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42-201 Czȩstochowa
Poland
Tel: +48 343 250 507
Fax: +48 343 250 507
Email:ercoftac@imc.pcz.czest.pl

Hosted, Printed & Distributed By
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Linear and Non-Linear Dynamics of a Micro-ramp Wake
K. J. Groot, J. Casacuberta, Q. Ye and S. Hickel

Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629HS, Delft, The Netherlands

Abstract
Micro-ramps are deployed to prevent boundary layer sep-
aration by creating a momentum excess close to the
wall. Through Direct Numerical Simulations (DNS) of
the base, instantaneous and mean flow, we identify that
the perturbation dynamics in the wake of the micro-
ramp play an essential role in creating the near-wall mo-
mentum excess. To identify the origin of the perturba-
tions, we deploy BiGlobal stability analysis on the lam-
inar base flow. We demonstrate that the amplification
of the most unstable linear mode is closely related to
the time-averaged amplitude of the unsteady perturba-
tions. The flow structure corresponding to this mode has
a varicose symmetry with respect to the symmetry plane
and matches with the early development of the hairpin
vortices in the instantaneous flow field. It is concluded
that the varicose instability supported by the laminar
base flow represents the mechanism that generates the
hairpins.

1 Introduction
Micro-ramps are passive flow control devices that were
originally introduced to prevent separation in Shock-
Wave/Boundary-Layer Interactions (SWBLIs) [1]. In
particular, the micro-ramp wake counteracts the ten-
dency of the boundary layer to separate through the in-
stallment of high-speed streaks close to the wall.

The consensus ascribes the creation of the high-speed
streaks to the predominant flow feature in the wake: a
pair of counter-rotating streamwise vortices downstream
the micro-ramp, see figure 8 of Babinsky et al. [2]. This
explanation for the high-speed streak is questioned by
Wang et al. [3], who proposed that, instead, the mecha-
nism consists of an exchange of high- and low-momentum
along the chord of the micro-ramp. They argued that the
vortex pair is incapable of entraining high-speed fluid to-
ward the wall farther downstream in the wake.

Care has to be taken when discussing the action of the
streamwise vortices. Blinde et al. [4] showed that these
(primary) vortices do not exist far enough downstream
of the micro-ramp, they find unsteady hairpin vortices
instead. Accordingly, Bo et al. [5] hypothesised that the
high-speed streaks are firstly generated by the stream-
wise (primary) vortex pair, but thereafter the hairpins
inherit this role.

We contribute to this discussion by assessing the in-
compressible flow dynamics around the micro-ramp with
Direct Numerical Simulation (DNS) and BiGlobal sta-
bility analysis. A detailed experimental measurement
dataset is available for the incompressible flow case, see
Ye et al. [6, 7]. Next to computing the instantaneous flow
through DNS, we compute the laminar base flow through
the use of Selective Frequency Damping (SFD, [8]). The
access to the laminar base flow allows for: (1) isolating

the role of unsteady perturbations in the creation of the
high-speed streaks and (2) determining its linear stabil-
ity, representing the origin of the hairpin vortices.

This article is arranged as follows: in §2, the base
and mean flow are discussed briefly, including the means
with which they are obtained. In §3, the deployed linear
stability method is justified and elaborated upon. After
presenting the modes that undergo a significant ampli-
fication in §3.2, the most unstable mode is compared
against the DNS and experimental measurement data in
§3.3. The appearance of ‘duckling beaks’ is discussed in
§3.4. The article is concluded in §4.

2 Base and mean flow
The micro-ramp geometry and the flow parameters are
based on a transitional case considered by Ye et al.
[7], who analysed the micro-ramp wake through the
use of tomographic Particle Image Velocimetry (tomo-
PIV) in the open-jet low-speed windtunnel (W-tunnel)
of TU Delft. In particular, the case corresponding to the
Reynolds numbers:

Reh = U∞h/ν = 700
Rehh = Uhh/ν = 468

is considerd here, where h represents the micro-ramp
height, U∞ is the freestream velocity, Uh the undisturbed
streamwise velocity at the micro-ramp height and ν the
freestream kinematic viscosity. The interrogation vol-
ume used was 0.57h × 0.29h × 0.57h in xyz-space and
a 75% overlap was deployed; the resulting resolution al-
lowed for obtaining high-quality spatial flow derivative
fields. For further details see Ye et al. [6, 7].

The DNS is performed with INCA [9, 10]. A third or-
der explicit Runge-Kutta method is used to march the
solution in time, a 5th-order Weighted Essentially Non-
Oscillatory (WENO) scheme is used to discretize space
on a high-resolution structured grid. This grid ensures
y+ < 1 around the micro-ramp and near the wall and
a high resolution of the shear layer in the wall-normal
direction. Next to the simulation of the instantaneous
flow over a long enough time period to ensure a con-
verged mean flow, Selective Frequency Damping (SFD)
is deployed to obtain the unstable base flow. Details of
the DNS and SFD technique are reported independently
in [11].

2.1 Flow overview
Streaks are here defined as isosurfaces of Ustr = U −Uun,
where Uun is the streamwise velocity of the undisturbed
boundary layer flow. The streaks in the base and mean
flow are displayed in Figure 1; red and blue surfaces re-
spectively indicate velocity-deficit and -excess streaks.
Subfigures (b) and (c) show the good match between
the mean flows obtained through DNS and tomo-PIV,

ERCOFTAC Bulletin 118 5



Figure 1: Streamwise velocity streaks (U str/U∞ = +0.2 and +0.1 (blue) and −0.1, −0.3 and −0.5 (red)) in the (a)
computed base, (b) computed mean and (c) measured mean (tomo-PIV by Ye et al. [7]) flow behind the micro-ramp

Figure 2: Strain rate magnitude, s, at the wall in the computed (a) base and (b) mean flow

while subfigures (a) and (b) represent a comparison of
the computed base and mean flow. The most important
difference between the base and mean flow is that the
isosurface Ustr/U∞ = +0.2 reappears in the mean flow
for x/h > 17, while it does not in the base flow. This
observed behaviour of the velocity-excess streak persists
further downstream in the domain.

The strain rate of the flow at the wall is an important
factor in relation to the prevention of boundary layer sep-
aration. Figure 2 shows its magnitude in the computed
base (a) and mean (b) flow solutions. Marked differences
are observed, which are attributed the action of pertur-
bations on the mean flow. The vortices in the base flow
are found to be incapable of maintaining the entrainment
of momentum into the boundary layer and, consequently,
are also incapable of maintaining the strain rate at the
wall. A more detailed analysis of the differences between
the base and mean flow is presented independently, see
Casacuberta et al. [11].

Unsteady perturbations clearly play an important role
in maintaining and enhancing the high-speed streaks.
For this reason, the perturbations’ existential origin is
investigated next through analysing the stability of the
base flow to infinitesimal perturbations.

3 Stability analysis
Infinitesimal perturbations to flows are governed by the
linearized Navier-Stokes equations in general. Specific
features of the base flow under investigation allow impos-
ing further simplifications that reduce the complexity of
the analysis. In particular, the separated-/reverse-flow
region behind the micro-ramp is very small; it is lim-
ited to x/h < 1, see Figure 3. This is argued to be the
result of the slender shape of the micro-ramp and the
action of the streamwise vortices. For x > h, the flow
develops slowly in the streamwise direction, which justi-
fies the use of the spanwise BiGlobal stability framework
[12], in which the impact of streamwise gradients of the
base flow on perturbations is neglected.

3.1 BiGlobal stability method
This assumption can be made explicit with the pertur-
bation ansatz associated to the spanwise BiGlobal (also
referred to as the BiLocal) stability framework as follows:

q(x, y, z, t) = Q(y, z) + q̃(y, z) ei(αx−ωt) + c.c., (1)

where q denotes an instantaneous flow quantity, Q repre-
sents a base flow quantity, q̃ is a (complex) perturbation
amplitude, ω the angular frequency, α the streamwise
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Figure 3: Reverse flow regions (indicated by U = 0 iso-
surfaces) colour-coded by streamwise vorticity, Ωx

wavenumber and c.c. denotes ‘complex conjugate.’ This
ansatz is used specifically for the velocity components
in the streamwise x-, wall-normal y- and spanwise z-
direction: u, v and w, respectively, and the pressure p.
Here, perturbation quantities are defined as: q′ = q−Q.
Substituting this ansatz into the linearized Navier-

Stokes equations yields the spanwise BiGlobal stability
equations:

−iω ũ+ iαU ũ+ V
∂ũ

∂y
+W

∂ũ

∂z
+ ṽ

∂U

∂y
+ w̃

∂U

∂z

= −iα p̃+ 1
Re

(
−α2 + ∂2

∂y2 + ∂2

∂z2

)
ũ; (2a)

−iω ṽ + iαU ṽ + V
∂ṽ

∂y
+W

∂ṽ

∂z
+ ṽ

∂V

∂y
+ w̃

∂V

∂z

= −∂p̃
∂y

+ 1
Re

(
−α2 + ∂2

∂y2 + ∂2

∂z2

)
ṽ; (2b)

−iω w̃ + iαU w̃ + V
∂w̃

∂y
+W

∂w̃

∂z
+ ṽ

∂W

∂y
+ w̃

∂W

∂z

= −∂p̃
∂z

+ 1
Re

(
−α2 + ∂2

∂y2 + ∂2

∂z2

)
w̃; (2c)

iα ũ+ ∂ṽ

∂y
+ ∂w̃

∂z
= 0. (2d)

Perturbation amplitudes {ũ, ṽ, w̃, p̃} are sought that
are dominant in the shear layers in the wake and decay
far away from these layers. This property justifies trun-
cating the zy-plane. Specifically, the domain is chosen
such that: (z, y)/h ∈ [−5.5, 5.5] × [0, 13.4]. Truncation
boundary conditions must be imposed to close the sys-
tem. At the wall, y = 0, the no-slip condition is imposed
for all velocity amplitudes and the y-momentum equa-
tion is used as a compatibility condition for the pressure
amplitude. Dirichlet conditions are used for the velocity
amplitudes at all truncation boundaries. Neumann con-
ditions are imposed on the pressure at the boundaries
in the spanwise direction, while a Dirichlet condition is
imposed at the top boundary, for this resolves the ad-
ditive non-uniqueness of the pressure field. The results
are independent of the domain lengths and the chosen
boundary conditions.
We are interested in perturbations that grow in the

streamwise direction. Therefore a (real) frequency is im-
posed, implying zero temporal amplification. Given the
boundary conditions, the base flow evaluated at a zy-
plane at a downstream x-station of the micro-ramp and
the frequency ω, 2 forms a quadratic eigenvalue prob-
lem, where α is the eigenvalue and ũ, ṽ, w̃ and p̃ are
eigenfunctions. The quadratic problem is cast into a lin-
ear eigenvalue problem through the companion matrix
approach [13].

The problem is discretized using Chebyshev colloca-
tion [14] in both the z- and y-direction. A BiQuadratic
mapping is used [15], that places one-third of the col-
location nodes in-between specified coordinate locations,
e.g. yi1 and yi2 in the y-direction, so that a particular re-
gion in the interior of the domain can be resolved. This
is required because the shear layers of interest are dis-
joint from the domain’s boundaries. In particular, the
parameters are chosen as follows:

(zi1, zi2)/h = (−1.0, 1.0)

(yi1, yi2)/h =
{ (1.0, 1.5) for: x/h < 15

(2.5, 3.5) for: x/h ≥ 15

The mapping coordinates (yi1, yi2) are displaced to a
higher location for x/h ≥ 15. This is done to account for
the movement of the shear layers with respect to the wall.
Interpolation in the x-direction is avoided when plot-
ting isosurfaces that involve the perturbation flow field,
therefore the jump in the (yi1, yi2)-values corresponds to
a small interruption of the surfaces at x/h = 15. By
using the combination of the mappings and the spec-
tral order of the scheme, the use of 60 nodes in both z-
and y-directions yielded α-eigenvalues converged up to
O(10−5) absolute errors in units of rad/h.

The base flow and its spatial derivatives must be
known on the mapped collocation grid, which is distinct
from the finite volume DNS grid. To this end, the quanti-
ties and their spatial derivatives, all consistent with the
discretization of the base flow, are interpolated with a
cubic spline.

The Arnoldi method is used to solve the problem [16].
A special guess for the α-eigenvalue is used:

αh = 1.24
(
ω h

U∞

)1.035(
1 + 1.5

x
2h + 1

)
+i
(

0.05− 2
x

2h + 1

)
,

(3)
which is based on manually fitting a curve to the locus
traced by the α-values corresponding to the most unsta-
ble modes through the α-plane when following them over
the range x/h ∈ [0, 60]. Its use allowed minimising the
number of requested modes per solve to 5 and this re-
duced the time required to solve an individual eigenvalue
problem to approximately 7 minutes.

3.2 Significantly amplified modes
The negative of the imaginary part of the streamwise
wavenumber, −αi, represents the spatial exponential
growth rate of perturbations in the streamwise direction
per considered x-station. By integrating this growth rate
in x, one obtains the N -factor:

N(x) = −
∫ x

x0

αi(x̄) dx̄, (4)

where x̄ represents the dummy-equivalent of the x-
coordinate and x0 usually indicates the x-coordinate cor-
responding to zero growth, i.e. αi = 0. Here, no such
location could be found downstream of the micro-ramp,
therefore x0 is set to zero to yield consistent results.

The BiGlobal problem was solved for x/h ∈ [0, 60] and
ω h/U∞ = O(1). Two modes are found that attain sig-
nificant N -factors in the considered x-range. Figure 4
shows the u′-isosurfaces corresponding to the eigenfunc-
tions and Figure 5 the N -factor curves at the frequencies
for which the largest N -factors are attained in the range
x/h ∈ [5, 10]. The DNS displays significant perturbation
amplification in this particular range. By inspection of
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Figure 4: Isosurfaces of u′ (red: positive, black: negative) for the most unstable (a) varicose and (b) sinuous modes

Figure 5: N -factors for most unstable frequencies of the
varicose (solid line, ω h/U∞ = 1.4 ± 0.1) and sinuous
(dashed, 1.3± 0.1) modes

the eigenfunctions, the modes are symmetric and anti-
symmetric with respect to the center-plane, i.e. at z = 0;
modes with these symmetries are also referred to as vari-
cose and sinuous modes, respectively. The varicose in-
stability mode is found to have an N -factor that is about
twice as large as that corresponding to the sinuous mode.
The varicose mode is therefore expected to dominate the
perturbation dynamics at small amplitudes.
To construct the u′-isosurfaces shown in Figure 4, the

ũ-eigenfunctions are stitched together at the considered
x-stations (with a spacing of 0.25h) to form the three-
dimensional representation. Several steps were taken
to do this. First, the phase of the eigenfunctions was
aligned in the x-direction. This was done by letting the
real part of the pressure amplitude function attain its
absolute maximum, i.e. maxz,y p̃r = maxz,y |p̃|, where
the subscript r denotes the real part. The pressure
eigenfunction was chosen, because it has a very well-
defined (approximately spherical) shape. Second, the
maximum amplitude of the |ũ|-eigenfunction, which have
the largest overall amplitudes, were unified in the x-
direction. The last two steps are allowed because a
complex multiple of an eigenvector is again an eigenvec-
tor, where an eigenvector is the vector of eigenfunctions,
like: Ξ = [ũ, ṽ, w̃, p̃]T . Third, the (varying) streamwise
wavenumber and the relative amplitude dictated by the

N -factor were imposed by multiplying the eigenfunctions
with eN(x)+iαrx and, fourth, the real part was taken.

3.3 Comparison with DNS and experi-
mental measurement data

Given that the varicose mode is expected to govern the
perturbation dynamics at small amplitudes, the DNS
data is probed for amplitude information and the spatial
structure of perturbations. The amplitude information
is extracted by integrating the mean normal Reynolds
stress 〈u′u′〉 over zy-planes at every x-station yielding:

ε2rms =
∫∫
〈u′u′〉
U∞2

dy dz
h2 . (5)

Note that, due to the square appearance of u′ in 5,
this quantity is best compared against e2N(x). Figure 6
shows that this comparison is highly successful. Figure
7 presents a comparison of the streamwise perturbation
velocity isosurfaces. The match of the topology of the
perturbation is striking; structures that are alike are la-
belled. The part labelled ‘3’ evolves into a large arc that
connects to the leg-like parts labelled ‘4’. This large arc
surrounds the (not shown) negative counterpart of the
part labelled ‘1’, forming the head of the hairpin vortex.
The part labelled ‘2’ also evolves into a downward arch
that connects to the leg-parts ‘4’. Despite the match of
the topologies, the wavelength of the perturbation in the
DNS is clearly smaller than that of the most unstable
varicose mode. Identifying the cause of this difference
requires a deeper investigation.

Performing POD reconstruction of the tomo-PIV ex-
periment allowed Ye et al. [7] to represent the structure
of the instantaneous flow field in terms of streamwise vor-
ticity isosurfaces. Structures, referred to as ‘leg-buffers’,
were identified that propagate away from the center-
plane and may represent the onset of the spanwise propa-
gation of the elevated strain-rate levels at the wall in the
mean flow, see Figure 2. In Figure 8, the comparison is
made against the instantaneous DNS data, in subfigure
(b), and the base flow plus the eigenfunction correspond-
ing to the most unstable varicose mode, in subfigure (a).
The amplitude of the eigenfunction was set according to
that shown in Figure 6. A match is found in regard to
the topology of the surfaces in the instantaneous DNS
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Figure 6: Comparison of the energy in the streamwise
perturbation velocity component from DNS (solid line)
and the 2N -factor of the most unstable varicose mode
(dashed)

Figure 7: Isosurfaces of u′ corresponding to (a) an instan-
taneous snapshot from DNS and (b) the varicose eigen-
mode. Matching perturbation structures are labelled

and measurement data. The fact that a match is es-
tablished between computed and measured flows on the
level of spatial derivatives of the flow deserves an em-
phasis. The larger wavelength in the measurement data,
just like for the most unstable eigenmode, presents the
most significant difference.

It is striking that, despite non-linear dynamics set in at
approximately x/h = 8, the varicose eigenmode still rep-
resents some of the pertinent features of the dynamics for
x/h > 8. In particular, the eigenmode seems to consist
of a structure that propagates in the spanwise direction
as its amplitude increases, similarly as the leg-buffers.
This hints that insight into the origin of the leg-buffers
can possibly be obtained by analysing the varicose eigen-
mode in further detail.

3.4 Duckling beaks
In a previous study of the stability of the micro-ramp
wake, Groot et al. [17] presented Q-criterion isosurfaces
of the base flow plus the varicose mode eigenfunction.
Due to the quadratic nature of the Q-criterion, the re-
sulting structure depended on the chosen finite ampli-
tude of the eigenfunction. For a large enough ampli-

tude a so-called ‘duckling beak’ appeared underneath the
hairpin heads. Although this structure was labelled as
an artifact, a very similar structure is observed in λ2-
isosurfaces of the presently analysed instantaneous DNS
flow field, see Figure 9. Besides showing that this struc-
ture is physical, it moreover suggests the superharmonic
(twice the streamwise wavenumber) of the varicose mode
plays a role in the non-linear perturbation dynamics.

4 Conclusions
High-speed streaks found close to the wall in the wake of
micro-ramps counteract the tendency of boundary layers
to separate. It is demonstrated in this article that, at
flow freestream speeds, the perturbation dynamics are
essential in the prolongation of the high-speed streak far
downstream of the micro-ramp. The origin of these per-
turbations is investigated with linear stability analysis.

Two significantly amplified instability modes are
found; one has a varicose symmetry with respect to the
center-plane, while the other has a sinuous symmetry.
The varicose mode is most unstable and is therefore ex-
pected to dominate the perturbation dyanmics in the
limit of infinitesimal amplitudes. When comparing the
mode against the hairpin vortices found in the Direct Nu-
merical Simulation (DNS) and tomo-graphic Particle Im-
age Velocimetry (tomo-PIV) data, the amplitude evolu-
tion is matched and a topological match is established at
small streamwise distances from the micro-ramp, where
the perturbation amplitudes are significantly small. It
can therefore be concluded that the varicose instability
supported by the laminar base flow represents the mech-
anism that generates the hairpins. The most significant
difference between the datasets is that the instantaneous
DNS data features a perturbation with a smaller wave-
length than the eigenmode and that observed in the mea-
sured flow field.

Surprisingly, the varicose mode seems to represent a
spanwise propagation of the perturbations similar to the
leg-buffers that Ye et al. [7] observe in the streamwise
range for which non-linear dynamics have set in. This
suggests that the origin of the leg-buffers can be inves-
tigated by performing a deeper analysis of the varicose
eigenmode. Duckling beaks, earlier labelled as an arte-
fact by Groot et al. [17], are recovered in the DNS. This
demonstrates that they are, in fact, physical structures.
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