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The (Mn,Fe),(P,Si) compounds are one of the rare materials systems that exhibit an isostructural first-order
ferromagnetic transition (FOMT) near ambient temperature. Since the discovery of its giant magnetocaloric
effect (GMCE), this system is garnering ongoing interest, both for its promising performances for applications and
for the scientific interest in uncovering the fundamental mechanisms driving the FOMT. This study examines the
evolution of the structure, the microstructure, the thermal and magnetic properties in
Mng.60+xF€1.3.xPo.66-ySi0.341y (0 < x < 0.08, x = 2y) compounds prepared by the melt-spun technique. The
simultaneous increase in Mn and Si concentrations leads to a 40 % enhancement in the isothermal entropy
change (| ASmax|) compared to parent compound. Furthermore, we propose a method to separate the latent heat
(L) from the reversible specific heat. This allows us to establish a convincing correlation between two intrinsic
quantities, the latent heat (L) and the elastic strain energy (U.). Our results demonstrate that both latent heat (L)

and thermal hysteresis (AThys) are proportionally linked and vanish simultaneously at a critical end point.

1. Introduction

The magnetocaloric effect (MCE) is an intrinsic magneto-thermal
phenomenon that links a sudden change in the magnetic field to a
temperature change in a material, thereby enabling magnetic refriger-
ation technologies [1-10]. The MCE is characterized by the isothermal
entropy change (AS) or the adiabatic temperature change (ATaq),
depending on whether the magnetic field change is applied isothermally
or adiabatically. When the MCE for different materials is compared, it is
important to note that a large |AS| does not always correspond to a large
AT,4, so both quantities must be optimized simultaneously [5,11].
Integrating this effect opens up novel possibilities for magnetic cooling
[2,4,12,13], heat pumping [14-18], and energy conversion, such as
thermomagnetic harvesting applications [19,20]. These applications
present a higher energy efficiency and do not use greenhouse gases, and
could therefore contribute to mitigate the climate change.

A giant magnetocaloric effect (GMCE) is typically associated with a
first-order magnetic transition (FOMT). Depending on their intrinsic
mechanisms, the FOMT can be classified into two types: the magneto-
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elastic transition that does not change the crystal symmetry, as
observed in materials like La(Fe,Si);3 [21-23], FeRh [24,25], Eusln [26]
and (Mn,Fe)»(P,Si) [4,6], and the magneto-structural transition, where
the change in magnetic state is associated with a change in crystal
symmetry, as found in compounds such as Gds(Si,Ge)s [27], MnMX
TiNiSi-NioIn [28,29] and NiMn-based Heusler alloys [30,31], etc.
Among these different material systems, the FeyP-based compounds,
particularly (Mn,Fe),(P,Si), stand out as one of the most promising for
real application due to their low raw material costs, absence of rare
earth elements, the absence of toxic elements and a tuneable Curie
temperature near room temperature. These features make this system
especially suitable for eco-sustainable applications.

Besides their advantages, the present systems with a GMCE at a
FOMT often also have negative aspects such as thermal hysteresis
(ATyys), which impers the reversibility of the effect [7,32] and me-
chanical embrittlement. Previous studies on MnFe(P,Si) materials have
shown that reducing the hysteresis can be achieved by adjusting the
Mn/Fe and P/Si ratios. However, this adjustment typically leads to a
decrease in magnetization. To enhance both the magnetization and AM,
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it is necessary to work near the MnFeP;,3Si;/3 composition, which
represents a dual optimum for achieving a high saturation magnetiza-
tion [33,34]. At the FOMT, not only a sharp magnetization jump is
observed, but also discontinuities in other physical parameters are found
[35]. For the (Mn,Fe),(P,Si) system at the ferromagnetic transition
temperature (T¢), the unit-cell contracts in the hexagonal basal plane
across the FOMT, while it expands along the hexagonal axis. This overall
lattice deformation results in a discontinuity in c¢/a ratio reaching up to
10 %, while the unit-cell volume change AV/V = 0.1-0.3 % is nearly
negligible. Such discontinuities can induce strong shear strains and
stresses at the grain boundaries in random orientated polycrystals,
particularly for larger grains. Thermal or magnetic field cycling poten-
tially results in the formation of fractures or even the destruction of the
bulk materials. These issues can be addressed by technical solutions,
such as embedding the MCE material in a resin or using porous shaping
techniques. However, these approaches will dilute the MCE effect,
which is unwanted as it results in an inefficient use of the magnetic field
source. In recent years, numerous studies have explored the introduction
of a fifth element. This includes doping with 3d through 5d transition
metals [32,36-40], which can potentially fine-tune the Curie tempera-
ture (T¢) and reduce ATyys. Substitutions of P by As, Ge, Al and B have
also been investigated as potential dopants [41-45]. However, from the
perspectives of layering the transition temperatures along the regener-
ator or for scaling-up the synthesis, multiplying the number of elements
with small quantities of substitutions raises some challenges.

Here, we tackle the above issue by compositional control and
manipulating the microstructure to achieve smaller grain sizes. On the
Fe-rich side of the (Mn,Fe)2(P,Si) phase diagram, higher Si concentra-
tions result in smaller discontinuities in Aa and Ac across the FOMT [6,
46]. At the same time, metallurgical challenges have been widely re-
ported in the Mn-Fe-P-Si system. Previous studies have predominantly
employed ball-milling methods [32,34,36,45]. Samples prepared by this
conventional approach often display significant porosity [64,66], which
adversely affects thermal conductivity. Furthermore, this family of
materials is highly sensitive to the purity of the starting elements, often
leading to the formation of secondary phases such as (Mn,Fe)3Si [66]. In
contrast, melt spinning, which combines liquid-phase segregation with
rapid solidification, enables the synthesis of fine-grained, single-phase
materials [46]. The refinement of grains can mitigate shear strains and
stresses at grain boundaries, thereby enhancing mechanical stability,
which is particularly critical given the intrinsic brittleness of these
compounds. Despite these advances, a systematic comparison of the
microstructural features between conventionally processed and
melt-spun samples remains unexplored. Therefore, in this work, we
employ the melt-spinning technique to investigate both the micro-
structure and magnetic properties of Mnggo1xFe1.3.xPo.66.ySi0.34+y
compounds.

The Mng 60.+xFe1.3.xPo.66-ySi0.34+y compounds presently studied show
a strengthening of the FOMT characteristics (hysteresis, discontinuity,
specific heat peak), which led us to investigate the evolution of the latent
heat (L) along this series. While the latent heat is an intrinsic quantity
highly relevant for the development of GMCMs, its separation from the
reversible specific heat background is challenging. Temperature
modulated DSC methods allow to separate a reversing, time indepen-
dent, heat flow reflecting the specific heat background from an irre-
versible kinetic heat flow that may encompass the latent heat. But this
technique generally yields a modest accuracy on the specific heat
[47-51]. Thermopile calorimeters operated in AC or scanning mode
have proved capable of separating specific heat from latent heat in giant
magnetocaloric materials such as in CoMnSi compounds [52]. But this
method requires homemade instruments and is limited to relatively
small samples. We propose a method based on commercial calorimeter
to separate latent heat from the total thermal response of the material in
(Mn,Fe)5(P,Si) materials. This investigation led us to establish a corre-
lation between L and another intrinsic quantity, U. the (magneto-)
elastic energy.
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Our detailed magnetic and thermal measurements carried out up to
high magnetic fields demonstrate that the present materials show a
change in the nature of the phase transition when the applied magnetic
field causes the transition to reach a critical end point. The reduction of
both ATy, and L is gradual with applied magnetic field, and both vanish
at the critical end point.

2. Materials and experimental methods

Mnyg 60+xFe1.3.xP0.66-ySi0.341y alloys (with x = 2y ranging from x =
0.00 until x = 0.08) were synthesized by ball milling from powders of
high-purity starting materials of Mn (99.7 %), Fe (99.8 %), FeoP (99.5
%), and Si (99.6 %), using a ball-to-sample mass ratio of 5:1 and ball
milling for 10 h at 380 rpm. Subsequently, the resulting powders were
compacted into cylinders of approximately 2.5 g each using an uniaxial
press with a force of 8 tons. Then the pellets were melted and quenched
by melt spinning with a copper-wheel speed of v =~ 30 m/s. Melt spun
ribbons with widths of 2-3 mm and a thickness of 20-40 ym were
produced. Following this, the samples were sealed in quartz tubes filled
with argon gas at a pressure of 200 mbar. Sintering of the samples took
place in a vertical furnace, which had been preheated to 1100 °C. This
sintering process lasted for 2 h before the samples were quenched in
room temperature water. The choice of the sintering temperature of
1100 °C was based on previous studies, which identified it as the optimal
temperature for sintering [53,54]. Additionally, for comparative pur-
poses, a ball-milled sample was annealed at the same temperature for 24
h to complement the analysis of differences observed before and after
melt spinning.

Powder X-Ray Diffraction (XRD) was carried out on a PANalytical X-
Pert PRO diffractometer, using Cu-K, radiation with a wave length of
1.5405 A (probing an angular range of 10°- 90°, with an angular step of
0.02°, 1 s exposure per step). Temperature-dependent XRD measure-
ments were performed with an Anton Paar TTK450 temperature
chamber. The Rietveld method [55], as implemented in the FullProf
software, was used for the crystal structure refinement [56].

Scanning electron microscopy (SEM, JEOL JSM-IT800SHL) and
energy-disperse X-ray spectroscopy (EDS, Oxford Instruments Ultim
Max 100 mm? with Aztec data-acquisition software) was used to char-
acterize the microstructure and the composition. SEM measurements
were performed on the free side of the ribbon samples and on eroded
surfaces of compacted pellets, using a Nital etchant. For the grain size
evaluation, about 15 SEM images per samples were analysed using the
MIPAR software [57] for a quantitative estimate of the average grain
size.

The temperature- and field-dependent magnetization was measured
with a superconducting quantum interference device (Quantum Design
MPMS XL) magnetometer, using the reciprocating sample option (RSO).
Isofield magnetization curves were recorded as a function of the tem-
perature in sweep mode at a rate of 1.0 K/min.

Heat capacity measurements were performed on a semi-adiabatic
heat capacity option of a VersalLab system (Quantum Design) using
the built-in “2t” relaxation method supplemented by an external anal-
ysis referred to as Single Pulse Method (SPM) [58,59]. By leveraging the
finite thermal hysteresis of the FOMT, we propose using the standard 2t
measurements and analyses performed consecutively at the same bath
temperature to insulate the reversible specific heat. This approach as-
sumes that repeatedly performing heat pluses of amplitude significantly
smaller than the hysteresis will consume the latent heat in order to get
access to the underlying reversible specific heat. It bares certain con-
ceptual features with modulated DSC or amplitude modulated DSC
techniques [60], as it allows separating a time- or history- independent
specific heat. Contrary to DSC methods usually employing a continuous
underlying thermal ramp, our method is based on discrete successive
heat pulses. In practice, three consecutive heat pulses of 2 K amplitude
(i.e. < AThyster = 3 K) were performed. The time evolution of the sample
temperature and the influence of the latent heat are illustrated in Fig. S1
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(Supplementary Information). During the 1st pulse, the T(t) branch upon
heating exhibit a “kink” marking out the heat absorbed as latent heat at

Theating, During the subsequent relaxation process, the sample tempera-

ture remains higher than To"  so that the reverse transformation does
not occur. The time profile of the next heat pulses performed at the same
bath temperature is notably different from the first pulse, and reflects
only a reversible specific heat. The latent heat peak is measured by SPM
during an independent measurement based on a 7 K heat pulse. Fig. 1
illustrates the method by comparing the third 2t standard measurements
with the SPM. The SPM yields a strong and symmetrical latent heat peak
typical of a FOMT with a thermal hysteresis between heating and
cooling branches of approximately 3.0 K. As illustrated in Fig. S2 in the
supplementary information, using the standard 2t method, the first heat
pulse will contain a partial latent heat contribution (only a partial latent
heat contribution due to the thermal stabilisation prior to the pulse and
because of the built-in specific heat analysis using both heating and
cooling branches [58]). The subsequent pulses carried out at the same
bath temperature will not contain latent heat and will thereby reflect the
reversible specific heat background (Cyey). The latent heat contribution
(dL/dT) can then be obtained by subtracting this Ci.y to the total
Crev+dL/dT measured by SPM.

3. Results and discussion
3.1. Crystal structural information and average crystallite size

The X-ray diffraction patterns at 400 K shown in Fig. 2a confirm that
the synthesized Mng 60+xFe1.3.xPo.66-Si0.341y (0 < x < 0.08, x = 2y)
samples are single phase with the expected hexagonal P-62m symmetry.
As shown in Fig. 2b and c, the lattice parameter a and the unit-cell
volume V clearly increase with the increase in Mn and Si contents,
whereas the lattice parameter ¢ presents a less significant evolution; as a
result, the c/a ratio decrease. The structural refinement parameters
obtained from the XRD data are summarized in Table 1. The unit-cell
volume expansion is in line with the expectation from Vegard’s law
and the respective metallic radii of the elements. The temperature
evolution of the (300), (211) and (002) powder XRD reflections upon
heating is illustrated in Fig. 2d for the Mng ggFe; 24P .63Sip.37 compound.
The effect of temperature on the unit cell dimensions is presented in Fig.
S3 (Supplementary Information). The FM and PM phases show a phase
transition centred at Ty = 320 K with step-like anomalies of: Aa/a =
—0.98 %, Ac/c =1.88 %, A(c/a)/(c/a) =2.81 %, AV/V = 2(Aa/a) + Ac/
¢ ~ —0.1 %, as shown in Fig. S3 (Supplementary Information). The
amplitude of the discontinuities in lattice parameters significantly
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Fig. 1. Heat capacity of MngesFe;.24P063Si0 37 at puoH = 0, 3rd repetition
(closed circles) of the standard “27” method) and SPM (closed squares). The
shaded area marks the latent heat.
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increase with x, indicating a strengthening of the FOMT. Theoretical
calculations have noted that the c/a ratio bears a significant correlation
with the magnetic exchange interactions governing the magnetoelastic
coupling in FepP-type materials [61,62]. The reduction in c¢/a with the
increase in x is anticipated to result in increasing Curie temperatures.

When comparing the grain size of the hexagonal phase between
samples with x = 0.60 and 0.68, no clear trend is observed for a
simultaneous increase of Mn and Si contents. As shown in Fig. 3, both
samples show a low porosity and a similar log-normal distribution of
grain size with an average size of about 8 um. For bulk (Mn,Fe)2(P,Si)
prepared by ball-milling followed by solid state reaction, grain sizes are
strongly influenced by the sintering temperature and the annealing time
[63]. Considering a typical high-temperature sintering for 24-48 h , the
grain size was found to range from about 27 pym in Mn-rich compositions
[64] to 24-26 um in compositions with a Mn/Fe = 1 ratio [65,66]. In
contrast, a comparison of the microstructures of the melt-spun and
ball-milled samples shows pronounced differences (see Fig. S4, Sup-
plementary Information). The ball-milled sample exhibits a significant
amount of porosity, with a SiO, impurity phase concentrated at the
pores. However, EDS analysis indicates that the overall compositions of
the main phase are nearly the same for the two different methods, as
show in Table S1 (Supplementary Information). The melt-spinning
process therefore offers the advantage of eliminating oxide impurities.
Furthermore, the melt-spun ribbons display a significantly smaller
average grain size and a finer overall microstructure. This is critical for
the stabilization of the mechanical properties, as the reduction in grain
size is anticipated to reduce the maximum shear strain at grain bound-
aries, thereby enhancing the mechanical stability of these materials. In
the ribbon samples, thermal cycling induces microcrack initiation at
grain boundaries, followed by subsequent propagation into the interior
of the grains, as shown in Fig. S5 (Supplementary Information). Using
these ribbon samples, we constructed a bulk sample and sintered it at
1100 °C for 24 h. Encouragingly, as shown in Fig. S6 (Supplementary
Information), the average grain size remained nearly constant at 8-10
um, highlighting the potential of shaping bulk samples from ribbon
materials.

3.2. Magnetic and magnetocaloric properties

The temperature-dependent magnetization M(T), is shown in Fig. 4a
for field-cooling (FC) and field-heating (FH) conditions. The same
overall magnetic response with a relatively sharp ferromagnetic FOMT
and a finite thermal hysteresis (ATyys) is found in all samples. The
magnetization curves at 5 K, shown in Fig. 4b, start to saturate in an
applied field of 1 T The saturation magnetizations at 5 K and 5 T fall in
the range 160-190 Am?kg™!. While in overall agreement with the liter-
ature for similar FepP-based compounds [39,67,68], these large satu-
ration magnetization values primarily originate from the high phase
purity of the ribbon samples. As expected, the saturation magnetizations
tend to increase with the increase in Mn content. However, the evolution
does not follow a perfectly linear evolution, which can be attributed to
minor compositional variations. According to EDS results (see table S2),
the effective compositions can present deviations with respect to the
nominal ones; but the overall trend, an increase in effective Mn and Si
contents with x, is observed. The transition temperature T¢ is estimated
from the minimum in the temperature derivative of the magnetization
(dM/dT), as shown in the inset of Fig. 4c. T¢ increases linearly with the
simultaneous increase in Mn and Si concentrations, in line with the c/a
trend. The parent compound Mng¢Fe; 3Pg6Sip.34 shows a thermal
hysteresis AThys of about 3 K. The value of ATpys progressively increases
with x, yet it remains relatively limited, within 5 K for all compounds
(recalling that thermal lags in sweeping conditions overestimate ATyys).
The origin of the thermal hysteresis can be separated into intrinsic
(associated with the mechanism of the transition at atomic scale [7]) and
extrinsic contributions related to microstructure; the presence of
nano-precipitates [69], micro-cracks [70] or micro-pores [71], strains
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Fig. 2. (a) Powder XRD patterns collected at 400 K for samples of Mng 60, xFe1.3.xPo.66.y510.34+y (X = 2y), with simultaneous changes in the Mn/Fe and P/Si ratios. (b)
Lattice parameter a and c, (c) Unit-cell volume V and c/a ratio derived from XRD as a function of the Mn concentration for Mng 60 xFe1.3.xPo.66-ySi0.34+y (x = 2y). (d)
Intensity versus scattering angle 20 (°) as a function of temperature T (K) for the Mng g¢Fe; 24P0.63Si0.37 compound.

Table 1

Lattice parameters a and ¢, c/a ratio and unit-cell volume V obtained from XRD at 400 K, saturation magnetization M and Curie temperature T¢ for the
Mnyg.60+xF€1.3.xP0.66-yS10.34-y (X = 2y) compounds. M; is obtained from magnetization measurements at 5 K and the transition temperature T¢ is defined as the minimum

in dM/dT in an applied field of 0.01T.

Mn A c c/a v M; 5 k@s T Theating
@A) @) A3 (Am? kg™ ®
0.60 6.01832(4) 3.44676(6) 0.57271(14) 108.116(3) 176.56 295.3
0.62 6.02322(8) 3.44584(5) 0.57209(11) 108.263(2) 177.27 305.2
0.64 6.02715(9) 3.44692(5) 0.5719(11) 108.439(3) 185.93 312.3
0.66 6.03154(8) 3.44719(5) 0.57153(11) 108.605(3) 188.70 322.1
0.68 6.04076(8) 3.44771(5) 0.57074(11) 108.954(3) 186.81 331.2

and stresses at interfaces [7], etc. For instance, recent studies by Suye et
al. [65] and Zhang et al. [72] have reported that ATy tends to decrease
with a reduction in particle size. Here, the increase in ATyys with x in-
volves an intrinsic contribution from the strengthening of the transition
with x as indicated by the increased A(c/a) in Fig. S3 (Supplementary
Information) and by the increased latent heat in the next subsection.
Furthermore, a comparison of the magnetic properties of the melt-spun
and ball-milled samples reveals clear differences in magnetization, the
sharpness of the phase transition, and thermal hysteresis (see Fig. S7).
The melt spun samples exhibit a higher saturation magnetization, a
sharper transition and a lower thermal hysteresis than ball milled
samples. These differences can be attributed to the elimination of the
SiO2 phase and microstructural voids, the refinement of the grain size,
and the potentially more efficient annealing for ribbon with a limited
thickness. These findings suggest that the grain refinement in melt-spun
ribbons was beneficial to extrinsically reduce the ATyys, which in turn is
advantageous for MCE applications.

The magnetocaloric performance expressed as the isothermal en-
tropy change AS is shown in Fig. 4d The isothermal entropy change is

calculated by applying the Maxwell relation AS(T),y =

He

/ Ho (%) dH [27,73] to the isofield M(T) data. All samples
H

show high |AS| values typical for the GMCE observed at the FOMT in
Mng 60+xFe1.3-xPo.664Si0.34+y compounds. The parent compound
Mny 6Fe1 3P0 66510.34 €xhibits |ASmax| =12 J kg K! for an applied field
change of 2 T The simultaneous increase of Mn and Si concentration
increased |ASmax| by 40 %. Furthermore, the heating-cooling averaging
AS method offers an estimate of the reversible AS,.y, as shown in the
inset of Fig. 4d, confirming the possibility to use these large AS in ap-
plications. The present results demonstrate the achievement of a
well-balanced combination of a small hysteresis and a large |ASmax| in
the Fe-rich Mn-Fe-P-Si without doping with other elements.

To qualitatively evaluate the order of the magnetic phase transition
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Fig. 3. SEM images of (a) Mng goFe1.30P0.66510.34 and (b) Mng ggFe; 22Pg 6251038 samples sintered at 1100 °C for 2 h. A colour code highlighting the equivalent
diameter of each grain is superposed on the images.
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in Mng 60+xF€1.3-xPo.66ySi0.34+y compounds the field exponent of the change follows a power law of the form |AS|xH". The field exponent n
entropy change is examined. As proposed by Franco and coworkers [74, can be employed to determine the FOMT or SOMT nature of the mag-
75] and Van Dijk [76] the field-dependence of the isothermal entropy netic phase transition. For a FOMT the field exponent has a minimum
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Fig. 5. Field exponent of the isothermal entropy change n = dg;f]‘é{s)‘) for the

Mno.60+xFe1.3-xPo.66-ySi0.341y (X = 2y) compounds.

value of n = 0 and a divergent maximum value (n—o0) near the tran-
sition [76]. This behavior is due to the step change in entropy (S)
associated with the FOMT. In experimental studies, a maximum value of
the field exponent n above 2 is taken as indication of a FOMT. Fig. 5
shows the field exponent n of the isothermal entropy change (AS) for the
Mng 60+xFe1.3.xP0.66-ySi0.34+y compounds. The field exponent n is
consistently above 2 near T¢ for all compounds. This is in line with the
observation of finite ATyys and latent heat peaks. Note that the minimum
value of n remains above zero near the transition due to the persistence
of short-range ferromagnetic fluctuations above T¢.
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3.3. Indirect measurements of the giant magnetocaloric effect from
specific heat

To evaluate the MCE performance, both the isothermal entropy
change (AS) and the adiabatic temperature change (AT,q) need to be
considered. In field specific-heat measurements allow to indirectly
evaluate these two quantities. A S-T diagram relative to the starting

T;
C,
temperature Ty can be built, with S(T,B)-S(Ty,B) = / L,IfaldT for which
To

Ciotal contains both the reversible Ci.y and the latent heat contribution.
As illustrated in Fig.6, subtraction between entropy lines at constant
entropy or temperature yields AT,q and AS, respectively. The mea-
surements were caried out for all compositions. Fig. 6 illustrates the case
of Mng gcFep.24P0.63S10.37, which is detailed hereafter. An intense specific
heat peak with a maximum value of 3.12 Jg"'K! is found at 320 K. The
maximum value of Cy,q decreases continuously with increasing applied
magnetic field. The shift of Ty with the applied magnetic field corre-
sponds to dTy/podH ~ 3.9 K T, as listed in Table 2. Calorimetric
measurements lead to a | ASpay| = 16.66 J kg K at a field change of 2T
well in line with that measured from magnetization data |ASmax| =
17.61 J kg K at a field change of 2 T This agreement confirms that the
AS data from magnetization measurements were not affected by spike
artifacts. Furthermore, a large AT,q of 5.4 K was observed at 2 T Even
tough determinations of AT,q for (Mn,Fe)s(P,Si) compounds are scarcer
than AS [66], the present performances turn out on par or larger than
the best performances observed so far. The simultaneously achieved
high values of both |ASyax| and AT,q underscore the potential of (Mn,
Fe),(P,Si) ribbons for heat pump applications, particularly given the

3500
(a) Mng gsF €1 24P 0 63Si0 37 1004 ® Mng g6F €4 24P 63510 37
3000 -
. &— ,H=0 o w8
< ]l —e—1T P Ry
T 2500- o 80 0T Foran
‘Tm ‘_x e g o
= 2000 - e ——3T PR
> = 60
: )
2 1500 =
3 g
+ 40
(& 1000
500 - 204
0 T T T T 0 -1 T T T T
300 310 320 330 340 350 300 310 320 330 340 350
T(K
20 LY 8 )
(© Mng gsF€1 24P 63510 37 ; (d) Mng gsFe€4 24P 63510 37
151 —@—y,H=1T 6-
— 2T —o—H=1T
¥ |-e-3T 5] o
wm X ——3T
X104 < 4
2 >3
<
3 3
5 2
1 _

320

330

T(K)

320 340

330

T(K)

Fig. 6. Thermal and magnetocaloric properties of Mng gsFe; 24Po. 63Si0.37. (a) In-field heat capacity measurements upon heating. (b) Total entropy versus tem-
perature (S-T diagram) in a magnetic field of 0, 1, 2 and 3 T (c) Isothermal entropy change. (d) Adiabatic temperature change from calorimetry measurements.
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Table 2

FOMT parameters as a function of the Mn concentration, showing changes in the lattice parameters Aa and Ac at T¢ obtained from XRD measurements. The elastic
strain energy was calculated from the step changes in lattice parameters observed in XRD vs T at yoH = 0. The isothermal entropy change (at 1 and 2 T), adiabatic
temperature change, the field dependence of the transition temperature (dTy./uodH), latent heat (L) upon heating by integration of dL/dT data at yoH = 0 and thermal
hysteresis were derived from calorimetry measurements.

Mn Aa Ac Ue IASmax,l&ZTl ATag,2r dTy/podH L AThys
Units & ) Ug™h) Ukg'K™) () (KT ug™h) ¢9)

0.60 —0.0474(2) 0.0506(1) 2.49(4) 6.6(1) 10.4(2) 3.6(1) 3.9(1) 2.02(2) 3.0(1)
0.62 ~0.0506(3) 0.0542(2) 3.20(5) 11.6(2) 15.6(3) 5.1(1) 4.0(1) 3.29(7) 3.4(1)
0.64 —0.0526(1) 0.0580(1) 3.49(5) 11.3(2) 14.0 (3) 4.8(1) 4.2(1) 3.83(8) 4.5(1)
0.66 —0.0601(1) 0.0635(1) 4.37(7) 14.2(3) 16.7(3) 5.4(1) 3.9(1) 4.35(9) 4.9(1)
0.68 —0.0648(1) 0.0689(1) 5.13(8) 13.3(3) 16.6(3) 5.1(1) 4.2(1) 5.79(12) 5.4(1)

ability to fine tune the transition temperature above room temperature. done by considering a linear extrapolation in the transition region, here

we used the method presented in the method section to determine Ciey.

3.4. Correlation of pure latent heat with elastic strain energy Fig. 7 illustrates the evolution for different magnetic fields of the

latent heat contribution to the Mng ggFeq 24P0.63Si0.37 compound. The

The heat capacity is a basic physical quantity reflecting all degrees of latent heat progressively decreases with the increase in magnetic field. A

freedom and usually is decomposed into magnetic, structural and elec- linear extrapolation indicates that it would vanish at a critical field of

about 6.4 T The full width at half maximum (FWHM) of the latent heat
peak was derived from a Gaussian fit. FWHM progressively increases
with the applied magnetic field, indicating a broadening of the transi-
tion at higher fields. Complementary magnetization measurements were
carried out as a function of temperature and field near the FOMT and a
magnetic phase diagram was constructed. The thermal hysteresis ATys
estimated from M(T) curves decreases as the first-order nature of the
transition is gradually suppressed by the applied magnetic field, with a

tronic terms C = C¢ + A+ Cy. Each of these terms could be indi-
vidually estimated outside the FOMT [65], but such a decomposition
could not legitimately be carried out at the magneto-elastic transition.
Here, one does not seek to separate magnetic, lattice and electronic
terms, but rather to quantify the peak-shaped latent heat (T) = Lma (T),
where G(T) is a normalised Gaussian distribution centred at T¢. Exper-
imentally, this requires a subtraction of the reversible heat capacity
(Crev) background from the total specific heat. While this is commonly
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Fig. 7. Thermal and magnetocaloric properties of the Mng ggFe; 24P 63Si0.37 compound (a) dL/dT peak from substruction of the latent heat (L) (insert shows an value
of L at different magnetic field). (b) Full width at half maximum (FWHM) of the dL/dT peak for recorded in different applied field. (c) Thermal hysteresis (AThys)
versus magnetic fields, derived from magnetization measurements, with +1K/min of heating and cooling curves recorded at different applied field. (d) Proportional
relation between latent heat (L) and thermal hysteresis (ATyy,) in the presence of an applied field, as derived from calorimetric and magnetization measurements.
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linear extrapolation indicating that ATyys vanishes at 6.4 T, as show in
panel 7c of Fig. 7. In the M(H) curves, the field induced transition reveals
that the magnetic hysteresis is gradually reduced as temperature in-
creases, with the derivative dM/dyoH suggesting that hysteresis vanishes
beyond 6.6 T, as show in Fig. S8c-d (Supplementary Information). Both
magnetization and the calorimetric data identify a critical field in the
range of 6.4-6.6 T Beyond this critical field, L and ATpys are no longer
observable within the experimental resolution. Fig. 7d depicts both L
and ATyys at different fields. The apparent correlation suggests that
these two parameters are linked.

The latent heat determination was carried out at different applied
fields for all compounds, as shown in Fig. 8. The five compositions
follow the same trend, indicating that the latent heat L decreases as the
applied field increases. Regarding the zero-field latent heat, the simul-
taneous increase in Mn and Si (with x = 2y) results in an increase in L
from 2.02 J g’ to 5.79 J L. This result is consistent with the observed
increase in ATy and the trends for the discontinuity of the lattice pa-
rameters for increasing Mn and Si concentrations. In former studies [6,
32,67,77,78], attempts were made to establish a relation between
various factors involved in the FOMT of FeyP-based compounds. Miao
et al. [32] proposed the existence of a relation between ATpys and U, for
a large range of FeyP-based compounds. However, ATyys can hardly be
regarded as an intrinsic quantity for the FOMT. A recent report
demonstrated a correlation between entropy change at the transition
(AS;) and the lattice deformation (c/a ratio) [79]. As these two are
intrinsic physical quantities, they provide a more reliable basis for
scaling. This prompted us to investigate a possible relation between the
latent heat and the elastic strain energy (magneto-elastic coupling). The
transition-induced elastic strain energy can be expressed as: U,
= (C11 +C12)e? + 2Ci3e1e3 + C3e3/2 where e; represent the tensile
strains and C; correspond to the elastic constants [32,77]. For an hex-
agonal lattice: e; = ez = Aa/a within the a-b plane and es = Ac /c along
the c axis. For the evaluation of the elastic strain energy we applied the
elastic constants from DFT calculations reported by Roy et al. [80] and
the experimental elastic strain values for Aa/a and Ac/c at T¢, as shown
in Fig. S3 (Supplementary Information).

A striking proportional relation is observed between L and U, with
data points aligning along the diagonal, as shown in Fig. 8b The scaling
between intrinsic quantities of L and U, suggests that these quantities are
directly related. This correlation indicates that nearly all the latent heat
originates from the elastic deformation. For comparison, we recon-
structed the elastic strain energy (30.89 kJ kg™) from previous studies
using DFT calculations [81] and found that it is of a similar order of
magnitude to the calculated latent heat (19.97 kJ kg'l) for MnFe-
Sip.33Po.66 compounds, which is line with our present results. To
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strengthen the statistical robustness of our analysis, we incorporated
experimental results from previous studies on the Fe;P-compounds [32,
35,82-84]. The latent heat values from previous studies are generally
higher than the diagonal in Fig. 8. This difference may be caused by the
subtraction of the reversible specific heat in the present study. Using a
linear background will underestimate the reversible specific heat near
the transition and therefore overestimate the latent heat. Nevertheless,
the slope remains consistent, supporting our proposition that a corre-
lation exists between L and U,. Further experiments are needed to refine
these results, in particular to extend the investigations to other (Mn,
Fe)2(P,X) series with X = As, Ge and B while using the present meth-
odology. The present scaling strategy may also be considered for other
magnetoelastic FOMT materials, such as La(Fe,Si)13 [21-23], FeRh [24,
25], and EupIn [26], where elastic-strain energy similarly impact the
first-order magnetic phase transition. (Fig 9).

4. Conclusions

Fe-rich (Mn,Fe),(P,Si) ribbons achieve minimal thermal hysteresis, a
significant isothermal entropy change and a significant adiabatic tem-
perature change, without the introduction of additional doping ele-
ments, making them promising giant magnetocaloric materials. Melt
spinning can be used to tailor the microstructure of (Mn,Fe)2(P,Si)
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Fig. 9. Latent heat (L) of the FOMT as a function of elastic strain energy (U.)
for the Fe,P-based system, with the current data compared to reference data
from earlier generations of (Mn,Fe),(P,Si) compounds, lines are used as guides
for the eyes.

7000 -
(b) Mng go+xFe1 30xPo.66-ySio.aary 7
e
6000 Qo .7
7
7
5000 - P
7
£ v
4000 - o
* ) _
3000+ /// Q@ Mnygee/Sig 3
e
- e
2000 4H =0T /// ° Q@ Mngg,/Sig 5
1000 4 e Q@ Mng,/Sig 55
7 Q@ Mngg/Sig a4
P e
0

0 1000 2000 3000 4000 5000 6000 7000
Elastic strain energy (J kg™")
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alloys. We also demonstrate the possibility to shape high-performance
bulk samples from ribbon precursors. A comparison between melt-
spun ribbons and samples prepared by ball-milling indicates signifi-
cant differences in magnetization and on the sharpness of the phase
transition. Additionally, grain refinement in melt-spun ribbons con-
tributes to an extrinsic reduction of ATyys. By performing two types of
calorimetry measurements to separate the latent heat from reversible
heat capacity and quantifying the elastic transformation strain energy by
XRD, we establish a direct correlation between the latent heat (L) and
the elastic transformation strain energy (Ue) in the (Mn,Fe)2(P,Si) fam-
ily. The application of an external magnetic field is found to gradually
weaken the first-order character of the transition, with both L and AThys
decreasing and disappearing simultaneously at a critical end point.
Generally, achieving a GMCE requires a sizable latent heat, which is
inherently accompanied by significant lattice deformations that can
introduce undesirable effects, such as thermal hysteresis and mechanical
embrittlement. By tailoring the microstructure, melt-spinning offers an
approach to break the circle.
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