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Model-Based Optical Resolution
Arnold J. den Dekker

Abstract—This paper considers the two-point resolution of
imaging systems from the viewpoint of model fitting theory.
Earlier results have been extended to include (partially) coherent
sources of unknown intensity. Furthermore, it is shown how the
probability of resolution can be computed. This probability can
be used to compare the performance of different imaging systems.

Index Terms—Bifurcation, image resolution, image restoration,
modeling, nonlinear estimation, parameter estimation.

I. INTRODUCTION

TWO-POINT resolution is defined as the ability of an
imaging system to separate two point sources of equal

intensity. It is a widely used measure in the quality assessment
of imaging systems. Following the approach of [1], two kinds
of images can be distinguished: calculated and detected im-
ages.Calculatedimages are by their very nature noise-free and
exactly describable by a known mathematical two-component
model. The generally accepted classical resolution criteria, like
Rayleigh’s [2], concern such calculated images and provide
resolution limits that are a measure of the width of the
point spread function (PSF) of the diffraction limited imaging
system. However, if calculated images would exist, one could
numerically fit the two-component model to the observations
with respect to the component amplitudes and locations, the
resulting fit would be perfect and the resolution would be
infinitely high and not restricted by the width of the PSF.
Obviously, to obtainpractical information about the resolving
power of imaging systems, one should considerdetected
images, since these are the only kind of images encountered
in practice. For detected images, fitting a two-component
model will never result in a perfect fit and resolution will be
limited. This is caused by both systematic errors (differences
between the model fitted and the one underlying the obser-
vations) and nonsystematic errors (noise) [3]. Many modern
resolution criteria are based on asymptotic statistical parameter
estimation theory [4]–[7]. Under the assumptions that i) the
model is properly specified, i.e., there are no systematic
errors, ii) the probability function of the nonsystematic errors
is known and iii) a very large number of observations is
available, this theory provides expressions for the so-called
Craḿer-Rao Lower Bounds (CRLB’s) on the variance of
estimators of object parameters like the locations and the
intensities of point sources. These CRLB’s are a measure
of the attainable precision and, therefore, of resolution. The
CRLB’s are asymptotically attained by a maximum likeli-
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hood estimator and decrease with increasing signal-to-noise
ratio (SNR). However, the assumptions mentioned above are
often not realistic in practice. In this paper an alternative
parameter estimation based definition of two-point resolution
is presented, which does not make these assumptions.

Earlier results on parametric model-based optical resolution
[8]–[9] have been extended to include (partially) coherent
sources of unknown intensity. A further generalization is that
the two-component model underlying the observations and that
chosen by the experimenter need not be the same. Furthermore,
it is shown how the probability of resolution as a function of
the SNR can be computed. Special attention is paid to imaging
systems with a Gaussian PSF, since in practice many PSF’s
can be well approximated by a Gaussian one [10].

II. THE PARAMETRIC MODEL AND

THE CRITERION OF GOODNESS OFFIT

Suppose that a set of observations on a
one-dimensional (1-D) composite intensity distribution in the
image of two point sources is available and that the following
two-point image model [11]

(1)

is fitted to the observations with respect to the parameters, ,
, and . In (1), is the amplitude PSF, and

are the peak intensities of the individual point images,and
are the locations, andis the real part of the complex degree

of coherence, with [11]. The parameter determines
the peak intensity ratio. The variables are the independent
spatial variables (measurement points), which are assumed to
be known. The model is fitted in the sense ofleast squares
(LS). This means that the LS criterion

(2)

is minimized with respect to , where
. Furthermore, in

(2) the subscript 2 refers to the fact that atwo-component
model such as the model (1) is fitted. To simplify the
procedure, the minimization with respect to
is replaced by minimization with respect to for
all relevant values of . These are usually all values on a
subinterval of the interval [12]–[13]. The best fit is
taken as a solution. If a priori knowledge about the ratio of
the peak intensities and is available, this can
be used directly by determining the value of. By definition,
two-point resolution concerns two point sources ofequal
intensity. Accordingly, considering two-point resolution,
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one should impose a constraint on, since a solution
consisting of a large and a small peak cannot be claimed
as a successful restoration of an object known to consist
of two equal components [14]–[15]. Let this constraint be

, where is the smallest allowable value
of . Setting equal to 0.5 forces the two estimated peak
intensities to be exactly the same. However, this constraint
seems to be too strict, since when an estimate showing two
components with slightly different amplitudes is found, the
two components may be considered resolved. The choice of

will be further discussed in Section IV.
Next suppose that the one-component model

(3)

is fitted with respect to to the same observations and
that is the so-calledone-component solution, that is, the
minimum of the corresponding LS criterion

(4)

where . Then it can be shown
that in the parameterization of the point
is represented by the points

(5)

for all and satisfying

(6)

for any . Notice that the location parameters in (5) are equal.
It can be shown that the points (5) are stationary points of

. Stationary points of a function are defined as
points where the gradient is equal to zero. From now on, the
points (5) will be calledone-component stationary points. It
can be shown that they are either saddle points or minima.
Which of both types occurs depends on the particular set
of observations used. The occurrence of both types will be
discussed in detail in the next section.

III. CLASSIFICATION OF THE OBSERVATIONS

First, consider the case that (5) is a saddle point. This
implies that (5) is a maximum in at least one coordinate.
Hence, there are points different from (5) where
has a smaller value. It can be shown that, as opposed to at
point (5), at these points, is not equal to . Consequently,
the absolute minimum of will represent two
distinct components. Close to this absolute minimum and
the saddle point (5), has always a further
relative minimum. In what follows this local structure of
the least-squares criterion will be called thetwo-minima one-
saddle-point(TMOS) structure. Outside the neighborhood of
this cluster of three stationary points, other stationary points
may exist, but they are irrelevant to the purposes of this paper
because, as a rule, they represent a bad fit and/or parameter
values that are physically meaningless. Depending on the
particular set of observations used, the point (5) can also
be a (possibly relative) minimum. Accordingly, the Euclidean

-space of the observations can be divided into two regions,

separated from each other by a hypersurface. For sets of
observations in the one region the point (5) is a saddle point,
whereas for sets of observations in the other region the point
(5) is a (possibly relative) minimum. It may be shown that
the hypersurface mentioned above is identical with or very
close to another hypersurface called thebifurcation set[16].
The bifurcation set separates the observations for which (5)
is locally the only minimum from all other observations.
At the bifuraction set the TMOS structure discontinuously
changes into aone-minimum(OM) structure. Such discontin-
uous structural changes are called singularities and they are
the subject of catastrophe and singularity theory [17]. The two
point sources can not be resolved from sets of observations
located on the side of the bifurcation set associated with the
OM structure, since then the solutions for the locationsand

exactly coincide. This implies that fitting a two-component
model results in a one-component solution. Consequently, the
bifurcation set can be regarded as the resolution limit attainable
by model fitting. The region between the bifurcation set and the
hypersurface mentioned earlier corresponds to a two-minima
one-saddle point structure with one minimum being the point
(5). However, it follows from singularity theory that, for any
PSF, the minima are so close that the point (5) may be
safely taken as the absolute minimum [16], [17]. Consequently,
between the hypersurfaces the components may be considered
unresolved. The conclusion is that the hypersurface separating
observations for which the point (5) is a saddle point from
those for which it is a minimum also separates the observations
from which the components can be resolved from those from
which they cannot. Therefore, this hypersurface is taken as the
resolution limit and will be addressed as such from now on.

The question how to compute this resolution limit will be
discussed in the next section. In this section it will also be
shown how to find out on which side of the resolution limit a
particular set of observations is located or, equivalently, if the
components can be resolved from these observations.

IV. COMPUTATION OF THE RESOLUTION LIMIT

It can easily be shown that at the points (5), the value of
is for all equal to . Hence, if there

is any for which the model fitting solution
is different from (5), i.e., for which (5) is a saddle point,
the value of at must be smaller
than . Since the best fit is taken as the solution, this
means that resolution is always possible unless the points (5)
are minima for all relevant . The nature of the stationary
points (5) depends on the signs of the eigenvalues of the
matrix of second order derivatives, the Hessian matrix, of
the criterion with respect to the parameters

, evaluated at (5). In order to get more insight in the
eigenstructure of this matrix, the coordinates are subsequently
linearly transformed into

(7)
with . In these coordinates,
the Hessian matrix is a block diagonal matrix, which
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is described by

diag (8)

where is the Hessian matrix of , evaluated at the
minimum . Therefore, this matrix is positive definite.
Consequently, the nature of the one-component stationary
points (5) is fully determined by the sign of the scalar,
which is described by

(9)

where

(10)

in which

and (11)

with and . The quantities ,
, and the derivatives of are evaluated at . The first

factor in (9) is always positive. Therefore, an analysis of the
sign of can be replaced by an analysis of the sign of. If

is negative, the point (5) is a saddle point. If is positive,
the point (5) is a minimum. To find out if the components can
be resolved from a given set of observations, firstly the one-
component model (3) is fitted. Secondly, the one-component
solution is substituted in (10) and the sign of the resulting
value of is assessed forall relevant values of .

For each , a resolution limit can be defined. This resolution
limit is constituted by the two equations obtained by putting
the gradient of with respect to equal to zero
and the equation . This results in three equations in the
variables and . After hypothetical elimi-
nation of , one equation in the variables
results, defining a hypersurface in the Euclidean-space of
the observations. Notice that this resolution limit is differently
located for different values of. Since the condition
is linear in the observations and, for realistic values of the
SNR, the one-component solution will hardly vary under
influence of the noise, the resolution limits are approximately
hyperplanes. Simulation experiments have affirmed the high
accuracy of this approximation. Now, for a given set of
observations, resolution is impossible if for allthis set is
located on the side of the resolution limit associated with the
OM structure. That is, resolution is impossible if is positive
for all . It can easily be shown that this is the case if both

and are positive, since it follows from (10) that as
a function of is a parabola with its extreme value at .
Consequently, we can define theoverall resolution limitas the
set of all sets of observations satisfying

(12)

For a Gaussian PSF the analysis can be drastically simplified,
since in this case , taking into account that
is a stationary point of . Equation (10) can now be
described as , with

(13)

It follows from (13) that is a concave parabola having its
minimum at , at which , for
all . The roots of are given by

(14)

Resolution is impossible if is positive for all relevant values
of . This is the case if i) has no roots on the interval

and ii) .
Next, consider the value of . Adopting the peak-to-peak

intensity ratio constraint [14], [15]
yields and . Then it follows
from (14) that has no roots on the interval (0.45, 0.55)
if . Consequently, for a Gaussian PSF resolution
would be impossible if i) and ii) . Notice
that condition i) is rarely if ever violated. Putting the constraint

would yield and condition
(i) would be replaced by .

V. PROBABILITY OF RESOLUTION IN THE PRESENCE OFNOISE

The purpose of this section is to show that ifa priori
knowledge about the statistical properties of the observations
is available, this can be used to derive the probability of
resolution as a function of the SNR. Suppose thatinde-
pendent observations are available and that these
observations can be described by their expectations
and variances Var , respectively. and Var
denote the expectation and variance operators, respectively.
The standard definition of SNR, expressed in decibels, is given
by

(15)

In order to compute the probability of resolution when fitting
the model (1) to the observations, we have to consider the
statistical properties of the scalar (10), which depends on
the one-component solution and . It is observed that

is quadratic in . Therefore, the first-order partial
derivative of with respect to a is linear in this
parameter. If this derivative is put equal to zero, a linear
equation in the LS solution for a is obtained [18]. Solving
this equation yields

(16)

Unlike , the location parameter occurs nonlinearly in the
one-component model (3). Therefore, there exists no closed
form solution for . It must be determined iteratively by
numerical nonlinear minimization of . However, the
SNR is supposed to be sufficiently large to assume that the
solution will hardly vary under the influence of the noise.
Furthermore, due to the functional shape of most conventional
PSF’s, the terms and in (10) will hardly vary with slight
changes in . Therefore, may be taken as a constant in the
following analysis. Its value is set equal to the LS estimate
obtained from fitting the model (3) to the . Simulation
results have shown that this simplification is justified. Then it
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follows from (16) that the expectation and the variance of
are given by

(17)

respectively. As was shown in Section IV, resolution is im-
possible if both and are positive. If the number of
observations is sufficiently large for the central limit theorem
to hold [19], it follows from (10) and (11) and the consider-
ations above that and are both normally distributed.
Then, has abivariate normal distribution given
by [19]

(18)

where and is the
covariance matrix of . The computation of

and is straightforward and is presented in the Appendix.
The probability of resolution is now given by

(19)

It was shown in Section IV that for a Gaussian PSF, resolution
is impossible if i) has no roots on the interval
and ii) . If the number of observations is sufficiently
large for the central limit theorem to hold, it follows from
(11) that Var , where and Var are
derived in the Appendix. Then, provided that condition i) is
fulfilled, the probability of resolution is given by

(20)
where Erf represents the error function.

VI. NUMERICAL EXAMPLE

This experiment tests the expressions (19) and (20) when
used to predict the probability of resolution. For this purpose
observations on two overlapping coherent components were
generated, described by

(21)

where the model is given by (1). Furthermore,

, with and . In a number
of simulations is stepwise increased from 0.002 to 0.02.
For each value of sets of observations are generated
and each time the model (1) is fitted to the observations with
respect to for various values of on the interval
(0.45, 0.55) and the best fit is taken as a solution. This
has been done for a sinc and a Gaussian PSF described by

and , respectively. For
each the percentage of the simulations providing resolution
of the components, as well as the percentages predicted by
(19) and (20) (for a sinc and a Gaussian PSF, respectively)
are determined. Fig. 1 shows both the predicted and actually

Fig. 1. Results of the numerical example of Section VI: predicted (curves)
and actually obtained (“x” and “o”) percentages of resolution for a Gaussian
and sinc PSF. The errorbars represent the 95% confidence regions.

obtained percentages of resolution as a function of the SNR,
including the 95% confidence regions of the predicted values.
It turns out that (19) and (20) provide accurate predictions.

VII. CONCLUSION

Accurate knowledge of the resolution limits fundamentally
imposed by systematic and nonsystematic errors is of obvious
relevance for the design of imaging systems. In this paper, a
model fitting based definition of resolution has been presented
and discussed. It has been shown that two distinct types of
sets of observations can be distinguished. For the one type,
the model fitting solutions for the locations are distinct and
the components are resolved. For the other type, the solutions
exactly coincide and the components are not resolved. Which
type occurs depends on the particular set of observations used.
It has also been explained how these types can be determined
for any two-component model. Furthermore, for statistical
observations, the probability of resolution can be computed
as a function of the SNR. This probability can be used to
compare the performance of different imaging systems.

Finally, it should be noticed that the theory presented in this
paper is not confined to strictly 1-D imaging systems. For 2-D
imaging similar results have been found [20]–[22].

APPENDIX

First, a shorthand notation is introduced:

and (A.1)

Furthermore, the following constants are defined

(A.2)

(A.3)
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It follows from (10), (11), and (17) that the expected values
of and are given by

(A.4)

with and . The elements of the
covariance matrix of in (18) are given by

Cov

Var

Cov

Var

Cov

Cov

Cov

Var (A.5)

where and . Furthermore,

Cov (A.6)

The mean and the variance ofin (20) are given by

(A.7)

and

(A.8)

respectively.
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