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FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions.
It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins.
A recent study has determined the structure of bacterial FtsH in detergent micelles. To properly study the
function of FtsH in a native-like environment, we reconstituted the FtsH complex into lipid nanodiscs. We found
that FtsH in membrane scaffold protein (MSP) nanodiscs maintains its native hexameric conformation and is

functionally active. We further investigated the effect of the lipid bilayer composition (acyl chain length, satu-
ration, head group charge and size) on FtsH proteolytic activity. We found that the lipid acyl chain length in-
fluences AaFtsH activity in nanodiscs, with the greatest activity in a bilayer of di-C18:1 PC. We conclude that
MSP nanodiscs are suitable model membranes for further in vitro studies of the FtsH protease complex.

1. Introduction

The vast majority of proteins must fold into precise three-
dimensional conformations in order to gain functional activity. How-
ever, in the cellular environment, proteins are prone to misfolding,
causing the formation of aggregates and other toxic species [1]. To avoid
these problems, cells are equipped with protein quality control ma-
chines, consisting of molecular chaperones and proteases [2,3]. Pro-
teases are responsible for the removal of misfolded and non-functional
proteins from the cell. In general, proteolysis in bacteria is mediated by
energy-dependent AAA+ (ATPases associated with various cellular ac-
tivities) proteases, that use ATP hydrolysis to unfold, translocate, and
degrade protein substrates [4,5]. Various types of AAA+ proteases have
been characterized in bacteria, including ClpXP, ClpAP, HslUV, Lon, and
FtsH [4].

In E. coli, FtsH is the only membrane-bound and the only essential
AAA+ protease [6]. FtsH is anchored to the cell membrane via its N-
terminal domain by two transmembrane segments, while the C-terminal
cytosolic part consists of the ATPase and the proteolytic domains [7].
The N-terminal domain of FtsH is involved in membrane localization,
oligomerization, and its proteolytic activity against membrane proteins
[8-10]. The ATPase domain unfolds and translocates substrates into a
proteolytic chamber. In the cell membrane, FtsH forms a hexameric
structure that is crucial for its catalytic activities [9,11,12]. Besides its
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function in the degradation of misfolded proteins, FtsH also serves a
quality control function, recognizing various types of substrates
including LPS biosynthesis machines and alternative sigma factors
[13,14].

Recently, we studied the structure and function of Aquifex aeolicus
FtsH (AaFtsH) in LMNG detergent micelles and found that AaFtsH is
functionally active in detergents and has a very high structural flexibility
[15]. Although detergent systems have proven useful in the study of
protein structures, they have disadvantages in terms of stability and
suitability for some biophysical and biochemical techniques [16]. In an
attempt to study the function of FtsH in a more native environment, here
we used lipid nanodiscs as model membranes. In contrast to detergents
that form micelles around the protein, nanodiscs provide membrane
proteins with a biologically relevant membrane environment. Lipid
nanodiscs are usually formed by amphiphilic molecules, such as poly-
mers (e.g., styrene maleic acid [17,18]) or proteins (e.g., membrane
scaffold protein (MSP) [19,20]) wrapping around a lipid bilayer with a
discoidal shape. MSP nanodiscs are wrapped with two copies of the MSP
protein, which can stabilize membrane protein-lipid complexes [19,20].
MSP nanodiscs diameters range between 9 and 17 nm, depending on the
length of the MSP [21]. Other model membranes like bicelles and li-
posomes have previously been used to study FtsH [22,23]. Nanodiscs
have several advantages over bicelles and liposomes, in terms of sta-
bility, size homogeneity, control of lipid composition, and control of
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membrane protein oligomeric state [24,25]. In this work, we recon-
stituted the full-length AaFtsH complex into nanodiscs. We character-
ized the proteolytic activity of AaFtsH reconstituted in nanodiscs of
varying particle sizes and lipid compositions.

2. Materials and methods
2.1. Materials

Lipids were purchased from Avanti Polar Lipids. The following lipids
were used in this study: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocho-
line (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol
(POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (di-14:1 PC),
1,2-dimyristoyl-sn-glycero-3-phosphocholine (di-14:0 PC), 1,2-dipalmi-
toleoyl-sn-glycero-3-phosphocholine (di-16:1 PC), 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (di-16:0 PC), 1,2-dioleoyl-sn-glycero-3-phos-
phocholine (di-18:1 PC), and 1,2-dierucoyl-sn-glycero-3-phosphocho-
line (di-22:1 PC). n-Dodecyl p-D-maltoside (DDM) and Lauryl Maltose
Neopentyl Glycol (LMNG) were purchased from Anatrace. Plasmids
MSP2N2 [21], MSP1E3D1, and MSP1D1 [25] were obtained from
Addgene. HisTrap-5 mL column, Superose 6 10/300 GL column, and
centrifugal filters were purchased from GE Healthcare. All other chem-
icals were purchased from Sigma-Aldrich.

2.2. Protein expression and purification

Plasmids containing Aquifex aeolicus FtsH (AaFtsH) were trans-
formed into E. coli strain C43 and were expressed as described previ-
ously [15,26]. Cells were harvested at 3500 g for 25 min at 4 °C and
disrupted using a French press. Cell debris was removed by centrifuga-
tion at 20,000g for 15 min and membranes were isolated at 125,000g for
3 h. Membranes were solubilized in 20 mM Tris-HCI pH 8.0; 100 mM
NaCl; 1% (w/v) n-Dodecyl p-D-maltoside (DDM) for 2 h at 4 °C. The
insoluble material was removed by centrifugation at 125,000g for 1 h at
4 °C. The sample was purified by affinity chromatography, using a
HisTrap column. AaFtsH fractions were eluted in 20 mM Tris-HCI pH
8.0; 500 mM NacCl; 0.02% (w/v) DDM; 200 mM imidazole. AaFtsH
fractions were combined and concentrated using a 50 kDa centrifugal
filter before reconstitution into nanodiscs. Membrane scaffold proteins
MSP2N2, MSP1E3D1, and MSP1D1 were expressed and purified as
described previously, according to a protocol established by Sligar and
co-workers [20,21,25]. Cells were resuspended in 20 mM Tris-HCl pH
8.0; 300 mM NaCl and were disrupted using a French press. The lysate
was cleared by centrifugation at 40,000g for 1 h. The protein was pu-
rified using a HisTrap column. MSP fractions were eluted in 20 mM Tris-
HCl pH 8.0; 300 mM NaCl; 400 mM imidazole. The fractions were
combined and concentrated using a 10 kDa centrifugal filter.

2.3. Reconstitution of AaFtsH in MSP nanodiscs

The lipids were dried overnight and solubilized in 20 mM Tris-HCl
pH 8.0 and 1% DDM. For nanodisc formation, the purified AaFtsH,
MSP, and lipids were mixed at a molar ratio of 1:1:100 for MSP2N2 and
1:1:75 for MSP1E3D1. The reconstitution mixture was incubated for 1 h
at near the phase transition temperatures (Tp,) of the lipids (Tables S1
and S2). Reconstitution with DPPC (di-C16:0 PC) is done at 37 °C, di-
C14:0 PC and di-C22:1 PC at 25 °C, and other lipids at 4 °C. The
detergent was then removed by overnight incubation with Bio-beads.
Biobeads were removed and the reconstituted mixture was centrifuged
at 20,000g for 15 min. The nanodisc sample was concentrated and
loaded into a Superose 6 10/300 GL SEC column pre-equilibrated with
20 mM Tris-HCI pH 8.0; 150 mM NaCl; 5% glycerol. The concentration
of AaFtsH nanodiscs was estimated on SDS-PAGE gels, using detergent-
solubilized AaFtsH of known concentration as standard. Empty nano-
discs without AaFtsH were prepared using the same protocol.
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2.4. SEC-MALS analysis

The molecular weight of AaFtsH and the lipid content in nanodiscs
were determined by size exclusion chromatography coupled to multi-
angle light scattering (SEC-MALS). SEC-MALS measurements were per-
formed on an Agilent HPLC system with an autosampler, connected to a
Wyatt DAWN-HELEOS instrument. The data were processed using the
protein conjugate analysis program within ASTRA software (Wyatt
Technology). Input for refractive index increment, dn/dc, was 0.185
mL/g for protein [27] and 0.135 mL/g for lipids [28]. The nanodisc
samples were run over a Superose 6 10/300 GL SEC column in 20 mM
Tris-HCI pH 8.0; 150 mM NaCl at room temperature.

2.5. Negative staining electron microscopy

For negative staining electron microscopy (EM), the nanodisc sam-
ples were diluted and applied to a glow-discharged carbon-coated cop-
per grid for 1 min. Excess fluid was removed and the samples were
stained with 3% uranyl acetate for 1 min. Transmission electron mi-
croscopy was performed using a JEOL JEM-1400 plus equipped with a
TVIPS TemCam-F416 camera.

2.6. Proteolytic activity assay

The proteolytic activity of AaFtsH in nanodiscs was assessed using
B-casein [29] and resorufin-labeled casein as model substrates [30].
Before activity measurements, the concentration of AaFtsH recon-
stituted in nanodiscs of different lipid compositions was adjusted to a
same level. f-casein was mixed with AaFtsH in protease buffer (50 mM
Tris-HCI pH 8.0; 80 mM NaCl; 12.5 pM ZnCly; 5 mM MgCl,) at 45 °C.
Reactions were initiated by adding 5 mM ATP and were terminated after
0, 15, 30, and 60 min by adding SDS sample buffer. Samples were
analyzed by SDS-PAGE gel and the amount of undegraded f-casein was
quantified by densitometry. Protease assay using resorufin-labeled
casein was performed in the same buffer condition at 45 °C, as
described above. Reactions were terminated after 0, 15, 30, and 60 min
by adding 5% trichloroacetic acid (wt/vol) and samples were centri-
fuged at 16,000g for 5 min. 400 pl of supernatant were mixed with 600
pL assay buffer (500 mM Tris-HCl pH 8.8). Protease activity was
determined by measuring the absorbance at 574 nm.

3. Results

3.1. Purification and reconstitution of the full-length AaFtsH in MSP
nanodiscs

AaFtsH with a C-terminal His-tag was overexpressed in E. coli cells
and purified as previously described [15,26]. Purified AaFtsH was
reconstituted into nanodiscs using the membrane scaffold protein
MSP2N2 and POPC lipids. MSP2N2 is known to produce a nanodisc with
a diameter of ~16 nm [25] and should be able to accommodate the 12
transmembrane helices of AaFtsH. A schematic picture of the reconsti-
tution of AaFtsH into nanodiscs is shown in Fig. 1A. A AaFtsH:MSP2N2:
POPC molar ratio of 1:1:100 was found to be optimal for minimum
protein aggregation during AaFtsH reconstitution. Empty nanodiscs
without AaFtsH were also prepared as control at a MSP2N2:POPC molar
ratio of 1:150. Bio-beads were added to initiate the reconstitution by
removing detergent from the system. After reconstitution, AaFtsH
nanodisc samples were subjected to size exclusion chromatography
(SEQ).

For nanodisc preparation with AaFtsH, the SEC chromatogram dis-
plays two elution peaks at ~12 mL and ~15 mL (Fig. 1B). Nanodisc
preparation without AaFtsH shows a single peak at ~15 mL. SDS-PAGE
analysis revealed that AaFtsH co-elutes with MSP2N2 in the first elution
peak representing AaFtsH nanodiscs. The second elution peak contains
only the MSP2N2 protein, therefore representing empty nanodiscs
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Fig. 1. FtsH nanodisc assembly. (A) Schematic representation of the reconstitution of FtsH into lipid nanodiscs. Detergent-solubilized FtsH was mixed with lipids and
membrane scaffold proteins (MSPs). The formation of nanodiscs was initiated by the removal of detergent using bio-beads. (B) Size exclusion chromatography (SEC)
profiles of FtsH nanodiscs (black line) and empty nanodiscs (red line). The chromatogram shows the absorbance at 280 nm. Void volume (V,) and elution peaks (1
and 2) are indicated. The fractions from peak 1 and 2 were further analyzed by SDS-PAGE. Peak 2 contains empty nanodiscs (asterisk), while peak 1 contains FtsH
nanodiscs because FtsH and MSP2N2 co-eluted from the SEC column (two asterisks). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

(Fig. 1B). The difference in elution volume between AaFtsH containing
nanodiscs and empty nanodiscs likely occurs because of the large size of
the cytosolic domain of AaFtsH, thus contributing to an increased hy-
drodynamic radius for the AaFtsH nanodiscs.

3.2. Characterization of AaFtsH MSP nanodiscs

To evaluate the oligomeric state of the AaFtsH complexes and their
lipid content, nanodisc fractions were subjected to size exclusion chro-
matography combined with static light scattering (SEC-MALS). SEC-
MALS accounts for the amount of lipid in nanodiscs and allows for
determination of the molecular weight and the oligomeric state of pro-
teins [31]. SEC-MALS experiments of AaFtsH nanodiscs resulted in an
average molecular weight of ~515 kDa for the total protein content
(Fig. 2A), which corresponds well to the molecular weight expected for
two MSP2N2 (~45 kDa each) and one AaFtsH hexamer complex (~430
kDa). The average molecular weight of lipid determined by SEC-MALS
was ~187 kDa, corresponding to a total of 246 POPC molecules per
nanodisc. SEC-MALS experiments on empty nanodiscs revealed an
average molecular weight of ~85 kDa for total protein corresponding to
two MSP2N2 (theoretical mass of ~90 kDa), and a molecular weight of
~239 kDa for lipid corresponding to a total of 314 POPC molecules per
nanodisc (Fig. 2B). The nanodisc fractions were further analyzed by
negative stain electron microscopy. The images revealed particles with
an average size of 16 nm as expected for AaFtsH and MSP2N2 nanodiscs
(Fig. 2C and D).

Next, we assessed the proteolytic activity of AaFtsH hexamers
reconstituted in nanodiscs. AaFtsH nanodiscs were incubated at 45 °C in
the presence of the p-casein substrate in a protease buffer, with and
without ATP. Our data show that AaFtsH retains its proteolytic activity
after extraction from E. coli membranes and insertion into lipid nano-
discs (Fig. 3). We further compared the activity of AaFtsH nanodiscs
with AaFtsH in DDM and LMNG detergent. AaFtsH is equally active in

nanodisc and DDM, but has a slightly higher activity in LMNG (Fig. S1).

3.3. Effect of lipid on AaFtsH activity

The lipid environment can affect the structure and function of
membrane proteins [32] and has been shown to be important for
membrane-bound proteases [33-35]. To investigate the effect of lipid
bilayer properties on AaFtsH activity, we reconstituted AaFtsH in
nanodiscs with different lipid compositions such as various lipid head
groups and acyl chain lengths (Tables S1 and S2). First, we investigated
the influence of the lipid head group composition by reconstituting
AaFtsH into nanodiscs consisting of POPC:POPG (1:1, molar ratio) or
POPC:POPE (1:1, molar ratio). PG is a negatively charged lipid that is
often needed for optimal activity of membrane proteins [32]. PE is a
zwitterionic lipid similar to PC, but PE has nonbilayer properties due to a
smaller cross-sectional area of its head group [36,37]. In the case of
AaFtsH, the addition of PG and PE into nanodiscs did not lead to any
significant change in AaFtsH activity (Fig. 4A and B). We further
investigated the effect of changing the lipid acyl chain length on AaFtsH
activity. We reconstituted AaFtsH into nanodiscs consisting of unsatu-
rated PC lipids of varied acyl chain length; di-C14:1 PC, di-C18:1 PC, and
di-C22:1 PC. AaFtsH has the highest proteolytic activity in nanodiscs
with di-C18:1 PC. AaFtsH nanodiscs with di-C14:1-PC and di-C22:1 PC
have lower activities (Fig. 4C and D). We also reconstituted AaFtsH into
nanodiscs consisting of saturated PC lipids; di-C14:0 PC, di-C16:0 PC.
AaFtsH activity is higher in nanodiscs consisting of di-C16:0 PC
compared to the activity in nanodiscs of di-C14:0 PC (Fig. 4E and F).
Together, these data show that AaFtsH activity is sensitive to the lipid
acyl chain length in nanodiscs. We next investigated the effect of lipid
saturation by comparing AaFtsH activity in nanodiscs consisting of un-
saturated PC (di-16:1 PC) and saturated PC (di-16:0 PC). We found that
AaFtsH activity is not significantly affected by lipid saturation (Fig. S2).

Next, we investigated the effect of nanodisc size on the activity of
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of the molar mass (g/mol) vs. retention volume (mL) for nanodisc complexes. The total calculated mass is shown as the red line across the elution peak, with the
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the ASTRA software. (C) Negative stain electron microscopy image of the FtsH nanodiscs and (D) empty nanodisc samples. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Proteolytic activity of FtsH. (A) In vitro degradation of f-casein by FtsH reconstituted in nanodiscs in the presence or absence of ATP. Samples were taken at 0,
15, 30, and 60 min and analyzed by SDS-PAGE gels. (B) Kinetic plot of f-casein degradation from densitometric quantification of the SDS-PAGE gel. Data points are

averages of independent replicates (n = 3).

AaFtsH. For this purpose, AaFtsH was reconstituted into smaller nano-
discs using MSP1E3D1 and MSP1D1, which according to their lengths,
can form nanodiscs with ~12 nm and ~ 10 nm diameters, respectively
[25]. For AaFtsH reconstitution with MSP1E3D1, the SEC chromato-
gram shows two elution peaks at around 12.5 mL and 15.5 mL. Nanodisc
formation was confirmed by SDS-PAGE and SEC-MALS analysis
(Fig. S3). Reconstitution of AaFtsH using MSP1D1 was not successful
(data not shown), suggesting that a minimal diameter of 12 nm was
necessary for proper insertion of AaFtsH transmembrane helices into the
nanodiscs. We further compared the activity of AaFtsH in MSP2N2 and
MSP1E3D1 nanodiscs. Proteolytic activity assays show that AaFtsH is
equally active in both nanodiscs (Fig. S4), suggesting that, at least in this

size range, the nanodisc size does not influence AaFtsH activity.

4. Discussion

To study the function of FtsH in a native-like environment, we have
reconstituted the full-length Aquifex aeolicus FtsH complex into lipid
nanodiscs. Reconstitution of AaFtsH in nanodiscs was confirmed by SDS-
PAGE, SEC-MALS, and negative stain EM analysis. AaFtsH reconstituted
in nanodiscs maintains its native hexameric conformation as confirmed
by SEC-MALS analysis and is functionally active (Figs. 2 and 3). The
negative stain EM images revealed homogeneous particles with an
average size of ~16 nm as expected for AaFtsH, consistent with our
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Fig. 4. Effect of lipid on FtsH activity. (A, B) In vitro degradation of f-casein by FtsH reconstituted in nanodiscs with different lipid head groups; POPC, POPC:POPG
(1:1, molar ratio), and POPC:POPE (1:1, molar ratio). (C, D) In vitro degradation of p-casein by FtsH reconstituted in nanodiscs with mono-unsaturated PC lipids of
varied acyl chain length; di-C14:1 PC, di-C18:1 PC, and di-C22:1 PC. (E, F) In vitro degradation of p-casein by FtsH reconstituted in nanodiscs with saturated PC lipids;
di-C14:0 PC, and di-C16:0 PC. Samples were taken at 0, 30, and 60 min and analyzed by SDS-PAGE gels. The amount of p-casein was quantified by densitometry

analysis. Data points are averages of independent replicates (n = 3).

previous report (Fig. 2) [15]. We compared the activity of AaFtsH
reconstituted in nanodiscs with AaFtsH in detergent micelles. AaFtsH is
equally active in nanodiscs and DDM, but has slightly lower activity than
that of AaFtsH in LMNG (Fig. S1). This observation is likely related to the
structural flexibility and substrate accessibility of the AaFtsH complex.
The LMNG micelle could allow for greater flexibility and substrate
accessibility, compared to lipid nanodiscs. However, this remains
speculative, and determining the exact mechanism will require a com-
parison of high-resolution structures of AaFtsH in lipid nanodiscs and
detergent micelles environment.

It has been proposed that protein substrates enter the translocation
pore of FtsH via the space between the transmembrane domain and the
cytosolic domain [15,38]. To evaluate how lipid bilayer properties
might influence AaFtsH activity, we reconstituted AaFtsH in nanodiscs
of different lipid compositions. The lipid membrane of Aquifex aeolicus is
mainly formed by diacylglycerol phospholipids (DAGP), acyl ether
glycerol phospholipids (AEGP), dietherglycerol phospholipids (DEGP)
[39-41]. In addition to the presence of ether lipids, Aquifex aeolicus also
contains many lipids with saturated fatty acids that enable their mem-
branes to function at high temperatures, their alkyl and acyl chain
lengths ranging from C14 to C22 [39]. We investigated the effect of the
lipid acyl chain length, saturation, head group charge and size on
AaFtsH proteolytic activity. The effect of the lipid head group compo-
sitions was studied by reconstituting AaFtsH into nanodiscs with 50%
PG (negatively charged lipid) or 50% PE (nonbilayer lipid). These lipids

are often needed for the optimal activity of membrane proteins [32,37].
We did not observe any significant changes in AaFtsH activity in
nanodiscs with or without PG or PE (Fig. 4A and B). Thus, to our sur-
prise, the presence of negatively charged lipid and nonbilayer lipid does
not influence the function of AaFtsH. Interestingly, lipid acyl chain
length influences AaFtsH activity in nanodiscs (Fig. 4C and D). Ac-
cording to the structure of AaFtsH in detergent micelles, the thickness of
AaFtsH transmembrane domain is estimated to be ~40 A [15], which is
close to the thickness of di-C22:1 PC (~37 .7\, Table S2) [42,43]. Sur-
prisingly however, AaFtsH activity is lower in nanodiscs of di-C22:1 PC,
indicating that soluble substrates have less efficient access to the active
site of AaFtsH. The highest activity is achieved when reconstituting
AaFtsH in nanodiscs formed by di-C18:1 PC, with a bilayer thickness of
~30 A. Thus, the di-C18:1 PC likely provides the optimal bilayer
thickness for AaFtsH to form the most accessible conformation for sub-
strate entry. This finding also suggests another functional link between
membrane association and the proteolytic activities of FtsH, in addition
to the previously shown results [10,12].

In conclusion, we have successfully reconstituted full-length AaFtsH
hexamers in MSP lipid nanodiscs in a functional state. Our study shows
that the lipid bilayer thickness influences AaFtsH activity in nanodiscs,
with the optimum activities in a bilayer of di-C18:1 PC. We believe that
nanodiscs are a suitable model for further functional studies of the FtsH
protease complex in a biologically relevant membrane environment.
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