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Biocatalysis

Peroxygenase-Catalysed Selective Oxidation of Silanes to Silanols
Xiaomin Xu+, Jacob M. A. van Hengst+, Yejia Mao, Mireia Martinez, Sergi Roda,
Martin Floor, Victor Guallar, Caroline E. Paul, Miguel Alcalde, and Frank Hollmann*

Abstract: A peroxygenase-catalysed hydroxylation of
organosilanes is reported. The recombinant peroxyge-
nase from Agrocybe aegerita (AaeUPO) enabled effi-
cient conversion of a broad range of silane starting
materials in attractive productivities (up to 300 mMh� 1),
catalyst performance (up to 84 s� 1 and more than
120000 catalytic turnovers). Molecular modelling of the
enzyme-substrate interaction puts a basis for the mecha-
nistic understanding of AaeUPO selectivity.

Silanols represent an important product class in organic
chemistry as precursors for silicones, as catalyst components
or in medicinal chemistry.[1] Syntheses of the state-of-the-art
typically start from already functionalised silanes such as
chloro- or alkoxysilanes via hydrolysis and producing
significant amounts of salt waste-products (Scheme 1a).[1b,2]

Less waste-intensive methods involving dehydrogenative,[3]

O2
[4] or H2O2

[5]-dependent oxidation of non-functionalised
silanols are rare (Scheme 1b,c). Even less common are
biocatalytic methods for the conversion of silanes,[6] even
though in the past years a rich hydrolase-catalysed silanol
chemistry has evolved.[7] Recently, Arnold and co-workers
succeeded in evolving a cytochrome P450 BM3 variant
which dramatically increased catalytic activity towards a
range of organosilanes (Scheme 1d).[6a]

Inspired by these pioneering works, we asked ourselves
whether so-called unspecific peroxygenases (UPOs) may also

be suitable catalysts for this type of transformation. Partic-
ularly, we investigated the UPO from Agrocybe aegerita
(AaeUPO)[8] as silane oxyfunctionalisation catalyst. UPOs are
attractive alternatives to established P450 monooxygenases as
they enable drastically simplified, NAD(P)H-independent
reactions using only H2O2 as stoichiometric oxidant
(Scheme 1e).[9]

In a first experiment, we performed the H2O2-dependent
hydroxylation of dimethylphenylsilane (1a) to the correspond-
ing dimethylphenylsilanol (2a) catalysed by AaeUPO under
otherwise identical conditions. Because of the poor water
solubility of 1a, 30% (v/v) of acetonitrile was added, which
was feasible due to the extraordinary solvent tolerance of
AaeUPO.[10]

As AaeUPO, just as any heme-dependent enzyme, is
irreversibly inactivated in the presence of high H2O2

concentrations,[11,12] we decided for a H2O2 feeding strategy to
avoid accumulation of H2O2. Using 1 μM of AaeUPO and a
H2O2 feeding rate of 10 mMh� 1, full conversion of the starting
material was achieved within 5 h of reaction time, correspond-
ing to an excellent total turnover number and turnover
frequency for AaeUPO of 40000 and 2.2 s� 1, respectively
(Figure 1). No by-product formation was observed. Control
reactions in the absence of AaeUPO or using thermally
inactivated AaeUPO did not yield detectable conversion of 1a
under otherwise identical conditions.

Next, we investigated the effect of H2O2 dosage on the rate
and robustness of the AaeUPO-catalysed hydroxylation of 1a
(Figure 2). Up to a H2O2-addition rate of 500 mMh� 1 the
product formation rate almost linearly increased with increas-
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Scheme 1. Synthetic accesses to silanols compared to the system
proposed here.
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ing dosage rate. The highest product formation rate observed
in these experiments was 303 mMh� 1 corresponding to a

superb catalytic performance of AaeUPO of approx. 84
catalytic turnovers per second (ca. 109 Umg� 1). The slope in
the linear region was around 0.78, indicating that approx. 22%
of the H2O2 supplied was not used productively for product
conversion. Most likely the known catalase activity of AaeUPO
accounts for this observation.[11] Quite expectedly, further
increase of the H2O2 addition rate resulted in a decrease of the
overall reaction rate, which can be attributed to the irrever-
sible, oxidative inactivation of the catalytic heme site of
AaeUPO.[12]

With future preparative-scale applications in mind we
further investigated the influence of starting material- and
product-concentration on the activity of the biocatalyst
(Figures S7 & S8). While the activity of AaeUPO was hardly
influenced by concentrations of 1a up to 500 mM, there
seemed to be a mild inhibitory effect of the silanol product 2a
with AaeUPO activity steadily decreasing in the presence of
increasing concentrations of 2a. Under the current experimen-
tal conditions the volatility of the reagents, especially of 1a,
represented a challenge to achieve a closed mass balance
(Figure S6). This, however, can be addressed in future experi-
ments by using more suitable, gastight setups. To address the
poor water solubility of most organosilane starting materials
so-called two liquid phase systems (2LPSs) represent an
attractive approach.[13] We therefore tested the feasibility of a
2LPS approach using 1a as second, water immiscible phase
serving as substrate reservoir and product sink (Figure S9)
Already a preliminary experiment gave very promising results
with linear product accumulation for at least 2 days and
product concentrations (2a) of up to 121 mM, corresponding
to more than 120000 catalytic turnovers of AaeUPO.

Encouraged by the promising results obtained with dimeth-
ylphenylsilane (1a), we further explored the scope of the
AaeUPO-catalysed hydroxylation of organosilanes to several
commercially available starting materials (Figure 3).

The majority of starting materials investigated was con-
verted smoothly. Exceptions were the dihydrosilanes 1f and
1g, where significant background hydroxylation was observed
in the absence of AaeUPO. We therefore did not attempt to
determine the enantiomeric purity of the product 2f also
because it was not to be expected to be conformational stable
under the current reaction conditions.[6a,14] In all other cases
the control reactions yielded no detectable product formation
(Figures S10–S111).

In case of the phenyl silanol products 2a, 2c, 2d, 2e, 2f we
observed additional products, which could be identified as
silanol condensation products. We attribute their occurrence to
the spontaneous condensation equilibrium of silanols in
aqueous media[15] as also chemically produced silanols showed
dimerisation tendencies in aqueous buffer (Figures S10–S111).
Interestingly Arnold and co-workers explicitly mention the
absence of any dimerisation products in their experiments.
This apparent discrepancy with our observations may easily be
explained by the significantly higher product concentrations
achieved here and considering the concentration-dependency
of the dimerisation equilibria.

Interestingly, for substrates 1j, 1l and 1m the chemo-
selectivity of the hydroxylation was not exclusive and some
(presumably) C� H hydroxylation byproducts were observed

Figure 1. AaeUPO-catalysed hydroxylation of dimethylphenylsilane (1a)
to dimethylphenylsilanol (2a). Conditions: [1a]=50 mM, [AaeUPO] -
=1 μM, buffer: 50 mM KPi pH 7.0 containing 30% (v/v) of acetonitrile,
25 °C, 600 rpm, H2O2 feeding-rate: 10 mM×h� 1 (from a 1 M stock).
Please note that even in the presence of 30% (v/v) of acetonitrile, the
starting material was not fully soluble explaining the lower than
nominal initial concentration of 1a determined.

Figure 2. Influence of H2O2 addition rate on the rate of the conversion
of 1a to 1b. Conditions: [1a]=50 mM, [AaeUPO]=1 μM, buffer:
50 mM KPi pH 7 containing 30% (v/v) of acetonitrile, 25 °C, 600 rpm.
The reaction was initiated by addition of H2O2 (10–1000 mMh� 1 from a
1 M stock). Please note, the abscissa is not linear.
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(Figures S78, 91 & 98). As pointed out by Arnold and co-
workers, the lower Si� H bond dissociation energy (being
roughly 10 kcalmol� 1 lower than that of the C� H bonds[16])
should kinetically favour Si-hydroxylation over C-hydroxyla-

tion. Apparently, also the positioning of the starting material
relative to the active compound I controls the regioselectivity
of the AaeUPO-catalysed transformation.

To obtain further insights into the molecular basis for the
selectivity of the AaeUPO-catalysed silane hydroxylation,
Protein Energy Landscape Exploration (PELE) simulations[17]

were performed. The distance between the heme compound I
(Cpd I) oxygen and silicon-bound hydrogens (Figure 4 and
Figure S2) were chosen as reactive coordinates. Simulations
indicate that steric effects in both the channel and active site
explain most selectivities observed in the enzymatic conver-
sions. For instance, PELE simulations performed with dimeth-
yl cyclohexyl silane (1j) revealed an almost equal distribution
of productive poses exposing the Si� H and Cβ� H bond to Cpd
I (Figure 4), thereby qualitatively explaining the experimen-
tally observed 1:1 ratio of Si� H to C� H hydroxylation. Similar
trends were observed also for other substrates modelled
(Figure S2).

Overall, PELE simulations qualitatively rationalise the
chemoselectivity observed and will put the basis for future
AaeUPO engineering to generate enzyme variants with
tailored selectivity.

In summary, we have demonstrated that peroxygenases
such as AaeUPO are promising catalysts for the oxyfunctional-
isation of organosilanes. Compared to previously reported
P450 monooxygenases[6a] the ease of application (simple direct
use of H2O2 instead of sacrificial electron donors, molecular
oxygen, and complex electron transport chains)[18] makes the
UPO-based approach attractive. More significantly, AaeUPO
provides noticeable catalytic turnovers (up to 120000) and
turnover frequencies of up to 84 s� 1. Substrate induced-fit
binding simulations provide a good understanding of the
selectivity patterns, where steric hindrance was the major
contributor.[19] This will put the basis for engineering AaeUPO
variants[20] with improved activity and (enantio)selectivity
towards sterically more demanding silanes for whose silanol
products configurational stability of the enantiomers may be
expected.[21]

Figure 3. Substrate scope of AaeUPO-catalysed hydroxylation of organo-
silanes. General conditions: [Organosilane]=50 mM, [AaeUPO] -
=1 μM, buffer: 50 mM KPi pH 7.0 containing 30% (v/v) of acetonitrile,
25 °C, 600 rpm. The reaction was initiated by adding H2O2 (10 mMh� 1

from a 1 M stock), 5 h. GC yields are given as averages of duplicate
runs. For entries shown in grey, significant background conversion in
the absence of AaeUPO was observed.[a]: significant amounts of
dimerisation product observed; [b] negative controls showed approx.
45% conversion; [c] negative controls yielded the same conversion as
in the presence of AaeUPO; [d] both, mono- and dihydroxylation
products were observed: silanediol : silanol= 6 :1; [e] approx. equal
formation of a yet non characterised C� H hydroxylation product; [f ]
approx. 26% of a yet non characterised C� H hydroxylation product; [g]
approx. 12% of a yet non characterised C� H hydroxylation product.

Figure 4. PELE simulation results for 1 j ligand. (Left) The scatter plot
shows the sampled poses’ catalytic distance between the reactive
oxygen in Cpd I and the silicon (blue) or carbon (red) reactive
hydrogens (only the shortest distance between these two atoms is
shown) against the enzyme-substrate interaction energy. The vertical
dashed line marks a threshold of 4 Å for the catalytic distance. (Right)
Snapshots of the catalytic poses show the positioning of the substrate
with a carbon- (right top) or silicon-reactive (right bottom) catalytic
distance (dashed lines).
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Peroxygenase-Catalysed Selective Oxidation
of Silanes to Silanols

The peroxygenase from Agrocybe aegerita
(AaeUPO) efficiently hydroxylates orga-
nosilanes to the corresponding silanols.
The methodology proposed here excels
by its simplicity and high productivity.

Protein Energy Landscape Exploration
(PELE) simulations provide a rationale
for the selectivities observed and put the
basis for future AaeUPO engineering.
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