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Executive summary

Wildfire simulations have become increasingly important as their frequency and sever-
ity increases, posing a threat to communities and resulting in billions in damages.
However, current wildfire models face a trade-off between accuracy and computa-
tional complexity. Current wildfire models can be physics-based, but computationally
expensive, or based on empirical data, which allows for better computational speed,
but decreases the physical basis. A model combining the computational speed of em-
pirical models with the physics understanding of physics-based models to increase
the accuracy of wildfire simulations is desired. This master thesis explores the de-
sign of such a model by answering the question: '"How can a near real-time wildfire
simulation be designed using physics-informed machine learning?’.

To do this effectively with a focus on the interdisciplinary nature of wildfire simulation,
the design science research methodology was used. This required identifying stake-
holders, applications and their respective needs and requirements through a literature
review. Operational firefighting was chosen as a main focus due to the need for accu-
rate, interpretable, near real-time results. These formed the main requirements with
other requirements covering the adaptability to different data types and use cases as
well as ability to handle uncertain data. As the requirements were formulated based
of off model usage and no specific requirements could be found, these remained at a
high level.

After identifying the requirements, the design space was systematically outlined. First,
it was investigated which parameters should be included in the simulation model. It
was found that topology, vegetation, weather and human intervention were key fac-
tors to include. This data could best be found in remote sensing data sets as remote
sensing data provides the most up to date data and has the best coverage leading
to a model that is applicable to most regions. Several remote sensing datasets were
found that provided the topological, vegetation and weather data. The Next Day Wild-
firespread dataset was chosen as it also provided a proxy for human intervention, its
ease of use due to providing clear documentation and the possibility to benchmark the
model against existing models. After the dataset was chosen and an understanding of
the types of data in the dataset were acquired, different model architectures were in-
vestigated. This revealed spatial temporal conditional auto-regressive (STCAR) mod-
els as potential wildfire simulation models. The STCAR model assumes that a cell’s
value is dependent on both the value in the cells around it as well as its own value in
the previous time step. It provides interpretability by explicitly incorporating a spatial
and temporal dependence parameter. Additionally it is space agnostic allowing it to
work with different data types and shapes. These advantages provide the adaptability
to different data types and the interpretability that are a requirements. The disadvan-
tage of the STCAR model is that it is not compatible with covariates and binary data.
The model was extended to work with these by assuming the covariates could be

11



111

combined to determine the odds of a cell catching on fire, which then could be used
directly within the STCAR model and compared against the binary fire mask to tune
the coefficients. Initially the parameters are combined linearly, but this assumption
may later be replaced with a non-linear combination.

Results show that the model thus far is not able to make reasonable predictions of
the wildfire spread. The model tends to not predict any fire occurring and sometimes
severely overpredicts the amount of fire. Additionally the predictions lack directionality
and instead provide a smoothing effect. These are a result of limitations in both the
dataset and the model. Further research and model development is required to bring
the model into practice. Specifically the model may be extended to work with neural
networks to capture non-linear effects. This would also account for the multicollinear-
ity issues because of which the current model has unexpected coefficients. The model
can also be improved by including higher resolution data via other datasets or even
mixing data of several spatial resolutions. The Next Day Wildfirespread dataset uses
MODIS satellite data at a resolution of 1 kilometer. This can be replaced with for ex-
ample the WildfirespreadTS dataset that provides VIIRS satellite data at a spatial res-
olution of 375 meters and provides multi-day observations. This will allow the model
to use insights from previous days and from forecasts to understand if a fire is growing
or shrinking, which is currently not possible as the Next Day Wildfirespread dataset
includes independent single day observations. Finally, the model currently is not able
to capture the directionality of fire spread and instead has a smoothing effect. In or-
der to better capture the directionality, the distance metric in the weighted adjacency
matrix of the STCAR model may be replaced with coefficients based on the data.

The model has multiple limitations, but can be modified, is extensible and able to run
in near real-time. The current implementation thus serves as a proof of concept and
foundation for modifications. Once the model provides accurate predictions, the model
could be included into a data platform and be fed real-time data to bring the model into
practice. The model would then be usable for a variety of wildfire simulation purposes
during active wildfires and as a result may allow for improving the resilience against
wildfires and saving lives.
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Introduction

1.1. Societal relevance

Wildfire simulations have become a hot topic as wildfires increase in frequency and
severity, leading to increasing damages (Bao et al., 2024). Buechi et al. (2021) have
found that in California the amount of acres burned and structure damages have in-
creased steadily over the past four decades. For all ecoregions in the western United
States the rate of increase is 7 fires and 355 km? per year (Dennison et al., 2014).
This increase in frequency and extent of fires is linked to drier conditions and longer
fire seasons as a result of climate change (Halofsky et al., 2020), invasive species and
past fire management (Dennison et al., 2014). The increase of wildfires is not limited
to the United States. Rodrigues et al. (2022) state that wildfires are commonplace in
Mediterranean countries and also found that fuel dryness is a driver in the frequency
and severity of wildfires.

The increase in forests fire frequency and intensity also leads to an increase in costs.
The damages from these wildfires are not limited to only loss of forests and building
damages. Wang et al. (2020) found that an estimated $148.5 billion was lost due
to wildfires in California in 2018, consisting of value of capital, health costs and cas-
cading effects in supply chain. Given these economical, ecological and health costs,
resilience against wildfires is very important.

Simulations of wildfires serve as a vital tool in preparing against wildfires. Given these
potential damages of wildfires, containment strategies cannot be tested in the real
world. Wildfire simulations provide a way to test containment strategies, investigate
fire risks and to find out the effects of potential wildfires. Wildfire simulations are not
limited to just wildfire containment. Wildfire models can be extended or coupled with
other models to serve as a tool for testing resilience for a wide range of applications
including forestry management, evacuation strategies, air pollution modeling, supply
chain and critical infrastructure simulations. Thus wildfire simulations not only en-
hance containment strategies, but also serve as tools for preparing communities and
safeguarding critical infrastructure. As a result, improvements in the accuracy and
speed of simulations can have a great impact.
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1.2. The link to Complex System Engineering and Man-

agement
The research is closely related to the Complex System Engineering and Management
(CoSEM) program as both CoSEM and this research focus on design within complex
socio-technical systems. Wildfire resilience is a multi-disciplinary topic, as shown by
the wide range of applications, in which the simulations serve as the tool to test inter-
ventions. This thesis will encompass the design and creation of such a simulation tool
in order to provide predictions that can be used in decision-making and can be used to
test interventions. This design process further reflects the link to the CoOSEM program
as it will include and touch upon content from most of the coursework. It especially
reflects major concepts from SEN121 Agent based modeling, SEN163 Responsible
Data Analysis and SEN162 1&C Service design. All in all, the proposed research will
allow for demonstrating the skills and knowledge taught during the CoSEM program.

1.3. Prior research, academic knowledge gap and main

research question

In order to create an understanding of the different types of wildfire simulations, their
use cases and knowledge gaps, an initial structured literature review will be conducted.
A description of the process of the initial literature review can be found in A. Table
1.1 categorizes each of simulation models discussed in the papers found during the
literature search. Models are classified based on their modeling paradigm: empirical,
semi-empirical or physics-based. This distinction is explained in the next paragraph.
Additionally the models were classified based on the methodology used to create them.
These are explained in the subsequent paragraphs. In this, the specific focus will be
on the advantages and disadvantages between them.

1.3.1. Modeling paradigms

In the literature it was found that fire propagation simulations can be categorized as
empirical, semi-empirical and physics-based. Empirical models are models that de-
rive the relationships from observed data. On the other end of the spectrum, physics-
based models solely rely on differential equations. Semi-empirical models lie in be-
tween, usually utilizing simplified equations. The models in Table 1.1 are categorized
in the most suitable category and based on their methodology. While the methodolo-
gies are presented as separate categories, the borders between categories are not
as definitive as some simulation models attempt to combine different methodologies.
Each of the methodologies will be discussed in the following sections.

1.3.2. Physics-based models

The models that belong to physics-based models relying on computational fluid dy-
namics. These models may be coupled to atmospheric models and typically integrate
Navier-Stokes equations for simulating wind and may include eddies (Pimont et al.,
2009). While the advantage of this is that these models resemble reality the closest,
they generally are computationally expensive and require more training data. This
makes them less suitable for large scale wildfire simulations and makes real-time sim-
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ulation near impossible (Cheng et al., 2022).

1.3.3. Cellular automata

Another methodology for fire spread simulations are cellular automata. Cellular au-
tomata typically are semi-empirical. These simulators divide space into a raster and
have functions describing when a cell changes state based on the state of neighbour-
ing cells. Each of these cells contains data such as fuel, weather, moisture content,
and topographic attributes to inform the fire spread (Pais et al., 2021). Cells initially
were squares, however, some more recent models involve hexagonal cells (Xu et al.,
2022). Most of these models rely on Rothermel’s rate of spread model (Rothermel,
1972), the most famous being FARSITE (Finney, 1998). The drawback of this model
is the amount of input data required and needing to calibrate the input parameters de-
pending on the environment. More recently attempts were made to include machine
learning withing cellular automata for fine-tuning the input parameters using genetic
algorithms and for transitioning between states. Models using genetic algorithms are
suitable for predicting ongoing fires, but less so for hypothetical fires. The computa-
tional demand depends a lot on how complex and detailed the cellular automaton is.
While a lot of cellular automata are able to run in near real-time, others are not able
to achieve this speed.

1.3.4. Graph theory based simulations

One category of semi-empirical models are models that use graphs. Graphs divide
space into nodes connected via edges. This allows for irregular networks. Models
compute when a node catches fire based on its connected nodes via shortest path
algorithms (Hajian et al., 2016; Stepanov & Smith, 2012). The advantage over cellular
automata is that the unimportant parts of the topology can be removed, solving issues
in choosing resolutions and speeding up computation times (Hajian et al., 2016; Jiang
et al., 2022). The drawback, however, is that parameter tuning is more difficult for
irregular networks.



Table 1.1: Overview of Wildfire Simulation Models

Source

Modeling paradigm Methodology Model
Empirical Machine learning 6 Unnamed models
Semi-empirical Graph theory 3 Unnamed models

Cellular automata FARSITE, CELL2FIRE and

10 unnamed models

Physics-based Fluid dynamics FIRETEC, WRF-FIRE,

WRF-SFIRE and 2
named models

un-

(Bottero et al., 2020; Cheng et al., 2022; de
Gennaro et al., 2017; Khanmohammadi et al.,
2022; Maeda et al., 2009; Murali Mohan et al.,
2021; Wood, 2021)

(Hajian et al.,, 2016; Jiang et al.,, 2022;
Stepanov & Smith, 2012)

(Alexandridis et al., 2011; Castrillén et al., 2011;
Chi et al., 2003; Finney, 1998; Gharakhanlou
& Hooshangi, 2021; Jahdi et al., 2016; Karafyl-
lidis & Thanailakis, 1997; Mitchell et al., 2023;
Ntinas et al., 2017; Pais et al., 2021; Rui et al.,
2018; Subramanian & Crowley, 2018; L. Sun
et al., 2021; Vahidnia et al., 2013; Wu et al.,
2022; Xu et al., 2022; Yassemi et al., 2008;
Yongzhong et al., 2004; Zheng et al., 2017;
Zhou et al., 2020)

(Lopes etal., 2019; Pimont et al., 2009; Vanella
et al., 2021)
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1.3.5. Machine learning simulations

Machine learning models are empirical models, which derive patterns from data. There
are many machine learning techniques that can be used for wildfire modeling, how-
ever the most common ones are neural networks, long short term memory and support
vector machines. They are able to make predictions of the firefront by learning pat-
terns in the provided data. However, sufficient training data needs to be available.
This is not always the case. To mitigate this shortcoming, some models are trained on
data generated by other simulations (Cheng et al., 2022). The advantage of machine
learning methods is its speed. One model trained on data from a cellular automata ran
around 1000 times faster than the cellular automata model itself (Cheng et al., 2022).
Due to this increase in speed, combining machine learning with other paradigms is
also widely investigated.

Another advantage of machine learning is that the patterns found can be complex
and non-linear allowing for more accurate models. However, as a result it may be un-
known what individual variables are represented, decreasing the interpretability of the
model and allowing for potential violations of the laws of physics. Physics-informed
machine learning could potentially offer an improvement by confining the machine
learning’s output range using differential equations. Bottero et al. (2020) have made
an initial model integrating physics-informed neural networks into the physics-based
WRF-SFIRE model. It shows potential as it sped up computation time and is more
interpretable. However, it is still in its early stages as they mention that their model
only works on relatively small domains and is unstable for larger ones.

1.3.6. Conclusion and main research question

From the literature review it can be concluded that fire propagation simulations range
from being completely based on physics, such as computational fluid dynamics mod-
els, to being based on collected data, such as certain machine learning models. While
physics-based simulations often better resemble reality, they also require precise input
data and are computationally expensive. This makes them unable to achieve real-time
simulation. Statistical models on the other hand are much faster and require less pre-
cise input data, but lack a basis in physics. As a result these machine learning models
are not explainable and might even violate the laws of physics. Semi-empirical models
lie somewhere in between as they use equations derived from empirical studies, most
commonly Rothermel’s equations. The drawback to these models is the required input
data and higher computational demand than machine learning models. This reveals
a need for wildfire simulations that combine the speed of machine learning with the
robustness of physics-based simulations. Physics-informed machine learning could
potentially fulfill this role. Therefore, this thesis will attempt to fill this gap by answering
the following research question:

How can a near real-time wildfire simulation be designed using physics-informed ma-
chine learning?
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1.4. The Design Science Research Methodology

As the research gap concerns the design of a model, a design oriented approach will
be taken. The goal is to develop model in a structured way so that it can be imple-
mented and used by the various stakeholders. A design oriented approach means
dividing the work into requirement elicitation, prototype, evaluation and the final de-
sign.

More specifically, this master thesis will follow the design science research method-
ology as outlined by Peffers et al. (2007). The design science research methodology
divides research into six steps that match the design approach: problem identification
and motivation, definition of the objectives for a solution, design and development,
demonstration, evaluation, and communication.

The design science research methodology was taken over a modeling approach as a
design approach has the advantage of being much more focused on creating value
by meeting the requirements of stakeholders and ensuring the relevance of the cre-
ated artifact, whereas a modeling approach focuses more on explaining an observed
concept without considering how the model would later be used. This is especially
relevant as wildfire models are used for a multitude of applications by a variety of
stakeholders. By choosing to use the design science research methodology, the fo-
cus will shift towards the relevance of the model and its use cases.

However, parts of the modeling approach will still be used during the design and devel-
opment and evaluation steps of the design science research methodology. A limitation
of the design science research methodology is that it does not provide methods for
creating the artifacts. By including elements from the modeling cycle, a more struc-
tured way of creating the model during the design and development step is performed.
In order to do this, a conceptual model and formal model will be created. Similarly
for the evaluation step, where the goal is to make sure the objectives of the design
are reached, there are no prescribed methods for measuring success. Peffers et al.
(2007) state that "Depending on the nature of the problem venue and the artifact,
evaluation could take many forms”. To structure this, the verification and validation of
the model will be completed as per the modeling cycle ensuring that the model does
what it is supposed to. This way, both the strengths of the design science research
methodology and the modeling approach are used.

1.5. Sub-questions

In order to further structure the research, the main research question is decomposed
into three sequential sub-questions. These will lead up to the main research ques-
tion via the steps of the design science research methodology. It should be noted
that while the sub-questions are presented in sequential order, the design science
research methodology is built on the understanding that the design process is an it-
erative process. The results of most of these steps will be revised multiple times
throughout the design process.

In order to structure the problem identification and definition of objectives, the follow-
ing sub-question will be answered:
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(1) What objectives can be derived from how models are currently being used?

This will provide a deep understanding of the current models being used, by whom
they are being used and for which purposes. In addition, this will provide a notion
of what properties of a model are desirable. In order to get this data, a literature re-
view can be conducted. Models used in practice will be evaluated by researchers and
papers will be published about them. This serves as an opportunity to find out on
the basis of what criteria they are being assessed. This directly translates to the use
cases and purposes. It is expected that certain objectives and requirements will be
more important than others. This is why the list of objectives will be prioritized. A lit-
erature review is chosen over other research methods such as conducting interviews
due to less dispersion of information and avoiding a lengthy process. To get a near
complete overview of models via interviews would require every stakeholder and ap-
plication area to be interviewed, whereas a single literature review will likely provide
data on all of the most important use cases.

For the design and development step, it is important to know which alternatives there
are for the structure of the model. This will provide information on the design space
and will facilitate organizing the trade-offs between different architectures. The ulti-
mate goal is to narrow these options down to a single proposed design. That it why
this sub-question is formulated in a way to allow for both exploring the design space
and narrowing it down to one design:

(2) What could the model’s architecture look like?

To get an understanding of the different model architectures and their trade-offs, a
case study can be conducted on the wildfire models found during the literature review
conducted for the previous sub-question. This will provide a better understanding of
the way these models work and their trade-offs. One of the important trade-offs will
be the data requirements. That is why this chapter will also look into the availability
of this data. Examples of data include digital terrain models, weather data and fire
spread data. If data is not available, this will be seen as a design constraint. Using
the trade-offs and design constraints found throughout the case study, a final model
architecture will be chosen. The choice for this architecture is equivalent to creating
a conceptual and formal model as per the modeling cycle’s steps. Based on the con-
ceptual and formal models, the machine learning model can then be developed and
trained using the available training data.

For the evaluation step, it is important to assess whether the objectives of the design
are met by the created design artifact, which is the proposed wildfire spread model.
This means investigating whether the requirements for a specific use case are met
by the model. The requirements for a wildfire simulation for different use cases will
be determined by sub-question 1. In sub-question 2 the model was developed. Now
sub-question 3 will be formulated as follows to find out how applicable this model is to
the use cases by checking the requirements:
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(3) To what extend is the proposed model applicable to wildfire simulation use cases?

Assessing the model will consist of checking requirements that are generic for all wild-
fire models and checking application specific requirements. Two examples of the
generic requirements are whether the model is valid and whether the model is ver-
ified. Verification means that the model matches the behavior that was set out in the
formalization. For this no new data is required. Validation entails checking if the mod-
eling relationship between the real world and the model is correct. Validation of the
model can be performed as a case study by investigating the predictive capabilities
of the model compared to the real life fire spread. This will require a subset of the
available data from sub-question 2. Wildfire simulation use cases will also have re-
quirements specific to those applications. By checking whether the developed model
matches these requirements, the use cases of the model can be explored. In general,
this sub-question will help answer whether the stakeholders would be able to use the
model effectively. This will serve as an input for the discussion, conclusion and future
research directions.

1.6. Structure of the thesis

Following the methodology and sub-questions, the rest of this thesis will be struc-
tured as follows. First, Chapter 2 will provide an overview of wildfire simulation use
cases and their requirements to answer the sub-question "What objectives can be
derived from how models are currently being used?”. After this, Chapter 3 will use
these requirements to evaluate the design space of wildfire simulations. To do this,
an overview will be created of the required parameters. Then, the availability of this
data will be investigated and datasets containing these parameters will be discovered
and compared in order to find one dataset that will be used. After finding the dataset,
different model architectures will be investigated and one will be selected and devel-
oped in order to answer the sub-question: "What could the model’'s architecture look
like?”. Afterwards, the model will be compared to other models and tested on the
requirements and thus on whether it provides usable results in Chapter 4. This will
answer the final sub-question: "Does the proposed model satisfy the requirements?”.
Finally, a reflection on the results will be given in the discussion and conclusion in
Chapter 5. An overview of the structure of the thesis, the outputs of each chapter and
how they relate to each other and the design science research methodology can be
found in Figure 1.1.
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Systemic overview of
wildfire modeling use cases

In this chapter, the first sub-question "what objectives can be derived from how models
are currently being used?” will be answered to fulfill the ’definition of objectives’ step in
the Design Science Research methodology. This will create an understanding of how
current wildfire simulations are used and how the system functions as a whole. In order
to achieve this, a literature review will be conducted to find out which stakeholders use
which wildfire models for which specific purpose. From this a list of requirements will
be derived per application area. This is important as wildfire models are a means to
an end, not an end in themselves. Thus, new models should strive to be useful for the
application, the end, they are made for.

The search for usage of wildfire simulations will be structured using the overview of
wildfire models provided by Singh et al. (2024 ) and Papadopoulos and Pavlidou (2011).
A search will be conducted on the Google and Google Scholar search engines to find
usage of the models mentioned in these papers. This data will be compiled into dif-
ferent application areas. The rest of this chapter will be structured as follows, first
a summary of the identified application areas will be given. Then each of these ap-
plication areas will be covered more in depth with a focus on their stakeholders and
requirements. Finally, an overview of all the identified requirements will be given and
the scope of the simulation will be determined.

2.1. Wildfire simulation applications

Wildfire simulations are applied across a broad spectrum of use cases, but are ulti-
mately used to predict the spread of fire. The spread of fire is used for different kinds
of risk management surrounding the wildfires. Wildfire risk management incorporates
the four phases of emergency management: prevention and mitigation, preparedness,
response and recovery (Tymstra et al., 2020). As such the applications of wildfire sim-
ulations can generally be matched to these phases. The prevention and mitigation
phase is all about limiting the amount of potential damage and consists of fuel man-
agement, home preparedness and land management use cases. The preparedness

10
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phase entails planning for if a wildfire happens and contains evacuation simulations
and danger rating applications. The response phase encompasses all actions once
a fire does occur and consists of decision support during active wildfires. Finally, the
recovery phase includes all actions after a wildfire has occurred and consists of disas-
ter response and ecology applications. Each of the wildfire risk management phases
and how simulations are applied in them will be covered in more depth below.

2.1.1. During prevention and mitigation

The prevention and mitigation phase focuses on reducing the negative effects of po-
tential wildfires. This is done through fuel and land management and home prepared-
ness. Fuel management means removing potential fuel sources from the forest. This
could be achieved by thinning trees and shrubbery via mechanical treatment, by utiliz-
ing prescribed burns as well as by converting the fuel type to fire resistant vegetation
(Moreira et al., 2011). In a prescribed burn a small portion of the forest will be set on
fire to burn away the shrubbery when conditions are controllable. This decreases the
amount of fuel that is available if the forest were to catch fire later on, effectively de-
creasing the size, intensity and damage of future wildfires when conditions may not be
favorable. The effectiveness of prescribed burns and fire breaks is evaluated through
experiments, fieldwork and simulations, such as those using FIRETEC and FARSITE
(Moreira et al., 2011). Due to the risky nature of experiments and the limited data that
can be derived from fieldwork, simulations are preferred over experiments and field-
work (Moreira et al., 2011). In addition to evaluating the effectiveness, simulations are
also used for planning the prescribed burns. The amount of land that can be subjected
to fuel treatment is limited by operational, ecological and social pressures and thus itis
important to carefully select treatment locations (Fernandes & Botelho, 2003). There
are several tools that help with this selection process. In the United States the Inter-
agency Fuel Treatment Decision Support System is used for fuel treatment planning
by using the FlamMap, minimum travel time and other simulation models (Drury et al.,
2016). In Canada the Prometheus simulator may be used for fuel treatment planning.

Additionally burn probability maps are created to aid in the decision making using
FSIM. FSIM is a stochastic simulation tool that predicts the fire spread of many differ-
ent ignition points over a given area at a resolution of 270 meters (Finney et al., 2011).
The fire scars left by the fire spreading are determined for various weather scenarios.
Afterwards, these are aggregated to find the likelihood of a given place catching on
fire if a wildfire occurs in the area.

These model results may shape policies and educational programs for home prepared-
ness. For example, the American government advises to create a fire resistant zone,
making an emergency plan, and using fire-resistant materials (Federal Emergency
Management Agency, 2025). It has been shown that a homeowners’ perceived risk
and thus their willingness to act is influenced by this information from official sources,
as well as information from unofficial sources (Brenkert-Smith et al., 2013). Addition-
ally these results may be used by insurance providers.
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2.1.2. During preparedness

The preparedness phase includes creating plans for when a wildfire occurs. Wildfire
simulations are used for this especially in planning evacuations. Evacuation simula-
tions are used to understand human behavior during evacuations and to determine the
optimal thresholds for when to notify and evacuate people as a wildfire approaches.
Disaster response and evacuations planning has to account for significant logistical
and operational challenges. Simulation studies have been conducted that accounted
for road conditions (Ma & Lee, 2025) and failing communication networks (Grajdura
et al., 2022). The FARSITE model was coupled with evacuation simulations to find
evacuation triggers (Mitchell et al., 2023). Mitchell et al. (2023) used the rate of spread
output in raster format together with Dijkstra’s shortest path algorithm to find the mini-
mum travel time to communities.

Typically these evacuation cues are linked to fire danger ratings. In America the Fire
Weather Index is used as a fire danger rating. In Canada the Canadian Fire Weather
Index is used. In Australia McArthur’'s MK 5 forest fire danger meter is used. And in
Europe the Copernicus Fire Danger Firecast system may be used. These systems
provide a numerical output based on the likelihood of a fire occurring and the expected
rate of spread once a fire does occur. The rating these systems provide are also used
to determine the manpower and resources that need to be ready at a given time and
thus determine the readiness level of firefighters (Alexander, 2000).

In addition to facilitating the planning of readiness levels, wildfire simulations may be
used to train first responders themselves. Emergency services may simulate a fire
and determine the best course of action. This is not limited to firefighters, but is also
for making plans for medical services (Hertelendy et al., 2024).

2.1.3. During response

The response phase includes all actions when an emergency occurs. For wildfires
this includes the operational planning during an active wildfire. Simulations are used
as decision support tools. Specifically, the wildfire simulations are used to determine if
and how to attack the fire through fire spread modeling. Fire spread modeling entails
figuring out where the fire will go and at what time it will get there given a scenario.
Typically the focus will be on a fire perimeter that is advancing, rather than showing
the entire fire scar. This can then be used by forest fire managers to determine the
appropriate firefighting resource allocation. More specifically, in the United States as
a fire increases in size, more resources and agencies are included in fighting the fire
and the National Interagency Fire Center (NIFC) will coordinate the resource allocation
across these agencies, relying on simulation-based forecasts to do so. As such it is
important for a simulation to accurately provide the location of a fire and its arrival time
to different points. There have been efforts to facilitate this interagency collaboration
and make data consistent between agencies such as the LANDFIRE platform in the
United States (Rollins, 2009).

An example of a simulator used in planning the initial attack is the California Fire Eco-
nomics Simulator (CFES2). It includes the ability to model extreme fire spread rates
and multiple fire starts. Models that are used in planning the initial attack typically
model the fire rate of spread and the fire dispatch level and include various firefight-
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ing strategies to answer 'what if’ questions (Gilless & Fried, 1999). In Australia the
PHOENIX, managed by the Fire Predictive Services, is used to support investment
decisions, positioning of fire resources during a fire and evacuation decision making
(FLARE Wildfire Research, 2021).

2.1.4. During recovery

The recovery phase includes all actions taken after a wildfire has occurred in order
to recover from the damages. In this phase wildfire simulations are used for various
purposes. One application is forensics. Wildfire simulations such as Prometheus may
be used for forensic purposes by running the simulation in reverse to find the origin of
the fire (Tymstra et al., 2010). Typically physics-based simulations are used for this
purpose due to their high accuracy and computational demand being less important.

Additionally wildfire simulations can be coupled with smoke simulations to provide an
understand of where contaminants may have traveled to and the resultant impacts
on the air quality. This typically uses coupled fire and atmosphere models. These
typically are physics-based simulations such as FIRETEC and WRF-SFIRE. Both of
those models used fire grid spacings of centimeters up to meters and could only model
domains up to roughly a kilometer (Liu et al., 2019). Due to this these models are typ-
ically used for retrospective fire cases at relatively limited scales (Hung et al., 2025).
Alternative models that were made for more operational use cases include Daysmoke
and PB-P and CMAQ-Bluesky which respectively have a grid spacing of about 100
meters and 4 to 12 kilometers and domains of respectively 5 km and 1000s of kilo-
meters (Liu et al., 2019). Other models that are used operationally for this purpose
include Prometheus, Simple Smoke Screening tool and VSMOKE-GIS as these exe-
cute fast enough and the data they require is readily available (Liu et al., 2019). In
order for a wildfire model to be connected to a smoke and emission simulation, the
model requires fuel condition, fuel consumption, fire spreading and atmospheric con-
dition properties as described by Liu et al. (2019). Fuel condition properties include
the amount of fuel, type, distribution and moisture contents. The fuel consumption
includes the amount consumed and stage of the flame. Information about the fire
spread includes the fireline location, shape and evolution over time. The atmospheric
conditions include the temperature, winds, moisture, pressure and precipitation. Air
quality forecasting models often use the fire intensity and fire size, which are derived
from these properties, to determine the smoke emissions (Hung et al., 2025)

Additionally, wildfire simulations may be used for ecological monitoring. FlamMap has
been used in hydrology studies as a wildfire changes the runoff and erosion properties
of soil (Srivastava et al., 2018).

2.2. Requirements specification

In order to make a new model useful and implementable, it should offer an improve-
ment over the models that are currently being used. As such, this section provides
an overview of the requirements that would need to be met in order for the model
to see adoption within the application domains. All of these requirements are listed
in Table 2.1. The reasoning behind these requirements is linked to the use cases
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found in the previous section, but will be briefly iterated and explained in the following
paragraphs. Afterwards the requirements will be prioritized using the MoSCoW prior-
itization method. This method breaks the requirements down into must-have, should-
have, could-have and won’t have. This will show the relative importance and value of
each of the requirements and provide an understanding of which requirements will be
integrated into the model and which will not.

In general, the most important performance indicators will be the computational effi-
ciency, accuracy and interpretability of the models. As was found during the initial
literature review, empirical simulations run quickly, but may not offer interpretability
and physical rigor, whereas physics-based simulations do provide this, but require
a lot of data and computational resources. As such the interpretability and ability to
run many simulations quickly are major requirements in table 2.1. As a result, the
accuracy, the computational efficiency and interpretability will be key performance in-
dicators when discussing the model’s applicability to wildfire simulations. There are
several accuracy measures that could be used to compare the performance of differ-
ent models, however the most common way to compare the results of different wildfire
spread simulations is by comparing the fire scars. This shows the estimated burned
area. The amount of burned area and shape of the fire scar should match reality. As
such, while some applications do not outright require a fire scar, such as smoke sim-
ulations, they do require accurate information on where a fire is at a given time. The
fire scar provides a way to measure this and is thus considered an important output
of the model. For computational efficiency the inference time is the key performance
indicator. Inference time is the time that the model takes to run a given scenario. Itis
more important than the training time, which is the time it takes for the model to learn
its parameters from a given dataset, as the training can take place before a model is
required for a given application.

For simulations that are used for risk assessments the ability to perform many simula-
tions quickly is vital. As such the computational complexity should be low. Additionally
the model must be able to run in parallel. To then provide an output of the risk of a fire
reaching a certain point, the area burned of each simulation will be aggregated. As
such the burned area is a necessary output for the model for risk assessments.

For simulations during active wildfires it is most important that the models are able
to assist in planning how to attack the fire. This means it needs to be able to ingest
data in near real-time. For operational tools this means that the data the models
require needs to be readily available. Additionally the simulation models needs to be
able to be executed quickly. While no specific requirements were listed for the spatial
and temporal scales, most models that are currently used for operational firefighting
provide outputs at an hourly time scale and a spatial resolution of between 30 and 270
meters.

For other use cases the simulations provide outputs that are compatible with Geo-
graphic Information Systems. This allows the wildfire spreading outputs to be con-
nected to for example evacuation simulations, smoke simulations, hydrology studies
and other applications. As such providing outputs in a georeferenced raster or vector
format is essential for making these applications possible. This allows it to be used as
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a Geo Information System layer and coupled to other types of simulations and data.
For smoke simulations, hydrology studies, ecology studies and similar applications
the computational efficiency on the model is much less important than the accuracy
of the model as the results are not needed in near real-time.

In order to prioritize the requirements the MoSCoW prioritization method will be used.
The requirements that are essential to wildfire spread modeling will be categorized
as must. These include requirements 1, 1.1, 1.2 in Table 2.1. These requirements
specify the basic behavior of wildfire simulations by modeling the rate of spread and
location of a wildfire. The information processing capabilities are also considered a
must as all operational use cases rely on the model having the ability to ingest data
in near real-time.

Table 2.1: Requirements of wildfire simulations

Number Requirement Prioritization
Goal To create an interpretable wildfire simulation to support fire-

fighters
1 Provide information on wildfire spread Must
1.1 Provide an accurate fire scar Must
1.2 Show when the fire arrives at different locations Must
2 Provide interpretable outputs explaining fire behavior drivers  Should
3 Test the effectiveness of interventions Should
3.1 Have an adjustable fuel load Could
3.2 Show risk profiles Could
3.2.1 Aggregate information from several simulations Could
3.2.2 Be able to run in parallel Should
4 Process information Must
4.1 Be able to integrate near real-time data Must
4.2 Validate information Should
4.3 Handle missing or uncertain input data Must
5 Be extendable to different use cases Should
5.1 Be usable as a GIS layer Should

5.2 Adaptable to different data types Should




Model development

This chapter will answer the sub-question 'What could the model’s architecture look
like?”. This chapter will be split into two parts. First, the model’s design space and
design constraints will discussed. These will be used to create a conceptual model
in Chapter 3.1. After this, the chosen model will be formalized and denoted in mathe-
matical equations in Chapter 3.2.

3.1. The conceptualization

The conceptualization will go through the following process: first it will be denoted
which types of parameters should be included. Then, potential data sources will be
investigated. The availability of these datasets will act as a constraint on the design
space. Once the data sources are found and a single dataset has been chosen, dif-
ferent types of models will be investigated with the goal of identifying the one that
matches the requirements the best.

3.1.1. Wildfire parameters

First it is important to consider the parameters that are included in the model. There
are several factors that influence where a given wildfire will spread to. According to
Alexander and Cruz (2013) "the difficulty in predicting wildland fire behaviour boils
down to the fact that there are numerous, interacting variables involved”. These are
captured in several conceptual models readily available in literature.

In Rothermel’s model (Rothermel, 1972), the rate of spread is dependent on the re-
action intensity, the bulk density, moisture dampening coefficients, propagating flux
ratio, wind, slope and heat of preignition. The model was designed to work with fuel,
moisture and terrain data (Andrews, 2018). According to Cawson et al. (2020), who
researched conceptual models of fire spread in eucalyptus forests by eliciting fire ex-
perts, there is a broad agreement that drought, dead fine fuel moisture, weather and
topology were main drivers of flammability in these forests. Additionally, they state
fire management may limit the spread of wildfires.

The conceptual models found in literature can be summarized by four key factors:
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topology, vegetation, weather and human intervention. Each of these factors may be
further decomposed into several sub-factors that influence the fire spreading behavior.

The topology, or terrain features, can be decomposed into the aspect, slope and el-
evation. It is widely understood that fire travels quicker uphill than downhill due to
the tops of the flames heating the fuel load that is uphill. Topology data is typically
included by using a digital terrain model that was created using satellites.

Vegetation plays a major role in the spread of fire as it provides biomass as fuel for
the fire to spread. The amount of fuel that is available for any given fire in an area,
also called the fuel load, is largely determined by the type of vegetation, its moisture
contents and its distribution over the terrain. Different types of vegetation exhibit dif-
ferent behaviors. Popular simulation models account for this by including several fuel
models to distinguish between these behaviors. Some types of vegetation may be
prone to spotting, which is embers flying from the fire that may start a new fire else-
where. Additionally a fire may be a surface or brush fire, which is low to the ground, or
a crown or canopy fire in which entire trees catch fire. The FARSITE model accounts
for this by including layers of the canopy and crown heights (Finney, 1998).

The weather and climate also determine how a fire spreads by affecting the fuels. If
the fuel is warmer or contains less moisture due to droughts, less heat is required for
it to catch fire. Thus the temperature is an important factor to consider. Additionally,
precipitation in the previous days will also add to the moisture content of the fuels and
increase the humidity making it harder for it to catch fire. Lastly the wind may influence
the spread of the fire through several ways. J. Sun et al. (2023) state that the wind
may accelerate the spread of wildfires by drying fuel, by carrying embers resulting in
spot fires and by providing oxygen for the fire to burn.

Additionally human intervention is an important factor to account for. The suppression
efforts of the firefighters in the locations they are deployed to will hinder the spread
of fire. Historically, the focus of wildfire firefighting has been on extinguishing fires as
quickly as possible regardless of the values at risk (Smith, 2017). These strategies
lead to increased fuel loading as fires were not able to burn away fuels and thus
more uncontrollable fires. Current strategies consider which values are at risk. These
include manmade structures and critical infrastructure at the wildlife-urban interface.
This makes it more likely for firefighters to be deployed near these locations.

While these parameters represent the fire behavior in wildfires at a large scale, there
are several factors that influence the fire behavior at smaller spatial and temporal
scales, such as precise fluid dynamics. While it is unrealistic to model these due to
the computational demand involved, this does leave a level of uncertainty and behav-
ior that will not be able to be captured by current models. However, it is believed
that the topology, weather, vegetation and human intervention factors will capture the
fire behavior well enough to be useful in the applications mentioned in the previous
chapter.

3.1.2. Data availability and data quality
Specific data is required to represent the parameters in the conceptual model. There
are several data sources available that are used in wildfire simulations which can be
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classified into three categories: remote sensing data, land survey data and simulated
data.

Remote sensing data is data gathered by satellites. This has the advantage of pro-
viding up to near real time data. However, this data may be noisy due to for example
cloud cover or solar flares. Additionally, remote sensing data has the advantage of
having worldwide coverage, whereas other data types may only be collected in cer-
tain locations. Thus, using remote sensing data leads to more generally applicable
models.

Land survey data on the other hand is measured by people going out into the field.
Historically this would be people in watchtowers, but more recently drones have been
used to gather this data. Gathering the data is very labor intensive and making it
relatively expensive to acquire. As such itis only gathered infrequently. As it is based
off of visual assessment at a distance, it may be less accurate for wildfire perimeters. It
does, however, usually have a better spatial resolution, but only at a given location. Itis
not available everywhere. As Chen et al. (2024) puts it "While these methods provided
valuable in situ data in specific locations, they were inherently limited in scope, unable
to provide the reliable and continuous monitoring required at a continental or global
scale.”

The advantage of simulated data is that it is able to provide extra training data at dif-
ferent spatial resolutions, however this data may contain errors that would compound
into the newer simulations trained on the data. Drury et al. (2016) mention errors
compounding as an important limitation using chained models within the Interagency
Fuels Treatment Decision Support System and infer that the biggest uncertainty of the
modeling framework occurs in the fuel model data input step.

As accuracy and near real time data is important to meet the requirements, remote
sensing data was chosen as a main focus throughout the search for datasets. The
search for datasets was conducted on the Google search engine and Google Scholar
with the keywords "remote sensing”, "dataset” and "Fire spread”. Only datasets that
contain vegetation, fire, weather and topology data were considered in order to match
the required parameter types found in Chapter 3.1.1. Four remote sensing wildfire
datasets were discovered, each created with data from different sources and thus
each with their own characteristics. These will be listed in Table 3.1. In the follow-
ing sections these characteristics and their advantages and disadvantages will be

explained in more detail, after which a final dataset is chosen.

Remote sensing wildfire data comes from two sources: the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VI-
IRS) satellite sensors. MODIS provides wildfire data at a resolution of 1 square kilo-
meter, whereas VIIRS is more detailed at 375 meters. Similar differences occur in the
vegetation data where the WildfireDB uses a LANDFIRE dataset that has vegetation
at a resolution of 30 meters. This is very detailed, but comes at the cost that the data is
only updated every two years as it is derived from field studies. As was mentioned in
chapter 3.1.1, outdated data can lead to significant under- and over-predictions of the
fire spread. While less detailed, the always near up to date nature of the remote sens-
ing data of the Next Day Wildfire Spread dataset and the WildfirespreadTS dataset
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make them more suitable for near real time prediction.

In addition to the datasets listed in table 3.1, there are also is the possibility to create a
new dataset using some of the previously mentioned data sources. The source code
that is available for the Next Day Wildfire and WildfireTS datasets could be a start for
this. The advantage of this would be that the dataset could be completely customized
taking advantage of the upsides of the specific data sources. The downside, however,
is a lot of extra work in preprocessing. Given the datasets provide appropriate data
given the parameters found in chapter 3.1.1, creating a custom dataset is unlikely to
be worthwhile.

Given the advantages and disadvantages of each dataset, it was chosen to use the
Next Day Wildfire Dataset for creating the model as it offers data on all categories of
parameters identified in chapter 3.1.1 and it is the easiest to use. In future iterations
of the model it can be applied to the WildfireTS dataset to facilitate a better spatial
resolution and to incorporate multi-day data.



Table 3.1: Comparison between different wildfire datasets

Next day wildfire
spread

WildfirespreadTS

Fire-lmage-DenseNet
dataset

WildfireDB

Source
Resolution
(space)
Resolution (time)
Vegetation data

Weather data

Fire data

Other data

Filetype

Advantages

Disadvantages

(Huot et al., 2022)
1 km (64x64)

1 day
NVDI, ERC
Wind, Temperature,

precipitation, humidity,
drought index

MODIS

Elevation,
density,

population

TF records

Extensive documenta-
tion, ease of use, easy
benchmarking

relatively low resolu-
tion, single observa-
tions, Specific to the
United States

(Gerard et al., 2023)
375m

1 day
VIIRS vegetation
index,
Wind, Temperature,

precipitation, humidity,
drought index and
forecasts (precipitation,

wind, Temperature,
humidity)
VIIRS in GlobFire

(MODIS) (607 fires,
USA, 2018-2021)
Elevation, slope, as-
pect

GeoTIFF, recom-
mended conversion to
HDF5

Multi-day data, exten-
sive documentation

Harder to use, Specific
to the United States

(Pang et al., 2025)
1km

1 day

ORNL DACC biomass
(above, below ground),
PROBA-V  densities
(grass, tree, bare,
snow, water)

ERA5 Wind, precipita-
tion

MODIS  (2012-2019,
304 events, western
USA)
slope

npy (numpy array in bi-
nary format)

More detailed vegeta-
tion

Less detailed weather.
Minimal documentation

(Singla et al., 2020)
375m

1 day
LANDFIRE (vegetation,
fuel type) at 30m reso-
lution, updated every 2
years

Meteostat (part of
NOAA)

VIIRS

Data on neighbouring

polygons, elevation,
slope
CSV (of polygons)

very detailed vegeta-
tion

Specific  to  United
States (LANDFIRE
data), harder to pro-
cess polygons
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3.1.3. Exploratory data analysis

In order to better understand the Next Day Wildfire Spread dataset, a exploratory data
analysis was conducted. The dataset contains 18,545 samples collected between
2012 and 2020, with each sample representing a 64x64 kilometer area divided into
cells of one kilometer each. Each cell has data on 12 environmental covariates as
shown in Table 3.2. The Fire Mask, which is the last feature shown in Table 3.2, is
what has to be predicted by the model. In order to easily discern between the fire mask
and the previous fire mask, the fire mask will be refered to as the actual fire mask. The
model will be evaluated by comparing its predictions to this fire mask. Three samples
of the dataset are shown in Figure 3.1.

Table 3.2: Next Day Wildfire Spread Dataset features

Feature name Description Unit/Range
Elevation Average height of cell above sea level m

Wind direction Azimuth clockwise from north degrees
Wind velocity Average wind speed of that day m/s

Mini temp Minimum daily temperature K

Max temp Maximum daily temperature K

Humidity Concentration of water vapor in the air kg/kg
Precip Average precipitation per m? mm
Drought 10-day Palmer Drought Severity Index [-10, 10]
Vegetation NDVI (Normalized Difference Vegetation Index). [-1, 1]

Ratio between red and near infra-red light re-
flectance as a measure of photosynthesis

Population density Amount of people living in that cell people/km?

Energy Release Compo- releasable energy according to fuel model G unitless

nent (conifer forest)

Previous Fire mask Previous day fire presence (1), no fire (0) or un- 0,1, -1
known (-1)

Fire Mask Fire presence in the current day. 0,1,-1

Energy Previous
wind wind Mln Population  release fire Fire
Elevation  direction velocity m Hu mdlty Precip Drought Vegetatlon density component mask mask

PENESRREE
e LT T

Figure 3.1: Three samples of the Next Day Wildfire Dataset depicting the parameters.

The data was split in a ratio of roughly 8:1:1 between training, validation and testing
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data by the publishers of the dataset by dividing all the weeks in the dataset randomly
among these three categories (Huot et al., 2022). This resulted in a training set of
14979 samples, a validation dataset of 1877 samples and a testing dataset of 1689
samples. The exploratory data analysis is performed on the training dataset in order
to not gain knowledge of the patterns of the validation and test dataset. This way tun-
ing hyperparameters on can be performed using the validation set and evaluating the
model on an evaluation set. This guarantees the model generalizes to unseen data
if it passes the evaluation. For each of the features the descriptive statistics were
gathered of the training dataset. As can be seen in Table 3.3, most features have
extreme minimum and maximum values. Some of these values are unreasonable
and cannot be possible. Including these values in the model would lead to explod-
ing gradients when using machine learning. Fortunately Huot et al. (2022) provide a
data reader with tools to clamp these features to realistic values. All features will be
clamped using the provided functions to minimize the effect of measurement errors.
Samples including these unrealistic values will not be deleted in order to avoid sam-
pling bias. If the model is used in practice, data of similar quality is expected and thus
the preprocessing steps need to match.

Table 3.3: Descriptive statistics of dataset features

Feature Mean Std. dev. Minimum 25% 50% 75% Maximum
Elevation 896.572 842.610 -45.000 119.000 611.000 1595.000 4193.000
Wind direc- 146.647 3435.084 -505870.062 149.760 208.086 254.313 37735.629
tion

Wind veloc- 3.628 1.309 -82.653 2.716 3.427 4.332 103.220
ity

Min temp 281.851 18.497 -444.693 277.875 283.079 287.881 716.628
Max temp 297.716 19.458 0.000 293.976 299.818 304.222 1229.849
Humidity 0.007 0.004 -0.129 0.004 0.006 0.008 0.086
Precipitation 0.323 1.534 -167.448 0.000 0.000 0.000 56.215
Drought -0.773 2.441 -125.711 -2.609 -1.355 1.189 52.269
Vegetation 5350 2185 -9567 3735 5520 7123 9966
Population 30.460 214.200 0.000 0.000 0.166 3.538 27103.605
density

Energy 53.469 25.098 -1196.089 30.999 49440 75.067 2470.882
release com-

ponent

Previous fire -0.003 0.138 -1.000 0.000 0.000 0.000 1.000
mask

To get a better understanding of the features after this transformation, histograms
were created as shown in Figure 3.2. Clamping the features has left some artifacts
in the data as can be seen by the spikes near the minima, maxima and the origin of
the features. These artifacts should not lead to significant performance issues of the
model as their quantity is relatively low. The distribution of wind direction is centered
around 240 degrees clockwise from north corresponding with a south-west wind. This
corresponds with winds originating from the north pacific ocean. This reveals a bias
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in the data for fires in the western side of the United States and may limit the model’s
applicability to other regions. This bias is a result of most fires occurring in this region
and thus being included in the dataset. The effects of the western side of the United
States being most prevalent in the dataset will also be present in the other features.
The distribution of drought and energy release component are bimodal suggesting
either two distinct climatic regimes. Vegetation as measured by the NDVI ranges from
-10000 to 10000. This is because the data is stored as a scaled integer. -10000 thus
represents -1 and 10000 represents 1. It includes mostly positive values suggesting
green vegetation with few negative values indicating water bodies. The imbalance in
the distribution could make the model weaker at identifying areas that cannot burn
due to fuel shortages. The precipitation and population density also exhibit a tailed
distribution. They contain many values around the origin with relatively few higher
values. This may lead to lower performance when there is a lot of rain or when there
is a high population density as there are few samples including these cases.

Additionally special attention should be given to the previous fire mask distribution and
its relationship to the distribution of the fire mask that is to be predicted. The previous
fire mask consists of 0.8% cells on fire, 98.1% cells not on fire and 1.1% unknown
values. These unknown values are a result of for example cloud cover obscuring the
satellite’s measurements. The fire mask distribution shows similar patterns with 1.1%
cells on fire, 96.6% not on fire and 2.3% unknown values. In 44% of all samples an
unknown value occurs in either the previous fire mask or the fire mask. The distribution
of these values is right tailed with many samples containing almost no unknown values
and relatively few samples including many unknown values as can be seen in Figure
3.3.

Due to the imbalance in both the previous fire mask and the fire mask, models could
output that there is no fire reach up to 98% accuracy. the area under the precision
recall curve (AUC-PR) is a better metric to evaluate the performance of binary clas-
sification for imbalanced datasets as it balances the precision and recall, which are
respectively the true positive rate and the proportion of positives that are actually pos-
itive.

In addition to the amount of cells on fire in the entire training dataset, the amount of
cells on fire within independent samples should be inspected as well. 54.5% of fires
increase in size, 38.7% shrink in size while 6.8% remains the same size. The amount
the size of the fire changes in each sample is shown in the histogram in Figure 3.4.
There are relatively few samples where the amount of fire changes a lot. This may
make it so the model is not able to learn patterns of extreme wildfire events.

In addition to clamping the values of the features to reasonable extents, the values
will be min-max scaled to decrease the differences between different features, while
keeping the distribution within the features themselves the same. This will lead to bet-
ter performance for machine learning models. Finally the correlations of the features
were inspected. As shown in Figure 3.5, the minimum and maximum temperature are
highly correlated (r = 0.99). The elevation shows a negative correlation with humidity
(r = —=0.43) and a positive correlation with the energy release component (r = 0.58),
consistent with the expectation that higher elevations are drier and more fire-prone.



3.1. The conceptualization

24

1e6 Distribution of Elevation 1e6 Distribution of Wind direction 1e6 Distribution of Wind velocity
124
175 4
4 104
1.50 4
N 0.8+ 1.25 4
> > >
9 9 9
g S § 1.00 |
§ £ §
£ IS i 0.75
0.4+
0.50 -
021 0.25
0.0 0.00 -
500 1000 1500 2000 2500 50 100 150 200 250 4 6 10
Elevation Wind direction Wind velocity
1e6 Distribution of Min temp 1e6 Distribution of Max temp 1e6 Distribution of Humidity
8
1.2 175
74
104 1.50
125
208 2> z
g g 100 g
206 . &
£ £ 0751 £
0.4
0.50 1
0.2 0254
0.0 0.00 - ' T T T
260 270 280 290 300 0.02 0.04 0.06 0.08
Min temp Max temp Humidity
1e7 Distribution of Precip 1e6 Distribution of Drought 1e6 Distribution of Vegetation
1.75 4
20l 1.50 4
125 4
> 154 > >
2 2 £ 1.00
o o o
] ] 3
F g % 0.75
z 104 = = %
0.50 -
0.5
0.25 4
o0l Mea ! : | 0.00 4
0 10 20 30 40 0 2 -10000-7500-5000 —2500 0 2500 5000 7500 10000
Precip Drought Vegetation
167 Distribution of Population density 1e6 Distribution of Energy release component 167 Distribution of Previous fire mask
2.5 25
2.0 204
E E
15
5 g 15 4
3 3
H H
E 04 & 1.0
0.5 0.5
0.0 T T T T T . 00 —f T T T T T T T
[} 500 1000 1500 2000 2500 20 40 60 80 -1.00 —0.75 —0.50 —0.25 0.00 025 050 075 1.00
Population density Energy release component Previous fire mask

Figure 3.2: Histograms for each of the features in the Next Day Wildfirespread dataset
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3.1.4. Architectures

Another important consideration is the type of model architecture that is used. The
model architecture will be chosen in this section using the requirements from Chapter
2.2, data that was found in Chapter 3.1.2 and explored in Chapter 3.1.3 and given the
overarching goal of creating an interpretable, near real-time simulation using physics-
informed machine learning.

As previously identified in chapter 1, there are several kinds of wildfire models with
unique views on the wildfire spread modeling problem. Given the binary data, the
problem can be approached as an image recognition task. Machine learning models,
including convolutional neural networks and physics-informed machine learning mod-
els, can be used directly for this. While their advantage is that they are able to capture
non-linear spatial patterns, their interpretability is poor as they act as black-boxes.

The problem can also be approached as a binary classification problem to which logis-
tic regression models can be applied. While this model provides interpretable outputs
as the coefficients show the effect of each parameter, the model is not able to capture
non-linear spatial patterns. Additionally the logistic regression model has the assump-
tion that observations are independent. This assumption is violated as there is spatial
correlation.

The fire spreading can also be seen as a infection model. In this view the location
that is on fire may attempt to set other locations on fire to infect them. In terms of
the compartmental models in epidemiology, this process can be represented as a SIR
model where a location may be susceptible to wildfires, infected or recovered. In this
case the transition function between these states would still need to be estimated
using another model type. Additionally the compartmental models typically do not
model spatial relationships, which would have to be added.

An additional view that could be used is that of areal data analysis. Within the disease
mapping and geostatistics field, the conditional autoregressive (CAR) model is used
to model spatial relationships. The model assumes that the state of the cell in question
is influenced by the state of the neighboring cells. This allows the model to explicitly
capture the spatial effects. The CAR model itself only includes spatial dependence
and does not change over time. This model was expanded to include a temporal
dimension by Mariella and Tarantino (2010), making it viable for simulation purposes.
The advantage of this spatial temporal conditional autoregressive (STCAR) model is
that it provides interpretable results: parameters have a clear meaning and the spatial
and temporal dependence of a cell have a specific, understandable value. Additionally
the method is space agnostic, which allows it to potentially include different types
and resolutions of data. While this is not needed for the selected dataset as it is a
raster, simulations used in operational firefighting may be able to ingest live data from
drones as it becomes available. Other models would not be able to do this. The
disadvantage is that the spatial temporal conditional autoregressive model currently
only works with continuous data and does not include covariates. However, it does
have the potential to be modified and expanded to work with this data. Due to these
advantages matching the interpretability requirements and adaptability requirements,
this architecture was chosen and will be used in the model as will be described in the
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next sections.

3.2. Formalization

The spatial temporal conditional autoregressive (STCAR) model that was chosen as
the model architecture in the conceptualisation will be formalized in this chapter. First,
a brief overview of the formulation of the STCAR model by Mariella and Tarantino
(2010) will be given. Then, this model will be extended to be compatible with covari-
ates and binary response data. This will allow it to be applied to the wildfire use case.
Finally, the implementation and an optimization using spatial partitioning will be dis-
cussed.

3.2.1. Spatial temporal conditional autoregressive (STCAR) models
The spatial temporal conditional autoregressive (STCAR) model as formulated by
Mariella and Tarantino (2010) works under the presumption that the variable of in-
terest 7 is a continuous, normally distributed random variable that is dependent the
value of Z in neighboring cells and its own past values. The STCAR model essen-
tially connects several conditional autoregressive (CAR) models in order to simulate
change over time. CAR models are only dependent on their own timestep and thus do
not have the temporal dependence. As the model connects several CAR models, the
CAR model will first be formally defined. In order to do so, Equations 3.1 to 3.3 were
adapted from Mariella and Tarantino (2010). After formally defining the CAR model,
the STCAR model will be introduced and then modified to include covariates and work
with binary data for the wildfire simulation use case.

Given the spatial domain S = {1, .., n} with neighborhoods N; for any location i where
7 and its neighbors, shown as ix, are part of S. A CAR model assumes the value of a
given location is dependent on its neighbors and is thus characterized by a conditional
probability density function as shown in Equation 3.1 and a joint probability density
function as will be shown later in Equation 3.2.

Zi | Zn, ~ N <Mz’ +p Z Bainy (Zi= — Mi*)ﬁ?) (3.1)

i*eN;

Here p is the spatial dependence. The spatial dependence is a measure for how de-
pendent the value of a cell is on its neighbors. It scales the total effect of all neighbor-
ing locations. The effect of a single neighboring location is given by the the deviation
from its expected mean scaled by the strength of the relationship f;., between the
two locations. This is to say that any given location is conditional on all of its neigh-
bors’ values based on the strength of their relationship scaled by the amount of spatial
dependence.

In addition to the conditional probability density equation 3.1, Mariella and Tarantino
(2010) has shown that the joint probability density function can be written as Equation
3.2. This uses a symmetric weighted adjacency matrix 1 containing the strength
of the relationship between site i and its neighbors and a diagonal matrix W for
normalization with the sum of the weights on the diagonal. The weights are determined
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by a distance metric ¢. The distance metric is closely related to the relationship j3;;.)
between two locations shown in Equation 3.1 as the normalized weights i.e. W,'W
are equal to the matrix of interactions containing the relationship f;;., between two
locations for all locations.

0 if % — i,
0 otherwise,
W = diag (w(1+), W), - - - ,w(n+)) . Where W(iy) = Z W(45%) i,1" € S.
i*EN;
1 _
Z ~ N (s [ (Wp = pW)] ™) (3.2)

Mariella and Tarantino (2010) expand the CAR model by including a temporal domain
T. In their model, they chain together several CAR models with expected value 0
linearly with a temporal dependence r as can be seen in Equation 3.3. They do this in
such a way that if the temporal dependence is excluded, the model reverts to a CAR
model. If the spatial dependence is excluded, the model reverts to a linear regression
model. The STCAR model of order p can be written as:

B/Z; = mBu_1Zu—1) + m2Bu—2yZy—2) + - - + 1pBu—p)Ly—p) + €, (3.3)
where ¢, is the vector of pseudo errors, i.e.

e~ N (0, W5 (1- pW5W)')

supposed B, =1 — p,W,'W.

The resulting model now provides a continuous value that is dependent upon neigh-
bors in the same timestep, its own value in the previous timesteps as well as the values
in the neighborhood in the previous timestep. Similarly to the CAR model, the spatial
dependence is given by p, and the relationship between any two locations is contained
in W for each location. Unlike the CAR model, the STCAR model also includes the
temporal dependence r;.

3.2.2. STCAR for Wildfires

In the case of wildfire simulation, the goal will be to predict whether any given cell in
the fire mask Y in the next timestep is on fire (Y=1) or not (Y=0). This is a classification
problem, where the fire mask Y, denoting whether a cell i is on fire or not, is given by
a Bernoulli distribution.

Y; ~ Bernoulli(p;) (3.4)
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Here the chance of catching fire p; for any location is assumed to be dependent on
the vegetation, weather and terrain and fire being present in the previous timestep as
well as these same variables in the neighboring cells as per the conceptualization in
Chapter 3.1.

Unfortunately the STCAR model was developed to work with continuous data and
does not support binary data. In order to make the binary data work with the STCAR
model, the logit link function as shown in (3.5) can be used. This transforms P(Y; =
1)’s range from [0,1] to (—oo, c0), which is suitable for the STCAR model.

Where P(Y; = 1) is the chance of a given cell i being on fire and z; is a latent variable.
This transformation can later be undone using the inverse logit function (3.6) to retrieve
the odds of a given cell catching fire.

1
PY,=1)= T+ oxp(—2) (3.6)

As z; is a continuous variable, it can directly be used in a CAR and STCAR model and
serve as the expected mean p;. As mentioned previously, the chance of catching fire
p; for any location is assumed to be dependent on the vegetation, weather and terrain
and fire being present in the previous timestep as well as these same variables in the
neighboring cells as per the conceptualization in Chapter 3.1. Since z; now represents
the chance of catching fire, the assumption can be made z; is dependent on these
covariates. This will allow for the model to include these covariates. To start simply,
the assumption will be made that the expected mean is equal to a linear combination
of the covariates similar to a logistic regression model: p; = ap+ > a, x X;, . In future
iterations of the model, the assumption that it is a linear relationships may be dropped
by including a different, non-linear relationship here. Implementing this into the CAR
model given in (3.2), looks like this:

7 ~N <a0 +) anXa, [%(WD - pW)] ) ) (3.7)

where qay...a,, are the coefficients for each of the respective covariates X1, ..., X,, of
each location.

This so far is a CAR model, equation (3.3) is used to connect two CAR models to-
gether and create an STCAR model. As the data of the Next Day Wildfire Spread
dataset (Huot et al., 2022) that was chosen in Chapter 3.1.2 contains only data about
the current day and the fire mask of the next day, the wildfire STCAR model will be of
order 1. As such there will only be a single spatial dependence parameter r that needs
to be estimated, instead of potentially multiple that are included in the original STCAR
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formulation. In addition, the weights matrix 1V, o and p are treated as a hyperparam-
eter. This makes it so that only 1, and thus «ay..a,,, and the the spatial dependence r
are unknown.

To estimate the parameters the likelihood should be maximized. This is equal to mini-
mizing the loss. Since there are two consecutive CAR models, the likelihood of each
of the values of Z should be maximized and thus the loss consists of a combination
of both of these given a set of parameters that need to be estimated. To evaluate
this a build in optimizer can be used that uses the binary cross-entropy (BCE) as loss
function as given by (3.9).

1(21722 ’ a, p, 0',7’) = l(Zl | a, P, U) ’ l<ZQ | a,p,o, T)

= BCE(Z;) + BCE(Z,) (3:8)

N

BOB(Z:) =~ D [Vilog(Z0) + (1~ Y log(1 — 7)) (39)

However, we unfortunately do not work directly with the continuous variable’s observa-
tions, but instead make an estimation of its distribution. In order to then estimate the
STCAR model with binary data and covariates, the distribution needs to be estimated
using:

u@:mw@:/mwmmmww (3.10)

To do this, Monte Carlo simulation can be used. Monte Carlo simulation means that
for N runs ay..a,, are chosen, Z is simulated, the probability is computed using the
inverse logit (3.6), determine the likelihood and get the average likelihood for those
values of aq..a,,. This can later be used to find the optimal parameters for ay..a,,.

This, however, just assumes that there is only one Z. In the case of the wildfire dataset,
the goal is to find the optimal value for Z, ;. In order to do so, Z; can be used to find
a value for 7, ; using one step of Equation (3.3). The loss can then be a combination
of both the loss for the estimation of Z; and 7, ;.

The data flow within a training step is visualized in Figure 3.6. The vector containing
the covariates X is combined with the current best estimation for the coefficients a to
form the mean, resembling the log odds, which is used in the conditional autoregres-
sive model. The log odds is first corrected for the values in the neighboring cells to
acquire the log odds in the first time step Z;. Afterwards, the temporal dependence is
used to find the value of the log odds in the next step Z,. As the prediction based on
the assumed log odds should be correct for both the initial and next time step, both
are used in the loss function. To do this, the probability they represent is compared
to the actual fire masks in both time steps, from which the binary cross-entropy loss
is derived. This loss is the value that gets minimized by the built in solver, finding the
optimal values for all the parameters.
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Figure 3.6: Diagram depicting the flow of data in estimating the parameters of the STCAR

model. The covariates X, the firemasks Y; and Y;.; as well as the hyperparameters W, p, o

serve as inputs. The values for the coefficients of the covariates are tuned to minimize the

binary cross entropy (BCE) loss, which consists of both the BCE loss of the first as well as
later timesteps.

3.2.3. Code implementation and optimization

The modified STCAR model as outlined in the previous section was implemented
using Tensorflow 2.12. Unfortunately, it turned out that training the STCAR model can
be computationally expensive, which makes parameter estimation more challenging.
In order to investigate which parts of the STCAR model caused this, a timing function
was created that registers the time it took for each part of the STCAR model to run.

Using the timing information the implementation of the weight matrix generation algo-
rithm was improved. Additionally it was found that the time complexity of the STCAR
model is O(N?) where N is the region size or amount of cells to take into account. This
was predominantly caused by the multivariate normal distribution used in the STCAR
model. Given that the amount of cells increases the time it takes to compute results
to this extend, it was investigated whether the region sizes could be decreased. Us-
ing insights from the data generating process being a fire that spreads, the included
cells can be limited to only those to which the fire should be able to get to within the
timestep. This will be referred to as spatial partitioning or spatial splitting. Performing
a spatial split comes with the downside that the weighted adjacency matrix has to be
recalculated for each sample as the dimensions of the sample are no longer constant.
This is seen as an acceptable trade-off as timing the model revealed that recalculat-
ing the weighted adjacency matrix takes less time than not performing a spatial split.
Using the spatial split with a distance of 10 cells Manhattan distance around a fire
decreased the time it takes to assess a single sample using the full 64 by 64 grid from
9 seconds to less than a second for the average sample afterwards. In the current
implementation of the model the neighborhood of the model is considered a hyper-
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parameter. In a future iteration of the model the neighborhood and thus the distance
metric ¢(i,7*) of the weighted adjacency matrix may be determined based on the fea-
ture data to more accurate represent which cells are neighbors. If this is the case, the
weighted adjacency matrix would already need to be recalculated for each sample,
further solidifying the trade-off.

Similarly for spatial partitioning, the algorithm will be implemented using the cell’s dis-
tance from a fire as the inclusion criteria. In a future iteration the effectiveness of
spatially splitting the data may be improved by using the feature’s data to determine
which cells should be out of bounds, similar to the adjacency matrix mentioned pre-
viously. This will allow the area that is taken into account to be limited as much as
possible, resulting in a model that would train as fast as possible.

In order to provide a complete overview of the implementation of the modified STCAR
model, a flow chart was created that depicts the entire training and evaluation process.
This can be seen in Figure 3.7. The training steps indicated in blue match Figure 3.6.
The inference process, colored green, uses the trained model to make predictions
on the validation or test sets. Here running the model is equivalent to performing
the training step on these datasets without tuning the coefficients. The performance
statistics that serve as an output of the model here are the area under the precision-
recall curve and the time it took to perform the inference.

3.3. Verification and validation

In the previous sections the spatial temporal conditional auto-regressive model was
developed. This section will show which steps were taken to ensure that the model is
verified and the outputs of the model are valid.

3.3.1. Unit tests and verification of code

In order to verify that the code written for each formula of the model works as expected,
the code will be broken up into pieces to look at intermediary results and whether they
are correct.

For the weighted adjacency matrix 1 this meant checking if it was constructed cor-
rectly. This meant asserting that it is positive definitive, symmetric, that the distance
decay for weights functioned properly and asserting that the connectivity was correctly
performed for mock data by investigating the connections for a smaller 3 by 3 area.
These all gave expected results.

For the spatial division, verification included inspecting all the outputs of intermediary
steps including identifying separate fires, finding the area of interest per fire by dilation,
combining areas where relevant and providing the resulting areas. Each of these
steps worked and gave expected results. For the parameter estimation and cross
entropy loss calculation built in functions were used. These were assumed to perform
as expected.

In addition to performing unit tests, each section was first tested with synthetic data
to ensure formulas were implemented correctly before real data was introduced. For
the covariates values between 0 and 1 were chosen randomly. The fire mask is an
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exception to this rule as it contains binary values and is imbalanced. Initially, the
synthetic fire masks was created by choosing between 0 and 1 randomly. However,
as the code to generate the adjacency matrix relies on the distribution of cells on fire,
it was chosen to represent this imbalance by having only 5% of the cells on fire in the
synthetic data. This approach helped in debugging the functions of the model and
ensuring the functions were correctly implemented.

3.3.2. Validation

In order to facilitate the validation of the model, the training data was divided into train-
ing, validation and testing data. As previously mentioned, the data was split in a ratio
of 8:1:1 between training, validation and testing data by dividing all the weeks in the
dataset randomly among these three categories (Huot et al., 2022). This split was al-
ready performed by the creators of the dataset to allow models trained on this data to
be benchmarked against each other. The validation data were used to make sure the
tuned parameters generalize well to unknown data during hyperparameter tuning. Af-
terwards the model is tested using the test set. Both the results of the hyperparameter
tuning and the performance on the test set will be described in Chapter 4.



Results

In the previous chapters, the design science research methodology was followed to
gather requirements and objectives for wildfire simulations, to understand the de-
sign space of wildfire simulations and to develop a spatial temporal autoregressive
(STCAR) wildfire simulation model. This chapter will outline the results and assess
the performance of the model by comparing it to other simulation tools and the require-
ments that were established in Chapter 2.2.

4.1. Experimental setup

To evaluate the performance and applicability of the proposed spatial temporal con-
ditional autoregressive (STCAR) model, the model was developed in python using
Tensorflow 2.12 using the Adam optimizer. This allows the model to be trained in
parallel on the graphical processing unit (GPU). Unfortunately the system used for
training did not have a GPU that could be used. The model was trained on an Intel(R)
Core(TM) i7-9750H CPU with 16GB DDR4 RAM. All features were min-max scaled
for training. In order to be able to compare the performance of the model, the area
under the precision recall curve (AUC-PR) is used as a key performance indicator
and compared to existing models. The AUC-PR is used over other metrics as it ef-
fectively considers the model’s precision and recall. These are respectively the ability
to find true positives and penalizing false positives. This is important as the dataset
is imbalanced. The comparison between the STCAR model and other models will be
described in more detail in chapter 4.4.

4.2. Hyperparameter tuning

Before running on the test set to determine the AUC-PR, the model's parameters
were inspected and performance was visually inspected using the validation set. In
order to improve the model, several models with different hyperparameters and slight
modifications were developed and tested on the validation set. While the initial goal
was to complete a grid search of the hyperparameters, training each model turned out
to be relatively expensive and time consuming as it took up to four hours to train a
model. As such only specific hyperparameters were changed. Each of these models
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and their performance will briefly be described.

First the regular STCAR model was tested. Its parameters revealed that it completely
prioritizes the fire mask and the precipitation, generally disregarding the other param-
eters. The parameter values of the fire mask and precipitation were respectively 18
and 11 where other parameters generally were between -1 and +1. By pausing the
model training halfway through the training data, it was revealed that this gap was only
growing over time. This is likely due to not accounting for the multicollinearity of the
features. The model can’t uniquely identify the contribution of each correlated feature,
leading to unstable and large coefficient estimates.

The assumption that the model uses linear parameters was changed to use a very
basic neural network. The neural network that was used consists of three layers of
respectively 64, 32 and 1 node to map the covariates to the expected mean. This
was done to both proof that modifying the model to work with a physics-informed
neural network would be possible, as well as to test whether the linear assumption
hindered the model performance as significantly as is expected. The result of this
experiment was that, while the implementation in Tensorflow made it easy to make
this modification, the predictions did not improve significantly. The model predicted
for nearly all tested samples that the log odds were 0.5, just below predicting there is

fire anywhere.
Fire previous 0.54
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Figure 4.1: Predicted fire mask when using the log odds to scale the weighted adjacency
matrix. The fire at t=0 and t=1 are indicated. No fire is predicted. The neural network
experiment provided similar results.

As the reason for the neural network model not providing predictions was not fully
understood, it was decided to attempt to modify the model to address another short-
coming of the STCAR model’s currentimplementation. Investigating the outputs of the
model visually revealed that rather than providing a directional flow, the current weight
matrix being symmetrical and using a distance metric resulted in spatial smoothing
without directionality. To account for this another model was developed in which the
log odds was added to the weighted adjacency matrix. The idea behind this modifica-
tion is that by including the log odds in the adjacency matrix, the covariates influence
the directionality of the spread directly. This ended up giving similar predictions to
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the neural network experiment. One prediction is shown in figure 4.1. Surprisingly it
turned out that this model completely disregards the temporal dependence and spatial
dependence with » = 0 and p = 0 respectively. This is likely a result of the loss for
predicting the first mask weighing as much as the loss in the second timestep, while
it can be completely derived from the previous fire mask.

4.3. Model performance

A final model was created using the linear assumption, but with a bias in the loss of
the second timestep. This meant that errors in the predictions of the second timestep
would weigh thrice as much as errors in the first timestep. Overall this STCAR model
still performed poorly with a AUC-PR of 0.1264. This model also still primarily relied
on the precipitation and fire mask, being 18 and 39 times as important as the other
parameters. The exact coefficients for each parameter can be found in Appendix B.
Inspecting these coefficients revealed strange values. The minimum and maximum
temperature both have negative signs while a higher temperature is expected to in-
crease the likelihood of wildfires. Additionally the precipitation has a very strong posi-
tive coefficient which is unexpected as higher precipitation is often associated with a
higher moisture content, which decreases fire spread. It is assumed that these unex-
pected values are a result of the multicollinearity not being accounted for. This may
flip signs in order to account for the contribution of other covariates. Furthermore most
samples do not contain any precipitation as shown by the right tailed distribution in the
exploratory data analysis. The model may not have enough samples to properly learn
the effects of precipitation.

Most sample’s predictions do not have any fire predicted. The predictions where fire
is predicted, such as shown in figure 4.3, show the spatial smoothing effects of the
STCAR model. These also show that the STCAR model is not able to capture the
directionality in the fire spread. There are also some samples where the precipitation
is relatively high leading to a significant overprediction of the fire mask such as can
be seen in Figure 4.5. For both predictions the sample’s covariates were included in
respectively Figure 4.2 and Figure 4.4 to provide context to the prediction.

Energy Previous
Wind Wind Min Max Population release fire Fire
Elevation  direction velocity temp temp Humidity Drought Vegetation density component mask mask
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Figure 4.2: Sample of the test dataset used in Figure 4.3. The data is normalized with
purple representing 0 and yellow representing 1.
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4.4. Comparison to other simulation tools

In order to properly estimate the success of the STCAR model, its performance will
be compared to other simulation tools using the same dataset. In the dataset’s pa-
per, Huot et al. (2022) demonstrate the usability of their data by training a logistic
regression model, a random forest model and a deep learning model. The logistic
and random forest models were created by using a 3 by 3 kernel. The deep learn-
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Figure 4.3: Comparison between the previous fire mask (t=0), the actual fire mask (t=1) and
the probabilistic predicted fire mask (t=1). The prediction shows the spatial smoothing effect
of the STCAR model.
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Figure 4.4: Sample of the test dataset used in Figure 4.5. The data is normalized with
purple representing 0 and yellow representing 1. The precipitation is very high resulting in
the overprediction in Figure 4.5
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Figure 4.5: Comparison between the previous fire mask (t=0), the actual fire mask (t=1) and
the probabilistic predicted fire mask (t=1). The predicted fire mask shows how precipitation
can cause severe overestimation of the amount of fire.

ing model consists of several residual blocks. For full implementation details of these
models, the paper describing the dataset and developed models by Huot et al. (2022)
may be consulted.

In order to provide a benchmark for models such as the STCAR model, Huot et al.
(2022) assess their models using the area under the precision curve (AUC PR) as a
key performance indicator. Their logistic regression model has a AUC PR of 0.198.
The random forest has a AUC PR of 0.225 and the deep learning model has a AUC PR
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Figure 4.6: Data sample from the test set showing artifacts in most features. Data in the
sample is normalized with purple representing 0 and yellow representing 1.
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of 0.284. While these models also have a relatively low performance, each of these
performs better than the STCAR model, which has an AUC PR of 0.126. Despite
providing fire scars in their paper, Huot et al. (2022) does not provide the index of
these fire scars in the dataset and as such no direct comparison can be made. Similar
to the STCAR model, they report that their models have a strong dependence on
the previous fire mask and provide smoother boundaries and can merge separate
segments. These behaviors were also present in the STCAR model as is evident from
Figure 4.3. In addition to the limitations mentioned, the relatively poor performance of
both the STCAR model and the models presented by Huot et al. (2022) may also be
a result of artifacts in the dataset. During the visual inspection of the model on test
data it was discovered that some samples still contain illogical values that likely are a
result of noise, such as shown in Figure 4.6.

4.5. Applicability of the model to simulation use cases

Identifying the use cases, stakeholders and their requirements led to finding a list of re-
quirements presented in table 2.1. This table will be used to find which requirements
were and were not satisfied. The result of this can be found in Table 4.1. Require-
ments were classified as either being achieved by the current implementation (+), not
achieved by the current implementation, but should reasonably be achievable using
the STCAR model (-+) and not achievable (-). The most important requirements and
results will now be discussed.

As is evident from the results in Chapter 4.3, the performance of the current implemen-
tation of the STCAR wildfire model is not suitable for any application. As the model
cannot provide an accurate fire scar, requirement 1.1 is not fulfiled. However, the
model does provide the fire spread as output of the model. This achieves requirement
1 with a spatial resolution of 1 km and a temporal resolution of 1 day. Requirement
1.2 is only partially achieved as the model only predicts one day ahead. While the
model could theoretically be used to predict multiple days ahead, the current dataset
contains no data to test these predictions against. This resolution could be improved
in the future by using a dataset with a better spatial or temporal resolution.

Requirement 2 of providing interpretable outputs is fulfiled as the model’s outputs
can be interpreted directly. It should be noted that the current model results provide
illogical coefficients as a result of the linearity multicollinearity that is not accounted
for, however the parameters are interpretable as the spatial dependence and tempo-
ral dependence parameters have clear meanings. Similarly the coefficients for the
covariates can be interpreted as it denotes the effect it has on the cell catching fire,
before being corrected for spatial and temporal effects. The current implementation
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of the model works with the assumption that the parameters are combined in a linear
fashion. If this assumption is dropped in favor of using a neural network or other model
that can capture non-linear effects, the model may perform better at the cost of the
interpretability.

The requirements for testing interventions were partially fulfilled. Requirement 3.1 was
partially achieved as the model can use custom data for the energy release compo-
nent and as a vegetation index to simulate changing the fuel load. However these
modifications are limited to the spatial resolution of 1 km of the model. The model pro-
vides probabilistic outputs for the fire scar, as such requirement 3.2 is fulfilled. This
however assumes that a fire is given. The output could be improved by running multi-
ple simulations with different ignition points to improve the result. In order to facilitate
this effectively, the model also needs to be able to be run in parallel. While the current
model was not run in parallel as the setup did not have a GPU to achieve requirement
3.2.2, this is possible within the current implementation.

The requirements surrounding the processing of data were partially achieved, but also
could be improved. The data validation of requirement 4.2 is fulfilled as extreme data
is clipped to reasonable numbers. Nevertheless, the remote sensing data that is used
in the model is noisy by nature and further validation of input data could be added to
find and limit the noise. Similarly requirement 4.3 on handling missing and uncertain
data is not fulfilled as uncertain data currently is ignored in training.

The model architecture was chosen specifically to achieve the adaptability require-
ments. Requirement 5.2 highlights the strength of the model as the model is space-
agnostic and thus different spatial resolutions can be integrated together in future
iterations. This can allow data from drones to work together with satellite data to cre-
ate an operational model with the most up-to-date data. As for requirement 5.1, the
current dataset is not georeferenced and thus the outputs cannot be used as a GIS
layer. However, the code used to retrieve and compile the dataset from the Google
Earth Engine platform is open source. Thus the correct coordinates and coordinate
reference systems can be added to the dataset in future iterations of the model.

Overall the STCAR model falls short of being applicable to any use case due to its poor
accuracy. The STCAR methodology does have the potential to achieve many of the
requirements with slight modifications to its implementation or using different training
data. These modifications were not implemented due time restrictions and the chosen
scope of the project. The main goal of the thesis was to provide the basic model for
physics-informed wildfire simulation to be built upon. The STCAR methodology itself
provides a good basis for these extensions.
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Table 4.1: Wildfire simulation requirements met by the STCAR model. Fullfiiment of a
requirement is indicated by a plus sign. Partial fullfilment or being extendable/modifiable to
achieve a requirement is indicated by a plus and minus sign. A minus sign means not

achieved.

Number Requirement Prioritization Achieved?
Goal To create an interpretable wildfire simulation to sup-

port firefighters
1 Provide information on wildfire spread Must +
1.1 Provide an accurate fire scar Must -
1.2 Show when the fire arrives at different locations Must -+
2 Provide interpretable outputs explaining fire behav- Should +

ior drivers
3 Test the effectiveness of interventions Should -+
3.1 Adjust the fuel load Could -+
3.2 Show risk profiles Could +
3.2.1 Aggregate information from several simulations Could -+
3.2.2 Be able to run in parallel Should +
4 Process information Must +
4.1 Be able to integrate near real-time data Must +
4.2 Validate information Should +
4.3 Handle missing or uncertain input data Must -+
5 Be extendable to different use cases Should +
5.1 Be usable as a GIS layer Should -+

52 Adaptable to different data types Should +




Discussion and conclusion

This study examined existing wildfire modeling approaches and identified a fundamen-
tal trade-off in the literature: current real-time models are typically purely data-driven
and act as black boxes, whereas physics-based models, although interpretable and
grounded in physics, often fail operational constraints due to computational and data
demands. This gap motivates the need for hybrid approaches that are both inter-
pretable and computationally efficient. As such the main research question was posed
as: "How can a near real-time wildfire simulation be designed using physics-informed
machine learning?”

In order to fill this gap, the requirements for wildfire simulations were investigated.
This included a brief review of wildfire simulation use cases, stakeholders and require-
ments guided by the first sub-question: "What objectives can be derived from how
models are currently being used?”. This resulted in identifying multiple use cases
for wildfire simulations including decision support during active wildfires, and during
planning for prescribed burns, risk assessments applications, disaster response and
ecological monitoring. Requirements for each of the applications were gathered by
trying to find usage of the models, however model usage is not always reported and
if it is reported the requirements for the models may not be clearly stated. The cur-
rent requirements were thus estimated based on the way the models are used and
are mostly generic, but do provide guidance in the design process as well be outlined
in the next paragraphs. Improvements to the list of requirements could be made by
directly inquiring the stakeholder involved. Given the overarching goal of creating a
model that is interpretable and computationally efficient, operational firefighting was
chosen as the core use case to focus on. This use case was chosen as it neces-
sitates accurate results with low inference times. The requirements for operational
firefighting were prioritized using the MoSCoW method. Providing accurate results
and being able to integrate near real-time data were found to be the most important
requirements.

After finding the requirements for the simulation, the design space of wildfire simu-
lations was explored in order to answer the second sub-question: "What could the
model’s architecture look like?”. First the data requirements and available data were
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investigated. This resulted in identifying topology, vegetation, weather and human
intervention as desired parameters. Additionally it resulted in identifying remote sens-
ing data as preferred data source over simulated and field data. Remote sensing
data was preferred as it has a much greater availability and coverage. This allows
the model to be applicable world-wide and significantly decreases the risk of outdated
data, which could lead to inaccurate results. Four remote sensing datasets were found
and compared. The Next Day Wildfire Dataset was chosen out of these four for its
completeness, as it also includes a proxy for human interaction, because of its ease
of use, as it has complete documentation and because the code used to create it is
open source and easily modifiable for future adaptation.

Knowing the available data and requirements, different types of models were inves-
tigated and several possible architectures were identified that could meet part of the
requirements. Ultimately spatial temporal conditional autoregressive (STCAR) mod-
els were chosen for having the most potential. This model is based on the assumption
that the value of a given location is based on its surroundings in the current time step
and itself in the previous time steps. The advantage of this model is that it is space-
agnostic, is interpretable and relatively computationally efficient. The downside to this
kind of model is that it is not specifically designed to work with the types of data in the
Next Day Wildfire Dataset: it does not include covariates and does not work with bi-
nary data and thus the model had to be modified. In order for the model to work with
binary data a logit link function was used. In order to include covariates, the model
was modified by making the log odds a combination of the covariates, which then
can be used in the STCAR model. this effectively makes it so that the STCAR model
predicts the spread of the odds of a cell catching on fire.

Testing showed that the model did not perform well compared to existing models
trained on the same dataset. The modified STCAR model has an area under the
precision-recall curve (AUC-PR) of just 0.126. This is significantly less than the neu-
ral network, random forest and logistic regression models trained by Huot et al. (2022)
which achieved 0.284, 0.225, and 0.198 respectively. The modified STCAR model re-
lied primarily on the previous fire mask and precipitation for its predictions. Relying
on the precipitation caused severe overpredictions in some samples.

The poor performance of the modified spatial temporal conditional auto-regressive
model is a result of several limitations in both the dataset used as well as the model
architecture itself. First the limitations in the dataset will be addressed. Afterwards
the limitations in the model architecture will be discussed. For each of these future
research directions will be listed.

The first limitation of the dataset is that it uses single observations of daily data from
the MODIS satellite at a resolution of 1 kilometer. Independent daily observations are
a severe limitation to the predictive potential of a model as no knowledge of the previ-
ous days can be integrated into the model. This means that based purely on the data,
it is impossible to see if a fire is growing or shrinking. Additionally the trajectory of the
fire in previous days may be used in the prediction of future days as the available fuel
decreases in those areas. In addition to using insights from previous days, models
may be able to use weather forecasts in their predictions. The spatial resolution of
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the MODIS data also limit the predictive performance of the model. Due to this resolu-
tion, certain features that may act as natural barriers such as rivers might be missed.
In their research comparing the predictive performance of the MODIS and VIIRS sat-
telite data, Karlsson et al. (2025) conclude that MODIS data is unsuitable for next day
wildfire spread prediction due to exhibiting a highly stochastic fire mask and that the
VIIRS product is better suited for this task due to its improved spatial resolution. The
WildfirespreadTS dataset addressed both of these limitations by providing multi-day
observations, providing weather forecast data, using VIIRS wildfire data and providing
data at a spatial resolution of 375 meters (Gerard et al., 2023). Using this dataset may
offer an improvement over the current dataset.

In addition to using a different remote sensing dataset, other data could be integrated
into the model. Remote sensing data has a lower level of detail than is available
through field data. Integrating data of a higher resolution into the model may cause it to
not miss natural barriers that could still be missed with an improved spatial resolution.
This could thus improve the model’s performance. Since the STCAR method is space-
agnostic, there is potential for combining higher resolution data that is known to be up
to date and accurate, such as from unmanned aerial vehicles, with the lower resolution
data that is currently used. Similarly, if real time data is available from geostationary
satellites at a greater spatial resolution, these could be used to check the inputs given
by the other sensors and fill in uncertainty as the Next Day Wildfirespread dataset
contained 1% uncertain labels.

Another limitation of the dataset is that extreme wildfire behavior also likely will not be
represented well by the model as these events and associate fire behavior are rare
and thus does not occur often in the dataset as was revealed in the exploratory data
analysis in Chapter 3.1.3.

Additionally the Next Day Wildfirespread dataset is not georeferenced as exact loca-
tions are missing in the training data and metadata. This is a limitation as the impor-
tance of factors may differ per ecosystem (Alexander & Cruz, 2013). While the Nor-
malized Difference Vegetation Index (NDVI) does act as a proxy for the eco-region,
it is unlikely that this effect is fully covered. As the code to generate the dataset of
both the Next Day Wildfirespread dataset and the WildfirespreadTS dataset is open
source and Google Earth Engine, which the Next Day Wildfire dataset was derived
from, is able to provide the locations, this data can be added to the dataset that is
used in future iterations. Adding this data will also allow the model to work as a layer
in geographic information system (GIS) software. This makes the model interoperable
with other models expanding the use cases the model may be used for and meeting
the interoperability requirement.

There are also limitations present in the implementation of the spatial temporal con-
ditional auto-regressive (STCAR) model. The most important limitation is that the
STCAR model in its current implementation is not able to capture the directionality of
fire spreading. The weighted adjacency matrix used in the STCAR model consists
of a distance metric to show the relationship between cells. This causes the STCAR
model to show a smoothing effect rather than directionality. This could be replaced by
a data driven metric. Additionally, directionality may be promoted by transforming the
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features in the dataset. The wind direction and elevation could be transformed into
vectors. The features could be corrected for the similarity of these vectors to the vec-
tor in the direction of the fire. This was attempted but not successfully implemented
due to time constraints. Another method that was considered to promote directionality
as well as improve the computational efficiency is by dividing the prediction of one day
into several predictions at a smaller temporal resolution, which also facilitates using
smaller spatial resolutions multiple times. It is assumed this decreases the computa-
tion time as the computation time has a quadratic relationship with the amount of cells
it needs to account for. Improvements in computation time will also allow for further
hyperparameter tuning as the current hyperparameter tuning was limited due to the
complete training taking up to four hours.

Finally the model may be improved by not assuming the log odds is a result of a
linear combination of the covariates. The current model assumes a linear relationship
between the features and the odds of a cell catching on fire, corrected by the spatial
on the cells around it and temporal dependence on itself in the previous timestep. Itis
widely understood that wildfire spreading is not a linear process. As such the linearity
assumption was meant as a temporary assumption that would later be replaced. The
model was created in such a way that replacing this assumption with, for example, a
physics-informed neural network is as easy as possible. This should make it so that
the nonlinearities in the data generating process of wildfires are captured to a much
greater extend. This does, however, decrease the interpretability of the model and
decreases the computational efficiency and thus forms a trade-off. The attempt to
implement a simple neural network resulted in no fire being predicted. The reason
for this is not fully understood, as such the linearity assumption was kept. Even if the
linear assumption is kept the model can be improved by selecting specific features
according to the correlations between them as the current model does not account for
the multicollinearity. This also hindered the interpretation of the parameters and may
have caused the flipped signs in the coefficients of the model.

While the STCAR model in its current implementation suffers from these limitations
and as a result does not provide accurate predictions and thus cannot be applied to
any use case, it does serve as an initial proof of concept. The model architecture
has interpretable parameters, is able to run in parallel, adaptable to different data
types and set up to be able to integrate neural networks. Once these limitations are
addressed, the model may form the foundation for extensions that integrate physics-
informed machine learning to provide the interpretable near real-time wildfire spread
predictions that this thesis set out to create.

In conclusion, near real-time physics-informed wildfire simulations can be designed
by carefully considering the stakeholders, requirements, available data and model
architectures. As a result of this process, this thesis contributes to the field of wildfire
modeling by introducing the spatial temporal conditional autoregressive model that
can be modified with physics-informed and data-driven extensions. While the current
implementation suffers from multiple limitations and does not outright use physics-
informed machine learning yet, it does provide a foundation for future research in
scalable, transparent wildfire simulation systems, which may hopefully make more
accurate predictions possible that can be used in practice to make informed decisions



47

that save lives.

Data and code availability

The data of the Next Day Wildfire Spread dataset is available at https://www.kaggle.
com/datasets/fantineh/next-day-wildfire-spread. Data is available upon request to the
author in the event that the dataset is no longer available on the Kaggle website. The
dataset and the preprocessing of the dataset is described by Huot et al. (2022).

Cleaned code of the exploratory data analysis of the Next Day Wildfirespread dataset
and the cleaned code of the spatio-temporal conditional autoregressive model imple-
mentation for wildfire simulations are available at https://github.com/GerbenBultema/
STCAR-wildfire-model. Uncleaned code may be made available upon request. The
model was originally developed on a private repository on a private account and later
moved to a public repository, as such the complete commit history will not be available.
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Structure of the initial literature
review process

The literature review will be structured as follows. First, an overview of relevant key
words will be created inspired by three papers provided as recommended readings
(Bottero et al., 2020; Finney, 1998; Yoo & Wikle, 2022). This overview of the keywords
can be found in Table A.1. Secondly, search strings will be derived from these key
words. These will be created by using "AND” between categories and "OR” within
categories shown in the table. Afterwards Scopus will be searched using this search
string. Scopus was chosen as it has a broad and interdisciplinary focus. This is
suitable for exploring wildfire propagation simulation models as wildfire modeling is
used in many fields. As the goal of the literature review is to give an overview of wildfire
simulation models and wildfires have a high societal relevance, it is expected that the
search strings will return many papers. To keep the literature review to a manageable
scope, several criteria will be used to filter the results. This is visualized in a PRISMA
flow diagram in Figure A.1. First, the search will be limited to English articles and
conference papers. Secondly, only papers with more than 10 citations are included.
These papers are expected to be more relevant as it is expected that designs of wildfire
models that are used in practice will be cited frequently. While this does create a bias
towards older papers and newer papers might be missed, it is assumed that the newer
paradigms will be discussed sufficiently within the threshold to be included. Thirdly,
the papers that are found will be subjected to a relevance check. Papers discussing
the creation of a wildfire spreading simulation will be included. Papers discussing
wildfire risk assessments, gathering data for simulations and forest fire detection will
not be included. Finally, the three initial papers were added as core literature.

The results of each of the steps of the literature review process can be found in Figure
A.1. The literature review was conducted between the first and third of December
2024. In total 37 relevant papers were included in the literature review.
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Fire domain Simulation Model type  Design

wildfire modeling spread® design

forest fire simulation propagation creation

bushfire prediction algorithm
digital twin framework
Statistical model model development

Table A.1: Overview of keywords used to create the search string
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Documents included
(n=37)

Figure A.1: PRISMA Flow Diagram showcasing the application of selection criteria



Coefficient values

Table B.1: Parameters and their coefficient values of the trained spatial-temporal conditional
autoregressive model. The values of the parameters are multiplied with their respective
coefficients and then summed to derive the log odds of a cell catching fire in the initial time

step.

Parameter Coefficient value
Spatial dependence p 0.748
Temporal dependence r 0.751
Elevation -0.023
Wind direction 0.175
Wind velocity 0.401
Minimum temperature -0.535
Maximum temperature -0.520
Humidity 0.411
Precipitation 18.120
Drought 0.486
Vegetation 0.299
Population density -1.088
Energy release component -0.201
Previous fire mask 39.168
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