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1 Introduction

Geometric computation is an essential aspect of geographic information science, which in-
volves the use of mathematical algorithms to perform precise calculations on geometric shapes
and spatial data. Complex polygons, which are often used to calculate areas and perform
Boolean operations, can present issues when converting or exchanging datasets due to differ-
ent representations used by various formats. These issues are often caused by limitations in
precision, such as the use of float 32-bits in ESRI shapefile format (see https://en.wikipedia.
org/wiki/Shapefile), resulting in vertices that are close to each other or close to other lines
collapsing and creating invalid polygons, intersecting lines, and other errors that can prevent
the use of these geometries in downstream applications. For instance, a self-intersected poly-
gon (Fig. caused by coordinates shifting, a polygon that is not completely closed (the
exterior ring is not closed, see Fig. will lead to 0 area. They are invalid polygons, which
need to be carefully handled in the practice. It is important that the results of geometric com-
putations are as accurate as possible so that the decisions made based on those results are
reliable.

Obtaining reliable geometric computation results can be achieved by utilizing infinite preci-
sion techniques. This can be done through the use of libraries that support arbitrary-precision
arithmetic (such as CGAL), or algorithms. These techniques allow for mathematical opera-
tions to be performed with an arbitrarily high level of precision, effectively eliminating po-
tential errors caused by limitations in precision. It is important to note, however, that infinite
precision may result in increased memory usage and slower performance. Additionally, it
cannot guarantee precision when saving data to a file or converting files of different formats.
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Figure 1: Example: invalid polygons

Using appropriate algorithms to generate objects with finite-precision estimated coordinates
is a common way to ensure the reliability of the results. Snap rounding (SR) is such a method
to convert infinite-precision to finite-precision. SR snaps each point of the polygon onto an
grid point within a prescribed tolerance, allowing for accuracy and adjustability depending
on the needs of the application. Fig. Pillustrates an example. SR works by “snapping” the
vertices of a shape to a grid of equally spaced points, which can help to create well-separated
vertices and cleaner geometric arrangements. By ensuring that the shortest distance between
a vertex and its non-incident edge is a certain threshold, SR can help to organize shapes in a
more structured way. It should however be noted that, standard SR will change the original
topology to a greater or lesser extent, in other words, maintaining the topological shape is not
its purpose. On the other hand, it cannot guarantee the correctness of the result. Iterated snap
rounding (Halperin and Packer|(2002)), which is widely used at present, is a good implemen-
tation for snap rounding algorithm. However it can be computationally expensive and slow
in practice, particularly for large datasets, as it may require a significant amount of time and
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space resources. To address these limitations, this thesis aims to improve the efficiency of snap
rounding by using constrained Delaunay triangulation as a supporting data structure.

Figure 2: A snapping example from Halperin and Packer| (2002): line segments before (a) and
after (b) snap rounding

2 Related work

Halperin| (2002) discusses the challenge of transforming geometric algorithms into effective
computer programs. The paper starts by discussing the gap between theory and practice
of geometric algorithms, and the difficulties caused by the basic assumptions of most theo-
retical geometric algorithms concerning complexity measures and robustness issues, specifi-
cally issues related to arithmetic precision and degenerate input. The paper then provides an
overview of the CGAL project and library, which is a joint effort by several research groups
in Europe and Israel to produce a robust software library of geometric algorithms and data
structures. The library is now available for use with significant functionality. The author de-
scribes the main goals and results of the project. The central part of the paper focuses on
arrangements (i.e., space subdivisions induced by geometric objects) and motion planning.
The author concentrates on the maps and arrangements part of the CGAL library and de-
scribes two packages developed on top of CGAL for constructing robust geometric primitives
for motion algorithms. The author also presents the CGAL project and library as a solution to
these problems and describes how it can be used for arrangements and motion planning.

Goodrich et al.| (1997) introduce snap rounding as a method for approximating geometric
shapes defined using floating point coordinates with a discrete grid of points. The method is
based on the idea of “snapping” the vertices of the shape to the nearest grid point, and then
connecting the snapped vertices with straight line segments to form an approximation of the
original shape. One downside of their methods is that they take longer to run as the number
of input line segments and segments in a snap-rounded representation increase.

Although snap rounding is commonly used to improve the efficiency of algorithms that
operate on geometric data, standard snap rounding algorithms can yield artifacts and degen-
eracies under some circumstances, such as intersections that should not exist or lines that
are not properly connected. To address these limitations, |de Berg et al. (2007) proposed a
new intersection-sensitive snap rounding algorithm that approximates real-valued coordi-
nates while preserving the topological features of the input geometry, such as intersections
and adjacencies. This method was expected to produce fewer artifacts and degeneracies in
some cases compared with the standard snap rounding method.

Hershberger (2013) introduces the concept of stable snap rounding, which is a variant of the
standard snap rounding. It guarantees the stability of the produced approximations under
perturbations of the input data while also preserving all of snap rounding’s advantages and
being idempotent. This is achieved by using a new criterion which ensures that the approx-
imations are not sensitive to small changes in the input. The author also provides a detailed
analysis of the stability properties of the algorithm through a series of experiments.



The robust geometric computing can be more or less achieved by the standard snap round-
ing. However, it is worth pointing out that in a snap-rounded arrangement, the distance be-
tween a vertex and its non-incident edge can be extremely small compared with the width of
a pixel in the tiling grid (Fig. [3|shows an example). In order to solve this,[Halperin and Packer
(2002) proposed an enhanced algorithm - Iterated snap rounding (also know as ISR). ISR en-
sures that the distance between a vertex and its non-incident edge is at least half-the-width-
of-a-pixel, the arrangement after rounded can be further improved in this way. The authors
provide a detailed description of the algorithm, as well as a proof of its correctness. They also
present experimental results comparing iterated snap rounding to the standard snap round-
ing algorithm. A conclusion has been drawn that the iterated snap rounding outperforms the
original snap rounding algorithm in terms of the quality of the approximations. It should be
noted that, the run time of ISR is relatively long, because the snap rounding operation needs
to be performed many times. Although the authors used kd-tree as an auxiliary data structure
to optimize, it is still computational intensive. For instance, for a map of the USA (containing
about 56 polygons and 486 segments intersecting only at endpoints), the total average running
time is about 78.64 seconds (from Halperin and Packer; (2002)).
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Figure 3: An example from Halperin and Packer|(2002): a vertex is very close to a non-incident
edge after (b) snap rounding

Packer| (2006) present a new variant of the Snap Rounding and Iterated Snap Rounding
method, called Iterated Snap Rounding with Bounded Drift (ISRBD). The authors note that
both Snap Rounding (SR) and Iterated Snap Rounding (ISR) have limitations, such as the
potential for degeneracies in SR and drift in ISR. The ISRBD method proposed in the paper
aims to overcome these shortcomings by augmenting the ISR method with procedures that
guarantee the quality of the geometric approximation of the original segments, while still
maintaining the property that a vertex and a non-incident edge in the rounded arrangement
are well separated. The authors investigate the properties of the new method and compare it
with the earlier variants. They also implemented the new scheme on top of the Computational
Geometry Algorithms Library (CGAL) and report on experimental results.

Belussi et al. (2016) introduce a new algorithm called Snap Rounding with Restore (SRR)
that aims to improve the robustness and quality of geometric approximation in datasets while
preserving the topological structure. The algorithm is an improvement on the well-known
Snap Rounding algorithm, by eliminating configurations in which the distance between a ver-
tex and a nonincident edge is smaller than half the width of a pixel of the rounding grid. The
goal of SRR is the same as another algorithm called Iterated Snap Rounding (ISR) and its evo-
lution, Iterated Snap Rounding with Bounded Drift (ISRBD). However, the paper claims that
SRR produces an output with a better quality of approximation, both in terms of the distance
from the original segments and the conservation of their topological structure. This is sup-
ported by a statistical analysis on a large collection of input datasets. The paper also notes that
ISRBD may produce strong topological modifications, which SRR does not. The conclusion
is that SRR is suitable for applications that require robustness, guaranteed geometric approxi-
mation, and good topological approximation.

Accurately representing geographic networks at reduced coordinate precision can be chal-



lenging. Specifically, it requires that vertices need to be placed on a grid and that the network
topology is maintained, without the introduction of intersections or collapse of line segments
or faces. The problem of minimizing the “rounding error” is known to be NP-hard and prac-
tical methods are difficult to implement. van Dijk and Loffler| (2019) propose a two-stage
simulated annealing algorithm which first focuses on finding a feasible solution, and subse-
quently optimizes the rounding error. Furthermore, the authors also examine various feasibil-
ity procedures and evaluate their applicability on geographic networks. The dataset and an
implementation in C++ can be accessed at https://github.com/tcvdijk/armstrong.

Related to the snap rounding, 3D geoinformation research group at TU Delft has previously
used a constrained triangulation as a robust method to repair polygons (Ledoux et al./(2014))
and planar partitions (Ohori et al.| (2012)). Topological errors can be automatically fixed in
such a manner. Utilizing constrained triangulation as a supporting data structure appears to
be a logical and efficient method for optimizing the snap rounding process. For example, it
eliminates the need for constructing a tiling grid for the entire area and allows for points to be
placed anywhere, rather than solely on a grid. This can enhance both the speed and memory
efficiency.

3 Research questions

The main research question of this thesis would be: How can a constrained Delaunay triangulation
be used as a supporting data structure to efficiently perform snap rounding?

This thesis will be focusing on investigating and optimizing the use of constrained Delaunay
triangulation for performing snap rounding, through the development and implementation of
efficient algorithms and the evaluation of their performance in various scenarios. In order to
achieve this goal, the following sub-tasks will be gradually studied:

* To develop and implement an efficient algorithm for performing constrained triangula-
tion based snap rounding on a given set of points and polygons.

¢ Toinvestigate the accuracy and reliability of constrained triangulation based snap round-
ing compared to other methods of approximation (e.g. the iterated snap rounding).

* To evaluate the applicability of constrained triangulation based snap rounding in vari-
ous real-world scenarios and domains, such as computer graphics, geo-spatial analysis,
and scientific visualization.

e [s it better to have Delaunay triangulation or is any type of constrained triangulation
fine?

¢ How to handle the reassignment of triangles when they are modified by the snapping
process? For example, If the triangulation was originally derived from polygons, we
need to determine which polygon each new triangle should belong to after the snapping
process.

* In the GIS field, there are not only line segments, but also polygons with attributes or
semantics. Whether they can be preserved or how to preserve them in a proper way
during the snapping process needs to be studied.

e Try to evaluate the performance of the implemented method (e.g. run time & space
resources occupied at runtime).
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This thesis will examine the use of constrained (Delaunay) triangulation for snap round-
ing and focus on the process of valid polygons. Handling invalid polygons (such as self-
intersecting, etc.) is not within the scope of discussion. For more details, please refer toLedoux
et al. (2014) and (Ohori et al.| (2012).

4 Methodology

The overall idea is to establish a constrained Delaunay triangulation for the input geometry,
taking the edges of the input geometry as constraints. By identifying the points/lines/faces
that need to be snapped under different circumstances (which will be discussed in more de-
tail later), the overall data can be snapped and the revised geometry can be output, while
maintaining the integrity of the constraints as much as possible.

A constrained triangulation is a type of triangulation that ensures that certain edges, known
as constraints, are present in the triangulation. This is useful in situations where the input
geometry has certain features that must be preserved in the triangulated version(e.g. the con-
strained edges need to be maintained). The process of creating a constrained Delaunay trian-
gulation involves reading in the data, establishing constraints based on the geometric charac-
teristics of the input data, and then creating the corresponding triangulation. It is important
to pay attention to issues such as edge crossing and overlap when establishing constraints.

The snapping process involves identifying the points, line segments, and faces in the input
geometry that need to be snapped, or adjusted, to fit the constraints. This can involve moving
or adding points to ensure that the constraints are satisfied. Once the data has been snapped
to fit the constraints, the revised geometry is output, with the goal of preserving the original
constraints as much as possible.

Fig. 4| displays a theoretical flowchart of the main process of this thesis.

4.1 Preprocessing

Preprocessing is an important step in the snap rounding process, as it helps to ensure that
the data is in a suitable status for further processing. To be more specific, snapping process
should preferably be based on valid polygons. While in most cases, original data sets are usu-
ally chaotic and may contain errors or inconsistencies that can hinder downstream analysis.
In the case of geometric data, such as polygons, tools such as prepair (Ledoux et al.|(2014))
and pprepair (Ohori et al. (2012)) may be used. These tools help to identify and fix errors or
inconsistencies in the polygons, ensuring the validity of the geometric shape.

4.2 Snapping

4.2.1 Snapping case 1: trivial faces

In this step, our primary goal is to identify and snap trivial faces, which we will refer to as
“snapping triangles.” These are represented by triangles with all side lengths less than or
equal to a predetermined snapping threshold.

A preliminary result of snapping case 1 is shown in Fig. |5, The detailed steps are as follows.

¢ To determine the triangle with the smallest tolerance, each face handle is traversed and
the lengths of the edges are obtained.

¢ The lengths of the edges are compared to a manually-specified tolerance. Only triangles
with all three edges shorter than the threshold are considered as suitable for snapping.
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Figure 4: Flowchart of the main process

incident edges incident to each vertex of the triangle.

to the triangle itself are filtered.

Store the incident vertices.

4.2.2 Snapping case 2: trivial edges

Remove the triangle by deleting its three vertices.

Replace the triangle by its calculated centroid.

Ouput data via
GDAL

All constraints incident to the selected triangle are identified by finding the constrained

The incident vertices are identified according to the incident constraints, those belonging

Reintroduced the constraints between the calculated centroid and the incident vertices.

The main objective of this step is to identify and snap trivial edges, which we will refer to as
“snapping edges.” These are represented by edges with a length less than or equal to a pre-set

threshold value.

A preliminary result of snapping case 2 is shown in Fig. [} The detailed steps are as follows.

¢ To determine the edge with the smallest tolerance, the length of each edge is traversed
and the lengths of the edges are obtained.

* The lengths of the edges are compared to a manually-specified tolerance. Only edges
with edge length shorter than the threshold are considered as suitable for snapping.
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Figure 5: Case 1

¢ All constraints incident to the selected edge (snapping edge) are identified by finding
the constrained incident edges incident to each vertex of the snapping edge.

* The incident vertices are identified according to the incident constraints, those belonging
to the snapping edge itself are filtered.

¢ Store the incident vertices.
* Remove the snapping edge by deleting its two vertices.
* Replace the snapping edge by its calculated centroid.

e Reintroduced the constraints between the calculated centroid and the incident vertices.
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Figure 6: Case 2

4.2.3 Snapping case 3: sliver triangles

In the constructed triangulation, in addition to the triangles whose three sides are smaller
than the threshold, there is another kind of triangle that we need to consider, that is, a triangle
whose height is smaller than the threshold (a very sliver triangle). Here we consider the case
where the basic edge of the height is a constrained edge. For such sliver shapes, there are two



possible snapping schemes: 1 For the base edge whose height is smaller than the threshold,
mark it as unconstrained, and ensure that the other two edges are constrained (if they are not,
mark them as constrained) 2. Keep only the base edge, and move the vertex opposite to the
base edge to the base edge. The detailed steps can be described as follows.

* Traverse each face handle, find triangles with altitudes smaller than the tolerance and
identify the constrained base edge.

* Remove the constrained base edge, keep the incident vertices unchanged.
* Ensure the other two non-base edges are now constrained, if note mark them constrained.

* Move middle vertex to lie on the removed constraint (the original base edge).

Fig. [7]shows an example.
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Figure 7: Case 3

The snap process should be able to handle not only polygons, but also line segments, or a
combination of both. This should also be tested in subsequent practice.

4.3 Labelling triangles

Identifying the polygons from the triangulation during the snap process is of great importance
as well. To make this process easier, we label all triangles in the triangulation as either outside
or inside. We then retain or ignore the triangles based on the marks on the left and right sides
of each edge in the triangulation. This will help us identify which triangles belong to which
polygons, maintain their respective properties, and extract polygons from the triangulation.
An illustration is shown in Fig. |8l More details can be found in|Ohori et al.|(2012).

Labeling triangles can be a difficult task when it comes to implementation, due to two main
reasons. Firstly, the snap process can alter the local structure of the triangulation, making
it hard to determine which polygon a new triangle should belong to. Secondly, when using
Delaunay triangulation as a supporting data structure, it is necessary to constantly update the
triangulation to preserve its Delaunay characteristics. This can lead to changes in the overall
shape of the triangulation, rendering the initial labels of triangles meaningless. As a result,
correctly labeling triangles in these cases poses a significant challenge.



(a) (b) (c)

Figure 8: Labelling triangles example from prepair (Ledoux et al. (2014)). (a) Construct the
triangulation; (b) Triangles are labelled as inside (grey) or outside (white); (c) Reconstructed

polygons.

4.4 Assessment

Assessing the results of constrained-Delaunay-triangulation based snap rounding can be done
by comparing it to the iterated snap rounding algorithm implemented in CGAL. One way
to do this is by comparing the topological and geometric consistency of the snapped results
obtained from both methods. We can also compare the running time of two methods by using
the same input, and record the space resources used by each method as well. For example,
Halperin and Packer| (2002) compare the result of SR and ISR based on the same dataset (see
Fig. [9). The results of this thesis can also be compared in the similar way.
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Figure 9: Comparison of SR and ISR output from |Halperin and Packer| (2002)

5 Time planning

The general graduation calender is shown below. The specific date will be determined accord-
ing to the arrangement of the tutors and the college.
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Event Expected Date
P1: Registration of topics/mentors December, 2022

P2: Graduation plan (formal assessment) January(end), 2023

P3: Midterm progress meeting March(end), 2023

Submit draft thesis May(mid), 2023
P4: Go/no-go (formal assessment) May(end), 2023
Submit final thesis June(mid), 2023
P5: Public presentation and final assessment (formal assessment) | June(end), 2023

The Gantt chart (displayed in Fig. [I0), provides a clearer overview of the estimated timeline
for major events and tasks. It is important to note that this is a simplified diagram and more
specific tasks will be included in the follow-up process.

Jan 2023 Feb 2023 Mar 2023 Apr 2023 May 2023 Jun 2023 Jul 2023
1 2 3} 4 5 6 7 8 9 10 n 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

P2: Graduation plan
P3: Midterm meeting
Implement 3 snap case methods

Implement functions for loading dataset

- Test methods on different datasets
- o P4: go/no-go assessment
© submit final thesis -
P5: Public presentation and final assessment -

Figure 10: Overview of events and tasks

6 Tools and datasets used

6.1 Tools

This thesis will mainly use C++ as the main programming language, use the Computational
Geometry Algorithms Library (CGAL) and the Geospatial Data Abstraction Library (GDAL)
to implement the constrained-Delaunay-triangulation based snap rounding method. CGAL is
an open-source library for computational geometry that provides a wide range of geometric
algorithms, including Delaunay triangulation. GDAL is an open-source library for reading
and writing geospatial data, which will be used to read and write datasets in various formats,
for example GPKG and ESRI shapefile.

Additionally, we will be using two prototypes, prepair(available at: https://github.com/
tudelft3d/prepair, details can be found in Ledoux et al.| (2014)) and pprepair (available at:
https://github.com/tudelft3d/pprepair, details can be found in Ohori et al|(2012)), to
ensure the overall quality and validity of GIS polygons. The prepair prototype allows for
easy repair of “broken” polygons according to the international standard ISO19107. Given a
single input polygon, it will automatically repair it and return a valid polygon. The pprepair
prototype takes a set of polygons and ensures that they form a valid planar partition, with
no gaps or overlaps. It can identify problems in individual polygons or in the overall planar
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partition, and also includes an automatic repair feature to output a set of polygons that do
form a valid planar partition.

6.2 Datasets

In terms of datasets, this thesis will use OpenStreetMap (also known as OSM, available at:
https://www.openstreetmap.org/) to obtain various datasets. OSM is a collaborative project
that provides free, editable maps of the world. This thesis will also use various data formats,
for example GeoPackage (GPKG) and ESRI shapefile, to evaluate the performance of the pro-
posed method. The datasets usually include a variety of geographic features, such as roads,
buildings, and bodies of water, yet we will mainly focus on the 2D and 2.5D polygons. The
datasets will be chosen to represent a range of different geographic regions and scales.
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