
Challenge the future

iDepartment of Precision and Microsystems Engineering

Deep Symbolic Regression for Nonlinear Dynamical Systems
A. Thamban

Report no : 2023.041
Coach : Farbod Alijani
Professor : Alejandro Aragón
Specialisation : Engineering Mechanics
Type of report : Master Thesis
Date : 28thJune, 2023

Deep Symbolic
Regression for

Nonlinear Dynamical
Systems

by

Arun Thamban

Thesis report submitted in partial fulfillment of the requirements for the degree

Master of Science, Mechanical Engineering

at the Delft University of Technology,
to be defended publicly on

Wednesday, June 28th 2023 at 9:30AM.

Student number: 5445728
Project duration: August 22, 2022 – June 27, 2023
Thesis committee: Dr. A. M. Aragón, TU Delft, chair

Dr. F. Alijani, TU Delft, supervisor
Dr. D. M. J. Tax, TU Delft
A. Keşkekler, TU Delft

Preface

At the time of writing, the world is still adapting to the introduction of incredibly powerful Artificial
Intelligence tools that blur the line between human and machine further than ever before. AI has
revolutionised or replaced several fields of human endeavour. To enthusiasts such as myself, each
development brings only anticipation for what is to come. Deep Learning-based techniques are also
finding their way into Mechanical Engineering, and this thesis documents my efforts to facilitate that. I
believe that the key difference between the Machine Learning-powered tools of yore and the current
breed of virtual helpers is explainability. In other words, your chatbot of choice can typically back its
responses up with credible reasoning, illuminating a hitherto opaque model. The reader (in the hope
there are a few) will find explanability to be a key theme throughout my work as well.

I began this thesis armed with knowledge from a single introductory class in Dynamics and a couple of
YouTube videos on Deep Learning. An interest in working on numerical models for origami structures
brought me to the office of my supervisors, but I left having chosen a research direction that was
somewhat divergent from my peers in the Hybrida group. I am convinced that there are significant
potential benefits in the incorporation of AI-based tools in Mechanics and Dynamics research. There
are, indeed, limitations to what is possible, but the first step in overcoming limitations is to find them. I
hope that more researchers in this field deem it worthwhile to do so.

I would like to thank Alejandro Aragón and Farbod Alijani for their guidance and feedback throughout
this project, and for setting targets that demanded more of me and my work. I am also grateful to
Vincent Bos, Lucas Norder and Saransh Goel for valuable discussions on various aspects of this work.
I had to step outside my comfort zone to complete this project, and I would not have been able to do
it without the love and support of my family and friends. Thank you for helping me make my dreams
come true.

Arun Thamban
Delft, June 2023

i

Abstract

From the motion of electrons in an atom to the orbits of celestial bodies in the cosmos, governing
equations are essential to the characterisation of dynamical systems. They facilitate an understanding
of the physics of a system, which enables the development of useful techniques such as predictive
control. An increasingly popular method to obtain these equations is Symbolic Regression, where
governing laws are discovered from observations of the system. In this work, we extend the Deep
Symbolic Regression package to the identification of dynamical systems. Preliminary tests revealed
the limits of the method as applied to dynamical systems, and new methods of incorporating domain
knowledge to constrain the expression space are added. We test the extended package on 3 strongly
nonlinear ODEs that exhibit different dynamics as their parameterisation varies. Finally, we demonstrate
the working of this method in practice by discovering the governing equation of a pendulum, from a video
of its oscillation. This method achieved a 100% equation recovery rate on our tests, and was able to
consistently retrieve the correct equation from datasets representing a diverse range of dynamics.

ii

Contents

Preface i

Abstract ii

I Introduction 1

II Paper: Deep Symbolic Regression for Nonlinear Dynamical Systems 4

III Reflection 20

IV Appendix 22
A Learning in Neural Networks . 23
B Equation Represented by a Neural Network . 23
C Gradient Descent . 24
D LSTM Networks . 25
E Proof: Risk-Seeking Policy Gradient . 27
F Observations from Hyperparameter Tuning . 28
G Discovery of Modal Contributions in a Cantilever Beam using a Single-Point Measurement 30

References 33

iii

Part I

Introduction

1

Introduction

The characterisation of nonlinear dynamical systems often begin with their governing equations.
Knowledge of the mathematics underlying an observed phenomenon is the first step to understanding
the physics involved. This facilitates the development of useful engineering tools and techniques, such
as predictive control [1] and uncertainity quantification [2]. In the past, scientists imposed mathematical
models on empirical observations, informed by their own intuition and creativity. This approach yielded
a number of foundational laws in physics, such as the Universal Law of Gravitation, Kepler’s laws of
planetary motion, and Schrödinger’s equation. However, it is not always possible or practical to rely on
intuition to discover a governing equation. Despite an abundance of data and ways to collect it, equation
discovery is hindered by complex phenomena such as bifurcations, where the same equation exhibits
qualitatively different dynamics with different parameter values. Furthermore, systems exhibiting chaotic
dynamics are extremely sensitive to miniscule variations in their parameters, yielding dramatically
different phase trajectories with parameter variations of the order 10−5. This necessitates the use
of more advanced techniques. Black-box identification methods such as NARMAX [3] are a popular
choice to model complex systems with unknown or poorly understood dynamics. However, they do not
directly provide any insight into how the system dynamics is affected by variables of interest. Symbolic
Regression (SR) methods prove useful in this regard.

By searching over the space of all mathematical functions that satisfy the imposed contraints, SR
techniques can retrieve governing equations for dynamical systems, given data from them. However,
the SR problem is NP-hard, i.e., no efficient algorithm that can solve an arbitrary SR problem exists.
Hence, the SR task is typically tackled with heuristics that simplify the problem to a computationally
tractable form. Sparse Identification of Nonlinear Dynamics (SINDy) [4] is one such heuristic. SINDy
attempts to find an equation to fit a dataset by first building a set of mathematical terms from the state
variables and their derivatives, followed by using sparse regression to identify the terms in that set
which belong to the unknown equation. Several improvements to SINDy have been proposed since
its introduction in 2016, such as robustness to noise [5], identification of rational nonlinearities [6], and
adaptations to handle inaccurate derivative information [7]. However, a fundamental limitation of SINDy
is that the discovered equation is strongly dependent on the chosen set of terms. Deciding which terms
to use is a non-trivial task, since an increase in the order of the equation and/or the number of variables
results in a combinatorial explosion of the number of possible entries. Furthermore, terms that result
from the multiplication, division, or composition of other terms in the set cannot be discovered from
their constituent components.

To circumvent the a priori selection of possible terms in the unknown equation, SR techniques based
on Genetic Progamming (GP) and Neural Networks (NNs) were developed. GP aims to discover an
unknown equation by gradually evolving the best performing candidate equations through a series of
operations inspired by biological processes, such as selection, mutation, and crossover. The terms
within each equation are constructed from the ground up when using GP (as opposed to pre-defined
terms in SINDy). Hence, they are far more flexible in the types of equations that can be discovered and
are capable of discovering complex functional forms. Early breakthroughs in the use of GP to discover
mathematical equations came in the early 2000s, where they were used to discover natural laws and
coupled nonlinear systems [8, 9]. Since then, GP has been used successfully in the data-driven
identification of Partial Differential Equations (PDEs) [10] and are the basis for commercial symbolic
regression packages such as Eureqa. However, the flexibility afforded byGP comeswith the associated
drawback of poor scalability, since the search space is subject to the curse of dimensionality. Further,
GP-based methods are known to exhibit high sensitivity to the applicable hyperparameters [11]. Some
of the tunable hyperparameters in GP include the mutation rate, crossover rate, and the selection
method.

2

3

As with GP, the use of NNs for SR is an active area of research. It is known that neural networks with
just a single hidden layer are universal approximators, i.e., they can estimate any continuous function
with an accuracy contingent on the number of neurons and the activation function [12]. Hence, NNs
are generalisable in the sense that they can find a relationship between the input and output variables
for any dataset, after training. The generalisation capabilities of NNs are typically exploited for the
pre-processing or densification of data to support the functioning of another SR method. AI Feynman
[13] is an physics-inspired SR method which uses an NN to learn the data distribution and discover
relationships such as symmetry and separability of variables. This information is then used to simplify
the symbolic regression task. Xu et al. presented a method called DL-PDE [14, 15]. This method
leverages automatic differentiation in NNs to retrieve accurate derivative information from sparse and
noisy data, which enabled the discovery of PDEs with time varying coefficients.

A caveat of the generalisation capabilities of NNs is that they are known to represent highly complex
(often non-physical) equations. Their successful application to equation discovery is contingent on
improving their interpretability, i.e, the output from the NN needs to be made understandable to the
user. This may entail the use of another SR method in conjunction with the NN (as with DL-PDE), or
modification of the NN to represent a more parsimonious expression. EQuation Learner (EQL) [16]
is a SR method that employs a non-standard NN architecture. The activation functions in the hidden
layers of the network are common functions that are often seen in physical equations, and sparsity is
promoted in the weights of the network. After training, a concise, interpretable equation is obtained from
the NN. This method was later extended by Sahoo et al. to facilitate the discovery of rational functions
[17] and by Zhang et al. to accommodate time varying parameters [18]. Long et al. leveraged both
the data pre-processing and function finding capabilities of NNs to create a hybrid numeric-symbolic
network that can discover PDEs from sparse and noisy data [19]. While these methods shed light
on the previously opaque internal working of NNs, the space of equations that can be searched by
these NNs are restricted. Operations that are not defined on all real numbers (square root, logarithm,
division) cannot be used as activation functions in the hidden layers, and these methods perform poorly
with datasets that involve these operations.

When NNs are used to directly approximate the equation we are trying to find, the interpretability of
the discovered equation comes at the cost of the generality of the approach. The successful application
of NNs in the AI Feynman and DLGA-PDE methods is contingent upon the fact that the NNs were not
required to be interpretable, and thus retained their generalisability while learning relations from the
data. However, these methods require an additional procedure to find the symbolic expression that is
represented by the NN. Deep Symbolic Regression (DSR) [11], developed by Petersen et al., is able to
bypass this tradeoff entirely. In contrast to the other approaches, the NN of DSR outputs a probability
distribution which is used to construct an equation that fits the data. No additional SR techniques
are used and there is no requirement for the NN to be interpretable. An inbuilt system of user-defined
constraints facilitates limiting the searched space of expressions to only contain those that may feasibly
represent a physical system, thereby ameliorating the scalability issues associated with the curse of
dimensionality. Through the use of a training scheme that maximises the best-case performance of
the expressions generated by the network, DSR is able to outperform even commercial SR packages.
Although the applicability of this method has been demonstrated on algebraic equations, it is yet to be
extended to discover differential equations. This is the focus of the current work. Preliminary testing
was conducted to understand the operational limits of the method, and newmethods of constraining the
expression space are introduced. The code extensions were then tested on three ODEs with strong
nonlinearities- the van der Pol equation, the Selkov model and the Duffing equation. The dynamics
represented by these equations changes qualitatively as their parameters are varied. It is demonstrated
that DSR is robust to the type of dynamics underlying the dataset used for regression. Finally the
method is validated with an empirical test, where the equation of motion of a pendulum is discovered
from a video of its motion. In this test, equation recovery performance is evaluated with two trials; the
first with moderate oscillations and the second with whirling motion of the pendulum bob. DSR is able
to recover the correct expression in both cases, and achieved a 100% success rate in discovering the
governing equations for all tested systems.

Part II

Paper: Deep Symbolic Regression for
Nonlinear Dynamical Systems

4

Deep Symbolic Regression in Nonlinear Dynamics

Arun Thamban, Alejandro Aragón and Farbod Alijani

Precision and Microsystems Engineering, Delft University of Technology,
Mekelweg 2, Delft, 2628LX, The Netherlands.

*Corresponding author(s). E-mail(s): arunthamban98@gmail.com;
Contributing authors: a.m.aragon@tudelft.nl; f.alijani@tudelft.nl;

Abstract

From the motion of electrons in an atom to the orbits of celestial bodies in
the cosmos, governing equations are essential to the characterisation of dynami-
cal systems. They facilitate an understanding of the physics of a system, which
enables the development of useful techniques such as predictive control. An
increasingly popular method to obtain these equations is Symbolic Regression,
where governing laws are discovered from observations of the system. In this
work, we extend the Deep Symbolic Regression package to the identification of
dynamical systems. Preliminary tests were conducted to understand the limits
of the method as applied to dynamical systems, and new methods of incorpo-
rating domain knowledge to constrain the expression space are added. We test
the extended package on 3 parameterised nonlinear ODEs that exhibit different
dynamics as the parameterisation varies. Finally, we demonstrate the working of
this method in practice by discovering the governing equation of a pendulum,
from a video of its oscillation. This method achieved a 100% equation recovery
rate on our tests, and was able to consistently retrieve the correct equation from
datasets representing a diverse range of dynamics.

Keywords: Nonlinear Dynamics, Symbolic Regression, Deep Learning

1 Introduction

The characterisation of nonlinear dynamical systems often begin with their govern-
ing equations. Knowledge of the mathematics underlying an observed phenomenon
is the first step to understanding the physics involved. This facilitates the develop-
ment of useful engineering tools and techniques, such as predictive control [1] and

1

uncertainity quantification [2]. In the past, scientists imposed mathematical mod-
els on empirical observations, informed by their own intuition and creativity. This
approach yielded a number of foundational laws in physics, such as the Universal Law
of Gravitation, Kepler’s laws of planetary motion, and Schrödinger’s equation. How-
ever, it is not always possible or practical to rely on intuition to discover a governing
equation. Despite an abundance of data and ways to collect it, equation discovery
is hindered by complex phenomena such as bifurcations, where the same equation
exhibits qualitatively different dynamics with different parameter values. Furthermore,
systems exhibiting chaotic dynamics are extremely sensitive to miniscule variations
in their parameters, yielding dramatically different phase trajectories with parameter
variations of the order 10−5. This necessitates the use of more advanced techniques.
Black-box identification methods such as NARMAX [3] are a popular choice to model
complex systems with unknown or poorly understood dynamics. However, they do not
directly provide any insight into how the system dynamics is affected by variables of
interest. Symbolic Regression (SR) methods prove useful in this regard.

By searching over the space of all mathematical functions that satisfy the imposed
contraints, SR techniques can retrieve governing equations for dynamical systems,
given data from them. However, the SR problem is NP-hard, i.e., no efficient algo-
rithm that can solve an arbitrary SR problem exists. Hence, the SR task is typically
tackled with heuristics that simplify the problem to a computationally tractable form.
Sparse Identification of Nonlinear Dynamics (SINDy) [4] is one such heuristic. SINDy
attempts to find an equation to fit a dataset by first building a set of mathematical
terms from the state variables and their derivatives, followed by using sparse regres-
sion to identify the terms in that set which belong to the unknown equation. Several
improvements to SINDy have been proposed since its introduction in 2016, such as
robustness to noise [5], identification of rational nonlinearities [6], and adaptations
to handle inaccurate derivative information [7]. However, a fundamental limitation
of SINDy is that the discovered equation is strongly dependent on the chosen set of
terms. Deciding which terms to use is a non-trivial task, since an increase in the order
of the equation and/or the number of variables results in a combinatorial explosion
of the number of possible entries. Furthermore, terms that result from the multipli-
cation, division, or composition of other terms in the set cannot be discovered from
their constituent components.

To circumvent the a priori selection of possible terms in the unknown equation,
SR techniques based on Genetic Progamming (GP) and Neural Networks (NNs) were
developed. GP aims to discover an unknown equation by gradually evolving the best
performing candidate equations through a series of operations inspired by biological
processes, such as selection, mutation, and crossover. The terms within each equation
are constructed from the ground up when using GP (as opposed to pre-defined terms
in SINDy). Hence, they are far more flexible in the types of equations that can be dis-
covered and are capable of discovering complex functional forms. Early breakthroughs
in the use of GP to discover mathematical equations came in the early 2000s, where
they were used to discover natural laws and coupled nonlinear systems [8, 9]. Since
then, GP has been used successfully in the data-driven identification of Partial Dif-
ferential Equations (PDEs) [10] and are the basis for commercial symbolic regression

2

packages such as Eureqa. However, the flexibility afforded by GP comes with the
associated drawback of poor scalability, since the search space is subject to the curse
of dimensionality. Further, GP-based methods are known to exhibit high sensitivity
to the applicable hyperparameters [11]. Some of the tunable hyperparameters in GP
include the mutation rate, crossover rate, and the selection method.

As with GP, the use of NNs for SR is an active area of research. It is known that
neural networks with just a single hidden layer are universal approximators, i.e., they
can estimate any continuous function with an accuracy contingent on the number of
neurons and the activation function [12]. Hence, NNs are generalisable in the sense
that they can find a relationship between the input and output variables for any
dataset, after training. The generalisation capabilities of NNs are typically exploited
for the pre-processing or densification of data to support the functioning of another SR
method. AI Feynman [13] is an physics-inspired SR method which uses an NN to learn
the data distribution and discover relationships such as symmetry and separability of
variables. This information is then used to simplify the symbolic regression task. Xu
et al. presented a method called DL-PDE [14, 15]. This method leverages automatic
differentiation in NNs to retrieve accurate derivative information from sparse and noisy
data, which enabled the discovery of PDEs with time varying coefficients.

A caveat of the generalisation capabilities of NNs is that they are known to rep-
resent highly complex (often non-physical) equations. Their successful application to
equation discovery is contingent on improving their interpretability, i.e, the output
from the NN needs to be made understandable to the user. This may entail the use of
another SR method in conjunction with the NN (as with DL-PDE), or modification
of the NN to represent a more parsimonious expression. EQuation Learner (EQL) [16]
is a SR method that employs a non-standard NN architecture. The activation func-
tions in the hidden layers of the network are common functions that are often seen in
physical equations, and sparsity is promoted in the weights of the network. After train-
ing, a concise, interpretable equation is obtained from the NN. This method was later
extended by Sahoo et al. to facilitate the discovery of rational functions [17] and by
Zhang et al. to accommodate time varying parameters [18]. Long et al. leveraged both
the data pre-processing and function finding capabilities of NNs to create a hybrid
numeric-symbolic network that can discover PDEs from sparse and noisy data [19].
While these methods shed light on the previously opaque internal working of NNs,
the space of equations that can be searched by these NNs are restricted. Operations
that are not defined on all real numbers (square root, logarithm, division) cannot be
used as activation functions in the hidden layers, and these methods perform poorly
with datasets that involve these operations.

When NNs are used to directly approximate the equation we are trying to find,
the interpretability of the discovered equation comes at the cost of the generality of
the approach. The successful application of NNs in the AI Feynman and DLGA-PDE
methods is contingent upon the fact that the NNs were not required to be inter-
pretable, and thus retained their generalisability while learning relations from the data.
However, these methods require an additional procedure to find the symbolic expres-
sion that is represented by the NN. Deep Symbolic Regression (DSR) [11], developed
by Petersen et al., is able to bypass this tradeoff entirely. In contrast to the other

3

approaches, the NN of DSR outputs a probability distribution which is used to con-
struct an equation that fits the data. No additional SR techniques are used and there is
no requirement for the NN to be interpretable. An inbuilt system of user-defined con-
straints facilitates limiting the searched space of expressions to only contain those that
may feasibly represent a physical system, thereby ameliorating the scalability issues
associated with the curse of dimensionality. Through the use of a training scheme that
maximises the best-case performance of the expressions generated by the network,
DSR is able to outperform even commercial SR packages. Although the applicability
of this method has been demonstrated on algebraic equations, it is yet to be extended
to discover differential equations. This is the focus of the current work. Preliminary
testing was conducted to understand the operational limits of the method, and new
methods of constraining the expression space are introduced. The code extensions were
then tested on three ODEs with strong nonlinearities- the van der Pol equation, the
Selkov model and the Duffing equation. The dynamics represented by these equations
changes qualitatively as their parameters are varied. It is demonstrated that DSR is
robust to the type of dynamics underlying the dataset used for regression. Finally
the method is validated with an empirical test, where the equation of motion of a
pendulum is discovered from a video of its motion. In this test, equation recovery
performance is evaluated with two trials; the first with moderate oscillations and the
second with whirling motion of the pendulum bob. DSR is able to recover the cor-
rect expression in both cases, and achieved a 100% success rate in discovering the
governing equations for all tested systems.

2 Methodology

Deep symbolic regression [11] is an SR method that uses a recurrent neural network
to generate a probability distribution over mathematical expressions, from which can-
didate solutions are sampled. Through the use of a modified reinforcement learning
technique, described below, the NN adjusts the probability distribution such that bet-
ter fitting solutions have a higher probability of being sampled. By using the NN to
emit a probability distribution over expressions (as opposed to an expression itself),
the task of interpreting the NN is rendered obsolete. This is because the expressions
sampled from the distribution are obtained as expression trees, which are already
interpretable.

2.1 Equation Sampling and Constraint Handling

The expressions are generated sequentially and in an autoregressive manner, i.e,
the probability distribution for the current selection depends on the operators and
variables that have been selected previously. The expression is generated from a
library of tokens, as shown in figure 1. The tokens may be unary operators (accepting
one argument), binary operators, or variables. Constants may also be included via a
token. If constants are used, then the algorithm also includes a constant optimisation
step to discover the values of the constants that provide the best fit. Any optimisation
algorithm may be used for this purpose (by default, DSR uses the L-BFGS optimisa-
tion algorithm). In order to prevent the generation of low-quality expressions, such as

4

const

Library of Tokens

+ x sin

Physical Intuition

System Knowledge

Dataset

Data + Constraints
In

Deep Symbolic
Regression

- / cos

Measurement

Simulation

Governing Equation
Out

θ

Fig. 1 Workflow: Discovering the governing laws of dynamical systems with DSR

ones which are too short, include unphysical terms such as sin(cos(x)), or inversions
such as log(ex), constraints are applied during the expression generation stage. Given
the sequence of tokens that have already been sampled, the probability distribution
for the following selection is adjusted such that tokens which yield expressions that
are unlikely to fit the dataset have zero probability associated with them. Figure 2
depicts the equation sampling process and how the weights of the Neural Network
are evolved with training.

Start Initialise expression
tree

Sample Token,
add to tree

+ Expression Tree
Complete?

False

Add expression to the
training batch for the

current epoch

Batch size
met?

False

True Calculate Reward
Function for all

expressions

Stopping Criteria
met?

TrueInitialise Categorical
Distribution over Tokens

True
Stop

Evaluate objective
function and policy
gradient. update

distribution

False

b c d

c

Library of Tokens

+ x sin

- / cos

Probability of Sampling Each Token

x- / sin cos+ c

+

sin x

c

+

+

Sampled
Token

Add to Tree
Sample Next Token

~

Complete Expression
Tree

Depth First, Left to Right
Traversal

Mathematical Expression

+

sin x

c

b c d

Fig. 2 Equation sampling and training of the NN in DSR. Expression trees are dynamically gener-
ated from the sampled tokens. The equation structure is dependent on the arity of the sampled token.
The tree is then interpreted as an expression by reading the tree depth-first and from left to right.

2.2 Reward Function and Risk-Seeking Objective

The reward function used to evaluate the expressions generated by the NN in DSR
is not differentiable with respect to the weights of the NN. Hence, the reinforcement
learning problem is formulated in terms of maximising the expectation of a reward on
expressions generated by the NN, which is a function of the weights. The gradient of the

5

expectation may then be used to update the weights of the network. Mathematically,
the expectation and its gradient are given by [11]

Jstd(W) = Eτ∼p(τ |W)[R(τ)] (1)

∇WJstd(W) = Eτ∼p(τ |W)[R(τ)∇W log(p(τ |W))] (2)

Here,W are the weights of the NN, p(τ |W) is the probability of sampling an expression
τ given the weights W of the NN. The reward function, R is defined for a candidate
expression f and a dataset (X,y) containing N data points as

R(τ) =
1

1 + δ
(3)

δ =
1

σy

√√√√ 1

N

N∑
i=1

(yi − f(Xi))2 (4)

Here, σy is the standard deviation of the output values, y. For a batch of N sampled
expressions, an estimate of the gradient of Jstd(W) is obtained as

∇WJstd(W) ≈ 1

N

N∑
i=1

[R(τ i)∇W log(p(τ i|W))] (5)

The above formulation maximises the expectation of a reward on average across the
sampled expressions. While improving the average performance is a sensible choice for
applications such as autonomous driving, the SR task may be considered complete if a
single expression that exactly fits the dataset is sampled. Hence, it is desirable to train
the NN in a manner that maximises the accuracy of the best-performing expressions,
at the expense of average performance. An alternative objective function was proposed
to this end [11]

Jrisk(W, ϵ) = Eτ∼p(τ |W)[R(τ)|R(τ) ≥ Rϵ(W)] (6)

Here, Rϵ(W) is the (1 - ϵ) quantile of the distribution of rewards. This objective only
considers the reward of the top ϵ fraction of sampled expressions, which increases
best case performance at the expense of average performance. It was shown that the
gradient of this objective is given by [20]

∇WJrisk(W, ϵ) = Eτ∼p(τ |W)[(R(τ)−Rϵ(W)) · ∇W log(p(τ |W))|R(τ) ≥ Rϵ(W)] (7)

From a batch of N sampled expressions, the gradient can be estimated by

6

∇WJrisk(W, ϵ) ≈ 1

ϵN

N∑
i=1

[(R(τ i)− R̃ϵ(W)] · (1)R(τ i)≥R̃ϵ(W)∇W log(p(τ i|W))] (8)

Where R̃ϵ(W) is the empirical (1-ϵ) quantile of rewards, and 1x returns 1 if x is true
and 0 otherwise. Figure 3 shows the effect of the risk-seeking objective in training.

Tr
u
e

E
xp

re
ss

io
n
 D

is
co

ve
re

d

0.0 0.2 0.4 0.6 0.8 1.0
Value of Reward Function

0

100

200

300

400

500

N
u
m

.
E
xp

re
ss

io
n
s

First Epoch
Median Epoch
Last Epoch

0.0 0.2 0.4 0.6 0.8 1.0
Value of Reward Function

0

100

200

300

400

500

600

700

800

N
u
m

.
E
xp

re
ss

io
n
s

First Epoch
Median Epoch
Last Epoch

a)

b) c)

Fig. 3 a.) Value of Reward Function at the end of training vs. the parameter ϵ, as tested with the
Duffing equation. Higher values of ϵ lead to a higher fraction of the sampled batch being considered for
training. This is associated with a drop in equation recovery performance. b) Distribution of Rewards
across batches of sampled expressions for ϵ = 0.02 and c) ϵ = 0.99. The risk-seeking objective creates
longer tails in the distribution, which is beneficial in this context. The distribution of rewards in the
first training epoch is the same in both cases.

7

3 Results

3.1 Testing with Computer-Generated Data

The efficacy of DSR in discovering ODEs with strong nonlinearities was first tested
with simulated data. As illustrated in Figure 5, the Selkov equation exhibits a Hopf
bifurcation depending on the values of parameters a and b, transitioning from a stable
equilibrium to a limit cycle. The Duffing equation exhibits a period-doubling cascade
as the value of the forcing amplitude increases. Chaotic dynamics are observed with
higher forcing amplitudes, as seen in Figure 4. For both sets of equations, DSR is able
to recover the true expression irrespective of the dynamics contained in the dataset.
In some cases, a negligibly small extraneous term was also present in the discovered
equation. The presence of the extraneous term did not affect the dynamics of the
system, when the discovered equations were simulated. The coefficients of the terms in
the equations were estimated with an error of 10−5. This is the cause of the divergent
phase-space trajectory when the dynamics are chaotic, as observed in Figure 6. Chaotic
dynamics are highly sensitive to to miniscule variations in parameter values, and even
marginal errors in the discovered parameter values can result in the predictive power
of the equation being restricted to a certain interval of time.

Equation
Name

Epochs to
Convergence

RMSE on
Dataset

van der Pol

Selkov

Duffing

True Form /
Discovered Form

Pendulum

8

0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
Forcing Amplitude

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
is

p
la

ce
m

en
t

Period 2Periodic Chaos

Period 4

Fig. 4 Bifurcation Diagram of the Duffing equation. A period-doubling cascade is observed as the
value of the forcing amplitude increases, with bifurcations at f = 0.343, f = 0.355, and f = 0.358.
The dynamics exhibited by the equation in each of these intervals is distinct, as seen in Figure 6

3.2 Validation with Empirical Data

DSR was used to discover the governing equation for a pendulum from a video of
its motion. Given the relative simplicity of the pendulum equation as compared to
the test equations used in section 3.1, it is clear that the discovery of this equation
does not provide any notable additional insight into the capabilities of this method.
However, it does illustrate a potential use-case for this method in practice. The
ability to recover a governing equation from empirical data would be a precious tool
to understand the behaviour of the system in an intuitive manner. Additionally, the
video of the pendulum’s motion is shot using a low-precision, low-cost setup, which
introduces a large amount of noise in the dataset. Thus, this test also demonstrates
how DSR (combined with denoising techniques) is able to cope with poor-quality
measurement data.

The video was shot with a mobile phone camera. Aside from a camera tripod,
no special equipment was used. Positional data was extracted from the video using
Tracker video analysis software. To eliminate some of the high-frequency noise intro-
duced during measurement, we considered the moving average of angular position,
amalgamating a number of frames into a single data point. The angular velocity and
acceleration were computed numerically from the averaged position data. From Figure
7, we see that DSR is able to successfully identify the structure of the differential
equation (harmonic function of the angular position, damping term). The damping
coefficient is estimated with a maximum error of 21% and the natural frequency is
estimated with a maximum error of 0.44%.

9

True Equations

Discovered Equations

Discovered Equations

a =0.14
b = 1.2

a =0.02
b = 0.6

Limit Cycle
Region

Fixed Point
Region

Fig. 5 DSR as applied to the Selkov model. This system exhibits different dynamics based on the
values of a and b, with the dynamics either converging to a stable limit cycle or a fixed point. In
both cases, DSR is able to recover the governing equations, estimating the coefficients up to the fifth
decimal place.

4 Discussion

Sections 3.1 and 3.2 show that Deep Symbolic regression is a highly capable method
to understand the physics driving a system, using observations of it. As outlined in
section 2.2, the reward and objective function seek to generate expressions that min-
imise the NRMSE on the output variable of the dataset (i.e., data of the highest order
derivative). The sampled equations are thus treated as algebraic expressions, and cer-
tain subtleties of differential equations (such as how derivatives evolve with the value
of the base variable) are ignored. While this does not present an issue in the majority
of considered test cases, disparate phase trajectories are observed when the dynam-
ics are chaotic (Figure 6). Figure 8 indicates that the value of the forcing amplitude
would need to be resolved up to the eighth decimal place for the phase trajectory to
match the true dynamics over the complete dataset. It is clear that although the algo-
rithm achieves an excellent fit on the dataset when all derivatives are independent

10

f = 0.325 (Periodic) f= 0.345 (Period 2)

f = 0.355 (Period 4) f = 0.39 (Chaos)

a) b)

c) d)

Forcing
Amplitude

Discovered
Equation

Fig. 6 Results from testing on the Duffing equation with harmonic forcing. The dynamics arising
from this equation evolve as the forcing amplitude changes, as described in Figure 4. For periodic and
subharmonic dynamics (subfigures a, b, c), the true dynamics are captured exactly by simulating the
equation discovered by DSR. For chaotic motion (subfigure d)), a significant deviation is observed for
time > 50s. This is due to the error (of the order 1e-5) in estimating the coefficients in the equation.
Small differences in parameter values causing large differences in the discovered phase portraits is a
typical characteristic of chaotic dynamics.

Moderate Oscillation Whirling Motion

True
Equation

Discovered
Equation

Type of
Motion

Fig. 7 Summary of empirical testing with a simple pendulum. Two different initial conditions were
considered; moderate oscillations (<0.35 rad) and whirling motion, with the bob tracing a complete
circle about the fixed point. The data collection workflow introduces significant amounts of noise
to the dataset. Although the measurement noise is ameliorated somewhat by the frame-averaging
process, numerical estimation of the gradients also increases the noise level.

variables, the result from simulating the expression using a numerical solver differs
significantly. This can be attributed to the error in estimating the coefficients of the
terms in the equation. Small differences in parameter values causing large differences
in the discovered phase portraits is a typical characteristic of chaotic dynamics.

The tests also revealed that DSR is capable of identifying the true equation under-
lying a dataset even in the presence of low noise. However, higher noise levels causes
a significant drop-off in the value of the reward function. The NN attempts to achieve

11

a) b)

Fig. 8 a.) Variation in the phase tracjectories with the precision of the resolved forcing amplitude
with chaotic dynamics. The true forcing amplitude is f = 0.39. b.) Acceleration vs. Time for f =
0.39 in the Duffing equation. The marked points represent the acceleration values when the both
expressions (true and discovered) are treated as algebraic expressions, and the lines represent the
acceleration values when the expressions are simulated.

an exact fit against noisy data, promoting overfitting. In the context of dynamical
systems, the problem is further exacerbated by the fact that high variable powers
can make an equation more difficult to simulate, and less likely to represent the true
dynamics of a physical system. This issue is particularly evident when working with
empirical data. For the whirling motion of the pendulum, the inaccuracy in collect-
ing the angular position is of the order of ±0.9rad (framewise). This error is further
amplified when evaluating the derivatives, which necessitated the use of denoising
techniques when preparing the dataset for DSR. It was known that the noise was of a
higher frequency than the signal, and frame-averaging techniques were thus useful in
this regard. Figure 9 shows the effect of the frame averaging process, which resulted
in a noise level that was sufficiently low for DSR to discover the true equation. As
elaborated upon above, overfitted expressions are more likely to do better than the
true expression when no consideration is made for the dynamics represented by the
discovered expressions.

Although this work is focused on the application of deep learning to the identi-
fication of dynamical systems, the DSR framework could be used in other workflows
as well. The RNN utilised by DSR acts as a sequence generator; given a set of basic
building blocks, the method creates sequences comprised of one or more of these blocks
and repetition of the building blocks is generally permitted. The task of equation dis-
covery is internally formulated as a discrete sequence optimisation problem, which is
solved as the RNN is trained on the provided dataset. For the method to be used in a
task other than symbolic regression, a few modifications must first be made; the task
must be formulated as a discrete sequence optimisation problem, the requisite building
blocks (tokens) and their properties should be added to the framework, and a method
to interpret the generated sequences would be required. It is also not necessary that
the generated sequence be interpreted as a unary-binary tree, just that the scheme of
interpretation can be consistently applied to any generated sequence.

12

5 10 15 20 25 30 35
t

200

100

0

100

200

Raw Signal
After Denoising

Fig. 9 Angular Acceleration vs. Time, before and after frame averaging. For the whirling motion of
the pendulum (shown here), 16 frames were averaged together to obtain a single data point, while
two data frames were averaged together in the case of moderate oscillations.

5 Conclusion

In this work, the possibility of synthesising governing equations of dynamical systems
from data was investigated. Deep Symbolic Regression was extended to the discovery
of nonlinear dynamical ODEs and validated by testing equation recovery performance
on computer generated-datasets for three strongly nonlinear ODEs and empirical data
extracted a video of an oscillating simple pendulum. In all cases, DSR was able to
recover the true equation underlying the dataset. The performance of the method was
also unaffected in cases where varying the parameters of the same equation resulted
in different dynamics. Coupled with suitable preprocessing techniques, DSR was also
found to be robust against the absence of derivative measurements. Since DSR has seen
limited application in the discovery of governing laws from empirical data, this work
serves as a proof-of-concept for the method. Symbolic regression allows for the creation
of interpretable, intuitive models for dynamical systems. DSR is especially notable
since it incorporates a suite of constraints that can be used to incorporate domain
knowledge into the equation discovery process in a straightforward manner. Further,
the library of tokens employed for equation discovery ameliorates the scalability issues
associated with other SR methods. Users may broadly specify which operators and
variables are permitted in the generated expressions, but are not required to specify
the terms themselves.
A significant outstanding limitation of the method is the absence of any considera-
tion for the dynamics represented by the sampled equation. One possible approach to
this would be to incorporate the dynamics of sampled equations into the correspond-
ing value of the reward function. By treating a candidate expression as a differential
equation (as opposed to an algebraic one), the complete state of the dynamical system
represented by the expression may be obtained. This would allow for the evaluation of
the fit over all state variables, and not just the highest order derivative. Such a train-
ing scheme may improve robustness to noise, since overfitted or unphysical expressions

13

are less likely to produce phase trajectories that are comparable to the true dynamics.
Neural Networks are often treated as black boxes; more value is associated with the
result as compared to the underlying functionality. Tools such as DSR demonstrate
that there is much to be gained from a principled approach to leveraging the capabil-
ities of neural networks in fields where their application is underexplored. A thorough
understanding of this framework could enable a plethora of potential applications,
from the quantification of nanoscale forces in Atomic Force Microscopy to the inverse
design of origami structures. Much like imposing mathematical models on empirical
observations, the application of deep learning-based tools is likely to be limited first
by the researcher’s own creativity.

References

[1] Joseph Lorenzetti et al. “Reduced order model predictive control for setpoint
tracking”. In: 2019 18th European Control Conference (ECC). IEEE. 2019,
pp. 299–306.

[2] Themistoklis P Sapsis and Andrew J Majda. “Statistically accurate low-order
models for uncertainty quantification in turbulent dynamical systems”. In:
Proceedings of the National Academy of Sciences 110.34 (2013), pp. 13705–
13710.

[3] Sheng Chen and Steve A Billings. “Representations of non-linear systems: the
NARMAX model”. In: International journal of control 49.3 (1989), pp. 1013–
1032.

[4] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the national academy of sciences 113.15 (2016), pp. 3932–3937.

[5] Urban Fasel et al. “Ensemble-SINDy: Robust sparse model discovery in the low-
data, high-noise limit, with active learning and control”. In: Proceedings of the
Royal Society A 478.2260 (2022), p. 20210904.

[6] Kadierdan Kaheman, Steven L Brunton, and J Nathan Kutz. “Automatic differ-
entiation to simultaneously identify nonlinear dynamics and extract noise prob-
ability distributions from data”. In: Machine Learning: Science and Technology
3.1 (2022), p. 015031.

[7] Daniel A Messenger and David M Bortz. “Weak SINDy for partial differential
equations”. In: Journal of Computational Physics 443 (2021), p. 110525.

[8] Josh Bongard and Hod Lipson. “Automated reverse engineering of nonlinear
dynamical systems”. In: Proceedings of the National Academy of Sciences 104.24
(2007), pp. 9943–9948.

[9] Michael Schmidt and Hod Lipson. “Distilling free-form natural laws from
experimental data”. In: science 324.5923 (2009), pp. 81–85.

[10] Yuntian Chen et al. “Symbolic genetic algorithm for discovering open-form par-
tial differential equations (SGA-PDE)”. In: Physical Review Research 4.2 (2022),
p. 023174.

14

[11] Brenden K Petersen et al. “Deep symbolic regression: Recovering mathemati-
cal expressions from data via risk-seeking policy gradients”. In: arXiv preprint
arXiv:1912.04871 (2019).

[12] Yulong Lu and Jianfeng Lu. “A universal approximation theorem of deep neu-
ral networks for expressing probability distributions”. In: Advances in neural
information processing systems 33 (2020), pp. 3094–3105.

[13] Silviu-Marian Udrescu and Max Tegmark. “AI Feynman: A physics-inspired
method for symbolic regression”. In: Science Advances 6.16 (2020), eaay2631.

[14] Hao Xu, Haibin Chang, and Dongxiao Zhang. “Dl-pde: Deep-learning based
data-driven discovery of partial differential equations from discrete and noisy
data”. In: arXiv preprint arXiv:1908.04463 (2019).

[15] Hao Xu, Dongxiao Zhang, and Junsheng Zeng. “Deep-learning of parametric
partial differential equations from sparse and noisy data”. In: Physics of Fluids
33.3 (2021), p. 037132.

[16] Georg Martius and Christoph H Lampert. “Extrapolation and learning
equations”. In: arXiv preprint arXiv:1610.02995 (2016).

[17] Subham Sahoo, Christoph Lampert, and Georg Martius. “Learning equations for
extrapolation and control”. In: International Conference on Machine Learning.
PMLR. 2018, pp. 4442–4450.

[18] Michael Zhang et al. “Deep Learning and Symbolic Regression for Discovering
Parametric Equations”. In: arXiv preprint arXiv:2207.00529 (2022).

[19] Zichao Long, Yiping Lu, and Bin Dong. “PDE-Net 2.0: Learning PDEs from data
with a numeric-symbolic hybrid deep network”. In: Journal of Computational
Physics 399 (2019), p. 108925.

[20] Aviv Tamar, Yonatan Glassner, and Shie Mannor. “Optimizing the CVaR via
sampling”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

15

Part III

Reflection

20

Reflection

At the start of this project, I sought to find a way to leverage the capabilities of neural networks towards
an application in nonlinear dynamics. Together with Dr. Aragón and Dr. Alijani, we narrowed down the
focus of the project to extracting governing equations from data, from where Symbolic Regression was
a natural choice. I began this project with a limited understanding of Neural Networks and their working,
and had minimal experience with tensorflow and parallel processing. Furthermore, I had never taken
up a year-long, self-driven academic project such as this one before. During the literature review phase,
I quickly realised that meticulous planning and management would be key to my success in this project.
At this stage, I devoted a considerable amount of time to maintaining spreadsheets and logs to track my
progress. I believe the effort that was invested in planning is one of the main reasons this project was
completed on schedule. I accomplished all of the targets that were laid out at the end of my literature
review. The DSR package was enhanced with new capabilities and constraints, which facilitated the
discovery of the Duffing equation (among others) at a range of forcing amplitudes. The real-world
test was also successful. Additionally, an attempt was made to incorporate the dynamics of sampled
expressions into the training of the neural network.

Admittedly, making good progress and receiving mostly positive feedback about my work had an
impact on the way I was handling the project. During the testing phase, I neglected my planning and
instead focused on getting as much done as quickly as possible. This resulted in the opposite of my
intention, and I had to redo several tests because I did not pay close attention to tabulating results and
logging the outputs from my tests. This resulted in a decline in progress, which drove me to try and
work even faster. By the time I became cognizant of the vicious cycle I was in, I had already spent
about four weeks being minimally productive. Thankfully, this did not have a significant impact on the
eventual outcome, since I was ahead of schedule by this point. I realise now that I gave my best efforts
when I felt I was doing poorly, and tended to slack off when things were going well. Self awareness
and reflection at intermediate stages would be key in ensuring this does not happen in future projects.

Over the course of this project, I was alsomademore aware ofmy personal strengths andweaknesses.
I found that I was willing to go the extra mile to obtain better results, I was capable of learning new
concepts and applying them in a short span of time, and I could multitask efficiently. I also found a
number of stumbling blocks in my thinking and mentality that need to be worked on. I tend to jump to
conclusions without being systematic, if the conclusion suits me. I can also be overly confident in my
work, and resistant to feedback and advice at times. I am grateful to have had these aspects of my
personality revealed to me, positive and negative. In the future, I intend to leverage the positives in
situations where doing so would result in a better outcome, and I will manage the negatives, so that
they do not adversely impact my work or my interactions with my peers and mentors.

21

Part IV

Appendix

22

Appendix

A. Learning in Neural Networks
When an NN is first initialised, the weights of the edges are arbitrary. Before they can be used as a

mapping, the values of the weights which would yield the expected relation must be learned. Learning
in NNs can be broadly classified in three categories [20]; unsupervised learning, supervised learning,
and reinforcement learning.

Unsupervised Learning
In applications such as recommender systems and similarity detection, we are often not required to
make specific predictions; rather, we would like to discover patterns from the input data to group
examples into different classes. Unsupervised learning techniques allow NNs to discover subgroups
and similarities in the data without the use of any pre-defined output labels or groups. An NN trained
using an unsupervised learning method such as Principal Component Analysis or K-Means Clustering
should be able to disambiguate between different input examples on the basis of similarities learned
during the training process. Although unsupervised learning has found some application in discovering
solutions for elliptic PDEs [21], the SR task involves relating inputs to known outputs and making
predictions. Hence, these techniques are not widely used in NN-based SR.

Supervised Learning
Supervised learning involves training an NN to match the output of the training dataset when the
input from the dataset is provided to it. Supervised learning tasks can be broadly classified into
classification problems, where data must be assigned to specific categories, and regression problems,
where the relationship between the input and the output is learned. Once an NN is trained using a
supervised learning method, it is expected to be able to predict the output for previously unseen input
data. Supervised learning finds widespread application in NN-based SR [16, 17, 18, 19], owing to the
excellent alignment of supervised learning with the goals of SR.

B. Equation Represented by a Neural Network
Neural networks transform the input given to them through a series of successive operations. In

general, data passing through an edge of the network is multiplied with a weight, a learned parameter
that is unique to each edge. At a node, the weighted input from all the edges connecting to that node
are summed, and transformed with an activation function. The purpose of the activation function is to
control the output from the node (and hence the input to other nodes). Often an activation function will
also introduce a nonlinear transformation, improving the generalisation capabilities of the network.

Figure 1 shows a 3-layer neural network with 2 input nodes, 3 hidden nodes, and 1 output node. The
activation function is chosen to be the sigmoid function in the hidden nodes and the hyperbolic tangent
function for the output node. The weight associated with the edge between any node i and a node j
is represented by wj

i .Consider the topmost node of the hidden layer (node 1). The output of this node
can be expressed as

h(x1, x2) = σ(w1
1x1 + w1

2x2) (1)

The equations for the other nodes may be obtained in a similar manner. The output, ŷ1, can be
expressed as

ŷ1 = tanh(w4
1σ(w

1
1x1 + w1

2x2) + w4
2σ(w

2
1x1 + w2

2x2) + w4
3σ(w

3
1x1 + w3

2x2)) (2)

23

C. Gradient Descent 24

σ

σ

σ

tanh

1

2

3

4

Figure 1: 3-layer NN with sigmoid activation in the hidden layer and tanh activation in the output layer. Adapted from [22].

It can be seen from equation 2 that even for a small network, the equation is fairly complex. This
complexity is the foundation for the generalisability of these networks, since a wide variety of functions
could be approximated using the appropriate weights. As discussed in Chapter I, however, this comes
at the cost of interpretability.

Universal Approximation Theorem
The Universal Approximation Theorem states that feedforward neural networks with just one hidden

layer can approximate any continuous mapping from one finite-dimensional space to another, under
some mild assumptions [23]. We observe from figure 1 that the computation within the node is linear
in the weights and the input to the nodes. However, successive linear transformations are generally not
sufficient to approximate arbitrarymappings. Hence, nonlinearity is introduced in the nodal transformations
through the use of an activation function. The argument of the activation function is the aformentioned
linear transformation of the nodal inputs, and the value of the function is the nodal output. Some
commonly used activation functions are the Rectified Linear Unit (ReLU), sigmoid, and tanh functions.
It must be noted, however, that the theorem does not elaborate on the neural architecture required
to approximate any continuous function with the desired level of accuracy. It simply states that the
network is theoretically realisable.

C. Gradient Descent
Irrespective of which type of learning is used, the training of an NN involves updation of the weights

of the network with respect to a pre-defined metric, encoded in the objective function. In unsupervised
learning, this metric may be the Euclidean distance of a training example from the sub-group that it
belongs to [24]. Supervised learning and reinforcement learning typically employ an error measure
such as the L2 norm or the root mean square error [11, 16]. A common optimization routine used in
training of NNs is Gradient Descent (GD). For the neural network in figure 1 with output ŷ1 as given in
equation 2 and using the mean-squared error as the loss function, we have

L(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 (3)

wi = wi − λ
∂L

∂wi
(4)

D. LSTM Networks 25

where λ is the learning rate, to be decided by the user. The gradient information required for updating
the weights is obtained via backpropagation, which involves the successive application of the chain
rule backwards through the NN.

The standard GD algorithm does not guarantee good convergence and does not scale well to larger
datasets. Several variants of the GD algorithm exist, such as Stochastic GD and Minibatch GD, which
deal with the scalability issues of the algorithm [25]. The convergence rates of the algorithm can be
improved with methods such as ADaptive Moment Estimation (ADAM) [26], or Adagrad [27].

Unbounded Gradients in RNNs
Since the edge weights of an RNN evolve with successive inputs, the standard GD algorithm with
backpropagation described above would not be sufficient, since equation 4 is only valid for one timestep,
i.e., a single input vector. Hence, a modified formulation known as backpropagation through time is
used. Consider a set, θ = {WHH ,W1H ,WHO,bH ,bO} of the weights and biases of the RNN, and a
cumulative objective that is the sum of the objective at each timestep. Then

L =

T∑
t=1

Lt (5)

∂L

∂θ
=

T∑
t=1

∂Lt

∂θ
(6)

∂Lt

∂θ
=

t∑
k=1

(
∂Lt

∂ht
· ∂ht

∂hk
· ∂hk

∂θ

)
(7)

Equation 7 describes how the parameters θ affect the objective over multiple timesteps. The term ∂ht

∂hk

quantifies the error propagation to timestep t from timestep k < t and is given by

∂ht

∂hk
=

t∏
i=k+1

∂hi

∂hi−1
(8)

From equation ?? and ??, we get

t∏
i=k+1

∂hi

∂hi−1
=

t∏
i=k+1

W⊺
HHdiag|f ′

H(hi−1)| (9)

We observe from equation 8 that the propagation of the error through timesteps in multiplicative in
nature. If the gradients between timesteps are small, then the repeated multiplication of these values
causes what is known as the vanishing gradient problem. This causes the RNN to ignore long-term
dependencies, since the propagation between temporally distant inputs is close to zero. Conversely,
if the weights WHH are large, then their repeated multiplication can cause the gradients to become
very large as it is propagated. This is called the exploding gradient problem, and the model becomes
unstable as a result.

D. LSTM Networks
To tackle the issue of unbounded gradients, Long-Short TermMemory (LSTM) networks were introduced.
LSTMs employ a modified nodal architecture, which controls the information flow between nodes and
timesteps. This structure allows LSTM networks to ’remember’ information for longer periods. [28]

Figure 2 shows a typical LSTM node architecture. The information flow in and out of the node is
controlled by four ’gates’, namely the input, forget, output, and cell activation gates. These gates
can preserve the data in the memory of the network for multiple timesteps, allowing LSTMs to handle

D. LSTM Networks 26

Forget Gate

Input Gate

ht-1

xt

xt

ht
yt

gt
f

(

I

g ! "

xt

h
$ %

xt

.

gt
i().

& ().

()

Output Gatet-1

t-1

gt
o().

.

' ()

c) * ,

h
- . /

h
0 1 2

.

cell

σ

σ

t

Figure 2: A standard LSTM node, from [28]

temporally distant relations better than standard RNNs, particularly in the area of sequence learning.
The input gate to the LSTM is defined as

gi
t = σ(WIgixt +WHgiht−1 +Wgcgigc

t−1 + bgi) (10)

where WIgi is the weight matrix from the input layer to the input gate, WHgi is the weight matrix from
the hidden state to the input gate, Wgcgi is the weight matrix from the cell activation to the input gate,
and bgi is the bias of the input gate. Here, the nodal output ht is referred to as the hidden state. The
forget gate is defined as

gf
t = σ(WIgfxt +WHgfht−1 +Wgcgfgc

t−1 + bgf) (11)

whereWIgf is the weight matrix from the input layer to the forget gate, WHgf is the weight matrix from
the hidden state to the forget gate,Wgcgf is the weight matrix from the cell activation to the forget gate,
and bgf is the bias of the forget gate. The cell gate is defined as

gc
t = gi

ttanh(WIgcxt +WHgcht−1 + bgc) + gf
t gc

t−1 (12)

whereWIgc is the weight matrix from the input layer to the cell gate,WHgc is the weight matrix from the
hidden state to the cell gate, and bgc is the bias of the forget gate. The output gate is defined as

go
t = σ(WIgoxt +WHgoht−1 +Wgcgogc

t−1 + bgo) (13)

whereWIgo is the weight matrix from the input layer to the output gate,WHgo is the weight matrix from
the hidden state to the output gate,Wgcgo is the weight matrix from the cell activation to the output gate,
and bgo is the bias of the forget gate. The hidden state is then computed as

ht = go
t tanh(gc

t) (14)

E. Proof: Risk-Seeking Policy Gradient 27

LSTM is one of the most popular methods to deal with the effects of gradient divergence in RNNs and
learning long-term dependencies in data. This is especially important for DSR, due to the fact that the
hierarchical position of a token in the expression tree is not related to the order in which the tokens are
picked, i.e., tokens picked one after the other may not be close to each other in the expression tree.
Hence, retaining sequential information for longer periods of time is crucial for the proper functioning
of the method.

E. Proof: Risk-Seeking Policy Gradient
Let Jrisk(θ; ϵ) denote the conditional expectation of rewards above the (1− ϵ) quantile, denoted as

Jrisk(θ, ϵ) = Eτ∼p(τ |θ)[R(τ)|R(τ) ≥ Rϵ(θ)] (15)

The gradient of Jrisk is then given by

∇θJrisk(θ, ϵ) = Eτ∼p(τ |θ)[(R(τ)−Rϵ(θ)) · ∇θlog(p(τ |θ))|R(τ) ≥ Rϵ(θ)]

Where R̃ϵ(θ) is the empirical (1-ϵ) quantile of rewards, and 1x returns 1 if x is true and 0 otherwise.
The following proof was provided by Petersen et al. [11], which was an extension of results obtained
by Tamar et al. [29]

Proof: Consider a bounded random variable Z ∈ [−b, b], generated from a parameterised distribution
p(Z|θ). The (1− ϵ) quantile of Z is given by

Q1−ϵ(Z; θ) = inf{z : CDF (z) ≥ 1− ϵ}

whereCDF (z) is the cumulative distribution function corresponding to p(Z|θ). The risk-seeking objective
Jrisk(θ; ϵ) as the expectation of the ϵ fraction of the best outcomes of Z

Jrisk(θ; ϵ) = EZ∼p(Z|θ)[Z|Z ≥ Q1−ϵ(Z; θ)]

The set of values of z above this quantile, Dθ, is given by

Dθ = z ∈ [−b, b] : z ≥ Q1−ϵ(Z; θ)

By construction, Dθ is the interval [Q(1− ϵ)(Z; θ)]. Further,

∫
z∈Dθ

p(z|θ)dz = ϵ (16)

The conditional expectation, Jrisk, can be rewritten in integral form as

Jrisk(θ; ϵ) =
1∫

z∈Dθ
p(z|θ)

∫
z∈Dθ

p(z|θ)zdz

=
1

ϵ

∫
z∈Dθ

p(z|θ)zdz

=
1

ϵ

∫ b

Q1−ϵ(Z;θ)

p(z|θ)zdz

The calculation of the gradient of Jrisk is done with the Leibniz integral rule, and can be expressed as

F. Observations from Hyperparameter Tuning 28

∇θJrisk(θ; ϵ) = ∇θ
1

ϵ

∫ b

Q1−ϵ(Z;θ)

p(z|θ)zdz

=
1

ϵ

∫ b

Q1−ϵ

∇θp(z|θ)zdz −
1

ϵ
p(Q1−ϵ(Z; θ)|θ)Q1−ϵ(Z; θ)∇θQ1−ϵ(Z; θ)

The gradient of equation 16 may be obtained as

0 = ∇θ

∫
z∈Dθ

p(z|θ)dz

= ∇θ

∫ b

Q1−ϵ(Z;θ)

p(z|θ)dz

=

∫ b

Q1−ϵ(Z;θ)

∇θp(z|θ)dz − p(Q1−ϵ(Z; θ)|θ)∇θQ1−ϵ(Z; θ)

This result is substituted in the equation for ∇θJrisk(θ; ϵ)

∇θJrisk(θ; ϵ) =
1

ϵ

∫ b

Q1−ϵ(Z;θ)

∇θp(z|θ)(z −Q1−ϵ(Z; θ))dz

Multiplying p(Z|θ)
p(Z|θ) and using the derivative of a logarithm, the definition of conditional expectation yields

∇θJrisk(θ; ϵ) =
1

ϵ

∫ b

Q1−ϵ(Z;θ)

(z −Q1−ϵ(Z; θ))p(z|θ)∇θlogp(z|θ)dz

= EZ∼p(Z|θ)[(Z −Q1−ϵ(Z; θ))∇θlogp(Z|θ)|Z ≥ Q1−ϵ(Z; θ)]

Replacing Z with a scalar reward function R(τ), where τ is generated from a parameterised distribution
p(τ |θ),

∇θJrisk(θ; ϵ) = Eτ∼p(τ |θ)[(R(τ)−Rϵ(θ))∇θlogp(τ |θ)|R(τ) ≥ Rϵ(θ)]

F. Observations from Hyperparameter Tuning
The sensitivity of the method with respect to the hyperparameters of the NN was investigated. In the

parameter tuning tests, DSR was required to discover the Selkov equation for the x-velocity (Equation
??), with a range of values for each investigated parameter. Only one parameter was varied per run,
i.e. only a single parameter was altered from the default value for each run. It was found that default
values for some of the six investigated hyperparameters were sub-optimal in terms of the epochs to
convergence, as elaborated upon below. For each parameter, a convergence plot (Reward Function
vs. Epochs for different parameter values) and the time to convergence as the parameter varies is
presented.

It was observed that using a significantly larger batch size (relative to the default) resulted in faster
convergence. Further, the fraction of unique expressions generated per batch was found to decrease
with each epoch. Using a batch of 5000 expressions resulted in discovery of the correct equation in
the first epoch (explaining the absence of this curve from figures 3a and 3c). This implies that a larger
number of samples are required to fully capture the distribution of expressions represented by the NN.

F. Observations from Hyperparameter Tuning 29

0 10 20 30 40 50
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Re

wa
rd

 F
un

ct
io

n
Convergence Plot: Batch Size

100
500 (def.)
1000
5000
10000

(a) Convergence Plot (Batch Size)

0 2000 4000 6000 8000 10000
Batch Size

20

40

60

80

100

120

140

160

Ti
m

e
(s

)

Default
Time to Convergence: Batch Size

(b) Compute Time vs. Batch Size

0 10 20 30 40 50
Epochs

0.88

0.90

0.92

0.94

0.96

0.98

Fr
ac

tio
n

of
 U

ni
qu

e
Ex

pr
es

sio
ns

Fraction Unique Expressions vs. Epochs
100
500
1000
10000

(c) Fraction of Unique Expressions per Epoch

Figure 3: Performance of DSR with varying Batch Size

0 10 20 30 40
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Re
wa

rd
 F

un
ct

io
n

Convergence Plot: Learning Rate
0.0005
0.001
0.0025 (def.)
0.005
0.01

(a) Convergence Plot (Learning Rate)

0.002 0.004 0.006 0.008 0.010
Learning Rate

153

154

155

156

157

158

Ti
m

e
(s

)

Default

Time to Convergence: Learning Rate

(b) Compute Time with different Learning Rates

Figure 4: Performance of DSR with varying Learning Rate

An optimal learning rate was found to exist in terms of the learning rate for the discovery of the Selkov
equation, which was double the default value. As seen in figures 4a and 4b, using a learning rate of
5 · 10−4 yielded the best convergence in the tested range.

Figures 5a and 5b compare the performance of the two available NN architectures for DSR. It was seen
that the (default) LSTM architecture had performed worse than the GRU architecture in the discovery

G. Discovery of Modal Contributions in a Cantilever Beam using a Single-Point Measurement 30

of the Selkov equation, in terms of time to convergence. This may be due to the relative simplicity of
the equation in terms of the length of the token sequence required to to express it, favouring the more
lightweight (and memory-frugal) GRU architecture.

0 10 20 30 40
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Re
wa

rd
 F

un
ct

io
n

Convergence Plot: NN Architecture
lstm (def.)
gru

(a) Convergence Plot (Cell Type)

lstm (Default) gru
NN Architecture

0

25

50

75

100

125

150

175

Ti
m

e
(s

)

Time to Convergence: NN Architecture

(b) Compute Time for each Architecture

Figure 5: Performance of DSR with different NN architectures

Varying the number of layers and units revealed that they do not affect the number of epochs taken
to converge in this problem. However, a simpler network is computationally more efficient, and thus
using a more lightweight network with fewer layers as units would yield better performance in this case,
as seen in figure 6d and figure 6b. The effect of the random seed on the performance of the method
is outlined in Figure 7. It is clear that some choices of seed work better than others, and the current
default choice (zero) is among the worse performing choices.

G. Discovery of Modal Contributions in a Cantilever Beam using a
Single-Point Measurement

Let the displacement of the beam at the point of measurement be w. Then,

w = ϕ1q1 + ϕ2q2

where ϕi is the mode shape of mode i and qi(t) is the time-dependent amplitude associated with mode
i. Here, modes 1 and 2 simply denote two modes whose contribution we wish to identify in the vibration
of the beam. They need not necessarily be the first and second modes of the beam (although the first
two modes would have the highest contribution to the vibration). For a cantilever beam [30],

ϕn(x) = (cos(βnx)− cosh(βnx))−K ∗ (sin(βnx)− sinh(βnx))

K =
cos(βnL) + cosh(βnL)

sin(βnL) + sinh(βnL)

here, L is the length of the beam. The value of ϕi may be evaluated at any point along the beam.
Hence, ϕi takes a constant value for fixed x and i. We also have the result

cos(βnL)cosh(βnL) + 1 = 0

Further,

qi(t) = Aicos(ωit) +Bisin(ωit)

ωi = (βL)2

√
EI

ρAL4

G. Discovery of Modal Contributions in a Cantilever Beam using a Single-Point Measurement 31

0 10 20 30 40
Epochs

0.90

0.92

0.94

0.96

0.98

1.00
Re

wa
rd

 F
un

ct
io

n
Convergence Plot: Number of Layers

1 (def.)
2
3
4
5
6

(a) Convergence Plot (Num. Layers)

1 2 3 4 5 6
Number of Layers

180.0

182.5

185.0

187.5

190.0

192.5

195.0

197.5

200.0

Ti
m

e
(s

)

Default

Time to Convergence: Number of Layers

(b) Compute Time vs. Num. Layers

0 10 20 30 40
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Re
wa

rd
 F

un
ct

io
n

Convergence Plot: Number of Units
16
32 (def.)
64
128
256
512

(c) Convergence Plot (Num. Units)

0 100 200 300 400 500
Number of Units

150

152

154

156

158

160

162

Ti
m

e
(s

)

Default

Time to Convergence: Number of Units

(d) Compute Time vs. Num. Units

Figure 6: Performance of DSR with varying Number of Units/Layers

0 10 20 30 40 50
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

Re
wa

rd
 F

un
ct

io
n

Convergence Plot: Seed

-25
-13
-4
0 (def.)
4
13
25

(a) Convergence Plot (Seed)

20 10 0 10 20
Seed

50

100

150

200

250

Ti
m

e
(s

)

Default

Time to Convergence: Seed

(b) Compute Time for each Architecture

Figure 7: Performance of DSR with different Random Seeds

where E is the Young’s Modulus of the beam material, I is the area moment of inertia of the beam’s
cross section, ρ is the density of the material and A is the cross-sectional area of the beam. Hence the
displacement of the measured point may be expressed as,

w = ϕ1A1cos(ω1t) + ϕ1B1sin(ω1t) + ϕ2A2cos(ω2t) + ϕ2B2sin(ω2t) + ϵ

G. Discovery of Modal Contributions in a Cantilever Beam using a Single-Point Measurement 32

If data from multiple modes are supplied in the dataset, DSR can select the modes with the highest
contribution and provide an equation for the displacement of the measured point in terms of these
modes. The constant optimisation routine will determine the values of ϕ1A1, ϕ1B1, ϕ2A2, ϕ2B2. Here,
ϵ denotes the contribution to the tip displacement from the modes not considered. The presence of ϵ
may result in an extraneous constant in the expression, a reduction in the value of the reward function,
or both. The above equation can be used to discover the two modes with the highest contribution, but
the method could, in theory, determine the contribution from more than two modes as well. It is worth
noting, however, that the equation discovery performance tends to deteriorate as the number of input
variables increases.

References

[1] Joseph Lorenzetti et al. “Reduced order model predictive control for setpoint tracking”. In: 2019
18th European Control Conference (ECC). IEEE. 2019, pp. 299–306.

[2] Themistoklis P Sapsis and Andrew JMajda. “Statistically accurate low-ordermodels for uncertainty
quantification in turbulent dynamical systems”. In:Proceedings of the National Academy of Sciences
110.34 (2013), pp. 13705–13710.

[3] Sheng Chen and Steve A Billings. “Representations of non-linear systems: the NARMAX model”.
In: International journal of control 49.3 (1989), pp. 1013–1032.

[4] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems”. In: Proceedings of the national
academy of sciences 113.15 (2016), pp. 3932–3937.

[5] Urban Fasel et al. “Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise
limit, with active learning and control”. In: Proceedings of the Royal Society A 478.2260 (2022),
p. 20210904.

[6] Kadierdan Kaheman, Steven L Brunton, and JNathan Kutz. “Automatic differentiation to simultaneously
identify nonlinear dynamics and extract noise probability distributions from data”. In: Machine
Learning: Science and Technology 3.1 (2022), p. 015031.

[7] Daniel A Messenger and David M Bortz. “Weak SINDy for partial differential equations”. In:
Journal of Computational Physics 443 (2021), p. 110525.

[8] Josh Bongard and Hod Lipson. “Automated reverse engineering of nonlinear dynamical systems”.
In: Proceedings of the National Academy of Sciences 104.24 (2007), pp. 9943–9948.

[9] Michael Schmidt and Hod Lipson. “Distilling free-form natural laws from experimental data”. In:
science 324.5923 (2009), pp. 81–85.

[10] Yuntian Chen et al. “Symbolic genetic algorithm for discovering open-form partial differential
equations (SGA-PDE)”. In: Physical Review Research 4.2 (2022), p. 023174.

[11] Brenden K Petersen et al. “Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients”. In: arXiv preprint arXiv:1912.04871 (2019).

[12] Yulong Lu and Jianfeng Lu. “A universal approximation theorem of deep neural networks for
expressing probability distributions”. In: Advances in neural information processing systems 33
(2020), pp. 3094–3105.

[13] Silviu-Marian Udrescu and Max Tegmark. “AI Feynman: A physics-inspired method for symbolic
regression”. In: Science Advances 6.16 (2020), eaay2631.

[14] Hao Xu, Haibin Chang, andDongxiao Zhang. “Dl-pde: Deep-learning based data-driven discovery
of partial differential equations from discrete and noisy data”. In: arXiv preprint arXiv:1908.04463
(2019).

[15] Hao Xu, Dongxiao Zhang, and Junsheng Zeng. “Deep-learning of parametric partial differential
equations from sparse and noisy data”. In: Physics of Fluids 33.3 (2021), p. 037132.

[16] GeorgMartius and Christoph H Lampert. “Extrapolation and learning equations”. In: arXiv preprint
arXiv:1610.02995 (2016).

[17] Subham Sahoo, Christoph Lampert, and Georg Martius. “Learning equations for extrapolation
and control”. In: International Conference on Machine Learning. PMLR. 2018, pp. 4442–4450.

[18] Michael Zhang et al. “Deep Learning and Symbolic Regression for Discovering Parametric Equations”.
In: arXiv preprint arXiv:2207.00529 (2022).

[19] Zichao Long, Yiping Lu, and Bin Dong. “PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic
hybrid deep network”. In: Journal of Computational Physics 399 (2019), p. 108925.

33

References 34

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
[21] Zhiqiang Cai et al. “Deep least-squares methods: An unsupervised learning-based numerical

method for solving elliptic PDEs”. In: Journal of Computational Physics 420 (2020), p. 109707.
[22] Varun Kumar Ojha, Ajith Abraham, and Václav Snášel. “Metaheuristic design of feedforward

neural networks: A review of two decades of research”. In: Engineering Applications of Artificial
Intelligence 60 (2017), pp. 97–116.

[23] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are
universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[24] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. “The global k-means clustering algorithm”.
In: Pattern recognition 36.2 (2003), pp. 451–461.

[25] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747 (2016).

[26] Diederik P Kingma and Jimmy Ba. “Adam: Amethod for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[27] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online learning
and stochastic optimization.” In: Journal of machine learning research 12.7 (2011).

[28] Hojjat Salehinejad et al. “Recent advances in recurrent neural networks”. In: arXiv preprint arXiv:1801.01078
(2017).

[29] Aviv Tamar, YonatanGlassner, and ShieMannor. “Optimizing theCVaR via sampling”. In: Twenty-Ninth
AAAI Conference on Artificial Intelligence. 2015.

[30] Singiresu S Rao. Vibration of continuous systems. John Wiley & Sons, 2019.

	Preface
	Abstract
	I Introduction
	II Paper: Deep Symbolic Regression for Nonlinear Dynamical Systems
	III Reflection
	IV Appendix
	Learning in Neural Networks
	Equation Represented by a Neural Network
	Gradient Descent
	LSTM Networks
	Proof: Risk-Seeking Policy Gradient
	Observations from Hyperparameter Tuning
	Discovery of Modal Contributions in a Cantilever Beam using a Single-Point Measurement

	References

