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Abstract

With the advent of high-bandwidth non-volatile storage devices, the classical assumption
that database analytics applications are bottlenecked by CPUs having to wait for slow I/O
devices is being flipped around. Instead, CPUs are no longer able to decompress and deseri-
alize the data stored in storage-focused file formats fast enough to keep up with the speed at
which compressed data is read from storage. In order to better utilize the increasing I/O band-
width, this work proposes a hardware accelerated approach to converting storage-focused file
formats to in-memory data structures. To that end, an FPGA-based Apache Parquet reading en-
gine is developed that utilizes existing FPGA and memory interfacing hardware to write data
to memory in Apache Arrow’s in-memory format. A modular and expandable hardware archi-
tecture called the ParquetReader with out-of-the-box support for DELTA_BINARY_PACKED
and DELTA_LENGTH_BYTE_ARRAY encodings is proposed and implemented on an Amazon
EC2 F1 instance with an XCVU9P FPGA.

The ParquetReader has great area efficiency, with a single ParquetReader only requiring be-
tween 1.18% and 2.79% of LUTs, between 1.27% and 2.92% of registers and between 2.13%
and 4.47% of BRAM depending on the targeted input data type and encoding. This area
efficiency allows for instantiating a large number of (possibly different) ParquetReaders for
parallel workloads. Multiple Parquet files of varying types and encodings were generated in
order to measure the performance of the ParquetReaders. A single engine has achieved up
to 2.81× speedup for DELTA_LENGTH_BYTE_ARRAY encoded strings and 2.79× speedup
for DELTA_BINARY_PACKED integers when compared to CPU-only Parquet reading imple-
mentations, attaining a throughput between 2.3 GB/s and 7.2 GB/s (limited by the interface
bandwidth of the testing system) depending on the input data. The high throughput and low
resource utilization of the ParquetReader allow for the interface bandwidth to be saturated
using multiple ParquetReaders utilizing only a small amount of the FPGA’s resources.
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Chapter 1

Introduction

1.1 Objective & motivation

1.1.1 Speeding up database analytics

Every day, over 2.5 exabytes of data are created by humanity [1]. As the digitization of the world
continues, this staggeringly large number is bound to grow even larger. This deluge of data
provides many opportunities, but also many challenges. The ability to analyze large amounts of
data in a database within a short amount of time is very valuable to an enterprise’s short term
decision making process. Knowing how often a brand name is mentioned in tweets over the
course of a day is of great value to a company, but only if the large amounts of data generated
by Twitter users can be processed efficiently. The performance of big data analytics applications
dealing with problems of this nature is of great importance.

Figure 1.1: Schematic overview of a database analytics process with examples of file formats and
in-memory data structures

Figure 1.1 shows a schematic overview of the basic process associated with a database analyt-
ics application. First, the data to be analyzed must be read from persistent storage and loaded
into memory. Data will often be stored in a file format that provides compression while also
including metadata aimed at providing structure to the data to help with query performance. In
memory, the data structure is dependent on the tools that will be used for processing, with C++
vectors, Java vectors and Python Pandas dataframes requiring different memory layouts for the
data than the serialized form found in the storage-focused file format. Therefore, reading data
from storage requires a decompression and deserialization step before the data can be used. The
second step in the database analytics process is the compute step, where the actual analysis takes
place. The operations that need to be done on the data during this step are very dependent on
the particular analysis that is being performed, typically including filtering, mapping and/or
matching steps.

In order to speed up the process as previously described, the bottleneck needs to be found
and alleviated. The nature of the analysis determines the time spent on the compute step, in
turn determining whether or not the compute will be the bottleneck. So, what if we only need
to do simple computations on a large amount of data to get our results? If compute is not the

1



2 CHAPTER 1. INTRODUCTION

bottleneck, what is? A classical assumption in computing is that I/O devices are slow while
CPUs are fast, suggesting that the bandwidth of the storage medium will be the limiting factor
in the process. However, this assumption is starting to become outdated [2].

Figure 1.2: Trends in bandwidth [3]

Figure 1.2 shows how bandwidth for storage and network has developed over the years com-
pared to DRAM or PCIe bandwidth. It can be seen that storage and network bandwidth have
grown significantly quicker than PCIe or DRAM. NVMe SSDs can already be found on the mar-
ket with sequential read speeds of more than 4 GB/s, which begs the question: what is being
done with the ever increasing storage bandwidth?

(a) Time to read different file formats into a Pan-
das dataframe

(b) Comparing compression capabilities of different file
formats for the same data set

Figure 1.3: Comparison of read speed and storage size for different file formats storing the same
data set [4]

In [4] a benchmark has been performed comparing the read and storage capabilities of dif-
ferent file formats with varying compression codecs storing the New York Taxi & Limousine
Commission Trip Data dataset. The benchmarks measure the size of the file once the dataset
has been fully written to storage and the speed at which a file can be read into a Python Pandas
dataframe, Pandas being a popular Python package for data analysis [5]. Figure 1.3 shows the
results of these benchmarks. In order to make sure that storage bandwidth would not be a lim-
iting factor in the benchmarks, the files were loaded into memory before the actual conversion
to be measured took place. Figure 1.3a shows that even Parquet without extra compression, the
fastest file format to read that provides any reduction in storage size, only attains a throughput
of 2 GB/s on a single core. The best file format in terms of storage size, Parquet with Brotli com-
pression according to Fig. 1.3b, only manages up to 600 MB/s single-core performance. Parquet
as a file format allows for splitting the file up into multiple parts that can be read in parallel, so
a multi-core solution is possible [6]. But the slow single-core performance means that, especially
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for the Parquet file with Brotli compression, a lot of cores are needed to saturate the increasing
storage and network bandwidth.

If CPUs are having trouble keeping up with modern trends in storage and network band-
width, a solution outside of general processing should be investigated. With the development
of specialized hardware in a field-programmable gate array (FPGA), it may be possible to signif-
icantly increase the speed at which persistent storage-focused file formats can be converted to
in-memory data structures, while also improving energy efficiency. The main goal of this thesis
will therefore be to develop and implement digital logic in an FPGA for use in accelerating the
conversion of storage-focused file formats to in-memory data structures and to investigate its
performance in comparison to that of a general processor.

1.1.2 Choice of formats

Considering the typically long development times required to produce a functional hardware
design for FPGAs, it is infeasible for an MSc thesis to encompass the development a system that
can freely convert a large selection of file formats to a large selection of in-memory data structures.
Therefore, the project will focus only on converting the Apache Parquet file format to the Apache
Arrow in-memory data structure. In this section, the reason for choosing these specific formats
will be explained. A technical description of these formats will follow in Chapter 2.

Apache Arrow is a columnar memory format that aims to be language-independent, meaning
that the same Arrow data should be accessible from multiple language runtimes without copying
or serialization [7]. This particular quality of Arrow makes it a good fit for the target in-memory
data structure of the conversion hardware because it will make the project usable by tools written
in any of the languages Arrow supports, which currently include (among others) C, C++, Java
and Python. Arrow being a columnar format is also an advantage. Having data of the same
column stored contiguously in memory is beneficial to many database analytics applications,
allowing sequential reads if only the data of a single column is required for analysis. A final
advantage to using Arrow is the existence of Fletcher, a hardware framework for interfacing
between FPGAs and Arrow [8]. Based on an Arrow schema describing the structure of the Arrow
data, Fletcher can be used to generate hardware that will either read or write Arrow data to or
from the FPGA. This pre-existence of open source Arrow writing hardware means efforts can be
focused solely on the Parquet reading part of the converter.

Apache Parquet is a columnar data storage format [6]. Because Parquet and Arrow are both
columnar formats no significant data reordering needs to be performed during conversion. The
Apache Software Foundation has been setting up Parquet and Arrow as on-disk and in-memory
counterparts, even merging development of Parquet’s C++ library into the same repository as
Arrow’s development [9]. An advantage of this connection between Parquet and Arrow is that
multiple software tools already exist for converting between the two formats, which can be help-
ful during development of the converter for purposes of debugging and verification. One of the
basic requirements defined for Arrow is that the format should always be capable of representing
fully-materialized decoded and decompressed Parquet data [10]. Finally, the structure of Parquet
files allows for dividing columns into parts allowing parallel conversion of the data in a column.
This is important because it allows multiple Parquet reading cores to be instantiated in the same
FPGA, making optimal use of available area for parallel performance.

1.1.3 Research questions

The main research question can be formulated as follows:

• Can FPGA-based hardware acceleration allow for better utilization of increasing I/O band-
width when converting storage-focused data formats to in-memory data formats?

Answering this question requires the design and development of a hardware accelerated Par-
quet to Arrow conversion system. During design, development and testing of this system, the
following questions need to be answered:
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1. Which forms, variants and parts of the Parquet file format are well suited for FPGA-based,
high-throughput conversion to Arrow format?

2. Which factors impact the performance of the system?

3. How does the performance of the hardware accelerated system compare to that of a CPU-
only system?

1.1.4 Contributions

The main contribution of this thesis is the design and development of an FPGA-based Parquet
reading engine that can dissect Parquet pages and extract the relevant data. Modules are in-
cluded that can decode common Parquet encodings for floats, doubles, integers and strings. The
data generated by the Parquet readers can be written to Arrow format using Fletcher, or alter-
natively, this data can be operated on by custom analytical kernels. The four most important
features of the Parquet reading engine are as follows:

1. Area efficiency. In order to allow for parallel Parquet reading workloads and to leave room
for custom analytical FPGA kernels, the engines are designed to be very area efficient.

2. High-throughput. In order to provide a benefit to using FPGA-based Parquet reading en-
gines over a CPU-only implementation, the engines are designed to maximize throughput.
The combination of high-throughput and low resource utilization allow a collection of Par-
quetReaders to saturate the interface bandwidth while using only a small amount of the
resources in the FPGA.

3. Modularity. Because a Parquet file can come in many forms with a multitude of different
encoding or compression schemes, the design allows for easy replacement and addition of
modules to facilitate future expanded support for different parts of the Parquet file format.

4. Vendor agnosticism. The hardware should be usable with any FPGA, in any system. There-
fore the design does not use any vendor specific IP cores.

The behavior of the hardware is studied through extensive testing and benchmarking. Exten-
sive discussion is provided on the results, allowing for future implementations of the hardware
to make educated design choices for an area/performance trade-off. The ParquetReader has
been designed with flexiblity in mind, allowing this trade-off to be made through the setting
of VHDL generics. By measuring and discussing the properties of the system used for testing
the hardware, insights are gained about the possible performance of the hardware in a practical,
real-world application.

The full VHDL project can be found on the fast-p2a GitHub repository under the Apache
License 2.0 [11].

1.2 Report structure

Chapter 2 provides all the necessary background for understanding the designs and design pro-
cess discussed in Chapter 3 and Chapter 4. Technical discussions of Apache Parquet, Apache
Arrow, Fletcher and AXI are included. These discussions are limited to only the parts of those
projects that are relevant to the work presented in this thesis. Chapter 2 also explores related work
that provides different perspectives on the increasing storage bandwidth and the implications for
database systems. Finally, the general development strategy used for the work presented in this
thesis is briefly explained.

In Chapter 3 the general design of a hardware accelerated Parquet reader is discussed from
a high-level perspective, defining the steps involved in the Parquet to Arrow conversion process
and dividing these steps between the FPGA and the CPU. System configurations are proposed for
both a theoretical, ideal system, and for the system available for testing. A high-level hardware
architecture is introduced that forms the basis for a single Parquet reading engine, of which
multiple could be included in a single FPGA. A fully functional ParquetReader module for simple
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non-nested, non-nullable Parquet files containing fixed-width primitives is implemented and
benchmarked. The benchmark results are extensively discussed, both in context of the system
configuration used for testing and theoretically possible performance.

Chapter 4 opens with a discussion on the challenges with including string reading support in
the ParquetReader, and explains the decision to develop decoders for delta and delta length en-
coded integers and strings. A general design for a decoder is then proposed that makes use of the
similarities between the integer and string encoding to enable optimal reuse of VHDL modules.
The VHDL associated with this design is written in such a way that key design decisions can be
changed by the setting of generics in the higher-level VHDL modules. After implementation, the
implications of changing these design parameters are explored through extensive benchmarking.
Special attention is also paid to the effect of the nature of the input data on the performance of
the different implementations.

Finally, some concluding remarks are provided in Chapter 5, summarizing this report and
reflecting back on the research question formulated in this chapter. Possible avenues for future
development of the Parquet to Arrow conversion hardware are also discussed.





Chapter 2

Background

2.1 Perspectives on the decompression bottleneck

As discussed in Section 1.1.1, storage and network bandwidth have increased to the point where
decompression and deserialization are at risk of becoming a bottleneck in many database analyt-
ics applications. In this section, multiple perspectives on this problem from solutions proposed
in the literature are gathered and briefly evaluated in comparison to the proposed solution in this
thesis.

Nanavati et al. [2] provide an extensive evaluation of the developing imbalance between I/O
bandwidth and CPU performance. The authors argue that new storage class memories (SCMs)
have such high bandwidth that CPUs risk becoming completely overwhelmed. Because existing
paradigms for the structuring of database systems are still based on old assumptions considering
IO and CPU performance, they will not be able to efficiently utilize faster non-volatile memory
without rethinking not only the ratio of CPUs to SCMs in the system, but also the way CPUs
interact with the SCMs. Having a fixed number of outstanding read requests to storage is a
sensible way to deal with slow storage for example, but with SCMs this strategy risks flooding
the RAM.

The authors take a high-level view of the subject, and the proposed solutions are accordingly
general. Through careful balancing of storage with computing power, I/O centric scheduling,
rethinking datacenter organization and workload-aware storage tiering, the authors foresee a
future where the increasingly inefficient utilization of SCMs will be attacked at all layers of the
datacenter infrastructure.

The work in this thesis is considerably more specific and low-level than that of Nanavati et
al., but fits well with their aim of better utilization of the growing storage bandwidth. If CPUs
are able to offload work to an FPGA accelerator, they can spend the freed up time doing other
useful work. The end result will be a change in the optimal ratio of SCMs to CPUs, with fewer
CPUs per SCM required to optimally utilize the SCM bandwidth.

Sukhwani et al. [12] describe an FPGA implementation aimed at accelerating database analyt-
ics for transactional databases. The authors argue that offloading analytical jobs from the CPU
to an FPGA allows for fast execution of an otherwise time-consuming task and frees up CPU re-
sources for “mission-critical transactional workloads”. The hardware has been designed to take
pages from the database management system’s (DBMS) memory, extract the rows and evaluate
predicates from SQL queries. These queries can be supplied to the FPGA at runtime, avoiding
having to synthesize a new design for every single SQL query that might by used in the system.

The authors report impressive results for the performance of their prototype when compared
with the baseline software executed on the CPU. When the data in the rows is compressed, the
FPGA attains a speedup of 10.7x compared to the CPU for the same data. For uncompressed
data the speedup is a more modest 1.2x. It makes sense that compressed data results in a
larger speedup because more computations, namely those required for decompression, can be
offloaded from the CPU to the FPGA. These attained results are very promising in regards to the
value of a Parquet to Arrow converter with decompression capabilities.

The difference between the work performed by Sukhwani et al. and the work performed in
this thesis is that their implementation is focused on transactional, row based databases. Parquet

7
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on the other hand is a column based format more suited for analytical databases. A working
Parquet to Arrow converter in an FPGA would be of great value to any application (implemented
in an FPGA or otherwise) that performs analysis on data in a columnar fashion, or any toolchain
that has multiple tools access the same (Arrow format) data.

Trivedi et al. [13] provide a very different perspective on the decompression bottleneck. The
authors present an entirely new file format called Albis. The decompression bottleneck is re-
moved by simply not compressing the data to begin with. Secondly, Albis provides a binary API
that aims to avoid object materialization unless needed, reducing the number of objects. The third
and final pillar of the Albis file format is to separate the metadata from the actual data, meaning
readers can sequentially scan the data in the file without encountering unwanted metadata.

When the read performance of Albis is compared to common file formats, the differences
are very significant. When reading a dataset consisting of integers and floats, Albis attains a
“goodput” (incoming data size divided by runtime) of 59.9 GB/s, whereas ORC and Parquet
reach 19.9 GB/s and 12.5 GB/s respectively. The authors also include Arrow in their benchmarks
when used as file format instead of an in-memory format, reaching 30.1 GB/s goodput.

This performance does come at a price. The dataset used for the benchmarks when stored
as an Albis file requires 94.5 GB, whereas ORC and Parquet (without extra compression) require
72.0 GB and 58.6 GB respectively. Storage space isn’t free, which is especially true for the fast
NVMe storage devices used in the benchmarks. Finally, the benchmarks performed in the paper
are very sensitive to inefficiencies in the software tasked with reading the files, making them less
of measure for the performance of the file format than the performance of the reader. Especially
for Arrow, which is a relatively young project with a not yet fully optimized software library, this
skews the performance benchmarks.

2.2 Apache Parquet

As mentioned on the Apache Parquet website, Parquet as a file format aims to be a compressed
and efficient columnar data representation [6]. To that end, Parquet files have a complex hier-
archical structure and support for multiple compression and encoding schemes. The technical
explanation of Parquet in this section will be limited to structural details and encodings schemes
that are relevant to the work. The Apache Parquet project is in active development and implemen-
tation details of the file format tend to change quickly. Because of this, some discrepancies have
developed between the documentation and the different implementations of Parquet. All infor-
mation in this section is accurate at the time of writing this document and was gathered by com-
paring documentation on the Apache Parquet website and parquet-format GitHub repository
with the parquet-mr and parquet-cpp project source code [6][14][15][16]. For Java related testing
and development of the Parquet to Arrow converter a fork of a snapshot release of parquet-mr
version 1.12.0 was used [17]. For C++ related testing and development the parquet-cpp version
that comes with Arrow version 0.13.0 was used.

2.2.1 File structure

Figure 2.1 shows the structure of a Parquet file with two distinct parts of the file visible. The left
half of the figure shows how the columns and their values are structured, while the right half
shows the FileMetaData. This metadata provides information such as the location of data in the
file and type schemas.

Within the left half three different hierarchies can be distinguished: the row group, the column
and the page. The row group is how Parquet ensures that values within the same row are stored
near each other. Columns are divided into chunks with row groups containing one column chunk
of each column in the Parquet file, stored contiguously. Because of this chunking, Parquet is not
a fully columnar format. The degree to which Parquet stores values in a columnar fashion is
dependent on the size of the row groups. Larger row groups (row group size can be specified
when Parquet writing Parquet files) allow for larger column chunks which means that more
values in the same column will be stored contiguously in memory.

More important to software or hardware tasked with reading Parquet files are the Parquet
pages. Each column chunk contains one or more pages stored back to back that contain the
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Figure 2.1: Parquet file structure [6]

compressed and encoded values with accompanying metadata. As can be seen in Fig. 2.1, there
are four distinct parts in a Parquet page. The first is the page header. The page header stores
information necessary for reading the page such as the number of values it contains and the
encoding scheme used. Page headers are serialized using Apache Thrift which will be discussed
further in Section 2.2.2. Directly following the page headers are the repetition levels and the
definition levels. Repetition levels store the structure of nested types such as lists of lists while
the definition levels store the nulls in the page. The encoding used for storing this information
is Google’s Dremel encoding [18]. If the type of the values in the page is not nested or nullable
no repetition or definition levels will be encoded in the page. Finally, after the repetition and
definition levels, the values are stored. These values can be encoded with any encoding that
Parquet supports for the type. After this, the data can optionally be compressed on a byte level
with any of the supported compression codecs. This will be further discussed in Section 2.2.3.
Like the row groups, a preferred size for the pages can be selected before writing the file. Larger
pages avoid the space and processing overhead of having many page headers in the Parquet file.
Small pages allow for more fine grained reading, because fetching a single value in a Parquet file
requires processing the entire page that contains that value.

The bulk of the metadata in a Parquet file is stored as a footer. By reading this FileMetaData
structure the location and types of all the column chunks can be determined. Depending on
the version of Parquet being used the metadata at the end of the file can also be used to locate
individual pages in the file. This will be discussed briefly in Section 2.2.4. According to the
Parquet website, the rigid separation of column data and metadata allows for splitting columns
into multiple files with the metadata for all of them only having to be read from one location. This
is a useful feature for the Hadoop filesystem that Parquet was designed for, but it does mean that
loss of the file footer means loss of the entire file.

2.2.2 Metadata serialization

In Parquet files, metadata is serialized using Apache Thrift’s “Thrift Compact Protocol”. The
specification for this protocol can be found on the Apache Thrift GitHub repository [19]. The
features of Thrift that are important for this project will be explained in this section by using an
example from Parquet’s metadata structures.

Figure 2.2 shows a diagram representation of the Thrift definition of the PageHeader meta-
data structure. The diagram shows that a page header contains 9 fields of which 3 are required
and 6 are optional. The last 6 fields are other Parquet metadata thrift structures that are (option-
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PageHeader

1: required PageType type

2: required i32 uncompressed_page_size

3: required i32 compressed_page_size

4: optional i32 crc

5: optional DataPageHeader data_page_header

6: optional IndexPageHeader index_page_header

7: optional DictionaryPageHeader dictionary_page_header

8: optional DataPageHeaderV2 data_page_header_v2

9: optional BloomFilterPageHeader bloom_filter_page_header

Figure 2.2: Thrift definition of PageHeader metadata structure

ally) nested within this one. PageType is defined as an enumeration with 32 bit integers so the
first four field are all Thrift “i32” type.

ValueField delta Type ID

0 4 8 16

(a) Thrift field encoding (short form) with a
single byte value (bit numbers annotated)

200

0000001 - 1001000

11001000

1 1001000 0 0000001

0 1 8 9 16

(b) Example of VarInt encoding for the
number 200

Figure 2.3: Two concepts in the Thrift Compact Protocol: field encoding and VarInt encoding

Two encoding concepts in the Thrift Compact Protocol shown in Fig. 2.3 are needed in order
to create a Thrift binary structure for the PageHeader definition in Fig. 2.2. Figure 2.3a shows
how each field is encoded with a field header consisting of a field delta and a type id, followed
by the field value. The field delta (4 bits) shows which field in the definition is encoded here as
a delta from the previous field. If the field delta is 1 for example, this field is the one directly
following the previously encoded field in the definition. If the delta is 2 one optional field after
the previously encoded field has been skipped. The first field in the structure gets field delta 1.
Type id (4 bits) encodes the type of this field. The two types in PageHeader, “i32” and “struct”,
have id’s 5 and 12 respectively. After the type id, the value of the field is encoded as defined for
that particular type, with the number of bytes in the value being determined either by the type
or being encoded in the value itself. Once all bytes for the values are written, either a new field
delta or a null byte indicating the end of the Thrift binary structure follows.

Integers are encoded as variable length integers (VarInt) shown in Fig. 2.3b. The binary rep-
resentations of the integers are divided into 7 bit groups and put into little endian order. Before
each 7 bit group a 1 bit is written to indicate another byte will follow, or a 0 bit if it is the last
byte. Upon decoding, the resulting number is sign extended with 0. Because this would cause
problems with negative numbers, all negative and positive numbers are mapped into the natural
number space using zigzag encoding with field values 0, 1, 2, 3, 4, 5 decoding to 0, -1, 1, -2, 2 and
so forth.

To put the encodings from Fig. 2.3 into practice, an example PageHeader with type 3, a page
size of 668 bytes (compressed and uncompressed) and no optional fields except field 8 is shown
in hexadecimal representation in Fig. 2.4. This particular header requires 9 bytes to store in the
file. After the field header “5C”, an encoding of a DataPageHeaderV2 structure would follow in
the same fashion.
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11 06

0 4 8 16

B8              0A 55 5 C

20 24 64 68 72

1

40

B8              0A5

44 48

Figure 2.4: Example hexadecimal representation of a Thrift Compact Protocol encoded Page-
Header with bit number annotations

2.2.3 Delta encoding

Encoding Supported types
PLAIN All
DICTIONARY All
DELTA_BINARY_PACKED INT32, INT64
DELTA_LENGTH_BYTE_ARRAY BYTE_ARRAY
DELTA_BYTE_ARRAY BYTE_ARRAY

Table 2.1: Encodings in Parquet with supported types

Table 2.1 shows all the supported encodings in Parquet. In the table, BYTE_ARRAY refers to
any array of bytes, thus notably including strings. Of these, PLAIN encoding is the simplest. Inte-
gers are encoded with their full little-endian 32 bit or 64 bit representation, written consecutively.
Strings are encoded as their length followed by their characters, again written back to back. Other
encodings in Table 2.1 are more complex, often providing a significantly larger compression ratio.
Implementing support for all these encodings is outside the scope of this thesis, so a selection had
to be made in Parquet’s encodings. For reasons further explained in Section 4.1 it was decided
to include support for the DELTA_BINARY_PACKED and DELTA_LENGTH_BYTE_ARRAY en-
coding schemes. Therefore, this section will include a technical explanation on the delta encoding
scheme as it is implemented in Parquet.

DeltaHeader BlockHeader M1

M1 M2 M3

M3

M4 BlockHeader M1

Figure 2.5: Schematic layout of DELTA_BINARY_PACKED encoded integers in a Parquet page

The general idea behind delta encoding schemes is that each piece of data is not stored in a
way that directly represents the value, but rather as a difference in respect to the previously stored
value. This difference is referred to as the delta. The benefit of such encodings schemes is that a
set of large numbers with only small differences between them can be stored as very small deltas.
If deltas are small, they can be represented with only a few bits. This allows for efficient bit-
packing. Delta encoding works especially well for sorted data sets, because subsequent numbers
in a data set are guaranteed to be as close to each other as possible through the sorting. Data sets
whose subsequent values have large differences between them may not be efficiently storable
using delta encoding schemes.

As a demonstration of the general layout of the values section in a Parquet page that has been
encoded with DELTA_BINARY_PACKED encoding (hereafter referred to as delta encoding) a
schematic representation of the start of such a section can be found in Fig. 2.5. A delta encoded
page always starts with a delta header, the only one in the page. After that a number of blocks
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follow consisting of a block header followed by a number of miniblocks. Figure 2.5 shows a delta
encoding with four miniblocks per block referred to as M1, M2, M3 and M4. The delta header
consists of four integers back to back:

1. Block size in values: The number of values in the block, always a multiple of 128.

2. Number of miniblocks: The number of miniblocks in a block. Upon dividing “block size in
values” by “number of miniblocks” the result (the number of values in a miniblock) should
always be a multiple of 32.

3. Total value count: The total number of values in the page. The same as in the page header.

4. First value: The first integer in the page.

All four are encoded as VarInts (see Section 2.2.2), but only “first value” is encoded as a
zigzag integer because it is the only one that can be negative. In the parquet-mr file writer (the
Java implementation of Parquet), “block size in values” is hardcoded to be 128 and “number of
miniblocks” is hardcoded to be 4, resulting in 32 values per miniblock [15].

Within a block, integers are encoded as deltas with respect to the previous value. The first
delta in the page uses the “first value” encoded in the delta header as a starting point. All deltas
in the block are bit packed with each miniblock having its own set bit width as defined in the
block header. Because bit packing requires all deltas to be positive (the packed bits are sign
extended with 0), each block header includes a “minimum delta” that first needs to be added to
the unpacked deltas to create the final (possibly negative) delta. This results in a block header
with the following fields:

1. Minimum delta: The minimum delta in the block added to unpacked deltas to allow for
negative deltas. Encoded as a zigzag VarInt.

2. Bit widths of miniblocks: The bit widths of each miniblock, encoded as one byte per
miniblock bit width.

This block and miniblock structure exists in order to dynamically react to changes in the
encoded data set. Every new miniblock has new bit packing width so a contiguous group of
integers that are numerically close can have their small deltas packed very tightly. Every new
block has a new minimum delta, meaning that a contiguous group integers with large, diverging
deltas can be “escaped” upon the start of a new block.

If there are not enough values to fill the final miniblock it is padded to its expected length
(based on the bit width). The format specifies the miniblock should be padded with 0, but Parquet
readers should be able to deal with other padding values as well. If there are so few values in the
final block that an entire miniblock can be omitted that miniblock will not be encoded. The bit
width for that miniblock encoded in the block header should be set to 0 according to the format,
but (like with the miniblock padding), Parquet readers should be able to deal with other values
as well.

Based on the delta encoding, the DELTA_LENGTH_BYTE_ARRAY encoding (hereafter re-
ferred to as delta length encoding) can be used to encode strings. In delta length encoding the
delta encoding as described above is used to encode the string lengths. After all the lengths have
been written, a complete sequence of all the characters in the strings will be written back to back.

2.2.4 Parquet v1.0 and Parquet v2.0 compared

Two major versions of the Parquet file format exist: version 1.0 and version 2.0. The differences
between these two versions are significant enough to require a choice in which version to support
in the Parquet to Arrow converter. The most important differences that may be relevant for
making this choice are listed in this section. The actual decision on which version to support is
explained in Section 3.1.2.

1. Writer support: Of the two major Parquet implementations, parquet-cpp (C++) and parquet-
mr (Java), only parquet-mr currently supports writing version 2.0 files.
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2. Page headers: The page header for version 2.0 includes more data. Notably the number of
nulls in the page and the size of the definition and repetition level parts of the page in bytes.
(In version 1.0 these sizes are found in the definition and repetition level parts of the page
themselves).

3. Compression: In Parquet version 1.0, selecting a compression codec during Parquet file
writing will cause the byte level compression to be applied to the definition levels, the
repetition levels and the values. In Parquet 2.0, this compression is only applied to the
values.

4. PageIndex and OffsetIndex: Starting from Parquet 2.4, extra (Thrift Compact Protocol en-
coded) metadata structures are included in the footer of the file that store information on
the location of Parquet pages in the file based on column values and row indices. This
allows for more efficient scans and deprecates some of the now superfluous information
previously stored in page headers and column metadata. Column metadata is now no
longer written after the columns by the parquet-mr filewriter.

2.3 Apache Arrow

On the Apache Arrow web page the project is described as “a cross-language development plat-
form for in-memory data” [7]. Arrow includes not just a format for in-memory data, but also
computational libraries and built-in functionality for interprocess communication with support
for many programming languages. Because Arrow aims to have its data structures accessible to
multiple language runtimes without serialization, the format has a well defined physical mem-
ory layout. This layout will serve as the basis for the technical explanation of Arrow in this
section [10]. All testing and development in this work is based on Arrow version 0.13.0.

2.3.1 Arrow structures

The Arrow data structure with which this thesis is most concerned is the Arrow Array, which will
be the focus of the technical explanations in this section. Arrow defines an array as a sequence of
values with known length that all have the same type, making it the most direct translation of a
Parquet column chunk in the Arrow project and a natural target for a Parquet to Arrow converter.
Arrays are immutable, meaning a process is not allowed to change values in the array. This is
an important guarantee to have when multiple processes can access the same data. According
to the specification, "all array slots are accessible in constant time, with complexity growing lin-
early in the nesting level" [10]. This fast access is very beneficial to the performance of analytics
applications.

Arrays can be collected into higher level data structures, most notably record batches and
tables. Record batches are collections of multiple equal length arrays whose (possibly differing)
types are defined by an Arrow schema. Tables consist of columns that in turn consist of array
chunks of the same type. Essentially, record batches and tables are both collections of arrays
defined by a schema, but only tables allow for chunking.

2.3.2 Primitive type arrays

Figure 2.6 shows what an Arrow array containing 32 bit integers would look like in memory.
Each of the values is stored contiguously in a buffer of values padded to a multiple of 64 bytes.
In the value buffer, both the padding bytes and the bytes belonging to a null can have any value.
The null bitmap buffer shows which values in the values buffer are null. If a bit in the null bitmap
buffer is 0, the corresponding value in the value buffer is null. In the case of a 1 it is a valid value.
Note that bytes in Arrow’s null bitmap buffer have their bits ordered from right to left. If the
type of an Arrow array is set as non-nullable, the inclusion of a null bitmap buffer is optional.
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Length: 6         Null count: 2
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Figure 2.6: Schematic representation of the memory layout of an Arrow array containing the 32
bit integers [1, 2, null, 4, null, 6], with byte numbers annotated
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Figure 2.7: Schematic representation of the memory layout of an Arrow “List<char>” array
(strings) containing [[“hi”], [“”], [“anissa”], null], with byte numbers annotated

2.3.3 List type arrays

The simplest nested structure has the schema “List<T>”, which is an array of lists of the type
specified by “T”. This can be any type, so when nested types are chosen, deeply nested structures
can be made with Arrow. Figure 2.7 shows the memory layout of an Arrow array with the schema
“List<char>”, making it essentially an array of strings. In order to make this nested structure, an
offset buffer of 32 bit integers is added. A distinction can now be made between a parent array
(offsets) and a child array (values). The offset buffer encodes the start of each string in the value
buffer. For example: the third string in the array is “anissa” and the third offset in the offset
buffer is 2. This means the string “anissa” starts at index 2 in the value buffer. The length of any
string can be calculated directly from the offset buffer by reading the offsets of the string whose
length needs to be calculated and the offset of the string following it. Subtracting the first offset
from the second offset results in the length of the string that starts at the first offset. This property
is ensured by the offset buffer always having a length one larger than the top-level array, with
the full length of the value buffer written to the last slot in the offset buffer. Note that the values
(child) array does not include a null bitmap buffer in Fig. 2.7 due to the fact that no characters
are null. If any character were null, a null bitmap buffer would have to be included.
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2.4 Fletcher

With Apache Arrow aiming to be accessible to analytical tools in any computing environment,
having a way to interface between Arrow data and FPGAs is a natural extension of that idea. To
that end, Fletcher has been created by the Accelerated Big Data Systems group at the TU Delft
Computer Engineering department [8][20]. Fletcher is an easy to use and efficient hardware in-
terface for reading or writing values to or from an Arrow array. By allowing FPGAs and software
tools access to the same data set in a format suitable for both hardware and software, serialization
overheads normally associated with FPGA accelerators are alleviated [8].

Figure 2.8: Fletcher overview [8]

Figure 2.8 shows the architectural overview of Fletcher. Based on an Arrow schema, Fletcher
will generate a VHDL description for a hardware interface used to read or write Arrow arrays.
One of the main focuses of Fletcher is that it should be easy to use. Therefore, values in the Arrow
arrays are addressable with row indices. This avoids any need for pointer arithmetic. Through
the use of a template provided by Fletcher, the end user is able to implement Fletcher compatible
kernels for accelerated computing. On the host side, the communication with the accelerator
is done via a platform agnostic runtime currently supporting Amazon Web Services and CAPI
SNAP.

Figure 2.9: Fletcher array reader architecture for an array containing non-nullable lists of fixed-
width elements [8]
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The workhorses of the Fletcher hardware interface are the ArrayReaders and ArrayWriters.
Figure 2.9 shows an example configuration of a Fletcher ArrayReader, configured for reading an
array containing non-nullable lists of fixed-width elements. The BufferReaders in the diagram are
the components that are responsible for reading the Arrow buffers. The values read by the Buf-
ferReader for offsets are used to calculate string lengths, after which the lengths and characters
are streamed to the Hardware Accelerated Function through a synchronizer. For BufferWriters
the process is reversed.

Through the use of Fletcher’s ArrayWriters, the development of a Parquet to Arrow converter
is essentially reduced to the development of a Parquet reader, as the “‘to Arrow” part of the
project is already covered. Having Fletcher as a dependency also allows for the usage of the
many VHDL packages that Fletcher (and the associated vhlib library) provides in the areas of
stream manipulation, bus architecture and simulation utilities [21].

2.5 AXI

The Advanced eXtensible Interface (AXI) is an interconnect protocol defined in ARM’s Advanced
Microcontroller Bus Architecture (AMBA) specification for connecting functional blocks or pe-
ripherals in FPGA, System on a Chip (SoC) or embedded designs. The FPGA designs discussed
in this thesis rely on AXI for interfacing with external memory, therefore the basics of the AXI
protocol will briefly be discussed in this section.

2.5.1 Handshaking protocol

AXI relies on a ready-valid handshaking protocol for transmitting data between AXI intercon-
nected modules. Figure 2.10 shows a diagram of the connection between two modules communi-
cating via such handshakes. The data on the data port is valid once the producer asserts the valid
signal. If the consumer asserts the ready signal it is ready to receive data. If at the rising edge
of the clock signal both the valid and ready signals are asserted, both the producer and the con-
sumer know a transaction has taken place on this clock edge and they both deassert their ready
and valid signals until they are ready to produce or consume again (which may be in the same
clock cycle). In AXI style handshakes, a consumer may wait for a producer to assert valid before
he asserts ready. A producer may however never wait for a consumer to assert ready before he
asserts valid.

Data

Valid Valid
Ready Ready

Producer Consumer

Data

Figure 2.10: AXI style communication

2.5.2 AXI4 master/slave interface

Figure 2.11 show the channels between master and slave defined by the AXI4 protocol [22]. In
each of these channels, data is transmitted using the handshaking protocol described in Sec-
tion 2.5.1. From a high-level view the channels serve the following purposes:

• The write address channel is used by the master to signal to the slave it wants to write data.
It provides the address it wants to write to and the amount of data it is going to write.
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Figure 2.11: Channels between master and slave

• The write data channel is used by the master to transfer the data to the slave after signaling
an incoming write transfer on the write address channel.

• The write response channel is used by the slave to signal to the master it has completed a
write transfer. This channel is unused by the designs in this thesis.

• The read address channel is used by the master to request a read transfer from the slave of
a specified size, starting at a specified address.

• The read data channel is used by the slave to transfer the data requested on the read address
channel to the master.

The AXI4 protocol defines many different signals in each of these channels. For the work
performed in this thesis the following signals are relevant:

• Write address channel

– AWADDR: The address to write to

– AWLEN: The number of transfers in the write burst

– AWSIZE: The number of bytes in each transfer

• Write data channel

– WDATA: The data written in the current transfer

– WLAST: Indicates the last transfer in a burst

– WSTRB: Indicates which bytes in WDATA are valid

• Read address channel

– ARADDR: The address to read from

– ARLEN: The number of transfers in the read burst

– ARSIZE: The number of bytes in each transfer

• Read data channel

– RDATA: The data read in the current transfer

– RLAST: Indicates the last transfer in a burst

– RRESP: Indicates the status of the read transfer

Included with Fletcher is the Interconnect package. This packages provides useful compo-
nents for creating a bus architecture that allows multiple modules communicating via an AXI4
like protocol to use a single AXI4 interface to the external memory via arbitration. This pack-
age can be used to create a design that instantiates multiple parallel computation engines that
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work independently from each other. The only differences between the AXI4 like protocol (here-
after called Fletcher bus) used by the Interconnect package and the AXI4 subset described above
are the absence of the AWSIZE and ARSIZE signals and a slightly different interpretation of the
ARLEN and AWLEN signals.

2.6 Hardware development methodology

Developing custom logic for an FPGA is done by creating register-transfer level (RTL) descrip-
tions of the circuitry. An RTL description models the circuit as a sequence (or network) of hard-
ware registers with data flowing between them. Operations can be done on the data by inserting
combinatorial digital logic in between these registers. The two most commonly used hardware
description languages (HDLs) are VHDL and Verilog. VHDL was chosen as the HDL to be used
for the Parquet to Arrow converter. This choice was made mainly because of better familiarity of
the developer with this language. Another reason for choosing VHDL is because it is the same
language that Fletcher was written in. Although mixed-language Verilog and VHDL projects are
well supported in modern synthesis tools, using the same HDL as Fletcher will result in a more
cohesive total design.

The hardware will be designed by first sketching a high level view of the circuit, specifying
multiple independent modules that have a well defined job and well defined inputs and outputs.
Design parameters in these modules will be implemented as VHDL generics as much as possi-
ble to facilitate a flexible and customizable design. Based on Fletcher’s development style, the
communication between modules will be done using AXI style ready-valid handshakes as dis-
cussed in Section 2.5.1. The benefit of using AXI style handshakes is that data flows dynamically
through the pipeline. If a module can’t consume data from its producer, it will simply deassert
ready, which will let the producer know it can’t proceed. Depending on the design of the pro-
ducer, it can decide to either consume data from upstream anyway or block its inputs as well,
propagating the backpressure up the pipeline. In this way, each module (depending on its buffer-
ing capabilities) can decide for itself how much data it can consume before downstream modules
need to consume data.

As an overarching VHDL development methodology, a strategy resembling the two-process
method described by Gaisler will be used [23]. Each module will have a VHDL architecture with
two processes, one for sequential signals and one for combinatorial signals. In the combinatorial
process, all the inputs and registers will be evaluated and new values for the registers and out-
puts will be determined. The sequential process takes these values and propagates them to the
registers and outputs upon the rising edge of the clock signal. This design methodology is a good
fit for the handshaking strategy discussed previously because of the combinatorial nature of the
valid and ready signals. If all inputs and outputs of a module were synchronous signals, one
single sequential VHDL process in the architecture would suffice. Valid and ready can change
in the middle of a clock period however, which can be taken care of by a separate combinatorial
process.

Debugging hardware designs can be a difficult and time consuming task, so special attention
needs to be paid to setting up a comprehensive set of unit tests for functional verification. De-
pending on the complexity of the module concerned, one of three testing strategies will be chosen.
A self-checking testbench will be made for very complex modules. Using Python, input data is
randomly generated together with the expected output data. A VHDL testbench will insert this
data into the module and compare its output to the expected output. This VHDL testbench will
randomly insert pauses into the input and output streams to check if the module can correctly
deal with backpressure or sparse input streams. If the module to be tested is relatively simple
with a limited set of possible behaviours, a testbench will be made that does not directly check
the output, but whose output needs to be verified by visual inspection. Finally, if the input of
a module is very specific and hard to generate with a Python script, the module can be tested
by integrating it into a higher level module whose other internal modules have already been
verified to work correctly. This higher level module can then be tested to verify operation of the
contained module.



Chapter 3

Hardware accelerated Parquet reading

3.1 High-level design

3.1.1 System overview

The first step in designing a system for hardware accelerated Parquet to Arrow conversion is to
determine the steps involved in reading a set number of values from a Parquet column starting at
a certain index. Then, a decision has to be made on which tasks will be offloaded to the FPGA and
which tasks are better suited for execution on the CPU. As discussed in Section 2.2.1, a column
is divided into column chunks. Each column chunk consists of a number of pages stored back to
back that contain the stored values. This means the longest sequential read a Parquet reader can
do is the full length of a column chunk. After a column chunk has been processed, the starting
location of the next column chunk belonging to the same column in the file needs to be found
before more values can be read. The starting locations of pages and column chunks in the file are
stored in metadata structures in the footer of the Parquet file. To summarize, when reading a set
number of values from a Parquet column starting at a certain index, the following steps need to
be performed for each column chunk encountered in the column until the specified number of
values have been read:

1. Fetch the location of the column chunk in the file and the number of values contained
within from the Parquet metadata in the footer

2. Repeat for each page in the column chunk:

a) Read page header

b) Decode repetition levels (in case of nested data types)

c) Decode definition levels (in case of nullable types)

d) Extract values from page with optional decompression and decoding depending on
the Parquet file

3. Write values to Arrow format in memory

When considering how to divide these steps between the CPU and the FPGA, the strengths
of both computing platforms need to be considered. FPGAs are famously good at parallel com-
putations. Well designed, deeply pipelined hardware in an FPGA can do a lot of very specialized
computations on either the same or different data in the same clock cycle. The trade-off is that
the clock frequency is low when compared to that of a CPU, in the order of hundreds of MHz.
A CPU core, being a general processor, does not specialize for certain computations and instead
relies on a limited set of instructions executed sequentially to perform the required operations on
the data. Unlike an FPGA however, a CPU can do these sequential computations very quickly
with a clock frequency in the order of multiple GHz.

Due to the nature of the Thrift compact protocol used to serialize the metadata structures in
Parquet (see Section 2.2.2), fetching values from the Parquet metadata is an inherently sequential
process. Fields in Thrift structures are often of variable length, with 32 bit integers for example
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taking up between 1 and 5 bytes once encoded with VarInt encoding. Because optional fields in
Thrift structures can be omitted and fields are identified by their location in the Thrift definition
relative to the previously encoded field, each field header in the structure needs to be inspected
to read the value from one specific field stored towards the end of the structure. This requires
inspecting bytes one by one, something the FPGA with its low clock frequency is not especially
good at. Also, in order to find the requested information about the column chunk, multiple Thrift
structures need to be traversed. This pointer chasing process would require an FPGA to either
wait for the memory latency every time a new structure needs to be read, or to cache the entire file
footer in block RAM on-chip, the size of which grows significantly for larger and more complex
Parquet files.

The page reading process is much more suitable for execution on FPGA. Decompressing and
decoding the values stored in each page is a computationally intensive task, giving a lot of room
for improvement over the CPU. Page headers are serialized using Thrift like the other metadata
structures. According to the argumentation used in this section, deserializing these on the FPGA
is not optimal. These page headers are quite small however, and when a larger page size is
selected when writing a Parquet file these headers can be very sparse in a Parquet file. The per-
formance impact of having to read fewer or more page headers on the FPGA will be investigated
in Section 3.3.2.

Taking the strengths of both the FPGA and the CPU into account it was decided to perform
the fetching of column chunk metadata on the CPU, which can then provide a starting address
in storage or memory of a column chunk and a request for a certain number of values to the
FPGA. The FPGA will then traverse all the pages in the column chunk until it has extracted the
requested number of values. The CPU can then start a new job for the next column chunk if it
needs more values from the column. The values read from the column chunks are written to
Arrow format by the FPGA using Fletcher.

Storage

Memory

FPGA

CPU

Figure 3.1: System overview of the hardware accelerated Parquet to Arrow converter

Figure 3.1 shows what a complete system might look like. The CPU reads the Parquet meta-
data from storage and provides control information to the FPGA telling it where to find the start
of the column chunk in the file, the size of the column chunk in bytes, and how many values to
read from it. The FPGA can then directly read the Parquet data from storage and write the data
(in Arrow format) to the host memory using DMA. However, because the hardware necessary to
build such a system was unavailable during this project, a different system configuration based
on Amazon EC2 F1 instances had to be used for testing [24].

Figure 3.2 shows the system used for testing and performance evaluation. The CPU reads a
Parquet column chunk from storage and loads it into host memory. This column chunk is then
transferred to the accelerator on-board memory (AOM) using DMA. The custom logic in the
FPGA can be configured and started by the CPU using an AXI-Lite MMIO interface. Once the
custom logic has finished processing the column chunk the resulting Arrow array is copied back
to host memory and compared to the expected result. As an end-to-end system this configuration
is less optimal than the one shown in Fig. 3.1, because it requires copying the Parquet and Arrow
data back and forth between the host memory and the AOM. However, because the time spent
copying data and the time required to convert the Parquet data to Arrow format using the FPGA
can be measured individually, it is perfectly functional as a way of testing the performance of



3.1. HIGH-LEVEL DESIGN 21

Storage Host
memory

FPGA

CPU

Accelerator
on-board
memory

Accelerator

Host

Figure 3.2: System overview of the Amazon EC2 F1 instances used for testing

the custom logic. It should be noted that the system in Fig. 3.2 could still be used as an efficient
end-to-end system when the copies to and from the AOM and the accelerator processing are
pipelined. Further discussion on the implications of using Amazon EC2 F1 instances for testing
and performance evaluation can be found in Section 3.3.

3.1.2 Hardware architecture

Section 3.1.1 defined the work to be performed on the FPGA as the conversion of a contiguous
sequence of Parquet pages to Arrow format based on the size of the column chunk and the num-
ber of values to be read, both parameters supplied by the CPU. The high-level architecture of the
ParquetReader VHDL module targeting Parquet v2.0 files is shown in Fig. 3.3.
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Figure 3.3: High-level architecture of the ParquetReader hardware design with yellow blocks
signifying optional or replaceable modules

With pages streaming into the ParquetReader back to back, the design needs to cycle between
reading the page header, the repetition levels, the definition levels and the values of the page, in
that order. Each of these four blocks gets its own module for parsing the contained data. The
aligner has the job of ensuring that each of these modules gets the associated part of the Parquet
pages, with the data correctly aligned. Because the lengths of the four blocks in the Parquet pages
are not the same for each page, the aligner requires its consumers to report back the number of
bytes in the last consumed bus word that they actually used. The aligner uses this information
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to realign the data for the next module. The ingester generates read requests on the Fletcher bus
and buffers the data response.

A design where the four main modules were connected in series has also been considered.
Each module would have to read only the data of its own block, after which it would have to
realign the incoming bytes and pass the remaining data in the page to the next module. This
idea was abandoned because this decentralized aligning strategy would result in a more compli-
cated design than the design seen in Fig. 3.3. The task of dividing the Parquet page into parts is
now given solely to the aligner, avoiding the need to implement very similar logic in multiple
modules.

The yellow blocks in Fig. 3.3 show the modularity of the design. The definition levels are
not encoded in pages with non-nullable types and the repetition levels are not encoded in pages
containing non-nested types. This means that these modules can be left out of the design when
dealing with these simple types. The prototype developed for this thesis only supports reading
non-nullable fixed-width primitives and strings, so no repetition and definition level decoders
were implemented. The decompressor and decoder in the ValuesDecoder module are included in
the design during synthesis based on the chosen compression codec or encoding for the column
the ParquetReader is tasked with reading.

As discussed in Section 2.2.4, there are significant differences between Parquet v1.0 and Par-
quet v2.0. Parquet v2.0 was chosen as a target not only because it is the newest version of Parquet,
but also because it allows for the regular structure seen in Fig. 3.3. In Parquet v1.0, the definition
levels and repetition levels are compressed together with the values. A design targeting Parquet
v1.0 would therefore require the decompressor to be directly connected to the aligner, after which
another aligner would be required to divide the resulting uncompressed data among the level
and value decoders.

The ParquetReader can be configured at synthesis time for different types, compressions and
encodings by setting the generics in the VHDL ParquetReader component. In order to improve
usability, types can be set using the same configuration strings that Fletcher uses, supported
by Fletcher’s ArrayConfig package. Parquet encodings and compressions can be selected via
separate generics.
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Figure 3.4: Top-level view of the ParquetReader module

The inputs and outputs of the ParquetReader module as described in Fig. 3.3 can be seen
in the top-level view of Fig. 3.4. Through bus_rreq and bus_rdat the ParquetReader can con-
nect with the Fletcher bus architecture for accessing the AXI4 read address and read data chan-
nels respectively. The internal Fletcher ArrayWriter does the same for the AXI4 write channels
with bus_wreq and bus_wdat. The parameters for a command to the ParquetReader can be set
with the signals in the bottom left of the figure. Base_pages_ptr, values_buffer_addr and
offsets_buffer_addr set the addresses for the Parquet column chunk, Arrow values buffer and
Arrow offsets buffer respectively. Max_data_size limits the number of bytes the ParquetReader
will read from memory and total_num_values sets the number of values to read from the col-
umn chunk in the current command. Once the parameters have been set the ParquetReader can
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be started and stopped via the signals in the bottom right of the figure. The ParquetReader asserts
its done output upon completion of the command.

Figure 3.5 shows how Fletcher’s bus architecture can be used to instantiate ParquetReaders
for a parallel workload. The ParquetReaders can be configured at synthesis time to each pro-
cess a different column from a Parquet file with different types, encodings and/or compression
codecs. The ParquetReaders could also be configured to work on the same Parquet column in
order to divide the workload of a single Parquet to Arrow conversion job over multiple Parquet
reading engines. In order to facilitate a flexible Parquet to Arrow conversion system, multiple
configurations and combinations of ParquetReaders could be synthesized beforehand for differ-
ent datasets or files. An FPGA can be reconfigured with such a configuration in just a few seconds.
Through the controller module, each command can be sent to each ParquetReader independently
of the others. The prototype configurations developed for testing and performance evaluation
are single engine designs requiring no special controller set-up. Instead they rely on Fletcher’s
UserCoreController as a stand-in.
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Figure 3.5: Using Fletcher’s bus architecture (shown in orange) for a parallel configuration of
ParquetReaders

3.2 Module design

Implementing a prototype of the Parquet reading architecture described in Section 3.1.2 that can
read plain encoded Parquet files containing non-nullable fixed-width primitives requires the im-
plementation of several modules: the Ingester, DataAligner and MetaDataInterpreter modules
and a ValuesDecoder module that contains a simple decoder for the plain encoding that counts
the number of primitives it passes to the Fletcher ArrayWriter. The design of these modules is
discussed in this section.

For many of the modules (and sub-modules) discussed in this section, a schematic represen-
tation of the VHDL entity is included as a top-level view of the module. These figures follow the
legend in Fig. 3.6.
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Figure 3.6: Legend for the top-level views included in this thesis

3.2.1 Ingester

The goal of the Ingester is to send AXI4 compliant read requests over the Fletcher bus in order
to read the Parquet pages in the column chunk. The Ingester and DataAligner are designed to
impose no alignment requirements, which means that the first byte of the column chunk can
be at any address of the AOM in the Amazon EC2 F1 instances. This decision was made so fu-
ture users of ParquetReader implementations would not have to think about memory alignment,
improving the usability of the design.

Figure 3.7 shows the top-level view of the Ingester. The start and stop signals are di-
rectly connected to the controller for starting and stopping the reading from memory. Through
base_address and data_size, the Ingester knows at what address to start reading and how
much data it may read at most. Two streams are produced by Ingester: the data out stream
and the producer alignment stream, which are both connected to the DataAligner. The data out
stream simply streams the read data to the DataAligner, while the producer alignment stream
supplies the DataAligner with an initial misalignment of the data caused by a read from an
unaligned starting address. Figure 3.8 shows how AXI4 responds to a read request with an un-
aligned base_address, supplying invalid data between the closest aligned address and requested
address. This initial misalignment will be corrected by the DataAligner, as shown in Fig. 3.8.
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Figure 3.7: Top-level view of the Ingester module

The internal design of the Ingester is based on Fletcher’s BufferReaders. AXI4 requires that
a read burst does not cross 4 kB address boundaries [22]. To that end, the Ingester will request
bursts with 1 transfer per burst until it reaches a 4 kB aligned address where it will start request-
ing full length (4 kB) bursts. The AXI4 interconnect to memory on the system used for testing has
a bus width of 512 bits, making the Ingester able to read 64 bytes from memory every clock cycle.

A Fletcher BusReadBuffer is used to buffer the read requests and the data response. The Bus-
ReadBuffer will only allow a read request to go to the Fletcher bus if it can buffer the full response,
thereby avoiding blocking the entire bus with internal backpressure in one ParquetReader mod-
ule. Simulations showed that a small BusReadBuffer that allows for few outstanding read re-
quests causes the ParquetReader to be unable to efficiently read from memory due to memory
latency after each read request. Therefore, to ensure the Ingester would not limit the read band-
width of the system, the developed prototype has the BusReadBuffer set to be large enough to
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Figure 3.8: Realignment after unaligned memory access to two bus words containing only valid
data

buffer 8 data responses to read requests. Simulations showed that this was more than enough to
ensure full usage of the read bandwidth.

3.2.2 DataAligner
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Figure 3.9: Top-level view of the DataAligner module, N is the number of consumers

Apart from the job of correcting misalignments resulting from unaligned reads, the DataAligner
also needs to realign for each of the four blocks in the Parquet page. One bus word send to one
of its consumers can contain data from both the page header and the page values for example, in
which case a similar situation as in Fig. 3.8 occurs. Through the “bytes consumed” stream, each
of the consuming modules report to the DataAligner how many bytes in the last received bus
word they actually needed (also signaling their completion).

In order to correctly align the misaligned bus words, a shifter is needed to shift the bytes to
their correct positions. Logical barrel shifters need a lot of multiplexers for shifting larger bit
width words, taking up a lot of area in the FPGA [25]. Because the 512 bit bus words this shifter
needs to shift are too large to shift combinatorially, a pipelined barrel shifter from vhlib’s Stream
package was used. The downside of this pipelining is that every bus word is shifted during
multiple cycles, and during shifting it might turn out that a bus word in the pipeline needs to be
shifted according to the alignment of the next block in the Parquet page. These misaligned bus
words somehow need to have their alignment corrected. This problem was solved by including
a HistoryBuffer in the DataAligner. This HistoryBuffer is essentially a FIFO that stores every bus
word that enters the shifting pipeline until the DataAligner logic is sure that that bus word has
been correctly aligned. If a bus word has been incorrectly aligned and requires realignment, the
entries in the HistoryBuffer will form the input to the shifting pipeline until the situation has
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Figure 3.10: Schematic representation of DataAligner internals

been corrected. A schematic representation of this process can be seen in Fig. 3.10. A downside
of this solution is that the pipeline is flushed every time a block in the Parquet page is completed,
causing one cycle delay for each stage in the pipeline (6 by default in this design) and 3 cycles for
the output buffer in the ShifterRecombiner.

Multiple alternative realignment solutions have been considered. The inclusion of the Histo-
ryBuffer could be avoided (saving area) if the DataAligner would ask the Ingester to read back
the column chunk from an earlier address when realignment is required. This would however
have a severe negative impact on performance as both the Ingester and DataAligner would have
to be flushed and the design would have to wait for memory latency every time realignment is
required.

Another alternative solution would be to have the DataAligner predict which bus words
would form the boundary between blocks based on the size of each block provided by the Meta-
dataInterpreter. Such a solution would only work for Parquet v2.0 files as Parquet v1.0 files don’t
store the size of the repetition and definition levels in the page headers. For Parquet v1.0 files
the repetition level decoder and definition level decoder have to determine the lengths of their
respective blocks themselves. This solution was not chosen in order to allow the DataAligner
to work in such scenarios where the size of the blocks is not known before starting processing
on the blocks. This decision is briefly evaluated in the context of the rest of the ParquetReader
design in Section 5.2.

If the DataAligner detects it has consumed the maximum allowed data from the Ingester as
dictated by its data_size input, it will start flushing itself to ensure that no data gets stuck in the
pipeline.

3.2.3 MetadataInterpreter

The MetadataInterpreter is tasked with extracting the required metadata from the Parquet page
headers. As discussed in Section 2.2.2, the page headers are serialized using the Thrift compact
protocol, a protocol that requires inspecting every byte to determine what the meaning of the next
byte will be (see Section 3.1.1). This byte-wise parsing makes the MetadataInterpreter suitable for
implementation as a large finite-state machine (FSM). In order to read the PageHeader structure
as described by the Thrift definition in Fig. 2.2, four different states are needed. One state to
that determines the state of the module (whether it is currently processing), one to determine
which field of the PageHeader the module is processing, one state to determine which field of the
internal DataPageHeaderV2 structure the module is processing, and a final state to distinguish
between field headers and field data.

The fields in the DataPageHeaderV2 structure whose values are required by other modules in
the ParquetReader are: the size in bytes of the repetition and definition levels, the uncompressed
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Figure 3.11: Top-level view of the MetadataInterpreter module

and compressed size in bytes of the values in the page, and finally the number of values in
the page. All these fields are of the Thrift “i32” type. As discussed in Section 2.2.2, integers are
encoded in Thrift using VarInt encoding, which is decoded with the VarIntDecoder whose inputs
and outputs can be seen in Fig. 3.12.
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Figure 3.12: Top-level view of the VarIntDecoder module

Upon starting the VarIntDecoder it will take the least significant seven bits of every received
byte and store them in the output register in the correct position. When a byte is encountered
whose most significant bit is 0, the VarIntDecoder is done. The VarIntDecoder module was devel-
oped with an optional combinatorial circuit on the output that converts zigzag encoded integers
to two’s complement representation, a necessity for the integers in the Thrift compact protocol.

Because the MetadataInterpreter processes the page header byte by byte, the MetadataInter-
preter needs a number of clock cycles equal to the number of bytes in te page header to finish
processing the header. The length of the page header varies with the amount of data in a page,
with larger pages having longer page headers. Generally the page headers for non-nullable,
non-nested types are between 25 and 30 bytes. Thus, for the test cases in this thesis, the Meta-
dataInterpreter is expected to take between 25 and 30 clock cycles to process each page header.

3.2.4 ValuesDecoder
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Figure 3.13: Top-level view of the ValuesDecoder module

The ValuesDecoders serves mostly as a wrapper for more interesting components, defining
a port set-up for the expected inputs and outputs of the decompressors and decoders that can
be slotted into the ValuesDecoder as seen in Fig. 3.14. The only actual logic the ValuesDecoder
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itself is responsible for is the communication with the Fletcher ArrayWriter. Upon receiving a
start signal from the host, the ValuesDecoder will stream a command to the Fletcher ArrayWriter
containing the addresses in memory of the values buffer and the offets buffer. It will then await a
response on the unlock stream that indicates the Fletcher ArrayWriter has written the full Arrow
array to memory, after which the ValuesDecoder can send a done signal to the host.

Apart from a decompressor and a decoder, the ValuesDecoder also includes a buffer called
the PreDecBuffer. This buffer is responsible for communication with the DataAligner on the
“bytes consumed” stream, and handshakes both the decompressor and the decoder every time
the DataAligner offers up a new page. A benefit of including a FIFO buffer upstream of the
decompressor and the decoder is that it allows the MetadataInterpreter to read the page header
of the next page while the decompressor and the decoder are still working on the previous one.
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(a) Expected inputs and outputs for decompressors
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(b) Expected inputs and outputs for decoders

Figure 3.14: Port set-up of decompressors and decoders in the ValuesDecoder

Together with the ValuesDecoder, a simple PlainDecoder was also developed to allow for
reading Parquet columns containing floats, doubles, 32-bit integers or 64-bit integers encoded
with the plain encoding. As discussed in Section 2.2.3, in the case of fixed-width primitives a
plain encoded Parquet column is simply a contiguously stored list of the values in their standard
binary representations. Therefore, the only thing the PlainDecoder has to do is to pass the values
in the page to the Fletcher ArrayWriter and count them. If the PlainDecoder determines there are
not enough values left in the page to fill an entire bus word it will notify the Fletcher ArrayWriter
that the final bus word contains a limited number of values. The PlainDecoder also keeps track
of the total number of values requested by the host so it can assert the last signal with the final
transaction to the ArrayWriter.

3.3 Implementation & evaluation

In this section the implemented design will be evaluated in terms of area and performance. As
discussed in Section 3.1.1, all testing was done on Amazon’s EC2 F1 instances. The F1 instances
come with a Xilinx XCVU9P FPGA and an Intel Xeon E5-2686 v4 processor of which 8 hardware
threads are available which will be used to compare FPGA and CPU performance [26]. The de-
sign implemented in an XCVU9P meets all timing requirements at a clock frequency of 250 MHz,
which is the maximum available clock speed for the interface between the custom logic and Ama-
zon’s mandatory included shell logic.

3.3.1 Area

In order to determine the area efficiency of the ParquetReader design, a ParquetReader module
was configured for reading uncompressed, plain encoded 64-bit integers and implemented in a
Xilinx XCVU9P FPGA using Xilinx Vivado 2018.3. Table 3.1 shows the area utilization hierarchy
of this module reported by Vivado. With only 1.18% LUT usage, 1.27% register usage and 2.13%
BRAM usage the ParquetReader uses just a small fraction of the available resources, leaving a
lot of room for instantiating more ParquetReaders for parallel workloads. Fletcher’s bus archi-
tecture and AXI interconnect take up another 0.29% of LUTs, 0.44% of registers and 0.00% of
BRAM, while Amazon’s mandatory shell requires 13.20% of LUTs, 9.48% of registers and 11.41%
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Component LUTs Registers BRAM tiles
ParquetReader 1.18% (13956) 1.27% (30074) 2.13% (46.0)

Ingester 0.11% (1318) 0.12% (2796) 0.35% (7.5)
DataAligner 0.31% (3710) 0.27% (6301) 0.69% (15.0)

HistoryBuffer 0.05% (537) 0.01% (16) 0.35% (7.5)
ShifterRecombiner 0.25% (2980) 0.26% (6202) 0.35% (7.5)

MetadataInterpreter 0.06% (662) 0.03% (640) 0.00% (0.0)
ValuesDecoder 0.10% (1173) 0.14% (3269) 0.35% (7.5)

PreDecBuffer 0.09% (1077) 0.11% (2625) 0.35% (7.5)
PlainDecoder 0.01% (93) 0.03% (640) 0.00% (0.0)

Fletcher ArrayWriter 0.60% (7049) 0.72% (17068) 0.74% (16.0)

Table 3.1: Area utilization as reported by Xilinx Vivado of a ParquetReader configured for reading
uncompressed, plain encoded 64 bit integers in a XCVU9P FPGA

of BRAM. This means that on this particular system at most 41 ParquetReaders can be instanti-
ated, limited by the amount of BRAM required in the design and the Amazon shell. Note that this
amount is an upper bound. In practice the maximum number of ParquetReaders will most likely
be smaller due to the Fletcher bus architecture increasing in size with more ParquetReaders, and
place and route issues that will pop up when using a lot of area in the FPGA. On systems other
than the F1 instances that do not require the proprietary Amazon shell, the freed CLBs make
room for another 5 ParquetReaders at most, making for an upper bound of 46 ParquetReaders.

3.3.2 Performance

A Parquet reading utility that reads Parquet columns with plain encoded fixed-width primitives
has to do very little to get the data in the column into Arrow format. For every page in the col-
umn chunk the page header needs to be read to find the size of the page, after which its contents
can be directly copied to an Arrow buffer. Therefore, there is not really a “decompression bottle-
neck” to speak of when converting such files. Measuring the throughput of the ParquetReader
in this configuration is however still important as it shows the ability of the design discussed in
Section 3.1.2 to feed the decompressor and decoder that are included within the ParquetReader
when converting more highly compressed Parquet files to Arrow format. The PlainDecoder used
in the configuration benchmarked in this section can process a full 512 bit bus word per cycle,
meaning it will never be the bottleneck in this design. As such, the measurements in these sec-
tion will provide an upper bound to the throughput of the ParquetReader, which will come from
either the design or the read/write bandwidth of the FPGA to memory. Latency of the design will
not be used as a measure of performance because the design is expected to process large batches
of data, the Parquet column chunks. The delay between the last data entering the hardware and
the last results being written to memory is not as important as the ability of the hardware to
process large amounts of data per unit of time.

A simple C++ runtime was written using Fletcher’s API that allows the host to communicate
with the FPGA. First the Parquet data is read from disk and loaded into host memory. Experi-
mentation has shown that the write to memory has to be 4 kB aligned in order to make full use
of the bandwidth from host memory to the AOM. Memory is allocated in both the AOM and the
host memory in order to store the resulting Arrow array. Pointers to the accelerator-side memory
regions that will contain the Parquet and Arrow data, the number of values to read and the col-
umn chunk size are supplied to the FPGA via MMIO. Once all this is done the runtime tells the
FPGA it can start processing. It then continuously polls the FPGA for its completion. Afterwards,
the resulting Arrow array is copied back to host memory and verified.

Because the C++ implementation of Parquet is the only one that can do automatic conversion
between Arrow arrays and Parquet files, that implementation was used to verify the Arrow ar-
rays. As mentioned in Section 2.2.4, the parquet-cpp library can not read or write Parquet v2.0
files. Therefore, a setup for generating and verifying test cases was created using both the Java
(parquet-mr) and C++ implementations of Parquet. First, test data is generated using parquet-
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cpp and written to a Parquet v1.0 file. This file is then converted to a Parquet v2.0 file using
any page size, compression or encoding needed by parquet-mr. This file is used as input data
for the ParquetReader while the Parquet v1.0 file is used by parquet-cpp to verify the result. For
the benchmarks discussed in this section, seven Parquet v2.0 files were generated containing
125 × 106 64-bit integers with varying page sizes ranging from 800 to 109 bytes. All the data in
these Parquet files is stored in one singular column chunk, that once fully read and converted
results in an Arrow array of 1 GB.

Figure 3.15: Throughput in GB/s for different Parquet page sizes in Parquet files containing
125 · 106 64-bit integers

Figure 3.15 shows how the throughput of the ParquetReader hardware is influenced by the
average size of a Parquet page. Throughput is calculated by dividing the size of the input Parquet
column chunk by the processing time of the FPGA. The measurement for FPGA processing time
starts after the Parquet file has been copied to the accelerator card once the start signal has been
given to the FPGA, and stops once the FPGA has written the Arrow array to the AOM and
it has signaled its completion. As expected, having small Parquet pages negatively impacts the
throughput because the ParquetReader spends a lot of time reading the many page headers (byte
by byte). In the test case with the largest pages the Parquet file consists of only one page which
means the ParquetReader only has to read one page header, after which it can simply copy all
the data to memory in one go.

The measurements show that the combined read and write bandwidth of one DDR controller
is 7.2 GB/s. FPGA kernels measured in [8] have shown read bandwidths of up to 14.28 GB/s on
an Amazon F1 instance, but those kernels did not have to write to the AOM at the same time.
At a page size of 10 kB the ParquetReader is already fully utilizing the available bandwidth to
memory. Considering that the Apache Parquet documentation recommends a data page size of
8 kB, Parquet files do not have to deviate far from the default recommendations in order to make
optimal use of the hardware in this system.

Figure 3.16 shows that the throughput of the ParquetReader benefits from reading more val-
ues at once from the Parquet file. If only a small number of values is read the execution time
suffers because of the time it takes to start the hardware, the memory latency, and the 100 µs
polling intervals for checking the completion of the ParquetReader. This shows Parquet files
with larger column chunks (allowing for larger sequential reads) can make the most optimal use
of the hardware. For the two examples in Fig. 3.16, which are the measurements done with the
largest and smallest pages of the test cases, maximum throughput is attained at different points.
The test case with the largest page sizes reaches its maximum output once the resulting Arrow
array reaches a size of around 100 MB (roughly equal to the consumed data from the Parquet
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Figure 3.16: Throughput in GB/s with varying numbers of values read from the Parquet file

file). The test case with the smallest pages reaches this point at around 10 MB. The Parquet doc-
umentation recommends that users write Parquet files with large row groups (512 MB to 1 GB is
mentioned as a possible range), which does not necessarily say anything about column chunk
size as the number of column chunks in a row group is dependent on the number of columns in
the Parquet file [27]. But for Parquet files with a limited number of columns (5 to 10), the results
fit well with the default recommendations.

3.3.3 System considerations

As discussed in Section 3.1.1, the system used for testing is not ideal. The performance in Sec-
tion 3.3.2 comes from measuring the time it takes the FPGA to read the Parquet data from the
on-board memory on the accelerator and write it back as an Arrow array. If this system were to
be used in a real world scenario the Parquet data would first have to be read from storage into
host memory, then copied from host memory to the AOM, after which the result would have to
be copied from the AOM back to the host memory. All this data movement significantly increases
the total time required to convert a Parquet file to Arrow format. In this section the performance
of the Parquet to Arrow converter will be investigated with the properties of the system used for
testing taken into account, thus demonstrating the importance of system-level implementation
decisions in real world applications using the Parquet to Arrow conversion hardware. All mea-
surements in this section are done on a naive implementation of the Parquet to Arrow converter
that does not make use of pipelining for concurrent copying and processing.

In order to put this performance into context a software-only Parquet to Arrow converter was
developed in C++, whose performance was also measured when run on the Amazon F1 system.
The development of a custom software-only Parquet to Arrow converter was needed because
the standard Parquet implementation in Java does not include Arrow functionality yet and the
standard Parquet implementation in C++ does not support Parquet v2.0 files [15][16]. In order to
make a fair comparison, the software based Parquet to Arrow converter is allowed to make the
same assumptions at compile time as the hardware based one. It will for example only read the
fields from the page headers that give information about the size of the page and the number of
values it contains. In this way it assumes the input Parquet data has the type and encoding as
defined during compile time. The C++ SWParquetReader class reads page headers byte by byte
like the hardware, and copies the data in the pages to the Arrow buffers using memcpy(). The
software is compiled using GCC’s -Ofast and -march=native optimization flags.
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The execution time for the C++ implementation is measured in two ways, one where the
resulting Arrow buffers are already allocated and touched using the Arrow library’s allocation
functions and memset(), and one where the time to allocate memory is included in the mea-
surement. There will be a significant difference in execution times between these measurements
because the second measurement will have a large address translation overhead due to virtual
addresses of the Arrow buffers not being in the translation lookaside buffer (TLB) upon starting
the measurement. This is not a problem the FPGA implementation has to deal with, as it does
not use virtual addressing for the AOM. By doing two measurements a distinction can be made
between the pure computing time needed by the CPU and the time realistically needed to do the
Parquet to Arrow conversion work, the same as is being done for the FPGA in this section. Like
with the measurements in the previous section, the execution time is measured from the start of
the Parquet to Arrow conversion until completion, with the Parquet data already being loaded
into memory beforehand.

(a) Throughput for varying page sizes (b) Throughput for varying numbers of values read

Figure 3.17: Throughput in GB/s for Parquet to Arrow conversion with system initialization and
the copy from AOM to host memory taken into account

Figure 3.17 shows the throughput of the FPGA implementation when the time required to
copy the resulting Arrow array from AOM to host memory is added to the execution time. This
simulates a scenario where the FPGA has direct access to a storage medium with the Parquet data
but does not operate in the same shared memory space as the host system. In the same graphs
the throughput of the software based Parquet to Arrow converter is plotted.

As expected the pre-allocated version of the CPU implementation is significantly faster than
the version that has to allocate the memory itself. Figure 3.17b shows that the pre-allocated
version can reach a throughput of almost 8 GB/s for large pages, while the other reaches only
2.6 GB/s due to cache misses in the TLB. Curiously, the throughput is larger when reading small
numbers of values. This might be due to the entirety of the data fitting in the 45 MiB level 3
processor cache.

Figure 3.17a shows that in this set-up the FPGA can not beat the CPU in performance, reach-
ing a throughput of at most 2.0 GB/s. Note that when comparing FPGA performance and CPU
performance in Fig. 3.17a, one should compare FPGA performance to the slower CPU implemen-
tation as the FPGA now also suffers from address translation overhead because of having to copy
to host memory.

To complete the picture for the Amazon F1 system, Fig. 3.18 shows what the throughput for
the FPGA looks like when the copy from host memory to AOM is also added to the execution
time. The total execution time now includes two copies. This shows the performance of the total
system when the time required to read from storage into memory (which would impact the CPU
and FPGA performance equally) is still disregarded.

According to Fig. 3.18a, the maximum attainable throughput for the FPGA is now only 1.6 GB/s.
Figure 3.18b now shows an especially low throughput up to 106 values, but this is a misleading
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(a) Throughput for varying page sizes (b) Throughput for varying numbers of values read

Figure 3.18: Throughput in GB/s for Parquet to Arrow conversion with system initialization and
copies to and from the AOM taken into account

graph because the currently very simple C++ runtime for communication with the FPGA copies
the entire column chunk to the AOM irrespective of the number of values that need to be read
from it.

As mentioned before, it is very important to stress that the poor throughput seen in Figs. 3.17
and 3.18 does not mean the Amazon F1 instances can’t be used as an efficient system for im-
plementing hardware accelerated Parquet to Arrow conversion. The FPGA can do useful work
while host-side processes are copying data to or from the AOM. The DMA drivers on the system
even support concurrent accesses from processes or threads on the CPU, meaning the entire pro-
cess can be fully pipelined. Implementing an end-to-end application that can make optimal use
of this specific system is however out-of-scope for this thesis.

3.4 Summary

In this section a system for converting Apache Parquet files to Apache Arrow format was pro-
posed. The different steps involved in the conversion process were analyzed and allocated to ei-
ther the CPU or the FPGA, taking into the account the strengths of both processors. An overview
was given of a system configuration that would allow for both processors to communicate with
each other, non-volatile storage and memory with minimal overhead. Since the hardware of
such a system was not available, an alternative system configuration to be used for testing was
proposed.

With the tasks of the FPGA in the conversion process well defined, a hardware architecture
was proposed that would serve as a blueprint for all necessary Parquet page reading function-
ality. The hardware architecture was designed to allow for a significant degree of modularity, a
necessity for a dynamic format such as Parquet that supports many different encoding and com-
pression schemes. This architecture would form the basis for the ParquetReader module, which
functions as a single Parquet to Arrow conversion engine. One or more of these engines can be
included in an FPGA configuration to allow for conversion of different types of Parquet columns
by using Fletcher’s bus architecture.

With the high-level view of the ParquetReader hardware completed, multiple VHDL modules
had to be designed and developed in order to create a ParquetReader with basic Parquet reading
functionality. Through the inclusion of the PlainDecoder module, the ParquetReader would gain
the ability to convert non-nested, non-nullable Parquet columns containing fixed-width primi-
tives to Arrow format.

The basic ParquetReader was implemented in an XCVU9P FPGA on an Amazon F1 instance.
The ParquetReader module has shown great area efficiency, allowing many Parquet to Arrow
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conversion engines to be instantiated in parallel, or allowing for the inclusion of custom hard-
ware operating on the data produced by the ParquetReaders.

After completing development of a simple C++ runtime based on Fletcher’s runtime, the com-
pleted ParquetReader could be tested on an actual FPGA for simple Parquet files. Performance
measurements have shown that the ParquetReader is fastest for Parquet files with large page
sizes, as predicted. If no computationally intensive decoding or decompression is required and
the page size is large enough, the ParquetReader will be limited by the combined read and write
bandwidth between FPGA and memory. This bandwidth was shown to be 7.2 GB/s on the sys-
tem used for testing. By reaching this bandwidth for relatively small page sizes, it was shown
that the basic design would be able to feed decoding or decompression hardware included with
the ParquetReader at sufficient speed.

Finally, the limits of the Amazon F1 instance used for testing were explored. This allowed the
previously performed measurements of the performance upper bounds of the ParquetReader to
be put in the context of the larger system. Through the creation of a simple C++ based Parquet
reading library for performance comparisons to the FPGA, the merits (or lack thereof) of using
hardware acceleration on this particular system were investigated. It was determined that a naive
implementation with sequential copying between host memory and AOM causes the hardware
accelerated Parquet reading approach to perform badly when compared to a CPU-only imple-
mentation. If the copies to and from AOM and the FPGA processing time were to be pipelined,
a significantly better performance would be found for the hardware accelerated system.



Chapter 4

Delta and delta length decoding

4.1 Motivation

In order to make the the Parquet to Arrow converter practically useful, it should have the abil-
ity to read Parquet columns that contain either fixed-width primitives or strings. With the Par-
quetReader module as described in Chapter 3, reading plain encoded fixed-width primitives is
successfully supported. It might be tempting to enable support for string reading by making a
decoder for plain encoded strings. However, this will most likely not result in an efficient design.

length charschars length chars length

Figure 4.1: Data layout of plain encoded strings in a Parquet page

Figure 4.1 shows the data layout of plain encoded strings in a Parquet page. Lengths of strings
are stored as 32-bit integers, after which the number of characters indicated by the length follows.
This interleaved length and characters combination repeats throughout the page for every string.
When this data is streaming into the decoder, the decoder can only know where in the data the
length of the second string is if it has read the length of the first one. Once it has this information,
the data needs to be shifted with a number of bytes equal to the length plus four to align the data
for the next string. This way, only one string can be streamed to the ArrayWriter for each shift.
Adding insult to injury is the fact that implementing single-cycle barrel shifters that can shift an
arbitrary number of bytes can result in very significant area usage in the FPGA. This problem can
be solved by reducing the bus width or the maximum number of bytes it can shift, but both these
solutions will negatively impact the throughput of the design.

While certainly a difficult task, it may not be impossible to create a design that will result in
a larger throughput than the strategy described above. The question that must now be asked is
whether or not one should. In Parquet v2.0 plain encoding is not the string encoding that will
result in the best compression ratio. The “DELTA_LENGTH_BYTE_ARRAY” described in Sec-
tion 2.2.3 and the similar but slightly more complex “DELTA_BYTE_ARRAY” encoding (default
for strings) will create significantly smaller Parquet files. A Parquet to Arrow converter that is
able to read these encodings will be of much better use in an actual application. Because the
lengths of the strings are stored contiguously (as bit-packed deltas) and separate from the char-
acters, a decoder for delta length encoded strings does not suffer from the same limitations a
decoder for plain encoded strings may suffer from. As an added benefit, developing a decoder
for delta length encoded strings requires much of the same logic a delta decoder for integers re-
quires. Thus, the development of a delta length decoder also results in a functional decoder for
the standard encoding for integers in Parquet.

Such a project is not without its challenges. An efficient decoder for plain encoded strings is
difficult to develop, but developing a working one is quite simple. For delta length decoding,
the logic required for reading block headers, unpacking (variable width) bit-packed deltas, and
adding the deltas, is complicated. However, once working it stands a much better chance at

35
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outperforming a CPU implemented delta (length) decoder, which will serve in answering the
research question. To that end, it was decided to implement both a delta decoder and a delta
length decoder. “DELTA_BYTE_ARRAY” decoding will not be implemented in this thesis due to
its increased complexity in comparison to delta length decoding. Such a decoder would however
use much of the same hardware as a delta length decoder, so future work can implement it
starting from the work done in this thesis.

4.2 Design overview

As mentioned in Section 2.2.3, a delta length encoded Parquet page contains a block of delta
encoded string lengths, directly followed by a contiguous list of the characters in the strings.
Therefore, a delta length decoder can be built from a delta decoder that decodes the integer string
lengths and a module that streams the correct number of characters to the Fletcher ArrayWriter.
Figure 4.2 shows a design that uses this idea to allow for a lot of reusable code. The white
modules in the architecture will be made so that they can function together as a DeltaDecoder
module. Some of these modules will get optional output streams that go unused in a normal
DeltaDecoder module, but can connect to the yellow module in order to make the total design
function as a DeltaLengthDecoder.

Data streaming into the decoder first needs to pass through the DeltaHeaderReader, which
extracts the relevant values from the delta header and then aligns the output data to the first block
header. “First value” is needed not only as a value that needs to be sent to the ArrayWriter, but
also as a starting point for determining all the integers in the page from the deltas. “Total value
count” is not needed as this has already been determined by the MetadataInterpreter from the
page header. The “block size in values” and “number of miniblocks“ are important for decoding
the packed deltas in the miniblocks, but it was decided that they should be set at compile time.
While theoretically these values could be changed to allow for slightly more efficient encoding
of some types of datasets, parquet-mr sets these values as constants in the source code, with
“block_size_in_values” being set to 128 and ”number_of_miniblocks” being set to 4. Tweaking
these parameters therefore requires changing the source. Even if someone decided to do this, they
would most likely keep these encoding parameters constant throughout the column, as such a
decision would likely be based on a very specific pattern in the dataset that is stored in this
column. By keeping “block size in values” and “number of miniblocks“ constant the hardware
becomes less complex and will require less area due to the simplification in the logic that deals
with counting the values in the miniblocks.

The StreamSerializer (provided by the vhlib library accompanying Fletcher), will split each
bus word into multiple parts and send them downstream sequentially. This narrows the stream,
allowing for smaller decoding logic downstream. Due to the bit-packed nature of the encoding,
64 bits could already contain many values depending on the bit-packing width. In the case of
small deltas, a bit-packing width of 4 bits is possible for example, meaning those 64 bits would
contain 16 values. Because determining the values in the column requires a prefix sum of the
deltas, only a limited number of deltas can be unpacked each clock cycle or the module respon-
sible for the prefix sum will encounter timing issues. Therefore, narrowing the stream is a good
way to save area without losing performance. The serialization ratio can be selected through
VHDL generics. The effects of different settings of this feature will be discussed in Section 4.4.

The BlockValuesAligner, the BitUnpacker and the DeltaAccumulator are responsible for the
transformation of bit-packed deltas to actual integers. The BlockValuesAligner contains a Block-
HeaderReader for reading the block headers and a BlockShiftControl that uses the information
from the BlockHeaderReader to determine how many values can be extracted from the encoded
data per cycle. The BlockShiftControl sends this information to the BitUnpacker, an array of shift
and mask pipelines that transforms the bit-packed deltas into full width integers. The DeltaAc-
cumulator adds the minimum delta received from the BlockHeaderReader to these unpacked
deltas, and then computes the prefix sum. The results are then streamed to the Fletcher Array-
Writer. The DeltaAccumulator also keeps track of the total number of values decoded so far, and
signals completion to the ArrayWriter when it has determined all required values in the column
chunk have been read.
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Figure 4.2: Hardware architecture of the DeltaDecoder with the optional CharBuffer for DeltaL-
engthDecoder functionality in yellow

A CharBuffer can be added to the aforementioned collection of modules to create a DeltaL-
engthDecoder. The CharBuffer will copy the data sent to the StreamSerializer and buffer it. The
BlockHeaderReader will continuously send data to the CharBuffer that tells it how many bytes
in the page are part of the encoded string lengths, allowing the CharBuffer to delete those bytes
from its buffer. Once all string lengths have been calculated the DeltaAccumulator will stream
the sum of all the string lengths to the CharBuffer so it knows how many characters it needs to
stream to the ArrayWriter. If the current page happens to be the last one, the DeltaAccumulator
will include that information in the transfer as well. Once the CharBuffer has received this value
and a “done” signal from the BlockValuesAligner, it knows it does not have to delete bytes be-
longing to the string lengths anymore, meaning the rest of its buffered bytes are part of the string
characters.

The CharBuffer and the DeltaAccumulator jointly determine when a page has been fully pro-
cessed by counting characters or string lengths respectively. In the DeltaDecoder module no
CharBuffer is needed, meaning the DeltaAccumulator decides by itself. Upon completion of the
three-way handshake between the DeltaAccumulator, CharBuffer and the PreDecBuffer (who
determines when a new page can be streamed to the decompressor and decoder as discussed in
Section 3.2.4), all modules in the DeltaDecoder or DeltaLengthDecoder will be reset except the
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CharBuffer and the DeltaAccumulator. The DeltaAccumulator needs to keep its state to track the
total number of values read from the column chunk while the CharBuffer uses the handshake as
a directive to proceed to its string length skipping state.

Instead of using the CharBuffer, a DeltaLengthDecoder could also have been implemented
by using a DataAligner module as discussed in Section 3.2.2. The DataAligner would have
two consumers, a DeltaDecoder and a module responsible for writing characters to the Array-
Writer. This second module would be similar to a PlainDecoder as described in Section 3.2.4.
The DeltaDecoder would have to report the size in bytes of the delta encoded string lengths so
the DataAligner could realign the incoming data for the string characters. This design could
be quickly implemented because it uses previously developed and tested modules. It was de-
cided not to go with this strategy because Section 3.3.1 showed the DataAligner to be the largest
module in the ParquetReader. A custom CharBuffer might save resources.

Putting the modules described above together, a DeltaDecoder or DeltaLengthDecoder mod-
ule is created with the following adjustable settings:

1. BUS_DATA_WIDTH: Number of bits transferred to the DeltaHeaderReader from the de-
compressor each clock cycle.

2. DEC_DATA_WIDTH: Number of bits transferred from the StreamSerializer to the Block-
ValuesAligner each cycle.

3. LENGTHS_PER_CYCLE/ELEMENTS_PER_CYCLE: Maximum number of integers calcu-
lated and transferred to the Fletcher ArrayWriter each cycle. Setting this too high may
result in timing issues due to the large prefix sum required.

4. CHARS_PER_CYCLE: Maximum number of characters transferred to the Fletcher Array-
Writer each cycle (only for the DeltaLengthDecoder).

5. PRIM_WIDTH: Whether to decode 64-bit or 32-bit integers (only for the DeltaDecoder).

In order to reduce the complexity of the design, only powers of 2 are supported for all avail-
able settings.

The logic included within the DeltaDecoder and DeltaLengthDecoder VHDL modules them-
selves is limited. The only logic present is a process statement that counts the number of bytes
received from the decompressor, while ensuring no more bytes than actually present in one page
are consumed until the CharBuffer and the DeltaAccumulator are ready for a new page. Should
the CharBuffer or DeltaAccumulator for some reason decide to signal the end of a page before
all the bytes in it have been received by the decoder, this process will ensure that those bytes are
consumed from the decompressor and then thrown away in order to allow the decompressor to
finish its job and prepare it for the new page.

4.3 Module design

4.3.1 DeltaHeaderReader

Delta
Header
Reader

clk reset
data_in data_outo

i i
i

first_valueo

Figure 4.3: Top-level view of the DeltaHeaderReader module

The DeltaHeaderReader is build in a very comparable way to the MetadataInterpreter. It sim-
ply shifts through the input data byte by byte while using a VarIntDecoder to decode the VarInt
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encoded integers. Once the entire delta header has been read in this way, a pipelined barrel shifter
(supplied by vhlib) is used to align the data such that the block header starts at the most signifi-
cant byte of the data word supplied to the downstream modules. In the current implementation
of the DeltaDecoder, only the “first_value” field of the delta header is actually required, which
the DeltaHeaderReader streams to the DeltaAccumulator. The DeltaHeaderReader needs to be
reset in order for it to process a new delta header, which happens upon a handshake between the
DeltaDecoder and the PreDecBuffer preceding a new page.

4.3.2 BlockValuesAligner
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Figure 4.4: Top-level view of the BlockValuesAligner module

Figure 4.4 shows the top-level view of the BlockValuesAligner. The job of this module is to
take the data from the StreamSerializer that contains interleaved block headers and miniblock
data, and supply the BitUnpacker with data to unpack, accompanied by the width of the bit-
packed deltas and the number of deltas it should unpack from the data.

The internals of the BlockValuesAligner can be found in Fig. 4.5. The main challenge this
architecture is trying to solve is how to avoid stalling the pipeline every time a block header
needs to be read. A naive implementation could read the block header, then proceed to use the
information in the header to process the miniblocks, and then repeat. Reading the block header
is a multi cycle process, since it first has to decode a VarInt (minimum delta) byte by byte and
then read the bit widths.

A combinatorial VarIntDecoder could be made that can decode the VarInt in one cycle. A
single-cycle shifter could then be included which can shift between 1 and the maximum number
of bytes in the VarInt. This would reduce the reading of the block header to one cycle for the
VarInt and one cycle for the bit widths, but it would result in a significant combinatorial path
that could cause timing issues. Also, it would still require 2 clock cycles which can significantly
impact the performance considering a block header is included in the page after every 128 values
by default.

Therefore, the BlockValuesAligner was designed in a way that allows the block headers and
miniblock data to be processed concurrently by two separate internal modules. A BlockHead-
erReader for reading block headers and a BlockShiftControl for supplying data to the BitUn-
packer. A module from vhlib called StreamSync is used to synchronize the input between the
two internal modules to ensure they always consume the exact same data at the exact same time,
essentially duplicating the input data stream. Both modules have FIFO buffers at their inputs,
with the BlockHeaderReader’s (advanceable) FIFO having custom functionality that allows the
BlockHeaderReader to delete any number of data words from it at any point.

The BlockHeaderReader reads the minimum delta and the bit widths from the block header
and passes the minimum delta to the DeltaAccumulator and the bit widths to the BlockShiftCon-
trol. Due to the number of miniblocks in a block (and therefore the number of bit widths in the
block header) being set at synthesis time, the BlockHeaderReader knows the number of bytes
in the block header immediately after reading the VarInt. This information is sent to the Block-
ShiftControl. After reading the bit widths, the BlockHeaderReader can calculate the number of
bits in the miniblock data by multiplying the sum of the bit widths by the number of values in a
miniblock. The BlockHeaderReader now deletes all the miniblock data in its AdvanceableFiFO
buffer, allowing it to start reading the next block header while the BlockShiftControl is still pro-
cessing the miniblock data. Every time the length of a block header or the size of the miniblocks
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Figure 4.5: Hardware architecture of BlockValuesAligner

is determined, this information is also sent to the CharBuffer to allow it to skip through the string
length data.

Every time the BlockShiftControl receives a block header length from the BlockHeaderReader,
it skips the specified number of bytes and starts reading the miniblocks. Every data word re-
ceived from upstream (whose width is specified by DEC_DATA_WIDTH) can contain a certain
number of deltas, dependent on the bit-packing width in the miniblock the data word is a part
of. The module contains two lookup tables, generated based on DEC_DATA_WIDTH and the
LENGTHS_PER_CYCLE or ELEMENTS_PER_CYCLE settings that limit the maximum number
of unpacked deltas per cycle. With the bit widths received from the BlockHeaderReader, the
BlockShiftControl can use the lookup tables to determine how many bits to transfer to the BitUn-
packers and the number of values the downstream module should unpack. The BlockShiftCon-
trol uses vhlib’s pipelined barrel shifting logic to correctly align its output data for the BitUnpack-
ers.

This parallel block reading configuration works because the BlockShiftControl does not al-
ways consume one data word per cycle. Instead it always consumes a set number of bit-packed
values, which (depending on the bit-packing width) does not necessarily add up to an entire data
word. This behavior causes backpressure in the decoder, which allows the FIFO buffers before
the BlockHeaderReader and the BlockShiftControl to fill up, giving the BlockHeaderReader the
opportunity to “look ahead” in the stream. Simulation has confirmed that the BlockShiftCon-
trol now only stalls its outputs for one cycle every block to shift out the block header, except in
rare cases where the bit-packing width causes the BlockShiftControl to consume its input data
at one data word per cycle. Whether or not this behavior occurs depends on the input data,
DEC_DATA_WIDTH and the maximum number of deltas consumed per cycle. For example, if
the bit-packing width in a certain part of the Parquet file is 16 bits while DEC_DATA_WIDTH is
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64 bits, the BlockShiftControl can consume 4 bit-packed values per cycle for a total of 64 bits.
Both the BlockShiftControl and the BlockHeaderReader count how many values have been

processed, and independently determine completion of a page by comparing this count to the
total number of values in the page as determined by the MetadataInterpreter. Once they have
both given their done signals, the CharBuffer knows it can start processing string characters,
while the StreamSync in the BlockValuesAligner starts consuming data words from upstream
unimpeded to avoid backpressuring the entire decoder.

4.3.3 BitUnpacker

Bit
Unpacker

clk reset
data_in data_outo

i i
i

Figure 4.6: Top-level view of the BitUnpacker module

The BitUnpacker module takes data from the BlockValuesAligner, and based on the number
of packed deltas and the bit-packing width supplied with the input data it unpacks the deltas
and passes them to the DeltaAccumulator.
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0001011011000100 0000001011011000 00000000010110111011011000100101

0000000000000100 0000000000000000 00000000000000110000000000000101

Shift
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Deltas with width 3Irrelevant data

0000000000000111Mask:

Figure 4.7: Unpacking example for DEC_DATA_WIDTH 16 with a bit-packing width of 3 bits
and an unpacking count of 4

Figure 4.7 shows a bit-unpacking example in the case of a DEC_DATA_WIDTH set to 16 bits.
In this particular example the BlockValuesAligner has supplied data that contains 4 deltas packed
to 3 bits. The input data word is copied to 4 pipelined shifters that shift the data with an number
of bits equal to the bit-packing width multiplied by their location in the array of shifters. This
results in four data words that each have one of the four bit-packed values aligned to the right.
A mask is then chosen based on the bit-packing width and through an AND operation with the
shifted data the four values are retrieved. Note that the 16 bit results from the example in Fig. 4.7
can be sign extended to any desired width.

Figure 4.8 shows how this technique can be implemented in hardware. A number of BitUn-
packerShifters is implemented equal to the maximum number of unpacked deltas per cycle.
These BitUnpackerShifters perform the shifting operation as specified in the example. A FIFO
is also included that stores the bit-packing width and value count for each data word entered
into the BitUnpacker. The width is used to select a mask in the lookup table which can be used
in the AND operation on the results of the BitUnpackerShifters. The results from these mask
operations are sent (synchronized) to the DeltaAccumulator together with the count value stored
in the FIFO, so the DeltaAccumulator knows how many values in the transferred data are valid.

4.3.4 DeltaAccumulator

The DeltaAccumulator module takes the unpacked deltas from the BitUnpacker, the first value
from the DeltaHeaderReader, and the minimum delta from the BlockValuesAligner, and uses
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Figure 4.8: Hardware architecture of the BitUnpacker with “n” being the maximum number of
deltas unpacked per clock cycle
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Figure 4.9: Top-level view of the DeltaAccumulator module

those values to calculate the integers stored in the Parquet page as the final decoding result. The
structure of the DeltaAccumulator is not very complicated, as it is essentially only a few sum
operations. Unfortunately, since a prefix sum is a sequential addition of values, only a finite
number of values can be summed in the same clock cycle before time runs out. This means the
DeltaAccumulator limits the maximum number of values that can be decoded in one cycle.

There are two stages in the DeltaAccumulator, with vhlib StreamSlices before, after, and in
between to break up combinatorial paths as much as possible. The first stage adds the minimum
delta received from the BlockValuesAligner to each of the unpacked values received from the
BitUnpacker to create the final deltas. A counter is used to keep track of the number of values
processed so the DeltaAccumulator can consume a new minimum delta from the BlockValue-
sAligner after processing every value in a block. The second stage calculates the actual prefix
sum using the first value received from the DeltaHeaderReader as a starting point and sends the
decoding results to the ArrayWriter. An extra responsibility of the second stage is to keep track
of the total number of values processed in the column chunk, and notify the ArrayWriters once
all the requested values have been decoded. This value count tracking is also used to detect page
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completion.
Apart from the main data flow in the DeltaAccumulator, some extra logic is included in the

case of delta length decoding. This logic inspects the decoded string lengths streaming out of
the second stage and sums all their values. Once the page is completed, the total sum is sent
to the CharBuffer where it is used to determine how many bytes need to be streamed to the
ArrayWriter.

4.3.5 CharBuffer
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Figure 4.10: Top-level view of the CharBuffer module

The CharBuffer module is only included in the DeltaLengthDecoder and is used to extract
the characters from the Parquet page and send them to the ArrayWriter. An AdvanceableFIFO
as discussed in Section 4.3.2 is used as an input buffer that takes raw data from the DeltaHead-
erReader. Since this raw data also includes all the string length data, the CharBuffer requires the
BlockValuesAligner to tell it how much data it can delete from its input buffer until only character
data is left. Once the BlockValuesAligner gives the signal, the CharBuffer requests the DeltaAc-
cumulator to send it the sum of the string lengths. Once the number of characters streamed to
the ArrayWriter equals the sum of the string lengths, the CharBuffer is done with the page and
together with the DeltaAccumulator it now handshakes the PreDecBuffer to start the next page.

Setting the CHARS_PER_CYCLE setting in the DeltaLengthDecoder to be equal to the num-
ber of bytes in the input bus width (BUS_DATA_WIDTH/8) allows the CharBuffer to process a
full input bus word per cycle. It is however possible to set the CHARS_PER_CYCLE to a value
lower than that, in which case a vhlib StreamSerializer is used to narrow the output stream.

4.4 Implementation & evaluation

In this section the design will be evaluated in terms of area and performance when implemented
on the same system used in Section 3.3: an Amazon F1 instance including a Xilinx XCVU9P
FPGA and an Intel Xeon E5-2686 v4 processor of which 8 hardware threads are available.

As predicted in Section 4.2, large prefix sums in the DeltaAccumulator modules caused Vi-
vado to be unable to meet timing constraints for the selected 250 MHz clock in the XCVU9P
FPGA. Because this issue was predicted the design allowed for setting a limit to the number of
values processed per cycle. The build only succeeds if the limit is set to 4 or fewer values per
cycle. Setting the limit to 8 (to reduce complexity the design only allows for selecting powers of
2) results in a path through the DeltaAccumulator with a worst negative slack of −0.799 ns on a
clock cycle of 4 ns.

Because limiting the number of values processed per cycle negatively impacts the through-
put of the design, finding a solution to this problem would be beneficial to performance. Un-
fortunately, no custom VHDL solution was found that allowed Vivado synthesize a design that
processes 8 values per cycle. Through the use of Vivado IP cores specifically optimized for calcu-
lating prefix sums, processing 8 values per cycle may be possible, but this would cause the design
to stop being vendor agnostic. For both this reason and the extra development time required to
implement such a solution it was decided to accept the 4 values per cycle limitation and only
perform benchmarks and testing on implementations conforming with that limitation.

As discussed in Section 4.2, the number of bits processed in the BlockValuesAligner and the
BitUnpacker per cycle can be set through the DEC_DATA_WIDTH setting (hereafter referred to



44 CHAPTER 4. DELTA AND DELTA LENGTH DECODING

as the decoder width). An interesting consequence of the 4 values per cycle limitation is that it
allows for narrow decoders when decoding Parquet columns with small deltas and narrow bit-
packing widths. For example, if it is known for a Parquet column that all deltas are bit-packed
to at most 4 bits, a decoder width of 16 bits would be enough as one word entering the decoder
would then always contain the maximum number of deltas that can be processed in a cycle. For
this reason, having a delta decoder for 32-bit integers with a decoder width larger than 128 bits
would not make sense, as a 128-bit word can contain 4 deltas packed to the maximum bit-packing
width of 32. The same is true for 64-bit integer delta decoders that have a decoder width larger
than 256 bits.

4.4.1 Area

Tables 4.1 to 4.3 show the area utilization hierarchy of ParquetReaders containing a DeltaDecoder
for 32-bit integers with decoder widths of either 64 bits or 128 bits. In these tables “Others” refers
to the modules already discussed in Chapter 3. As can been seen in the tables, LUT, register
and BRAM utilization for DeltaDecoders is very low. Instantiating ParquetReaders with large
decoder widths seems to increase area utilization as expected. 128-bit width delta decoders use
24.4% more LUTs, 25.5% more registers and 62.3% more BRAM than their 64-bit counterparts.
As expected, the growth comes from the BitUnpacker and BlockValuesAligner modules. These
modules form the part of the decoder after the StreamSerializer that narrows the stream to the
set decoder width, but before the DeltaAccumulator whose input port widths are affected by the
number of values processed per cycle rather than the decoder width. While the growth in area
utilization is definitely significant, it may still be worth it in performance returns that may occur
when the dataset contains large deltas requiring larger bit-packing widths. In such cases a larger
decoder width may allow more bit-packed deltas to fit in one decoder word, which increases the
number of values that can be processed in a single cycle (with a maximum of 4). The effects on
performance will be investigated in Section 4.4.2.

Component 64-bit decoder 128-bit decoder
ParquetReader 1.46% (17221) 1.55% (18282)

DeltaDecoder 0.45% (5326) 0.56% (6644)
DeltaHeaderReader 0.20% (2382) 0.22% (2657)
Fletcher StreamSerializer 0.00% (7) 0.00% (11)
BlockValuesAligner 0.07% (833) 0.12% (1410)
BitUnpacker 0.07% (874) 0.12% (1422)
DeltaAccumulator 0.08% (967) 0.09% (1078)
CharBuffer 0.00% (0) 0.00% (0)

Others 1.01% (11895) 0.99% (11638)

Table 4.1: LUT utilization for 32-bit integer delta decoders with varying decoder widths

Component 64-bit decoder 128-bit decoder
ParquetReader 1.50% (35348) 1.61% (38159)

DeltaDecoder 0.47% (11175) 0.59% (13986)
DeltaHeaderReader 0.22% (5211) 0.22% (5221)
Fletcher StreamSerializer 0.02% (516) 0.02% (515)
BlockValuesAligner 0.07% (1712) 0.13% (3147)
BitUnpacker 0.10% (2266) 0.15% (3631)
DeltaAccumulator 0.06% (1378) 0.06% (1380)
CharBuffer 0.00% (0) 0.00% (0)

Others 1.11% (27143) 1.03% (24173)

Table 4.2: Register utilization for 32-bit integer delta decoders with varying decoder widths
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Component 64-bit decoder 128-bit decoder
ParquetReader 2.85% (61.5) 2.99% (64.5)

DeltaDecoder 0.53% (15.5) 0.86% (18.5)
DeltaHeaderReader 0.35% (7.5) 0.35% (7.5)
Fletcher StreamSerializer 0.00% (0.0) 0.00% (0.0)
BlockValuesAligner 0.19% (4.0) 0.32% (7.0)
BitUnpacker 0.00% (0.0) 0.19% (4.0)
DeltaAccumulator 0.00% (0.0) 0.00% (0.0)
CharBuffer 0.00% (0) 0.00% (0)

Others 2.13% (46.0) 2.13% (46.0)

Table 4.3: BRAM tile utilization for 32-bit integer delta decoders with varying decoder widths

In Section 3.3.1 it was determined that the upper bound of the number of ParquetReaders
that can fit in a single XCVU9P FPGA on an Amazon F1 system was limited by the amount
of BRAM used by the ParquetReaders and the static Amazon shell. The shell uses 11.41% of
BRAM, leaving 88.59% for ParquetReaders. This is enough for 31 ParquetReaders with 64-bit
decoders or 29 ParquetReaders with 128-bit decoders. On a system that does not require the
Amazon shell these numbers would be 35 and 33 ParquetReaders respectively. As mentioned in
Section 3.3.1, instantiating many ParquetReaders in a single FPGA will likely cause congestion
issues making this number an upper bound for the maximum number of ParquetReaders, which
in practice will most likely be a smaller amount. Still, the area efficiency of the ParquetReaders
with DeltaDecoders allows for a significant amount of parallelization by instantiating multiple
engines.

Component 64-bit decoder 128-bit decoder 256-bit decoder
ParquetReader 1.68% (19814) 1.76% (20829) 1.90% (22440)

DeltaDecoder 0.61% (7186) 0.68% (8050) 0.86% (10179)
DeltaHeaderReader 0.27% (3169) 0.25% (2953) 0.24% (2887)
Fletcher StreamSerializer 0.00% (12) 0.00% (5) 0.00% (8)
BlockValuesAligner 0.09% (1048) 0.14% (1645) 0.23% (2717)
BitUnpacker 0.10% (1230) 0.16% (1865) 0.25% (2920)
DeltaAccumulator 0.14% (1712) 0.13% (1581) 0.14% (1644)
CharBuffer 0.00% (0) 0.00% (0) 0.00% (0)

Others 1.08% (12628) 1.09% (12779) 1.05% (12261)

Table 4.4: LUT utilization for 64-bit integer delta decoders with varying decoder widths

Component 64-bit decoder 128-bit decoder 256-bit decoder
ParquetReader 1.64% (38781) 1.76% (41678) 1.99% (46956)

DeltaDecoder 0.54% (12777) 0.66% (15674) 0.89% (20954)
DeltaHeaderReader 0.22% (5252) 0.22% (5259) 0.22% (5256)
Fletcher StreamSerializer 0.02% (516) 0.02% (515) 0.12% (514)
BlockValuesAligner 0.07% (1754) 0.14% (3198) 0.26% (6253)
BitUnpacker 0.11% (2657) 0.17% (4107) 0.27% (6334)
DeltaAccumulator 0.11% (2506) 0.11% (2503) 0.11% (2505)
CharBuffer 0.00% (0) 0.00% (0) 0.00% (0)

Others 1.11% (26004) 1.11% (26004) 1.11% (26002)

Table 4.5: Register utilization for 64-bit integer delta decoders with varying decoder widths

For DeltaDecoders that can decode 64-bit integers the area utilization hierarchy can be found
in Tables 4.4 to 4.6. Like their 32-bit counterparts, these DeltaDecoders again show great area
efficiency. Although the larger number of bits in the 64-bit integers require DeltaDecoders with
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Component 64-bit decoder 128-bit decoder 256-bit decoder
ParquetReader 2.66% (57.5) 2.99% (64.5) 3.24% (70.0)

DeltaDecoder 0.53% (11.5) 0.86% (18.5) 1.11% (24.0)
DeltaHeaderReader 0.35% (7.5) 0.35% (7.5) 0.35% (7.5)
Fletcher StreamSerializer 0.00% (0.0) 0.00% (0.0) 0.00% (0.0)
BlockValuesAligner 0.19% (4.0) 0.32% (7.0) 0.58% (12.5)
BitUnpacker 0.00% (0.0) 0.19% (4.0) 0.19% (4.0)
DeltaAccumulator 0.00% (0.0) 0.00% (0.0) 0.00% (0.0)
CharBuffer 0.00% (0) 0.00% (0) 0.00% (0)

Others 2.13% (46.0) 2.13% (46.0) 2.13% (46.0)

Table 4.6: BRAM tile utilization for 64-bit integer delta decoders with varying decoder widths

Component LUTs Registers BRAM tiles
ParquetReader 2.79% (32959) 2.92% (68996) 4.47% (96.5)

DeltaLengthDecoder 0.91% (10732) 0.95% (22512) 1.55% (33.5)
DeltaHeaderReader 0.23% (2746) 0.22% (5212) 0.35% (7.5)
Fletcher StreamSerializer 0.00% (6) 0.02% (515) 0.00% (0.0)
BlockValuesAligner 0.12% (1395) 0.13% (3169) 0.32% (7.0)
BitUnpacker 0.14% (1633) 0.15% (3625) 0.19% (4.0)
DeltaAccumulator 0.09% (1044) 0.06% (1413) 0.00% (0.0)
CharBuffer 0.33% (3905) 0.36% (8484) 0.69% (15.0)

Others 1.89% (22227) 1.97% (46484) 2.92% (63.0)

Table 4.7: Area utilization for a delta length decoder with 128-bit decoder width

slightly more area, the general trends in area increases for larger decoder widths resemble those
seen in Tables 4.1 to 4.3. BRAM is again the resource that limits the possible number of Parque-
tReaders in the FPGA. When the Amazon shell is taken into account the upper bound for the
maximum number of ParquetReaders is 33 for the smallest decoder width and 27 for the largest
decoder width. For systems without the Amazon Shell this is 37 and 30 ParquetReaders respec-
tively.

A DeltaLengthDecoder was also implemented on the test system. As discussed in Section 4.1
and Section 4.2, a DeltaLengthDecoder is essentially a 32-bit delta decoder plus a CharBuffer
module. Because this DeltaLengthDecoder was implemented with a 128-bit decoder width, the
numbers in Table 4.7 resemble those found in for the 32-bit integer DeltaDecoder with 128-bit
decoder width in Tables 4.1 to 4.3.

The resources used by the CharBuffer cause a significant increase in resource utilization
when compared to the DeltaDecoders discussed in this section. Section 4.2 discussed how a
DataAligner and a PlainDecoder module could be used instead of a CharBuffer to turn a DeltaDe-
coder into a DeltaLengthDecoder. The suspicion that such a design strategy would require more
area has turned out to be incorrect; the CharBuffer is similar in size to a DataAligner. The
CharBuffer-based DeltaLengthDecoder does still have the advantage that it saves a few cycles
when compared to the DataAligner-based implementation due to the DataAligner requiring 9
cycles for a realignment.

Apart from the CharBuffer module that requires a significant amount of additional area the
Fletcher ArrayWriter has also grown in size compared to the standard DeltaDecoders. This is
because string writing ArrayWriters are more complex and require more logic than those that
only have to write integers to memory. The upper bound of the total number of ParquetReaders
supporting delta length decoding that can fit on an Amazon system is 19. Without the shell the
upper bound would be 22. It should be noted that using a decoder with a width of 128 bits is
probably unnecessary for practical applications when dealing with strings. String lengths are
unlikely to be longer than a couple hundred characters depending on the dataset. This means
the deltas stored in the Parquet file are in the order of hundreds as well, which means that they
can be packed into a small number of bits. A DeltaLengthDecoder with a width of 64-bits can
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perform at the maximum throughput of 4 values per cycle up until a bit-packing width of 16.
A 16-bit value allows for deltas in the order of tens of thousands, which is an implausibly large
number for string lengths. Narrowing the decoder width will result in area savings for the Block-
ValuesAligner and BitUnpacker modules.

4.4.2 Performance

In order to properly explore the performance impact of using different decoder widths in the
DeltaDecoders, two datasets were generated with varying characteristics.

The random dataset simply contains integers that are uniformly distributed over the entire
range of numbers that can be represented by either 32-bit or 64-bit two’s complement representa-
tion. Because the number generation is fully random, it is possible that two adjacent number in
the columns have a large delta between them. Because of this, many miniblocks in the Parquet
column require the maximum 32-bit or 64-bit “bit-packing” width. This makes the dataset very
inefficient to store using delta decoding. Larger decoder widths will profit from this as they can
handle a larger number of values per cycle that are packed with a large bit-packing width.

The delta varied dataset is slightly more complex. A set of uniformly distributed integers is
generated as with random, but after every 256th value it will select a new modulo 2x where x is
uniformly distributed with 0 ≤ x ≤ 31 for the 32-bit integer dataset or 0 ≤ x ≤ 63 for the 64-bit
dataset. This modulo is then used to limit the randomly generated numbers to a range of [0, 2x).
As a result of limiting the range, the required bit-packing width in the delta encoded Parquet
column will change every 256 values. In the range [0, 2x) the minimum possible delta is −2x + 1
and the maximum delta is 2x − 1. As discussed in Section 2.2.3, the minimum delta in a block is
stored in the block header. The actual delta can be calculated by subtracting this number from
the bit-packed value. Therefore, the difference between the maximum and the minimum possible
delta is the largest value that needs to be stored in bit-packed form in a block. This difference
is 2x+1 − 2, which requires a maximum bit-packing width of x + 1. If every value in the block
equals 0 (x = 0) no deltas have to be stored.

Note that the bit-packing width in a delta varied dataset is not uniformly distributed. If a block
contains values from two different ranges the entire block will have the bit-packing width of the
larger range due to the very negative minimum delta in the block header, causing the delta varied
scheme to favor larger bit-packing widths. However, the delta varied dataset will still function as
an interesting performance comparison to the worst case scenario of the random dataset. It is also
great as a functional verification for the DeltaDecoder because it will have to be able to decode
every possible bit-packing width in varying sequences.

Delta encoded Parquet files containing 250 × 106 32-bit integers were generated according to
the previously described schemes, which after conversion will create an Arrow array of 1 GB.
The Parquet files were generated with varying page sizes to test the performance of the decoders
in multiple scenarios. In order to compare the Parquet to Arrow conversion performance of
the FPGA to that of the CPU a C++ application was written that is allowed to make the same
assumptions as the FPGA hardware at compile time (as previously seen in Section 3.3.3). As
a basis for the fast bit-unpacking, code was used from Lemire [28]. This C++ code was taken
and expanded to work for both 32-bits and 64-bits fixed-width primitives. For the same reasons
discussed in Section 3.3.3, the performance of the C++ code was measured in two scenario’s.
One where the memory for the Arrow array was pre-allocated and set to 0 using memset(), and
one where allocation time was included in the measurement. In both cases the Parquet data is
available in host memory before the start of the measurement. The software is compiled using
GCC’s -Ofast and -march=native optimization flags.

In Fig. 4.11 the results for the delta varied dataset can be found while the results for the random
dataset are shown in Fig. 4.12. In the measurements, throughput is defined as the size of the input
Parquet column chunk divided by the runtime of the either the FPGA or the C++ application.
As previously done in Section 3.3.2, the measurement for FPGA processing time starts after the
Parquet file has been copied to the accelerator card once the start signal has been given to the
FPGA, and stops once the FPGA has written the Arrow array to the AOM and it has signaled
its completion. The measurement results are shown in GB/s and in records/s. Showing the
results only in GB/s would be misleading as the Parquet file containing the random dataset is
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(a) Throughput in GB/s (b) Throughput in records/s

Figure 4.11: Throughput of ParquetReaders with DeltaDecoders for 32-bit integers decoding a
Parquet column containing a delta varied dataset as a function of Parquet page size

significantly larger than that of the delta varied dataset due to the inefficient bit-packing associated
with the large deltas. This may cause the throughput in GB/s for the random dataset to be higher
than that of the delta varied dataset, while the actual number of values decoded in a second would
be smaller.

(a) Throughput in GB/s (b) Throughput in records/s

Figure 4.12: Throughput of ParquetReaders with DeltaDecoders for 32-bit integers decoding a
Parquet column containing a random dataset as a function of Parquet page size

As predicted, the 128-bit decoder can handle both datasets at full speeds. Both the random
and the delta varied dataset reached a throughput of 9.5 × 108 records/s. This number is very
close to the expected 1 × 109 records/s that could theoretically be achieved by a perfectly efficient
ParquetReader that processes 4 values per cycle on a 250 MHz clock. In this implementation
this throughput is not reached because starting a new block in a delta encoded page costs a
clock cycle (sometimes two). In terms of GB/s, the 128-bit decoder achieves 3.9 GB/s for the
large Parquet file containing the random dataset, and at most 2.3 GB/s for the smaller Parquet file
containing the delta varied dataset. This shows that the throughput in GB/s is very dependent on
the compression ratio of the data after encoding. Note that the maximum throughput in GB/s
for the delta varied dataset is not achieved for the Parquet file with the largest page size. This is
because having only one page in the file resulted in a very efficiently encoded Parquet file that is
significantly smaller than the other files, while still having to be decoded with the 4 values per
cycle limit.
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(a) Reading the delta varied dataset with 64-bit decoder
width

(b) Reading the random dataset with 64-bit decoder
width

(c) Reading the delta varied dataset with 128-bit de-
coder width

(d) Reading the random dataset with 128-bit decoder
width

Figure 4.13: Throughput of ParquetReaders in GB/s with DeltaDecoders for 32-bit integers de-
coding a Parquet column as a function of number of values read

The 128-bit decoder is 1.52× faster than the 64-bit decoder for the delta varied dataset, a signif-
icant improvement. Especially for the random dataset the 64-bit decoder is hindered by the large
bit-packing width of the delta encoded values, resulting in the 128-bit decoder being 1.97× faster.
Section 4.4.1 showed that the 128-bit decoder required 62.3% more BRAM than the 64-bit decoder.
When this growth is compared to the growth in performance, the extra cost associated with the
128-bit decoder may not be worth it in applications where area is at a premium. The decision to
use either a 64-bit decoder or a 128-bit decoder should be based on both the nature of the data it
will be decoding and the abundance of area on the targeted FPGA.

When the performance of the FPGA based decoders is compared to that of the CPU based
program, the results are very promising. For the largest page size and the delta varied dataset
the 128-bit decoder sees a speedup of 2.63× compared to the CPU pre-allocated implementation.
The random dataset sees a slightly more modest 2.23× speedup because bit-unpacking is very
easy for the CPU when every value is “bit-packed” to 32 bits.

Figure 4.13 shows that using FPGA based ParquetReaders is inefficient for reading small num-
bers of values from a Parquet column chunk due to the overhead of starting and stopping the
hardware, and latency in the ParquetReader. For both the largest and smallest page sizes tested,
the maximum throughput is reached around 106 values, equivalent to 4 MB of output data.

Figures 4.14 and 4.15 show the throughput of the ParquetReaders containing DeltaDecoders
for 64-bit integers as a function of page size compared to the throughput possible on the CPU
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of the Amazon F1 instance. Each of the generated Parquet files contained 125 × 106 64-bit in-
tegers so the resulting Arrow array would be 1 GB in size. The same trends can be seen for
64-bit integer decoding as for 32-bit integer decoding: significant performance improvements
for wider decoders (especially for the random dataset) and a wide decoder that approaches the
theoretical maximum of 1 × 109 records/s for 4 values per cycle at 250 MHz. The difference in
performance between the 256-bit decoder and the 64-bit decoder is very large. Compared to the
64-bit decoder, the 256-bit decoder is 2.70× faster for the delta varied dataset and 3.50× faster
for the random dataset. Considering the BRAM utilization of the 256-bit decoder is only 2.09×
larger than that of the 64-bit decoder, there is a good trade-off when choosing a wider decoder
for datasets containing deltas with wide bit-packing.

(a) Throughput in GB/s (b) Throughput in records/s

Figure 4.14: Throughput of ParquetReaders with DeltaDecoders for 64-bit integers decoding a
Parquet column containing a delta varied dataset as a function of Parquet page size

(a) Throughput in GB/s (b) Throughput in records/s

Figure 4.15: Throughput of ParquetReaders with DeltaDecoders for 64-bit integers decoding a
Parquet column containing a random dataset as a function of Parquet page size

The FPGA performs significantly better than the CPU for 64-bit integer decoding like it did
for the 32-bit integer decoding. The speedup attained by the 256-bit decoder is 2.14× for the
random dataset and 2.79× for the delta varied dataset when compared to the CPU pre-allocated
implementation. Notably, the 64-bit width decoder generally performs worse than the CPU im-
plementation. Only for the delta varied dataset does it perform better when reading a Parquet file
with a very large page size. The performance of the CPU for the random dataset is again better
than that of the delta varied dataset because the Parquet file containing the random dataset needs
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64 bits to store each delta, therefore not requiring any actual bit-unpacking. In terms of GB/s
the highest throughput measured for the FPGA was 6.94 GB/s for random and 4.42 GB/s for delta
varied, whereas the CPU only reached 3.38 GB/s and 1.66 GB/s respectively.

(a) Reading the delta varied dataset with 64-bit decoder
width

(b) Reading the random dataset with 64-bit decoder
width

(c) Reading the delta varied dataset with 128-bit de-
coder width

(d) Reading the random dataset with 128-bit decoder
width

(e) Throughput in GB/s for the delta varied dataset
with 256-bit decoder width

(f) Throughput in GB/s for the random dataset with
256-bit decoder width

Figure 4.16: Throughput of a DeltaDecoder for 64-bit integers as a function of number of values
read
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As expected, Fig. 4.16 shows the decoder for 64-bit integers is inefficient when used for read-
ing small numbers of values. This behavior was also observed for the 32-bit integer DeltaDecoder
in Fig. 4.13. The 256-bit width decoder reaches its maximum throughput between 106 and 108

values depending on the page size. The 64-bit decoder and 128-bit decoder reach their maximum
throughput at smaller page sizes than the 256-bit decoder because their maximum throughput is
lower.

As previous benchmarks showed that the performance of the DeltaDecoders is very depen-
dent on the input data, it was decided to create two different datasets for testing the DeltaL-
engthDecoder for strings as well. The small dataset contains only small strings, each containing
a number of characters in the range [2, 10]. The large dataset contains strings with lengths in
the range [2, 500]. When decoding the small dataset the ability to read the delta encoded string
lengths is important for performance because a comparatively large number of string lengths are
stored in each page for all the characters. The large dataset has more stored characters for each
string length in the page, making the ability to copy these to memory quickly an important factor
in performance. Multiple Parquet files were generated with varying page sizes containing these
data sets. The small dataset contains 100000000 strings while the large dataset contains 3924500
strings. These numbers were chosen so that the Arrow array after conversion is roughly 1 GB in
size.

(a) Throughput in GB/s (b) Throughput in records/s

Figure 4.17: Throughput of a DeltaLengthDecoder for strings with a 128-bit width decoder as a
function of page size, decoding a Parquet column containing the small dataset

(a) Throughput in GB/s (b) Throughput in records/s

Figure 4.18: Throughput of a DeltaLengthDecoder for strings with a 128-bit width decoder as a
function of page size, decoding a Parquet column containing the large dataset
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The throughput attained for Parquet files with different page sizes containing the small and
large datasets can be found in Figs. 4.17 and 4.18. The performance of the FPGA for the small
dataset is very good when compared to the CPU (pre-allocated), attaining a speedup of 2.03× for
the largest page sizes. Curiously, an even more impressive speedup of 2.81× is seen for smaller
page sizes. For these page sizes a maximum throughput of 4.18 GB/s is attained by the FPGA
as opposed to 1.49 GB/s by the CPU for the same page size. The decrease in performance of the
FPGA for larger page sizes can be explained by the limits of the Amazon F1 instance used for
testing. Large pages contain a very large number of contiguously stored characters. Once all
the string lengths in the page have been processed all these (plain) characters need to be written
to memory as quickly as possible. No further computations are necessary on these characters.
During this copying phase the 7.2 GB/s limit for sustained reading and writing to the AOM is
reached (Section 3.3), limiting the throughput of the hardware. If the pages in the file are smaller,
a smaller number of characters need to be copied before the hardware needs to start processing
string lengths again. The 9.3 kB pages contain roughly 8.3 kB of character data, which would
form roughly 130 bus words in the hardware. This amount could realistically be buffered by the
many buffers in the hardware, allowing the DeltaDecoder to immediately start processing string
lengths again.

The performance of the hardware for large in Fig. 4.18 does show that the DeltaLengthDecoder
does not shine on the Amazon F1 system when most of its time is spent copying characters.
For large pages (where a lot of contiguous data is copied) the FPGA is no faster than the CPU.
Memory bandwidth is now such an important factor in the Parquet string reading performance
of the CPU that the behavior of the pre-allocated version resembles that seen in Fig. 3.17 where
it only had to copy plain encoded integers to Arrow buffers in memory.

(a) Throughput in GB/s for the small dataset (b) Throughput in GB/s for the large dataset

Figure 4.19: Throughput of a DeltaLengthDecoder for strings with a 128-bit width decoder as a
function of number of values read

Figure 4.19 shows how the throughput of the DeltaLengthDecoder is impacted by reading
fewer or more values from a Parquet column chunk. As with the 32-bit and 64-bit integer
DeltaDecoders, the DeltaLengthDecoder is inefficient for reading small amounts of data. This
is especially the case for large pages. The reason for this is that the decoder does not know where
in the page the character data starts, it first has to read all the string lengths. Therefore, the de-
coder always has to process all the string lengths in a page, even if only one string is required.
For large pages this causes a significant performance hit.

4.4.3 System considerations

As previously discussed in Section 3.3.3, the Amazon F1 instance used for testing is not ideal. It
was shown that a naive implementation of the ParquetReader accelerators would result in bad
performance as a lot of time was needed to copy Parquet data from host memory to the AOM,
and Arrow data from the AOM to host memory. An example of this effect is seen in Fig. 4.20. All
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measurement results shown in Section 4.4.2 avoid these issues by only measuring the processing
time of the FPGA and the CPU. Because these testing system related problems were extensively
discussed in Section 3.3.3, and the same conclusions hold true for the DeltaDecoders, they will
not be discussed again in this section.

(a) Throughput in GB/s with the copy from AOM to
host memory taken into account

(b) Throughput in GB/s with copies to and from
AOM taken into account

Figure 4.20: Throughput of a DeltaDecoder for 64-bit integers with a 256-bit decoder width when
copies between AOM and host memory are added to the execution time

It should however be noted that, unlike with the measurement results seen in Section 3.3.2,
the limited bandwidth between the FPGA and the AOM was not always the limiting factor in
performance. None of the benchmarks done for the DeltaDecoders for integers showed through-
puts exceeding 7 GB/s, indicating the performance limiting factor was the 4 values per cycle limit
imposed by critical path issues in the FPGA for the prefix sum in the DeltaAccumulator module.
Only when a 256-bit decoder was used to decode 64-bit integers in the random dataset did the
throughput come close to 7 GB/s. Figure 4.15b shows that the 256-bit decoder failed to reach a
throughput of 9 × 108 records/s indicating it may have been limited by the bandwidth between
the FPGA and the AOM.

While the effect of the low bandwidth between the AOM and the FPGA had only a limited ef-
fect on the measurements for the compute-bound DeltaDecoders, the DeltaLengthDecoder was
I/O bound due to decreased importance of compute power with the characters being stored
without any further encoding. Figure 4.18 showed the full memory bandwidth being reached for
all page sizes, while the limited memory bandwidth is suspected to cause the decreased perfor-
mance for larger page sizes in Fig. 4.17 (as discussed in the previous section).

4.5 Summary

In this chapter, the design for a DeltaDecoder and DeltaLengthDecoder to be included in a Par-
quetReader as described in Chapter 3 was discussed. Through the development of the DeltaDe-
coder, the ParquetReaders are now able to decode 32-bit and 64-bit integers encoded with the
DELTA_BINARY_PACKED encoding, the standard encoding for integers in Parquet. The DeltaL-
engthDecoder allows for reading Parquet files containing strings, as long as they are encoded
with the DELTA_LENGTH_BYTE_ARRAY encoding. The standard ParquetReader discussed in
Chapter 3 did not support Parquet files containing strings for any encoding. Even though the
DELTA_LENGTH_BYTE_ARRAY encoding is not the standard encoding for strings in Parquet,
it still provides a significant compression ratio for strings. The development of the DeltaLength-
Decoder also enables the development of a decoder for the DELTA_BYTE_ARRAY encoding in
future work.

The design process for the DeltaDecoder and DeltaLengthDecoder modules was highly in-
tegrated through the development of modules that could be used for both decoders. A focus
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was put on pipelining the different steps of the delta decoding process as much as possible. The
limit of parallel execution in the delta decoding process in FPGA was found in the prefix sum
required in the DeltaAccumulator module, limiting the number of values that can be calculated
per second to 4. Because this was predicted beforehand, functionality was added to the VHDL
design that allowed for easily setting this limit. The width of the decoder was also designed to
be adjustable, which allows for an area and performance trade-off.

ParquetReaders including DeltaDecoders and DeltaLengthDecoders were implemented in
the XCVU9P FPGA found on the Amazon F1 instances used for testing. Area utilization was
shown to be very efficient with the most used resource being BRAM. The utilization of BRAM
on DeltaDecoders and DeltaLengthDecoders ranged between 1.46% and 4.47% depending on
type and decoder width, allowing for many delta decoding ParquetReaders to be instantiated in
parallel in an FPGA. The remaining resources in the FPGA could also be used for implementing
acceleration hardware operating on the decoded data.

Performance of the DeltaDecoders and DeltaLengthDecoders was shown to be very depen-
dent on the input data and the selected decoder width. If the input data has many large deltas,
a wide decoder will have a significant and positive impact on the performance of the Parque-
tReader. Should the nature of the data to be decoded be known before implementing a Par-
quetReader in the FPGA, the decoder width could be selected to provide an optimal area and
performance trade-off.

Generally, the FPGA-based DeltaDecoder outperformed the CPU-based delta decoder. Be-
cause of the 4 value per cycle limit, a DeltaDecoder with a large enough decoder width has been
shown to decode close to 1 × 109 records/s. The best results seen for the CPU only attained
4.25 × 108 records/s. If the DeltaDecoder had a sufficiently wide decoder, speedups between
2.14× and 2.79× were measured when compared to the CPU implementation.

Because DELTA_LENGTH_BYTE_ARRAY encoded Parquet column chunks contain many un-
encoded characters that only need to be copied to memory without any further computations, the
measurements for the DeltaLengthDecoder suffered from the limited bandwidth between the
AOM and the FPGA. Still, if reading a Parquet column chunk containing short strings, speedups
were shown up to 2.81× compared to the CPU implementation. If the DeltaLengthDecoder is
used to decode a Parquet column chunk containing large strings, there is no speedup compared
to the CPU. These results may be different on another system.





Chapter 5

Conclusions

5.1 Conclusion

The main research question of this thesis was formulated in Section 1.1.3 as “can FPGA-based
hardware acceleration allow for better utilization of increasing I/O bandwidth when converting
storage-focused data formats to in-memory data formats?”. In order to answer this question the
ParquetReader was designed and developed. The Parquet format was studied in order to find
out which forms, variants and parts of the Parquet file format could benefit from hardware ac-
celerated Parquet reading. This resulted in a ParquetReader design with out-of-the-box support
for reading Parquet column chunks containing plain encoded floats or doubles, plain or delta
encoded 32-bit integers or 64-bit integers and delta length encoded strings.

This thesis has shown that a well designed and implemented Parquet to Arrow conversion
system using such FPGA-based hardware acceleration can indeed provide greater throughput
than a CPU-only implementation, resulting in better utilization of the I/O bandwidth. A single
ParquetReader engine in an FPGA has shown up to 2.81× better performance than a software
based Parquet reader when decoding delta length encoded strings, or 2.79× when decoding
delta encoded integers. An important lesson is that performance is not only heavily dependent
on the encoding, page size and type of the Parquet column to be read, but also on the nature of
the input data set. For the delta and delta length encodings studied in this thesis, the variance of
the values stored in the Parquet column chunk significantly impacted the performance of both
the FPGA-based and CPU-only implementations.

The low area footprint of the ParquetReader is one of the biggest strengths of the design.
A single ParquetReader requires between 1.18% and 2.79% of LUTs, between 1.27% and 2.92%
of registers and between 2.13% and 4.47% of BRAM. The resource utilization is dependent on
the data type and encoding the ParquetReader is configured for. The DeltaDecoder and DeltaL-
engthDecoder designs have an easily configurable performance and area trade-off which can be
tweaked based on the nature of the dataset the ParquetReader is expected to read, with datasets
where successive values differ a lot benefiting from larger decoders.

Depending on the dataset in the Parquet column chunk, DeltaDecoders with sufficiently large
decoder widths have achieved throughputs between 2.3 GB/s and 6.94 GB/s, while DeltaLength-
Decoders have achieved throughputs between 4.18 GB/s and 7.2 GB/s. The throughput of these
decoders is limited by either the 1 × 109 records/s limit inherent in the design at a clock frequency
of 250 MHz, or the 7.2 GB/s maximum combined read and write bandwidth of the system used
for testing. Especially for datasets that result in Parquet columns with narrow bit-packing widths,
the throughput of a single engine may not saturate the read bandwidth of future NVMe SSDs.
However, because of the small area footprint, many of these engines can be instantiated in a
single FPGA, allowing for a very high total throughput.

The performed work has also shown that the integration of the hardware accelerator into the
larger computing system warrants special attention. Many of the speedups and throughputs
discussed in this work are based on the performance of the ParquetReader module itself. A
naive implementation of a hardware accelerator containing these ParquetReader engines on the
Amazon F1 instances used for testing would not provide such a performance when considered
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from an end-to-end (storage to host memory) perspective. Creating efficient end-to-end system
requires more than just fast hardware.

5.2 Discussion & recommendations

As discussed in Section 4.4, the biggest problem hampering the throughput of the DeltaDecoder
and DeltaLengthDecoder is the limit on the number of values that can be processed in one cycle,
imposed by the timing issues caused by having to perform a prefix sum. If more development
time were to be spent on this issue, the performance of both decoders may improve significantly.
It has been mentioned before in Section 4.4 that the use of an optimized IP core developed specif-
ically for prefix sums might alleviate the critical path. If this would cause the limit on values
per cycle to go from 4 to 8 (the next power of 2), the throughput of both decoders could double.
Another angle from which to attack this problem could be in the BlockValuesAligner and BitUn-
packer. Currently their logic only allows for the values per cycle limit to be a power of 2. If a
more complicated component were to be developed that could deal with limits between 4 and
8, than the performance of the decoders could improve as a prefix sum of 6 (for example) could
possibly be implemented on a 250 MHz clock. This more complicated logic would likely come at
the cost of a larger area footprint.

Another avenue for performance improvement in the ParquetReader can be found in the
DataAligner discussed in Section 3.2.2. When this module was originally designed, the intention
of the ParquetReader was still to target both Parquet v1.0 and Parquet v2.0. Because Parquet
v1.0 does not store the size of the repetition levels and definition levels in the page headers,
the DataAligner needed the flexibility provided by the HistoryBuffer to realign the data in the
pipelined shifter whenever one of its downstream modules signaled the completion of a block
in the Parquet page. This flexibility comes at the cost of multiple clock cycles to realign the data
every time one of the downstream modules of the DataAligner is done. Because the final design
of the ParquetReader ended up only targeting Parquet v2.0 files, this flexibility is theoretically no
longer needed as the sizes of the blocks are known beforehand, which means that the realignment
boundaries can be predicted by the DataAligner. Especially once repetition and definition level
decoders have been implemented a redesign of the DataAligner with Parquet v2.0 in mind would
mitigate the performance penalty suffered when reading Parquet files with small page sizes that
require frequent realignments for the page headers, repetition and definition levels, and values.

Future work may also be focused on implementing the ParquetReader hardware on different
systems. The Amazon F1 instance used for testing imposed many limits on the project. The
7.2 GB/s bandwidth between FPGA and memory limited the extent to which the relationship
between page size and throughput could be tested in Section 3.3, and the DeltaLengthDecoder
hit this ceiling in the measurements of Section 4.4. Testing on a system with a larger bandwidth
may provide new insights on the performance of the hardware. Putting more development time
in integrating the ParquetReader hardware in the Amazon F1 instances may also improve the
bandwidth, as the Amazon shell does support multiple DDR controllers. Other aspects of the
project that could be further explored on other testing systems are the clock frequency (which
is limited to 250 MHz on the interface between the Amazon shell and the custom logic), and
measurements of power usage.

Finally, there are many features of Parquet that have not been implemented in the Parque-
tReader yet. The expandable and modular design allows for easy integration of any new de-
coding or decompression modules. A wrapper for an existing FPGA Snappy decompressor de-
scribed in [29] has already been developed and integrated into the project. Unfortunately, some
defects in the decompressor prevented successful implementation. Development of a definition
level decoder is also an interesting avenue of exploration for the project, as it would enable nul-
lable types. The development of such a decoder could also aid in the development of a repetition
level decoder for support of nested types.
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