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Dynamical maps, quantum detailed balance, and the Petz recovery map
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1Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

2QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft, The Netherlands
(Received 13 October 2016; revised manuscript received 21 April 2017; published 14 August 2017)

Markovian master equations (formally known as quantum dynamical semigroups) can be used to describe the
evolution of a quantum state ρ when in contact with a memoryless thermal bath. This approach has had much
success in describing the dynamics of real-life open quantum systems in the laboratory. Such dynamics increase
the entropy of the state ρ and the bath until both systems reach thermal equilibrium, at which point entropy
production stops. Our main result is to show that the entropy production at time t is bounded by the relative
entropy between the original state and the state at time 2t . The bound puts strong constraints on how quickly a
state can thermalize, and we prove that the factor of 2 is tight. The proof makes use of a key physically relevant
property of these dynamical semigroups, detailed balance, showing that this property is intimately connected
with the field of recovery maps from quantum information theory. We envisage that the connections made here
between the two fields will have further applications. We also use this connection to show that a similar relation
can be derived when the fixed point is not thermal.

DOI: 10.1103/PhysRevA.96.022118

I. INTRODUCTION

It is very often observed in nature that physical systems
relax to an equilibrium state. This phenomenon, which has
very evident consequences at the macroscopic scales of our
everyday experience, ultimately relies on the dynamics of the
microscopic components. This fact was understood in the early
days of statistical mechanics, and since then a large amount of
work has been produced with the aim of trying to understand
how exactly physical systems reach thermal equilibrium.

Any such evolution will be ultimately generated through
some reversible dynamics on a large composite system that
is effectively irreversible, as seen by a smaller part of
that composite system. This irreversibility means that, in a
coarse-grained sense, entropy will be produced throughout
the process. The entropy production can be linked to the
fact that correlations between a big thermal object (a heat
bath) and one smaller subsystem S are increasingly harder to
access, which forces the coarse-graining of the description [1].
Intuitively, the more irreversible a process is, the more entropy
is produced, and the closer a particular system will be to
equilibrium.

In this work we look at a commonly used family of
quantum evolutions that models the dynamics of a system
weakly coupled to a thermal bath and show explicitly how
the amount of entropy produced along a particular evolution
is related to how much a state changes along that evolution.
These maps were first studied by Davies [2] and are a quantum
generalization of the classical Glauber dynamics.

In the limit of a large thermal bath, the total entropy
produced by such a process is given by how much the free
energy of a system decreases with time [3]. The free energy
for a state ρS(t) at time t is defined as

Fβ(ρS(t)) = Tr[ĤSρS(t)] + 1

β
Tr[ρS(t) ln ρS(t)], (1)

*alvaro.alhambra.14@ucl.ac.uk
†mischa.woods@gmail.com

where ĤS is the Hamiltonian of the subsystem of interest,
and β−1 is the temperature of the bath. Moreover, for an
evolution from time t = 0 to t , the total amount of Von
Neumann entropy produced, the so-called entropy production,
is given by Fβ(ρS(0)) − Fβ(ρS(t)) = β�E − �S, with �E,
�S the changes in mean energy and Von Neumann entropy
of the system. Due to the contractivity property of the
quantum relative entropy, this quantity is non-negative and
nondecreasing with t � 0.

The reason for this name is as follows. For a large thermal
reservoir, small changes of energy (that is, heat transferred
to the system) are proportional to changes of entropy in it,
with proportionality constant 1

β
. Hence, we can identify the

change in energy in the system with a change of entropy in
the reservoir β�E � −�Sbath, so that the difference in free
energy of the system for a time interval �t is equal to the
total entropy generated during the interval �t in system and
bath. Therefore, this entropy production constitutes a natural
measure of the irreversibility of the process.

Our main result is Theorem 2, which states that under the
condition that the interaction between system and bath is time
independent, we can lower bound the entropy production at
time t by the state at time 2t .

This sharpens some intuitive notions, namely, that if not
much entropy is produced during a time interval �t , the state
will not change very much during the time interval 2�t , but
if it does, then a large amount of entropy must have been
produced at an earlier time, namely, during the time interval
�t .

Recovery maps have found many applications in quantum
information theory, such as coding theorems [4,5], approxi-
mate error correction [6], or asymmetry [7]. They also appear
in the derivation of quantum fluctuation theorems [8,9].

Our results are inspired by findings in quantum infor-
mation theory about recovery maps. Specifically, they are
a consequence of the observation that if a dynamical map
satisfies quantum detailed balance (QDB), a property of
thermodynamical processes, then this implies that the map is
its own recovery map. The connection between information
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theory and thermodynamics goes back a long way, to the
seminal work of Landauer [10], and has furthered our
understanding of both significantly. Within the current surge of
information-theory approaches to quantum thermodynamics
(see [11] for a review), our result provides another example of
how ideas from one may find definite applications in the other.

We shall first introduce Davies maps, outlining their
properties. This is followed by the statement of the main result
and a discussion on the bound itself. We finally conclude with
some suggestions for open questions.

II. DAVIES MAPS AND ENTROPY PRODUCTION

Davies maps are a particular set of quantum dynamical
semigroups that describe the evolution of a system on a dS

dimensional Hilbert space that is weakly interacting with a
heat bath. The first rigorous derivation of their form was given
in [2] (see [12,13] for more modern treatments). As they are
time-continuous quantum semigroups, their generator takes
the form of a Lindbladian operator, which we define as

dρS(t)

dt
= L(ρS(t)) + iθ (ρS(t)), (2)

where L is called the Lindbladian and θ (·) = −[Heff,·] is
called the unitary part, with Heff the effective Hamiltonian. The
solution is a one-parameter family of completely positive and
trace-preserving (CPTP) maps M�(·), � � 0, which governs
the dynamics, M�(ρ(t)) = ρ(t + �). We will not delve into
the full details here but instead highlight the important
properties the canonical form of Davies maps, denoted Tt (·),
possess:

(1) They arise from the weak system-bath coupling limit.
(2) They can be written in the form Tt (·) = eitθ+tL(·), with

θ and L time independent.
(3) θ and L commute: θ (L(·)) = L(θ (·)).
(4) They have a thermal fixed point, Tt (τS) = τS , where τS

is the Gibbs state of the system at temperature TS .
(5) Their Lindbladians and unitary part satisfy QDB:

〈A,L†(B)〉� = 〈L†(A),B〉�, (3)

[Heff,�] = 0, (4)

for all A,B ∈ CdS×dS , where L† is the adjoint Lindbladian.
� can be any quantum state. However, in the case of Davies
maps, � = τS . The scalar product in Eq. (3) is defined as

〈A,B〉� := Tr[�1/2A†�1/2B]. (5)

This is sometimes referred to as reversibility or Kubo-Martin-
Schwinger (KMS) condition. It is stronger than (4), since it
has as a consequence that � is the fixed point, as L(�) = 0.

In Appendix A we give a more detailed account of the
microscopic origin of these maps and of the form of the
weak-coupling limit, property (1). In the literature, there are
various different definitions of QDB which generally are not
equivalent. We show in Appendix D that for maps satisfying
time-translation symmetry, such as Davies maps, definition (5)
is equivalent to the definition of QDB in [12,14].

In addition to the properties above, the following is
sometimes assumed:

(6) The dynamics associated with Davies maps converge
to the fixed point, limt→∞ Tt (ρS(0)) = τS .

Such convergence is guaranteed if more stringent condi-
tions are imposed on the Davies map [15–18]. We will not
need to assume (6) here.

Since we wish to bound the distance from the state at time
t to the fixed point, we need a distance measure. For this we
use the relative entropy D(ρ‖σ ) = Tr[ρ(ln ρ − ln σ )]. This
measure is meaningful since it is non-negative, zero iff ρ = σ ,
and is contractive under CPTP maps. For the special case that
σ is a Gibbs state, it has an interpretation in terms of a free
energy,

D(ρ(t)||τS) = βFβ(ρS(t)) − ln ZS, (6)

where ZS = Tr[e−βHS ] is the partition function of the system,
which we assume is constant. We can thus write the entropy
production in terms of a difference in relative entropy as

D(ρ(0)||τS) − D(ρ(t)||τS) = β
(
Fβ(ρS(0)) − Fβ(ρS(t)) ).

(7)

As one intuitively might expect, this entropy production
only depends on the dissipative part of the dynamics, as we
explain in Appendix A 3 of the Appendix. Therefore, we will
assume for simplicity that θ = 0 in the next section unless
stated otherwise.

If one were to change the initial state of the environment for
the maximally mixed state, then the system can only exchange
entropy but not heat or energy with it. These correspond to
unital maps, in which case the free energy is replaced with the
entropy gain of the system alone. In that case, a lower bound
on the entropy they produce in terms of the adjoint of the unital
map can be found in [19].

III. MAIN RESULTS

Our main result is a tight lower bound on the change of free
energy and total entropy produced, within a finite time. We
start with a lemma for Davies maps, which is an initial step in
its derivation:

Lemma 1: All Davies maps Tt (·) satisfy the inequality

D(ρS(0)‖τS) − D(ρS(t)‖τS) � D(ρS(0)‖T̃ (ρS(t))), (8)

where T̃t (·) is the time-reversed map or Petz recovery map,
defined as

T̃t (·) = τ
1/2
S T

†
t

(
τ

−1/2
S (·)τ−1/2

S

)
τ

1/2
S , (9)

with T
†
t denoting the adjoint of Tt .

Proof. See Appendix A 2. �
Equation (9) proves a physically relevant particular case

of an open conjecture about general quantum maps first
formulated in [20]. The strongest possible version of the
conjecture is known to not be true in full generality [21],
although it has been shown for particular sets such as unital
maps [19], classical stochastic matrices [20], catalytic thermal
operations [22], and we here show it for Davies maps. All these
results relate the decrease of relative entropy with a measure
of how well a given pair of states can be recovered through
a particular recovery map and are generalizations of an early
result by Petz [23]. For the best results to date on general
quantum maps, see [24–27].

022118-2
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For Lemma 1 to hold, only properties (1) and (4) are
required. In addition, we find that there is a connection between
property (4) and the Petz recovery map which we will now
explain. A quantum dynamical semigroup Mt which obeys
QDB has a Petz recovery map M̃t which is equal to the
map itself, M̃t = Mt (see Theorem 8 in Appendix A). Petz
derived his famous recovery map in 1986 [23], while the
first appearance of the detailed balance condition goes back
at least to the work of Boltzmann in 1872 [28] and QDB to
Alicki in 1976 [29]. To the best of the authors’ knowledge, this
connection between results from the communities of quantum
information theory and quantum dynamical semigroups was
previously unknown. Perhaps the closest previous work is [30],
which defines detailed balance as the property that the recovery
map is equal to the map itself. Our work implies that for the
special case of the Petz recovery map, the detailed balance
definition of [30] is equal to definition (5), which is satisfied
by Davies maps.

The classical definition of detailed balance, in terms of the
transition probabilities p(j |i) of a classical Master equation,
implies that at equilibrium, a particular jump between energy
levels Ei → Ej has the same total probability as the opposite

jump Ej → Ei , such that p(j |i) e−βEi

Z
= p(i|j ) e

−βEj

Z
. The

condition in Eq. (3) is the most natural quantum generalization
of that (although as shown in [31], different ones are also
possible). In that sense, QDB can be understood as the fact
that a particular thermalization process coincides with its own
time-reversed map, which is defined as in Eq. (9) (for more
details, see, e.g., [32,33]).

On the other hand, the Petz recovery map 	̃(·), given a state
σ and a CPTP map 	(·), is formally defined as [23,34,35]

	̃(·) = σ 1/2	†(	(σ )−1/2(·)	(σ )−1/2)σ 1/2. (10)

This map is such that we have that iff D(ρ||σ ) =
D(	(ρ)||	(σ )), then 	̃(	(ρ)) = ρ and 	̃(	(σ )) = σ . It ap-
pears in quantum information theory when one tries to find the
best possible way to recover data after it is processed [36,37].

We can hence rewrite Lemma 1 using Eq. (7) as follows:
Theorem 2: All Davies maps Tt (·), satisfy the inequality

Fβ(ρS(0)) − Fβ(ρS(t)) � 1

β
D(ρS(0)‖ρS(2t)). (11)

Proof. See Appendix A 3. �
In addition to assuming detailed balance, condition (5), we

have also used condition (2). If the Lindbladian L is time
dependent, i.e., (2) is not satisfied, Eq. (11) holds but with
ρS(2t) replaced with Tt (ρ(t)).

While, as mentioned at the end of Sec. II, entropy
production is invariant under a change in the unitary part of the
dynamics, it is interesting to find the Petz recovery map when
θ is not set to zero. We show in Lemma 9 in the Appendix that
the Petz recovery map M̃t (·) of a map Mt (·) satisfying QDB
and for which L and θ commute [property (3) of the Davies
maps] reverses the unitary part of the dynamics, while keeping
the same dissipative part, that is,

M̃t (·) = e−itθ+tL(·), (12)

Entropy produced

k=2

0.5 1 1.5 2 t

0.2

0.4

D(ρS(0)⏐⏐τS)

FIG. 1. An example of the inequality in Theorem 2 for a Davies
map on a qutrit given in [38]. The solid (blue) curve is the amount
of entropy produced βFβ (ρ(0)) − βFβ (ρ(t)) and the dashed (purple)
the lower bound D(ρS(0)||ρS(2t)). It can be seen how the lower bound
at t = 0 starts at zero, and how for large times the two curves quickly
converge to the total amount of entropy produced D(ρS(0)||τS). The
y axis is dimensionless and the x axis is in units of the inverse of the
coupling constant of the semigroup.

and thus T̃t (Tt (·)) = e2tL(·). So not only is the left-hand side
(l.h.s.) of Eq. (11) invariant under a change in the unitary part
of the dynamics, but so is the right-hand side (r.h.s.).

In Fig. 1 we show a simple example of the inequality for
the case of Davies maps applied on a qutrits. Equation (11)
is tight at t = 0 and also in the large time limit, as long as
condition (6) is satisfied. In this limit, the total entropy that
has been produced is equal to 1

β
D(ρ(0)||τS), which both sides

of the inequality approach as ρS → τS .
On the other hand, for very short times, the lower bound

becomes trivial. In particular, in Appendix A 4 we show what
both sides of the inequality tend to the limit of infinitesimal
time transformations. The entropy production becomes a rate,
and the lower bound to it approaches 0.

Nontrivial lower bounds on the rate of entropy production,
in the form of log-Sobolev inequalities [39], can be used to
derive bounds on the time it takes to converge to equilibrium
for particular instances of Davies maps. Hence, given that
Theorem 2 is completely general, and holds also for Davies
maps that do not efficiently reach thermal equilibrium, the fact
that the lower bound vanishes for infinitesimal times is not
surprising.

Recall that the factor of 2 in Eq. (11) is a consequence
of the observation that the Petz recovery map is equal to
the map itself. A natural question is then, is the factor 2
fundamental? We show that this is indeed the case with the
following theorem.

Theorem 3: (Tightness of the entropy production bound.)
The largest constant k � 0 such that

Fβ(ρS(0)) − Fβ(ρS(t)) � 1

β
D(ρS(0)‖ρS(k t)) (13)

holds for all Davies maps is k = 2.
Proof. Due to Theorem 2, we only need to find a simple

family of Davies maps for which the violation is proven
analytically for all k > 2. See Appendix B for proof. �

See Fig. 2 for more details. This means that Eq. (2) is the
strongest constraint of its kind that Davies maps obey, and
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Entropy produced

k=2

k=3

k=1.5

0.5 1 1.5 2 t

0.2

0.4

D(ρS(0)⏐⏐τS)

FIG. 2. Example plots for Theorem 3 for the Davies map for
qubits from [38]. The solid (blue) curve is the amount of entropy
produced βFβ (ρ(0)) − βFβ (ρ(t)) [l.h.s. of Eq. (13)] while the dashed
lines correspond to D(ρ(0)‖ρ(kt)) [r.h.s. of Eq. (13)] for different k.
We see that when the constant k is greater than 2 the bound does
not hold anymore, showing that the k = 2 case is indeed special. For
k < 2 the bound holds intuitively (given that it holds for k = 2), but
results in a worse bound. This shows that the constraint set by Eq. (11)
reflects a special feature of how Davies maps thermalize. Moreover,
we see that a k > 2 would predict (incorrectly) a faster thermalization
rate, thus confirming that Eq. (11) is an implicit universal bound on the
rate of thermalization for Davies maps. The y axis is dimensionless,
and the x axis is in units of the inverse of the coupling constant of the
semigroup.

it hence sets an optimal relation between how much the free
energy and the systems state at a later time change during a
thermalization process.

IV. BEYOND DAVIES MAPS

We now turn our attention to what recent developments
from quantum information theory can say about convergence
of dynamical semigroups in general. A recent advancement
in quantum information is the development of universal
recoverability maps [24,25,27]. By universal recoverability,
it is meant that given a state σ and a CPTP map 	, one
can use the recovery map to lower bound the relative entropy
difference D(ρ‖σ ) − D(	(ρ)‖	(σ )) for all quantum states ρ.
In general the lower bound takes on a complicated form (see
Appendix C). However, for the case of dynamical semigroups
satisfying QDB and the following property, the bound is more
explicit.

Let us assume that we have a one-parameter dynamical
semigroup Mt (·) equipped with a fixed point � that satisfies a
condition we call time-translation symmetry with respect to a
fixed point (TTSFP):

L(·) = �itL(�−it (·)�it )�−it ∀t ∈ R. (14)

This condition is satisfied, for example, by dynamical semi-
groups which arise naturally in the weak-coupling limit or the
low-density limit. Davies maps are one such example, but there
are others [40].

The properties lead to the following result:

Theorem 4: Let the quantum dynamical semigroup Mt (·)
satisfy QDB and TTSFP. Then the following holds:

D(ρ(0)||�) − D(ρ(t)||�) � −2 ln F (ρ,Mt (ρ(t))), (15)

where F (ρ,σ ) = Tr[
√√

σρ
√

σ ] is the quantum fidelity.
Moreover, if the generators are time-independent we may write
Mt (ρ(t)) = ρ(2t).

It is well known that D(ρ‖σ ) � −2 ln F (ρ‖σ ) with equal-
ity only for special instances. Therefore, for Davies maps,
Eq. (15) is satisfied but with a weaker bound than Theorem 2.

V. CONCLUSION

One of the main features in the study of dynamical
thermalization processes, such as Davies maps, is QDB. By
using tools from quantum information theory, we show that
the entropy produced after a time t is lower bounded by how
well one can recover the initial ρS(0) state from the state ρS(t)
via a recovery map. We then show that, due to QDB, the best
way to perform the recovery is to time evolve forward in time
an amount t to the state ρS(2t). Also, if one time evolves
ρS(t) for time t ′ < t , a worse bound is generated, while if
one evolves for t ′ > t , the bound is not true for all Davies
maps, thus showing that the connection between reversibility
and recoverability suggested by QDB leads to tight dynamical
bounds.

One of the important questions regarding Davies maps is
how fast they converge to equilibrium. There have been several
approaches to this question, mostly inspired by their classical
analogs, which include the computation of the spectral gaps
[13,31,41] or the logarithmic-Sobolev inequalities [39,42]. In
particular, we note that the latter take the form of upper bounds
on distance measures between ρS(t) and the thermal state.
Likewise Eq. (11) can be rearranged to give an upper bound in
terms of the relative entropy to the Gibbs state, D(ρS(t)‖τS) �
D(ρS(0)‖τS) − D(ρS(0)‖ρS(2t)). It would be interesting to
know if the bound of Eq. (11), for primitive Davies maps,
i.e., the dynamics converge to a unique fixed point, contains
information about their asymptotic convergence. For instance,
one could look at how fast is the inequality saturated in
particular cases; however, we leave this for future work.

Another potential application of our work in open quantum
systems is to use a tightened monotonicity inequality to
find when information backflow occurs in non-Markovian
dynamics [43].

The condition of detailed balance is ubiquitous in ther-
malization processes, and in particular, current algorithms for
simulating thermal states on a quantum computer, such as the
quantum Metropolis algorithm [44], obey it, which makes it
all the more interesting. As such, the useful connection we
establish here between the Petz recovery map and QDB is
likely to have further implications for both thermodynamics
and information theory.
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APPENDIX A: TECHNICAL RESULTS

1. Davies maps and conditions for Lemma 1

Davies maps are derived from considering the dynamics of
a state ρS ∈ S(HS ), where HS is of finite dimension dS , in
contact with a thermal bath on an infinite-dimensional Hilbert
spaceHB. We will here specify the minimal assumptions about
the bath and its interaction with the system necessary for the
derivation of Lemma 5 and Lemma 1. In order to guarantee
other properties, such as the existence of a fixed point or
detailed balance, more subtle constraints are also necessary.

Let ĤB be a self-adjoint Hamiltonian onHB. Since we want
states on ĤB to be thermodynamically stable, we assume that
ZB = Tr[exp(−βĤB )] < ∞ for all β > 0. ĤB must therefore
have a purely discrete spectrum, which is bounded below and
has no finite limit points; that is, there are only a finite number
of energy levels in any finite interval �E. The quantum state
ρS ∈ S(HS ) with its free self-adjoint Hamiltonian ĤS of finite
dimension interacts with the system via a bounded interaction
term Î ∈ B(HS ⊗ HB), with a parameter λ > 0 determining
the interaction strength as follows:

ĤSB = ĤS ⊗ 1B + 1S ⊗ ĤB + λ Î . (A1)

The initial state on S(HS ⊗ HB) is assumed to be product,
ρS ⊗ τB , with τB the Gibbs state at inverse temperature β.
The dynamics of the system at time t̃ is given by the unitary
operator

U (t̃) := e−it̃ ĤSB (A2)

after tracing out the environment, more precisely, by

TrB[U (t̃)ρS ⊗ τB U †(t̃)] ∈ S(HS), (A3)

where U † denotes the adjoint of U .
The Davies map Tt (·) is defined by taking the limit that the

interaction strength λ goes to zero, while the time t̃ goes to
infinity while maintaining t̃λ2 := t fixed. More concisely,

Tt (·) = lim
λ→0+

TrB[U (t̃)(·) ⊗ τB U †(t̃)]

∈ S(HS) subject to t̃λ2 = t fixed. (A4)

It is assumed that in this limit U (t̃) and its inverse U †(t̃)
are still unitary operators mapping states on S(HS ⊗ HB) to
states on S(HS ⊗ HB). To gain more physical insight into this
construction, we refer to [2,15,45]. We remind the reader that
the conditions described in Sec. A 1 are not sufficient for the
map Tt (·) to satisfy other properties, such as the convergence
to a fixed point or detailed balance; more subtle constraints
are also necessary. We will not go into the details of these
additional conditions, since only sufficient (but perhaps not
necessary) conditions are known, e.g., [2]. In other sections,
we will additionally take advantage of the known fact that
Davies maps satisfy quantum detailed balance.

2. Proof and statement of Lemma 1

In order to prove the main theorem we need a lemma
about Davies maps first. We show that in the weak-coupling
limit, correlations between the system and the environment
(the bath) are not created if both start as initially uncorrelated
thermal states. In order to do this, we will need to introduce a

finite-dimensional cutoff on HB and prove the results for the
truncated space, finally proving uniform convergence in the
bath system size by removing the cutoff by taking the infinite-
dimensional limit. Let P̂n denote the projection onto a finite-
dimensional Hilbert space HB,n ⊂ HB . Furthermore, assume
that HB,1 ⊂ HB,2 ⊂ HB,3 . . . and that limn→∞ HB,n = HB .
For concreteness (although not strictly necessary), one could
let P̂n = ∑n

k=0 |Ek〉〈Ek|, where |E0〉,|E1〉,|E2〉, . . . are the
eigenvectors of ĤB ordered in increasing eigenvalue order.

We define the truncated self-adjoint Hamiltonians on HB as
Ĥ

(n)
B = P̂nĤBP̂n with a corresponding Gibbs state denoted by

τB,n ∈ S(HB,n). Similarly, we construct unitaries on HB,n by

Un = exp
(−i�Ĥ

(n)
SB

)
, Ĥ

(n)
SB = (1S ⊗ P̂n) ĤSB (1S ⊗ P̂n),

(A5)

and define În := (1S ⊗ P̂n) Î (1S ⊗ P̂n). We recall the
definition of the thermal state of the system τS ∈ S(HS),
which is given by

τS = eβĤS

ZS

, ZS > 0, (A6)

for some inverse temperature β > 0
The lemma is the following:
Lemma 5 (Correlations at the fixed point): Let α > 0,

� ∈ R, and the constant Z̃
n,α
SB = Tr[(τS ⊗ τB,n)α]. Then, for

all n ∈ N+, we have the bound

1
2‖Un(τS ⊗ τB,n)αU †

n − (τS ⊗ τB,n)α‖1 � Z̃
n,α
SB β

√
λ‖În‖,

(A7)

where τS , τB,n are thermal states at inverse temperatures βS ,
βB,n, respectively, and ‖ · ‖1, ‖ · ‖ is the one-norm and operator
norm, respectively.

Proof. The result is a consequence of mean energy con-
servation under the unitary transformation Un and Pinsker’s
inequality.

Define the shorthand notation τ̃
n,α
SB =Un(τS ⊗τB,n)αU

†
n/Z̃

n,α
SB∈ S(HS ⊗ HB,n) and Z̃

n,α
SB := Z̃α

S Z̃
n,α
B , Z̃α

S := Tr[τα
S ], Z̃n,α

B :=
Tr[τα

B,n]. By direct evaluation of the relative entropy,

D
[
τ̃

n,α
SB

∥∥(τS ⊗ τB,n)α
/
Z̃

n,α
SB

]/
β

= Tr
[
ĤS τ̃

n,α
S

] + Tr
[
Ĥ

(n)
B τ̃ α

B,n

]
− (αβ)−1S

(
τα
S ⊗ τα

B,n

/
Z̃

n,α
SB

) + ln
(
Z̃

n,α
SB

)
, (A8)

where we have used unitary in-variance of the von Neumann
entropy S(·). Thus since

0 = D
[
(τS ⊗ τB,n)α

/
Z̃

n,α
SB

∥∥(τS ⊗ τB,n)α
/
Z̃

n,α
SB

]/
β (A9)

= Tr
[
ĤSτ

α
S

/
Z̃α

S

] + Tr
[
Ĥ

(n)
B τα

B,n

/
Z̃

n,α
B

]
− (αβ)−1S

(
τα
S ⊗ τα

B,n

/
Z̃

n,α
SB

) + ln
(
Z̃

n,α
SB

)
, (A10)

we conclude

D
[
τ̃

n,α
SB

∥∥(τS ⊗ τB,n)α
/
Z̃

n,α
SB

]/
β

= Tr
[
ĤS τ̃

n,α
S

] + Tr
[
Ĥ

(n)
B τ̃

n,α
B

] − Tr
[
ĤSτ

α
S

/
Z̃

n,α
S

]
− Tr

[
Ĥ

(n)
B τα

B,n

/
Z̃

n,α
B

]
. (A11)
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Energy conservation implies

Tr
[
Ĥ

(n)
SB (τS ⊗ τB,n)α

/
Z̃

n,α
SB

] = Tr
[
Ĥ

(n)
SB τ̃

n,α
SB

]
. (A12)

Combining Eqs. (A12) and (A11) we achieve
D

[
τ̃

n,α
SB

∥∥(τS ⊗ τB,n)α
/
Z̃

n,α
SB

]
= Tr

(
λÎn

[
τ̃

n,α
SB − (τS ⊗ τB,n)α

/
Z̃

n,α
SB

])
β. (A13)

Pinsker inequality states that for any two density matrices ρ, σ ,
D(ρ‖σ ) � 1

2‖ρ − σ‖2
1. (A14)

It follows from it, and from Eq. (A13),
‖Un(τS ⊗ τB,n)αU †

n − (τS ⊗ τB,n)α‖1

� Z̃
n,α
SB β

√
2 Tr

(
λÎn

[
τ

n,α
SB − (τS ⊗ τB,n)α

/
Z̃

n,α
SB

])
(A15)

� 2Z̃
n,α
SB β

√
sup

ρ∈S(HS⊗HB,n)
|Tr[În ρ]|λ (A16)

� 2Z̃
n,α
SB β

√
λ‖În‖. (A17)

�
This lemma may be of independent interest, as it makes

explicit the idea mentioned in previous work such as [46] of
how Davies maps, in the weak-coupling limit, can be taken as
free operations in the resource theory of athermality [47,48].

With it at hand, we can prove the central lemma.
Lemma 6 (Lemma 1 of main text): Assume conditions in

Sec. A 1 hold. Then all maps Tt (·) satisfy the inequality

D((·)‖τS) − D(Tt (·)‖τS) � D[(·)‖T̃t (Tt (·))], ∀ t � 0,

(A18)

where T̃t (·) is the Petz recovery map corresponding to Tt (·),

T̃t (·) = τ
1/2
S T

†
t

(
τ

−1/2
S (·)τ−1/2

S

)
τ

1/2
S , (A19)

with T
†
t denoting the adjoint of Tt .

Proof. Had there been no interaction term (i.e., λ = 0) and
the bath been finite dimensional, the proof of this lemma would
have been straightforward using the techniques developed in
[22] involving simple manipulations of the relative entropy and
the data processing inequality for finite-dimensional baths. The
added difficulty here will be in proving monotone convergence
as the bath Hilbert space tends to infinity. To achieve this, we
will use Lemma 5 and continuity arguments. We will perform
the calculations for the map TrB(e−it̃ ĤSB (·) ⊗ ρB eit̃ ĤSB ) rather
than Tt (·) itself. We will finally take the limit described in
Eq. (A4) to conclude the proof.

Noting that the relative entropy between two copies is
zero, followed by using its additivity and unitarity invariance
properties, we find for ρS ∈ S(HS),

D(ρS‖τS) = D(ρS ⊗ τB,n‖τS ⊗ τB,n)

= D(UnρS ⊗ τB,nU
†
n‖UnτS ⊗ τB,nU

†
n) (A20)

= D(UnρS ⊗ τB,nU
†
n‖τS ⊗ τB,n +

√
λB̂n(λ)),

(A21)

where B̂n(λ) := (UnτS ⊗ τB,nU
†
n − τS ⊗ τB,n)/

√
λ.

With the identity D(γCD‖ζCD) − D(γD‖ζD) =
D[γCD‖ exp(ln ζCD + ln1C ⊗ ζD − ln1C ⊗ ζD)] for
bipartite states γCD , ζCD , we have that

D[UnρS ⊗ τB,nU
†
n‖τS ⊗ τB,n +

√
λB̂n(λ)] − D[σS‖τS +

√
λTrB,n(B̂n(λ))] (A22)

= D(UnρS ⊗ τB,nU
†
n‖ exp[ln[τS ⊗ τB,n +

√
λB̂n(λ)] + ln σS ⊗ 1B,n − ln[τS +

√
λTrB,n(B̂n(λ))] ⊗ 1B,n]) (A23)

� D(ρS‖TrB,n[U †
n exp[ln[τS ⊗ τB,n +

√
λB̂n(λ)] + ln σS ⊗ 1B,n − ln[τS +

√
λTrB,n(B̂n(λ))] ⊗ 1B,n]Un]), (A24)

where σS,n := TrB,n(UnρS ⊗ τB,nU
†
n) and in the last line we have used the unitarity invariance of the relative entropy followed

by the data processing inequality. Plugging Eq. (A21) into Eq. (A24) followed by taking the n → ∞ limit, we obtain

D(ρS‖τS) − D[σS‖τS +
√

λTrB(B(λ))] (A25)

� D(ρS‖TrB[U † exp(ln[τS ⊗ τB +
√

λB̂(λ)] + ln σS ⊗ 1B − ln[τS +
√

λTrB(B̂(λ))] ⊗ 1B)U ]), (A26)

where we have defined B̂(λ) := limn→∞ B̂n(λ), σS :=
limn→∞ σS,n. Before continuing, we will first note the validity
of Eq. (A26). We start by showing that B̂(λ) is trace class for
λ ∈ [0,1]. From Lemma 5 it follows

‖B̂n(λ)‖1 � 2Z̃
n,1
SB β

√
‖În‖, (A27)

for all λ ∈ [0,1] with the r.h.s. λ independent. By definition of
Z̃

n,α
SB , it follows that it is the partition function of a tensor prod-

uct of thermal states on S(HS ⊗ HB,n) at inverse temperatures
αβS,αβ. Since the Hamiltonians ĤB,1,ĤB,2,ĤB,3, . . . ,ĤB

by definition have well-defined thermal states (finite parti-
tion functions) for all positive temperatures, it follows that
limn→∞ Z̃

n,α
SB < ∞ for all α > 0. Thus noting that by defini-

tion, limn→∞ ‖În‖ = ‖Î‖ and that Î is a bounded operator, it

follows that

‖B̂(λ)‖1 = lim
n→∞ ‖B̂n(λ)‖1 = 2Z̃

∞,1
SB β

√
‖Î‖ < ∞. (A28)

Thus since τS + √
λTrB(B̂(λ)) is finite dimensional and Her-

mitian, and the eigenvalues of finite-dimensional Hermitian
matrices are continuous in their entries [49,50], it follows,
since τS has full support, that there exists 0 < λ∗ � 1 such that
for all λ ∈ [0,λ∗], τS + √

λTrB(B̂(λ)) has full support. Thus
for all λ ∈ [0,λ∗], the r.h.s. of Eq. (A26) is upper bounded by
a finite quantity uniformly in n → ∞ and thus since relative
entropies are non-negative by definition, Eq. (A26) is well
defined for all λ ∈ [0,λ∗].
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We now set � appearing in U to � = t/λ2, followed by
taking the limit λ → 0+ while keeping t fixed in Eq. (A26),
thus achieving

D(ρS‖τS) − D(Tt (ρS)‖τS) � D(ρS‖TrB[U †Tt (ρS) ⊗ τBU ]),

(A29)

where we have used that by definition, Tt (·) =
limλ→0+ TrB[U (·) ⊗ τBU †].

We now proceed to calculate the Petz’s recovery map for
the map Tt (·). The adjoint map is TrB[τ 1/2

B U †((·) ⊗ 1B)Uτ
1/2
B ].

Hence from the definition in Eq. (A50) it follows that the Petz
recovery map for Tt (·) is

T̃t (·) := τ
1/2
S TrB

[
τ

1/2
B U †(τ−1/2

S (·)τ−1/2
S ⊗ 1B

)
Uτ

1/2
B

]
τ

1/2
S .

(A30)

Similarly to before, we define a traceless, self-adjoint op-
erator B̃ = B̃(λ) := [Uτ

1/2
S ⊗ τ

1/2
B U † − τ

1/2
S ⊗ τ

1/2
B ]/

√
λ. In

analogy with the reasoning which led to Eq. (A28), it
follows from Lemma 5 that ‖B̃(λ)‖1 = limn→∞ ‖B̃n(λ)‖1 =
2Z̃

∞,1/2
SB β

√
‖Î‖ < ∞, for all λ ∈ [0,1]. For general U =

exp(−i�ĤSB ), we can now write

τ
1/2
S TrB

[
τ

1/2
B U †(τ−1/2

S (·)τ−1/2
S ⊗ 1B

)
Uτ

1/2
B

]
τ

1/2
S (A31)

= TrB
[(

U †τ 1/2
S ⊗ τ

1/2
B +

√
λU †B̃

)(
τ

−1/2
S (·)τ−1/2

S ⊗ 1B

)

× (
τ

1/2
S ⊗ τ

1/2
B U +

√
λB̃U

)]
(A32)

= TrB[U †((·) ⊗ τB)U ] +
√

λĝ1(·) + λĝ2(·) ∈ S(HB),

(A33)

where

ĝ1(·) = TrB
[
U †B̃

(
τ

−1/2
S (·) ⊗ τ

1/2
B

)
U

]
+ TrB

[
U †((·)τ−1/2

S ⊗ τ
1/2
B

)
B̃U

]
(A34)

ĝ2(·) = TrB
[
U †B̃

(
τ

−1/2
S (·)τ−1/2

S ⊗ 1B

)
B̃U

]
, (A35)

which are well defined since they are comprised of products of
bounded operators. Similarly to before, in Eq. (A33) we now
set � appearing in U to � = t/λ2 followed by taking the limit
λ → 0+ while keeping t fixed, achieving

T̃t (·) = TrB[U †((·) ⊗ τB)U ], (A36)

where we have used Eq. (A30). Hence substituting Eq. (A34)
in to Eq. (A29) and noting the equations holds for all states
ρS ∈ S(HB), we conclude the proof. �

Remark 7: In the above proof, we have taken two inde-
pendent limits, namely, first the infinite bath volume limit
(n → ∞) followed by the Van Hove limit (λ → 0+ while
keeping t fixed). This is the order in which Davies performed
the limits [2,45] when defining the Davies map. From physical
reasoning, one would expect the Davies map to be equally valid
if the order of the limits is reversed. We note that the proof of
Theorem 2 follows also if the order of the these two limits is
reversed, but now with the following new definitions:

Tt (·) = lim
n→∞ lim

λ→0+
TrB,n[Un(t̃)(·) ⊗ τB,n U †

n(t̃)]

∈ S(HS) subject to t̃λ2 = t fixed. (A37)

T̃t (·) = lim
n→∞ lim

λ→0+
τ

1/2
S TrB,n

[
τ

1/2
B,nU

†
n(t̃)

(
τ

−1/2
S (·)τ−1/2

S

⊗1B,n

)
Un(t̃)τ 1/2

B,n

]
τ

1/2
S . ∈ S(HS)

subject to t̃λ2 = t fixed. (A38)

An interesting technical question is whether the above limits
commute, i.e., whether Eqs. (A37), (A38) are identical to
Eqs. (A4), (A30).

3. Quantum detailed balance and Petz recovery map

Now we show that all Davies maps have the peculiar
property that they are the same as their Petz recovery map. This
is because of a crucial property satisfied by their generators:
quantum detailed balance. For Theorem 6 in the main text
to hold, we require both the conditions of Sec. A 1 and the
following lemma to hold. For the sake of generality, we show
the that the results are true for any fixed point � with full
support. We remind the reader that a dynamical semigroup
Mt (·) is a one-parameter family of CPTP maps with a generator
consisting of a unitary part, θ (·) = −[Ĥeff,·], and a dissipative
part called a Lindbladian, L(·), such that all together we have

Mt (·) = et iθ+tL(·). (A39)

Theorem 8 (Dissipative recovery map): A quantum dy-
namical semigroup Mt (·) with no unitary part, θ = 0, and
Lindbladian L satisfying quantum detailed balance [Eq. (3)]
for the state � with full rank is equal to its corresponding Petz
recovery map, namely,

Mt (·) = M̃t (·), (A40)

where

M̃t (·) = �1/2M
†
t (Mt (�)−1/2 · Mt (�)−1/2)�1/2. (A41)

Proof. The property of quantum detailed balance (also
sometimes referred to as the reversibility, or KMS condition)
reads

〈A,L†(B)〉� = 〈L†(A),B〉� (A42)

for all A,B ∈ CdS×dS , where L† is the adjoint Lindbladian, and
we define the scalar product

〈A,B〉� := Tr[�1/2A†�1/2B]. (A43)

Because Eq. (A42) holds for all A,B ∈ CdS×dS , Eq. (A42)
implies that [51]

L(·) = �1/2L†(�−1/2 · �−1/2)�1/2. (A44)

Equation (A42) automatically implies that any power of the
generator also obeys the same relation, that is, ∀ n ∈ N+,

〈A,L†n(B)〉� = 〈A,�−1/2L[�1/2 . . . �−1/2L(�1/2B�1/2)

×�−1/2 . . . �1/2]�−1/2〉� (A45)

= 〈A,�−1/2Ln(�1/2B�1/2)�−1/2〉� (A46)

= 〈L† n(A),B〉�, (A47)

where in the first line we use Eq. (A44) n times and the second
line follows from the definition of the adjoint map. Hence we
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can also write

Ln(·) = �1/2L† n(�−1/2 · �−1/2)�1/2. (A48)

The semigroup can be written as Mt (·) = eLt (·). Its adjoint
semigroup is given by eL

†t and hence the Petz recovery map is
[see Eq. (A50)]

M̃t (·) = �1/2eL
†t (�−1/2 · �−1/2)�1/2. (A49)

Since M̃t (·) = �1/2[
∑∞

n=0(tL)†n(�−1/2 · �−1/2)/(n!) ]�1/2,
Eq. (A49) together with Eq. (A48) means that M̃t (·) = Mt (·).

We note that the Petz recovery map is defined in terms of a
map 	(·) and a state σS as the unique solution to

〈A,	†(B)〉σS
= 〈	̃†(A),B〉	(σS ) (A50)

for all A,B ∈ CdS×dS and the scalar product is given by
Eq. (A43). The solution takes the form [51]

T̃ (·) = σ
1/2
S T †(T (σS)−1/2 · T (σS)−1/2)σ 1/2

S , (A51)

such that we always have that T̃ (T (σS)) = σS . Here this
simplifies by choosing σS = � a fixed point of Mt (·). �

When the generator is time independent and θ = 0, we thus
have from Theorem 8 that the combination of a map for a time
t and its recovery map is equivalent to applying the map for a
time 2t . That is, M̃t (Mt (·)) = M2t (·). This means we can write
Eq. (A18) in a particularly simple form.

The following lemma builds on Theorem 8 to extend it to
the case in which the dynamical semigroup also includes a
unitary part.

Lemma 9 (Dissipative and unitary recovery map): Let
Mt (·) be a quantum dynamical semigroup with unitary part θ

and Lindbladian L which (1) satisfy quantum detailed balance
[Eq. (3)] for the state � with full rank and (2) commute
θ (L(·)) = L(θ (·)). Then, Mt (·) has a Petz recovery map M̃(·)
which is a dynamical semigroup with unitary part −θ and
Lindbladian L. Namely, if

Mt (·) = et iθ+tL(·), (A52)

satisfying (1) and (2), then

M̃t (·) = e−t iθ+tL(·). (A53)

Proof. We just need to note two facts:
(1) The Petz recovery map of a unitary map U (·)U † that

had fixed point � is U †(·)U .
(2) The Petz recovery map of a composition of two maps

with the same fixed point is equal to the composition of the Petz

recovery maps of the individual maps, i.e., 	̃1 ◦ 	2 = 	̃2 ◦ 	̃1.
(This is one of the key properties listed in [20].)

We hence can write the recovery map of Mt (·) as

M̃t (ρS) = etL(eiHefft ρSe
−iHefft ) = eiHefft etL(ρS)e−iHefft . (A54)

The only difference between Mt and M̃t is the change of sign
in the time of the unitary evolution. The recovery map is then
made up of the dissipative part evolving forwards and the
unitary part evolving backwards in time. �

Theorem 10: (Theorem 2 of main text). Assume conditions
in Sec. A 1 hold and Tt (·) satisfies quantum detailed balance
[Eq. (3)] and has a zero unitary part, θ = 0. Then Tt (·) satisfies
the inequality

D((·)‖τS) − D(Tt (·)‖τS) � D((·)‖T2t (·)), t � 0. (A55)

Proof. Direct consequence of Theorems 8 and 6.
Remark 11 (When θ �= 0): Due to properties (3) and (5)

of the main text satisfied by Davies maps and the unitary
invariance of the relative entropy [i.e., D(U · U †‖U · U †) =
D(·‖·)], it follows that

D((·)‖τS)−D(Tt (·)‖τS)=D((·)‖τS)−D(etL(·)‖τS), (A56)

and thus the l.h.s. of Eq. (A55) is the same even when a
nonzero unitary part is included. Furthermore, we note that
the canonical form of Davies maps have θ (L(·)) = L(θ (·))
by definition [see property (3) in main text] and thus, due to
Lemma 9, even when θ �= 0, we have that

D[(·)‖T̃t (Tt (·))] = D[(·)‖e2tL(·)], (A57)

which is the r.h.s. of Eq. (A55). Thus applying Theorem 2, we
have

D((·)‖τS) − D(Tt (·)‖τS) = D((·)‖τS) − D(etL(·)‖τS)

� D((·)‖e2tL(·)), (A58)

for any θ .

4. Spohn’s inequality: rate of entropy production

We give an alternative proof of a well-known result which
was first shown in [3] that gives the expression for the
infinitesimal rate of entropy production of a Davies map. This
is stated without a proof in many standard references such as
[12,52]. Then we show in a similar way how in the infinitesimal
time limit our lower bound becomes trivial.

First we need the following lemma, the proof of which can
be found in, for instance, [53].

Lemma 12: Let 1 ∈ Cn×n be the identity matrix, and
A,B ∈ Cn×n be matrices such that both A and A + tB are
positive with t ∈ R. We have that

ln (A + tB) − ln A

= t

∫ 1

0

1

(1 − x)A + x1
B

1

(1 − x)A + x1
dx + O(t2).

(A59)

With this, we can show the following:
Theorem 13: Let L(ρS(t)) be the generator of a dynamical

semigroup, with a fixed point τS such that L(τS) = 0. We
have that the entropy production rate σ (ρS(t)) which is
given by

σ (ρS(t)) := −dD(ρS(t)||τS)
dt

= Tr[L(ρS(t))( ln τS − ln ρS(t))]

+ Tr[L(ρS(t))�ρS (t)] � 0, (A60)

where �ρS (t) is the projector onto the support of ρS(t). The
second term of the sum vanishes at all times for which the rate
is finite.

Proof. The last inequality (positivity) follows from the data
processing inequality for the relative entropy, so we only need
to prove the equality. The proof only requires Lemma 12 and

022118-8



DYNAMICAL MAPS, QUANTUM DETAILED BALANCE, AND . . . PHYSICAL REVIEW A 96, 022118 (2017)

some algebraic manipulations. We have that

dD(ρS(t)||τS)
dt

= lim
h→0

D(ρt+h||τS) − D(ρS(t)||τS)
h

(A61)

= lim
h→0

Tr[(ρS(t) + L(ρS(t))h)(ln {ρS(t) + L(ρS(t))h} − ln τS)] − Tr[ρS(t)(ln ρS(t) − ln τS)]
h

(A62)

= lim
h→0

1

h

[
Tr

[
(ρS(t) +L(ρS(t))h)

{
ln (ρS(t)) + h

∫ 1

0

1

(1 − x)ρS(t) + x1
L(ρS(t))

1

(1 − x)ρS(t) + x1
dx

}
ln τS

]

− Tr[ρS(t)(ln ρS(t) − ln τS)]
]

(A63)

= Tr[L(ρS(t))(ln ρS(t) − ln τS)] + Tr

[
ρS(t)

∫ 1

0

1

(1 − x)ρS(t) + x1
L(ρS(t))

1

(1 − x)ρS(t) + x1
dx

]
(A64)

= Tr[L(ρS(t))(ln ρS(t) − ln τS)] + Tr

[
ρS(t)L(ρS(t))

∫ 1

0

(
1

(1 − x)ρS(t) + x1

)2

dx

]
. (A65)

Where to go from the second to the third line we used
Lemma 12, and from the fourth to the fifth we use the cyclicity
and linearity of the trace. Now note the following integral:

∫ 1

0

(
1

(1 − x)p + x

)2

dx = 1

p
∀p �= 0. (A66)

This means that, on the support of ρS(t),

∫ 1

0

(
1

(1 − x)ρS(t) + x1

)2

dx = 1

ρS(t)
. (A67)

Note that outside the support of ρS(t) this integral is not well
defined. Given this, we can write

dD(ρS(t)||τS)
dt

= Tr[L(ρS(t))(ln ρS(t) − ln τS)]

+ Tr[L(ρS(t))�ρS (t)], (A68)

where �ρS (t) is the projector onto the support of ρS(t). The
Lindbladian is traceless Tr[L(ρS(t))] = 0, and hence second
term of this equation vanishes as long as supp[L(ρS(t))] ⊆
supp(ρS(t)), which we can expect for most times. At instants
in time when this is not the case and this term may give a finite
contribution (that is, when the rank increases), the first term in
Eq. (A68) diverges logarithmically [3], and hence that finite
contribution is negligible. �

A similar reasoning can be used to show that the instanta-
neous lower bound on entropy production rate that we can get
from our main result in Eq. (11) is trivial for most times. In
particular, we can show the following:

Lemma 14: The lower bound of Eq. (11) vanishes in the
limit of infinitesimal time transformations. More precisely, we
have that

lim
h→0

D[ρS(t)||ρS(t + 2h)]

h
= −2Tr[L(ρS(t))�ρS (t)], (A69)

where �ρS (t) is the projector onto the support of ρS(t). This
vanishes as long as supp[L(ρS(t))] ⊆ supp(ρS(t)).

Proof. The proof is similar to the one for Theorem 13 above,

lim
h→0

D[ρS(t)||ρ(t + 2h)]

h
= lim

h→0

1

h
Tr[ρS(t) ln ρS(t) − ln (ρS(t) + 2hL(ρS(t)))] (A70)

= Tr

[
−2ρS(t)

∫ 1

0

1

(1 − x)ρS(t) + x1
L(ρS(t))

1

(1 − x)ρS(t) + x1
dx

]
(A71)

= −2Tr[L(ρS(t))�ρS (t)], (A72)

where in the second line we applied Lemma 12, and in the
third we used Eq. (A67). �

Hence for infinitesimal times, the lower bound gives the
same condition as the positivity condition in Eq. (A60). It will
be nonzero only when supp[L(ρS(t))] � supp(ρS(t)), in which
case the rate of entropy production diverges (at points in time
when the rank of the system increases).

APPENDIX B: PROOF OF THEOREM 3

Here we prove the following theorem from the main text:
Theorem 15 (Tightness of the entropy production bound):

The largest constant k � 0 such that

Fβ(ρS(0)) − Fβ(ρS(t)) � 1

β
D[ρS(0)‖ρS(k t)] (B1)

holds for all Davies maps, is k = 2.
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Proof. We show the inequality is violated for any k > 2 by
finding a simple family of Davies maps for which the violation
is proven analytically.

Let us take the general form of a Davies map on a qubit,
and act on a state with initial density matrix ρ without
coherence in energy1 ρ(0) = diag(p(0),1 − p(0)), and with
a corresponding thermal state τ = diag(q,1 − q). The time
evolution of the Davies map is only that of the populations (as
no coherence in the energy eigenbasis is created), and it takes
the general form(

p(t)
1 − p(t)

)
=

(
1 − at at

q

1−q

at 1 − at
q

1−q

)(
p(0)

1 − p(0)

)
, (B2)

where at = (1 − q)(1 − e−At ) for some A > 0. Let us now
define the function

g(t,k) := βFβ(ρS(0)) − βFβ(ρS(t)) − D[ρS(0)‖ρS(k t)],

(B3)

and the variable x := e−At . One can show, after some algebra,
that for the time evolution of Eq. (B2),

g(x,k) = [(q − 1) + x(p(0) − q)] ln

(
1 + x

q − p(0)

1 − q

)
− [q + x(p(0) − q)]

+ (1 − p(0)) ln

(
1 + xk q − p(0)

1 − q

)

+p(0) ln

(
1 + xk p(0) − q

q

)
. (B4)

For large t , x will be arbitrarily small and hence we can expand
the logarithms up to leading order in x. The zeroth and first-
order terms in x cancel out, and we obtain

g(x,k) = −1

2q(1 − q)
x2(p(0) − q)2

+ 1

q(1 − q)
xk(p(0) − q)2 + O(x3). (B5)

We see that if k > 2, for sufficiently large time, the kth-order
term will be very small compared to the x2 one, which is
always negative. For k = 2 we have

g(x,2) = 1

2q(1 − q)
x2(p(0) − q)2 + O(x3), (B6)

such that the leading order is always positive. This completes
the proof. �

APPENDIX C: MAPS BEYOND DAVIES

Given that the inequality in Eq. (8) is saturated in some
limits, such as when the evolution approaches the fixed point,
it is unlikely that a stronger inequality of a similar kind can
be derived, even in particular cases. However, general results

1We assume no coherence for simplicity. An analogous, yet longer
proof of the violation of inequality Eq. (B1) for k > 0 holds for the
case of coherence in energy is possible.

are known for CPTP maps, leading to weaker forms of such
bounds. In this section we state the best-known general result
from [25] and show how they simplify in particular cases of
maps with properties similar to Davies maps. This means that
we can also bound the entropy production of maps that may
not be Davies maps.

The result, the proof of which involves techniques from
complex interpolation theory, is the following:

Theorem 16: (Main result of [25]). Let 	(·) be a CPTP
map, and ρ, σ any two quantum states. We have that

D(ρ||σ ) − D[	(ρ)||	(σ )]

� −2
∫
R

dt p(t) ln F [ρ,	̃t (	(ρ))], (C1)

where F (ρ,σ ) = Tr[
√√

σρ
√

σ ] is the quantum fidelity, and
the map 	̃t is the rotated recovery map

	̃t (·) = σ it 	̃[	(σ )−it · 	(σ )it ]σ−it , (C2)

and p(t) is the probability density function p(t) =
π
2 [cosh(πt) + 1]−1.

Proof. See [25]. �
We now observe that the rotated map can be simplified

given the following conditions:
(1) If the map has a fixed point 	(�) = �, the Petz

recovery map simplifies to become

	̃t (·) = �it 	̃(�−it · �it )�−it ∀t ∈ R. (C3)

This by itself implies that 	̃t (�) = �.
(2) The map may also obey the property of time-translation

symmetry, where this is given by

	(·) = �it	(�−it · �it )�−it . (C4)

If a map obeys this symmetry, the adjoint map 	†(·) also will.
This can be seen through the definition of the adjoint, which
is that for any two matrices A,B,

Tr[A	(B)] = Tr[	†(A)B], (C5)

and in particular, it holds for the matrices A′ = �itA�−it ,
B ′ = �−itB�it . This, together with Eq. (C4), means that

Tr[	†(A)B] = Tr[�it	†(�−it · �it )�−it (A)B]. (C6)

Hence this property, together with the fixed-point property,
means that the rotated recovery map becomes equal to the Petz
map, and the integral in Eq. (C1) gets averaged out. It may be
the case, however, that the symmetry exists but that the fixed
point is not the thermal state, and hence the simplification does
not occur. This may be the case, for instance, when there is
weak coupling to a nonthermal environment.

(3) If on top of these two conditions the map has the
property of quantum detailed balance, namely,

〈A,	†(B)〉� = 〈	†(A),B〉�, for all A,B ∈ CdS×dS , (C7)

the Petz recovery map and the original one are the same
	̃(·) = 	(·). Examples of maps which satisfy detailed balance
which are not Davies maps do exist. See [40] for a general
characterization of quantum dynamical semigroups.

When all these hold we have that Eq. (C1) becomes

D(ρ||�) − D(	(ρ)||�) � −2 ln F (ρ,	(	(ρ))). (C8)
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This bound could be tightened by replacing the
−2 ln F (ρ,	(	(ρ))) with the measured relative entropy,
DM(ρ‖	(	(ρ))) [27]. This would achieve a tighter bound,
although at the expense of it being less explicit, unless one
could solve the maximization problem in the definition of the
measured relative entropy. If the map is a dynamical semigroup
with a time-independent generator 	 = Mt , we may also write
Mt (Mt (·)) = M2t (·).

Davies maps have all these properties. Further examples
where all these properties appear are semigroups derived from
the low-density limit (which models a system immersed in an
ideal gas at low density, see [12] for details), or the so-called
heat bath generators [54].

We note, however, that D(ρ||σ ) � −2 ln F (ρ,σ ), and
hence Eq. (C8) is a weaker bound than Eq. (8), and in particular,
is not tight as the fixed point is approached.

APPENDIX D: EQUIVALENCE OF DEFINITIONS
OF QUANTUM DETAILED BALANCE

In the literature, different nonequivalent definitions of the
property of quantum detailed balance have been given. While
in many places the one given is that of Eq. (3), an alternative
definition, which can be found, for instance, in [12,14], is
that the Lindbladian is self-adjoint with respect to the inner
product,

〈A,L†(B)〉′� = 〈L†(A),B〉′�, (D1)

for all A,B ∈ CdS×dS , where the inner product is defined as

〈A,B〉′� = Tr[�A†B]. (D2)

Equation (D2) is different from that of Eq. (A43) due to the
noncommutativity of the operators. The solution to Eq (D1) is
[55]

L(·) = �L†(�−1·), (D3)

while the solution to Eq. (3) is [51]

L(·) = �1/2L†(�−1/2 · �−1/2)�1/2. (D4)

We now give a simple proof of the fact that, under the condition
that the map is time-translation invariant with respect to fixed
point, the two conditions are the same.

Theorem 17: For a Lindbladian operator L(·) which obeys
the property of time-translation symmetry with respect to fixed
point � of full rank [Eq. (14)], the quantum detailed balance
conditions of Eqs. (D3) and (D4) are equivalent.

Proof. We rewrite both Eq. (D3) and Eq. (D4) in terms of
their individual matrix elements in the orthonormal basis {|i〉}
in which � = ∑

i pi |i〉〈i| is diagonal. Equation (D3) can then
be written in the form

〈i|L(|n〉〈m|)|j 〉 = pi

pn

〈i|L†(|n〉〈m|)|j 〉 (D5)

and Eq. (D4) is

〈i|L(|n〉〈m|)|j 〉 =
√

pipj

pnpm

〈i|L†(|n〉〈m|)|j 〉. (D6)

We can see that for each matrix element the conditions only
change by the factors multiplying in front, which are different
unless pn

pm
= pi

pj
.

Let us now introduce the following decomposition of
operators in CdS×dS in terms of their modes of coherence,

A =
∑

ω

Aω, (D7)

where Aω is defined as

Aω =
∑

k,l

s.t. ω=ln
pk
pl

|k〉〈k|A|l〉〈l|. (D8)

The name of modes of coherence is due to the fact that under
the action of the unitary �−it · �it they rotate with a different
Bohr frequency, that is,

�−itAω�it = Aωe−iωt . (D9)

If the Lindbladian has the property of time-translational
invariance with respect to the fixed point [Eq. (14)], it can
be shown [56,57] that each input mode is mapped to its
corresponding output mode of the same Bohr frequency ω.
We can write this fact as

L(Aω) = L(A)ω. (D10)

This means that in Eqs. (D5) and (D6), 〈i|L(|n〉〈m|)|j 〉=0
unless the Bohr frequencies coincide at the input and the
output, that is, when ln pn

pm
= ln pi

pj
. That is, the two conditions

are nontrivial only in those particular matrix elements in which
both are equivalent. �
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