� = 𝜌�⃗� = (𝜌𝑢𝑥 , 𝜌𝑢𝑦 , 𝜌𝑢𝑥). The balance equation for the 𝑥­component
will then become

𝜕(𝜌𝑢𝑥)
𝜕𝑡 + 𝜕𝑢𝑥(𝜌𝑢𝑥)𝜕𝑥 +

𝜕(𝑢𝑦𝜌𝑢𝑥)
𝜕𝑦 + 𝑢𝑧𝜕(𝜌𝑢𝑥)𝜕𝑧 = 𝑆𝑥 = 𝐹𝑥 (B.3)

where 𝑆𝑥 is the momentum source term in the 𝑥­direction. Production of momentum per unit time is by
definition a force acting on the volume: force is the rate of change of momentum. Thus 𝐹𝑥 is the body
force in the 𝑥 direction per unit volume (as momentum was also defined per unit volume as a density
variable). Notice that the second to fourth terms on the left hand side of equation (B.3) are quadratic
combinations of the water particle velocities and thus non­linear terms.

In order to make computations easier, the velocity potential function Φ(𝑥, 𝑦, 𝑧, 𝑡) is defined such that:

𝑢𝑥 =
𝜕Φ
𝜕𝑥 , 𝑢𝑦 =

𝜕Φ
𝜕𝑦 , 𝑢𝑧 =

𝜕Φ
𝜕𝑧 (B.4)

The assumption that the water is an irrational fluid is required for this auxiliary function Φ to exist. Now
the conservation equations introduced above are translated in terms of this auxiliary function.

The continuity equation, Equation (B.2), stated the divergence of the velocity should be zero. This
translates into the Laplace equation for Φ, which is

∇2Φ = 𝜕2Φ
𝜕𝑥2 +

𝜕2Φ
𝜕𝑦2 +

𝜕2Φ
𝜕𝑧2 = 0 (B.5)

This equation can be solved for Φ when two kinematic boundary conditions are added (related to the
motion of the water particles); Equations (B.6) and (B.7).

The surface elevation in vertical 𝑧 direction is expressed by 𝜂(𝑥, 𝑦, 𝑡). For the free surface of water
waves, the kinematic condition that particles cannot leave the water interface (assumption 5) is ob­
tained by stating that the vertical speed of the free surface should be the same as that of the fluid
particles

𝜕𝜂
𝜕𝑡 +

𝜕Φ
𝜕𝑥

𝜕𝜂
𝜕𝑥 +

𝜕Φ
𝜕𝑦

𝜕𝜂
𝜕𝑦 =

𝜕Φ
𝜕𝑧 at 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) (B.6)

The second kinematic boundary condition follows from the impermeability of the sea bed (assumption
6). If the depth of the seabed is described by ℎ(𝑥, 𝑦), the fluid flow normal to the bed must be zero by
the following equation

∇Φ ⋅ n̂ = 𝜕Φ
𝜕𝑛 = 0 on 𝑧 = −ℎ(𝑥, 𝑦) (B.7)

where where n̂ is the unit vector normal to the sea bed. Note that when the sea bed is assumed to be
horizontal, this results in 𝜕Φ

𝜕𝑧 = 0.

The momentum balance equations, such as Equation (B.3) in 𝑥­direction, can be combined in all direc­
tions and expressed in terms of the velocity potential Φ. The only external forces were assumed to be
the gravitation force (in 𝑧­direction). If furthermore the surface tension is neglected (which is valid for
waves longer than a few centimetres), the pressure must be continuous across the water­air interface.
At any point in the fluid, Bernoulli’s equation must hold

𝜕Φ
𝜕𝑡 +

1
2|∇Φ|

2 + 𝑝𝜌 + 𝑔𝑧 = 0 (B.8)

where 𝜌 is the fluid density, 𝑔 is the gravitational acceleration and 𝑝 the pressure in the fluid (relative to
atmospheric pressure). The air pressure along the interface is taken constant and equal to zero 𝑝 = 0
on 𝑧 = 𝜂(𝑥, 𝑦, 𝑧).
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At the interface where 𝑝 = 0, the following dynamic boundary condition follows

𝜕Φ
𝜕𝑡 +

1
2|∇Φ|

2 + 𝑔𝜂 = 0 on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) (B.9)

The complete description of the surface gravity waves is now given in Equations (B.5) ­ (B.9). These
equations are non­linear however, and therefore difficult to work with. Therefore, linearisation is ap­
plied to simplify the non­linear equations and boundary conditions to first order.

For sufficiently small motions relative to the wavelength, the non­linear free surface conditions (B.6)
and (B.9) may be linearised around the undisturbed state 𝜂(𝑥, 𝑦, 𝑡) = 0. This linearisation is valid when
the amplitude of the fluid motion is small compared to the wavelength throughout the fluid domain, in­
cluding the amplitude of any structural motions. Note that the Laplace equation (B.5) and the dynamic
seabed condition (B.7) are linear already. The other equations will be linearised, under the small angle
approximation.

For the non­linear Bernoulli equation (B.8), linearisation around 𝜂(𝑥, 𝑦, 𝑡) = 0 gives

𝜕Φ
𝜕𝑡 +

𝑝
𝜌 + 𝑔𝜂 = 0 (B.10)

because the second order term simply drops out. Also, because of this small amplitude in water surface,
the terms with partial derivatives 𝜕𝜂

𝜕𝑥 and 𝜕𝜂
𝜕𝑦 drop out of the Kinematic boundary condition (B.6). This

boundary condition then reduces to

𝜕𝜂
𝜕𝑡 =

𝜕Φ
𝜕𝑧 at 𝑧 = 0 (B.11)

Dynamic boundary condition (B.9) becomes

𝜕Φ
𝜕𝑡 + 𝑔𝜂 = 0 at 𝑧 = 0 (B.12)

These equations can be combined by differentiating the dynamic condition with respect to 𝑡 and sub­
stitution of 𝜕𝜂𝜕𝑡 from the kinematic condition. This results in the linearised free­surface condition

𝜕2Φ
𝜕𝑡2 + 𝑔

𝜕Φ
𝜕𝑧 = 0 at 𝑧 = 0 (B.13)

The Laplace equation and the kinematic boundary conditions (B.7), which was linear already, and (B.11)
are enough to solve for Φ. The Bernoulli equation and the dynamic boundary condition can be used,
together with this solutionΦ to obtain expressions for the dynamic aspect of the surface gravity waves.





C
Derivation body dynamics

To describe the dynamics of structures in water, a rigid body is the simplest structure to start with. A
free rectangular floating rigid structure with appropriate dimensions can be seen as a simplified model
of a floating solar structure. Therefore, it is relevant to start the study of rigid body dynamics in the first
place.

C.1. Degrees of freedom
In order to describe the motion of a floating object, a combination of 6 degrees of freedom, or modes of
motion, can describe every possible movement. The velocity of a point on the surface of the structure,
measured normal to the surface, can be written in the following way

𝑉𝑛 = 𝑈 ⋅ 𝑛 + Ω ⋅ (𝑟 × 𝑛) (C.1)

where 𝑟 is the position vector of the point measured from the centre of rotation and 𝑛 the normal
vector to the structure’s surface directed out of the fluid. The other vectors describe the translational
𝑈 = (𝑈1, 𝑈2, 𝑈3) and rotational Ω = (𝑈4, 𝑈5, 𝑈6) velocity of the body. In ascending order, these are
called surge, sway, heave, roll, pitch and yaw as shown in Figure C.1.

Figure C.1: The 6 degrees of freedom of the centre of gravity: roll, pitch, yaw, heave, sway and surge. [14]

Thus, all vectors are defined in a three dimensional Cartesian coordinate system. Note that 𝑉𝑛 can be
rewritten in terms of these modes of motion as

𝑉𝑛 =
6

∑
𝑗=1
𝑈𝑗𝑛𝑗 (C.2)

The factors {𝑛𝑗 , 𝑗 = 1, 2, 3} are the 𝑥, 𝑦, 𝑧 components of the unit normal to the structure such that
𝑛 = (𝑛1, 𝑛2, 𝑛3). They are defined by

𝑛1 = cos(𝑛, 𝑥), 𝑛2 = cos(𝑛, 𝑦), 𝑛2 = cos(𝑛, 𝑧) (C.3)
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The resulting factors {𝑛𝑗 , 𝑗 = 4, 5, 6} are the components of 𝑟 × 𝑛. If (𝑥, 𝑦, 𝑧) are the coordinates of
a point on the structure’s surface and (𝑥′, 𝑦′, 𝑧′) are the coordinates of the equilibrium position of the
centre of rotation, this cross product results in

𝑛4 = (𝑦 − 𝑦′)𝑛3 − (𝑧 − 𝑧′)𝑛2 (C.4)
𝑛5 = (𝑧 − 𝑧′)𝑛1 − (𝑥 − 𝑥′)𝑛3 (C.5)
𝑛6 = (𝑥 − 𝑥′)𝑛2 − (𝑦 − 𝑦′)𝑛1 (C.6)

If the oscillations are time­harmonic, each velocity component in equation (C.2) may be rewritten as

𝑈𝑗 = Re{𝑢𝑗e−𝑖𝜔𝑡} (C.7)

This way, 𝑢𝑗 is the complex amplitude of the oscillations in mode 𝑗.

C.2. Equations of motion
The equation of motion in frequency domain is given by [30]

{−𝜔2(𝑀 + 𝐴(𝜔)) + 𝑖𝜔𝐵(𝜔) + 𝐶}𝑈(𝜔, 𝜃) = 𝐹(𝜔, 𝜃) (C.8)

where 𝐶 is the structure stiffness matrix, 𝐵(𝜔) the hydrodynamic damping matrix, 𝑀 the mass of the
floating structure, 𝐴(𝜔) is the hydrodynamic added mass matrix and 𝐹(𝜔, 𝜃) is the hydrodynamic force
vector. The force and the body motion matrix 𝑈(𝜔, 𝜃) are dependent on both wave frequency 𝜔 and
wave direction 𝜃.

In this frequency domain equation of motion, the mass matrix 𝑀 and the stiffness matrix 𝐶 are in­
put parameters determined by the structure characteristics. The mass matrix is defined by the body
mass and the radius of gyration of the structure. If all 6 degrees of freedom are considered, the mass
matrix is given by

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝑟2𝑥𝑥𝑚 0 0
0 0 0 0 𝑟2𝑦𝑦𝑚 0
0 0 0 0 0 𝑟2𝑧𝑧𝑚

⎤
⎥
⎥
⎥
⎥
⎦

(C.9)

In this matrix definition, 𝑚 is the mass of the floating body and 𝑟𝑥𝑥, 𝑟𝑦𝑦 and 𝑟𝑧𝑧 are the radii of gyration
with respect to the 𝑥, 𝑦 and 𝑧 axes respectively. The radius of gyration is determined by

𝑟𝑥𝑥 = √
𝐼𝑥𝑥
𝑚 (C.10)

where 𝐼𝑥𝑥 is the moment of inertia regarding the 𝑥 axis.1 The definition is analogous in 𝑦 and 𝑧 direction.
Note that the coupling terms between pitch and roll for example (𝐼𝑥𝑧 = 𝐼𝑧𝑥) are neglected because they
are generally small. [30]

The hydrostatic stiffness matrix 𝐶 contains the restoring terms which influence the heave, roll and
pitch movements. With respect to the centre of floatation (at the waterline), the linearised hydrostatic
1The definition of the 𝑀 matrix can thus also be

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑥𝑥 0 0
0 0 0 0 𝐼𝑦𝑦 0
0 0 0 0 0 𝐼𝑧𝑧

⎤
⎥
⎥
⎥
⎥
⎦

(C.11)
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stiffness matrix �̃� can be defined as [31]

�̃� =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜌𝑔𝐴 0 0 0
0 0 0 𝑞𝑥𝑥𝜌𝑔𝑉 0 0
0 0 0 0 𝑞𝑦𝑦𝜌𝑔𝑉 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(C.12)

where 𝑞𝑥𝑥 = 𝑑𝑘𝑏 +
𝐼𝑥𝑥
𝑉 − 𝑑𝑘𝑔 is the distance between the centre of gravity and the metacentre in 𝑥­

direction and 𝑞𝑦𝑦 = 𝑑𝑘𝑏 +
𝐼𝑦𝑦
𝑉 − 𝑑𝑘𝑔 is the distance between the centre of gravity and the metacentre

in 𝑦­direction. In the calculations for these distances, 𝑑𝑘𝑏 is the distance between the keel and the
centre of buoyancy and 𝑑𝑘𝑔 is the distance between the keel and the body’s centre of gravity. The
other constants used are the density of the water 𝜌, the gravitational constant 𝑔, the horizontal surface
area of the floating body 𝐴 and the volume of the body 𝑉. The use of 𝜌𝑔𝐴 as first non­zero element is
valid for small values of 𝑧, but when body is vertically walled it remains exact for larger values of 𝑧 as
well.

Note that this matrix is defined with respect to the centre of floatation, but all other motions are defined
with respect to the centre of gravity. Therefore, a translation has to be performed using the following
translation matrix

𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −𝛿𝑧 𝛿𝑦 1 0 0
𝛿𝑧 0 0 −𝛿𝑥 1 0
−𝛿𝑦 𝛿𝑥 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

(C.13)

with the 𝛿𝑥 representing the difference between the location of the centre of floatation and the centre
of gravity in 𝑥­direction and similarly in the other two directions. Then 𝑇�̃�𝑇∗ will represent the correct
hydrostatic stiffness matrix with respect to the centre of gravity, thus with the same origin as the other
motions in the equation.

𝐶 = 𝑇�̃�𝑇∗ =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜌𝑔𝐴 𝛿𝑦𝜌𝑔𝐴 −𝛿𝑥𝜌𝑔𝐴 0
0 0 𝛿𝑦𝜌𝑔𝐴 𝑞𝑥𝑥𝜌𝑔𝑉 + (𝛿𝑦)2𝜌𝑔𝐴 −𝛿𝑥𝛿𝑦𝜌𝑔𝐴 0
0 0 −𝛿𝑥𝜌𝑔𝐴 0 𝑞𝑦𝑦𝜌𝑔𝑉 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

(C.14)

Notice that when the body is axially symmetric in the 𝑥­ and 𝑦­axis, this results in 𝐶 = 𝑇�̃�𝑇∗ = 𝑇𝐶𝑇∗.

The hydrodynamic coefficients 𝐴(𝜔), 𝐵(𝜔) and 𝐹(𝜔, 𝜃) are parameters to be determined numerically
by a boundary element solver in frequency domain. Their analytical definitions are given in section
2.4.3. The physical properties that these quantities stand for can be explained as follows.

The added mass 𝐴(𝜔) can be explained as the mass of the water that is forced to move along with the
motion of the object considered. Thus, when an object oscillates in still water, the surrounding water
volume that is caused to move due to acceleration of the body is considered to be the added mass.
It is a virtual hydrodynamic force term included in the equation of motion (C.8). When the object con­
sidered is not symmetrical, the added mass will be different for movement in each degree of freedom.
For example, if the object performs a heaving motion, the water around it will also move in heaving
mode. However, the water might be forced to perform movement in other degrees of freedom as well.
This depends on the object characteristics such as its dimensions and draft. The added mass matrix is
therefore a kind of correlation matrix between degrees of freedom. The matrix element 𝐴𝑖𝑗 shows the
effect of a unit amplitude motion of the object in degree of freedom 𝑖 on the additional mass that has to
be considered the equation of motion of mode 𝑗. Therefore, the total matrix has the size of 𝑛𝑑𝑜𝑓 ×𝑛𝑑𝑜𝑓
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for a single frequency 𝜔.

The hydrodynamic radiation damping 𝐵(𝜔) can be thought of as the damping due to the wave en­
ergy that radiates outward, away from a moving structure. Again, if the object is not symmetrical, this
will be different for movement in the different modes. The matrix element 𝐵𝑖𝑗 shows the damping effect
of a unit amplitude motion of the object in degree of freedom 𝑖 on the movement of the object motion
mode 𝑗. Again, the total matrix has the size of 𝑛𝑑𝑜𝑓 × 𝑛𝑑𝑜𝑓 for a single frequency 𝜔.

Lastly, the hydrodynamic or exciting force 𝐹(𝜔, 𝜃) is the force due to wave loads of the incoming and
reflected wave fields. It gives the force or moment generated by a unit amplitude wave with incoming
angle 𝜃. The vector element 𝐹𝑖 gives this force (for 𝑖 ∈ {1, 2, 3}) or moment (for 𝑖 ∈ {4, 5, 6}) acting on
the object in the direction of the degree of freedom 𝑖. Therefore, it is a vector with length 𝑛𝑑𝑜𝑓.



D
Analytical solution diffraction problem

The diffraction problem can be solved analytically for a two­dimensional setup [24, 39, 59, 60]. The
floating object is assumed to be infinitely wide, with no geometry variations in 𝑦­direction. Incident
waves will be oblique waves propagating along the 𝑥­axis (in positive direction, thus 𝛽 = 0). Figure D.1
shows part of the domain considered, with the appropriate definition of the Cartesian coordinates.

Figure D.1: Sketch of the domain for the rigid barge scattering problem. The origin of the coordinate system is located at
equilibrium water level in the centre of the object. The domain will be split up in subdomains 𝐷1 , 𝐷2 and 𝐷3. The draft 𝑑, floater
length 𝐿𝑓 and water depth ℎ are shown.

The linearised boundary conditions for this problem are the free surface boundary condition (2.13), the
seabed condition (2.14), the body surface boundary condition (2.24) and the radiation condition (2.25).
The domain will be split up into three subdomains 𝐷1, 𝐷2 and 𝐷3, which will each have their own set
of boundary conditions. The velocity potential solutions are matched across the boundaries of these
domains, such that the fluid pressure and normal velocity across 𝑥 = 0 and 𝑥 = 𝐿𝑓, 𝑧 ∈ (−ℎ,−𝑑) are
continuous. This implies continuity of 𝜙 and 𝜙𝑥.

An overview of the locations for which the boundary conditions must hold is given in Table D.1.
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Domain Location Boundary condition type Linearised boundary condition equation

𝐷1

𝑥 < 0, 𝑧 = 0 free surface 𝜕𝜙𝐷1
𝜕𝑧 = 𝐾𝜙𝐷1

𝑥 < 0, 𝑧 = −ℎ seabed 𝜕𝜙𝐷1
𝜕𝑧 = 0

𝑥 = 0, 𝑧 ∈ [ − 𝑑, 0] body surface 𝜕𝜙𝐷1
𝜕𝑥 = −𝜕𝜙𝐼𝜕𝑥

𝑥 = 0, 𝑧 ∈ [ − ℎ,−𝑑] matching conditions 𝜙𝐷1 = 𝜙𝐷2 ,
𝜕𝜙𝐷1
𝜕𝑥 = 𝜕𝜙𝐷2

𝜕𝑥
𝑥 → −∞, 𝑧 ∈ [ − ℎ, 0] radiation condition 𝜙𝐷1 outgoing, finite for 𝑥 → −∞

𝐷2

0 < 𝑥 < 𝐿𝑓 , 𝑧 = −𝑑 body surface 𝜕𝜙𝐷2
𝜕𝑧 = −𝜕𝜙𝐼𝜕𝑧

0 < 𝑥 < 𝐿𝑓 , 𝑧 = 0 seabed 𝜕𝜙𝐷2
𝜕𝑧 = 0

𝑥 = 0, 𝑧 ∈ [ − ℎ,−𝑑] matching conditions 𝜙𝐷1 = 𝜙𝐷2 ,
𝜕𝜙𝐷1
𝜕𝑥 = 𝜕𝜙𝐷2

𝜕𝑥
𝑥 = 𝐿𝑓 , 𝑧 ∈ [ − ℎ,−𝑑] matching conditions 𝜙𝐷2 = 𝜙𝐷3 ,

𝜕𝜙𝐷2
𝜕𝑥 = 𝜕𝜙𝐷3

𝜕𝑥

𝐷3

𝑥 > 𝐿𝑓 , 𝑧 = 0 free surface 𝜕𝜙𝐷3
𝜕𝑧 = 𝐾𝜙𝐷3

𝑥 > 𝐿𝑓 , 𝑧 = −ℎ seabed 𝜕𝜙𝐷3
𝜕𝑧 = 0

𝑥 = 𝐿𝑓 , 𝑧 ∈ [ − 𝑑, 0] body surface 𝜕𝜙𝐷3
𝜕𝑥 = −𝜕𝜙𝐼𝜕𝑥

𝑥 = 𝐿𝑓 , 𝑧 ∈ [ − ℎ,−𝑑] matching conditions 𝜙𝐷2 = 𝜙𝐷3 ,
𝜕𝜙𝐷2
𝜕𝑥 = 𝜕𝜙𝐷3

𝜕𝑥
𝑥 → ∞, 𝑧 ∈ [ − ℎ, 0] radiation condition 𝜙𝐷3 outgoing, finite for 𝑥 → ∞

Table D.1: Boundary conditions for each subdomain 𝐷1, 𝐷2, 𝐷3 to solve for ∇2𝜙𝐷 = 0.

The velocity potential is solved in each domain with separation of variables and eigenfunction expan­
sion. Separation of variables is used to split the velocity potential in a horizontal and a vertical expres­
sion, 𝜙(𝑥, 𝑧) = 𝑋(𝑥)𝑍(𝑧), such that substitution in the Laplace equation results in

1
𝑋
𝑑2𝑋
𝑑𝑥2 = −

1
𝑍
𝑑2𝑍
𝑑𝑧2 = 𝜆 (D.1)

where the separation constant, or eigenvalue, 𝜆 is to be determined by the boundary conditions. Both
𝑋(𝑥) and 𝑍(𝑧) have their own general solutions which satisfy these boundary conditions. With 𝜆 = 𝑘2 >
0, the general expressions are

𝑋(𝑥) = 𝐴𝑒𝑘𝑥 + 𝐵𝑒−𝑘𝑥 (D.2)
𝑍(𝑧) = 𝐶 cos 𝑘(𝑧 + ℎ) + 𝐷 sin 𝑘(𝑧 + ℎ) (D.3)

from which the eigenfunctions will follow. 𝜆 = 0 gives only the trivial solution and is therefore not an
eigenvalue, 𝜆 < 0 does not fit the boundary conditions. The velocity potential solution for domain 𝐷1 is
a superposition of these possible eigenfunction modes:

𝜙𝐷1(𝑥, 𝑧) =
∞

∑
𝑛=0

𝐴𝑛e𝑘𝑛𝑥𝜓𝑛(𝑧) for 𝑥 < 0, 𝑧 ∈ [−ℎ, 0] (D.4)

In this equation, 𝜓𝑛(𝑧) are the vertical eigenfunctions which fit the free surface and seabed condition,
given by

𝜓𝑛(𝑧) = 𝑁−1𝑛 cos 𝑘𝑛(𝑧 + ℎ) for 𝑛 = 0, 1, 2, ... (D.5)

Here, ℎ is the constant water depth, 𝑘𝑛 are the eigenvalues of the problem and𝑁𝑛 ensures a normalised
amplitude

𝑁2𝑛 =
1
2(1 +

sin 2𝑘𝑛ℎ
2𝑘𝑛ℎ

) (D.6)

For the other subdomains 𝐷2 and 𝐷3, an eigenfunction expansion can be obtained in a similar man­
ner using the other sets of boundary conditions. Notice that the separated Laplace equation gives to
differential equations of standard Sturm Liouville type, thus has an infinite number of real eigenvalues
𝜆𝑛 , 𝑛 ∈ {1, 2, ...} which can be ordered in size. Each eigenvalue corresponds to a unique eigenfunction
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𝜓𝑛, which form a complete orthonormal set. The eigenvalues follow from the dispersion relation: the
free surface condition is satisfied if 𝑘𝑛 is a root of

𝐾 + 𝑘 tan 𝑘ℎ = 0 (D.7)

In this equation, 𝐾 = 𝜔2/𝑔 and 𝑘 the separation constant. The roots of this equation are either purely
real or purely imaginary: 𝑘0 = −i𝑘 is the imaginary root and 𝑘𝑛 for 𝑛 = 1, 2, ... are infinitely many real
roots for this equation. The negative values −𝑘𝑛 , 𝑛 ∈ {0, 1, 2, ...} would also satisfy the dispersion rela­
tion, but these give the same set of eigenfunctions. Notice that the imaginary eigenvalue corresponds
to a propagating mode, whereas the real roots correspond to evanescent modes which decay to zero
as 𝑥 → ∞ or 𝑥 → −∞.

The analytical expression for 𝜙𝐷1(𝑥, 𝑧) still includes the unknown complex coefficients 𝐴𝑛 for 𝑛 =
0, 1, 2, ..., which originate from the horizontal eigenfunction expansion. These can be solved by sub­
stituting the eigenfunction expansion, given in (D.4), and the similar expressions for 𝜙𝐷2 and 𝜙𝐷3 into
the continuity conditions

𝜙𝐷1 = 𝜙𝐷2 for 𝑥 = 0, 𝑧 ∈ [−ℎ,−𝑑] (D.8)

𝜕𝜙𝐷1
𝜕𝑥 = {

−𝜕𝜙𝐼𝜕𝑥 for 𝑥 = 0, 𝑧 ∈ [−𝑑, 0]
𝜕𝜙𝐷2
𝜕𝑥 for 𝑥 = 0, 𝑧 ∈ [−ℎ,−𝑑]

(D.9)

These equations are a combination of the matching conditions for 𝑧 ∈ [−ℎ,−𝑑] and the body boundary
equation for 𝑧 ∈ [−𝑑, 0]. A similar set of equation holds at the boundary 𝑥 = 𝐿𝑓, with 𝜙𝐷2 and 𝜙𝐷3 .

These continuity conditions can be converted in a system of equations that can be solved numerically
in various ways, as presented in for example [6, 24, 39, 60]. Zheng et al. (2004) [? ]showed the conti­
nuity conditions are satisfied in a least­square sense over the 𝑧­interval by multiplication with the set of
vertical eigenfunctions 𝜓𝑚, 𝑚 ∈ {0, 1, 2, ...} and integrating them over the appropriate range in 𝑧 at the
boundaries 𝑥 = 0 and 𝑥 = 𝐿𝑓. This leads to an infinite set of integral equations for 𝐴𝑛 and the unknown
complex coefficients for the eigenfunction expansions of 𝜙𝐷2 and 𝜙𝐷3 . The analytical solutions can be
approximated by truncation of the infinite sum: the first 𝑁 terms are taken into account, which results in
a 4𝑁×4𝑁 linear system of complex equations and an equal number of unknown coefficients. The exact
expressions for this linear system are given in [60]. Alternatively, a Galerkin approach is suggested in
[39], which expands the horizontal fluid velocity on 𝑥 = 0 in terms of the orthogonal eigenfunctions 𝜙𝑚,
𝑚 ∈ {0, 1, 2, ...}. This might have better convergence characteristics in 𝑁 and thus requires a smaller
system of equations.

When multiple floating barges are included behind each other, the same method can be used [59].
In total, 2𝑛𝐹𝐿 + 1 subdomains will have to be defined, where 𝑛𝐹𝐿 is the number of floating objects in­
cluded. With the appropriate matching conditions in between these domains, the diffraction problem
can be defined as a linear system of 4𝑁×𝑛𝐹𝐿 complex equations to obtain the same number of unknown
coefficients.





E
Surface elevation results ­ 2D diffraction

problem
The results for the two dimensional numerical diffraction problem, described in section 5.2, have been
included in this appendix. The resulting surface elevation at 𝑦 = 0 is given over the domain 𝑥 ∈
[−400, 400]. This is shown for five wave frequencies tested, which were distributed in the range
𝑓 ∈ [0.1, 0.3] Hz.

The configuration of the (restrained) object is explained in section 5.2.1. The dimensions below the
still water surface are 12×200×0.333 m in 𝑥, 𝑦, 𝑧 direction respectively. The object surface is meshed
into 0.5×0.5 rectangular panels in the 𝑥, 𝑦 plane and 0.5×0.167m rectangular grid cells in 𝑥, 𝑧 and 𝑦, 𝑧
planes. This mesh is described more elaborately in section 5.2.2.

The visualisation mesh used to compute the surface elevation results has grid cells of 0.5 × 0.5 m
as well, centered at 𝑦 = 0. In 𝑥­direction, there are thus 1600 grid cells next to each other where the
velocity potential and then surface elevation is computed. The surface elevation is plotted against 𝑥 in
Figure E.1.
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(a) 𝑓 = 0.1 Hz, 𝜆 = 129 m (b) 𝑓 = 0.15 Hz, 𝜆 = 68 m

(c) 𝑓 = 0.2 Hz, 𝜆 = 39 m (d) 𝑓 = 0.25 Hz, 𝜆 = 25 m

(e) 𝑓 = 0.3 Hz, 𝜆 = 17 m

Figure E.1: Amplitude of surface elevation |𝜂𝐼 +𝜂𝐷| for the 2D diffraction model as a function of 𝑥 at 𝑦 = 0 for various incoming
wave frequencies and thus wavelengths. The dotted lines show the edges of the submerged body.



F
Surface elevation results ­ 3D effects

diffraction problem
The results for the diffraction problem, described in section 5.2, are not entirely two dimensional. The
floating structure is 200mwide to approximate an infinitely long object in 𝑦­direction, but this approxima­
tion does not entirely hold. The three dimensional effects in the resulting surface elevation are shown
for the domain (𝑥, 𝑦) ∈ [−50, 200]× [−125, 125]. This is shown for five wave frequencies tested, which
were distributed in the range 𝑓 ∈ [0.1, 0.3] Hz.
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(a) 𝑓 = 0.1 Hz, 𝜆 = 129 m (b) 𝑓 = 0.15 Hz, 𝜆 = 68 m

(c) 𝑓 = 0.2 Hz, 𝜆 = 39 m (d) 𝑓 = 0.25 Hz, 𝜆 = 25 m

(e) 𝑓 = 0.3 Hz, 𝜆 = 17 m

Figure F.1: Amplitude of complex surface elevation |𝜂𝐼 + 𝜂𝐷| for the diffraction model over the domain (𝑥, 𝑦) ∈ [−50, 200] ×
[−125, 125] for various incoming wave frequencies and thus wavelengths. The dotted lines show the edges of the submerged
body; 𝐿𝑓 = 12 m,𝑊𝑓 = 200 m.
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The three dimensional surface elevation amplitude for a twice as long floater, 𝐿𝑓 = 24 m, are given
for the domain (𝑥, 𝑦) ∈ [−50, 200] × [−125, 125] in Figure F.2. This is shown for 𝑓 = 0.1 Hz and
𝑓 = 0.25 Hz. The computed transmission coefficients for these results were 𝐾𝑡 = 0.84 and 𝐾𝑡 = 0.25
respectively.

(a) 𝑓 = 0.1 Hz, 𝜆 = 129 m, 𝐿𝑓/𝜆 = 0.19 (b) 𝑓 = 0.25 Hz, 𝜆 = 25 m, 𝐿𝑓/𝜆 = 1.04

Figure F.2: Amplitude of complex surface elevation |𝜂𝐼 + 𝜂𝐷| for the diffraction model over the domain (𝑥, 𝑦) ∈ [−50, 200] ×
[−125, 125] for various incoming wave frequencies and thus wavelengths. The dotted lines show the edges of the submerged
body; 𝐿𝑓 = 24 m,𝑊𝑓 = 200 m.





G
Basin test scaling

When scaling between full scale (offshore) and model scale (basin) parameters, either the Froude
number (G.1) or the Reynolds number (G.2) can be kept constant depending on the test setting.

𝐹𝑟 = 𝑢
√𝑔𝑙

∝ 𝐹𝑖
𝐹𝑔

(G.1)

𝑅𝑒 = 𝑢𝑙
𝜈 ∝ 𝐹𝑖

𝐹𝑣
(G.2)

Here 𝑢 is the fluid velocity, 𝑔 the gravitational accelleration constant, 𝑙 the length concerned in fluid­solid
interaction and 𝜈 the fluid viscosity. The Froude and Reynolds number are non­dimensional quantities
which show the relative magnitude of the inertial, gravitational and viscous forces (𝐹𝑖, 𝐹𝑔 and 𝐹𝜈 respec­
tively). In the ideal situation, the model test would be scaled in such a way that the balance between
these forces is the same as in the full scale situation such that the same dynamic behaviour is ensured,
which would imply the Froude and Reynolds number to have the same values in the basin test and
offshore. However, this is an unattainable requirement on small scale due to the constant gravitational
acceleration constant 𝑔 and kinematic viscosity 𝜈 (when the same fluid is used). Therefore only one
scaling number can be kept constant.

In the basin test, a geometric scaling parameter 𝑠 = 25 was chosen. Froude scaling was applied
to scale the physical quantities, because the inertial effects were assumed to be more important in the
floater dynamics than the viscous effects.

This assumption can be questioned, because the floating object had a relatively small mass to vol­
ume ratio due to its low density. As a consequence, the ratio of wetted surface area to volume was
quite large, which indicates that viscous forces are not negligible.

Froude scaling with a geometric scale factor 𝑠 results in the scaling of physical parameters as shown
in Figure G.1.
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100 G. Basin test scaling

Figure G.1: Scaling of physical quantities when using Froude scaling with geometric scale 𝑠. [53]

The choice for a geometric scaling parameter 𝑠 = 25 ensured the water depth and (significant) wave
height to be equivalent to the offshore conditions while keeping 𝑠 as low as possible, such that errors
due to accuracy limits do not grow larger at full scale size. In the Scheldt flume, this results in a
(maximum) water depth of ℎ = 21.25 m and North sea wave conditions up to a significant wave height
of 𝐻𝑠 = 5 m.



H
Details flume setup

In this appendix, the elements within the flume setup will be discussed in more detail. These are the
measurement devices, the floating model and the mooring connection.

Measurement devices
In terms of monitoring, the devices that were used are:

• 8 wave gauges or wave height meters

• cameras

• inertial measurement unit with gyroscope and accelerometer
The camera footage and accelerometer results will not be used to analyse the wave effects of the
system, and are therefore left outside the scope of this thesis. The wave height meters were positioned
at a distance of at least 2 m from the floating system, and were all centred in the middle of the flume
(in direction orthogonal to the waves). These measured the wave height at a sampling rate of 400 Hz,
and were calibrated at the equilibrium water level. The distances in between the wave gauges were
determined by Deltares in such a way that the results would be well processable into two spectra of
wave characteristics (one in front of the system and one behind the system) with the ELA method [19].
This will be explained further in the result analysis section 4.1.2.

Floating model
The floater design has been discussed in section 4.1.1. The system consists of connected floater
blocks of 3 by 8 floaters, which were combined together and installed in the flume. As can be seen in
Figure 4.1, the system was expanded with new floater blocks in direction of the wave paddle. In other
words, the tests started with the smallest floating system and new rows of floaters were added at the
fore side of the system. The system sizes that were tested are shown in Table H.1.

test file label number of floater arrays total number of floaters
A 0 0
B 6 48
C 12 96
D 18 144
E 24 192
F 33 256

Table H.1: System size configurations used during the basin tests. The first column shows the name of the test series, denoted
by a letter. The second column shows the number of floater rows present in these tests. The third column shows the total number
of floaters which are then present, which is equal to 8 times the number of floater arrays.

The total setup was placed as much to the front of the basin (as near to the wave paddle) as possible,
such that the measurement time without a reflected wave present in the signal was maximised. How­
ever, the minimal distance between the wave paddle and the first WHM was preserved. This distance,
needed for the wave to settle to an appropriate shape, is approximately 8 m.
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102 H. Details flume setup

Mooring
The structure was being held in place during the tests by 4 horizontal mooring lines, which were con­
nected to mooring points at the edge of the basin. A Dyneema line was attached to each floater at
the corner points of the system. On the other side, this rope was connected to two dynamometers,
which were used as mooring line springs to resemble the actual mooring dynamics and measure the
mooring forces at the same time. For each mooring line, a dynamometer spring of 𝑘 = 200 N/m and
a dynamometer spring of 𝑘 = 500 N/m were put in series, such that their equivalent spring constant
resulted in 𝑘𝑒𝑞 = 142.8 N/m. The dynamometers were then attached to the mooring points, located
at the side of the basin at still water level. The angle that the mooring lines made with respect to the
basin sides were small; the lines were almost in line with the floating system.

(a) Mooring point attached to basin side. (b) Mooring line combination.

Figure H.1: Details of the mooring connection used to keep the model in place.

The fore side mooring points were moved for each new configuration, which was easily done because
they were attached to the basin with magnets.



I
Wave conditions basin test

The wave conditions that were used for the Scheldt flume basin tests are given in Tables I.1 and I.2 for
the regular and irregular wave tests respectively.

These wave conditions were chosen within restrictions of the flume possibilities. The work area of
the Scheldt flume is shown in Figure I.1. This area shows combinations of (significant) wave height
and (peak) wave period that can be tested, at basin test scale. It is restricted by three curves, which
will be explained below.

1. Depth curve (green)
The sides of the basin are 1.20m high, measured from the bottom of the water column. Therefore,
a water level of 0.85 m leaves a maximum (regular) wave height of 0.35 m. In case of an irregular
JONSWAP wave spectrum, the maximum significant wave height due to limited water depth is
0.27 m.

2. Stroke curve (red)
The wave paddle is restricted in its (horizontal) motion amplitude. Therefore, the amount of water
that can be pushed forward to generate a wave is limited. which results in the red stroke curve
as shown in Figure I.1.

3. Steepness curve (blue)
The steepness curve of the waves shows the point where waves start to break. Since breaking
waves are not constant over their distance travelled and cannot be measured as accurately, this
is a condition to avoid for the wave gauge measurements.

Together, these restrictions form the envelope within which test conditions can be chosen.
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104 I. Wave conditions basin test

(a) regular waves (b) irregular waves, JONSWAP spectrum

Figure I.1: Plots of possible work area Scheldt flume wave conditions for a water depth of 0.85 m. The envelope of the work
area is defined by the restrictions of the stroke, steepness of the waves and depth of the basin. The red ’+’ marks inside this
area show the wave conditions that were used during testing.

The regular wave conditions are shown in Table I.1, and have been plotted in Figure I.1a as the red
’+’ marks. Not all of these tests were performed for every system size. For the configurations with
𝑛𝐹𝐿 = 12 floater arrays and 𝑛𝐹𝐿 = 24 floater arrays, some of the regular wave tests were skipped
because of time limitations.

The irregular wave conditions are shown in Table I.2 and have been plotted in Figure I.1b as the red
’+’ marks.
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J
Time series analysis

In every wave test, the surface elevation was measured by 8 wave gauges. These wave height meters
were calibrated at the still water level 𝑧 = 0 and measured at a frequency of 400 Hz. This results
in 8 time series per test; 4 of them on each end of the flume. The time series data is combined and
processed to filter out forward and backward propagating waves. This is done for the two locations;
both the first set of wave gauges, wave height meters 1­4, and the second set of wave gauges, wave
height meters 5­8, will give a forward and backward propagating wave signal each. How these wave
signals are obtained from the dataset of time series will be explained in this section. After showing
examples of the time series obtained, the regular wave approach will be explained in section J.1. It
shows the least­squares fit to find leading order harmonic coefficients for regular wave tests. Lastly,
the ELA method for filtering the irregular waves is introduced in section J.2.

The basin tests were performed for each system size (and the calibration test), for all wave condi­
tions as given in Appendix I. Examples of the surface elevation output of a single wave gauge are
shown below for a regular wave test and an irregular wave test.

The regular wave test ran for 4 minutes in total. The wave generator and sensors are started at the
same time, such that the surface elevation before the first waves arrive is included in the measure­
ment. An example of the full time series data of aregular wave test from a single wave gauge is shown
in Figure J.1.

Figure J.1: Example of regular time series data. This plot shows the (basin test scale) surface elevation measured by WHM 2
for regular wave test 6 with a system size of 6 by 8 floaters. Test conditions were 𝐻 = 0.04 m on basin scale, 𝐻 = 1.0 m full
scale, 𝑇 = 2.5 s on basin scale, 𝑇 = 12.5 s full scale.

This example shows that some time is needed to start up the wave, before it reaches the intended
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108 J. Time series analysis

wave height of 𝐻 = 0.04 m. The surface elevation started at 𝑡 = 7 s, and settled to the correct wave
height after about 3 wave periods around 𝑡 = 15 s. After some more time, the reflections from the
back of the flume start to arrive at this wave height meter, leading to the change in surface elevation
after time reflection is added to the signal. This happened around the time 𝑡 = 40 s. Therefore, the
time in between the first surface elevation and the presence of the first reflections in the time series
measurements at WHM 2 is Δ𝑡 = 33 s. This is in accordance with the expectations. Namely, this wave
gauge was located at 𝑥𝑊𝐻𝑀2 = 8.6 m, thus the distance travelled before the wave returns to this wave
gauge is around 82.8m. The position at the end of the flume where the waves are reflected was around
𝑥 = 50 m, but it consisted of an artificial beach before a wall, so this position might not be exact. With
a phase velocity 𝑣𝑝 = 𝜆/𝑇 ≈ 2.6 m/s, the travel time for a reflection for WHM 2 is 31.85 s, which is in
the range of the Δ𝑡 observed.

The irregular wave tests ran for in between 20 and 40 minutes. Namely, a minimum of 1100 waves
was needed to have enough time series data to perform spectral analysis. The tests with longer wave
periods thus took longer to run. In Figure J.2, an example of the first part of an irregular time series
from a single wave gauge is shown.

Figure J.2: Example of irregular time series data. This plot shows the (basin test scale) surface elevation measured by WHM 2
for irregular wave test 25 with a system size of 6 by 8 floaters. Test conditions were 𝐻𝑠 = 0.04 m on basin scale, 𝐻𝑠 = 1.0 m full
scale, 𝑇𝑝 = 2.5 s on basin scale, 𝑇𝑝 = 12.5 s full scale. The first 1000 s of the time series are shown.

Figure J.2 shows the irregular character of the waves; wave heights fluctuate over time. The mea­
surement for irregular tests shows no start up time in the signal because the data acquisition from the
sensors was started after the first wave had passed through the whole basin. Namely, for spectral
analysis it is convenient to leave the start up time of the signal out.

J.1. Least­squares fit regular waves
For the regular wave analysis, the leading order harmonic coefficients are determined by least squares
fit of the amplitudes for the forward and backward propagating modes, as described in the appendix
of Jacobsen et al. (2011) [29]. In short, the optimal solution to an over­determined set of equations is
found by performing a least­squares fit for the coefficients 𝐴, 𝐵, 𝐶 and𝐷 in the equations below. Equation
(J.1) shows the forward propagating modes within the wave signal and equation (J.2) describes the
backward propagating modes. This analysis is done for the two sets of wave height meters separately.
The surface elevation 𝜂(𝑥) is used to fit the harmonic modes

𝐴 cos(𝑖𝑓(𝜔𝑡 − 𝑘𝑥)) + 𝐵 sin(𝑖𝑓(𝜔𝑡 − 𝑘𝑥)) (J.1)
𝐶 cos(𝑖𝑓(𝜔𝑡 + 𝑘𝑥)) + 𝐷 sin(𝑖𝑓(𝜔𝑡 + 𝑘𝑥)) (J.2)

at the positions 𝑥 of the wave gauges and for the times 𝑡 in a specified time interval [𝑡1, 𝑡2] within the
time series measurements. In these equations, 𝜔 is the radial frequency and 𝑘 the linear wave number.
The index 𝑖𝑓 ∈ {1, 2..., 𝑛𝑓𝑟𝑒𝑞} gives the order of the harmonic. Thus 𝑖𝑓 = 1 gives the first harmonic, which
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corresponds to waves with frequency 𝜔, 𝑖𝑓 = 2 and higher give the higher harmonic components for
the frequency 2𝜔 and onwards, which might be present if the wave is not a perfect sinusoidal airy wave.

In the final analysis, the number of harmonics included in the calculations was 𝑛𝑓𝑟𝑒𝑞 = 5. The eight
locations 𝑥 of the wave height meters were given as input, and are shown in Table 4.1. The time in­
terval for which the analysis is performed was chosen [150, 200] s for each regular wave test. In this
range, all regular wave tests were in the ’constant equilibrium state’; the setup time had passed and
the reflections were part of the wave signal. The surface elevation showed (approximately) constant in
amplitude for these times, see for example the data in Figure J.1. The time interval [100, 150] s gave
almost exactly the same results. The cyclic frequency 𝜔 and linear wave number 𝑘 were determined
from the wave period 𝑇 that was specified in the steering file as the intended wave period. The disper­
sion relationship was solved numerically to find 𝑘.

A few assumptions are made when using this least­squares approach for the evaluation of harmonic
amplitudes. Firstly, the distance between the wave height meters within a set is small enough such that
the amplitudes are not altered by energy exchange nor by numerical diffusion. Secondly, the specified
wave period 𝑇 is considered constant along the flume. This period is used to determine the frequency
and the wave number of the modes which the waves are fit to.

Regarding the first assumption, the distance between the wave gauges was maximally 2 m. The trans­
mission coefficient in the calibration tests was found to have a minimum 𝐾𝑡 = 0.85 (see Figure 4.5)
over the distance in between the WHM sets, which is approximately 30 m. If we assume the dissipa­
tion by friction from the flume was constant over this distance, the transmission percentage per meter
is 30√0.85 = 0.994. Therefore, the 2 m wave height difference between WHM 1 and 4 or WHM 5 and 8
due to the friction of the flume is estimated at maximally 1.1%.

J.2. ELA method irregular waves
The wave height measurements initially only include the desired incident wave spectrum. However,
the waves are not dampened out completely at the end of the basin. Therefore, after the first waves
have had enough time to travel to the end of the basin and back to the wave gauges, the measured
signal will consist of both an incident wave and a reflected wave. The non­linear separation method
which was used to separate these waves is the Eldrup Lykke Andersen (ELA) method [19]. It works for
two­dimensional (long crested) regular and irregular waves.

The wave gauges time series were used as an input for the ELA method. The analysis was done
separately for the first 4 wave height meters in front of the system and the last 4 wave height meters
behind the system. Their data was combined into two sets of wave parameters; one in front of the
system and one behind the system. The resulting parameters that were used are the significant wave
height, 𝐻𝑚0, for irregular waves, and the peak period 𝑇𝑝. Furthermore, the variance density spectra of
the irregular wave tests were analysed as well.





K
Variance density spectra for all irregular

wave tests
The variance density spectra for the irregular JONSWAP wave tests, with test­IDs 25 ­ 31 and wave
conditions as specified in Appendix I Table I.2. Each subfigure shows the spectrum for one of the system
configurations, the amount of floater arrays 𝑛𝐹𝐿 included shows below. For each test, the incident and
transmitted spectra are plotted. The incident spectrum is the forward propagating spectrum in front
of the system, from wave gauges 1­4 (previously denoted as 𝑝1). The transmitted spectrum is the
forward propagating spectrum behind the system, fromwave gauges 5­8 (previously denoted as 𝑝2)The
JONSWAP curve at which the test was initialised shows in the plots as well. All variance densities were
scaled back to offshore scale values using the Froude scaling with 𝑠 = 25 (Figure G.1). The spectral
plots have been cut off at 𝑓 = 0.5 Hz, in order to show the part of the figure where energy was present.
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112 K. Variance density spectra for all irregular wave tests

(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.1: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 25 (𝐻𝑠 = 1 m,
𝑇𝑝 = 5 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.
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(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.2: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 26 (𝐻𝑠 = 2 m,
𝑇𝑝 = 6 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.
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(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.3: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 27 (𝐻𝑠 = 3 m,
𝑇𝑝 = 8 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.

New



115

(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.4: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 28 (𝐻𝑠 = 4 m,
𝑇𝑝 = 9 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.
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(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.5: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 29 (𝐻𝑠 = 5 m,
𝑇𝑝 = 10 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.
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(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.6: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 30 (𝐻𝑠 = 1 m,
𝑇𝑝 = 8 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.



118 K. Variance density spectra for all irregular wave tests

(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure K.7: Smoothed variance density spectra 𝐸 as a function of the wave frequency 𝑓 for irregular wave test 31 (𝐻𝑠 = 2 m,
𝑇𝑝 = 10 s at offshore scale). Variance density is plotted for the incident wave spectrum (first 4 wave gauges) and transmitted
wave spectrum (last 4 wave gauges), as well as the theoretical JONSWAP spectrum that the test was initialized at.



L
Transmission coefficients for all irregular

wave tests
The transmission coefficients 𝐾𝑡, computed in each frequency interval with upper bound 𝑓𝑗, is shown in
Figure L.1. Each plot shows a different system configuration with a different number of floater arrays
𝑛𝐹𝐿. The values for all the irregular wave tests 25 ­ 31 are shown in each subplot, as well as the mean
over these tests. These test­IDs correspond with different irregular wave conditions (and thus different
incoming wave spectra) as defined in Table I.2.
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120 L. Transmission coefficients for all irregular wave tests

(a) Calibration test 𝑛𝐹𝐿 = 0 (b) System size 𝑛𝐹𝐿 = 6

(c) System size 𝑛𝐹𝐿 = 12 (d) System size 𝑛𝐹𝐿 = 18

(e) System size 𝑛𝐹𝐿 = 24 (f) Maximum system size 𝑛𝐹𝐿 = 33

Figure L.1: Transmission coefficient 𝐾𝑡 computed in each frequency interval with upper bound 𝑓𝑗 for the irregular wave tests.
Values for each irregular wave test are shown, with test­IDs 25­31 corresponding to the wave conditions given in Table I.2. The
mean over these transmission values is shown in black.



M
Additional discussion points basin test

Apart from the discussion points that were presented in Chapter 6, more discussion points and sug­
gestions are presented in this appendix.

Regular wave test results

• Measurement uncertainties could be large due to the small working scale. 𝐻 = 0.04 m used
as wave height, so small differences in surface elevation measurement can cause large relative
errors. Examples could be measurement errors due to ’white wash’ waves, a different mooring
pretension, waves that were not dampened out completely, etc.

• Influence of second order stokes waves instead of linear

• Influence of three­dimensional diffraction or radiation effectsthat were present in the 2D setup
used, and amount water passing next to the object (although minimised)

• Effect of mooring contributions. Structure moved back and forth, mooring forces increased less
than linearly with number of floaters. Mooring forces were not kept entirely constant over the test
runs

• When analysing the reflected signal in calibration tests before the time that a wave could travel
back, values 𝐾𝑟 up to 0.04 were found. Gives error indication and questions in splitting procedure
wave analysis. Error was too large to say anything quantitatively about short timespan reflections.

• What has now been defined as reflection, could also be redirection of waves due to radiation from
the structure movement. Defining wave components b and e in Figure 4.4 as reflections from the
structure might thus be an incorrect interpretation, as these could also be parts of the radiated
waves.

• Friction from the flume influences results; 𝐾𝑡 < 1 for calibration tests (has been included in anal­
ysis)

• Standing waves could influence measurements surface elevation: location of the WHM matters
(either in node or antinode)

• 𝐾𝑡 > 1 values for some calibration tests, but no energy is added along the flume

• Definition dissipation parameter from 𝐾2𝑡 + 𝐾2𝑟 + 𝐾2𝑑 = 1, although 𝐾𝑟 < 0 for some values.

Irregular wave tests results

• Spectral results: longer running time / repitition of irregular tests could increase accuracy of spec­
tra. Infinite time series needed for Fourier Transform is now approximated with 1100 waves.
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122 M. Additional discussion points basin test

• Define gain of wave paddle better such that the waves actually represent the JONSWAP spectrum
at the location of WHM 1­4. Gain 0.84 seems to have worked best. (gain was kept constant for
various system sized, and reflection and transmission are always defined as a proportion of the
incoming signal thus fine)

• Spectral transmission coefficient results 𝐾𝑡(𝑓): use weighted average to energy value instead of
regular mean: For the tests with irregular wave spectra, the amount of wave energy in the regime
𝑓 > 0.25 Hz varied between 60% (test 25) and 8% (tests 29 and 31), which indicates how many
of the high­frequent waves were present. This means more confidence lies in the tests with a
low peak period 𝑇𝑝 when looking at the high frequency range. The transmission coefficient was
now computed as a simple average over all spectral wave tests, but a weighted average with
respect to the amount of wave energy present in the spectrum for each frequency 𝑓 could give
more accurate results.

• Include backward propagating wave spectra, analysis on reflection here as well. More difficult as
waves of changing characteristics are sent out

• Look into differences in wave response between regular and irregular wave tests, as the type of
waves could also be of influence to the transmission results. Spectral waves will not allow for the
structure to act as a perfect wave follower as the waves change over time.

Possible improvements on test procedure

• Visually changes in model: torn in U shape: gap size changed because rubber cords slipped
underneath the zip ties

• Mooring tension changed a bit as the test continued because the structure deformed a little

• Active dampening at the back end of the flume, or larger flume such that time for reflection to
occur is longer. Also has negative effects because it is not a passive system any more: influences
energy sent into the flume

• There are some advantages of disabling the ARC: constant amount of energy sent into the flume.
At least add some tests where this is done.

New research directions suggested

• 3D setup, test various incoming angles 𝜃. Response could be very different if waves are incident
at 𝜃 = 45deg, stiffness of structure higher

• Further research dissipation and reflection / radiation effects: possible tests with a fixed floating
object to simulate the diffraction effects, radiation could be measured by oscillating the structure
in an initially still flume

• More tests for the higher frequencies, to see exact frequency dependence. Zoom in at interest­
ing area: what happens exactly when 𝐾𝑡 < 1 (dissipation or reflection)? Answer last research
question better (reflection vs dissipation)

• Research wave height dependence in different region where 𝐾𝑡 ≉ 1

• More tests could be done with different water depth, other wave conditions (maybe different flume
such that the wave envelope is also different)

• Alter floater characteristics to determine dependence on floater dimensions or mooring
Stay more in linear regime such that results can be compared with airy wave theory based

numeric model

• Look into IMU data that was collected to study floater dynamics: difference in behaviour front and
back floater.
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