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Model-Based Optical Resolution

Arnold J. den Dekker

Abstract—This paper considers the two-point resolution of hood estimator and decrease with increasing signal-to-noise
imaging systems from the viewpoint of model fitting theory. ratio (SNR). However, the assumptions mentioned above are
Earlier results have been extended to include (partially) coherent often not realistic in practice. In this paper an alternative

sources of unknown intensity. Furthermore, it is shown how the . . - . .
probability of resolution can be computed. This probability can parameter estimation based definition of two-point resolution

be used to compare the performance of different imaging systems. IS presented, which does not make these assumptions.
Earlier results on parametric model-based optical resolution

[8]-[9] have been extended to include (partially) coherent

sources of unknown intensity. A further generalization is that

the two-component model underlying the observations and that

. INTRODUCTION chosen by the experimenter need not be the same. Furthermore,

WO-POINT resolution is defined as the ability of arit is shown how the probability of resolution as a function of
imaging system to separate two point sources of eqdP SNR can be computed. Special attention is paid to imaging

intensity. It is a widely used measure in the quality assessménstems with a Gaussian PSF, since in practice many PSF's

of imaging systems. Following the approach of [1], two kind§an be well approximated by a Gaussian one [10].

of images can be distinguished: calculated and detected im-

Index Terms—Bifurcation, image resolution, image restoration,
modeling, nonlinear estimation, parameter estimation.

agesCalculatedimages are by their very nature noise-free and Il. THE PARAMETRIC MODEL AND
exactly describable by a known mathematical two-component THE CRITERION OF GOODNESS OFFIT
model. The generally accepted classical resolution criteria, likegyppose that a set of observatiofsy, ..., wy) on a

Rayleigh's [2], concern such calculated images and provig@e.dimensional (1-D) composite intensity distribution in the

res_olution limits t_hat are a measure Of the_ ‘_’Vidth of _thf?nage of two point sources is available and that the following
point spread function (PSF) of the diffraction limited imagingwo-point image model [11]

system. However, if calculated images would exist, one could 5 2 5 2
numerically fit the two-component model to the observationsgn(a, ¥, b1,b2) = a[l”f*(xn — b1) + (1 = £)" f*(xn — b2)
with respect to the component amplitudes and locations, the + 2901 = O) f(zp — b)) f(zp — b2)] (1)
resulting fit would be perfect and the resolution would be ) )

infinitely high and not restricted by the width of the pSFS fitted to the observations with respect to the parametefs

Obviously, to obtairpractical information about the resolving ?1» @1db2. In (1), f(z) is the amplitude PS&E_Q anda(l—Z)Q
power of imaging systems, one should considistected are the peak mtensmes_of the individual point imagesand
images, since these are the only kind of images encounteba@'e the locations, angis the real part of the complex degree
in practice. For detected images, fitting a two-componefif coherence, withy| <1 [11]. The parametef determines
model will never result in a perfect fit and resolution will bd"€ Peak intensity ratio. The variables are the independent
limited. This is caused by both systematic errors (differencg8tial variables (measurement points), which are assumed to
between the model fitted and the one underlying the obs8f known. The model is fitted in the senseleést squares
vations) and nonsystematic errors (noise) [3]. Many modefhS)- This means that the LS criterion
resolution criteria are based on asymptotic statistical parameter Ja(a, £, by, by) = Z d2(a, £,by,by) )
estimation theory [4]-[7]. Under the assumptions that i) the ~
model is properly specified, i.e., there are no systematic
errors, ii) the probability function of the nonsystematic error
is known and iii) a very large number of observations i
available, this theory provides expressions for the so-call
Cran€r-Rao Lower Bounds (CRLB’s) on the variance of" S .
estimators of object parameters like the locations and tR(raocedure, the ".‘"_“m'za_“o” v_wth respect @, ¢, b1, ba)
intensities of point sources. These CRLB’s are a measy replaced by minimization with respect @, b, by) for
of the attainable precision and, therefore, of resolution. TRe r'elevant values.ofé. These are usually all values' on a
CRLB’s are asymptotically attained by a maximum likeli> ubinterval of the '”te“’a(‘?’ 1.) [12}-{13]. The best fit IS
taken as a solution. If a priori knowledge about the ratio of

the peak intensitiea¢? and a(1 — ¢)? is available, this can
Manuscript received June 3, 1996.

rece ) ) _ be used directly by determining the value ©fBy definition,
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minimized with respect to (a,4,b;,b2), where
n(a, 8, b1,ba) = w, — gn(a,?,b1,by). Furthermore, in
%P the subscript 2 refers to the fact thattwo-component
odel such as the model (1) is fitted. To simplify the
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one should impose a constraint ofy since a solution separated from each other by a hypersurface. For sets of
consisting of a large and a small peak cannot be claimelservations in the one region the point (5) is a saddle point,
as a successful restoration of an object known to consighereas for sets of observations in the other region the point
of two equal components [14]-[15]. Let this constraint béb) is a (possibly relative) minimum. It may be shown that
£, < €< (1-4,), wheret, is the smallest allowable valuethe hypersurface mentioned above is identical with or very
of /. Setting4, equal to 0.5 forces the two estimated pea&lose to another hypersurface called thiturcation set[16].
intensities to be exactly the same. However, this constraifthe bifurcation set separates the observations for which (5)
seems to be too strict, since when an estimate showing tigolocally the only minimum from all other observations.
components with slightly different amplitudes is found, thét the bifuraction set the TMOS structure discontinuously
two components may be considered resolved. The choicecbfanges into @ne-minimum(OM) structure. Such discontin-

£, will be further discussed in Section IV. uous structural changes are called singularities and they are
Next suppose that the one-component model the subject of catastrophe and singularity theory [17]. The two

9 point sources can not be resolved from sets of observations

af*(zn =) 3) located on the side of the bifurcation set associated with the

is fitted with respect tq(a,b) to the same observations and®M structure, since then the solutions for the locatibpand
that (@, b) is the so-calledbne-component solutiptthat is, the b, exactly coincide. This implies that fitting a two-component

minimum of the corresponding LS criterion model results in a one-component solution. Consequently, the
bifurcation set can be regarded as the resolution limit attainable
Ji(a,b) = Z d?(a,b) (4) by model fitting. The region between the bifurcation set and the

hypersurface mentioned earlier corresponds to a two-minima
whered, (a,b) = w, — af?(z, — b). Then it can be shown one-saddle point structure with one minimum being the point
that in the parameterization ok(a, £, by, by) the point(a, b) (5). However, it follows from singularity theory that, for any

is represented by the points PSF, the minima are so clqsg that the point (5) may be
. safely taken as the absolute minimum [16], [17]. Consequently,
(@ 2,b,b) (5) between the hypersurfaces the components may be considered

unresolved. The conclusion is that the hypersurface separating
observations for which the point (5) is a saddle point from
a=a/(*+ (1 -0 +2y41-1) (6) those for which itis a minimum also separates the observations
. ) . from which the components can be resolved from those from
for any £. Notice that the location parameters in (5) are €quajhich they cannot. Therefore, this hypersurface is taken as the
It can be shown that the points (5) are stationary points pfsojytion limit and will be addressed as such from now on.
J2(a, £, by, by). Stationary points of a function are defined as the guestion how to compute this resolution limit will be
points where the gradient is equal to zero. From now on, the,;ssed in the next section. In this section it will also be
points (5) will be calledone-component stationary poin#  ghown how to find out on which side of the resolution limit a
can be shown that they are either saddle points or minimg,icylar set of observations is located or, equivalently, if the

Which of both types occurs depends on the particular s€§mnonents can be resolved from these observations.
of observations used. The occurrence of both types will be

discussed in detail in the next section.

for all @ and @ satisfying

IV. COMPUTATION OF THE RESOLUTION LIMIT

I1l. CLASSIFICATION OF THE OBSERVATIONS It can eaSily be shown that at the pglnts (5), the value of
. . . . is for all I a,b). Hen if ther
First, consider the case that (5) is a saddle point. Th‘|]§(a’£’ by, ba) s fora ¢ equa t?‘.h(a’ b) e ?e, T there
L . . . .__.IS any ¢ for which the model fitting solution(a, ¢, by, b2)
implies that (5) is a maximum in at least one coordinate. . ; : . .
) . is different from (5), i.e., for which (5) is a saddle point,
Hence, there are points different from (5) whes€a, £, b1, ba) PO
the value ofJy(a,4,b1,bs) at (a,£,b1,b:) must be smaller
has a smaller value. It can be shown that, as opposed to,a NP N . .
; L ; than J1(a,b). Since the best fit is taken as the solution, this
point (5), at these point$; is not equal tah,. Consequently, . ) .
- . means that resolution is always possible unless the points (5)
the absolute minimum of/z(a, £, b1,b2) will represent two

distinct components. Close to this absolute minimum aftic minima for all relevant. '_I'he nature Of. the stationary
the saddle point (5)Ja(a,,by,by) has always a further points (5) depends on the signs of the eigenvalues of the

; - ; 1Lmatrix of second order derivatives, the Hessian matrix, of
relative minimum. In what follows this local structure Othe criterion Ja(a, £, b1, bs) with respect to the parameters
the least-squares criterion will be called tiveo-minima one- 2\, £, 01,02 P P

saddle-point(TMOS) structure. Outside the neighborhood oq‘C.L’ by, ba), evaluateo_l at (5)‘. In order to get more insight in the
. . . . . eigenstructure of this matrix, the coordinates are subsequently
this cluster of three stationary points, other stationary poi .
) : . inearly transformed into
may exist, but they are irrelevant to the purposes of this paper

because, as a rule, they represent a bad fit and/or param(ter LL+~(1 =)o+ (1 =0 (1= £) +~£)bs b —b )
i ) sy V27— U1

values that are physically meaningless. Depending on the" 7

particular set of observations used, the point (5) can also @)
be a (possibly relative) minimum. Accordingly, the Euclideawith » = (¢2 + (1 — £)? + 2v4(1 — £)). In these coordinates,
N-space of the observations can be divided into two regiorte Hessian matri¥l, is a3 x 3 block diagonal matrix, which
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is described by It follows from (13) thatF; is a concave parabola having its
minimum at/ = 0.5, at which Iy ;, = —1/2(y+1) <0, for

Hy = diag(H, 1) ®) ~. The roots ofF, are given by
where H; is the Hessian matrix of(a,b), evaluated at the
: 1) ha=12412/TH /A=, (4)

minimum (@, ). Therefore, this matrix is positive definite.

Consequently, the nature of the one-component stationgf¥solution is impossible i, is positive for all relevant values
points (5) is fully determined by the sign of the scalar of ¢, This is the case if i)F, has no roots on the interval

which is described by (£e,(1 = £,)) and ii) x < 0.
ne = (4a8(1 - 0)/r*)pq ©) Nex_t, con_sider the yalue dfa.QAdoptinQQ the peak-to-peak
intensity ratio constrain/3 < £</(1 — £)* < 3/2 [14], [15]
where yields #, ~ 0.45 and 0.45 < ¢ < 0.55. Then it follows

. _ 2 _ _ _ from (14) that F; has no roots on the interval (0.45, 0.55)
pe=t1 -0 —Dx = (A= O+ 71 - O)y if v+ > —0.98. Consequently, for a Gaussian PSF resolution
(10)  would be impossible if iyy > —0.98 and ii) x < 0. Notice

in which that condition i) is rarely if ever violated. Putting the constraint
af\’ 2?f, 1/2 < £2/(1—¢)* < 2 would yield ¢, ~ 0.41 and condition
x=) dn <W> and ¢ = d, a2 (11) (i) would be replaced by > —0.94.

with f,, = f(zn — b) anddy, = wy, — af;. The quantitiesl,, v/ PrOBABILITY OF RESOLUTION IN THE PRESENCE OFNOISE
fn, and the derivatives of,, are evaluated &fa, b). The first

factor in (9) is always positive. Therefore, an analysis of tfl(e The purpose of this s_ec_tion s to ;how thataf priori .
sign ofr, can be replaced by an analysis of the sigmeflf ' nowlgdge abogt the statistical propertl_es of the obser_\{atlons
is available, this can be used to derive the probability of
lhesolution as a function of the SNR. Suppose thatinde-
endent observations,, ..., wy are available and that these
servations can be described by their expectatibfis, |
nd variances V4w, } = o2, respectively.E[-] and Vag-}
enote the expectation and variance operators, respectively.
H’he standard definition of SNR, expressed in decibels, is given

be resolved from a given set of observations, firstly the onB
component model (3) is fitted. Secondly, the one-compone
solution(a, b) is substituted in (10) and the sign of the resultin@
value of p, is assessed faall relevant values of.

For eaclY, a resolution limit can be defined. This resolutio
limit is constituted by the two equations obtained by puttinBy

the gradient ofJ;(a,b) with respect to(a,b) equal to zero

and the equatiop, = 0. This results in three equations in the SNR = 10 "log ZE[wn]Q/Zaﬁ : (15)
variables(a, 11) and (wy, ..., wy). After hypothetical elimi- n n

nation of (a, b), one equation in the variablesy, ..., wx) |n order to compute the probability of resolution when fitting

results, defining a hypersurface in the Euclidedrspace of the model (1) to the observations, we have to consider the
the observations. Notice that this resolution limit is diﬁerentlgtatistica| properties of the scalar (10), which depends on
located for different values of. Since the conditior; = 0  the one-component solutiofé, b)) and /. It is observed that
is linear in the observations and,AfOI’ realistic values of thﬂ(O/’b) is quadratic ina. Therefore, the first-order partia'
SNR, the one-component soluti¢i b) will hardly vary under  gerivative of .J;(a,b) with respect to a is linear in this
influence of the noise, the resolution limits are approximateparameter. If this derivative is put equal to zero, a linear

hyperplanes. Simulation experiments have affirmed the higQuation in the LS solution for a is obtained [18]. Solving
accuracy of this approximation. Now, for a given set ofjs equation yields

observations, resolution is impossible if for dllthis set is
located on the S|de_of the resolu_tlo_n limit gsso_c_lated _V\_nth the P anfz(l;)/z FHb). (16)
OM structure. That is, resolution is impossiblepifis positive m m

for all £. It can easily be shown that this is the case if both ) ] )
po.s andp,, are positive, since it follows from (10) that as Unlike a, the location parametdr occurs nonlinearly in the

a function of/ is a parabola with its extreme value/at 0.5, ON€-component model (3). Therefore, there exists no closed

Consequently, we can define tbeerall resolution limitas the fOrm solution for b. It must be determined iteratively by
set of all sets of observations satisfying numerical nonlinear minimization of;(a,b). However, the

SNR is supposed to be sufficiently large to assume that the
{pe. =0Apos >0} V{pos=0Ap, >0} (12)  solution b will hardly vary under the influence of the noise.
Furthermore, due to the functional shape of most conventional
?’ F’s, the termg and+ in (10) will hardly vary with slight
changes irh. Therefore b may be taken as a constant in the
following analysis. Its value is set equal to the LS estimate
obtained from fitting the model (3) to thB[w,]. Simulation
Fr=01=-0" =)= (1= 4+~ +~(1=¢)). (13) results have shown that this simplification is justified. Then it

For a Gaussian PSF the analysis can be drastically simplifi
since in this casey = 4, taking into account tha(&,?))
is a stationary point of/;(a,b). Equation (10) can now be
described ag; = Fyx, with
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follows from (16) that the expectation and the varianceiof 100 , . | |
are given by i / |
Elw,]f? b 4(5) o2 g ] —

o) = 220D vy - Za a0 gy 2
2 F0) (5. 710) 5 o A

c gl

respectively. As was shown in Section IV, resolution is imw
possible if bothpy; and p,, are positive. If the number of E 751
observations is sufficiently large for the central limit theoren®
to hold [19], it follows from (10) and (11) and the consider-

70

ations above thap, ; and p;, are both normally distributed. 5 *°f 1

Then, (po.5, pe, ) has abivariate normal distributionf given § 6oL X Gaussian | -

by [19] ? ol A
1 Tg—1 50 . : ' )

f(pos,pe,) = W exp(=1/2(p—p)" @7 (p—p)) (18) 35 40 45 50 55 60

wherep” = (o5, pe.), 1" = (Elpo.s], Elpe,]) and @ is the SNR (48)

2 x 2 covariance matrix ofpo 5, p¢, ). The computation of:  Fig. 1. Results of the numerical example of Section VI: predicted (curves)
and ® is straightforward and is presented in the Appendi)’(‘.”d actually obtained ¢" and “0”) percentages of resolution for a Gaussian
The probability of resolution is now given by and sinc PSF. The errorbars represent the 95% confidence regions.

1 —/ / F(po.s, pe,) dpo.sdpe, . (19) obtained percentages of resolution as a function of the SNR,
00 including the 95% confidence regions of the predicted values.
It was shown in Section 1V that for a Gaussian PSF, resolutidinturns out that (19) and (20) provide accurate predictions.
is impossible if i) F; has no roots on the intervéd,,, (1—4,))
and ii) x < 0. If the number of observations is sufficiently
large for the central limit theorem to hold, it follows from o
(11) thaty ~ N(E[x], Var{x}), whereE[y] and Vafx} are  Accurate knowledge of the resolution limits fundamentally
derived in the Appendix. Then, provided that condition i) i§nPosed by systematic and nonsystematic errors is of obvious
fulfilled, the probability of resolution is given by relevance for the design of imaging systems. In this paper, a
model fitting based definition of resolution has been presented

foo exp —% dx and discussed. It has been shown that two distinct types of
Son(-SEE ) (L e

VII. CONCLUSION

— sets of observations can be distinguished. For the one type,
v 2mVar{x} 2 v 2Var{x} the model fitting solutions for the locations are distinct and
where Er{-) represents the error function.

the components are resolved. For the other type, the solutions
exactly coincide and the components are not resolved. Which
type occurs depends on the particular set of observations used.
VI. NUMERICAL EXAMPLE It has also been explained how these types can be determined
This experiment tests the expressions (19) and (20) whigi any two-component model. Furthermore, for statistical
used to predict the probability of resolution. For this purpoggdservations, the probability of resolution can be computed
observations on two overlapping coherent components w@ a function of the SNR. This probability can be used to

generated, described by compare the performance of different imaging systems.
Finally, it should be noticed that the theory presented in this
Wy, = gn(, A, Br, P2) + en (21)  paper is not confined to strictly 1-D imaging systems. For 2-D

where the modey is given by (1). Furthermoray = 4, A = imaging similar results have been found [20]-[22].

0.5, f1 = —0.05, B2 = 0.05, v = 0.4, ,, = —0.01 + (n —

11) x 0.4, withn = 1,...,21 ande,, ~ N(0,¢2). In @ number APPENDIX

of simulationse, is stepwise increased frpm 0.002 to 0.02. First, a shorthand notation is introduced:

For each value of. 10000 sets of observations are generated

and each time the model (1) is fitted to the observations with . *) akfn(i,)

respect to(a, b1, by) for various values o on the interval Jfn = f(zn—b) and ;" = ok FE {1,2}. (A1)
(0.45, 0.55) and the best fit is taken as a solution. This

has been done for a sinc and a Gaussian PSF described-dithermore, the following constants are defined

f(z) = sin(z)/z and f(z) = exp{—1/42>}, respectively. For

2 2
eacho. the percentage of the simulations providing resolution c11 = w, Cop = (1+7) 7 (A.2)
of the components, as well as the percentages predicted by 4 y 4
(19) and (20) (for a sinc and a Gaussian PSF, respectively) ez = (1= )la(l=4s),

are determined. Fig. 1 shows both the predicted and actually co2 = (1 —4a) + 7o) (Lo +7(1 = £,)). (A.3)
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It follows from (10), (11), and (17) that the expected values

of pos and p,, are given by

Blp] = —eu Y (Elwa] - E[alf2) (£()?

n

—c2i Y (Elwa] — E[a]f2) fuf?

n

(A.4)

with 7 € {1,2}, p1 = po.5 and pz = p¢,. The elements of the

2 x 2 covariance matrixd of (pg.5, p¢, ) In (18) are given by

(I)ij = COV(piv pj) = C1iC1y ZO’?L(f,(Ll))4

n
2

+var{a} [ 3 £2 (s

-2%" Cov(@, wy) (V) > FA(F)?

n

2
R DA ORACIOIDWY
— 25 Cova,wa) fu SO S F2 1P
+ (cricj + cyjcai) Z fN(fr(Ll))er(LQ)ar%
_ Z Cov(a, wy,) (f,(}))2 Z 23
- Z Cov(a, wy,) fuf? Z 2 (fr(Ll))Q
(A.5)

+ Var{a} > f2(FO) Y 2@
wherei, 5 € {1,2}, p1 = po.5 andps = p,, . Furthermore,
202 />
The mean and the variance gfin (20) are given by

Exl =Y (Elwa] - Ealf?) (/)

n

Cov(a, wy) = (A.6)

(A7)

and
2

Var{x} = > o2 (f0)* + var{a} [ 7 £2(s)*
— 23" Cov(a,wa)(F)* S £2(FV)" (A8

respectively.

(1]
(2]
(3]
(4
(5]
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