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SUMMARY

Stresses have been calculated for infinite orthotropic plates with a
circular hole, loaded by a frictionless rigid pin of the same
diameter under',various'arlgles with the symmétr'y axes of the'nater"ial.
The calculations are based on the analytical method of complex stress
functions. _ .

A numerical approach was used for satisfying the displacement bound-
ary conditions of the contact area between pin and hole. Stress con—
centratlion factors, based on the nominal bearing stress are presented
graphically for six laminates of carbon fibre reinforced plastic. A
quadratic failure criterion was used to predict the bearing stress at
which first significant damage occurs. Peak str'ésses, places where
they occur and bearing strength show directional sensitivity.
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1. INTRODUCTION

All published work on the theoretical investigation of pin-loaded
holes in anisotropic plates 1s related to problems in which the load
direction coincides with one of the principal axes of the laminate.
In real structures, however, the requirement that load direction and
one of the material axes coincide will not always be met. Since
composite materials are anisotropic the bearing strength will vary
with the load direction. In Reference [1] this variation of bearing
strength was Investigated experimentally for 0°/+U5° lay-ups of three
different composites, all showing sensitivity for the load dir‘ection.
It 1s the purpose of this report to determine theoretlcally the
stresses around pin-loaded holes in orthotropic plates in the case of
an arbitrary load direction with respect to the material axes, using
the analytical method of Reference [2].

Reference [2]. deals with an unreinforced hole in an infinite ortho-
troplc plate. The hole 1s loaded on a part of its edge by an
infinitely rigid pin, while the other part of the edge is free. The
contact between pin and plate material is assumed to be frictionless.
The loading force and one of the material axes are supposed to
coincide with the Y-axis.

The load distribution 1s represented by a silne series with unknown
coefficients apn- This distribution is symmetric with respect to the
Y-axis, hence the series consists of odd terms only.

In Reference [2] the relevant comples stress functions are evaluated
from a boundary condition problem of the first kind. The unknown
coefficients a,, present in the stress functions, are solved from the
prescribed displacements of a discrete number  of polnts of the
contact area.

.The -same method will be used for the problem treated in this report;



a schematic representation is given in Figure 1. In this figure the
a-p-axes are the principal material axes, the angle between these
axes and the coordinate axes 1s CP In the general case the edge
stress distribution 1s not symmetric with respect to the Y-axis, so
the sine series representing the distribution will consist of odd and

even terms.

In the general case the direction of the load resultant will not

coincide with the displacement vector. This suggests two different

approaches: k

~ the direction of the loading force is known. Then the displacements
of the pin are unknown. .

- the pin 1s given a krown displacement; then the value and the
direction of the loading force are unknown. :

In this report the second approach has been chosen. The reason is
that for the. fonnuiation of the displacement boundary conditions for
the discrete number of points of the contact area the displacements
of the pin must be known. It 1s then plausible to give the pin a
known displacement in Y-direction. The direction of the load result-
ant will then follow from the calculation.

The choice of the coordinate axes X-Y with respect to laminate orien-
tation, pin displacement and load direction 1s free. It has been made
so as to facilitate the mathematical formulation of the problem. By
taking the displacement direction of the pin along the Y-axls the
entire loaded area, i.e. the contact area, 1s between & = 0° and m.

Numerical values of the ‘str'esses are obtained for five carbon fibre
reinforced laminates that are relevant as structural materials. The
unidirectional material has been ‘added because of its extremely ani-
sotropic character. The elastic properties of the laminates are glven

in Table 1, as well as two complex material parameters s; and Sp,

N



needed in the theory of complex stress functions. Most of the proper-
ties of Table 1 are measured, some are calculated from measured
values.

From the calculated stress pattern a strength prediction has been
made by applying the Tsai-Hill failure criterion, neglecting import-
ant practical aspects such as three-dimensional stresses, non-linear
elastlcity and Joint geometry. 'I'her'éfore the calculated bearing
strength 1s only an indication for the first significant (or initial)
damage around a single pin in a large pléte. Nevertheless it may be
useful for the designer in the cholce of some of the parameters men-—
tioned in Reference [3], e.g. lamina orientation and lay—ﬁp:



2. BASTC FQUATIONS

The general formulae for the boundary conditions of an orthotropic
plate in a plane stress situation are according to Reference (4]

s .
2Re : ¢.(z,) =[Yds+K
1,2 KK g 1

(2.1)

s
2Re 'L 8 ¢k(zk)=-£de+K

k=1,2 K¢ 2

in which X and Y are external forces and ¢k(zk) are complex functions
of

zZ, =X+8, ¥y k=1, 2 (2.2)

After solving ¢k(zk) the stresses can be calculated wlth

2

o = 2Re I s. ¢.'(z,.)
X K=1,2 k‘f k . k
6. = 2Re ¢ q>k'(zk) (2.3)

T -2 Re = '(z,)
Xy k=1,2 skq ¢k k

and the displacements with
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hV]
j=s)

U ¢ (z,) + K +KL;
P 3¥ E o)

¢k(zk) + st + K6

The index (f denotes the angle <P between material axes and coordinate
axes. . According to Reference [U4] (P has a positive value when the
material axes are rotated In clockwise. direction relative to the
coordinate axes. So, in Figure 1 (f has a negative value.

K; ... Kg are Integration constants; K3 and KS are zero when no rigid
rotation of the plate 1s allowed. Kll and K6 represent a translation
of the plate as a rigid body.

The complex constants Sy are defined by

Sk cos ¢ - sin(p

= k=1, 2 (2.5)
sk? Sk sin(f + cosCP 3
in which Sk can be solved from
5252 222
1~2 Sll
(2.6)
: 28., +8
Sl2 +5 2 _ 12 66

In (2.4) is




“kcf = Sn? Sk: *+ S0, 316(?31(

¢ ¢

k =1,2 (2.7)
2
S + S -8
VK - 12 SK(P - 22@ 26?%(4?

b kcf

Sij are the material compliances in the principal material direc-
tions, Sg 3 are the compliances in the coordinate directlons. Sy 1is
either complex or imaginary. '

The general expressions for the functions ¢k(zk) in the case of a pin
loaded hole in an infinite plate with zero stresses at infinity are

1, 2 (2.8)

0 (m) = B In g+ al(g) B k=
in which
2 2
Zy +\/zk_ _Sk(f -1 ) |
by = T o (2.9)

¢k°(zk) in (2.8) 1is a function, holomorphic outside the hole. The
function Ak In Ck is multivalued. Its presence in (2.8) is necessary
since the resultant forces on the edge of the hole are not zero. Ay
can be solved fram a set of equations, glven in Reference [4]. These
equations are

r (u. A -u A)=0
11,2 k(fk k(fk



L (Vk Ak_vk Ak) =
k=l,2 ¢ ¢ 8 ' (2.10)
s (A - E) = -
k=1,2 k k 2ni
R
T T - X
k=i:,2 (Sk(f Ay - Sk(r K ="
yielding
S S
12 26
=[R {S_(S,S, +58 's_+s_—_-—‘P) -—Jbi} +
A = (R, k(f R 311? 311?
S S
16 12
R (8, (5, +5, +§ 52 -g-1]/
2‘n1(S sk ) (s - Sk‘f) S, -5 )} (2.11)

In which Rx a.nd Ry are the resultant forces in X- and Y-direction
respectively. In Appendix 4 a further evaluation of (2.11) is given.
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3. THE MULTTIVALUED FUNCTIONS A, 1n ¢,

The radius of the hole is taken unity. Then ) and ¢, in (2.9) have
the same value at the opening edge:

(;1=z;2=cs=cose+1sir1e=e16 (3.1)

Substitution of (2.8) in (2.1) ylelds for the edge

S
. .0 _
2Re 'z { B+ A lno+ ¢k(zk)}—({Yds+K1

k=1,2 k
(3.2)
o 5
2Re © {S, B +S A Inc+S, ¢ (z, )} = - X ds + K,
k=1,2 ¢ ¢ 0 _

in which, following from the third and fourth equation of (2.10)

_ R 0
2Re I A oo = 55’—
k=1,2 "

: R.®

2Re T S_ A lnog=-=—
Kk=1,2 k(f k 2n

s R 6
2 Re r { B _+ 6%z )} = [Yds +K, -5~ (3.3)
K=1,2 X k kT 1 2n
2 R s, B +5_ ¢°@)} 7de+K b (3.3)
(& z + 4) 7 = - .
k1,2 k(f k k(f k %k 5 2" 2
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In (3.3) the left hand sides are single-valued, hence in spite of the
R 6 Rxe
multi~valued parts 5%— and 5 — the right hand sides must be single-

: s s 3
valued too. So [ Y ds and - X ds must contain multi-valued parts
0 0 :

from which the increase for a complete circuit of integration cancels

"R ® R 6
the increase of -_E%— and 5%— respectively.

The expression for the radial compression load on the edge of the
hole has to obey the next requirements:

P =p b a_sin ne for 6 <0<
' Onpe1,0,3 1

(3.4)

P =0 for n < 8 < 2¢

This expression can be found by miltiplying a sine series

P'=p z a_sin né
r o n=1,2,3 n

continuous on the whole contour, by a step function

sin mo _ lfor0<oa<x

2
"m=1,3 T 0 for < 6 < 2n

fa) =%+
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resulting in
P, =D, (% + % sinm mo £ _a, sinnd (3.5)
m=1,3 =1,2,3
(3.5) can be converted to
© " a
1 1 n
P =p [ £ a sinno+={ x —+
r o 2 n=1,2,3 n T 1,3 n
#
+1 a (5 _1_ =+ = i —) cos me)}] (3.6)
m,n
in which
* © ® w© -]
I = I T+ I z ' (3.7

m,n  n=1,3 m=2,4 n=2,4 m=1,3

Expression (3.6) is continuous on the entire contour of the hole and -
obeys (3.4). The terms with odd values of n represent the symmetric
part of the load on the edge, the term with even n the asymmetric:

part.
With _ -

X

Pr' cos 0

and

(o]
[}

Ppsine



it can be derived fram (3

13

.6)

(3.8)

(3.9)

(3.10)

(3.11)

s R.6 R, P o a +a
i +2
[Xds =, + 52—+ 2+ 2 5 L__0OF
5 172 T Tn=1,3 n+l1
bfY ds = f2 + o + K
where, with a; chosen uniﬁy
2n © a_ + a
- +2
R.=[ Xds=p_ {a,+ 1 = n}
X9 © 72 pepy ntL
on p
= =2
Ry—()f Y ds 5
o a + a
+2
£, =p [f {a, cos 6 + b fLLcos(n+l)e}-
1 o T 13 n=1,2,3,4 n+ 1 : ‘
sin 26_R3(__sine ; ir_1_
= D, T p=1,3,5 1
1 o a w o l‘r 1
5>=( = I o+ 0z T )a (=5=+=).
en n=1,3 m=2,4  r=2,4 m=3,5 n tnimon-m
{sin(m—l) 6 , sin(mtl) 9}]
m~1 mtl
® a_-a_, :
£, = p, [Ilr {a, sin 0 - X B2 cin(ntl) e -

n=1,2,3,4 ™

(3.12)
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R © a

cos 26 “X _cos @ .
by po by n=1,3,5 n
>=( z T o+ 0z g Ja (== +=).
2% 1,3 w24 n=2,4 me3,50 D oM pem
cos(m-1) 8 cos{m+l) @
=g - =1 - (3.13)
) 1 @ an 1 © m‘ @ ©
K=p [ £ —=35( = T o+ 0z z )
O 1,37 2% a1 3 me2,d me2,b mE3,5
(Lol L1y, x (3.11)
a \vm T e’ el T mEL Inp )

With (3.8) and (3.9) boundary conditions (3.3) become

2Re r { B + °0)}=f,+K+K
k=1,2 Kk k ““k 2" 1
(3.15)
@ O B
2Re = S, B, +85, ¢ (z)} =
k=1,2  °¢ ¢
£ _R _po ; an'lha’n+2+K
1T °§ L. 2

in which the multi-valued parts of (3.8) and (3.9) have eliminated
the multi-valued parts in the right hand sides of (3.3). So, both
right hand sides of (3.15) are single-valued. With f, and £, contiru-
ous on the entire contour the functions ¢k°(zk) can be solved from

(3.15).
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4, SOLUTION OF THE HOLOMORPHIC FUNCTIONS cI’,,O(z,,l

The functions ¢k°(zk) in (2.8) are holomorphic outside the hole, so
they can be presented as series of negative powers of 2y, with unknown
coefficients. These series are replaced by power series of Ck

o) o k) . -n_ o k) . =n

On the edge of the hole, according to (3.1)
Cl = C2 = g

Hence, on the edge both functions ¢1°(zl) and ¢2°(z2) are expressed
in the same coordinate ¢, so boundary conditions (3.15) now become

.
2Re 3 { B _+ 6, (o)} £, +K+K
k=1,2

(4.2) |

O
2Re = {sk B, + S, ¢ ()}

k=1,2 ‘f
R p © a + 3
_ X (o} n n+2
_fl_h—_ﬁ— T __.ﬁ_q.}{

n=1,3

In (4.2) the constants in the right hand sides determine the con-
stants B, and, according to (2.4), the translation of the plate as a
rigid body. However, in (2.4) Ky and Kg may be chosen so that these
translations are zero. This will not affect the computation of the
unknown coefficients ay in (3.6) since they will be evaluated from a
boundar'y condition for the displacements that result from elastic
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deformations only. Equations (4.2) now simplify to:
2Re I 'o(o) =f
Oy 2

2Re T 6%(a) = £
k=1,2 Skq k 1

or, written in anothér' form

S, =8 82() + 6, ~F) 9 () + (8, =5 ) 9,°(0)
¢ ¢ LN ¢t
L=

k =1,2 3k (4.3)

The coefficients hn(k) in (4.1) can be solved directly
from (4.3) by the use of a Cauchy integral. This is possible slnce
¢k°(c), continuous on the edge of the hole, are the boundary values
of functions ¢k°‘(l;k),holomor'phic outside the hole, while ‘ko(‘”) =0.

Cauchy's integral for the infinite reglon then gives

(o]
¢, (o)
1 k _ o
Sl o-;kd"-‘*k(‘:k)
(4.4)
. (o] '
1
2ni U—Ck o

Applying (4.4) to (4.3) results in
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o ) £, £,
") %O T e Ty, 9o - 25 kd° (4.5)

in which the - sign is necessary since the direction of integration

is counter clockwise.

In Appendix 1 the integrals in the right hand side of (4.5) have been
worked out, resulting in

2nan(m2 -n° +1+2t S, m)
0. (@) =5 1(s 5yl N 1 o
T Sk m,n m,n
a (1+ 15, ) +a (1 - )
- . ? nte 181 ~n-1
b n=021 ) nFl &
sds (4.6)
where
T = z T + = z ' 4.7
m,n m=1,3 n=1,3 m=2,4 n=2,4
8y = 0 (4.8)
Npp = mlm + 1% = 0} (@ - 1)? - r?) (4.9)
k =1,2 2= 3%

Except for the coefficients a, the complex stress functions ¢k(zk)
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are now known. The unknown coefficients aj, will be solved from a dis-
placement boundary condition for a number of points on the loaded

part of the edge.
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5. DISPLACEMENTS ON THE EDGE (F THE HOLE

Application of formulae (2.4) to the multi-valued par’ts Ay Ino
yields for the edge of the hole the first two equations of (2.10), so
these parts do not contribute to the displacements.

With (4.6) it can easily be derived

o D, 2nan{(m2—n2+l) c, + 2m02} o
I b () =g X
k=1,2 (f m,n m,n
a0 llagren)) O+ e ) of
- z 4 n+1 ] 5.1
n=0,1,2 _
in which,with (2.7)
Y1, " Y2
c, = __‘ﬂ__fsl =, = 311?»(51 +8,) = S | (5.2)
L | |
U Sy = up Sy |
- ¢ 9.
C, =1 5. -5, =1(8; §; 8, ~ Sl2<f) (5.3)
¢ %t trY ,

So the displacement u for the edge of the hole will be

[
]

| °(a) + 6, °(a)}
uk‘(’ % uk(f k

k=1,2

p -]
{ = F3(n) sin(n + 1) 6 -8 3 Fl(m’n) cos me
=0,1,2 * m,n
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b *(n) 8 *(m,n)
+ I Ty cos(n+1) 6+~ & Fy sin me}
n=0,1,2 * m,n
(5.4)
where
2 2
na_{(m“ - n° + 1) C. - 2m C}
p mn) - On 2 6 (5.5)
m,n
(m,n) 2na_C
LA n 4
1 = > > 7 (5.6)
, {m - 1)¢ = n°} {(m+1)° -n}
a (Co =Cg) +a ,,(Cs+Cp)
F3(n) _n’5 6n ! 1n+2 5 6 (5.7)
(n) Cy(a . -a_.,)
F * = 4"n  “ni2’ (5.8)

3 n+1

and, according to Appendix 2

G, +C, =0

T, + C,

€,-¢

Cp = Cy = 2515 = 5y155,)

= 2811(8182 + 1) sinq> cos(P Im(S1 + S2) = 204

_ 2 2 _
= 21811(8182 sin ? - cos (f ) Im(S1 + 82) = —2105

(5.9)

(5.10)

= 2106 (5.11)
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The expression for the displacement V can be found in the same way. .
With (4.6)

-p, : 2na_{ (m2-n2+1)(-162) + 2tnc,} o
v, ¢°(c) = b
k=1,2 " k(f k 2“1 m,n : Nm,n
(5.12)
~n-1
o ; {(ata o) (= 102) +t i@ ,5) C } o |
¥ he0,1,2 n+l ’
in which, with (2.7)
s -V S :
2 22
c % _ s +s,) (5.13)
3° sl 5, ‘f 5.5, "1 2? _
P % R
The displacement V on the edge of the hole is:
ve 32 (v 4°%0)+v ¢°0)}
k=1, 2 kq, O k‘? k
p @ ) &
=2 { = Fu(n) costn +1) 6 +8 3 F2(m’n) sin me
n=0,1,2 * m,n
-~ @® *(n) 8 *(m,n)
- I F sinn+1) 6 += 3 F, cos me}
n=0,1,2 _ " m,n
(5.14)

where
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2 2
na_{(m® - n° + 1) C¢ - 2uC.} :
F2(m,n) __n . 6 7 (5.15)

myn /

x(m,n) ) -nan(m2 - n2 + 1) Cll

F (5.16)
2 Non .
a{C,-0C,) +a (C,+C,) ,
Fq(n) _ n'v6 7n _ 1n+2 6" 1 (5.17)
(m) Cyla +a_.,)
p, = L (5.18)

and according to Appendix 2:

+
Q
]
()

1
«Q
l

= 21311(8132 COS2(F _ Sin2(?‘) Im(Sl + 32) = _2:1_07 (5.19)

In the boundary condition formula for the displacements the pin will
be given the displacement in Y-direction of the point belonging to
o = 90°. This displacement will be denoted by Vy.
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6. BOUNDARY CONDITION FOR THE DISPLACEMENTS

The displacement of a poilnt on the loaded part of the edge of the
plate consists of two parts:

- a part equal to the displacement of the pin as a rigid body. The
components of this displacement are made Vi in Y-direction and zero
in X-direction. v

- a displacement relative to the pin with components U, and Ve For
the loaded part the radial displacement of the plate material with
respect to the pin must be zero. For small deformations this

requirement results in

[+

_r.: ._tg 4] (6'1)
r .

With

<>
0

+
vy Vp

expression (6.1) becomes
ucos 6+ (v - Vi) sine =0 (6.2)
(6.2) 1s the boundary condition for the displacements which will be

imposed on the loaded part of the edge.

N.B. In Appendix 2 it is discussed that constants Cy - C7 are inde-
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pendent opr for materials with equal S;; and 522.

For (quasi) 1sotropic materi als Cl& - C7 only depend on the
values of Sy; and S;p. As a result Poisson's ratio p 1s the only
material constant in boundary condition (6.2). This implies that
for isotropic materials the constants a, - hence the radial
stress distribution - is dependent on the material constant p
only.
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7. DETERMINATION OF THE CONSTANTS a,

Some of the series in the displacement formulae (5.4) and (5.14) can
be replaced by analytic expressions that are only valid for
0 <6< m This has been done in Appendix 3 resulting in the dis-
placement formulae (A3.8) and (A3.15) for the upper half of the edge.
These formulae, substituted in condition (6.2) yield

a,, + z

=0 (7'1)
10 ¥ hea3, |

ane an

in which ai 0 and ane are known coefficients.
With

08 = Cscose-Cusine

09 = Cucose—C.]sine
(7.2)
-Clo= C8cose—Cgsin9
Cll=—08 s:!.ne—.C9 cos 6
they become:
a =C—8smze+§cos29+c (6 -3) 0 & in o
*e "2 2 6\ "2/ C8S 0758
mtL
o 2C, sinmd - Cqm cos mo - 2C (-l)2 sin 6
+& 2 8 T -
Ttm=l,3 m2(m-2) m+ 2)

(7.3)
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For n 1s even:

2

80 =5 [Cip 1 sin ne + C;; cos né
n -1
Cmn n
+ 20, sin ne -~ { 2 cos 8 - (26-m) sin 8} - C (-1)? sin 0]
6 T n2_1 4
‘ n
2 2 2 2 ; 2
g ° 2C9mn sinmd - CBn(m -n"+1) cosme - Cun(m -n"+1)(~1)"siné
+2 3
=2, 4 Nm,n
(7.4)
For n 1s odd:
a =i—.[C n sin ne + C,, cos né
neé 2 10 11
n -1 .
n-1 n-l
+ g sin no - {2Cg(-1) I Con(-1) 2 } sin 6]
.
o 2C,m sirmd - C n(m2—m2+1) cosm8 - 2mC.,(~1) 2 sine
+8 5 29 8 7
1tm=1,3 Nm,n '
(7.5)

The terms with 6 do not make (7.3) and (7.4) multivalued since these
expressions are only valid for 0 < 6 < =. For the highest value of m
in the series any large number glving sufficient accuracy may be
taken.

Condition (7.1) is imposed on N points' of the loaded part of the
edge. The N values of 6, defining those points, give In (7.1) N
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equations from which N unknown coefficients a, can be solved by
inversion of the matrix [ane] in

(a,] {a )} = {-a;,) (7.6)

With the coefficients an‘solved the holomorphic parts of the complex
stress functlons are completely known, as well as the radial edge
stress given by:

o, =-p * a sinne (7.7)



28

8. THE STRESSES

The complex stress functions:
= o

are solved as functions of z;k. Before substitution in the stress
formulae (2.3) the functions must be differentiated with respect to

Z

a a dgy
o' () =g 190 =g (a5 57
K K K
in which, following fram (2.9)
ac z
K K (8.1)

k:

dz

k \ﬁkz_skz_l
¢ .

So, with (4.6)

2 .2
2nan(m -n“+1+213 2 m)
-m

p
0 (2) = (A + srees—y L f ¢
k k [ k 211:1 Sk?-sx(f {m,n {(m+1)2—n2}{(m-1)2-n2} k

N
- 7’% £ (2 (1418, ) + 2 5(1-18, )) z;k"n’l}] /\/zkz-sk?‘?_l

n=0,1,2 ¢ ¢ .
(8.2)

With (8.2) substituted in (2.3) the stresses can be calculated in
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every point of the plate.

For the edge of the hole, where

cos 8+ S sin 6

N
]

k

P

Ck =cos 8+ 1sino=¢

expression (8.1) becomes

do io
dz S cos 6-= sin @

and

. _ 1 ' Po
' (z) = Sk‘f cos 6 —sin s [ * 3 sk‘P'_—sR‘?S .

2na, (m? N 248, m) o™
n R?

Z _—
{m,n {m+ 1)2 = i} {m - 1) - 1}

N
i -n-1
b a(l+1s, )+a ,,(1 -1i3, )
¥ ne0,1,2 @y e o2 "(f) = H

(8.4)

With the known radial stress and one of the stresses ays oy or Txy
the stress-situation on the edge of the hole is completely known.

When for instance °y is calculated, the other stresses can easily be
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derived with
2 2
Op cos 6 = oy - o, sin” 6
o, =a 0032 6+ o sin2 ) (8.5)
X r t ~ *

Try = (ob - °t) sin 6 cos 6

where o is the tangential edge stress.
The expression (8.4) camnot be used if S, - S, = 0 as 1is the case
for isotropic materials. Therefore i1n ppend§; 5 the following

expression for oy on the edge of the hole has been derived:

(o]
A 1 .
P = Re (S, cos 6 - sin e)(S2 cos 6 - sin 6)

o] l? ?

R .

3 -

[p {%(S1 +5, ) cose isine + 21A(S; S, 05 cosd + C, sins) }
° P ? T

o]

+ Ei {icose + 21A(Cu cos® + (81?+s2?) 05 coso — C5 sine)}

(m?— 2+1) coso + 21m(S1 +S, ) cos® — 2im siné
¢ ¢

-z | - 2na_ o ™
m,n " {(m+1)2—n2}{(m—1)2—n2} ez, o
- T T (8, +3S, = 1) cos6 - sine) a_ -
H.n;0,1,2 {( 1? 2(_r ) n
~n-1 (8.6)

((s1 +8, + 1) cosé - sine ) an+2} o ]

¢ %
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For (quasi) isotropic materials the whole stress pattern only depends

on the material constant p.
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9. NUMERICAL CALCULATIONS

The edge of the hole consists of a reglon of separation between pin
and plate and a region of contact on which the boundary condition for
the displacements must be imposed. The latter reglon does not gener-
- ally coincide with the entire upper half of the hole.

_For all investigated materials and angles between material axes and
coordinate axes it appears to be smaller than 180°, leaving small
areas of clearance in the neighbourhood of 6 = 0° and 180°. In fact -
the contact angle is unknown and must be determined by the require-
ment that tractions between pin and plate are (physically) Iimposs-
ible. Since an iteration procedure magnifies the computing work con-
siderably a standard contact angle 11° < 6 < 169° has been adopted,
ylelding sufficient accuracy.

The displacement boundary condition “1s imposed to 22 points of the
contact area, resulting in 22 coefficlents a,. The calculations have
been made for the following material orientations:

° and 30°

90° unidirectional 0
0°, 30° and 45°
0

¢
90,°/445°, n =0, 1, 2, & ¢
90°/0°/45° (quasi-isotr.) ' lf

The coefficlents a, are listed in Tables 2-6. According to (3.10) R,
can be calculated from the coef‘fici_en’cs an with even index n. With
Ry = % Ps the angle & between the resultant R and the Y-axis 1s
easlly found. & is given in Figures 2-7.

The tangential and radial stresses on the upper half of the edge of
the hole are shown in Figures 2-7. The stresses are made dimension-
less with the bearing stress p, which 1s, according to the classlcal
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definition
" _R
P=Dt

For the present calculations, with D = 2 and t = 1, this results in

> 2., \/{ 22 2m_ }2 2
p=3/R“"+R" =1}p pX +
° n=2,4 -1 L

The strength values of the lamlnates, used in the fallure criterion,
are given in Table 7. : ' _

The predicted bearing strength p is listed in Table 8, together with
the angle 6 where first significant damage occurs.

All calculations have been made with a computer program in Fortran IV
which has the capability of handling complex expressions.
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10. DISCUSSION OF RESULTS

As may be concluded from Tables 2-6 the convergence of the series of
22 coefficients a,, together with the known a1 = 1, 1s sufficient in
all the investigated cases. For the symmetric loading, i.e. for ?=
0, all coefficlents with even n should be zero; the small ‘values of
these coefficients resulting from the limited accuracy of the
solution procedure do not significantly affect the results.

As discussed in Appendix 2 the displacements of the edge of the hole
in a laminate with equal Sll and 822 are independent on a rotation of
the natérial_ axes. For the #45° angle-ply this results in equal sets
_ of coefficlents a,, as shown in Table 6. So, the radial stress

23
c.=-p L a_ sin nd
r ©p=1,2

is indebendent of the loading angle. Although this phenomenon is
mathematically clear 1t 1is by no means obvious physically. It 1s
noted that this applies to the radial stress only and neither to the
tangential stress nor to the bearing strength.

It is obvious that for (quasi) isotropic materials the entire stress
field is independent of (f As discussed in Chapter 8 the stresses in
these' materials depend on the value of Polsson's ratio only. For the
quasi-isotropic material chosen in this report as well as for the
+45° angle-ply a sine distributlon for the radial stress 1s a good
approximation, except for the small areas near 6 = 0° and 180°. This
. 1s in agreement with one of the conclusions of Reference [61].

Peak radial stresses are generally developed near the points on the
edge of the hole where the direction of the highest Young's modulus



35

of the plate material is per'pehdicular' to the hole’ boundary, both
for CF= 0 and for the other values of (P » The maximum tangential
stresses do not necessarily occur in the plate net area perpendicular
to the load direction. For @= 0 they 'ére generated at the ends of
the contact area, except for the #U5° angle-ply where they occur at

6 = 45° and 135°. For other values of Cp no conclusion can be drawn

about the various places of the maximum tangential stresses, except
for the U45° angle-ply after rotation over <f’= 45°, showing the
maximum stresses at the ends of the contact area. The compressive
tangential stresses occurring in the #45° angle-ply are remarkable.
They may result from the high value of Poisson's ratio T

The radial and tangential stresses are strongly influenced by the
anisotropy of the material. As a result the bearing strength p shows
a great variety of values for the different laminates and loading
angles. Generally p decreases with increasing ?, except for the $45°
angle-ply. There seems to be a tendency that the materials with the
" highest values of p exhibit the greatest variation of bearing
strength with direction of load.

The calculated values of the bearing strength are low as compared
with most experimental results, found in literature. This cannot be
explained by the fundamental difference between the infinite plate
model used and the finite dimensions of the test specimen, certainly
not for those with high width to pin-diameter ratios. One reason for
this discrepancy may be the influence of lateral clamping pressure in
the pin area, used in most experiments. Reference [7] shows a strong
relation between Jjoint strength and degree of clamping. Another
reason may be the presence of friction between pin and plate. This
will reduce the stresses near the top of the hole where most of the
fallures occur, resulting in a higher load level at first significant

damage.
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11. CONCLUDING REMARKS

Stresses were calculated in infinite orthotropic plates loaded
without friction by an infinite rigid pin in a circular hole of the
~same diameter. The 'pin\ was glven a displacement under different
angles with the material axes.

In all investigated cases the contact angle between pin and hole
boundary is smaller than 180°. The anisotropy and the angle between
1cad direction and material axes have a strong influence on the
contact pressure and the induced tangentlal stress. The maximum
tangential stress does not necessarily occur in the plate net area
perpendicular to the load direction. In general the maximm radial
stresses are found near points with maximum stiffness perpendicular
to the hole boundary. For isotropic materlals a sine distribution for
the contact pressure seems to be a good approximation, except for th_e
small areas near 6 = 0° and 180°.

The theoretical bearing strength varies with load direction. A con-—
sistent conclusion for this relation cannot be given, except that the
directional sensitivity is higher for materials with high bearing
strength.
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A UNIDIRECTIONAL C.F.R.P. LAMINATE.
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FIGURE 3: THE STRESS DISTRIBUTION AROUND A PIN-LOADED HOLE IN
A QUASI-ISOTROPIC C.F.R.P. LAMINATE,
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A (90°/ i45°)s C.F.R.P. LAMINATE.
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The coefficients an

u.p, @ = 0° u.D. ¢ = 30° 0.1. P = 0
a( 1) 0.1004+01} 0.1004+01 0.1004+01
a( 2) -0.1114-05 -0.4274+00 0.205d-08
a( 3) -0.3824+00 ~0.725d-01 0.677d-01
a( 4) 0.467d-07 0.270d+00 0.543d3-09
a( 5) 0.142d+00 ~0.1244d+00 0.1044-01
g 6) -0.1594-05 0.2304-02 10.261d-08
a( 7) -0.637d-01 0.4384-01 -0.708d-02
a( 8) -0.268d-05 -0.1074-01 0.592d-08
a( 9) 0.1094-01 -0.1614-01 -0.13048-01
a(10) -0.393d-05 0.244d-01 0.9604-08
a(11) -0.1583-01 -0.1714-01 -0.1424-01
a(12) -0.460d-05 0.875d-02 0.1283-07
a(13) | -0.466a-02 -0.704d-02 -0.129d-01
a(14) -0.468d-05 0.598d-02 0.1493-07
a(15) ;0.657d-02 -0.769d-02 -0.104a-01
a(16) -0.407d-05 0.559d-02 0.152d4-07
a(17) -0.3594-02 -0.549d4-02 -0.7424-02
a(18) -0.295d-05 0.307d-02 0.1323-07
a(19) ~0.243d-02 -0.2964-02 - 0.4414-02
a(20) -0.161d-05 0.1484-02 0.895d4-08
a(21) -0.974d4-03 -0.1354-02 - 0.1914-02
a(22) -0.478d-06 0.452d-03 0.318d-08
a(23) -0.257d-03 -0.318d-03 - 0.4274-03
Table 2: for the unidirectional and the

quasi-isotropic laminate.
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¢ = 0° ¢ = 30° P = 450
al 1) 0.100d+01 0.100d+01 0.100d+01
al 2) 0.209d-08 -0.1533+00 -0.181d+00
a( 3) -0.972a-01 -0.781d-02 0.752d-01
al 4) 0.281d-10 0.682d-01 0.5894-01
a( 5) 0.113d-01 -0.1484-01 ~0.176a-01
al 6) 0.236d-08 0.1264-01 0.2653-01
al M -0.158d-01 -0.127d-01 -0.163a-01
al 8) 0.548d-08 0.967d-02 0.143d-01
a( 9) ~0.159a-01 ~0.1794-01 -0.195a-01
a(10) 0.8964-08 0.781d-02 0.109d-01
a(11) -0.1594-01 ° -0.1744-01 -0.195a-01
a(12) 0.120d-07 - 0.589d-02 0.834d-02
a(13) -0.134d-01 -0.1514-01 -0.1718-01
a(14) 0.140d-07 0.436d-02 0.615d-01
a(15) -0.105d-01 -0.1184-01 -0.135a-01
a(16) 0.144d-07 0.302d-02 0.4253-02
a(17) ~0.735d-02 -0.8284-02 ~0.9464-02
a(18) 0.125d-07 0.186d-02 0.261d-02
a(19) -0.433d-02 -0.4884-02 -0.55848-02
a(20) 0.8494-08 0.911d-03 0.128d-02
a(21) -0.187d-02 -0.2118-02 -0.241d-02
a(22) 0.304d-08 0.252d-03 0.352d-03
a(23) -0.416d-03 -0.4693-03 -0.536d-03

Table 3: The coefficients a, for the (900/ i4SO)S—laminate.

~.
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\

(P%o° P= 30° P - as°
a( 1) 0.1004+01 0.1004+01 0.1004+01
a( 2) 0.1684-08 -0.195d+00 -0.233d+00
a( 3) -0.133d@+00 | -0.148d-01 0.9394d-01
a( 4) -0.595d¥10 .0.9094-01 0.7194-01
a( 5) 0.264d-01 -0.1794-01 -0.266d3-01
a( 6) 0.1824-08 0.1264-01 0.3484-01
a( 7 -0.1294-01 ~0.489d4-02 -0.1114-01
a( 8) 0.4154-08 0.1004-01 0.1644-01
a( 9) -0.1044-01 -0.127d4~01 -0.1353-01
a(10) 0.6784-08 0.8914d-02 0.126d-01
a(11) -0.1124-01 -0.1284-01 -0.1473-01
a(12) 0.9114-08 0.6604-02 £ 0.9864-02
a(13) -0.977d-02 -0.1124-01 -0.132d4-01
a(14) 0.1064-07 0.4894-02 0.728d-02
a(15) -0.7754-02 -0.8964-02 -0.105d4-01
a(16) 0.108d-07 0.3404-02 0.503d-02
a(17) -0.5444-02 -0.630d4-02 -0.7474-02
a(18) 0.9444d-08 0.209d8-02 0.3094-02
a(19) -0.3224-02 ~0.373d-02 -0.4434-02
a(20) 0.640d-08 0.102d-02 0.151d-02
a(21) -0.1394-02 -0.161d-02 -0.1924-02
a(22) 0.2294d-08 0.2834-03 0.4184-03
a(23) -0.311d4-03 -0.3604-C3 -0.428d-03
Table 4: The coefficients a_ for the (903/:t45°)s- laminate.
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b= 0° P = 30° P - 45°
a( 1) 0.1004+01 0.1004+01 0.100d+01
a( 2) 0.159d-08 -0.292d+00 ~0.354d+00
a( 3) -0.2373+00 ' -0.4544-01 0.12648+00
a( 4) -0.282d-09 0.157d+00 0.106d+00
a( 5) 0.609d-01 -0.517d-01 -0.644d-01
a( 6) 0.164d-08 0.1123-01 0.654d-01
a( 7) -0.254d-01 0.507d-02 -0.195d-01
a( 8) 0.3623-08 0.831d-02 0.208d-01
a( 9) | -0.684d-02 -0.1404-01 -0.121d-01
a(10) 0.597d-08 10.129d-01 0.164d-01
a(11) -0.1134-01 -0.133d-01 -0.155d-01
a(12) 0.8023-08 0.8404-02 0.142d-01
a(13) -0.872d-02 -0.107d-01 -0.142d-01
a(14) 0.9353-08 0.626d-02 0.105d-01
a(15) -0.7063-02 ~0.865d-02 -0.1114-01
a(16) 0.955d-08 0.4434-02 0.723d-02
a(17) -0.488d-02. -0.605d-02 -0.7773-02
a(18) 0.833d4-08 0.271d-02 0.445d-02
a(19) -0.288d-02 -0.356d-02 -0.460d3-02
a(20) 0.566d-08 0.133d-02 0.218d-02
a(21) -0.124d-02 -0.154d-02 -0.199d-02
a(22) 0.203d-08 0.3704-03 0.604d-03
a(23) -0.278d-03 -0.3433-03 -0.4434d-03
Table 5: The cdefficienté an for. the '(902/1‘450)5— laminate.
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¢ _ ¢ = 30° ¢ = 45°
a( 1) 0.1004+01 0.100a+01 0.100da+01
a( 2) 0.328d-08 0.328a-08 0.328d-08
a( 3) 0.367d-01 0.367a-01 0.367d~01
a( 4) 0.732d-09 0.732d-09 0.7324-09
a( 5) -0.184d-01 -0.184d-01 -0.184d-01
a( 6) 0.461d-08 0.4613-08 0.4613-08 -
a( 7) -0.327d-01 -0.327d-01 -0.327d-01
a( 8) 0.107d-07 0.107a-07 0.107d-07
a( 9) -0.352d-01 -0.352d-01 -0.352d-01
a(10) 0.176a-07 0.1764-07 0.176d-07
- a(11) -0.3274-01 -0.327d-01 .=0.3274-01
a(12) 0.237d-07 0.237d-07 0.2374-07
a(13) -0.2774-01 -0.277d4-01 -0.2774-01
a(14) 0.277d-07 0.277d-07 0.277d-07
a(15) -0.2144d-01 -0.214d-01 -0.214d-01
a(16) 0.283d-07 0.283d-07 0.283d-07
a(17) -0.1484-01 -0.148d-01 -0.148d-01
a(18) 0.247d-07 0.247d4-07 |  0.247d-07
a(19) -0.871d-02 -0.871d-02" -0.871d-02
a(20) 0.167d-07 0.167d-07 0.167d-07
a(21) -0.3743-02 -0.3744d-02 -0.374d-02
a(22) 0.600d-08 0.600d-08 0.600d-08
a(23) -0.831d-03 -0.831d-03 -0.831d-03
Table 6:‘Th.e coefficients a for the (1450)5— laminate.
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vominate Tx MPa Ty MPa txy MPa
type Tension Compr. Tension Compr.
unidirectional 64 212 1600 1042 70
(900/& 45°/0%) . 620 485 620 485 217
(90°/ 1“450)s 255 354 790 690 310
(90‘2’/ +45°) . 212 286 1072 805 217
(902/145") . 72 236 1418 823 168
(£a5%) . 177 207 177 207 429

Table 7: Laminate strength values. ?xy is calculated

. from the individual layer values.

Rotation angle of the laminate
Laminate (f= Oo ('7: 300 ' (f= 450
type T wa | @° B Mra | @° p Mpa| ©°
unidirectional 123 90 119 100, 110
(90°/ :t45°/o°)s 299 60, 120 |
(90°/ :k45°)S 437 60, 120 | 365 80 338 90
(902/ r4_5°)s 339 60, 120 286 80 264 90
(902/ 145°) . 191 90 190 120 186 130
(i45°)S 189 90 199 110 213 60, 120

Table 8:

The theoretical bearing strength p for three angles of

rotation of the laminate with respect to the coordinate

axes. @ denotes the point on the edge of the hole where

the predicted first significant damage occurs.
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APPENDIX 1. THE HOLOMORPHIC PARTS ¢k2£gk) OF THE COMPLEX STRESS FUNC—
TIONS '

The boundary condition (4.3) for the holomorphic parts ¢k°(zk) of the
complex stress functions results in

S B
2 f f
o _ 2 1 1
—(Sl‘f—sk- ﬁ> % (G -z{ffﬁ:-—%d“e—ﬂéa—qd“ (4.5)

in which f; and f, are given in (3.12) and (3.13) respectively. In
the expressions for f; and fp all sines and cosines are replaced by
powers of o according to

cos No =

N N
In the general term § — — Z do in (4.5) g 7 is the boundary value
N “k
*

¢
of a function —i——, analytic inside the unit circle. For g,

% T %%

outside this circle one finds

. |
g =
¢ —2 g 4o =0 (Al.1)

In the other general term ¢ 60_ 7 do in (4.5) o 1s the boundary
value of a functlon ¢, analytic outside the unit circle and zero
at infinity. So Cauchy's integral for the infinite reglon gives
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2—1ﬂ-¢ e do = - LN | (A1.2)

—1_¢fldo= . [l {:_ag_ = ata ., \
2rl 7 o-g, Yo 1B g n=1,2 ™1 -Cﬁﬂ
R 1 1T %
o 8niCk2 ey per 3 1
1 L) ® @ © l 1
2_.": ( z r + X z ) % (m + m) .

n=1,3 m=2,4 n=2;4 m=3,5

I 1 + 1
1 o -
21(m-1) Ck 1 21 (m+1) Ck 1

or, after using exp ression (3.10) for Rx and r'ear'r'anging the double
summations

fdo

by c-ck = p, [§ {%:_2 - n=°1£, ) - ;j e Ckr11+1} (A1.3)
+‘1,{1‘(; ; +‘; ;) na(m—n+1)ck .
n=1,3 m=1,3 n=2,4 m=2,4 m{(ml-l) -n }{(m—l) -n“}
ﬁ‘ﬁ% = », [gr {Z—i - =;13°’2 ann:lamz . o (A1.5)
' 4
-‘i'( s x4+ 1 3 $ ) i Ck —]

n=1,3 m=1,3 .n=2,4 m—2 4 m{(m+1)°-n"} {(m-1)2n 2}
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Introduction of

T = % : + ¥ @z
mn n=1,3 m=1,3 n=2,4 nm=2,4

ag = 0

and substitution of (Al.3) and (Al.4) in (4.5) results in

2na (m2—n2+l+215 m) ¢ —n
n » xq, k

o (5) = 21;1(Is)o =yl N
Jl? k? m,n m,n
a (1+#1S, ) + a_,,(1-1S, )
" n ty' 2 L
F ™ @)

For the calculation of the stresses the complex stress functions must
be differentiated with respect to Zy- For the second series of. (Al.5)
that is allowed only if after differentiation the general term

{an(l"'is%) + an—FZ(l;isl‘()} Ck-n—l / (Zk2 _ Sk 2 - 1)%

has a limit for n + «. For polnts outside the hole, where Ick l > 1,
this 1imit exists. PFor points on the edge of the hole, where
|Ck| = 1 this limit only exists if lim a = O.

T>w
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APPENDIX 2. EXPRESIONS FOR THE CONSTANTS Cy - Co

The transformation formulae for the material compliances Sq o ? rel-
evant for this report, will be expressed first in the complex

material parameters S, as presented in (2.6).

_ 4 4 ' 2 2
Sll(f =8y, cos (f + 822 sin (’9 + (2812+S66) sin (P cos (f
y 2.2 . U 2,. 2 2 2
=8, {cos @ +3,°5," sin ¢ - (5,748,7) sin“ (P cos SO}
=811 (Sl2 sin2(f - cos2(.? )(822 sin2 (P - coszq)) ‘ (A2.1)
_ 2 2 2 2 2 2
822“’- S11 (S1 cos (P - sin (f))(S2 cos (f - sin (P) (A2.2)
S5 = Sy, + Sy, (148,2) (148.2) sin® (p cos? (A2.3)
12? 12 11 1 2 LP ‘P :
_ 20 2,0 2,42 3
S16, = Syp1(28; S, 45, 745,7) sin” @ cos ¢ -
(2+Sl2+S22) sin (f cos3(f’ } (A2.4)
N 2a 2 2 2 3/ -
Syg. = 311{(251 S,748,748,%) sin @ cos ¢ -
maq 2ia 2
(248,%45,%) sindp cos ¢} (A2.5)
Since 812822 = §12§22 and 512 + 822 = §12 + §22 the complex parameters

S in (A2.1) - (A2.5) can be replaced by their conjugated complex

values.



56 .

From (2.5) and (A2.1) - (A2.5) it is easily derived that

_ (S1 cos?—sinq’) (S2 cos?—sin?)(s1 s:Ln?—cos?)(S2 sin?-cos?)

Sl(rsg(f - (812 sinz?—cosglf)(%2 sinz?-coszl?)

. {(312+1) sin ? cos((—Sl} {(S22+1) sin@ cos(fq82}

Sll‘{’/S11

S -8, - Sll(Sls2+1)(Sl+S2) sinﬁocoslf + 8118182

ll?

12 q, 12

S

(A2.6)

In (A2.6) 35S, 1s real and S; + Sp 1s imaginary, hence

S‘12@‘312"3113132

ll‘f

and (A2.7)

-S,.(S,S.+1) sin & coslp Im (S.+S,)
ms, s, = L2 ¢ cos@ 152

t % g

In the same way is found
2 2
S16 -sllslsg(sl+sg) sin q) + 511(31+32) cos™ ¢

S
11
¢

(A2.8)

: Sl?+32,{, =

in which
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and (A2.9)
2 2 y
S.,(cos - 8,8, sin"{ ) Im(S,+S,)
m (s, + 32(!,) e ¢ 3112 i 1%
i
. . S26(é+8113182(81+82) cosQEy-Sll(Sl+Sa) sin%f Sl?+82
—— — = =
S S S S, S
1 2 2 . 1,72
e N - ¢ °9
(A2.10)
in which
(Sl(f + S2 ) S26
Re =
S, S S
1 -2 22
? ¢ ¥
and (A2.11)
S, 48 2 2
 Tlg 2 814(8,S, cos"¢ - sinP) Tn(S;*S,)
" (Sl Sy )= Spo
? % ¢

The expressions for Cy - C7 are found by substituting (A2.9), (A2.7)
and (A2.11) in (5.2), (5.3) and (5.13) respectively.

2, =Ty#C, =2Re C, = 2 Re {1(S; S §,

-5S
¢ lgeg 1%

= 2Sll(slsz+l)- sj.n (f cos‘f Im(Sl+S

)}

11

2) (a2.12)

~C, =-21 InC, =-21 Im {S;, (S, +S, ) = S
1 1 11? 1? 2

16,?}
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- 2 2
= 21811(8132 sin ¢ - cos (o) Im(Sl+S2)

(A2.13)

[
®
5
(@}

I

=21 Im {1(S

171y 2%~

21(81 11 1 2) (A2.14)

. S, +8
~21C, =Ty3Cy = 2L In C 421 m (s

26‘[’_822‘1’ 31?52

215, (8,5, cos2?—sin2?) In(S, +5,,)

(A2.15)
C,4C, = 2Re {S;; (S, 45, )=S, } = 2 Re(S,¢ =S;¢. ) =0
21 11? 1y 2?, 16? 16? 16

S, 48
1p%52¢
{326(‘,“'322,f sl?sch }

Note: For materials with equal S;; and Sy, resulting in 518, = -1,
it 1s easily seen that expressions (A2.12), (A2.13) and (A2.15)
are invariant, just as (A2.14); so for these materials Cy, 05
and Cy do not depend on the angle (? between material axes and
coordinate axes. This implies that the displacements u and v on

the edge of the hole are independent of a rotation of these
materials!

An analogous derivation as used for (A2.6) results in
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. Sl2¢f_ S1o + S9; (3182+1)(Sl+82) sin(f cos(f + 815,55
S.s. S
1,%2 22
¢ "9 ¢
or, with S; + 85 = -(§1 + ‘s‘2) and S5, = §1§2z
) Sq ' Szaq, .
= S,S S0 S S T (A2.16)
= = 12 §,, °
%, 2 g g S

Expression (A2.l6) will be used in Appendix 4.
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APPENDIX 3. TRIGONOMETRIC FUNCTIONS FOR A NUMBER OF SFRIES 1IN THE
DISPLACEMENT FORMULAE

Some of these functions are taken from Appendix 2 of Reference [2],
where an extensive derivation 1s given.
In fornula (5.4) for the displacement u 1s

—.§ I F&m’n) cosme=—% b r + = I
™ m,n n=1,3 m=1,3 n=2,4 m=2,4

nan{(mz—n2+1) Cg - 2m Cg} cos me

N
m,n

(A3.1)

where for the double serles with odd indices according to Reference
(2]

§ © © nan 2mC6 cos mo

2z 3 T -8 2c, s me
n=1,3 m=l,3 m,n l m=l,3 m (m=2) (mt+2)
206 5 ) sin né cosae - n cos no sin 6 (A3.2)
n=3,5 n -1

The first serles in (A3.2) can be evaluated further after dividing
into partial fractions:

.8 g I cos m§  _
T

m=1,3 m2 (m-1) (mt+2)

8 1 1 1 11
2% = g Gz -me) ~ 33} cos me
m=1,3 m

3>
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1 s cos(m-2) 6 cos 20 - sin(m-2) 0 sin 26
S m- 2

Z
m+ 2 m=1,3 m2
- % 20 [ sig 20 ¢ sinmme "‘llI 5 cos2me]
m=1,3 m=1,3 m

}' _ cos(mt2) 6 cos 26 + sin(mt+2) 6 sin 26} _1 7 cos me

s0, for the upper half of the edge of the hole

8 > cos mé _ n sin 28
?206 s - — ——=C¢ (6—5-2—) (A3.3)

m=1,3 m°(m-2) (m+2)

For the summation with even indices is found

© © na_ m cos mé
8 ¢z T _n_N__
* n=2,4 m=2,4 m,n
1 > - cos _mo cos_mo
==C, £ a I | }
POl Tl w? e ? T )2
2 2 2 2

According to U416.17 of Reference [5] for x =26 - n, with 0 < 8 < =
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sin(n#l) o = 2L {_.1__2_ - 5 ccg)s me )
T @l w2 m mt,
sin(n-1) 6 = n_:tl. {___1___2_ - 5 cos md 2}
o (h)” ™4 my ol
2 2 2
80
© © na_m cos mé
* n=2,Ll m=2,ll m,n
1 ® n i , )
=% C ¥ a_ {2 sin(n-1)8 - —= sin(nt+l)e + -
T 6 n=2’)4 n n-1 nt+l (n+1)2 (n—1)2
o« © rla
= 2C 5 ans.’mn@co«s2g—ncosne sin9_§C6 5 2n2
6 n=2,)-l n -1 T n___2’u (n _1)
(A3.4)

(A3.2), (A3.3) and (A3.4) now result in

8 na 2mC6 cosmbo ® a, :
= % N = 206 by (sinnd cosd - n cosnd singd)
* m,n m,n n=2,3 n -1 :
® na
t0g (o-3-252 Soy 1 i (A3.5)
' n=2,4 (n"-1)

Two other serles in (5.4) can simply be modified:
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® €
z Fén) sin(n+l) o = 52 6 sin 20
n=0,1,2
+2 T {Cs(n s1nne cos® - cosnd sinod) +
n=2,3 n-~-1 :
+ Cg(sinne cosé - ncosnd sine)} ( (A3.6)
Fé cos(ntl) 6 = 5~ COS ©
n=0,1,2
- a
- 2Cu b 5 (cosné cos® + n simné sine) (A3.7)
n=2,3 n -1

With (A3.5), (A3.6) and (A.37) the formula for the displacement u of
the points on the upper half of the edge now becomes:

L= [C (6 -5 +C5-2C6 sin2e +C—Ll 20 +
D,/" 6 2 2 2 °°s_

g ° 2y, simo - HCS cosme

z 2
m=1,3 m™ (m~2) (m+2)
o [C5(n s8innd cosd - cosnd sing)
+2 3 { : +
n=2,3an e -1 o

206(sinne cosS6 -~ n cosnd sine)—Cu(cosne cos8 + n sinnd sing)

n2 -1
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8 ® @ ® @ 2 e simne-CBn(m2-n.2+l)éosme
+=( ¢ T + I T ) a N

T n=2,4 m=2,4 n=3,5 m=1,3 m,n

8 > By '

=76 n=2,4 (n2—1)2

In formula (5.14) for the displacement V 1s

8 g Fém’n)smme=%( z 5o+ 3 )
* m,n n=1,3 ==1,3 =24 =2l
2 2 ,
na_{(m“-n“+1) C, - 2nC;} sin mé
= 6 i (A3.9)
N .
m,n
in which for the odd indices, according to Reference [2]
g ° ® n_an(mz-n2+1) Cg sin mé
= I b}
" n=1,3 m=1,3 Nm,n
5 ® a (n cosné cosé + sinnd sing - n) ,
= -'C6 sin 9+206 z 5 (A3-10)
n=3,5 n -1 _

Tor the even indices

g = ©» na (m2-n2+1) C6 sinme

z
% =3, w2, m{(m-1)>n}{ (1) -n°)

8c ® ® 2 2
6 s o : (m"=n"-1) sinmo + 2 sinmé

T o2, D ome2,l m{m2-(n—1)2}{m2—(n+1)2}




Repeated division into partial fractions leads to

n—2 4 m=2,4 m{(m—l) -n }{(m+1)2 2}

2 c o ® [ 1 2 sin mé
- I na +
T 6 n=2’}4 n )4 n(n+1) (2) _(%)2

1 % sin mé 2 sin me,

|
! § ® ; na(m-n+l)C6sinm9 ‘

or, with 416.16 and 416.08 of Reference [5] for x =20 — 1 and
| X = 20 respectively (0 < 6 < #):

8 ® ® na(m-n+l)C6s:ane

n—2 4 m= 2 b m{(m—l) }{(nr+1) -n }

I T
C6 n=§ 4 nan [m cos(n+l) 6 +
>

|
=25 .
™

-1
> 8 2ne
=20, % > {n cosné cose + sinnd sine + =L _ n} (A3.11)
n=2,4 n“-1 :

(A3.10) and (A3.11) result in

nan(m2—n2+1) 06 sin mé >
X = C, sin"¢
N 6
m,n m,n

ajoo
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-] a .
+ 2C6 5 = (n cosnd cosé + sinnd siné - n)
n=2,3 n -1 .

© a .
vac, 1 A8 | (A3.12)
n=2,4 n°-1 " '

Two other series in (5.14) are modified into

o CC
I Fﬁn) cos(ntl) 6 = 62 T cos2e
n=0,1,2
@ an
+2 § —— {Cg(n cosne cose + sinné sine) +
n=2,3 n-1
C;(cosne cos® + n sinno sine)} _ (A3.13)
@® *(n) C}_l
pX F) sin(nt+l) o = 5 sin?9
n=0,1,2
+2X, = (n sinn® cos6 - cosnd sine) . (A3.14)
n=2,3 n -1

(A3.12), (A3.13) and (A3.14) now yleld for the displacement v on the
upper half of the edge

C.-C C
Y= {_§__Z__ (206-07) sin2e - Eﬂ-sinze +

po/u 2
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8 © mCL; cosmé - 207 sinme

—_ hY 2 4
T m=1,3 m~(m=2) (m+2)
o 206 (n cosné cosé + sinnd sine)
2z _a f 5 +
n=2,3 n -1
C7(cosne cos® + n sinned sine)-Cu (n simé cose-cosnd sine)—C6n
) }
n-1
2 2 '
8 ® @ ® ® Cun(m -n"+1) cosmé - 2mC7nsinm9
+=( =z I+ = ) a N
T n=2,4 m=2,4 n=3,5 m=1,3 m,n
© C62n9
+2 I a (A3.15)

n=2,4 M (n°.1)

The displacement vy in the point belonging to 6 = Z

(A3.15) rather easily:

2

mtl
2
Vi - C7—3C6 . § ; 207(—1)
po/ 2 T m=1,3 m2(m-2)(m-l-2)
n m
® 0,4'(-1)2 y an(mz—n2+1)(-1)2
+ 2 z an 2—-—- + - z N
n=2,4 n--1 T m=2,4 m,n
-l -l
2 n
® X(-1) “+Cn(-1) " =Cmn
+2 & a { 6 5 I 6,
n=3,5 n -1
mt1
@ 2mC.(-1) °
v Aoy
T m=1,3 Nm,n

is derived from

(A3.16)

Expressions (A3.8), (A3.15) and (A3;16) are substituted in the
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boundary condition for the displacements (6.2), resulting in the ex-
pressions (7.3), (7.4) and (7.5) for a1 and a ., the first being the
components of the known vector and the latter being the components of
the coefficient matrix in (7.6). '
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APPENDIX 4. EVALUATION OF THE COEFFICIENTS A,

With
N = 2ni(S, -8 )(‘-s k=1,2
K ™ ‘f k? k 4 3%
expression (2.11) for Ay 1s written as
) 526, 53 512,
NA = S Sy (5 +s -3 —+5 (55
k S
oy Ty By
S S
12(‘, _ 16(‘,

(S, +5 --——)} (Ab.1)
k 2o S
k’f ¢ 7 TS e B BT

With (A2.10) and (A2.16) 1is

k? &f
™ k,f x? SRR

r\)lt—a

S Sx (sk(r+sx ) + s S, (‘ +s )} ' (A4.2)
According to (A2.8) is

1 |
_‘I=%(s +S, +§_+5,) (A4.3)

and from (A2.6) 1is derived



| 70 I

S .
P12 S;o = S1.8,8
_("=._(S S, +§, F, ) +22 Llk1 (A1)

sl»lq) 2 Vit g Ay s,“(f
Substitution of (A4.2), (A4.3) and (A4.4) in (A4.1) results in

12 "117k"2

Sy =875, S
1 _ -
NA =-53 (Rx*'sx,fﬁy)(sk(f'skq) (Sx?“gk{)'(Rx+sk?Ry ) 5’11cf

Sy,=S,,5. S
_ 1 1 12711558
A= HE Sy 5, =5, {E(RX+S l?Ry)+(RX+Sk(fRy) = N
¢ “q 11 g %
¢ ¢ ¢
= 2S5y RSy Ry RS Ry -
11, k(r ¢ 4
(81575118, 8,) 5y S, )5, S, ) ‘

-5, )5, 8, )E, =5, )5, S

S,, (8 )
Lo to kg’ kg k"l Tl g Ay
In the denominator in (A4.5) is

S, (S, 45, )

@, -, )E, S,)=52 +3 5§, -
R TR Y Y e My Yy

in which, according to (A2.6), with Sk+Sx = _(Sk+sx) and Sksx = SKS’Q

N 2sll(sksl+1)(sk+sl) sinq) cos(F

S11
¢

(AL.6) -
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and according to (42.8)

ll ) X(S JL) sin Cf - 2311(8}:*51) cos (f

lzc(1> x(f ktf X‘f 11(1?
| (A4.7)
So
2811 ‘ '
(S _Sktf)(s =S, ) =g (5,%5,) {(Sksxﬂ) sin(P cos(f) -
¢
- sk(fsks 2 s:l.nz(f + Sk‘f cosz(f }
Sk cos(.(J - sin(r
or, wi’ch sk = Sx sin(f = coscf
sin{p + cos
(s-s>(s ) "3 S(S+S)Ssm<{>+cq’
‘{’ Cf cos?

where interchanging of k and & directly results in an expression for
(§£ =S, )(§k S, ). For the denominator in (A4.5) is now easily
found: cr 1

4s?
- - — — 11 2
S, (S, =S, )S, =S, ), =S, )B ) ==—=3S3.(S,1S,)
11 2‘? xtf k(f x(f k(f k‘f xq,'sk(r S11. K2k

hence, with



A=

A

For ?

Ay

T2

k=

S, -S..3, S C
lg 11"k % - 6 (A4.9)
43,,°8 S(s+s) Mslls (s+s) »
1
58S {§(R 8, Ry +8;, A(R % Ry )(s -s )(s
2" g eVt 1
(A4.10)
0 expression (A4.10) reduces to the well known
1  ( -——+R(S2—~ )} (Ab.11)
S y Pr T M2 :

2 2
’-In(Sk ﬁgx )

-
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APPENDIX 5. THE STRESS Gy AT THE FDGE OF THE HOLE

The stresses resulting from the logarithmic parts and the single-
valued parts of the complex stress functions ¢k(zk) are calculated
separately.

From (8.4) one finds for the logarithmic parts on the edge of the
hole, -after differentiation with respect to 2yt

1A
cos 0 - sin o

¢

¢k'(zk) =3 k=1,2

k
which gives after substitution in the second formula of (2.3):

iA

k
. =2Re3
Yy Skcose—sine

\

or,.with expression '(A’-I.lo) for the coefficient Ay:

_ 1
ny = ke n(S; cos 6 - sin 0)(S, cos 6 - sin @) °

[Ry{%(slc;s?q) cose -~ % sine+ASu(r 1 S2 (s, +s&f 1 2‘7) cos®
- Asll(f(sl(fszqﬁlf%) sin 6}

+ R {l cose + AS,; ) cose
x 2 | 2(' 2‘[’



T4

+AS (S +32 )(S =S -S )cose
%

(s, +8 -5, -§2 ) sino}]

AS
Mo e 2 g %

where, according to (A4.6), (A4.T7), (A2.12) and (A2.13)

= = _ 2511(8132+1)(31+32) sin(r cosi_ 2iCLl
81 Sy 51 Sy = - S =-3
¢ Yoy 11% ”‘f
and
25, (8,8, sin°¢ - cos2( )(S,48,) 210
S, 45, 5. 5, =-_21712 §(5y#85) _ 2105
1, ™2 2. S ' S
o % ¢ % 11 g

So, on the edge of the hole the stress oy resulting from the
logarithmic parts of the complex stress functions is

1

"yx = Re n(Sl(f cos 6 — sin 8)(S, cos 6 — sin o)
1 | 1
[Ry{5(31 +52 ) cos@ - 5 sine + 2LA(S1 82 05 coso + Cll sine)}
¢ ¢
+ Rx{% cos6 + 21A(C), cose + (Slcf+82‘f) Cs cosé - Cg sine)}] (A5.1)

Note 1: Substitution of the logarithmic parts of the complex stress
functions in the displacement formulae (2.4) yields for the
edge of the hole the first two equations of (2.10), as al-
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ready was mentioned in Chapter 5. Since these equations
result in zero displacements, the logarithmlc parts represent
an infinite rigid circular insert joined to the surrounding
orthotroplc plate along its whole edge.

Note 2: A more elegant method for the derivation of °y seems to be
the rotatlon of R, and Ry to the material axesl a~f and then
use the simple expression (A4.11) for Ay, where

R = Fg(vcos (f - Ry vsin(f

R, =R + R_ sin
8 . cos{ - Cf
should be used Instead of R, and‘Ry respectively. Neverthe-
less thls method results in a rather complicated expression
for o_ .
Iy
For the stress °y resulting from the single-valued parts of the
complex str'ess funétions 1t is easily found from (8.4)

2ra_(n°-n°+1+21S, m) o

a3

=—LRe 5 [g—te{ =
c,ys ok [Sk(f_sl(f {m_,n {(m+l)2—n2}{(m-1)2-n2}

w ° -n-1 '
- T (a_(1+1S, )+a_,,(1-iS, )) / (S, cos6-sine)
I m0,1,2 M % 2 L o} k ]

which can be evaluated into

-1
cos 0 - sin 9)(S cos 6 — sin 8)

9

= Re

|
(]

1t(Sl
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(m2—n2+1) cose+21.m(S ?+S2‘f) cose=-2im siné

T [ . 2na -m
[m,n U (@)} 1)) } 2na, @
+F s ((Sq +S, -1) oose—sine
T o, 1 > 1tr % | )2
- (G5 (f+s +1) cos6 - s:Lne) aot @ -1 ] (A5.2)

%

It is obvious that o is found by simple superposition of o and

5 2
yS
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