
Conceptual design of
a pipe routing system
on a pipelaying vessel
A discrete event simulation study at Allseas

ME54035: MSc Thesis
Luuk Sijm

Conceptual design of
a pipe routing system
on a pipelaying vessel

A discrete event simulation study at Allseas
by

Luuk Sijm

to obtain the degree of

Master of Science (MSc)

at the department Maritime and Transport Technology of the faculty Mechanical Engineering of Delft
University of Technology, to be defended publicly on the 21st of October 2025.

Student number: 4719786
Master programme: Mechanical Engineering - Multi-Machine Engineering

Thesis committee: Ir. M.B. Duinkerken (Mark) TU Delft, chair
Dr. Ir. X.L. Jiang (Xiaoli) TU Delft, committee member
Ir. R. Leite Patrão (Rafael) TU Delft, committee member
D. Bujakiewicz-Baars (Dominik) Allseas Engineering B.V., supervisor
J. Ramlakhan (Jermaine) Allseas Engineering B.V., supervisor

Project duration: March, 2025 – October, 2025
Report number: 2025.MME.9113

An electronic version of this thesis is available at http://repository.tudelft.nl/.

It may only be reproduced literally and as a whole. For commercial purposes only with written autho-
rization of Delft University of Technology. Requests for consult are only taken into consideration under
the condition that the applicant denies all legal rights on liabilities concerning the contents of the advice.

http://repository.tudelft.nl/

Summary

Allseas is renovating the double joint factory (DJF) on their pipelaying vessel Solitaire and aims to fully
automate the pipe handling equipment, which performs the transport of the single lengths of pipe (joints)
on deck. To achieve this, the company intends to implement a pipe routing system that replaces the
current human-operator controlling routing decisions. Although the equipment layout has been defined,
the routing strategy to ensure a continuous supply of double joints to the firing line, while simultaneously
minimizing the turnaround time for pipe supply vessel, remains uncertain. This challenge is defined by
this research as the pipe routing problem.

This research demonstrates how the development of a conceptual pipe routing system, implemented
within a Discrete Event Simulation (DES) model, provides insight into the pipe handling process and
the effects of different routing strategies. The study concludes by identifying a most effective routing
strategy for the case study.

The study begins by analysing the renovated configuration of the pipe handling system to identify its
key components, operations, and the integration of the pipe routing system within the overall control
structure.

A literature review then establishes the methodology for modelling and solving the pipe routing problem.
A comparative assessment identifies Salabim as the most suitable DES software for this study. The
routing problem is formulated as a sequential decision-making problem within a model-free Markov
Decision Process (MDP) framework, enabling future application of Reinforcement Learning (RL) for
optimization. In the present study, however, the routing problem is solved through rule-based heuristics
that define the routing strategy.

The DES model is developed following the methodology for simulation model development proposed
by Robinson 2004, with pipeline specific data based on a 36 inch diameter pipeline from the South
East Extension project. Due to insufficient availability of accurate process duration data for the DJF,
the required distributions are derived from a self-conducted data analysis.

Themodel is subsequently used to evaluate six base route configurations (a-f) under three different
pipe delivery rates (slow, average, fast) from port side. These configurations are further improved
through interactive search experimentation, with performance assessed primarily by pipe transfer crane
waiting time.

The results show that route configuration (f) performs slightly better under fast delivery rates and is
therefore identified as the most effective routing strategy. Nevertheless, all configurations except (d)
achieved satisfactory performance, with limited potential for further improvement given the defined key
performance indicators.

The heuristic approach thus demonstrates its effectiveness in automating sequential decision-
making for the pipe routing problem and can be adapted to alternative routing strategies. However,
a key limitation remains the requirement for full scenario coverage, as the programmer must anticipate
and encode all possible scenarios during the design phase.

i

AI statement

For this Master thesis for the course ME54035, I have used Generative AI to:

• obtain inspiration for the overall structure of the report;
• improve the grammar, style, layout, and/or spelling of the text;
• create (part of) the code in Python for solving the problem.

In all cases I have reviewed and corrected the work and remain fully responsible for the content of the
report.

ii

Terminology and Abbreviations

Terminology
Terminology Definition
beadstall first welding station in the firing line
double joint factory working plane where two single joints are welded together to obtain a double joint
firing line working plane where double joints are welded to the main pipeline
hold crane overhead crane that arranges joints within a hold area
intralogistics logistics of internal material and/or information flow within a company facility
joint single length (12 m) of steel pipe
NP-hard not solvable in polynomial time
pipe flow collective movement of joints
pipe routing problem scheduling and routing of the pipe flow

Abbreviations
Abbreviation Definition
AI Artificial Intelligence
DES Discrete Event Simulation
DJF Double Joint Factory
GPL General Public License
GUI Graphical User Interface
KPI Key Performance Indicator
MAPF Multi-Agent Path Finding
MDP Markov Decision Process
NDT Non-Destructive Testing
OR Operations Research
OS Open Source
PDL Programming Descriptive Language
PPD Pipe Production Department
PSV Pipe Supply Vessel
PTC Pipe Transfer Crane
RL Reinforcement Learning
SEE South East Extension (project)
TC Transverse Car

iii

Contents

Summary i
AI statement ii
Terminology and abbreviations iii
1 Introduction 1

1.1 Background . 1
1.2 Problem definition . 1
1.3 Research objective and approach . 2

2 System analysis 3
2.1 Methodology . 3
2.2 Pipelaying operations on Solitaire . 3
2.3 Pipe handling system . 5
2.4 Control structure of the pipe yard system . 12
2.5 Conclusion . 12

3 Methodology for modelling and solving the pipe routing problem 13
3.1 Prior literature study . 13
3.2 Simulation model of the pipe handling system . 15
3.3 Modelling and solving the pipe routing problem . 16
3.4 Conclusion . 18

4 Modelling of the pipe handling system 19
4.1 Methodology . 19
4.2 Conceptual model . 19
4.3 Computer model . 29
4.4 Verification and validation . 31
4.5 Conclusion . 36

5 Experimentation with routing strategies 37
5.1 Methodology . 37
5.2 Modification of the model . 38
5.3 Experimental plan . 40
5.4 Baseline performance . 46
5.5 Interactive search experimentation to improve configurations 48
5.6 Conclusive batch experimentation . 56
5.7 Conclusion . 58

6 Conclusion 59
7 Recommendations 61
References 62
A Research Paper 64
B Selection of simulation software 73
C Conceptual model formulation 77
D Process duration data 91
E Experimental run-length selection 96
F Experimentation Output Data 102
G Python Code 115

iv

1
Introduction

This chapter provides the background for conducting this study and introduces the problem statement,
the research objective with corresponding research questions and the approach taken to address them.

1.1. Background
Allseas is a world-leading contractor in the offshore energy market, operating a versatile, in-house
designed fleet of specialized vessels. Their pipelay vessel Solitaire is due for a large renovation during
which all almost all pipe handling equipment on the main deck and in the Double Joint Factory (DJF)
will be renewed. The DJF is the first welding factory where single lengths of steel pipe (joints) are
welded together to form a double joint. The renovation project is currently in the design phase and is
planned to be finished at the end of 2026. Mechanically the design is converging, but the development
of the software to manage the pipe flow (collective movement of joints) is still to be started. The new
configuration of pipe handling equipment will increase the complexity of the pipe flow, which is currently
controlled by operator decision-making. This raises the need for a pipe routing system that automates
the decision-making process to autonomously regulate the pipe flow.

Although a previous simulation study within Allseas has been conducted to determine the equipment
layout, there is no clear vision yet on how the pipe routing system will be formulated and how the joints
should move through the system. The tight renovation schedule causes a lack of time and resources
for Allseas to properly investigate opportunities for optimization of the pipe routing system.

There are no comparable automation studies available in the literature. The pipelaying industry is
known to be relatively conservative (Charlton et al. 2020), and pipe handling operations in general have
not followed other batch and process industries such as the automotive industry in terms of adopting
new technologies (Angelle 2020). An explanation for this could be that, although pipe handling in-
volves repetitive tasks, the exact operations depend on the specific processes and are carried out in
challenging environments (Moralez et al. 2020). Nevertheless, recent studies (Angelle 2020, Moralez
et al. 2020, Craig et al. 2023) show progress toward more advanced automated pipe handling systems
aimed at reducing human intervention. This trend is especially relevant because the safety risks for
personnel involved in pipe handling operations remain significant (Monacchi et al. 2023).

1.2. Problem definition
As mentioned, Allseas aims to automate the decision-making process relating to the pipe flow on deck
by implementing a pipe routing system. This system would solve the scheduling problem (when to
move a joint), routing problem (where to move a joint) and resource allocation problem (how to move a
joint) of the pipe flow, which is collectively defined as the pipe routing problem. Themain objective of the
pipe routing system is to ensure that the welding factory for the main pipeline (firing line) is continuously
fed with the required double joints. Another important element of the pipe handling operations is the
turnaround time for Pipe Supply Vessels (PSV), which can be minimized by regulating the pipe flow in
the pipe yard to allow for continuous delivery of joints by the pipe transfer cranes (PTC).

1

1.3. Research objective and approach 2

The optimal solution to the pipe routing problemmight be influenced by themain pipeline currently being
laid, pipe delivery, the stochastic processing times of individual stations, travel times between stations,
potential downtime and potential weld rejects. As mentioned, Allseas does not have the time and
resources in the planned renovation project to develop an advanced pipe routing system that adapts
to all these system dynamics. The company would still like to have an insight on the effects of different
routing strategies and the feasibility of a fully automated pipe routing system.

Therefore, a conceptual pipe routing system should be formulated and evaluated using a model of
the pipelaying operations. Both the model and the pipe routing system have to be formulated from
scratch. A prior literature study revealed a research gap as their were no studies found from comparable
intralogistics systems that operate with similar control structure and system dynamics that can be used
as a direct example. The combination of the various pipelaying operations, the movement restrictions
of the pipe handling equipment and the control structure with the pipe routing system functioning as
a centralized decision-maker regulating all pipe movements make that the suitable OR methods for
modelling and solving similar problems have to be customized to align with the pipe routing problem.

1.3. Research objective and approach
This research aims to evaluate the feasibility of a fully automated pipe routing system that regulates joint
movements on a pipelaying vessel during pipelaying operations. The research objective is to formulate
a conceptual design for this pipe routing system and evaluate its performance for different routing
strategies using a model of the pipe handling system on Solitaire. This will be done by addressing the
following research question:

How can the joint movements on a pipelaying vessel be automatically regulated to obtain a continuous
supply of double joints to the firing line, whilst considering the pipe supply vessel turnaround time?

To answer this main research question, the study will be divided into four stages in which the following
subquestions will be examined:

1. What are the key components and operations of a pipe handling system on a pipelaying vessel
that are relevant to the pipe routing system, and what does the control structure including the pipe
routing system look like?

2. How can suitable OR methods be applied and adapted to effectively model and solve the pipe
routing problem?

3. What does a minimal viable model of the pipe handling system look like that can effectively eval-
uate the performance of a pipe routing system during pipelaying operations?

4. How does the conceptual pipe routing system perform for different routing strategies and how
could this performance be further improved?

The following chapters of this report are organized as follows. Chapter 2 describes a system analysis
of the pipe handling system on Solitaire based on The Delft Systems Approach by Veeke et al. 2008
to define the system specifications and boundaries for this study. Chapter 3 provides a brief literature
study, expanding on the findings of a the previous literature study, to establish the approach to model
the system defined in Chapter 2 and the adapted methods to model and solve the pipe routing prob-
lem. Chapter 4 describes the development of the model that emulates the system during pipelaying
operations with integration of the pipe routing system. The model will be developed using a system-
atic approach described by Robinson 2004. Chapter 5 applies the developed model to experiment
with different routing strategies to identify the most effective configuration found for the conceptual
pipe routing system, and highlight opportunities for further improvement. Chapter 6 summarizes the
findings by addressing all research questions, while Chapter 7 presents both scientific and practical
recommendations for future work.

2
System analysis

This chapter describes a system analysis of the pipe handling system on Solitaire to define the system
for this research. First the methodology used to perform the system analysis will be described, followed
by a brief overview of all the pipelaying operations performed on Solitaire. Then the general pipe
handling system on Solitaire is defined, followed by amore detailed analysis of the pipe yard subsystem.
For the pipe yard subsystem, also the control structure is defined with implementation of the pipe routing
system.

2.1. Methodology
The pipe handling system will be defined using The Delft Systems Approach by Veeke et al. 2008.This
section will explain the principles of this approach, that are used to structure the remainder of this
chapter and define the pipe handling system considered in this project.

In The Delft Systems Approach, a system is described as a collection of elements that interact with each
other. Elements are the smallest components of the system that are considered by the researcher to
achieve his goal. Each element has its own attributes and the collection of elements is referred to as
the content of the system. Relationships between elements define the interactions between them and
these interactions can change the attributes of an element. The collection of relationships is referred to
as the internal structure of the system. At last the environment is defined as the collection of elements
outside of the system that have relationships with elements within the system. These relationships are
referred to as the external structure.

Complex systems can be differentiated into subsystems and aspectsystems. A subsystem is a
partial collection of the element, whereby all relationships remain. An aspectsystem describes the
entire content of a system, but only with a partial collection of the relationships.

2.2. Pipelaying operations on Solitaire
This section provides a brief overview of the pipe laying operations on Solitaire. As stated in the intro-
duction, Solitaire is a pipelaying vessel with two factories: the DJF and the firing line. In the DJF, single
joints are welded together to form double joints, which are then supplied to the firing line. In the firing
line, the double joints are welded together to form the main pipeline. At the end of the firing line, the
main pipeline is lowered into the water until it reaches the seabed.

All pipelaying operations on Solitaire have been detailed in a previous study using an IDEF0 diagram.
A copy of this diagram is shown in Figure 2.1. The top level functions A_0 and A0 are shown on top of
this figure, with the lower level functions A2, A3 and A5 being further refined below.

3

2.2. Pipelaying operations on Solitaire 4

Figure 2.1: IDEFO diagram for pipelaying operations on Solitaire (Copy from a prior literature study

2.3. Pipe handling system 5

Figure 2.1 shows that the pipe laying operations can be divided in five subsystems; A1: pipe delivery,
A2: pipe yard operations, A3: DJF operations, A4: firing line operations and A5: reprocessing opera-
tions. The single joints are supplied by Pipe Supply Vessels (PSVs) and delivered by the deck-mounted
pipe transfer cranes (PTCs) on Solitaire. After delivery the joints need to be identified and marked in the
pipe yard. From the marking station, the joints can be transported to the holds for temporarily storage
or they can directly pass the cleaning station to afterwards be transported to the DJF. In the DJF the
joints pass the bevelling and pre-heating station before they can be welded together to form a double
joint. The weld of the double joint is checked at a non-destructive testing (NDT) station before it can
be supplied to the first welding station of the firing line (beadstall) through the pipe elevator. Here the
double joint is welded to the main line and this weld is checked as well. In case of a weld defect, the
reject double joints are transported to a return conveyor where it is split into single joints again. From
here, the reject single joints can re-enter the process in the pipe yard.

It can be noted that A1: pipe delivery and A4: firing line operations are transparent in Figure 2.1
as these subsystems are not part of the pipe handling system considered in this project, but they do
have relationships with elements of the pipe handling system.

It is clear that the objective of the pipelaying operations is the installation of the main pipeline, which
is worked on continuously in the firing line. All other operations are subordinate to this objective and
should work in coordination to ensure a steady supply of double joints to the firing line, thereby pre-
venting any downtime in the operation due to a lack of resources. Aside from downtime in the firing
line operations, the most significant factor affecting operational costs is pipe delivery. This is due to
the high operating costs of PSVs, which can be limited by minimizing the turnaround time of a supply
operation. However, pipe delivery is also dependent on the pipe yard operations, which must facilitate
continuous PTC operations by clearing the delivery position.

2.3. Pipe handling system
This section describes the content and structure of the pipe handling system considered in the DJF
renovation project. As noted in the previous section the pipe handling system considered in the DJF
renovation project covers functions A2, A3 and A5 of the IDEF0 diagram in Figure 2.1. This means it
covers all the pipe handling operations between the pipe delivery on deck and the double joints being
lowered to the firing line, with potential reprocessing operations. The PSVs, the PTCS, and the firing
line can be seen as elements of the environment.

Figure 2.2 shows a black box model of the pipe yard system. Single joints are delivered by the PTC,
then handled by the pipe handling system, and at the end of this system they are delivered as double
joints to the firing line through the pipe elevator. To regulate the operations within the pipe handling
system, the system requires a pipe routing system. The primary key performance indicator (KPI) of the
system is the firing line waiting time, as the system is required to ensure a continuous supply of double
joints to the firing line. Any waiting time therefore indicates a failure to deliver the required double
joints on time. A secondary KPI is the PTC waiting time, which arises when the delivery position is not
cleared in time to enable the PTC to continuously deliver joints. This delay is directly associated with
an increase in the PSV turnaround time.

Figure 2.2: Black box model of the pipe yard system

2.3. Pipe handling system 6

2.3.1. Content of the pipe handling system
The content of the pipe handling system is summarized in Table 2.1. Figure 2.3 shows a photo of the
current configuration of the pipe yard on Solitaire featuring equipment comparable to the elements of
the new pipe handling system. The remainder of this section provides a description for all elements.

Table 2.1: Content of the pipe handling system

Element Type Function Task
Joint Resource
Anode Joint Resource
Double Joint Product
Anode Double Joint Product
Longitudinal Conveyor (LCO) Transport equipment Pipe movement Park and move resources in longitudinal direction
Fixed Pipe Support (FPS) Transport equipment Pipe movement Park resources
Transverse Cars (TC) Transport equipment Pipe movement Transport resources in transverse direction
Deck crane Transport equipment Pipe movement Lift resources to and from holds
Hold Subsystem Pipe movement Store resources temporarily
Marking Station Process station Resource processing Mark resources with identification number
Cleaning Station Process station Resource processing Clean pipe ends of resources
Bevelling Station Process station Resource processing Bevel pipe ends of resources
Heating Station Process station Resource processing Pre-heat pipe ends of resources
Welding 1 Station Process station Production Line-up two resources and connect with external weld
Welding 2 Station Process station Production Lay second external weld
Welding 3/4 Station Process station Production Lay final external and internal weld
NDT Station Process station Product testing Check weld quality of product
Overhead crane Transport equipment Pipe movement Lift products to and from Buffer
Buffer Storage location Product storage Store products temporarily
Pipe elevator Transport equipment Product delivery Lift products to firing line

Figure 2.3: Current configuration of the pipe yard on Solitaire ©Allseas

2.3. Pipe handling system 7

Resources and Products

Figure 2.4: Joints

The resources moving through the pipe handling system are single lengths of
steel pipe with a length of approximate 12m and a diameter ranging between
0,2 and 1,5 m. This project considers two types of resources: normal joints
and anode joints. Anode joints are fitted with a sacrificial anode that prevents
corrosion of the pipeline by cathodic protection. In the DJF resources are
welded together to form the products: double joints. If one the resources
used is an anode joint, the product becomes an anode double joint. The
anode double joints are incorporated in the main pipeline at regular intervals.

Longitudinal Conveyor

Figure 2.5: LCO

The LCOs can park resources and move them in longitudinal direction to ad-
jacent LCOs. In practice this element consist of individual rollers, but here
the LCO is referred to as the set of rollers that form a parking spot for the
resources. The LCOs also allow for TCs to travel between support points to
pick up a resource for transverse transport.

Fixed Pipe Support

Figure 2.6: FPS

The FPSs are their to park joints in positions where there is no longitudinal
movement required. Again here the FPS is referred to as the set of supports
that form a parking spot for resources and TCs are able to travel between the
supports for transverse transport.

Transverse Car

Figure 2.7: TC

The TCs are rail mounted machinery that can transport resources in trans-
verse direction by lifting the joints and travelling between the LCO and FPS
supports. Both the transport and lifting speed of the TC can be considered
constant. All TCs are configured as dual units with two mounted on a single
rail. This provides redundancy, but also requires the TCs to coordinate their
movements during operation.

Deck crane

Figure 2.8: Deck crane

The deck cranes are rail mounted overhead cranes that lift joints from an LCO
onto an FPS in the hold. There are two deck cranes, meaning two holds can
be used simultaneously for either storage or retrieval of joints.

2.3. Pipe handling system 8

Hold

Figure 2.9: Hold

The hold is defined as a subsystem as in practice it consists of multiple el-
ements that are not explicitly considered in this project. The hold system
supports the resource flow by temporarily storing resources when the supply
is higher than the demand of the DJF, and supplying stored resources when
the supply is lower than the demand. The hold system consist of six different
holds.

Marking Station

Figure 2.10: Marking

The marking station automatically reads the supplier identification number of
a resource and then paints the identification on the outside of the resource.
The pipe handling system is configured with two marking stations located
next to eachother. Figure 2.10 shows the marking tool in a test setup. As
the marking station has not been used in practice there is no accurate data
available on the duration time, but it should have a small variation as the
marking station will be a fully automated procedure.

Cleaning Station

Figure 2.11: PECT

The cleaning station uses the pipe end cleaning tool (PECT) shown in Figure
2.11 to scrub the ends of a resource with a wire brush while the resource is
rotated. The pipe handling system is configured with two cleaning stations
located next to eachother. Again the PECT shown in the figure has not been
used in practice so there is no accurate data available on the duration time.

Bevelling station

Figure 2.12: Bevelling

At a bevelling station the pipe ends are bevelled by a pipe facing machine.
There are four bevelling stations with a total of eight pipe facing machines.
Currently the pipe facing machines are handled by an operator and for now
it is unclear if this operation will be fully automated.

Heating station

Figure 2.13: Heating

After bevelling the pipe ends are pre-heated for welding by a heating coil at the
heating station. This operation is very fast compared to the other operations
and can be handled by one of the welding operators from welding station 1.
Also for this operation it is unclear if this will be fully automated.

2.3. Pipe handling system 9

Welding stations

Figure 2.14: Welding

Awelding line consists of three welding stations with multiple human operated
and (semi-) automated operations. Welding station 1 is supplied with two
resources which are aligned and welded together. At welding station 2, the
weld is being expanded on the outside. At welding station 3/4 the weld is
finished on both the outside and inside of the pipe to form a finished product.
The DJF is configured with two welding lines that are both supplied from the
same LCO positions in the pipe yard.

NDT Station

Figure 2.15: AUT

The NDT station checks the weld quality of the products using an Automated
Ultrasonic Testing (AUT) scanner as shown in Figure 2.15. If the product
does not pass the test it will be deconstructed and transport back to the pipe
yard from the end of the DJF. The DJF is configured with two NDT stations
located next to eachother in line with the welding lines. Although the scanner
operates automatic, it is mounted and controlled by a human operator.

Overhead Crane

Figure 2.16: Overhead
crane

In the waiting area another overhead crane is present that transfers joints
within the waiting area. Currently this crane is equipped with lifting hooks,
but these will be replaced by stabbing pins for more flexibility.

Buffer

Figure 2.17: Buffer

When products have passed the welding test, but they can not directly be
supplied to the firing line, they are placed in the double joint buffer by means
of an overhead crane. As shown in Figure 2.17 the products lay on top of
eachother in the buffer location, so not all products are directly accessible to
the overhead crane.

Elevator

Figure 2.18: Firing line

The pipe elevator transfers joints from the waiting area to the beadstall with
a one-dimensional motion. The pipe elevator is currently supplied by the
overhead crane from the waiting area, but after the renovation it can also be
supplied by a TCs with extended arms.

2.3. Pipe handling system 10

2.3.2. Content of the pipe handling system environment
Table 2.2 summarizes the content of the environment and the remainder of this section provides a
description of all elements.

Table 2.2: Content of the pipe handling system environment

Element Type Function Task
Pipe Supply Vessel (PSV) Resource supply Supply Supply resources
Pipe transfer crane (PTC) Transport equipment Transport Deliver resources from a PSV to the pipe handling system
Firing line Subsystem Production Produce main pipe line out of products

Pipe Supply Vessel

Figure 2.19: PSV

A PSV supplies joints from shore to ship. The PSV is emptied by a PTC from
Solitaire.

Pipe Transfer Crane

Figure 2.20: PTC

Solitaire is equipped with two PTCs that deliver the resources from a PSV
onto a fixed position in the pipe yard. The PTCs are human operated and
also requires assistance from personnel on deck to secure and release the
resource.

Firing line

Figure 2.21: Firing line

The firing line is another welding line defined as a subsystem where products
are welded together to form the main pipeline. The firing also includes multi-
ple welding stations and an NDT station. As products are welded together, a
weld rejection necessitates the deconstruction of the six products that have al-
ready been welded after the rejected weld. The firing line is supplied from the
pipe handling system by the pipe elevator. Reject products may be retrieved
directly by the overhead crane.

2.3.3. Structure of the pipe handling system
Figure 2.22 shows the structure of the pipe handling system, including all elements described in the
system content. As shown, the system can be divided in four different zones: the pipe yard, the DJF,
the waiting area and the return line. These zones correspond to the operations defined in Figure 2.1
with the waiting area belonging to the DJF operations.

Internal structure
The figure highlights relative positions of all the system elements and their internal connection to each
other. The layout of the system can be seen as an irregular grid where the coloured cells represent
the transport equipment, either an LCO or an FPS, that can hold resources or products. The joints are
longitudinal in X-direction and the connection between cells shows how they can move along the grid.

2.3. Pipe handling system 11

The joints can directly move in X-direction on the LCOs. For movement in Y-direction the joint requires
the TCs that are positioned under the cells to lift both pipe ends, travel to another vertical aligned cell
and lower both pipe ends again. During this transport in Y-direction it cannot pass any other joints on
its path.

Figure 2.22 also highlights the positions of the the process stations, which are placed on top of the
transport equipment that park the joints at the stations so they can be processed. After the process
station is finished it releases the joint so it can be moved on by the transport equipment. All process
stations are featured twice in the system and all joints should pass each type of process station in the
order as described.

The holds and the buffer are special cells on the grid that can store multiple resources or products.
Resources can reach the holds from the neighbouring LCOs by one of the deck cranes that can move
itself along the return line in X-direction. Products can reach the buffer from the end of the DJF by the
overhead crane, that can also lift products from here onto the return line.

External structure
The external structure of the pipe handling system is not explicitly shown in Figure 2.22. However, the
FPSs marked as delivery position indicate the position where the pipe handling system is connected
to the PSVs by means of the PTCs. Furthermore, the pipe elevator connects the pipe handling system
to the firing line and when rejected double joints are sent back by the firing line they can be retrieved
by the overhead crane through the indicated hatch to the firing line.

Figure 2.22: General structure of the pipe handling system

2.4. Control structure of the pipe yard system 12

From Figure 2.22 it can be concluded that only the grid structure in the pipe yard and the waiting area
actually allows for different routing strategies. The adjacent stations of the welding lines in the DJF have
a one-directional pipe flow. As this research focusses on routing strategies within the pipe handling
system, the scope of this research will henceforth be limited to subsystem A2: pipe yard operations,
while accounting for its interaction with the other elements of the pipe handling system. This will from
now be referred to as the pipe yard system.

2.4. Control structure of the pipe yard system
Figure 2.23 outlines the control structure of the pipe handling system. The pipe routing system is seen
as an intermediate system that can be implemented into the existing control structure. Currently, all
transport equipment is controlled by the pipe handling plc and the stations and subsystems each have
their own control system. All control systems are connected to a database that receives pipe and sta-
tion information from all pipelaying operations. In the existing structure, human operators assign the
joint movements to be performed by the pipe handling PLC. As human operators only assign destina-
tions to joints and do not control the actual movements, this human decision making can be directly
substituted for the pipe routing system that automates the decision-making process. The pipe routing
system receives pipe and station information from the database and translates this information into
pipe movement requests for the pipe handling PLC.

Figure 2.23: Pipe yard system control structure

2.5. Conclusion
In this chapter, all pipelaying operations on Solitaire have been described and divided into subsystems
following the IDEF0 function modelling methodology as shown in Figure 2.1. Although the DJF reno-
vation project focusses on the pipe handling system consisting of functions A2: pipe yard operations,
A3: DJF operations and A5: reprocessing operations, it is concluded that the scope of this study will
be limited to function A2: pipe yard operations, which from now on will be referred to as the pipe yard
system. Furthermore, it is concluded that the pipe routing system is implemented in the control struc-
ture of the pipe yard system as an intermediate system connected to the database containing all pipe
and station information. The pipe routing system translates the pipe and station information into pipe
movement requests for the pipe handling PLC and hold management operators.

3
Methodology for modelling and

solving the pipe routing problem

This chapter establishes the methodology for modelling and solving the pipe routing problem. The
chapter first describes the findings of a prior literature study on ORmethods in comparable intralogistics
systems, which are then further developed for application in this study.

3.1. Prior literature study
This section provides an overview of the prior literature study and its conclusions, followed by the
application of the identified methods in this study.

3.1.1. Overview of the literature study
The prior study defines the pipe routing problem as a combinatorial problem of determining the path for
each joint (routing) and scheduling the joint movements together with the other pipe handling operations.
Since research on automated pipe handling systems is limited, a literature review was conducted on
ORmethods applied in comparable intralogistics systems. The pipe handling system is compared to an
automated container terminal with integrated scheduling as all operations within the system cooperate
to achieve a shared main objective. More specifically, the operations of the TCs in the pipe yard are
compared to twin operating yard cranes in the container terminal as they are both part of a larger
system with similar objectives and movement restrictions. Additionally the routing challenge of multiple
moving joints in the pipe yard is compared to the routing of Automated Guided Vehicles (AGVs) in
intralogistics systems. A literature review was conducted on all these comparable intralogistics systems
and revealed an abundance of methods to model and solve both routing and scheduling problems. The
review concludes the study with an overview of all identified methods and their applicability to the pipe
routing problem.

3.1.2. Conclusions of the literature review
The literature review concluded that the pipe handling operations should be modelled using simulation
as this is typically used to model a system when it involves stochastic behaviour, which makes it too
complex to be analysed using only mathematical models (Hillier et al. 2015). This is applicable to
the pipe handling system because of the dynamic infeed of joints and the stochastic behaviour of the
pipelaying operations.

The identified routing and scheduling methods are evaluated based on their underlying principles to
assess their suitability for the pipe routing problem. The literature review identified Reinforcement
Learning (RL) as the most promising approach, as it employs the model-free Markov Decision Process
(MDP) framework to represent the problem as a sequential decision-making process, closely aligning
with the key principles of the pipe routing problem. Moreover, RL can adapt to unforeseen scenarios
(Filom et al. 2022) and may reveal previously unrecognized system relationships (Wuest et al. 2016).

13

3.1. Prior literature study 14

Also Moralez et al. 2020 concludes Artificial Intelligence (AI) will play an important role in the continuous
improvement of automated pipe handling systems.

However, RL is also inherently complex. (Filom et al. 2022) claims its industrial application remains
limited due to its sensitivity to training data and the need for extensive offline training. The same study
promotes for more research exploring how and when RL can replace conventional OR, or how the
methods could complement each other. Since there is currently no benchmark performance for the pipe
routing system, the immediate priority is to achieve automation through sufficiently effective solutions.
Therefore, the literature review proposes less complex methods to model and solve the pipe routing
problem at the current stage, and considers optimization of the pipe routing system as a later stage.

The literature review also concludes the multi-agent path finding (MAPF) problem to have a lot of sim-
ilarities with the pipe routing problem. MAPF finds paths for multiple agents in a shared environment
such that the agents do not collide and all agents reach their goal (Stern 2019). This seems to align
with the pipe routing problem where the joints would be considered the agents that move within a grid
environment (the pipe handling system) and share similar destinations (processing stations). The most
straightforward method to solve the MAPF would be rule-based heuristics that are based on operator-
experience, but also routing specific heuristics like D* algorithm and priority based path planning were
mentioned as suitable solvers.

Additionally, the literature review proposes to incorporate a dynamic programming approach to simply
the pipe routing problem by dividing it in sequential subproblems that can each be solved with their own
policy.

3.1.3. Application of the identified methods in this study
After the more detailed analysis of the pipe handling system described in Chapter 2, it is evident that
there are no example systems in literature that can be directly compared to the pipe routing problem.
Nevertheless, this subsection outlines how some of the identified methods are applied to model and
solve the problem.

This study follows the proposal to develop a simulation model of the pipe handling system. The applied
simulation method and software is further detailed in Section 3.2.

After looking further into modelling the pipe routing problem as an MAPF, it is concluded that some
key features make this problem a more complex variation on classic MAPF. Classic MAPF algorithms
assume time to be discretized in equal time steps with agents moving at the same time while in the
pipe routing problem joints mostly move successively due to moving restrictions like usage of the TCs.
Agents are considered to be elements that can move on their own while joints are passive elements
that need to be moved around, making it more complex to translate the outcome of the MAPF algorithm
into discrete decisions. Furthermore the joints in the pipe routing problem have multiple intermediate
goals: visiting processing stations and potentially one of the holds before entering the DJF.

To address the complexity of intermediate goals, the problem can divided into sequential sub-
problems that can each be solved with their own policy. Instead of calculating the complete route of
every joint including intermediate goals, the movement of the joint can be split into shorter routes with
separate goals. Addressing all processes of the pipe yard system (see function A2 in Figure 2.1) as
subproblems actually simplifies the problem to an extend where it can hardly be seen as a path finding
problem as the navigable space decreases and the paths become more predictable. This will be further
elaborated in Section 3.3.2.

What remains looks more like a sequential decision-making problem for individual movement steps,
with consideration of movement restrictions like usage of the TCs and including decision-making on
usage of the holds. This reintroduces MDP as a solution for modelling sequential-decision making
problems. Otterlo et al. 2012 distinguishes three classes of algorithms for solving sequential decision
problems: programming, search and planning, and learning algorithms.

Search and planning corresponds to traditional OR methods that solve MDPs mathematically to
optimization. However, this approach is unsuitable for the pipe routing problem, as it would require
modelling the pipe handling operations directly within the MDP, whereas the system’s complexity ne-
cessitates modelling through an external simulation model.

Programming, similar to learning, can be applied to model-free MDPs with an external model. In

3.2. Simulation model of the pipe handling system 15

this approach, decisions rely entirely on rule-based heuristics, meaning it requires the programmer to
anticipate and encode all possible situations during the design phase. As a result, the application of
programmed solutions is limited for complex systems and dynamic environments (Otterlo et al. 2012),
which likely explains the absence of comparable studies using heuristic solvers for sequential decision-
making. However, for the pipe routing problem, the solution space can be effectively constrained,
making it suitable for a well-founded programmed solution.

Therefore, this study models the pipe routing problem within a model-free MDP framework and applies
rule-based heuristics for its solution, as further detailed in Section 3.3. Since the problem is formulated
in a manner consistent with RL, the approach also enables future extension of this research through
the implementation of an RL solver. In this way, it may serve as an example of how to address the
research gap identified by Filom et al. 2022 regarding the industrial application of RL.

3.2. Simulation model of the pipe handling system
This section outlines the most suitable method to simulate the operations of the pipe yard system,
followed by a literature review on simulation software to establish the program that will be used in this
study.

3.2.1. Simulation modelling method
There are three main methods for simulation modelling: System Dynamics (SD), Discrete Event Simu-
lation (DES) and Agent-based Modelling (ABM) (Maidstone 2012). SD is a method for simulating non
linear behaviour of complex systems over time that are characterized by feedback and accumulation
effects (TU Delft 2020b). It is more focussed on the flow of elements within a system, rather than the
individual behaviour of elements (Maidstone 2012). A relevant example would be simulating the accu-
mulation of joints in the pipe yard based on a fluctuating rate of pipe supply and pipe demand by the
DJF with a feedback system that regulates the rate of flow of joints to the hold. To analyse the move-
ment of individual joints within the system it is more straightforward to use one of the other simulation
methods. DES is probably the most widely used method in OR (Maidstone 2012). This method models
a system as a chronological sequence of events that change the state of elements within the system,
which subsequently triggers new events (TU Delft 2020a). DES uses a top down modelling approach
(Siebers et al. 2010), meaning the pipe yard system can be modelled as a series of sequential pro-
cess with stochastic behaviour, where the joints are moving through. With this structure the paths of
element movement are predetermined by decisions made at user-defined decision points instead of
autonomous decisions resulting from interactions between elements (Wang et al. 2013). ABM on the
other hand uses a bottom up modelling approach, meaning the joints and equipment can be modelled
as individual agents with their own behaviour and decision-making and the interactions between all
elements together form the system. Although this approach might be an interesting different view on
the structure of the pipe yard system, it goes against the control principles defined in Section 2.4 as the
system operations should be controlled by a centralized control agent (the pipe routing system) rather
than multiple agents making their own decisions. DES is concluded to be the most suitable method for
this study as it best resembles the pipe routing problem and allows for centralized control by the pipe
routing system.

3.2.2. Discrete Event Simulation software
Appendix B describes the selection of the simulation software following a selection process described
by Robinson 2004. This section will summarize the findings and conclusion of this process.

A shortlist including the following DES software is evaluated: SimPy, Salabim, JaamSim, AnyLogic,
Tecnomatix Plant Simulation and MATLAB SimEvents. During the testing and evaluation of the short-
listed software options it became evident that the implementation of the desired control structure within
a DES environment is unconventional. In specialized GUI packages DES models are typically thought
of as networks of queues and servers with entities moving through (Maidstone 2012), resulting in lim-
ited solutions to control the entity flow. As such, a language-based modelling approach offers greater
flexibility than a GUI with pre-built mechanisms.

Salabim scored the highest in the evaluation based on the following criteria: ease of model de-
velopment, integrated animation, optimization solutions for decision-making, modelling support and

3.3. Modelling and solving the pipe routing problem 16

potential for future use of the model within Allseas. As a language-based simulation library in Python,
this software provides all the essential features, including a basic integrated animation function. Since
it is purely code-driven, modelling the system’s content may require more effort. However, building
the model from scratch allows for greater flexibility and will simplify the implementation of the control
structure which is expected to be the biggest challenge.

3.3. Modelling and solving the pipe routing problem
This section explains how the pipe routing problem is modelled within a model-free MDP framework
and solved using rule-based heuristics. While the solver algorithm is formulated during the modelling
and experimentation phase, this section introduces an approach to constrain the solution space for
identifying near-optimal solutions.

3.3.1. Model-free Markov Decision Process framework
This subsection first outlines a classical MDP framework, then the model-free RL framework, and finally
the adaptations made to apply this framework to the pipe routing problem.

Classic MDP
MDP is a framework for describing stochastic sequential decision making problems (Miller 2023). An
important property of MDP is that decision-making is only based on the information given by the current
state of the model and not on any information from the past Hillier et al. 2015. A classic MDP can be
formulated as a tuple (S,A, P,R) containing the following elements:

• state space S is the set of all possible states the system can be in with each state capturing the
information required to make a decision,

• actions A allow the decision-maker to transition the current state into another state,
• transition probabilities P define the effect of action a by formulating the probability the system
transitions to state s′ given the current state s,

• rewards R specify the benefit or cost of executing action a given the current state s.

This classic form of MDP can be mathematically solved to optimality with the goal to maximize the
cumulative reward. The transition probability and reward function can collectively be referred to as the
model of the MDP as they describe what actually happens within the system.

Model-free Reinforcement Learning
In model-free RL, the problem is formulated as an MDP, but decisions are made directly from the
policy of the RL model. This policy selects actions based on learning data rather than calculating the
most promising option. The transition probability and reward elements are removed from the MDP and
replaced by an external model, such as a DESmodel, which provides the system state and performs the
action prescribed by the RL model. This action transitions the external model into a new state, which,
together with a new reward function, is fed back to the RL model. This reward function evaluates the
benefit or cost of the resulting state rather than the action itself, thereby assessing the actual effect of
an action. The RL model then uses this feedback to update its policy.

Framework for the pipe routing problem
As the pipe handling system can better be modelled by a simulation model, the pipe routing problem
will be defined as a model-free MDP derived from model-free RL. Instead of the RL model, the decision-
maker in this framework is going to be the pipe routing system. The policy of the pipe routing system
consists of a preprogrammed algorithm that will not be updated based on the reward of individual
actions, therefore the the reward function can be removed from the framework.

Figure 3.1 shows the decision framework for the pipe routing problem. TheDESmodel provides the
system state s, comprising the status of joints, the occupancy of positions and the status of processing
stations and transport equipment. The pipe routing system is the decision-maker that selects action a
from its policy, given state s. Action a represents the next joint movement to be executed by the pipe
handling system in the DES model. Once the action is performed, the DES model transitions to a new
state s′, which is then returned to the pipe routing system. The policy will from now on be referred to
as the routing strategy of the pipe routing system.

3.3. Modelling and solving the pipe routing problem 17

Figure 3.1: Decision framework for the pipe routing problem

3.3.2. Limiting the solution space
The routing strategy is formulated using rule-based heuristics, requiring the programmer to anticipate
all system states in order to select the best action at each instance. Chapter 5 will evaluate different
routing strategies to identify a best performing solution for a case study. However, the problem cannot
be solved to optimality in this approach due to the size of the solution space. This section introduces
an approach to constrain the action space of the decision framework, enabling the identification of
near-optimal solutions with a limited number of experiments.

In Section 3.1.3 it was mentioned how the concept of dynamic programming inspired a structured
approach to divide the pipe routing problem into subproblems relating to the processes within the pipe
yard system as defined in Figure 2.1. This approach will also be used to limit the solution space
for the pipe routing problem. Figure 3.2 shows how the pipe yard system can be divided into three
subprocesses: marking, cleaning and DJF.

Figure 3.2: Pipe routing problem for the pipe yard system divided in subproblems

The navigable space in the pipe yard can be constrained based on these subprocesses. As each
subprocess has clear starting points and destinations it is illogical to assign the navigable space be-
yond these positions. Figure 3.3 shows the navigable space corresponding to each subprocess, with
the colours relating to the colours for the subprocess given in Figure 3.2. Figure 3.3 shows that the
navigable space is also dependent on the pipe delivery scenario.

3.4. Conclusion 18

(a) PSV at port side (b) PSV at starboard (c) PSV at both (d) No PSV
Figure 3.3: Navigable space based on the joint’s subprocess and the pipe delivery scenario

With the limited navigable space visualized it becomes clear the action space can significantly be re-
duced when only considering actions that contribute to the goal of the subprocesses. In RL this called
action masking, which can be seen as a guided learning strategy that allows for integration of additional
human knowledge (Eber et al. 2023). Opposed to reward shaping where an agent is penalized with a
large negative reward for performing impossible or undesirable actions, action masking prevents the
agent from making these actions by removing them from the action space (Wilson et al. 2024). This
action space shaping induces an increased manual set up time and is susceptible to human bias (Kan-
ervisto et al. 2020), however it will also result in increased data efficiency and it allows for user-defined
constraints (Wilson et al. 2024). Previous studies have shown that action masking can be beneficial
for simplifying the learning process in RL as well as improving safety.

The concept will be used in this study to limit the action space by masking joint movements that
clearly do not do not contribute to the subprocesses of the pipe yard system. The limited action space
requires less routing strategy variations during the experimentation phase to explore the entire solution
space. For a future optimization phase based on RL it is also recommended to limit the action space
to reduce learning time and ensure that joints do not collide.

3.4. Conclusion
This chapter summarized the relevant findings of a prior literature study on OR methods applied in
comparable intralogistics systems and expanded the research on the proposed methods to make them
applicable to the pipe routing problem.

The pipe routing system will be implemented in a DES model of the pipe handling system. Based
on a brief literature review and exploratory testing of several programs, the Python library Salabim is
concluded to be most suitable software for the development of this model.

The pipe routing problem will be modelled within a model-free MDP framework that is derived from
model-free RL. The problem will be solved trough an algorithm build from rule-based heuristics, which
is referred to as the routing strategy. In this approach it is not possible to identify an optimal routing
strategy, however, the action space of the problem will be constrained to enable the identification of
near-optimal solutions for the routing strategy during the experimentation in Chapter 5.

4
Modelling of the pipe handling system

This chapter describes the development of a simulation model for the pipe handling system controlled
by a pipe routing system. The first section describes the methodology for the modelling procedure and
the resulting sections that follow from this procedure.

4.1. Methodology
The modelling procedure of this project will be performed following the systematic approach described
by Robinson 2004. This book divides the modelling procedure in four key phases: conceptual mod-
elling, model coding, experimentation and implementation. This project only focusses on the first three
phases, just like most studies consider the implementation phase as a separate project. The concep-
tual modelling phase is described in Section 4.2. Robinson 2004 defines the conceptual model as ’a
non-software specific description of the simulation model that is to be developed, describing the objec-
tives, in puts, outputs, content, assumptions and simplifications of the model. The model coding phase
is described in Section 4.3. During model coding, the conceptual model is converted into a computer
model. After development of the model, experiments are performed to obtain a better of understanding
of the real system, or find solutions for the problem of the real system. This phase is described in
Chapter 5. Although Robinson 2004 does not mention a specific model testing phase as it considers
verification and validation to be continuous processes that should be performed throughout the mod-
elling procedure, Section 4.4 describes how the verification and validation was performed for this study.
Furthermore it should be noted that the modelling procedure is not linear with repetition and iteration
of the modelling phases as well as sub-processes.

4.2. Conceptual model
This section describes the conceptual model of the pipe yard system controlled by a pipe routing system.
The conceptual modelling phase consist of four sub-processes: understanding the problem situation,
determining modelling objectives, designing inputs, outputs and content of the model, and collection
and analysis of model data. The processes will be described in the following subsections.

4.2.1. Understanding the problem situation
The understanding of the problem situation has for the most part been described in Chapter 2. A prior
simulation study within Allseas has given some additional insights on the pipe flow within the new pipe
yard layout. From this prior study it was concluded that for pipe delivery with one PSV there was still a
small percentage of the joints that was sent to the hold, meaning the supply of one PSV was sufficient
to keep up with the DJF demand. It remains unclear whether anode joints require a priority policy over
normal joints as they are not supplied as frequently.

19

4.2. Conceptual model 20

4.2.2. Modelling objective
The general project objective is to evaluate different routing strategies in the pipe yard for the concep-
tual pipe routing system with the aim to get better understanding of the system and identify a most
effective routing strategy. Therefore a simulation model is required that replicates the operations in
the pipe handling system and the control structure of the pipe routing system, as described in Chapter
2. The pipe routing system should be implemented as a control agent making decisions based on the
system state and an adaptable predefined algorithm, which is referred to as the routing strategy.

As the model should provide Allseas with a better understanding of the influences of routing strate-
gies on the systems performance, a visual representation of the pipe flow during simulation is desired.

The simulation model is required to produce a realistic output for both the production rate of double
joints by the DJF and the layrate of the firing line. In addition, the model will be employed to minimize
the waiting time KPIs defined in Section 2.3, although no specific performance targets have been pre-
determined for these measures.

Since this study focusses on routing strategies in the pipe yard, some operations in the waiting
area and beadstall will be simplified. To exclude the impact of this simplification on the system perfor-
mance, the continuous supply of double joints to the firing line is reinterpreted as a continuous supply
to the waiting area. Accordingly, the firing line waiting time as KPI is substituted by the waiting area
waiting time, which reflects instances where a double joint required at the firing line is not supplied to
the waiting area in time.

4.2.3. Model input
The model inputs can be seen as the experimental factors that can be used to achieve the modelling
objectives. For this project the only experimental factor is the routing strategy of the pipe routing system,
as all other parameters are assumed to be given.

An initial strategy for the pipe routing system will be formulated to achieve a continuous supply of
double joints to the waiting area. During the experimentation phase in Chapter 5 this routing strategy
will be experimented with to identify a most effective configuration.

While the simulation model will be prepared to adapt to different pipe delivery scenarios, during
this phase the pipe routing system will only be designed for pipe delivery with one PSV at port side as
this should be enough to verify and validate the simulation model. Chapter 5 will describe the different
pipe delivery scenarios that will be evaluated in this study.

4.2.4. Model output
The model output can be seen as the responses of the model that evaluate whether the modelling
objectives are achieved. For this project the most relevant model output are defined in Table 4.1. The
DJF production rate and the main pipeline length indicate whether the model generates a realistic
production output. The PTC waiting time and the waiting area waiting time are defined as the KPIs
targeted for minimization by the routing strategy. Additionally, the DJF waiting time is considered as
a supplementary output parameter, as it reflects inefficiencies within supply chain, although it is not
directly related to the overall performance of the pipe handling system.

Furthermore a lot of output parameters are added to provide a better understanding of the system, like
hold ratios and station utilization, as well as visual output through animation snapshots.

Table 4.1: Component process characteristics in the pipe yard system

Output parameter Unit Definition
DJF production joints / day The amount of non-rejected double joints produced by the DJF

Main pipeline length m / day The produced length of the main pipeline length that has successfully been
welded in the firing line

PTC wait time (KPI) min / day The sum of the wait time where the PTC was ready to deliver a single joint,
but the delivery position is still occupied by the earlier delivered joint

DJF wait time min / day The sum of the wait time where two bevelling stations are free, but there is
no pair of single joints on the DJF supply positions

Waiting area wait time (KPI) min / day The sum of the wait time where the firing line is free to receive a double joint,
but the correct double joint is not present in the waiting area

4.2. Conceptual model 21

4.2.5. Model content
This subsection will describe the elements of the pipe handling system that will be implemented as
components and the assumptions and simplifications that are applied on the system as it is described
in Section 2.3 to formulate the model. Additionally, this subsection will describe the initial pipe routing
system that will be implemented in the model.

Components
Figure 4.1 shows the content of the simulationmodel including all components. Some small adaptations
can be noted compared to the content of the pipe handling system in Figure 2.22:

• The LCOs and FPSs are not actual components in the model, but they are featured in the model
as positions for joints to move. The LCOs are split into fixed positions and joints cannot stay
between these positions.

• The TCs have been simplified to a single TC carrying a joint.
• The TC couples are identified by a port side (ps) and a starboard side (sb) TC that cannot overtake
eachother.

• The TC in the waiting area has been removed to simplify the routing strategy in this zone. All
movements will be performed by the overhead crane.

• The deck cranes are removed to simplify the hold procedure. The deck crane will be implemented
in the hold component.

• A deconstructor component is added at the end of the return line.

The pipe routing system regulates the movement of joints within the pipe yard, DJF and the return
line zone. For the the waiting area zone an additional component is added that regulates the joint
movements based on its own predefined algorithm that will not be adjusted during experimentation.
Also an additional component for the DJF is added to regulate the joints being sent to either the port
side or starboard welding line and store the waiting time for the DJF.

Figure 4.1: Model content

4.2. Conceptual model 22

Assumptions
The following assumptions are made to further limit the complexity and scope of the simulation model:

• The PTC will have a fairly continuous pipe supply rate with randomized but reasonable delivery
durations.

• The anode joints are delivered at fairly consistent intervals, with at most a one-position deviation
from the desired spacing.

• While at least one PSV is present, there is only pipe flow to the hold and not from the hold.
• The elements in the simulation model will have no downtime.
• Deconstruction of rejected double joints is done on the return line and rejected double joints can
be retrieved directly from the firing line through a hatch.

Simplifications
The following simplifications are made to further limit the complexity and scope of the simulation model:

• Acceleration and deceleration are simplified to movement with half the constant speed.
• The welding lines in the DJF are considered unidirectional all the way to the waiting area, joint
crossing to the opposite line is not considered.

• The firing line is simplified to be directly supplied by the pipe elevator without a buffer location in
the beadstall.

Pipe routing system
The pipe routing system applies a routing strategy consisting of rule-based heuristics to solve the pipe
routing problem. The routing strategy will be further developed during the experimentation phase in
Chapter 5, but for now it solves the pipe routing problem in the following sequential manner:

1. Which joint to move?
This will be determined according to progress of the joint within the pipe yard system. From all
idle joints with movements available, the joint that is the furthest into the process (in this simplified
model simply the joint that has the lowest identification number) is moved first.

2. Where to move joint?
This will be determined based on a predefined route that is implemented in the model through
move maps. The joint will be moved to the furthest position available in the direction of the
destination given by the move map.

3. When to move to hold?
Part of the question where to move the joint is when to move a joint to the hold. This will be
determined based on a push system where a joint will move to the hold when it is next to the
marking station at port side, it is not able to move to one of the cleaning positions and it is blocking
the movement of a marked joint at the marking station.

4. Which resource to use?
The TC dispatching will be determined based on the destination that is assigned to the joint. This
will be implemented in the model through a resource allocation list. When a TC is in use, all
movements corresponding to that TC become unavailable.

4.2.6. Model formulation
The model will be formulated using a language based modelling approach where components are gen-
erated with a set of attributes and a process cycle. The components can interact with the environment
and each other’s process cycle through functions like hold, wait, passivate and activate. In general
all process cycles loop infinitely, which is controlled by passivating the component. This section will
explain the structure of the model environment and the general formulation of the process cycles of all
components in textual form. The section is divided in several paragraphs describing similar or relating
components. Additionally, Appendix C provides an explicit formulation of all the components for the
conceptual model using a Programming Descriptive Language (PDL). Both this section and Appendix
C focus on the operational concept of the components and exclude additional functions for animation
and programming purposes.

4.2. Conceptual model 23

Model environment
This paragraph describes the model environment which mostly stores input data, like component pa-
rameters, that can be referenced by all components. The environmental position map, occupancy map
and move maps form the functional basis of how joint movements are regulated in the model.

The structure of Figure 4.1 is recreated in the model environment by giving all positional elements
a positional name or grid coordinate. These names and grid coordinates are translated into map co-
ordinates by means of an environmental position map. The map coordinates correspond to the actual
distances between positions and allow for calculation of movement durations within the model. Part of
the positions in the position map are listed in the routing positions, this list refers to all positions that are
included in the scope of the pipe routing system. The environment also includes user defined move
maps for the pipe routing system that define the destination and required movement resource for a joint
based on the current position and status of the joint.

One dynamic feature of the environment is the occupancy map, which is used by the components
to write or read the occupancy of a position. All grid coordinates are referenced and can be set to one
of the following states: free, reserved or occupied.

Pipe delivery
This paragraph describes how joints are delivered in the model through the PSV and PTC components.

A PSV generates a given amount of regular joints and anode joints and stores these in a joint list
with regular anode interval. The PSV is then passivated.

A PTC delivers the first joint from the list of its corresponding PSV to its delivery position. With the
delivery a joint is given an identification number and it is added to joint list of the pipe routing system.The
delivery time is split into a lifting time and a drop time. If after the lifting time the delivery position is not
free, the PTC waits before it drops the joint. The waiting time is stored for evaluation at the end of the
simulation. A PTC is passivated when the joint list of the corresponding PSV is empty.

Pipe Routing System
This paragraph describes how the pipe routing system assigns movements to the joints.

The pipe routing system is automatically activated every time a position in the position map is freed
or occupied. For each joint that is added to the joint list of the pipe routing system, the destination and
required movement resource of the joint are derived based on its current status and position through the
move map. The occupancy map provides which position between the current position and destination
of the joint are reachable (the move) and which positions are unreachable (the remainder).

If there is a move with reachable positions and with the required resource available, the move,
remainder and resource are set to the joint and the joint is activated. All the positions in the move are
set to reserved in the occupancy map. If the joint also has a remainder of unreachable positions it is
temporarily stored in a separate list. The pipe routing systems updates the move of the joints in this
list every time a position is freed.

If there are no more moves to assign the port side TC is sent to a position above the cleaning
stations if it ended at one of the cleaning stations. Then the pipe routing system passivates itself.

The pipe routing system also has a separate function to send a joint to one of the holds. This
function is activated by the marking station and sends a joint to the hold if it is blocking the joint at the
port side marking station after it has been marked.

Joints and Double Joints
This paragraph describes how joints and double joints perform a move that has been assigned by the
pipe routing system. Double joints are generated by the first welding station and hold a reference to
the two single joints that have been used to form the double joint.

After generation, both joints and double joints are directly passivated, waiting to be activated by
the pipe routing system with an assigned move. If the move is in x direction the move is performed
directly by the joint itself. If the move is in y direction, the joint first has to request the resource to travel
to its position and lift it. Then the joint moves together with the resource. And after the joint is dropped
by the resource, the resource is released.

A move consists of three phases: acceleration, constant velocity and deceleration. During the
constant velocity the joint may surpass several reserved positions that are freed again when the joint
has passed. During the move additional positions from the remainder may be added to the move by
the pipe routing system as long as the deceleration phase has not started. The joint position at the end

4.2. Conceptual model 24

of the move is set to occupied in the occupancy map.
If the final position is a processing station, the joints passivates itself to be reactivated by the

processing station. Then the joint indicates that it is ready for a new move, it activates the pipe routing
system and it passivates to be reactivated once a new move is assigned.

Movement resources
This paragraph describes the TC and Crane which are both components and resource elements that
facilitate joint movements in y direction.

A TC is mostly assigned to a joint by the pipe routing system and then requested and activated
by the joint. When activated, the TC first moves to an assigned new position which can be the joint
position, but this can also be just repositioning. If the TC was activated to perform a joint move, the TC
then holds for the lift time and then activates the joint to perform the move together with the joint. After
the move is performed, the TC holds for the drop time and activates the joint again. The TC is then
passivated waiting for a new request.

The crane component refers to the overhead crane that is positioned in the waiting area, Crane
38, and operates a similar process. Instead of the lift and drop time, the cranes operates with a hoist
time to lower the crane and lift the joints.

Processing Stations
This paragraph describes the general formulation of all processing station components that the joints
have to pass by: Marking, Cleaning, Bevelling, Heating, Welding1, Welding2, Welding34 and NDT.

The processing stations are given a position and wait until this position is occupied by a joint. The
stations then hold for a given processing time and optionally adjust the status of the joint. After this
process the station activates the joint. Some processing stations perform some additional actions.

Welding station 1 is given a fore and aft position and waits until both are occupied by a joint.
The single joints are removed from the simulation after the processing time and a new double joint is
generated with references to the single joints. The double joint destination is then set to the next station,
and when this position is free the double joint is activated to move there directly.

The NDT stations are given a reject probability and generates a random number between 0 and
1 after the processing time. If the random number is lower than the reject probability, the double joint
status is set to be rejected.

Hold
This paragraph describes how the hold component stores joints. The hold components can be set to
available or unavailable for storage before the start of the simulation.

A hold is given a position and a storage location. While the hold is available for storage, it waits
until its position is occupied by a joint. If the joint status is set to hold, the holds for a short time to
lift the joint. The joint position is then set to the storage location and the hold position is freed in the
occupancy map. The holds then holds for a longer storage time. After this process the joint is added
to the hold storage list and removed from the pipe routing system joint list.

DJF
This paragraph describes an additional component, the DJF, that regulates the transition of joints from
the pipe yard to the bevelling stations in the DJF and registers the DJF waiting time.

The DJF waits until both the fore and aft supply position are occupied by a joint. The DJF compo-
nent first checks the status of the bevelling stations at port side and then of the bevelling stations at
starboard side. If both the fore and aft bevelling station at one side are free, the joints are sent to these
stations. If both the port side and starboard side are not available the DJF passivates itself, waiting to
be reactivated by one of the heating stations indicating that a bevelling stations has come free.

If the DJF is activated by a heating station but the supply positions have not been occupied by new
joints yet, the DJF starts a timer that is stored in the wait memory once the positions are occupied.

Waiting Area
The pipe routing system regulates joint movements up until the waiting area zone. This paragraph
describes how the components in the waiting area zone are connected through an additional waiting
area component to regulate the joint movements within this zone.

The waiting area has three positions where double joints can be available, behind the NDT stations

4.2. Conceptual model 25

at port side and starboard side and at an extra reserve spot. Furthermore the waiting area includes a
buffer component to store double joints, an elevator component to transfer double joints to the firing
line and a deconstructor component to deconstruct rejects. The waiting area component regulates the
joint movements in this zone using a sequential if statement. If the firing line has rejects it sends these
double joints to the deconstructor until the reject list from the firing line is empty. If the elevator position
is free it sends one of the double joints in the waiting area to the elevator position. If there are no
correct double joints in the waiting area it request a double joint from the buffer to move to the elevator.
Then, if there are rejected double joints in the waiting area it sends these to the deconstructor. If their
are double joints in the waiting area that block the movement of a double joint at the NDT they are
sent to either the reserve position or the buffer. If none of these actions are possible the component is
passivated. After the waiting area assigns one of the actions it waits until the crane ready again.

When the firing line is waiting for a double joint and the elevator is free, but the required double
joint is not available in the waiting area, the waiting starts a timer that is stored in its wait memory once
the double joint is available.

The buffer component waits until its position is occupied by a double joint or it is activated by the
waiting area. If its position is occupied by a double joint it stores the double joint in a normal or anode
list and removes it from the simulation. If there is no double joint the component is activated by the
waiting area for retrieval. The buffer retrieves the required double joint to the simulation and set its
move to the elevator.

The elevator waits until its position is occupied and then holds for a loaded elevator time and
unloading time. Then the elevator waits until it is activated by the firing line and then holds for an empty
elevator time. The elevator position is then set to free and the waiting area is activated.

The deconstructor waits until its deconstruction position is occupied by a double joint and then holds
for the deconstruction time. The double joint is then removed from the simulation and the referenced
single joints are brought back to the simulation at the fore and aft position. The joints attributes are
adjusted, there destination is set to the hold and then they are added to the pipe routing system and
activated. The deconstructor waits until all positions are freed and then activates the waiting area.

Firing line
This paragraph describes the formulation of the firing line that constructs the main pipeline.

After delivery of a double joint the elevator is sent back by the firing line. The pipe length counter
is increased by one and if the counter can be divide by the anode interval the firing line indicates to the
waiting area component that the next double joint should be an anode. The delivered double joint is
added to a pipeline list and if the list is now longer than the reject length the first added double joint is
removed from the list and from the simulation. Then the firing holds for the processing time.

If a random number between 0 and 1 is lower than the firing line reject probability all double joints
in the pipeline list are added to a reject list, the pipeline length counter is adjusted and all double joints
are set to rejects. The waiting area is activated to remove the double joints and the firing line passivates
itself until the reject list is emptied.

4.2.7. Model data
This section provides the model data that is stored in the model environment at the start of the simula-
tion. Figure 4.5 shows an overview of the positional layout of all components mentioned in the model
formulation. The figure shows the grid coordinates of components, as well as the actual distances
between components that are used to formulate the position map.

Table 4.2 shows an overview of all the input data that has been used to form the parameters of the
simulation. All durations are based on 36 inch diameter pipeline from the South East Extension (SEE)
project. This project is taken as example as it is used before in a prior simulation study and there are
video recordings available of the production during this project. Equipment attributes are based on
the actual equipment specifications while process attributes are based on estimations provided by the
Pipeline Production Department (PPD). The process durations with a specified distribution are defined
with an estimated probability density function (PDF) that is based on estimations provided by PPD
combined with a self-conducted data study that is detailed in Appendix D. The following paragraphs
will explain the how the process duration for the processing stations are defined.

4.2. Conceptual model 26

PTC
The PTC lift duration is defined by a triangular distribution to simulate stochastic behaviour of the lift
process. A triangular distribution is defined only by the minimum, the most common (mode) and the
maximum value. This is often used in simulation when there is relatively little data available to conduct
a full statistical analysis (Kissell et al. 2017). The defined triangular PDF, shown in Figure 4.2 is based
on an average delivery rate of 24 joints per hour with a maximum speed of 40 joints per hour and a
minimum speed of 15 joints per hour.

Figure 4.2: Probability density function for station duration PTC

Firing line
The firing line process duration will be randomly sampled from a data set with more than 20.000 data
logs collected by a datalogger during the SEE project. The minimum duration and maximum duration
of the firing line are respectively set to 300 and 1920 seconds. All data logs outside of this range are
removed from the data set as faster durations are unrealistically fast while slower durations indicate
some form of downtime and the simulation is meant to simulate continuous production. This resulted
in the removal of a negligible number of low durations and a total of 2% of the highest durations from
the dataset. Figure 4.3 shows the final PDF for the firing line process duration. The process duration
consists of a critical station duration and a pull duration. The pull is assumed to be a constant value
of 120 seconds, making the critical station duration equal to the sampled process duration minus 120
seconds. From now on when the firing line process duration is mentioned, this references to the critical
station duration which has a mean of 333 seconds.

Figure 4.3: Probability density function for process duration Firing line

4.2. Conceptual model 27

Marking and cleaning
The marking and cleaning process duration are both simplified as a constant value as these processes
are fully automated.

DJF processing stations
The process durations for the stations within the DJF should be derived from empirical data to accurately
capture the stochastic nature of the operations in the simulation. However, there is a lack of accurate
data available on the DJF within Allseas as PPD generally assumes the production of the DJF to be
sufficient to supply the firing line and has therefore not been interested in accurately logging data for
the DJF during projects. An attempt has been done to extract duration data from a datalogger, but
the output shows a flattened distribution with an overestimated mean for the duration of the welding
stations.

Therefore Appendix D describes a self-conducted data study that concludes with an estimated
PDF for the duration of the bevel station, welding station 1, welding station 2 and welding station 3/4.
The PDFs shown in Figure 4.4 are formulated as Beta functions with the estimated mean duration
provided by PPD and estimated minimum and maximum values from the data study. The process
duration for the Heating station and NDT station is assumed to be constant, based on the estimated
duration provided by PPD.

(a) Bevel Station (b)Welding Station 1

(c)Welding Station 2 (d)Welding Station 34
Figure 4.4: Probability density functions for station durations in the DJF

4.2.
Conceptualm

odel
28

Figure 4.5: Model annotations

4.3. Computer model 29

Table 4.2: Component process characteristics in the pipe yard system

Component Attribute Distribution Type Value Unit
PTC Process duration Triangular (min, mean, max) 90, 150, 240 s
LCO Travel velocity Constant 500 mm/s

Travel acceleration Constant 150 mm/s2

TC Travel velocity Constant 250 mm/s
Travel acceleration Constant 100 mm/s2

Lift duration Constant 5 s
Crane38 Travel velocity Constant 20 m/min

Travel acceleration Constant 100 mm/s2

Hoist velocity Constant 5 m/min
Hoist stroke for travel Constant 2.9 m
Hoist stroke to firing line Constant 10 m

Marking Process duration Constant 45 s
Cleaning Process duration Constant 90 s
Hold Process duration Constant 144 s
Bevelling Process duration Bimodal Beta (min, mean, max) 180, 280, 560 s
Heating Process duration Constant 120 s
Welding 1 Process duration Beta (min, mean, max) 480, 685, 1200 s
Welding 2 Process duration Beta (min, mean, max) 450, 656, 1140 s
Welding 3/4 Process duration Beta (min, mean, max) 330, 457, 900 s
NDT Process duration Constant 240 s

Reject probability Constant 0.007
Elevator Stroke Constant 10 m
Elevator Empty velocity Constant 25 m/min
Elevator Loaded velocity Constant 20 m/min
Deconstructor Processing duration Constant 120 s
Firing line Process duration Empirical (min, mean, max) 180, 333, 1800 s
Firing line Pull duration Constant 120 s

Reject probability Constant 0.007

4.3. Computer model
The conceptual model detailed in Appendix C is implemented in Python (version 3.12.9) with the DES
package Salabim (version 25.0.10). This section describes the structure of the computer model and its
inputs and outputs.

The computer model consists of a main python script, two additional python scripts for the parameters
and the map and an Excel file for the input data. The Excel file may be adjusted by the user and
includes the model parameters, map specifications and move maps describing the predefined routes
for the pipe routing system. The additional python scripts import the input data from the Excel files and
copy the information in data files that are accessible by the main python script. The main python script
describes the setup, process and generation of the simulation environment and all components. The
main script also specifies how long the simulation will run, during which time range the data will be
collected and what data will be output at the end of the simulation.

The simulation can optionally run with animation, a feature that was not described in the conceptual
model, but is added to the computer model. Salabim’s animation engine allows for the animation of
a number of shapes, texts and images that can be dynamically updated. This is implemented in the
computer model to animate the layout of the position map, the movement of joints and movement
resources and the occupancy of positions and stations, as shown in Figure 4.6. The animation feature
is used for debugging and verification of the computer model, but can also be used in the model output
to get a better understanding of the simulation results.

4.3. Computer model 30

Figure 4.6: Snapshot from animation feature of the simulation model

4.3.1. Model input
As mentioned the model input can be adjusted by the user within an Excel file that includes the simu-
lation parameters, the map specifications and the move maps. The simulation parameters are initially
based on the realistic component process characteristics summarized in Table 4.2. Figure 4.7 shows
a visualization of the move map for supply from one PSV at port side that is initially implemented in
the input data with joints following the red arrows. Notice that in this visualization, the port side and
starboard TC that operate in the same column are split in two vertical lines with the port side TC per-
forming all joints for which the red arrow is placed on the left line and the starboard TC performing all
joints movements for which the red arrow is placed on the right line.

Figure 4.7: Input route for supply from PSV at port side

4.4. Verification and validation 31

4.3.2. Model output
The simulation output at the end of the simulation consists of a data report and wait report. The ex-
tensive data report provides insights on the pipe flow, station utilization and production quantities. The
data report and wait report are saved to a new sheet in another Excel file with their seed value for
reproducibility.

The wait report also summarizes the most relevant output parameters, which are the DJF produc-
tion, the main pipeline length and the waiting times for the PTC, DJF and waiting area. The PTC wait
time and the waiting area wait time form the actual KPIs of the system.

The model output utilizes a warm-up period for data collection to address initialization bias. Each
simulation starts with an empty pipe yard, DJF and waiting area. When the sum is taken of all maximum
process durations and movement durations, it shows that it takes the first double joint maximum 1.5
hours to arrive in the waiting area. As this double joint has spent the maximum duration at all processing
stations in this hypothetical simulation run, it is inevitable that this double joint has been blocking the
movement of the double joints behind, resulting in a completely filled pipe yard in DJF. It is therefore
reasonable for now to assume a warm-up period of 2 hours is long enough to reach a steady state for
the simulation output.

4.4. Verification and validation
Verification and validation are an important element of any simulation study to ensure that the simu-
lation results are useful and reliable. The model testing methods from Robinson 2004 will be used in
this section to perform a structured and complete verification and validation of the simulation model.
Robinson 2004 proposes that model testing should not be seen as a specific phase, but a continuous
process that is performed throughout the simulation study. Figure 4.8 shows how for each phase in
the modelling procedure at least one verification or validation step is performed. The remainder of
this section will the highlight the conceptual model validation, data validation and the computer model
verification, white-box validation and black-box validation that are performed in this simulation study.

Figure 4.8: Verification and validation in simulation study Landry et al. 1983

4.4. Verification and validation 32

4.4.1. Verification
Verification ensures that the computer model is true to the conceptual model and is performed through-
out the model coding phase. This subsection describes the verification methods that have been used
to ensure that the model performs as expected. The output data from three simulation runs with the
same realistic input parameters is provided in Table 4.3. This data will be used for several verification
methods.

Table 4.3: Data report for verification with realistic input parameters
Simulation Run 1 Simulation Run 2 Simulation Run 3

Data Unit PS SB Total PS SB Total PS SB Total Average
PTC delivery joints 568 0 568 577 0 577 574 0 574 573
Marked joints 314 254 568 334 243 577 317 257 574 573
Cleaned joints 210 210 420 208 209 417 215 215 430 422
Sent to hold joints 148 159 146 151
Sent to hold ratio - 0.26 0.28 0.25 0.26
DJF production joints 103 104 207 102 103 205 108 105 213 208
DJF rejects joints 2 0 2 3 0 3 0 1 1 2
Firing line rejects joints 6 0 6 4
Main pipeline length (m) m 4294 4562 4294 4383
PTC wait count - 0 0 0 0 0 0 0 0 0 0
PTC wait time (KPI) s 0 0 0 0 0 0 0 0 0 0
DJF wait count - 10 30 40 18 12 30 8 23 31 34
DJF wait time s 675 2124 2799 1013 1267 2280 369 1886 2255 2445
Waiting area wait count - 2 1 0 1
waiting area wait time (KPI) s 1173 1798 0 400
Firing line wait count - 9 7 9 8
Firing line wait time s 1173 1798 517 1163

Run-time checks
The simulation model is build iteratively, adding components and complexity gradually. Run-time check-
ing through event tracing was performed during coding to verify the process cycle of each new com-
ponent that was added to the model. Especially the combination of the animation feature showing
the events within the model and the run-time checks deriving the origin of the events ensured each
component was programmed correctly.

Visualization
As mentioned the animation feature of the computer model was used to verify the process of com-
ponents during coding. Also the finished computer model is verified through visualization of the joint
movements and station occupancy. Figure 4.6 shows a snapshot of Simulation 1 in Table 4.3 at the
start of data collection.

The animation is used to visualize the layout of the position map, the movement of joints and move-
ment resources and the occupancy of positions and stations. The outline of positions colours green
when they become free, black if they are free, orange if they are reserved and red if they are occupied.
Holds are coloured black if they are closed and grey if they are available for storage or retrieval. The
joints receive an identification number at pipe marking that is coloured orange for anode joints. The
identification number of double joints is a composition of the single joint identification numbers and
turns red if a double joint is rejected at NDT.

Figure 4.9: Snapshot from Simulation 1 in Table 4.3

4.4. Verification and validation 33

Data verification
Table 4.4 shows the average station duration from the simulation runs in Table 4.3 to verify that the used
distribution functions provide the expected average process duration. The last column ”Diff” shows that
the average process duration over three simulation runs of 24 hours (total of 600 samples) differs less
than 2% from the expected average value. The welding 1 wait time shows the average time that welding
station 1 is idle and waiting for welding station 2 to become free.

Table 4.4: Average station durations for simulation runs in Table 4.3
Simulation Run 1 Simulation Run 2 Simulation Run 3 Average Diff

Data Unit PS SB Total PS SB Total PS SB Total
PTC process duration s 152 0 152 150 0 150 151 0 151 151 0.7%
Bevel process duration s 279 276 278 281 277 279 281 283 282 280 -0.1%
Welding 1 process duration s 671 672 671 669 686 678 666 679 672 674 -1.7%
Welding 1 wait time s 70 74 71 67 67 70 57 56 57 66
Welding 2 process duration s 657 665 661 666 668 667 644 652 648 659 0.4%
Welding 3/4 process duration s 465 470 467 460 453 456 461 465 463 462 1.1%
Firing line process duration s 341 328 344 338 1.4%

Balance checks
The continuity of the pipe flow can be verified with some simple balance checks:

• Joints marked = Joints delivered
• Joints cleaned + Joints sent to hold = Joints marked
• DJF production = 0.5 * Joints cleaned
• Main pipeline length ≤ DJF production

Filling in the output data from Table 4.3 shows that all balance checks can be confirmed considering
an allowable difference of a couple of joints. This variation arises due to joints being between the
measuring points and the fact that data collection begins during the simulation run rather than at a
stationary starting point.

Experiments
Table 4.3 already shows three simulation runs with the same input, verifying the seed independency
as al results are in the same order of size. However, it can be noted that the amount of rejects per
seed is highly influential on the final main pipeline length with a simulation duration of 24 hours as the
reject probability is so low. On average a 0.7% reject probability for 200 double joints would result in
1.4 rejects (a reject in the firing line results in 6 rejected double joints).

Table 4.5 shows three more experiments to verify that the model behaves as expected.
The first experiment will be run with setting all process distributions to a constant average value

and the reject probability set to zero. This experiment will be run twice to verify that the simulation is
reproducible with these settings. With constant process durations it is expected that there will be less
waiting time between stations and therefore a higher DJF production, which matches with the data in
Table 4.5.

The second experiment will be run with the PTC process duration being set to the constant max-
imum delivery rate. It is expected that the PTC wait time will now be higher than zero and there are
more joints sent to hold. Furthermore it should not impact the DJF production as the supply to the DJF
was already sufficient.

The third experiment will be run with the PTC process duration being set to the constant minimal
delivery rate. It is expected that the process stations in the pipe yard can keep up with the delivery rate
and no joints are sent to the holds. The delivery will not be able to keep up with the DJF and therefore
increase the DJF wait time and decrease the DJF production. This can be seen clearly in the results in
Table 4.5 as the DJF now produces at port side as this side is preferred in the model when all bevelling
stations in the DJF are free.

4.4. Verification and validation 34

Table 4.5: Data report for verification experiments
Constant process durations Max PTC delivery rate Min PTC delivery rate

Data Unit PS SB Total PS SB Total PS SB Total
PTC delivery joints 576 0 576 698 0 698 360 0 360
Marked joints 295 281 576 490 208 698 0 360 360
Cleaned joints 226 226 452 209 208 417 0 360 360
Sent to hold joints 123 281 0
Sent to hold ratio - 0.21 0.4 0
DJF production joints 114 113 227 105 104 209 104 76 180
DJF rejects joints 0 0 0 0 0 0 0 0 0
Firing line rejects joints 0 0 0
Main pipeline length joints 191 189 179
PTC wait count - 0 0 0 412 0 412 0 0 0
PTC wait time (KPI) s 0 0 0 23409 0 23409 0 0 0
DJF wait count - 21 29 50 28 17 45 102 20 122
DJF wait time s 1317 2485 3802 1898 1830 3728 22613 12744 35357
Waiting area wait count - 0 0 0 0 0 0 7 0 7
Waiting area wait time (KPI) s 0 0 0 0 0 0 1292 0 1292
Firing line wait count - 0 10 28
Firing line wait time s 0 408 4446

Analytical results
The last verification step will be comparing the analytical DJF production to the simulated DJF produc-
tion from the constant process duration data in Table 4.5. The constant process duration data will be
used as welding station 2 is always faster than welding station 1 in this simulation run. The analytical
DJF production can therefore be calculated with the bottleneck process duration by adding up the TC
transfer duration from heating to welding 1 (Equation 4.1), the welding 1 process duration and the LCO
transfer duration to free the occupancy of welding station 1 (Equation 4.2). Equation 4.3 shows that
the analytical DJF production is 230 double joints, which matches with the 227 double joints measured
in the simulation.

tTC = tacc + tconstant + tdec = 2.50 +
2.98− 2 ∗ 0.31

0.25
+ 2.50 = 14.42s (4.1)

tLCO = tacc + tconstant = 3.33 +
24.40− 0.83

0.50
= 50.74 (4.2)

DJF production = 2 ∗ tsim
tbottleneck

= 2 ∗ 24 ∗ 3600
14.42 + 685 + 50.74

= 230 double joints (4.3)

4.4.2. Conceptual model validation
The conceptual model is validated during formulation by discussing the working principle of the concep-
tual model content and the assumptions and simplifications with the company supervisors at Allseas.

4.4.3. Data validation
Most of the simulation data is based on equipment specifications and / or has been collected together
with co-workers at Allseas to ensure it provides an accurate estimation of the real system parame-
ters. Additionally, Appendix C describes a self-performed data analysis to formulate and validate the
process duration data that was not accurately enough available at first. This analysis concludes with
four proposed PDFs describing the process duration for bevelling, welding 1, welding 2 and welding 34.

Table 4.6 shows the results of the Kolmogorov-Smirnov test (K-S test) to indicate if the self-measured
empirical distribution and the proposed PDF are considerably different. The K-S test statistic is the
largest deviation between the empirical data and the PDF. The K-S test p-value is the probability that
the statistic may occur assuming the empirical data comes from the PDF. A p-value lower than 0.05 pro-
vides strong evidence that the distribution of the empirical data and the PDF are significantly different
(Wasserman 2004).

4.4. Verification and validation 35

Table 4.6 therefore shows that proposed PDF is not an accurate estimation of the self-measured empir-
ical data for the welding stations. This was already concluded in Appendix D as the difference between
the mean provided by PPD and the video analysis data is too large to formulate a PDF fitting both data.
The mean value provided by PPD is assumed to be the most reliable and therefore it is concluded that
the proposed PDFs based on this mean value are the most accurate data that can be generated with
the available resources. But it should be noted that this data is not successfully validated.

Table 4.6: Results from K-S test between empirical data and proposed PDF

Process K-S statistic K-S p-value
Bevelling 0.11 0.68
Welding 1 0.40 0.00
Welding 2 0.26 0.01
Welding 3/4 0.33 0.00

4.4.4. White-box validation
White-box validation ensures that the model content is similar to the real system, which makes it indi-
rectly also a form of conceptual model validation (Robinson 2004). Like verification, white-box validation
is performed throughout the coding phase. The formulation of the code, and the data reports and ani-
mation output have been discussed with supervisors at different stages of the coding phase to ensure
every component operates similar to the real system or an agreed simplification of the real system.

4.4.5. Black-box validation
Black-box validation considers the overall behaviour and performance of the model, which is generally
validated by comparison to the real system or another model of the system (Robinson 2004). However,
in this occasion there is no data from the real system available as the real system does not exist yet
and there is also not another model that the simulation model can be directly compared to. However,
the general performance of the simulation model can be compared to empirical production data of the
old system and a prior simulation study.

Figure 4.10 shows the actual production of the firing line during the SEE project with comparison
to the average DJF production and firing line production of the simulation model. This figure shows
that the firing line production from the simulation can indeed be seen as an estimate of the average
layrate during the SEE project. The DJF production line shows that the average production rate of the
DJF can generally keep up with the layrate during the SEE project.

The actual layrate data cannot be directly compared to the simulation output as the logged process
durations have been filtered with minimum and maximum thresholds to remove downtime from the ac-
tual production data. By interpreting all excluded process durations as downtime, it can be estimated
that the total downtime, or more precisely, the total period without continuous production at expected
process durations, amounted to 55.3 days over the 198-day project. During the 142.7 days of contin-
uous production, Solitaire made 26.843 pulls which relates to a total pipeline length of 655 km and an
average layrate of 4.6 km/day.

The average layrate of around 4.4 km/day obtained from the simulation is 4.5% lower than the
layrate observed during the SEE project, which can be partially explained by the firing line waiting time
in the simulation which is currently 1.3% of the total production time. The remaining 3% is considered
small enough to conclude that that the model produces a realistic output for the layrate of the firing line.

Figure 4.10: Actual firing line production rate during SEE project ©Allseas

4.5. Conclusion 36

The black-box validation can also be supported by a prior simulation study within Allseas where a
simplified model was used to estimate the production rate for the new DJF configuration. In this study
an average DJF production of 5.7 km per 24 hours was estimated based on constant process duration
parameters provided by PPD. Table 4.5 shows a DJF production of 5.5 kmwith similar input parameters,
which is only a difference of 3.5%.

4.5. Conclusion
This chapter has described the development of a simulation model that simulates the operations of the
pipe handling system controlled by a pipe routing system. The objective of the model is to evaluate the
performance of the pipe routing system and provide a better understanding of the effects of different
routing strategies. The model content and assumptions and simplifications have been established to
formulate a conceptual model which describes the process cycle of each component in the model.
An initial routing strategy for the pipe routing system is formulated and implemented, which may be
adjusted during the experimentation phase. The modelling data is based on the SEE project with
a pipeline with a diameter of 36 inch, which is an average size diameter. The conceptual model is
implemented in a computer model using Salabim, a DES package in Python. The conceptual model,
model data and computer model are verified and validated throughout the modelling process. The
duration data for the processing stations in the DJF could not be successfully validated, however it
is well substantiated and concluded to be the most accurate estimation of the data with the available
resources.

5
Experimentation with routing

strategies

This chapter presents the simulation-based experimentation conducted to evaluate and further refine
the conceptual pipe routing system across various routing strategies. The objective is not to achieve a
predefined performance target, instead the aim is to explore potential solutions and gain a deeper un-
derstanding of how different routing strategies influence system performance under varying scenarios.

The chapter begins with an introduction to the experimentation methodology, followed by a detailed
description of the experimental setup. Subsequently, the baseline performance of the initial pipe routing
system is presented. This is followed by an exploratory phase in which various additions to the routing
strategy are tested, and a conclusive phase in which combinations of strategies are evaluated. The
chapter concludes by identifying the most effective routing strategy for the examined scenarios.

5.1. Methodology
As in Chapter 4, again Robinson 2004will be followed to establish a well-founded researchmethodology.
Robinson 2004 indicates two issues in simulation experimentation: obtaining accurate results, and
efficiently and effectively searching the solution space.

Obtaining accurate results focuses on addressing initialization bias and collecting sufficient output data.
To address this the simulation model should be classified as either a terminating or a non-terminating
simulation. Initialization bias can be addressed by setting initial conditions or determining a warm-up
period. The collection of output data can be addressed by determining an appropriate run-length or
number of replications.

Searching the solution space focuses on the selection of scenarios and experimental factors that are
evaluated to achieve the desired outcome of the simulation study, which may be an optimal solution,
one that meets predefined requirements, or simply a deeper understanding of the real-world system.
Robinson 2004 proposes all simulation experiments can be categorized by two pairs of terms: interac-
tive and batch experimentation, and comparing alternatives and search experimentation.

The first pair describes how the simulation runs are performed. Interactive experimentation in-
volves observing the model and apply changes to evaluate the effect. This can be helpful to develop
an understanding of the system, but the results should always be tested by more thorough batch ex-
perimentation. Batch experimentation is performed by running the model for a predefined run-length
and a set number of replications to obtain results that have statistical significance.

The second pair describes how the experimental factors are determined. In comparing alternatives
the set of scenarios that will be evaluated is limited and often known in advance. In search experimen-
tation there is not a given set of scenarios, but a set of experimental factors that may be varied until a
target or optimum level is reached. A simulation study can involve a combination of both strategies to
compare scenarios and explore the solution space.

37

5.2. Modification of the model 38

5.2. Modification of the model
Before formulating and executing the experimental plan, this section addresses two issues in the sim-
ulation model output that must be resolved, as the model in its initial form was not suitable for the
intended experimental application.

Buffer capacity
Whilst addressing the attainment of accurate results for experimentation it was observed that, for longer
simulation durations, the unlimited buffer in the waiting area produced irrelevant waiting times for both
the waiting area and the firing line, causing misalignment with the KPIs. Three possible adaptations
were identified, each addressing different research objectives:

• Unlimited buffer capacity: Ignore firing line waiting time and sequencing requirements, focusing
solely on maximum throughput in the pipe yard and DJF.

• Limited buffer capacity: Simulate a realistic scenario where sequencing requirements may cause
deadlocks if the waiting area becomes congested with only one type of double joint. The simula-
tion study will be less informative on maximum throughput in the DJF and waiting area becomes
less informative.

• Reduced firing line process duration: Balance DJF and firing line production rates, maintaining
focus on throughput in the pipe yard while considering sequencing. However, firing line waiting
time becomes strongly influenced by stochastic DJF behaviour.

This simulation study applies a combination of the second and third adaptation to consider both se-
quencing strategies and throughput in the pipe yard in a realistic scenario. The buffer capacity is limited
to 6 double joints based on the pipe line specifications of the SEE project. The firing line process time
is reduced by using only the 80th percentile of the empirical data shown in Figure 4.3. This results in
the PDF shown in Figure 5.1, which has a decreased mean process duration of 400 s, compared to the
former used mean process duration of 453 seconds. The decreased process duration results in a the-
oretical production of 3600∗24

400 = 216 double joints, which is slightly lower than the theoretical production
of 230 double joints for the DJF calculated in equation 4.3. The decreased firing line process duration
simulates an optimistic, but also realistic, production rate that results in the desired scenario where the
DJF is able to continuously provide the firing line when sequenced correctly without being held up by
a congested waiting area as the limited buffer is utilized as intended.

The buffer capacity limit is implemented by adapting the routing strategy of the waiting area to not
send more double joints to the buffer when it has reached its maximum capacity. The decreased firing
line process duration is implemented by filtering the empirical data when loaded into the model. Both
implementations have been verified and validated through the animation feature and the output results.

Figure 5.1: Probability density function for decreased process duration Firing line

5.2. Modification of the model 39

Hold policy
As mentioned, with the addition of the buffer capacity limit, the pipe routing system now requires a
sequencing strategy for the supply of the DJF to ensure the waiting area is alternately supplied with
regular double joints and anode double joints. Longer simulation runs show that without such a strategy,
deadlocks do in fact occur within the time frame intended for conducting the experiments. Figure 5.2
shows an example of a deadlock in the waiting area as the waiting area positions are all occupied by
normal double joints and the buffer is completely filled with normal double joints, while the firing line
requires an anode double joint. The hold policy is seen as the main experimental factor to influence
sequencing as this policy regulates the amount of regular and anode joints that are not sent to the DJF
and therefore regulates the ratio of regular and anode joints in the DJF. Three different hold policies
have been evaluated, purely on their performance to prevent deadlocks:

• Regulate the anode ratio in the holds. If the anode ratio in the holds is lower than the pipeline
anode ratio, no more regular joints are sent to hold. If the anode ratio in the holds is higher than
the pipeline anode ratio, no more anode joints are sent to hold.

• Regulate the buffer level in the waiting area. If the amount of regular double joints in the buffer is
higher than a certain level, no more anode joints are sent to hold. If the amount of anode double
joints in the buffer is higher than a certain level, no more regular joints are sent to hold.

• Regulate the anode ratio between the marking stations and the firing line. All marked single joints
in the pipe yard, DJF, waiting area and firing line are counted, including the single joints that are
part of a double joint. The joints that are sent to hold or part of a rejected double joint are excluded.
If the anode ratio of all counted single joints currently in the system is higher than the pipeline
anode ratio, no more regular joints are sent to hold. If the anode ratio of all counted single joints
currently in the system is lower than the pipeline anode ratio, no more anode joints are sent to
hold.

The first policy seemed to perform well, but failed to prevent deadlocks over longer simulation runs.
Possibly because it takes an indirect approach that does not directly monitor events in the DJF or
waiting area. Similarly, the second policy was also ineffective in avoiding deadlocks during extended
runs, as the delay between implementing the hold policy and its impact on the buffer level was too
great, leading to a bullwhip effect. With the third policy implemented, the model does succeed to
deliver continuous simulation results for extended runs. For now this policy is implemented in the pipe
routing system as described. The policy may be further developed to improve its effect on other KPIs
during the interactive search experimentation performed to establish routing improvements.

Figure 5.2: Example of a deadlock in the waiting area

5.3. Experimental plan 40

5.3. Experimental plan
This section outlines the multi-step experimental plan that is followed to effectively search the solution
space of different routing strategies and achieve the research objective. As mentioned the objective of
the simulation experimentation is to evaluate different routing strategies under varying scenarios with
the aim to provide a deeper understanding of the system rather than achieving a performance target.

The experimental plan includes three delivery scenarios (presented in Subsection 5.3.1) and six route
configurations (presented in Subsection 5.3.2), resulting in a total of eighteen experiments. The ex-
periments will be analysed individually through a non-terminating simulation run to conclude the mean
output results during continuous pipelaying operations. The actual simulation run setup is detailed in
Subsection 5.3.3.

This full set of experiments is conducted twice: first to evaluate the baseline performance, and
later to assess the final performance of each configuration. Between these two phases, the route con-
figurations are further refined by incorporating additional routing strategies within the same pathways.
Rather than testing all possible combinations, each addition is evaluated individually to determine its
specific impact on performance.

Multi-step experimental plan
1. In Subsection 5.3.1, the relevant pipe delivery scenarios are determined that contribute to the

research objective of the experimentation phase. Subsection 5.3.2 provides an overview of the
route configurations that will be evaluated. The combination of all scenarios and configurations
form the total set of experiments that will be evaluated.

2. In Section 5.3.3, the base setup for the simulation runs is determined with an appropriate warm-up
period and run-length to obtain accurate results.

3. In Section 5.4, the baseline performance for all scenarios and route configurations is established
and the simulation output is visually analysed. Based on the outcome of the baseline results,
each route configuration will be further developed in the following experimentation phase.

4. Section 5.5 describes the interactive search experimentation phase. In this phase, each route
configuration is further developed with additional routing strategies and adjustments that are indi-
vidually tested to asses their effectiveness to improve the baseline performance results.

5. To conclude the experimentation phase, Section 5.6, combines the effective routing strategies
from the previous phase to form the final routing strategy for each route configuration. All sce-
narios and route configurations are evaluated once more through a final batch experiment to
conclude the most effective routing strategy.

Figure 5.3: Summary of experimental plan

5.3.1. Experimental scenarios
As previously mentioned, there are four possible pipe delivery scenarios: a PSV at the port side, a PSV
at the starboard side, a PSV at both sides, or no PSV. Although the initial plan was to investigate pipe
delivery from the port side, starboard side, and both sides, the scope of the experiments is restricted
to pipe delivery from the port side only. After running the first trial experiments it became evident that
there a lot of experimental factors to consider and also small details within the experimental factors
can have a significant impact on the results. Therefore the scenario limitation was adopted to enable
a more elaborate exploration of a single delivery scenario, rather than a superficial exploration of all
scenarios.

So far the verification and validation experiments have mostly been run with a realistic average PTC
rate of 24 SJ/h. To validate the performance of a routing strategy it is also important to evaluate the
effects of the routing strategy when the average PTC rate is lower or higher. A baseline performance
simulation run for 5 different average PTC rates revealed the differences in output results shown in

5.3. Experimental plan 41

Table 5.1. These results clearly show that very slow PTC rate of 15 SJ/h would be insufficient to supply
the DJF continuously, while a slow PTC rate of 18 SJ/h is almost balanced with the DJF demand with
only 3% of the single joints being sent to the hold. As insufficient PTC supply will be supplemented
by supply from the holds in practice it is irrelevant to consider the very slow PTC rate. The slow PTC
rate of 18 SJ/h will be included in the experimental scenarios to conclude the efficiency of the routing
strategies when the supply and demand of single joints is balanced.

For the fast and very fast PTC rate the output shows similar results other than the PTC wait time.
In fact both scenarios do not actually reach their PTC rate as the maximum throughput of the marking
stations is limited at 26 SJ/h by the pipe flow in the pipe yard. The fast supply rate of 30 SJ/h, which is
the actual design rate of the PTC, will be included in the experimental scenarios.

In conclusion, all routing strategies will be evaluated for three experimental scenarios:

• Pipe supply from port side with an average rate of 18 SJ/h
• Pipe supply from port side with an average rate of 24 SJ/h
• Pipe supply from port side with an average rate of 30 SJ/h

Table 5.1: Experimental scenarios

Very slow Slow Average Fast Very fast
Data Unit 15 SJ/h 18 SJ/h 24 SJ/h 30 SJ/h 36 SJ/h
Sent to hold ratio - 0% 3% 26% 32% 32%
DJF production joints 165 207 208 207 208
Main pipeline length m 3895 4917 4943 4924 4939
PTC wait time (KPI) min 0 0 22 198 410
DJF wait time min 687 67 56 46 51
Waiting area wait time (KPI) min 128 14 11 10 9

5.3.2. Experimental configurations of the routing strategy
The experimental configurations are based on different routing options within the pipe yard. The route
shown in Figure 4.7, previously applied for model verification and validation, is used to assess the base-
line performance. This baseline configuration serves as a reference for evaluating the performance of
the alternative route configurations. The baseline configuration is presented again in Figure 5.4a.

Figure 5.4 also present the five alternative route configurations that have been identified using the
methodology described in Section 3.3.2. These six route configurations contain all routing strategies
that move within the navigable space as defined in Figure 3.3a without moving against the pipe flow.
The colours of the route sections represent the subprocesses that were also featured in Figure 3.3a

5.3. Experimental plan 42

(a) Route PS (a) (b) Route PS (b)

(c) Route PS (c) (d) Route PS (d)

(e) Route PS (e) (f) Route PS (f)

Figure 5.4: Routes for pipe supply from port side

5.3. Experimental plan 43

5.3.3. Simulation run setup
This subsection will establish the appropriate warm-up period and run-length for the simulation runs to
obtain accurate simulation results, followed by a procedure to process and present the simulation input
and output for the experiments.

Warm-up period
As already mentioned in Section 4.3.2 the model output utilizes a warm-up period for data collection to
address initialization bias. For the modelling phase the warm-up period was analytically calculated. For
the experimentation phase the warm-up period is re-evaluated using Welch’s method where a moving
average is calculated over the mean output per period of a series of replications. Figure 5.5 shows the
mean DJF production rate for each period of 0.25 hour based on 10 replications. The moving average
is plotted with different window sizes per output parameter. For the PTC wait time the output per 0.25
hours was too random to draw a flattening moving average, however still a warm-up effect in the first
two hours is clearly noticeable. Considering all output results it was concluded that a warm-up period
of 4 hours would be appropriate for all output parameters.

(a) DJF production (b) Main pipeline length

(c) PTC wait time (d) DJF wait time

(e)Waiting area wait time

Figure 5.5: Warm-up period experiment for output parameters

5.3. Experimental plan 44

Run length
As the simulation experiments will be run as a non-terminating simulation it is chosen to use a single long
run rather thanmultiple replications. The appropriate run-length to obtain accurate results is determined
by analysing the convergence of the output results for five simulation runs at different time periods. The
level of convergence is calculated with equation 5.1, where Ci is the convergence at period i, and Y ij

is the cumulative mean of the output data at period i for replication j. The convergence is generally
considered acceptable at a level of less than 5% (Robinson 2004).

Ci =
Max(Y i1, Y i2, Y i3)−Min(Y i1, Y i2, Y i3)

Min(Y i1, Y i2, Y i3)
(Robinson 2004) (5.1)

Similar to determining the warm-up period the DJF production, the main pipeline length and the wait
time KPIs are considered to be the relevant output parameters. The results of all output parameters
for all three replications are detailed in Appendix E and visually presented in Figure 5.6. The plots in
Figure 5.6 are equally scaled with the y-axis being set from 0% to 200% of the mean output value to
visualize the convergence level. This shows that although all simulation runs reach a constant output
value, not all output parameters actually converge within the desired 5%.

Based on this observation it is concluded to adopt a run-length of 21 days (3 weeks) of continuous
production as Figure 5.6 shows that all output values become constant around this period. For the
evaluation of output results during experimentation it is important to consider the level of convergence
for the output parameters at this period, which is summarized in Table 5.2. This table shows that the
DJF production and main pipeline length are very accurate, but all the wait times require a higher
relative deviation to be considered a significant performance difference.

Table 5.2: Run-length experiment - Level of convergence at day 21
Output Parameter Unit Min Max Convergence Min. deviation
DJF production joints 207 208 0.55% 1%
Main pipeline length m 4877 4903 0.53% 1%
PTC wait time (KPI) min 26 34 23.53% 30%
DJF wait time min 48 55 12.73% 20%
Waiting area wait time (KPI) min 9 13 30.77% 50%

Simulation input
In the initial trial experiments, it was observed that the number of rejected double joints at the DJF and
firing line varied significantly, affecting the output results. To improve comparability, a constant seed
was applied to the random reject probability of the NDT stations, ensuring a fixed number of rejects per
experiment while keeping the specific rejected joints random. The remaining randomized inputs use a
completely random seed for each experiment.

Simulation output
The simulation output for the experiments that is used for evaluation consists of three components:

• Extensive data report of average simulation output per operating day.
• Snapshot of the simulation animation at the end of each operating day.
• Video of the simulation animation from the first operating hour.

A simulation run of 21 days with the data report and snapshots as output takes between 20 and 30
minutes to run when executed on a laptop with an Intel Core i7 processor (quad-core) and 8 GB of
DDR4 RAM, running Windows 10 (64-bit). The animation video is produced in a separate simulation
run. Appendix F provides the extensive data reports, accompanied by the final simulation snapshot.
This report includes many output parameters, categorized by PS and SB as well as by normal and
anode joints, in order to provide context for the KPI output parameters. Together with the snapshots
and the animation video, this information illustrates the progression of the simulation.

This main report only presents the main output parameters that were specified in Table 4.1, Section
4.2.4. The PTC wait time and the waiting area wait time form the actual KPIs of the system.

5.3. Experimental plan 45

(a) DJF production

(b) Main pipeline length

(c) PTC wait time

(d) DJF wait time

(e)Waiting area wait time

Figure 5.6: Run-length experiment for output parameters

5.4. Baseline performance 46

5.4. Baseline performance
This section presents the baseline performance of the pipe routing system with the base route config-
urations. The simulation output is observed to identify directions for further improvement that can be
explored in the interactive search experimentation.

The comprehensive simulation output for the baseline performance are presented in Appendix F
Section F.1. The main output results are summarized and evaluated below.

5.4.1. Reference simulation results
The simulation results for the baseline performance with route configuration (a) are presented in Table
5.3. These results serve as a reference for evaluating both the base configurations of the alternative
routes and the final outcomes of the conclusive batch experimentation. The results show that no PTC
waiting occurs under the slow PTC rate, but this output parameters increases as the PTC rate rises.
All other output parameters remain largely unaffected across the different delivery scenarios.

The baseline performance results for the alternative route configurations are presented in Tables 5.4 to
5.8. Some differences are observed between routes, suggesting that the routing strategy indeed influ-
ences the output results. However, the differences are not sufficiently high to already draw conclusions
on performance differences between routes.

5.4.2. Observations from baseline performance
The following paragraphs describe four routing strategy inefficiencies observed from the baseline per-
formance experiments that can potentially be resolved during the interactive search experimentation.

Throughput at marking stations
As explained in Section 5.2, the hold policy is required to balance the anode ratio in the DJF and thereby
prevent deadlocks in the waiting area. However, the baseline performance animations show that by
restricting certain joints from moving to the hold, the current policy blocks throughput at the marking
stations, resulting in a higher PTC wait time compared to the verification experiments (Table 4.3), where
this policy was not applied.
Moreover, the baseline experiments revealed that deadlocks still occurred occasionally across all routes
under a slow PTC rate. Since these baseline results serve as a reference for later analysis, the simu-
lations were repeated with different random seeds. During the interactive search experimentation, the
hold policy must be refined to fully prevent deadlocks and improve throughput at the marking stations.

Supply sequence for the waiting area
The waiting area waiting time is defined as the primary KPI, but the results show it already remains be-
low 15 minutes per day across all routes. Simulation traces show the DJF generally supplies sufficient
double joints to the waiting area, however the hold policy combined with stochastic process durations
creates a random sequence of normal and anode joints for the supply. Consequently, delays occur
when none of the available double joints in the waiting area are of the required type. A controlled distri-
bution of anode joints between the port-side and starboard welding line may restructure the sequence
in a way that reduces these delays

Movement between cleaning stations and the DJF
Another observed inefficiency in some routing strategies is themovement between the cleaning stations
and the DJF. Routes (a), (b), (e), and (f) rely on a single supply path to the DJF, where consecutive
movements of two single joints cause delays in supplying the DJF. A more efficient approach would be
to line up two joints in the pipe yard and move them simultaneously into the DJF.

Routes (c) and (d) may also benefit from such a strategy, as the current right-of-way rules for the
parallel supply paths to the DJF are based on joint number, which does not always match the order in
which you would expect the joints to move.

Positioning of idle TCs
The final observation is that total transportation time could be reduced by relocating TCs to their next
required position during idle periods, a benefit most evident under slow PTC rates. This would require
the pipe routing system to reliably predict subsequent tasks to avoid unnecessary movements.

5.4. Baseline performance 47

Table 5.3: Reference simulation results with base configuration for Route (a)

Output parameter Unit Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
DJF production joints / day 207 207 207
Main pipeline length m / day 4886 4889 4880
PTC wait time (KPI) min / day 0 69 291
DJF wait time min / day 53 46 56
Waiting area wait time (KPI) min / day 11 11 12

Table 5.4: Simulation results with base configuration for Route (b)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev. Result Dev. Result Dev.
DJF production joints / day 207 0% 208 0% 207 0%
Main pipeline length m / day 4892 0% 4903 0% 4888 0%
PTC wait time (KPI) min / day 0 0% 90 30% 323 11%
DJF wait time min / day 63 19% 51 11% 46 -18%
Waiting area wait time (KPI) min / day 11 0% 10 -9% 9 -25%

Table 5.5: Simulation results with base configuration for Route (c)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev. Result Dev. Result Dev.
DJF production joints / day 207 0% 208 0% 207 0%
Main pipeline length m / day 4880 0% 4894 0% 4886 0%
PTC wait time (KPI) min / day 0 0% 91 32% 324 11%
DJF wait time min / day 56 6% 48 4% 50 -11%
Waiting area wait time (KPI) min / day 12 9% 9 -18% 11 -8%

Table 5.6: Simulation results with base configuration for Route (d)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev. Result Dev. Result Dev.
DJF production joints / day 208 0% 207 0% 207 0%
Main pipeline length m / day 4888 0% 4885 0% 4880 0%
PTC wait time (KPI) min / day 1 0% 62 -10% 240 -18%
DJF wait time min / day 54 2% 52 13% 54 -4%
Waiting area wait time (KPI) min / day 11 0% 13 18% 16 33%

Table 5.7: Simulation results with base configuration for Route (e)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev. Result Dev. Result Dev.
DJF production joints / day 207 0% 208 0% 207 0%
Main pipeline length m / day 4889 0% 4896 0% 4880 0%
PTC wait time (KPI) min / day 1 0% 38 -45% 221 -24%
DJF wait time min / day 53 0% 54 17% 48 -14%
Waiting area wait time (KPI) min / day 10 -9% 11 0% 13 8%

Table 5.8: Simulation results with base configuration for Route (f)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev. Result Dev. Result Dev.
DJF production joints / day 207 0% 208 0% 207 0%
Main pipeline length m / day 4880 0% 4893 0% 4882 0%
PTC wait time (KPI) min / day 0 0% 20 -71% 138 -53%
DJF wait time min / day 61 15% 50 9% 49 -13%
Waiting area wait time (KPI) min / day 14 27% 10 -9% 15 25%

1Deviation from the baseline performance result presented in Table 5.3

5.5. Interactive search experimentation to improve configurations 48

5.5. Interactive search experimentation to improve configurations
Through an interactive search experimentation phase, several routing strategy adjustments and addi-
tions will be tested to gradually improve the route configurations performance results. Based on the
observations from the baseline performance experiments in Section 5.4.2, the interactive search ex-
perimentation will explore strategy adjustments in four directions:

1. Regulate the anode ratio of joints between marking and the firing line through the hold policy.
2. Regulate the anode distribution between the port side and starboard welding line in the DJF.
3. Line up two single joints in the pipe yard for simultaneous supply to the DJF.
4. Add supportive TC moments without a task to transfer a joint.

As mentioned these routing amendments, which will be referred to as routing updates, are developed
through interactive experimentation. The following subsections describe the interactive process that
lead to the design of route update. The updates are sequentially added to the route configurations and
each subsections concludes with a performance comparison between the previous version of each
route configuration. The subsections only present essential output results to highlight differences be-
tween route configurations within the update.

5.5.1. Hold policy
Section 5.4.2 indicated that the hold policy requires further refinement, as deadlocks in the waiting area
still occasionally occur under slow PTC rates, and the current policy blocks throughput at the marking
stations. The current hold policy, as described in Section 5.2, is illustrated in Figure 5.7 and as shown
it is divided in two policies: one for routes (a) till (e) with the hold decision on the position next to the
port-side marking station and one for route (f) with the hold decision on port-side marking as this route
configuration does not move to position next to marking.

The following two paragraphs will describe how this hold policy is adjusted to respectively solve the
occurrence of deadlocks and reduce the PTCwait time. The final paragraph concludes the performance
of the new hold policy for all route configurations.

(a) Base hold policy for routes a, b, c, d, e (b) Base hold policy for route f
Figure 5.7: Hold policy for base route configurations

Hold policy adjustment to prevent deadlocks
The prevention of deadlocks is an essential feature of the hold policy as this is the only measure to
regulate the ratio of normal and anode joints in the DJF. The occasional deadlocks occur only under
slow PTC rates as the hold decision is only made on or next to the port-side marking station. Under
slow PTC rates, most of the time there is no accumulation of joints in the pipe yard and as one marking
station is enough to handle the throughput almost all joints move trough the starboard marking station.
This means to be able to control the anode ratio within the system through the hold policy, the policy
should be applied to both marking stations. For route configuration f this is easily applicable as the
positions next to marking are not included in the route, while for the other route configurations the
hold route has to move against the general pipe flow. Interactive experimentation revealed that the
most efficient route for this would be to move a joint from the starboard marking station to the port-side
marking station as this is the shortest route to follow the general pipe flow. This leads to the new routes
to the hold as illustrated in Figure 5.8.

5.5. Interactive search experimentation to improve configurations 49

(a) New hold policy for routes a, b, c, d, e (b) New hold policy for route f
Figure 5.8: New hold policy for route configurations

Hold policy adjustment to reduce PTC wait time
The increased PTC wait time is caused by the old policy as it prevents a joint from moving to the hold
when its type (normal or anode) is under-represented in the system’s anode ratio, thereby causing
congestion in the pipe yard. Through interactive experimentation, it was concluded that the hold policy
should instead direct oversupplied joint types to the hold, rather than restricting undersupplied ones.

The first experimental solution for this was to decrease the anode count by two in the anode ratio
calculation, allowing for two extra anodes in the system. Results showed that two extra anodes helped
reducing the waiting area wait time as the waiting area is now mostly waiting for the more common
normal double joints, where it was mostly waiting for anodes at first. The first experimental solution
was to decrease the anode count used in the calculation by one, effectively allowing an additional anode
in the system. This adjustment proved beneficial, as the waiting area results showed that the frequency
of waiting for an anode became equal to that of waiting for a normal double joint, whereas previously
waiting was predominantly caused by anodes.

However, deadlocks were still observed, making it necessary to also limit the number of normal
joints sent to the DJF. The automatic movement from the port-side marking station to the hold in case
of pipe yard congestion is retained. In addition, a normal joint can be forced to the hold from either
marking station if the number of normal joints in the system exceeds a perfect anode ratio by more
than six. This solution defines the final configuration of the hold policy as it fully prevents deadlocks.

Simulation output results
Since the hold policy is identical for routes (a)–(e), the deviations in output are also comparable. There-
fore, only the simulation results of routes (a) and (f) are presented, respectively in Tables 5.9 and 5.10.

Table 5.9: Simulation results with enhanced hold policy for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 207 0%
Main pipeline length m / day 4895 0% 4883 0% 4887 0%
PTC wait time (KPI) min / day 0 0% 1 -99% 21 -93%
DJF wait time min / day 128 +142% 56 +22% 45 -20%
Waiting area wait time (KPI) min / day 5 -55% 12 +9% 9 -25%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

Table 5.10: Simulation results with enhanced hold policy for Route (f)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 208 0%
Main pipeline length m / day 4885 0% 4890 0% 4893 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 0 -100%
DJF wait time min / day 154 +152% 46 -8% 53 +8%
Waiting area wait time (KPI) min / day 9 -36% 9 -10% 10 -33%
1 Deviation from the base configuration results for route (f) presented in Table 5.8

5.5. Interactive search experimentation to improve configurations 50

Conclusion for hold policy
The results in Table 5.9 and Table 5.10 demonstrate that the enhanced policy substantially reduces the
PTC waiting time for route (a), and even fully eliminates it under all PTC rates for route (f). The greater
effectiveness of the hold policy in route (f) is due to the fact that joints can always be directed to the
hold without moving against the pipe flow. By contrast, in the other routes, a joint sent to the hold from
the starboard marking station must move against the pipe flow through the port-side marking station,
which can cause some congestion near the PTC.

Another observation is that the DJF waiting time increases considerably under slow PTC rates in
both simulation results. This happens because the new policy sends joints to the hold to maintain the
anode ratio, even when the pipe yard is empty and the PTC delivery rate is barely sufficient to meet
DJF demand. While this may appear counter-intuitive, the policy is necessary to avoid deadlocks in
the waiting area. Moreover, the simulations show that the higher DJF waiting time is not large enough
to also cause an increase in the waiting area waiting time.

In conclusion, the proposed hold policy is an improvement to all route configurations and will also
be implemented for the following experiments.

5.5.2. DJF anode distribution
In Section 5.4, it was proposed that regulating the distribution of anode double joints between the two
welding lines in the DJFmay affect the waiting area waiting time. As the relation between the distribution
and the waiting time is unclear, three completely different distribution strategies are tested:

1. One-sided distribution
2. Alternating distribution
3. Non-adjacent distribution

The following paragraphs present the simulation results for each distribution strategy applied to the
enhanced hold policy configuration of route (a).

One sided distribution
In the one-sided distribution strategy all anode double joints are sent to the port-side welding line. The
simulation results in Table 5.11 show that the waiting area wait time is increased instead of reduced
and the distribution causes delays in the pipe yard.

Table 5.11: Simulation results with one-sided anode distribution for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 206 0% 206 0% 207 0%
Main pipeline length m / day 4861 -1% 4868 0% 4868 0%
PTC wait time (KPI) min / day 0 0% 3 +200% 39 +86%
DJF wait time min / day 449 +251% 400 +614% 382 +749%
Waiting area wait time (KPI) min / day 14 +180% 13 +8% 14 +56%
1 Deviation from the enhanced hold policy performance result presented in Table 5.9

Alternating distribution
In the alternating distribution strategy anode double joints are alternately sent to the port-side and
starboard welding line. The simulation results in Table 5.12 show that the waiting area wait time is not
significantly reduced and the distribution causes delays in the pipe yard.

Table 5.12: Simulation results with alternating anode distribution for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 207 0%
Main pipeline length m / day 4879 0% 4878 0% 4889 0%
PTC wait time min / day 0 0% 2 +100% 37 +76%
DJF wait time min / day 395 +209% 317 +466% 313 +596%
Waiting area wait time (KPI) min / day 10 +100% 9 -25% 8 -11%
1 Deviation from the enhanced hold policy performance result presented in Table 5.9

5.5. Interactive search experimentation to improve configurations 51

Non-adjacent anodes
In the non-adjacent distribution strategy anode double joints are sent to the opposite welding line when
they would be positioned directly behind another anode double joint. The simulation results in Table
5.13 show that the waiting area wait time is increased instead of reduced and the distribution causes
delays in the pipe yard.

Table 5.13: Simulation results with non-adjacent anode distribution for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 206 0% 206 0%
Main pipeline length m / day 4877 0% 4858 -1% 4859 -1%
PTC wait time min / day 0 0% 3 +200% 43 +105%
DJF wait time min / day 439 +243% 439 +684% 406 +802%
Waiting area wait time (KPI) min / day 11 +120% 13 +8% 15 +67%
1 Deviation from the enhanced hold policy performance result presented in Table 5.9

Conclusion for DJF anode distribution
The simulation results show that none of the distribution strategies reduce the waiting area wait time
significantly. In fact the distributions mostly cause and in crease in the wait time, as well as significant
extra delay of pipe movement in the pipe yard. As the proposed strategies were completely different it
is concluded that the DJF anode distribution is not an interesting experimental factor to further explore
and the proposed strategies will not be implemented for the following experiments.

5.5.3. DJF supply line
The DJF supply line is introduced as an experimental factor to reduce DJF waiting time. Although not
defined as a KPI, this waiting time could be decreased by lining up two single joints in the pipe yard
while both welding lines of the DJF are occupied. The line up will also prevent that two anode single
joints are not welded together. The six base route configurations provide three different pathways to
the DJF: route (b) follows the marking stations line, routes (a), (e) and (f) follow the cleaning stations
line, and routes (c) and (d) combine both infeed lines. The following paragraphs therefore present
three different solutions that will be applied to the route configurations, as well as their corresponding
simulation results.

DJF supply line for routes (a), (e) and (f)
As shown in Figure 5.9, the infeed line to the DJF for route (a), (e) and (f) moves along the cleaning
stations line (1, y), which means in the base configuration routes only one single joint could be lined up
in front of the supply positions (3, 0) and (4, 0).

When either DJF supply position (3, 0) or (4, 0) is unoccupied, the joints proceed directly to the
available position as long as this does not generate a pair of anode joints. If both supply positions are
occupied, a joint moves to (0, 0) to form a line-up for the next pair of single joints, which will collectively
move to the supply positions as soon as they become available. If both single joints in the line-up are
anodes, only the joint at 1, 0) advances to the supply positions, followed by another joint from (1, 1).

Figure 5.9: DJF supply line for routes (a), (e) and (f)

When this DJF supply line strategy is incorporated into the final hold policy configuration of route (a),
the results presented in Table 5.14 are obtained. The result deviations in output are similar for route
(e) and (f) as their are no difference in this particular path section for these route configurations.

5.5. Interactive search experimentation to improve configurations 52

Table 5.14: Simulation results with DJF supply line for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 207 0%
Main pipeline length m / day 4879 0% 4879 0% 4890 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 14 -33%
DJF wait time min / day 50 -61% 36 -36% 32 -29%
Waiting area wait time (KPI) min / day 9 +80% 9 -25% 9 0%
1 Deviation from the hold policy configuration results for route (a) presented in Table 5.9

DJF supply line for route (b)
As shown in Figure 5.10, the infeed line to the DJF for route (b) moves along the marking stations line
(0, y). In this base route configuration two single joints automatically got lined up, however the single
joints did not move collectively as a pair and there was no correction for a pair of anode joints.

When either DJF supply position (3, 0) or (4, 0) is unoccupied, the joints still proceed directly to the
available position as long as this does not generate a pair of anode joints. If both supply positions are
occupied, a pair of joints is formed in the line-up. When both single joints in the line-up are anodes,
the joint at position (1, 0) is moved to (1, 1). This joint is then reintroduced into the line-up as soon as
position becomes available.

Figure 5.10: DJF supply line for route (b)

When this DJF supply line strategy is incorporated into the final hold policy configuration of route (b),
the results presented in Table 5.14 are obtained.

Table 5.15: Simulation results with DJF supply line for Route (b)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 208 0% 207 0% 207 0%
Main pipeline length m / day 4896 +1% 4887 0% 4882 0%
PTC wait time (KPI) min / day 0 0% 0 0% 19 +12%
DJF wait time min / day 68 -62% 36 -29% 36 -31%
Waiting area wait time (KPI) min / day 8 -38% 9 0% 7 -46%
1 Deviation from the hold policy configuration results for route (b)

DJF supply line for routes (c) and (d)
As shown in Figure 5.11, route (c) and (d) use both infeed lines (0, y) and (1, y). Of course this means
also these base route configurations already line up two single joints, however also in these configura-
tions there was no collective movement and no correction for pairs of anode joints.

When either DJF supply position (3, 0) or (4, 0) is unoccupied, again the joints proceed directly to
the available position as long as this does not generate a pair of anode joints. If both supply positions
are occupied, a pair of joints is formed in the line-up from both infeed lines. When both single joints in
the line-up are anodes, only the joint at 1, 0) advances to the supply positions, followed by another joint
from infeed line (1, y).

5.5. Interactive search experimentation to improve configurations 53

Figure 5.11: DJF supply line for route (cd)

Since the infeed lines of route configurations (c) and (d) are not fully identical, their output results also
differ. When the DJF supply line strategy is applied to the final hold policy configuration of route (c), the
results shown in Table 5.16 are obtained. For configuration (d), however, the DJF supply line strategy
leads to deadlocks in the pipe system as it prevents the combination of two anode single joints. Figure
5.12 illustrates a recurring situation, where the anode joint from infeed line (0, y) cannot move due to
another anode joint already occupying the DJF supply position. The DJF supply line then waits for a
joint from infeed line (1, y), but this infeed line is blocked by the crossing pathways of this route.

Table 5.16: Simulation results with DJF supply line for Route (c)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 208 0%
Main pipeline length m / day 4871 0% 4879 0% 4892 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 23 +21%
DJF wait time min / day 110 +38% 32 -40% 35 -24%
Waiting area wait time (KPI) min / day 12 +33% 11 +38% 8 -11%
1 Deviation from the hold policy configuration results for route (c)

Figure 5.12: Deadlock in pipe yard with DJF supply line for route (d))

Conclusion for DJF supply line
The simulation results from Tables 5.14, 5.15 and 5.16 all show a comparable decreased DJF wait
time for average and fast PTC rates as expected. Under slow PTC rates however there is a significant
decrease observed in Tables 5.14 and 5.15, while Table 5.16 shows an increase in DJF wait time. In
prior experiments it was already observed that the convergence of this parameter seems inconsistent,
so therefore we cannot draw reliable conclusion based on these results.

Table 5.14 also shows a significant decrease of the PTC wait time. This could be explained by the
line-up in this route increasing the amount of positions between cleaning and the DJF by one, making
the amount of positions even. This means the joints can move in pairs, making for a more efficient pipe

5.5. Interactive search experimentation to improve configurations 54

flow.
In conclusion the proposed DJF supply line strategies will be implemented for all route configuration

but route (d) as they show to be beneficial for the DJF wait time and do not negatively impact other
route parameters. For route configuration their is no DJF supply line implemented, the latest update of
this configuration is still the adjustment of the hold policy.

5.5.4. TC support moves
The final experimental factor investigated to improve the route configurations is the implementation of
TC support moves to decrease the PTC and DJF wait time. A TC support move involves repositioning
idle TCs when no there are no more tasks to assign. The support moves that contribute positively to
system performance are identified through analysis of the simulation animations in combination with
interactive experimentation. The pipe routing system applies a similar algorithm for assigning TC sup-
port moves across all TCs and route configurations.

Each TC is assigned a list of occupancy positions and a designated standard position. When a
TC becomes idle with no remaining tasks, the system first checks the occupancy of the positions in the
assigned list. The TC is then moved to the first position in the list that is currently occupied by a joint,
as this is most likely to generate the next transport task. If none of the positions are occupied, the TC
is relocated to its standard position.

The set of occupancy positions and the standard position differ for each route configuration. Fig-
ure 5.13 illustrates this by colouring all occupancy positions associated with a TC, while the TC itself
is placed at its standard position. The following paragraph presents the occupancy lists and standard
positions for route (a), together with the output results obtained from incorporating these TC support
moves. Only the simulation results from route (a) are presented as the TC support moves are very
similar across al route configurations.

TC support moves for route (a)
The list of occupancy positions and the designated standard position for each TC in route (a), that is
illustrated in Figure 5.13a, is summarized in Table 5.17. The standard position of the starboard TC on
line (1, y) is out side of the cleaning stations as it would otherwise block the movement of the port-side
TC, however if a cleaning station is occupied the port-side TC will not be moving towards this position.

The simulation results with TC support moves, compared to the previous DJF supply line configu-
ration results are presented in Table 5.18.

Table 5.17: TC support moves for Route (a)

Transverse Car Colour Occupancy positions Standard position
TC (0, y) port-side Green (0, 7), (0, 8), (0, 9), (0, 10) (0, 10)

TC (0, y) starboard Red (0, 5)

TC (1, y) port-side Yellow (1, 5)

TC (1, y) starboard Purple (1, 1), (1, 2), (1, 3), (1, 4) (1, 2)

Table 5.18: Simulation results with TC support moves for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 208 0% 207 0%
Main pipeline length m / day 4885 0% 4895 0% 4882 0%
PTC wait time (KPI) min / day 0 0% 0 0% 9 -36%
DJF wait time min / day 57 +14% 34 -6% 34 +6%
Waiting area wait time (KPI) min / day 9 0% 8 -11% 8 -11%
1 Deviation from the DJF supply line configuration results for route (a) presented in Table 5.14

5.5. Interactive search experimentation to improve configurations 55

(a) TC support moves for Route (a) (b) TC support moves for Route (b) (c) TC support moves for Route (c)

(d) TC support moves for Route (d) (e) TC support moves for Route (e) (f) TC support moves for Route (f)

Figure 5.13: TC support moves for all route configurations

Conclusion for TC support moves
Table 5.18 shows that the PTC rates decrease as expected due to the premature movement of the
TC to the correct position. The DJF waiting time does not show notable differences, but analysis
of the simulation animations confirms that the other TCs also correctly anticipate their next required
position. This effect is not reflected in the results because TC movement speed was not a limiting
factor influencing DJF waiting times. Overall, it can be concluded that the proposed TC support moves
are beneficial for all routing configurations.

5.6. Conclusive batch experimentation 56

5.5.5. Conclusion of the interactive search experimentation
To conclude the interactive search experimentation, all explored routing strategy adjustments an ad-
ditions are summarized in Table 5.19 with their goals, results and implementation for the conclusive
batch experimentation.

Table 5.19: Conclusions for routing strategies from interactive search experimentation

Enhanced hold policy
Goal Prevent deadlocks in waiting area and reduce PTC wait time
Result Completely prevents deadlocks in the waiting area. Fully eliminates PTC wait time for all routes under

average PTC rates, and for route (f) even under fast PTC rates. For other routes a small PTC wait
time remains for fast PTC rates.

Implementation All route configurations
DJF anode distribution
Goal Reduce waiting area wait time
Result Three different distribution strategies all had no significant impact on the waiting area wait time.
Implementation None
DJF supply line
Goal Prevent combination of two anode single joints and reduce DJF wait time
Result Reduces DJF wait time for all routes, but the prevention anode single joint combinations causes dead-

locks in the pipe yard for route configuration (d).
Implementation All route configurations but route (d)
TC support moves
Goal Reduce PTC wait time and DJF wait time
Result Further reduces PTC wait time for all route configurations. Does not actually reduce the DJF wait time,

but animation show that it does improve movement efficiency.
Implementation All route configurations

5.6. Conclusive batch experimentation
A final batch of experiments is conducted in which all updates from the interactive search experimenta-
tion are implemented in the route configurations. Tables 5.20 to 5.25 present the performance results
of each configuration, benchmarked against the reference base performance shown in Table 5.3.

The results demonstrate that all configurations achieve comparable performance with respect to
the KPIs. Each configuration eliminates PTC wait time under slow and average PTC rates, while route
(f) distinguishes itself by also eliminating waiting time under fast PTC rates. The waiting area wait time
is not significantly reduced. However, since this parameter was already relatively low for the base
performance and it is consistently lower across all final configurations, it is concluded that the perfor-
mance of all configurations is satisfactory and that this KPI also provides limited potential for further
improvement.

Table 5.20: Simulation results with final configuration for Route (a)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 208 0% 208 0% 207 0%
Main pipeline length m / day 4896 0% 4894 0% 4890 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 7 -98%
DJF wait time min / day 96 +81% 33 -28% 32 -43%
Waiting area wait time (KPI) min / day 7 -36% 7 -36% 8 -33%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

5.6. Conclusive batch experimentation 57

Table 5.21: Simulation results with final configuration for Route (b)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 207 0%
Main pipeline length m / day 4883 0% 4886 0% 4868 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 19 -93%
DJF wait time min / day 81 +53% 35 -24% 32 -43%
Waiting area wait time (KPI) min / day 13 +18% 10 -9% 9 -25%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

Table 5.22: Simulation results with final configuration for Route (c)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 208 0% 207 0% 207 0%
Main pipeline length m / day 4901 0% 4873 0% 4881 0%
PTC wait time (KPI) min / day 0 0% 1 -99% 15 -95%
DJF wait time min / day 53 0% 35 -24% 34 -39%
Waiting area wait time (KPI) min / day 10 -9% 9 -18% 10 -17%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

Table 5.23: Simulation results with final configuration for Route (d)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 208 0% 208 0% 208 0%
Main pipeline length m / day 4899 0% 4899 0% 4901 0%
PTC wait time (KPI) min / day 0 0% 1 -99% 16 -95%
DJF wait time min / day 92 +74% 52 +13% 51 -9%
Waiting area wait time (KPI) min / day 7 -36% 10 -9% 6 -50%
Firing line wait time min / day 28 -7% 30 +3% 24 -25%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

Table 5.24: Simulation results with final configuration for Route (e)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 208 0% 207 0% 207 0%
Main pipeline length m / day 4897 0% 4890 0% 4887 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 18 -94%
DJF wait time min / day 45 -15% 34 -26% 34 -39%
Waiting area wait time (KPI) min / day 9 -18% 6 -45% 9 -25%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

Table 5.25: Simulation results with final configuration for Route (f)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 208 0%
Main pipeline length m / day 4889 0% 4890 0% 4893 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 0 -100%
DJF wait time min / day 40 -25% 34 -26% 33 -41%
Waiting area wait time (KPI) min / day 9 -18% 8 -27% 8 -33%
1 Deviation from the base configuration results for route (a) presented in Table 5.3

5.7. Conclusion 58

5.7. Conclusion
This section described simulation experiments conducted to evaluate different routing strategies under
varying scenarios, aiming to provide a deeper understanding of the system, rather than meet a fixed
performance target. Prior to the experiments, a maximum buffer capacity was added to ensure realistic
results for longer runs, which also required an adjusted hold policy to prevent deadlocks in the waiting
area by regulating the ratio of anode joints in the DJF.

The experimental plan consisted of three experiment phases:

1. Base performance batch experimentation
2. Interactive search experimentation
3. Conclusive batch experimentation

The batch experimentation phases were performed with three PTC delivery rate scenarios and six route
configurations, resulting in a total of 18 experiments. Between the batch experimentation phases the
route configuration were improved through interactive search experimentation based on the information
provided by the base performance simulation results.

The system performance for each experiment was evaluated based on five output parameters: DJF
production, main pipeline length, PTC wait time, DJF wait time, and waiting area wait time. The PTC
wait time and waiting area wait time form the actual KPIs of the system. Overall, it was concluded that
a well-balanced hold policy is the most impactful measure for improving system performance, as it is
essential to prevent deadlocks in the waiting area and has the greatest influence on the PTC waiting
time KPI. There were no effective measures identified to eliminate the waiting area wait time KPI, but
constantly storing two extra anode joints within the system showed a slight decrease.

The conclusive batch experimentation revealed that the interactive search experimentation has signif-
icantly improved the performance of all route configuration. It was concluded that route configuration
(f) performs the best based on the set KPIs as it is the only route configuration that fully eliminates the
PTC wait time for all delivery rate scenarios, due to the fact that joints can always be directed to the
hold without moving against the pipe flow. By contrast, in the other routes, some joints sent to the hold
must move against the pipe flow which can cause some congestion near the PTC.

Only route configuration (d) is rejected as a solution as the crossing pathways of the route lead to
deadlocks in the pipe yard for a desired element of the routing strategy.

Apart from these observation the differences between the route configuration were not significant
and all routes performed well as for all configuration the wait times under average PTC rates cannot
not be improved much more. There for route configuration (a), (b), (c), (e) and (f) are all concluded to
be appropriate routes, with route configuration (f) performing the best for fast PTC rates.

6
Conclusion

This research explored the feasibility of automating joint movements on a pipelaying vessel. A concep-
tual pipe routing system was developed and implemented in a model of the pipe handling system on
Allseas’ vessel Solitaire, to gain insight into system behaviour, and identify an effective routing solution.

Analysis of the pipelaying operations on Solitaire formulated the pipe handling system. The key perfor-
mance indicators (KPI) for system performance are the firing line waiting time, reflecting continuity of
supply, and the pipe transfer crane (PTC) waiting time, reflecting pipe supply vessel turnaround time.
The routing system is implemented as an intermediate control layer that translates database information
into movement requests for the pipe handling PLC, without directly controlling equipment.

The pipe handling system is modelled using Discrete Event Simulation (DES) with Salabim. The rout-
ing problem is defined as a sequential decision-making problem, suited for future optimization through
Reinforcement Learning (RL). In this study it is solved with rule-based heuristics within a model-free
Markov Decision Process framework, while the solution space is reduced by dividing the routing prob-
lem into subproblems and limiting the action space accordingly.

The DES model incorporates scaled dimensions and actual equipment specifications. Pipeline-specific
data is based on the South East Extension project, with missing process distributions generated through
a self-conducted data analysis. Simplifications were introduced for the hold system and waiting area,
with the firing line waiting time substituted for waiting area waiting time, in order to focus on routing
strategies in the pipe yard.

A near-optimal routing strategy is developed through experimentation with the model. Three PTC rate
scenarios and six base route configurations have been evaluated. Initial simulation results showed
similar performance across all routes. Interactive search experimentation then improved performance
through an enhanced hold policy, pre-lining of joint pairs in the pipe yard, and TC support moves.

The strategy updates significantly improved performance for all route configurations, however, the
final batch experiments identified route (f) as the most effective strategy with the results presented in
Table 6.1. With this configuration the PTC wait time is fully eliminated, whereas other routes retained
approximately 15 min/day under fast PTC rates. This improvement results from route (f) allowing joints
to move towards the hold without moving against the pipe flow. Reductions in waiting area waiting
time were minor and comparable across all configurations. Overall, all route configurations achieved
satisfactory system performance, with little room for further improvement given the KPIs defined in this
study. Only route configuration (d) is rejected as a solution due to reoccurring deadlocks.

Table 6.1: Simulation results for the final route configuration (f) compared to the baseline performance

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Base Route (f) Dev. Base Route (f) Dev. Base Route (f) Dev.
PTC wait time (KPI) min / day 0 0 0% 69 0 -100% 291 0 -100%
DJF wait time min / day 53 40 -25% 46 34 -26% 56 33 -41%
Waiting area wait time (KPI) min / day 11 9 -18% 11 8 -27% 12 8 -33%

59

60

This research demonstrated that simulation provides a deeper understanding of the pipe handling sys-
tem and the impact of routing strategies. The heuristic approach successfully automated sequential
decision-making and regulated joint movements. Nevertheless, the main challenge that remains is full
scenario coverage, given the wide variation in pipeline specifications, environmental influences, and
unpredictable events. A future pipe routing system based on RL could potentially overcome this by
adapting to all scenarios and identifying solutions beyond those considered in the heuristic approach.

7
Recommendations

Scientific recommendations
The pipelaying industry, and pipe handling systems in general, are rarely addressed in literature. A key
distinction from systems like automated container terminals or automated guided vehicles, is that in the
pipe handling system the movable products are identical with no predefined destinations, as stations
require a number of products, but no specific ones. Combined with stochastic processes, this makes
forecasting multiple routing decisions impractical. More research can be published on similar systems
that operate under an unpredictable horizon.

This study considered evolution to control by a RL model, by formulating the problem within a model-
free MDP framework but solving it with rule-based heuristics. In the current setup, the pipe routing
system is presented with a single action to perform; however, this could be extended to a list of possi-
ble actions from which an RL model would select. The performance of such an RL model could then be
directly compared to the rule-based heuristics, as both are implemented in the same simulation model.

Since RL is expected to play an important role in the continuous improvement of automated sys-
tems, it would be interesting to see if this framework indeed supports the development of RL models
for complex intralogistics and pipelaying systems, as this could advance the practical application of RL.

Practical recommendations for Allseas
In general, it is recommended that Allseas adopt simulation technology in their preparation procedures
for pipelaying projects. This study has shown that simulation can provide a deeper understanding of
deck operations and generate practical insights that would otherwise be left to interpretation by deck
operators. The Salabim model presented here demonstrates this potential, but its assumptions and
simplifications should be replaced to achieve a realistic representation of the actual system.

During this study it also became clear that insufficient data is currently available on the processing
stations within the DJF to perform a detailed simulation analysis. It is therefore recommended that
Allseas evaluate the future role of simulation studies within the company and, if deemed valuable,
invest in the collection of more accurate process data aligned with the goals of future analyses.

The heuristic decision-making proposed in this study has proven to be a simple and effective approach
for evaluating routing strategies. It is recommended that this method is used for further research on
standardized scenarios to develop a comprehensive overview of routing strategies applicable to general
pipelaying operations. Such an overview could also serve as a guideline for deck operators.

For practical implementation of a pipe routing system with the aim of full automation, more advanced
methods decision-making methods should be considered. While the heuristic approach requires the
developer to anticipate and encode all possible scenarios during the design phase, unexpected events
will inevitably occur in practice. Reinforcement Learning offers a promising alternative, as it matches the
sequential decision-making nature of the problem, can adapt to unforeseen situations, and may identify
solutions beyond those recognized by heuristics. However, research on the practical application of
Reinforcement Learning in such contexts is still limited, and substantial further investigation by Allseas
would be required before it can be applied in real-world operations.

61

References

Angelle, J (2020). “Proof of value in automating the drill floor”. In: Offshore Technology Conference
Brasil 2019, OTCB 2019. Offshore Technology Conference. ISBN: 9781613996713.

Borshchev, Andrei (June 2014). “Multi-methodmodelling: AnyLogic”. In:Wiley Blackwell 6 9781118349021,
pp. 248–279. DOI: 10.1002/9781118762745.CH12.

Buchsbaum, Paulo (2012). “Modified PERT simulation”. In: Great Solutions: Rio de Janeiro, Brazil.
Charlton, Aidan et al. (2020). “Applying an Industry 4.0 Philosophy to Pipeline Integrity: The Future

Beyond Digitalisation”. In: Proceedings of the Pipeline Technology Conference (PTC). Penspen.
Berlin, Germany: Pipeline Technology Conference.

Craig, C et al. (2023). “Fully Automated Land Rig Pipe Handling: Learnings from the First Year in Oper-
ation”. In: Society of Petroleum Engineers - ADIPEC, ADIP 2023. Society of Petroleum Engineers.
ISBN: 9781959025078. DOI: 10.2118/216318-MS.

Dagkakis, G. et al. (2016). “A review of open source discrete event simulation software for operations
research”. In: Journal of Simulation 10 (3), pp. 193–206. ISSN: 17477786. DOI: 10.1057/JOS.2015.
9.

Eber, Julian et al. (June 2023). “Guided Reinforcement Learning: A Review and Evaluation for Efficient
and Effective Real-World Robotics [Survey]”. In: IEEE Robotics and Automation Magazine 30 (2),
pp. 67–85. ISSN: 1558223X. DOI: 10.1109/MRA.2022.3207664.

Filom, Siyavash et al. (May 2022). “Applications of machine learning methods in port operations –
A systematic literature review”. In: Transportation Research Part E: Logistics and Transportation
Review 161, p. 102722. ISSN: 1366-5545. DOI: 10.1016/J.TRE.2022.102722.

Gray, Michael A. (Nov. 2007). “Discrete event simulation: A review of simevents”. In: Computing in
Science and Engineering 9 (6), pp. 62–66. ISSN: 15219615. DOI: 10.1109/MCSE.2007.112.

Ham, Ruud van der (2020). Simulation of Logistic Systems in Python with Salabim. https://pyvideo.
org/europython-2020/simulation-of-logistic-systems-in-python-with-salabim.html.
EuroPython 2020, Online; accessed 2025-04-23.

Hillier, Frederick S et al. (2015). Introduction to operations research. McGraw-Hill.
Kanervisto, Anssi et al. (Apr. 2020). “Action Space Shaping in Deep Reinforcement Learning”. In:

IEEE Conference on Computatonal Intelligence and Games, CIG 2020-August, pp. 479–486. ISSN:
23254289. DOI: 10.1109/CoG47356.2020.9231687. URL: https://arxiv.org/pdf/2004.00980.

King, Harry (2024). Comment on a LinkedIn Post by Paul Corry. Accessed: 2025-03-12. URL: https:
//www.linkedin.com/feed/update/urn:li:activity:7108291487481659392?commentUrn=urn%
3Ali%3Acomment%3A%28activity%3A7108291487481659392%2C7108958242227032064%29&dashC
ommentUrn=urn%3Ali%3Afsd_comment%3A%287108958242227032064%2Curn%3Ali%3Aactivity%
3A7108291487481659392%29.

Kissell, Robert et al. (Jan. 2017). “Advanced Math and Statistics”. In: Optimal Sports Math, Statistics,
and Fantasy, pp. 103–135. DOI: 10.1016/B978-0-12-805163-4.00004-9.

Landry, Maurice et al. (1983). “Model validation in operations research”. In: European Journal of Op-
erational Research 14.3, pp. 207–220. ISSN: 0377-2217. DOI: https://doi.org/10.1016/0377-
2217(83)90257-6.

Lang, Sebastian et al. (Jan. 2021). “Open-source discrete-event simulation software for applications in
production and logistics: An alternative to commercial tools?” In: Procedia Computer Science 180,
pp. 978–987. ISSN: 1877-0509. DOI: 10.1016/J.PROCS.2021.01.349.

Maidstone, Robert (2012). “Discrete event simulation, system dynamics and agent based simulation:
Discussion and comparison”. In: System 1.6, pp. 1–6.

Miller, Tim (2023). Markov decision processes. URL: https://gibberblot.github.io/rl-notes/
single-agent/MDPs.html.

Monacchi, Giulio et al. (2023). “An Innovative Set of Tools for a Sustainable and Safe Offshore Pipelay-
ing”. In: Proceedings of the Annual Offshore Technology Conference 2023-May. ISSN: 01603663.
DOI: 10.4043/32448-MS.

62

https://doi.org/10.1002/9781118762745.CH12
https://doi.org/10.2118/216318-MS
https://doi.org/10.1057/JOS.2015.9
https://doi.org/10.1057/JOS.2015.9
https://doi.org/10.1109/MRA.2022.3207664
https://doi.org/10.1016/J.TRE.2022.102722
https://doi.org/10.1109/MCSE.2007.112
https://pyvideo.org/europython-2020/simulation-of-logistic-systems-in-python-with-salabim.html
https://pyvideo.org/europython-2020/simulation-of-logistic-systems-in-python-with-salabim.html
https://doi.org/10.1109/CoG47356.2020.9231687
https://arxiv.org/pdf/2004.00980
https://www.linkedin.com/feed/update/urn:li:activity:7108291487481659392?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7108291487481659392%2C7108958242227032064%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287108958242227032064%2Curn%3Ali%3Aactivity%3A7108291487481659392%29
https://www.linkedin.com/feed/update/urn:li:activity:7108291487481659392?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7108291487481659392%2C7108958242227032064%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287108958242227032064%2Curn%3Ali%3Aactivity%3A7108291487481659392%29
https://www.linkedin.com/feed/update/urn:li:activity:7108291487481659392?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7108291487481659392%2C7108958242227032064%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287108958242227032064%2Curn%3Ali%3Aactivity%3A7108291487481659392%29
https://www.linkedin.com/feed/update/urn:li:activity:7108291487481659392?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7108291487481659392%2C7108958242227032064%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287108958242227032064%2Curn%3Ali%3Aactivity%3A7108291487481659392%29
https://www.linkedin.com/feed/update/urn:li:activity:7108291487481659392?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7108291487481659392%2C7108958242227032064%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287108958242227032064%2Curn%3Ali%3Aactivity%3A7108291487481659392%29
https://doi.org/10.1016/B978-0-12-805163-4.00004-9
https://doi.org/https://doi.org/10.1016/0377-2217(83)90257-6
https://doi.org/https://doi.org/10.1016/0377-2217(83)90257-6
https://doi.org/10.1016/J.PROCS.2021.01.349
https://gibberblot.github.io/rl-notes/single-agent/MDPs.html
https://gibberblot.github.io/rl-notes/single-agent/MDPs.html
https://doi.org/10.4043/32448-MS

References 63

Moralez, N et al. (2020). “Intelligent pipe-handling: A case study for automation”. In: SPE/IADC Drilling
Conference, Proceedings. Vol. 2020-March. Society of PetroleumEngineers (SPE). ISBN: 9781613996874.

Otterlo, Martijn et al. (Jan. 2012). “Reinforcement Learning and Markov Decision Processes”. In: Rein-
forcement Learning: State of the Art, pp. 3–42. DOI: 10.1007/978-3-642-27645-3_1.

Peleg, Micha (2019). “Beta distributions for particle size having a finite range and predetermined mode,
mean or median”. In: Powder Technology 356, pp. 790–794. ISSN: 0032-5910. DOI: https://doi.
org/10.1016/j.powtec.2019.09.015.

RiskAMP (n.d.). Beta-PERT Distribution. URL: https://www.riskamp.com/beta-pert/.
Robinson, S. (2004). Simulation: The Practice of Model Development and Use. John Wiley & Sons.

ISBN: 9780470847725.
Siebers, P. O. et al. (2010). “Discrete-event simulation is dead, long live agent-based simulation!” In:

Journal of Simulation 4 (3), pp. 204–210. ISSN: 17477786. DOI: 10.1057/JOS.2010.14.
Stern, Roni (2019). “Multi-agent path finding–an overview”. In: Artificial Intelligence: 5th RAAI Summer

School, Dolgoprudny, Russia, July 4–7, 2019, Tutorial Lectures, pp. 96–115.
TU Delft (2020a). 5.4 Discrete-event Modelling & Simulation. https://ocw.tudelft.nl/course-

lectures/5- 4- discrete- event- modelling- simulation/. Lecture 5.4 from the course NGI:
Modelling Complexity.

— (2020b). 5.5 System Dynamics Modelling & Simulation. https://ocw.tudelft.nl/course-lectu
res/5-5-system-dynamics-modelling-simulation/. Lecture 5.5 from the course NGI: Modelling
Complexity.

Van Der Ham, Ruud (2018). “salabim: discrete event simulation and animation in Python”. In: Journal
of Open Source Software 3.27, p. 767.

Veeke, Hans PM et al. (2008). The Delft systems approach: Analysis and design of industrial systems.
Springer Science & Business Media.

Vieira, António Amaro Costa et al. (2020). “A ranking of the most known freeware and open source
discrete-event simulation tools”. In: 31st European Modeling and Simulation Symposium, EMSS
2019, pp. 103–110. DOI: 10.46354/i3m.2019.emss.017.

Wang, Huanhuan et al. (2013). “A framework for integrating discrete event simulation with agent-based
modeling”. In: Proceedings of 2013 6th International Conference on Information Management, In-
novation Management and Industrial Engineering, ICIII 2013 3, pp. 176–180. DOI: 10.1109/ICIII.
2013.6703542.

Wasserman, Larry (2004). All of statistics: a concise course in statistical inference. Springer Science &
Business Media.

Wilson, Alec et al. (Sept. 2024). “Applying Action Masking and Curriculum Learning Techniques to
Improve Data Efficiency and Overall Performance in Operational Technology Cyber Security using
Reinforcement Learning”. In: CAMLIS.

Wuest, Thorsten et al. (2016). “Machine learning in manufacturing: advantages, challenges, and appli-
cations”. In: Production & Manufacturing Research 4.1, pp. 23–45.

https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/https://doi.org/10.1016/j.powtec.2019.09.015
https://doi.org/https://doi.org/10.1016/j.powtec.2019.09.015
https://www.riskamp.com/beta-pert/
https://doi.org/10.1057/JOS.2010.14
https://ocw.tudelft.nl/course-lectures/5-4-discrete-event-modelling-simulation/
https://ocw.tudelft.nl/course-lectures/5-4-discrete-event-modelling-simulation/
https://ocw.tudelft.nl/course-lectures/5-5-system-dynamics-modelling-simulation/
https://ocw.tudelft.nl/course-lectures/5-5-system-dynamics-modelling-simulation/
https://doi.org/10.46354/i3m.2019.emss.017
https://doi.org/10.1109/ICIII.2013.6703542
https://doi.org/10.1109/ICIII.2013.6703542

A
Research Paper

64

Conceptual design of a pipe routing system on a pipelaying vessel

L. Sijm, M.B. Duinkerken, and X.L. Jiang

Department of Maritime and Transport Technology, Delft University of Technology
Delft, The Netherlands

Abstract

The adoption of new technologies on pipelaying vessels is closely linked to the demand for full automation of pipe
handling operations. However, pipe handling systems are rarely addressed in research, and, to the best of our
knowledge, no studies exist that describe comparable intralogistics systems with similar control structures and
movement restrictions. As a result, there is no clear reference for how such automation can be realized. This study
addresses this gap by developing a conceptual pipe routing system for the pipelaying vessel Solitaire, operated by
Allseas, and implements it within a Discrete Event Simulation model of the pipe handling system. The model is
used to evaluate multiple routing strategies under different pipe supply scenarios and to determine the most effec-
tive routing strategy for the case study. The results show that a heuristic approach to sequential decision-making,
framed within a model-free Markov Decision Process, can automate pipelaying operations and lay the groundwork
for future optimization through reinforcement learning.

Keywords: Pipelaying vessel; Pipe handling; Automation; Heuristics; Sequential decision-making; Discrete Event
Simulation; Salabim.

1. Introduction

With the rise of Industry 4.0, automation has become
widely implemented across many industrial sectors, fun-
damentally transforming their operations. The pipelay-
ing industry, however, remains relatively conservative
(Charlton & Curson, 2020). A similar trend is observed
in the drilling sector of the oil and gas industry which
involves comparable pipe handling operations. These
industries have not followed other batch and process in-
dustries such as the automotive industry in terms of
adopting new technologies (Angelle, 2020). An expla-
nation for this could be that, although pipe handling
involves repetitive tasks, the exact operations depend
on the specific processes and are carried out in challeng-
ing environments (Moralez et al., 2020). Nevertheless,
recent studies (Angelle, 2020, Moralez et al., 2020, Craig
et al., 2023) show progress toward more advanced auto-
mated pipe handling systems aimed at reducing human
intervention. This trend is especially relevant because
the safety risks for personnel involved in pipe handling
operations remain significant (Monacchi et al., 2023)

1.1. Case Study at Allseas

Also Allseas, a world-leading contractor in the offshore
energy market, aims to make a step towards automa-
tion of pipe handling operations as the pipe handling
equipment on their pipelay vessel Solitaire is due for
renovation. The new configuration of the equipment
will increase the complexity of the pipe flow on the ves-
sel, which is currently controlled by operator decision-
making. This raises the need for a pipe routing sys-
tem that automates the decision-making process to au-
tonomously regulate the pipe flow on board, which is
defined by this study as the pipe routing problem.

However, Allseas is uncertain how to develop a rout-
ing strategy for this pipe routing system, as no automa-

tion studies exist on similar pipe handling systems, nor
are there studies in literature describing comparable in-
tralogistics systems with similar control structures and
movement restrictions.

This study addresses this research gap by develop-
ing a conceptual pipe routing system to regulate pipe
movement on a pipelaying vessel and evaluating its per-
formance for different routing strategies using a Discrete
Event Simulation model of the pipe handling system on
Solitaire. The study aims to demonstrate how such a
system can be automated and to identify opportunities
for future optimization.

1.2. Report structure
The structure of this research paper is as follows. Sec-
tion 2 introduces the pipe handling system of the case
study. Section 3 outlines the methodology employed by
the pipe routing system to model and address the pipe
routing problem. Section 4 details the development of
the DES model used to implement and evaluate the con-
ceptual pipe routing system. Finally, Section 5 presents
the experimental results, which form the basis for iden-
tifying the best performing routing strategy for the case
study.

2. System analysis
2.1. Pipelaying operations on Solitaire
Solitaire is a pipelaying vessel with two factories: the
double joint factory (DJF) and the firing line. In the
DJF, single lengths of steel pipe (joints) are welded to-
gether to form double joints, which are then supplied to
the firing line. In the firing line, the double joints are
welded together to form the main pipeline. At the end
of the firing line, the main pipeline is lowered into the
water until it reaches the seabed.

Appendix A Figure A.1 presents the pipelaying op-
erations in an IDEF0 diagram, Figure 2.1 is a copy of

1

the A0 level of this diagram, showing the pipelaying
operations can be divided in five subsystems: A1: pipe
delivery, A2: pipe yard operations, A3: DJF operations,
A4: firing line operations and A5: reprocessing opera-
tions. Joint arrive on Pipe Supply Vessels (PSV) and are
delivered by deck-mounted pipe transfer cranes (PTC).
After delivery the joints pass several processing stations
in the pipe yard before being transported to the DJF.
In the DJF the joints pass several processing and weld-
ing stations before they are transported as double joints
to the firing line. All welds in both the DJF and firing
line are tested and in case of a weld reject the double
joint is send back towards the pipe yard through the
reprocessing operations.

The pipe routing system will regulate the joint trans-
port within the subsystems A2, A3 and A5, which are
collectively referred to as the pipe handling system.

Figure 2.1: IDEF0 diagram Function A0

2.2. Pipe handling system
Figure 2.2 shows a black-box model of the pipe handling
system. Joints are delivered by a PTC, processed by the
pipe handling system and then delivered as double joints
through the pipe elevator to the firing line. To regulate
the operations within the pipe handling system, the sys-
tem requires a pipe routing system. The main goal of
the pipe handling system is to ensure that the firing
line is continuously fed with the required double joints,
therefore the key performance indicator (KPI) is the fir-
ing line wait time. Another goal for the system is to
minimize the PSV turnaround time, therefore the PTC
wait time is also an KPI.

Figure 2.2: Black box model for pipe handling system

As earlier mentioned the pipe yard operations and DJF
operations consist of several processing stations that the
joints need to pass by means of the transport equipment.
There are four types of transport equipment:

• FPS: fixed pipe support for parking joints

• LCO: longitudinal conveyors for parking and
transport in longitudinal direction

• TC: transverse cars for transport in transverse di-
rection

• OC: overhead crane for transport in transverse di-
rection

Figure 2.3 shows the general structure of the pipe han-
dling system and its transport equipment with the FPSs
and LCOs illustrated in beige to indicate positions
where a joint can be parked. The black arrows be-
neath these positions illustrate TCs that enable trans-
verse transport between the LCOs and FPSs. The black
arrows above the positions illustrate OCs. The systems
is divided in four different areas: the pipe yard, the DJF,
the waiting area and the return line. The waiting area
is the area at the end of the DJF where double joints
can be stored in a buffer or supplied to the firing line
through the elevator. The return line enables reprocess-
ing of rejected double joints, but can also be used for
temporarily storage of joints in the holds if they cannot
be directly transported to the DJF.

Figure 2.3: Structure of the pipe handling system

2.3. Pipe routing system
The pipe routing system would be implemented in the
control structure of the pipe handling system as an inter-
mediate system that is connected to the database con-
taining all pipe and station information. The pipe rout-
ing system does not control the equipment itself, but
instead only translates the pipe and station information
into pipe movement requests for the existing pipe han-
dling PLC controlling the equipment.

3. Methodology
Since no relevant research on the automation of pipe
handling systems is available, inspiration must be drawn
from operations research methods applied in compara-
ble intralogistics systems. A key distinction from sys-
tems like automated container terminals or automated
guided vehicles, however, is that in the pipe handling
system the movable objects (joints) are identical. Con-
sequently, the routing problem is not constrained by pre-
defined schedules or fixed destinations, making it less
suitable for common optimization methods. This makes

2

that there were no example automation or optimization
studies found that could be directly compared to the
pipe handling system.

As no direct examples are available for reference,
this study first focuses on automating the pipe handling
system to gain a deeper understanding of its operation
and establish a performance benchmark for identifying
optimization potential. While the optimization phase
lies beyond the scope of this research, optimization ap-
proaches from comparable intralogistics systems were
analysed to establish possible methods to model the pipe
handling system and solve the pipe routing problem.
The following subsections outline the methodology used
to model the system and to address the pipe routing
problem in the development of an automated solution.

3.1. Modelling the pipe handling system
The pipe handling system is modelled using simula-
tion, as this approach is particularly suited for systems
with stochastic behaviour that are too complex to be
analysed using purely mathematical methods (Hillier &
Lieberman, 2015). Discrete Event Simulation (DES) is
identified as the most appropriate method to capture
the interactions of multiple components controlled by a
centralized control agent (the pipe routing system). A
self-conducted comparative study of DES software iden-
tified Salabim as the preferred tool. As an open-source
Python-based simulation library, it offers full customiz-
ability and provides all essential features, including a ba-
sic integrated animation function (Van Der Ham, 2018).

3.2. Modelling and solving the pipe routing problem
Among the identified optimization methods, Reinforce-
ment Learning (RL) is concluded to be the most in-
teresting method for optimization as it shares the most
key principles with the pipe routing problem. Moreover,
the method is able to adapt to unexpected scenarios
(Filom et al., 2022) and it may uncover unrecognized re-
lationships within the system (Wuest et al., 2016). Also
Moralez et al., 2020 concludes Artificial Intelligence (AI)
will play an important role in the continuous improve-
ment of automated pipe handling systems. As the pipe
routing problem inherently incorporates many key prin-
ciples relevant to RL, the system model is designed to
support future expansion in this direction.

The pipe routing problem is modelled as a sequential
decision making problem following a model-free Markov
Decision Process (MDP) framework to allow for future
implementation of a RL model to solve the problem. In
MDP a decision is only based on the current state of the
system, without reference to past information (Hillier &
Lieberman, 2015). This characteristic is well suited to
the pipe routing problem, as the stochastic system in-
put and process durations make it difficult to schedule
multiple decisions in advance. A classic MDP frame-
work formulates the problem as a tuple (S, A, P , R)
containing the following elements:

• state space S is the set of all possible states the
system can be in,

• actions A allow the decision-maker to transition
the current state in another state,

• transition probabilities P define the new state s′

after action a given the current state s,

• rewards R specify the benefit or cost of executing
action a given the current state s.

In model-free MDP the transition probabilities P and
rewards R are replaced by an external model, such as a
DES model, which executes an action a in simulation to
derive the resulting state s′. Otterlo and Wiering, 2012
distinguishes three classes of algorithms (policies) for
solving sequential decision problems (choose actions):
programming, search and planning, and learning algo-
rithms. Although the programming approach requires
the programmer to anticipate and encode all possible
states during the design phase, this method is adopted
in this study, as the policy can be derived from the oper-
ational experience of the existing pipe handling system,
which is currently managed through human decision-
making.

This results in the decision framework illustrated in
Figure 3.1. The DES model provides the system state s,
comprising the status of joints, the occupancy of posi-
tions and the status of processing stations and transport
equipment. The pipe routing system is the decision-
maker that selects action a from its policy, given state
s. Action a represents the next joint movement to be ex-
ecuted by the pipe handling system in the DES model.
Once the action is performed, the DES model transi-
tions to a new state s′, which is then returned to the
pipe routing system. The policy will from now on be
referred to as the routing strategy of the pipe routing
system.

Figure 3.1: Framework for the pipe routing problem

4. Simulation model

As outlined in the methodology, the pipe handling sys-
tem is modelled in Python using Salabim as a DES
framework. In this language-based modelling approach,
the model is constructed as a set of components with
attributes and process cycles. These components inter-
act with the environment and with each other’s process
cycles through functions such as hold, wait, passivate,
and activate. This section presents the formulation of
the simulation model and the routing strategy, followed
by verification and validation. Emphasis is placed on
the centralized control structure within the model rather
than the detailed system content.

4.1. Pipe handling system

The elements and structure of the pipe handling as de-
scribed in Section 2 and illustrated in Figure 2.3, are

3

represented in the model with a number of simplifica-
tions and assumptions. The most relevant of these are
summarized below:

• LCOs and FPSs are represented as positional ref-
erences rather than components.

• LCOs are divided into fixed positions; joints can-
not remain between positions.

• Movement paths in the DJF and waiting area are
fixed, limiting the scope to only evaluate routing
strategies in the pipe yard.

• The continuous supply to the firing line is repre-
sented as a continuous supply to the waiting area
to exclude the influence of the routing strategy
within the waiting area. Consequently, the KPI is
defined as the waiting area wait time.

4.2. Pipe routing system
The pipe routing system is implemented in the simula-
tion as a component of the overall pipe handling system.
It observes the system state, defined by the status of
all joints within the system and the occupancy of posi-
tions. Based on this state, it applies a user-defined rout-
ing strategy to assign the next action, specifying which
joint to move, its destination, and the resource required.
After assigning the action, the pipe routing system ob-
serves the updated state and repeats this process until
no further actions are available. At that point, the pipe
routing system passivates and is reactivated when the
system state is updated by another component, such as
a PTC or processing station.

4.3. Model data
The model data used for calculating movement and pro-
cess durations is stored within the model environment
and component attributes. Positional coordinates are
scaled to replicate the actual layout of the pipe han-
dling system, enabling movement durations to be de-
rived from equipment specifications rather than prede-
fined values. Component attributes are based on actual
equipment data, but the process durations depend on
pipeline specifications.

For this study, an example project involving a 36-
inch diameter pipeline is selected. The PTC process
duration is estimated by a self-defined triangular distri-
bution, based on a given average delivery rate. The pro-
cess durations in the DJF are estimated by self-defined
beta distributions based on a performed data analysis

and given average process durations. The process dura-
tion for the firing line is based on empirical data from
the example project. The combination of all these dis-
tributions imitate the stochastic behaviour of the pipe
handling system.

4.4. Model input and simulation output
The model input consists of simulation parameters, map
specifications, and the routing strategy. The routing
strategy is based on a user-defined move map, which
defines the destination and required resources for each
joint depending on its current position. Additional rout-
ing strategy details can be incorporated into the process
cycle of the pipe routing system component.

The simulation output includes detailed data reports
and an animation of the simulation events. The reports
provide insights into pipe flow, station utilization, and
production quantities. Combined with the live anima-
tion or simulation snapshots, such as Figure 4.1, the
output offers a deeper understanding of the system and
the effects of the routing strategy.

4.5. Verification and validation
Both the conceptual model and the computer model
were verified and validated following the methodology of
Robinson, 2004. The simulation animation proved par-
ticularly valuable for verification and white-box valida-
tion. The conclusive black-box validation demonstrated
that the simulation output was comparable to the ac-
tual layrate data from the example project, with only a
3% deviation. In addition, the DJF production in the
simulation differed only 3.5% from a prior, more simpli-
fied, simulation study of the pipe handling system using
similar input parameters.

5. Experimentation with the simulation model
Using the described simulation model, experiments are
conducted to evaluate and improve the performance of
various routing strategies for the pipe handling system
on Solitaire. Rather than aiming for a fixed performance
target, the objective is to gain insight into how differ-
ent strategies affect system performance under varying
pipe supply scenarios and to identify the most effective
routing strategy. The following experimental plan is fol-
lowed to achieve this:

1. Establish relevant pipe supply scenarios and pos-
sible route configurations

2. Establish simulation run setup

Figure 4.1: Snapshot from the simulation animation in Salabim

4

3. Evaluate baseline performance for all route config-
urations under all pipe supply scenarios

4. Improve each route configuration through interac-
tive search experimentation

5. Evaluate performance for all improved route con-
figurations under all pipe supply scenarios

5.1. Experimental scenarios and configurations

The scope of the experiments is limited to pipe sup-
ply from port-side to allow for a more detailed analysis.
Three average PTC delivery rates are considered: a slow
rate of 18 single joints per hour, which just meets DJF
demand; a realistic rate of 24 joints per hour; and a
maximum rate of 30 joints per hour.

To reduce the solution space of possible configura-
tions, the routing problem is divided into subproblems,
where joints move from station to station. Their navi-
gable space is restricted to the area between their cur-
rent and next station, and movement against the gen-
eral pipe flow is not allowed. Under these constraints,
six base route configurations are formulated, illustrated
in Appendix B Figure B.1.

The three pipe supply scenarios combined with the
six route configurations result in a total of eighteen com-
parable experiments.

5.2. Simulation run setup

The experiments are analysed individually using non-
terminating simulations, with results expressed as mean
daily outputs during continuous pipelaying operations.
The DJF production and main pipeline length parame-
ters are evaluated to validate that the model generates
a realistic production output. The waiting area wait
time and the PTC wait time are the key performance
indicators targeted for minimization. Additionally, also
the DJF wait time is considered as a valuable output
parameter to minimize.

A warm-up period of 4 hours and a run length of 21
days are required to obtain accurate and comparable re-
sults, although the level of convergence differs between
parameters and should be considered when interpreting
deviations.

5.3. Base performance

The simulation results in Table 5.1 present the baseline
performance, which serves as a reference and to iden-
tify opportunities for improving the routing strategy.
Since the base route configurations from Appendix B
yield similar performance results, all configurations will
be further developed through interactive search experi-
mentation.

5.4. Interactive search experimentation
Based on the base performance analysis, four directions
for improvement are determined to explore: the hold
policy, the anode distribution in the DJF, the infeed
line of the DJF and the TC moves. Each direction is
seen as an update that can be applied to the route con-
figurations.

5.4.1. Hold policy
The hold policy determines when normal and/or anode
joints are sent to the hold to regulate the anode ratio in
the DJF and to solve congestion in the pipe yard. The
aim was to improve this policy to prevent deadlocks in
the waiting area caused by an unbalanced anode ratio
and to reduce PTC waiting time. The enhanced pol-
icy successfully eliminated deadlocks and removed PTC
waiting time for all routes under a realistic PTC rate,
while also significantly reducing it under a fast rate. For
this reason, the enhanced hold policy is applied to all
route configurations.

5.4.2. DJF anode distribution
Waiting area wait time occurs because normal and an-
ode joints do not always arrive in perfect sequence. To
address this, three distribution strategies were tested to
balance anode joints between the two welding lines lead-
ing to the waiting area. However, none of these strate-
gies had a significant effect, and therefore they are not
applied to the route configurations.

5.4.3. DJF infeed line
Since operations in the pipe yard are generally faster
than those at the DJF processing stations, it appeared
logical to use the pipe yard to pre-align a pair of sin-
gle joints that can be transported simultaneously to the
DJF supply positions as soon as they become available.
The objective of this strategy was to reduce DJF wait-
ing time and to prevent the combination of two anode
single joints. The results confirmed a reduction in DJF
waiting time, except for route configuration (d), where
the prevention of two anode single joints caused dead-
locks in the pipe yard. Therefore, the DJF infeed line
strategy is applied to all configurations except route (d).

5.4.4. TC support moves
TC support moves are introduced to reposition idle TCs
when no tasks are available, with the aim of reduc-
ing PTC and DJF waiting times by anticipating their
next required position. The results showed a clear im-
provement in PTC waiting time but no significant effect
on DJF waiting time. Animation analysis confirmed
that TC movement speed was not a limiting factor,
although the TCs did correctly anticipate their next
moves. Therefore, TC support moves are applied to
all route configurations.

Table 5.1: Reference simulation results for baseline performance

Output parameter Unit Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
DJF production joints / day 207 207 207
Main pipeline length m / day 4886 4889 4880
PTC wait time (KPI) min / day 0 69 291
DJF wait time min / day 53 46 56
Waiting area wait time (KPI) min / day 11 11 12

5

Table 5.2: Best obtained simulation results with improved route configuration (f)

Slow PTC rate (18 SJ/h) Avg PTC rate (24 SJ/h) Fast PTC rate (30 SJ/h)
Output parameter Unit Result Dev.1 Result Dev.1 Result Dev.1

DJF production joints / day 207 0% 207 0% 208 0%
Main pipeline length m / day 4889 0% 4890 0% 4893 0%
PTC wait time (KPI) min / day 0 0% 0 -100% 0 -100%
DJF wait time min / day 40 -25% 34 -26% 33 -41%
Waiting area wait time (KPI) min / day 9 -18% 8 -27% 8 -33%
1 Deviation from the DJF supply line configuration results for route (a) presented in Table 5.1

5.5. Conclusive batch experimentation

After applying all routing strategy updates from the
interactive search experimentation, the route configu-
rations were evaluated once more trough a compara-
tive batch of experiments. The strategy updates sig-
nificantly improved performance for all route configu-
rations, however, the final batch experiments identified
route (f) as the most effective strategy with the results
presented in Table 5.2, compared against the baseline
performance. With this configuration the PTC wait
time is fully eliminated, whereas other routes retained
approximately 15 min/day under fast PTC rates. This
improvement results from route (f) allowing joints to
move towards the hold without moving against the pipe
flow. Reductions in waiting area waiting time were mi-
nor and comparable across all configurations.

Overall, all route configurations achieved satisfac-
tory system performance, with little room for further
improvement given the KPIs defined in this study. Only
route configuration (d) is rejected as a solution due to
reoccurring deadlocks.

6. Conclusion

Publications on the automation of pipelaying operations
are very limited. This study addressed this research gap
by developing a conceptual pipe routing system to reg-
ulate joint movements within a pipe handling system
on vessels, using Allseas’ pipelaying vessel Solitaire as
a case study. The pipe routing problem was identified
as a sequential decision-making problem, making it well
suited for optimization through Reinforcement Learn-
ing. However, the research should first focus on achiev-
ing automation and providing a better understanding
of the system to identify the potential for optimization.
With this in mind, a heuristic approach within a model-
free Markov Decision Process framework was applied to
automate decision-making.

The pipe routing system was implemented in a Dis-
crete Event Simulation model of the pipe handling sys-
tem to evaluate its performance under different routing
strategies and determine a most effective strategy for the
case study. The experiments demonstrated that simu-
lation provides valuable insights into system behaviour
and the impact of routing strategies, ultimately achiev-
ing complete elimination of the pipe transfer crane wait-
ing time, a key performance indicator for this study.

This research demonstrated that simulation provides
a deeper understanding of the pipe handling system and
the impact of routing strategies. The heuristic approach
successfully automated sequential decision-making and

regulated joint movements. Nevertheless, the main chal-
lenge that remains is full scenario coverage, given the
wide variation in pipeline specifications, environmental
influences, and unpredictable events.

A future pipe routing system based on RL could po-
tentially overcome this by adapting to a wide range of
scenarios and identifying solutions beyond those con-
sidered in the heuristic approach. Since this research
has already proposed formulating the pipe routing prob-
lem within a model-free MDP framework, an RL model
could be directly integrated into the existing setup, al-
lowing for a straightforward performance comparison
with the heuristic approach. It would be interesting to
see if such a direct comparison would advance the de-
velopment of an RL model, as this approach could then
also support the practical application of RL in other
industries.

References
Angelle, J. (2020). Proof of value in automating the drill floor. Off-

shore Technology Conference Brasil 2019, OTCB 2019.
Charlton, A., & Curson, N. (2020). Applying an industry 4.0 phi-

losophy to pipeline integrity: The future beyond digital-
isation. Proceedings of the Pipeline Technology Confer-
ence (PTC).

Craig, C., Gupta, A., Yenzer, D., Hasler, D., & Towns, J. (2023).
Fully automated land rig pipe handling: Learnings from
the first year in operation. Society of Petroleum Engi-
neers - ADIPEC, ADIP 2023. https://doi.org/10.2118/
216318-MS

Filom, S., Amiri, A. M., & Razavi, S. (2022). Applications of ma-
chine learning methods in port operations – a systematic
literature review. Transportation Research Part E: Lo-
gistics and Transportation Review, 161, 102722. https:
//doi.org/10.1016/J.TRE.2022.102722

Hillier, F. S., & Lieberman, G. J. (2015). Introduction to opera-
tions research. McGraw-Hill.

Monacchi, G., Arcangeletti, G., Pigliapoco, M., Catena, P., Ziero,
L., Castriotta, G., & Loi, A. (2023). An innovative set of
tools for a sustainable and safe offshore pipelaying. Pro-
ceedings of the Annual Offshore Technology Conference,
2023-May. https://doi.org/10.4043/32448-MS

Moralez, N., Ronquillo, N., Lisi, D., Lynch, M., Parker, C., Sutler,
J., & Machum, M. (2020). Intelligent pipe-handling: A
case study for automation. SPE/IADC Drilling Confer-
ence, Proceedings, 2020-March.

Otterlo, M., & Wiering, M. (2012). Reinforcement learning and
markov decision processes. Reinforcement Learning:
State of the Art, 3–42. https://doi.org/10.1007/978-3-
642-27645-3 1

Robinson, S. (2004). Simulation: The practice of model develop-
ment and use. John Wiley & Sons.

Van Der Ham, R. (2018). Salabim: Discrete event simulation and
animation in python. Journal of Open Source Software,
3 (27), 767.

Wuest, T., Weimer, D., Irgens, C., & Thoben, K.-D. (2016).
Machine learning in manufacturing: Advantages, chal-
lenges, and applications. Production & Manufacturing
Research, 4 (1), 23–45.

6

A. Pipe laying operations on Solitaire

Figure A.1: IDEFO diagram for pipelaying operations on Solitaire

7

B. Base route configurations

(a) Route PS (a) (b) Route PS (b)

(c) Route PS (c) (d) Route PS (d)

(e) Route PS (e) (f) Route PS (f)

Figure B.1: Base route configurations for pipe supply from port-side

8

B
Selection of simulation software

Since the system to be modelled does not consist solely of straightforward, sequential processes, it
is important to carefully select the DES software package for modelling the pipe yard system and its
control structure. Themost suitable simulation package for this study will be determined in this appendix
following the process of software selection described by Robinson 2004. This book summarizes the
process in the following 5 steps;

1. establish the modelling requirements,
2. survey and shortlist the software,
3. establish evaluation criteria,
4. evaluate the software in relation to the criteria,
5. software selection.

73

B.1. Modelling requirements 74

B.1. Modelling requirements
This section summarizes requirements and considerations for choosing a suitable DES software pack-
age. The software is required to model the pipe yard system as described in the main report Chapter
2. Although the model can potentially be useful for different research applications within Allseas, it
will be designed for this study without restrictions for future applications. As this study is defined as a
feasibility study resulting in a consult for further research, there are no requirements for application of
the model in practice.

The developer possesses basic knowledge of model development and familiarity with Python as a
programming language. Although an intuitive program with limited required programming knowledge is
preferred for both the developer and the evaluation of the model by other personnel, modelling flexibil-
ity is also important considering the implementation of the centralized control agent controlling events
within the model. On top of the implementation of the control structure, there is also a demand for
optimizing the decision-making strategy within the control structure. But the actual method and require-
ments remain unclear and this stage, thus software packages offering a wide range of solutions are
preferred on this aspect. Furthermore, animation is an important feature of the simulation software as
one of the modelling objectives is to get a better understanding of decision-making strategies based on
system state and the effects on pipe flow, which can best be evaluated by visualizing the joint move-
ments.

Allseas is currently not willing to pay for commercial software packages, but packages that are
available through trials or student licensing can be considered as the model will be designed for this
study only. Open Source (OS) software can be strong alternative to commercial packages considering
future use of the model.

B.2. Software shortlist
This section summarizes the shortlist of simulation software that have been considered for this project,
including: SimPy, Salabim, JaamSim, AnyLogic, Tecnomatix Plant Simulation and MATLAB SimEvents.
These packages are selected based on the developers educational program, experience within Allseas
and findings in literature. All software packages are introduced through findings from comparative
studies and personal user experience.

SimPy and Salabim
SimPy and Salabim are both OS DES frameworks for Python that are featured in the developers educa-
tional program, and Salabim has been used in an educational project by the developer before. Although
SimPy is actually the most popular free DES software available online, Vieira et al. 2020, the developer
of Salabim claims to have developed a successor with a more user friendly modelling paradigm. Also,
Salabim provides queues, states, data monitors, statistical distributions and animation, none of which
are present in SimPy Van Der Ham 2018. As both programs are language based without a graphical
user interface (GUI) they seem mostly directed to developers. However, when implementing compli-
cated decision logic into a model, language based programs can actually be more user-friendly than
specialized GUI packages that are restricted to their intend of use (Ham 2020). The use of Python
is attractive to developers that are not necessarily software experts as it is an intuitive language with
many popular scientific packages available (Dagkakis et al. 2016). However, as a scripting language
Python is by default slower than static languages like Java and C++ (Dagkakis et al. 2016). King 2024
showed an experiment on a single server queue system with 500.000 arrivals showing a ten times
longer computation time for Python compared to Java.

JaamSim
Vieira et al. 2020 concludes that the use of OS software is still limited, looking at the amount of papers
published by Winter Simulation Conference (world’s largest simulation conference), and also Dagkakis
et al. 2016 concludes that there is noOSDES tool that can actually compete with commercial software in
OR applications, with a possible exception of JaamSim that had just recently been made OS. JaamSim
is also one of the most popular free DES software available as it provides the most impressive GUI
and it is the only OS tool that is clearly industry driven (Dagkakis et al. 2016). The drag and drop
interface, combined with the possibility for developers to add new objects, make the program applicable
for different levels of potential users. For this reason Allseas has used JaamSim in a prior to study to
determine the most efficient layout of the pipe yard, however the study was limited to simplified joint

B.3. Evaluation criteria 75

movements within the yard and the project got stuck when trying to implement more complex movement
strategies. JaamSim is licensed under the General Public License (GPL) and all projects based on this
software will have to use the same license, meaning you have to share the source code and include
the original copyright notice when distributing your project.

AnyLogic
AnyLogic is a commercial simulation platform offering all three modelling methods (SD, DES and ABM)
and even multi-method modelling. Borshchev 2014 claims while using a traditional single-method tool,
the modeller inevitably either starts using workarounds, or just leaves part of the problem outside the
scope of the model as the problem cannot be completely conformed to the modelling paradigm. This
seems to comply with the pipe routing problem and its centralized control agent, which is why the soft-
ware was tested through the free available personal learning license. As expected the software offered
an intuitive GUI for quickly building a model using the useful material handling library. Although the
program allows for numerous control features including external language based scripts, the developer
concluded that the Java programming language and the more complicated paradigm of integration be-
tween external scripts does not fit the expertise of the developer. The program is still an interesting
option for Allseas for future projects.

Tecnomatix Plant Simulation
Another shortlisted commercial package is Tecnomatix Plant Simulation by Siemens, a widely known
simulation tool for analysing production and logistics processes in the automotive industry. As can
be expected from a commercial program, it provides an intuitive GUI with the possibility to develop
custom process logic and new users can quickly learn how to create models thanks to the extensive
and detailed online help, the many example models and the large active user community (Lang et al.
2021). Allseas was interested in this software in the past, but took it out of consideration as they could
not receive a trial license. The developer could be eligible for a student license through the TU Delft, but
after the experiences with JaamSim and AnyLogic it seems unnecessary to try another GUI simulation
package offering similar features.

MATLAB SimEvents
MATLAB SimEvents is not mentioned in comparative studies like the other tools as MATLAB is not
purely a DES program. SimEvents is actually an add-on library within the Simulink environment, which
is both an advantage and a disadvantage. SimEvents is missing some direct mechanisms for important
features, which can be compensated by the resources within Simulink to build your own mechanisms
(Gray 2007). Although the MATLAB language has advantages for the control structure as it is familiar
to the developer and it offers elaborate add-ons like optimization libraries, the actual DES tools are
concluded to be too limiting to construct the model of the pipe yard.

B.3. Evaluation criteria
In this section the shortlisted software will be evaluated based on: ease of model development, inte-
grated animation, optimization solutions for decision-making, modelling support and potential for future
use of the model within Allseas. The ease of model development is divided into the model content
and the control structure in the criteria. The first only focuses on modelling all the elements and their
relationships like movement restrictions for joints requiring a TC. The latter focusses on implementing
the control structure that assigns movements to joints in the desired direction. Modelling support refers
to software documentation, available experience from supervisors and also AI-powered assistance as
this can highly influence the ease of model development.

B.4. Software evaluation
All criteria receive a weight between 1 and 5 indicating their relative importance. The software receive
a score between 1 and 5 for each criteria, based on the findings from comparative studies and personal
user experience summarized in the previous section. It should be noted that the scoring is subjective
and shaped by how closely the programs relate to the developer’s area of expertise. The overall
evaluation is summarized in Table B.1.

B.5. Modelling software choice 76

Table B.1: Discrete event simulation software comparison

Criteria w SimPy Salabim JaamSim AnyLogic Plant Sim. SimEvents
Language Python Python Java Java SimTalk MATLAB
Licensing OS OS OS Commercial Commercial Commercial
Modelling approach Language Language GUI Hybrid Hybrid Hybrid
Model content 4 2 3 4 5 5 1
Control structure 5 4 5 1 2 2 3
Animation 3 1 3 3 5 5 1
Optimization 3 4 4 1 3 3 4
Support 2 4 4 2 3 3 4
Future use 1 4 4 3 1 1 3

Total score: 55 70 40 61 61 45

B.5. Modelling software choice
Based on Table B.1 it can be concluded that Salabim is the most suitable DES software package and
will be used for this project. During the testing and evaluation of the shortlisted software options it
became evident that the implementation of the desired control structure within a DES environment is
unconventional. In specialized GUI packages, DES models are typically thought of as networks of
queues and servers with entities moving through (Maidstone 2012), resulting in limited solutions to
control the entity flow. As such, a language-based modelling approach offers greater flexibility than a
GUI with pre-built mechanisms. While commercial software may offer similar flexibility through custom
extensions, these implementations seem more complex and do not align with the developer’s current
expertise and available support.

Salabim, as a language-based simulation library in Python, provides all the essential features, including
a basic integrated animation function. Since it is purely code-driven, modelling the system’s content
may require more effort. However, with available guidance from supervisors and support from AI-
powered tool, this challenge can be effectively managed. Additionally, building the model from scratch
allows for greater flexibility and will simplify the implementation of the control structure.

C
Conceptual model formulation

The conceptual model is formulated using a Programming Descriptive Language (PDL) that describes
the set-up of the computer model using a combination of the English language and some key program-
ming words. The PDL uses colours to highlight certain keywords like: component identifiers, simulation
actions, and Python keywords.

The model is structured by formulating components for all the elements of the pipe yard system
and its environment as defined in Section 2.3. Each component is formulated by a set of attributes and
a process. Components can interact with eachother through process interaction, which can be recog-
nized by a combination of a component identifier and a simulation action. Components can also interact
with the environment that manages attributes and parameters that are relevant to all components.

77

C.1. Environment 78

C.1. Environment
The environment stores the following attributes that can be referenced by the components.

Attributes
position_map
routing_positions
occupancy_map
move_map_to_marking
move_map_to_hold
move_map_to_cleaning
move_map_to_djf
move_map_djf

C.2. Components
All components have attributes and a main process that describes the actions of a component and how
it interacts with other components. A type of component may be generated multiple times, either at
the start of during the simulation. Most attributes are written to self within the component, indicating
that this attribute is specific for this generated component and the value may be different than a similar
component with the same attribute. The main process for each component is an infinite loop that may
be controlled by functions like hold, wait or passivate and can be reactivated by other components.

C.2.1. PSV
Attributes
joint_amount = parameter
anode_ratio = parameter
joint_list = []

Process
set anode_amount to joint_amount * anode_ratio
set regular_amount to joint_amount - anode_amount
for regular_amount:

generate Joint with anode is False
for anode_amount:

generate Joint with anode is True
add Joints to self.joint_list with regular anode interval
passivate self

C.2.2. PTC
Attributes
position = parameter
PSV // reference to PSV
counter = 0 // counter for amount of joints delivered
lifting_time_min = parameter // for triangular distribution
lifting_time_mode = parameter // for triangular distribution
lifting_time_max = parameter // for triangular distribution
drop_time = parameter / constant
wait_memory = []

Process
while there are joints in self.PSV.joint_list:

get first Joint from joint_list
add 1 to self.counter
set Joint.id to self.counter
hold self for self.Subprocess_lifting_time

C.2. Components 79

if self.position is not free:
wait self until self.position is free
store waiting time in self.wait_memory

set self.position in occupancy_map to reserved
hold self for drop_time

set Joint.position to self.position
set self.position in occupancy_map to occupied
set Joint.waiting_for_move to True
add Joint to PipeRoutingSystem.joint_list

passivate self

Subprocess_Lifting_time
return random from triangular distribution with min=self.lifting_time_min , mode=

self.lifting_time_mode , max=self.lifting_time_max

C.2.3. PipeRoutingSystem
Attributes
joint_list = []
joint_with_remainder_list = []

Process
set move_assigned to False
for each Joint waiting for a move in joint_list:

if Joint is not marked:
get Joint.destination and Joint.resource from move_map_marking

elif Joint assigned to hold:
get Joint.destination and Joint.resource from move_map_hold

elif Joint is marked and not cleaned:
get Joint.destination and Joint.resource from move_map_cleaning

elif Joint is marked and cleaned:
get Joint.destination and Joint.resource from move_map_djf

if Joint.destination is None:
continue

get move and remainder from self.Subprocess_Path(Joint.position , Joint.
destination)

if there is a move and resource is None or available:
set Joint.move to move
set Joint.remainder to remainder
for each position in move:

set position in occupancy map to reserved
activate Joint
set move_assigned to True

if there is a remainder:
add Joint to self.joint_with_remainder_list

break

if move_assigned is False:
if TC2ps is passive and in cleaning position:

set TC2ps.new_y to position above cleaning
activate TC2ps

passivate self

C.2. Components 80

Subprocess_Path (start_position, end_position)
get start_x and start_y from start_position
get end_x and end_y from end_position
move = []
remainder = []

if start_x is not equal to end_x:
add all reachable positions between (start_x, start_y) and (end_x, start_y) to

move
add all unreachable positions between (start_x, start_y) and (end_x, start_y)

to remainder
if start_y is not equal to end_y:

add all reachable positions between (start_x, start_y) and (start_x, end_y) to
move

add all unreachable positions between (start_x, start_y) and (start_x, end_y)
to remainder

return move and remainder

Subprocess_Path_update
for each Joint in self.joint_with_remainder_list:

if Joint.path_updateable is True:
get move_extend and new_remainder from Subprocess_Path(Joint.move[-1],

Joint.destination)

if there is a move_extend:
extend Joint.move with move_extend
set Joint.remainder to new_remainder
for each position in move_extend:

set position in occupancy_map to reserved
if there is no new_remainder:

remove Joint from self.joint_with_remainder_list

Subprocess_joint_to_hold
// Activated by marking station port side
if there is a Joint waiting for a move next to marking station:

set Joint.to_hold to True

C.2.4. Joint
Attributes
id = None // Assigned by PTC after delivery
length = joint_length
anode = boolean // True or False
position = parameter // (x, y)
x, y = position_map(position) // Get x and y coordinates from position map
waiting_for_move = False // Indicates if Joint is waiting for move
move = None
destination = None
path_updateable = False // Indicates if Joint path can be updated during move
marked = False // Indicates if Joint is marked
cleaned = False // Indicates if Joint is cleaned
to_hold = False // Indicates if Joint is sent to hold

Process
passivate self // Activated by PipeRoutingSystem after assigned a move

set self.waiting_for_move to False
set self.path_updateable to True

C.2. Components 81

new_position is last position in self.move
get new_x and new_y from new_position in position_map

if new_x is not equal to self.x:
Subprocess_joint_lco_move(self, self.move)
set occupancy self.position to occupied

if new_y is not equal to self.y:
resource is self.resource
request resource
set resource.joint to self
set resource.new_y to self.y
activate resource
passivate self // Reactivated when resource has lifted joint

Subprocess_joint_y_move(self, TC, self.move)
passivate self // Reactivated when resource has dropped joint

release resource
set occupancy self.position to occupied

set self.destination to None
set self.move to None

if self.position is a processing station:
passivate self // Reactived by processing station

if self.move is None:
set self.waiting_for_move to True
activate PipeRoutingSystem

C.2.5. DoubleJoint
Attributes
aft // Reference to aft joint
fore // Reference to fore joint
id // Double joint id is combination of single joint id's (aft.id, fore.id)
length = 2 * joint_length
anode // True if aft.anode or fore.anode is True, else False
position // Grid coordinate (x, y)
x, y // Map coordinate from position in position_map
waiting_for_move = False // Indicates if Joint is waiting for move
marked = True // Indicates if DoubleJoint is marked
cleaned = True // Indicates if DoubleJoint is cleaned
to_hold = False // Indicates if DoubleJoint is sent to hold

Process
passivate self // Activated by processing stations

set self.waiting_for_move to False
get new_x and new_y from self.destination in position_map
// Longitudinal move
if new_x is not equal to self.x:

Subprocess_joint_lco_move(self, self.move)
set occupancy self.position to occupied

// Transverse move
if new_y is not equal to self.y:

resource is self.resource
request resource
set resource.joint to self
set resource.new_y to self.y

C.2. Components 82

activate resource
passivate self // Reactivated when resource has lifted joint

if resource is a crane:
Subprocess_joint_y_move(self, Crane, self.move)

else:
Subprocess_joint_y_move(self, TC, self.move)

passivate self // Reactivated when resource has dropped joint

release resource
set occupancy self.position to occupied

set self.destination to None
set self.move to None

if self.position is a processing station:
passivate self // Reactived by processing station

if self.move is None:
set self.waiting_for_move to True
if self in PipeRoutingSystem.joint_list:

activate PipeRoutingSystem
elif self in WaitingArea.doublejoint_list:

activate WaitingArea

C.2.6. TC
Attributes
position = parameter // (x, y)
lift_time = parameter \\ constant
drop_time = parameter \\ constant
joint // reference to joint being moved

Process
passivate self // activated by Joint request or PipeRoutingSystem
Subprocess_y_move(self, TC, self.new_position) \\ new_position set by activation
if requested for Joint move:

hold self for lift_time
activate Joint
Subprocess_y_move(self, TC, Joint.move)
hold self for drop_time
activate Joint

C.2.7. MarkingStation
Attributes
position = parameter // (x, y)
marking_time = parameter

Process
wait self until self.position is occupied by Joint
hold self for marking_time
set Joint.marked to True
activate PipeRoutingSystem.Subprocess_joint_to_hold
activate Joint

C.2.8. CleaningStation
Attributes

C.2. Components 83

position = parameter // (x, y)
cleaning_time = parameter

Process
wait self until self.position is occupied by Joint
hold self for cleaning_time
set Joint.cleaned to True
activate Joint

C.2.9. Hold
Attributes
position = parameter // (x, y)
storage_location = parameter // location name
storage_active = boolean // True or False
retrieval_active = boolean // True or False
lift_time = parameter
storage_time = parameter
retrieval_time = parameter
storage_list = []

Process
while self.storage_active is True:

wait self until self.position is occupied by Joint
if Joint.to_hold is True:

hold self for lift_time
set Joint.position to storage_location
set self.position in occupancy_map to free
hold self for storage time
add Joint to self.storage_list
remove Joint from PipeRoutingSystem.joint_list

C.2.10. DJF
Attributes
position_aft = parameter // supply position aft (x, y)
positoin_fore = parameter // supply position fore (x, y)
wait_memory_ps = []
wait_memory_sb = []

Process
wait self until self.position_aft and self.position_fore are occupied in

occupancy_map
// or be activated by Heating Station after bevelling position is free
if there is a Joint_aft at position_aft and a Joint_fore at position_fore:

if the DJF was waiting:
store waiting time in self.wait_memory

if bevelling positions at port side are free in occupancy_map:
set Joint_aft.destination to Bevelling_ps_aft.position and set Joint_aft.

resource to TC3ps
set Bevelling_ps_aft.Joint to Joint_aft
set Joint_fore.destination to Bevelling_ps_fore.position and set

Joint_fore.resource to TC4ps
set Bevelling_ps_fore.Joint to Joint_fore
for Joint_aft and Joint_fore:

remove joint from PipeRoutingSystem.joint_list
set Joint.djf to True
set Joint.move to Joint.destination

C.2. Components 84

set Joint.destination in occupancy_map to reserved
activate Joint

if port side was waiting:
store waiting time in self.wait_memory_ps

elif bevelling positions at starboard are free in occupancy_map:
set Joint_aft.destination to Bevelling_sb_aft.position and set Joint_aft.

resource to TC3sb
set Bevelling_sb_aft.Joint to Joint_aft
set Joint_fore.destination to Bevelling_sb_fore.position and set

Joint_fore.resource to TC4sb
set Bevelling_sb_fore.Joint to Joint_fore
for Joint_aft and Joint_fore:

remove joint from PipeRoutingSystem.joint_list
set Joint.djf to True
set Joint.move to [Joint.destination]
set Joint.destination in occupancy_map to reserved
activate Joint

if starboard was waiting:
store waiting time in self.wait_memory_sb

else:
passivate self // no bevelling position free, reactivated by heating

station when free
else:

if bevelling positions at port side are free:
port side start waiting

elif bevelling positions at starboard are free:
starboard start waiting

C.2.11. BevelStation
Attributes
position = parameter // (x, y)
bevel_time = parameter // probability distribution

Process
wait self until self.position in occupancy_map is occupied by Joint
hold self for bevel_time
activate Joint

C.2.12. HeatingStation
Attributes
position = parameter // (x, y)
heating_time = parameter
next_station // reference to next station

Process
wait self until self.position in occupancy_map is occupied by Joint
activate DJF
hold self for heating_time
wait self until next_station.position in occupancy_map is free
activate Joint

C.2.13. WeldingStation1
Attributes
position = parameter // (x, y)
position_aft = parameter // (x, y)
position_fore = parameter // (x, y)
welding_time = parameter
next_station // reference to next station

C.2. Components 85

Process
wait self until self.position_aft and self.position_fore in occupancy_map are

occupied by joint_aft and joint_fore
set self.position in occupancy map to occupied
hold self for welding_time

// remove single joints from simulation
remove joint_aft and joint_fore from PipeRoutingSystem.joint_list
set self.position_aft in occupancy map to free
set self.position_fore in occupancy map to free
if joint_aft.anode is False and joint_fore.anode is False

generate Doublejoint with anode is False
elif joint_aft.anode is True or joint_fore.anode is True:

generate DoubleJoint with anode is True
add DoubleJoint to PipeRoutingSystem.joint_list
wait self until next_station.position in occupancy_map is free

set DoubleJoint.destination to move_map_djf(self.position)
set DoubleJoint.move to [DoubleJoint.destination]
set DoubleJoint.destination in occupancy_map to reserved
activate DoubleJoint

C.2.14. WeldingStation2
Attributes
position = parameter // (x, y)
welding_time = parameter

Process
wait self until self.position in occupancy_map is occupied by DoubleJoint
hold self for welding_time
activate DoubleJoint

C.2.15. WeldingStation34
Attributes
position = parameter // (x, y)
welding_time = parameter

Process
wait self until self.position in occupancy_map is occupied by DoubleJoint
hold self for welding_time
activate DoubleJoint

C.2.16. NDT
Attributes
position = parameter // (x, y)
testing_time = parameter
reject_probability = parameter between 0 and 1

Process
wait self until self.position in occupancy_map is occupied by DoubleJoint
hold self for testing_time
if random < self.reject_probability: // random number between 0 and 1

set DoubleJoint.reject to True
activate Waiting Area
activate DoubleJoint

C.2. Components 86

C.2.17. Crane
Attributes
position = parameter // (x, y)
hoist_time = parameter
hoist_time_firingline = parameter
idle = Boolean // True or False
DoubleJoint // reference to doublejoint being moved

Process
set self.idle to True
passivate self // activated by Waiting Area
set self.idle to False
Subprocess_y_move(self, Crane38, self.new_position) // new_position set by

activation

if requested for FiringLine rejects:
set lift_time to 2 * self.hoist_time_firingline
hold self for lift_time // lowering the empty crane and lifting with double

joint
while Deconstructor.position is not free:

wait self until Deconstructor.position is free
set Deconstructor.position to reserved

elif requested for DoubleJoint move:
set lift_time to 2 * self.hoist_time
hold self for lift_time // lowering the empty crane and lifting with double

joint
else:

return

activate DoubleJoint
Subprocess_y_move(self, Crane38, self.DoubleJoint.move)
hold self for self.hoist_time // dropping the double joint
activate DoubleJoint
hold self for self.hoist_time // lifting the empty crane

C.2.18. Buffer
Attributes
position = parameter // (x, y)
retrieval = False // Indicates if buffer is retrieving a joint for waiting area
DJ_list = [] // list of double joints in buffer
ADJ_list = [] // list of anode double joints in buffer

Process
wait self until self.position in occupancy_map is occupied by DoubleJoint
// or be activated by something else
if there is a DoubleJoint:

set DoubleJoint.position to buffer
if DoubleJoint.anode = False:

add DoubleJoint to self.DJ_list
elif DoubleJOint.anode = True:

add DoubleJoint to self.ADJ_list
set self.position in occupancy_map to free

elif self.retrieval is True:
if FiringLine.anode is False:

get DoubleJoint from self.DJ_list
elif FiringLine.anode is True:

get DoubleJoint from self.ADJ_list
set DoubleJoint.position to self.position

C.2. Components 87

set DoubleJoint.destination to Elevator.position
set DoubleJoint.move to [DoubleJoint.destination]
set DoubleJoint.resource to Crane38
set DoubleJoint.destination in occupancy_map to reserved
activate DoubleJoint
set self.retrieval to False

C.2.19. WaitingArea
Attributes
crane // reference to Crane38
reserve_anode = Boolean // True or False
doublejoint_list = []

Process
set doublejoint_sb to DoubleJoint at starboard position or None
set doublejoint_ps to DoubleJoint at port side position or None
set doublejoint_reserve to DoubleJoint at reserve position or None

if WaitingArea was not waiting for normal doublejoint:
if FiringLine is waiting and Elevator is free but normal doublejoint not

available:
start waiting

elif waitingArea was waiting for normal doublejoint:
if normal doublejoint is available:

store wait time
if WaitingArea was not waiting for anode doublejoint:

if FiringLine is waiting and Elevator is free but anode doublejoint not
available:

start waiting
elif waitingArea was waiting for anode doublejoint:

if normal doublejoint is available:
store wait time

if FiringLine has rejects:
for all DoubleJoint in FiringLine.reject_list

while self.crane is not idle:
wait self until self.crane is idle

set DoubleJoint.destination to Deconstructor.position
set DoubleJoint.move to [DoubleJoint.destination]
set DoubleJoint.resource to Crane38
activate DoubleJoint
remove DoubleJoint from FiringLine.reject_list

activate FiringLine
elif Elevator.position is free and doublejoint_sb is no reject and correct anode:

self.Subprocess_move(doublejoint_sb , Elevator.position)
elif Elevator.position is free and doublejoint_ps is no reject and correct anode:

self.Subprocess_move(doublejoint_ps , Elevator.position)
elif Elevator.position is free and doublejoint_reserve is no reject and correct

anode:
self.Subprocess_move(doublejoint_reserve , Elevator.position)

elif Elevator.position is free and FiringLine.anode is False and there are double
joints in Buffer.DJ_list:
set Buffer.retrieval to True
activate Buffer

elif Elevator.position is free and FiringLine.anode is True and there are anode
double joints in Buffer.ADJ_list:
set Buffer.retrieval to True
activate Buffer

elif doublejoint_ps is a reject and Deconstructor.position is free:
self.Subprocess_move(doublejoint_ps , Elevator.position)

C.2. Components 88

elif doublejoint_sb is a reject and Deconstructor.position is free:
self.Subprocess_move(doublejoint_sb , Elevator.position)

elif doublejoint_ps is no reject and NDT_ps is waiting:
if reserve spot is free:

self.Subprocess_move(doublejoint_ps , reserve position)
else:

self.Subprocess_move(doublejoint_ps , Buffer.position)
elif doublejoint_sb is no reject and NDT_sb is waiting:

if reserve spot is free:
self.Subprocess_move(doublejoint_sb , reserve position)

else:
self.Subprocess_move(doublejoint_sb , Buffer.position)

else:
passivate self // no actions available for waiting area

while self.Crane is not idle:
wait self until self.Crane is idle

Subprocess_move(doublejoint, destination)
set doublejoint.destination to destination
set doublejoint.move to [doublejoint.destination]
set doublejoint.resource to Crane38
set doublejoint.destination in occupancy_map to reserved
activate doublejoint

C.2.20. Elevator
Attributes
position = position // (x, y)
elevator_time_empty = parameter
elevator_time_loaded = parameter
unloading_time = parameter

Process
wait self until self.position in occupancy_map is occupied by DoubleJoint
hold self for self.elevator_time_loaded
hold self for self.unloading_time
wait self until FiringLine is ready to sent Elevator back
hold self for self.elevator_time_empty
set self.position in occupancy_map to free
activate WaitingArea

C.2.21. FiringLine
Attributes
position = position // (x, y)
processing_time = parameter
processing_time_pull = parameter
reject_length = parameter
reject_probability = parameter between 0 and 1
anode_interval = parameter
anode = Boolean // True or False
counter = 0 // counting length of main pipeline
pipeline_list = [] // list for storing double joints in main pipeline
reject_list = []
wait_memory = []

Process

C.2. Components 89

if Elevator has not delivered DoubleJoint:
wait until DoubleJoint is delivered
store waiting time in self.wait_memory

send Elevator back
set DoubleJoint.position to self.position
add 1 to self.counter
if self.counter / self.anode_interval has no remainder:

set self.anode to True
else:

set self.anode to False
add DoubleJoint to self.pipeline_list
if len(self.pipeline_list) > self.reject_length:

remove first DoubleJoint from self.pipeline_list
remove first DoubleJoint from DJF.doublejoint_list

hold self for processing_time
if random < self.reject_probability // random number between 0 and 1

set self.reject_list to self.pipeline_list in opposite order
subtract len(self.reject_list) from self.counter
for all DoubleJoint in self.reject_list:

set DoubleJoint.reject to True
remove DoubleJoint from self.pipeline_list
set DoubleJoint.position to self.position
activate WaitingArea
while there are DoubleJoint in self.reject_list:

passivate self
else:

hold self for processing_time_pull

C.2.22. Deconstructor
Attributes
position = parameter // (x, y)
position_aft = parameter // (x, y)
position_fore = parameter // (x, y)
deconstruction_time = parameter

Process
wait self until self.position in occupancy_map is occupied by DoubleJoint
set aft_joint to DoubleJoint.aft
set fore_joint to DoubleJoint.fore
hold self for deconstruction_time
// remove double joint from simulation and add single joints again
remove DoubleJoint from WaitingArea.doublejoint_list
set aft_joint.position to self.position_aft
set aft_joint.position to self.position_fore
for aft_joint and fore_joint:

set Joint.position in occupancy map to occupied
set Joint.djf to False
set Joint.cleaned to False
set Joint.to_hold to True
add Joint to front of PipeRoutingSystem.joint_list
activate Joint

wait self until self.position_aft and self.position_fore in occupancy_map are free
set self.position in occupancy_map to free
activate WaitingArea

C.2.23. General Subprocesses
Subprocess_joint_lco_move (self, move)
// Acceleration

C.2. Components 90

dx is direction * lco_acceleration_distance
animate interpolated movement of dx at 0.5 lco velocity
set self.x to interpolated_x
// Constant velocity
for each position in move:

dx is x_position - self.x
if position is final position:

dx is dx - lco_acceleration_distance
animate interpolated movement for dx at lco velocity
after leaving old position set old position in occupancy_map to free
set self.x to interpolated_x
set self.position to position

// Deceleration
set self.path_updateable to False
dx is direction * lco_acceleration_distance
animate interpolated movement of dx at 0.5 lco velocity
set self.x to x from position in position_map

Subprocess_y_acceleration (self, component, direction
dy is direction * component_acceleration_distance
animate interpolated movement of dy at 0.5 component_velocity
set self.y to interpolated_y

Subprocess_y_deceleration (self, component, direction
set self.path_updateable to False
dy is direction * component_acceleration_distance
animate interpolated movement of dy at 0.5 component_velocity
set self.y to y from position in position_map

Subprocess_joint_y_move (self, component, move)
get direction
// Acceleration
Subprocess_y_acceleration(self, component , direction)
// Constant velocity
for each position in move:

dy is y_position - self.y
if position is final position:

dy is dy - component_acceleration_distance
animate interpolated movement for dy at component_velocity
after leaving old position set old position in occupancy_map to free
set self.y to interpolated_y
set self.position to position

// Deceleration
Subprocess_y_deceleration(self, component , direction)

D
Process duration data

The process durations at the processing stations within the DJF should be derived from empirical data
to accurately capture the stochastic nature of the operations in the simulation. However, there is a
lack of accurate data available on the DJF within the Pipeline Production Department (PPD) at Allseas.
PPD generally assumes the production of the DJF to be sufficient to supply the firing line and has
therefore not been interested in accurately logging data for the DJF during projects. An attempt has
been done to extract duration data from a datalogger, but the output shows a flattened distribution with
an overestimated mean for the duration of the welding stations. This could be explained by inconsistent
behaviour of operators at the end of their process, as operators wait for eachother before pressing the
ready button. This appendix will describe how the distributions of process durations are estimated
based on a performed video analysis and measured average values provided by PPD.

91

D.1. Video analysis 92

D.1. Video analysis
During the South-East Extension (SEE) project, 20 hours of continuous production has been recorded
on Solitaire.The available recordings will be used to verify the estimated average durations provided
by PPD, but also to analyse the process to estimate a minimum and maximum value and a distribution
function for the stochastic station duration. The video analysis will be performed for bevelling, welding
1, welding 2 and welding 3/4.

The recording is split into four videos of 5 hours and as their are two welding lines, a total of eight
videos is available for each station. Five measurements per video provide a total of 40 duration logs
from several operators and production phases. Table D.1 presents the mean, maximum and minimum
values measured per station. Table D.2, Table D.3, Table D.4 and Table D.5 show all 40 duration logs
sampled per station.

Table D.1: Summary of duration logs from video analysis

Data Bevelling Welding 1 Welding 2 Welding 3/4
Mean 276 s 750 s 695 s 545 s
Max 505 s 971 s 1014 s 895 s
Min 196 s 553 s 489 s 398 s

Table D.2: Process duration logs for bevelling from video analysis

Videos port side Videos starboard
Data 00h–05h 05h–10h 10h–15h 15h–20h 00h–05h 05h–10h 10h–15h 15h–20h
Sample 1 263 202 292 357 272 287 258 217
Sample 2 258 213 236 236 221 430 287 456
Sample 3 338 217 244 505 268 288 227 250
Sample 4 319 208 196 215 315 293 226 244
Sample 5 494 210 200 277 252 271 257 240

Table D.3: Process duration logs for welding 1 from video analysis

Videos port side Videos starboard
Data 00h–05h 05h–10h 10h–15h 15h–20h 00h–05h 05h–10h 10h–15h 15h–20h
Sample 1 707 836 798 581 800 819 553 732
Sample 2 792 804 647 595 641 883 782 753
Sample 3 788 818 775 803 839 932 971 803
Sample 4 784 811 836 591 831 891 561 746
Sample 5 785 794 771 667 599 569 578 748

Table D.4: Process duration logs for welding 2 from video analysis

Videos port side Videos starboard
Data 00h–05h 05h–10h 10h–15h 15h–20h 00h–05h 05h–10h 10h–15h 15h–20h
Sample 1 523 750 694 631 638 759 640 699
Sample 2 701 941 638 501 539 749 695 827
Sample 3 998 717 692 886 1014 489 798 694
Sample 4 703 722 650 647 747 626 538 687
Sample 5 755 726 505 687 653 694 679 570

Table D.5: Process duration logs for welding 3/4 from video analysis

Videos port side Videos starboard
Data 00h–05h 05h–10h 10h–15h 15h–20h 00h–05h 05h–10h 10h–15h 15h–20h
Sample 1 439 454 450 445 464 700 526 449
Sample 2 398 771 560 504 483 711 698 449
Sample 3 716 610 655 895 675 555 776 414
Sample 4 425 428 482 596 432 445 461 452
Sample 5 468 450 656 649 418 608 524 495

D.2. Theoretical probability density function 93

D.2. Theoretical probability density function
The stochastic variation of the process durations can be described by an estimated probability density
function (PDF), which is used to describe the probability that a continuous random variable will fall within
a specified range (Kissell et al. 2017). This section will describe which distribution function will be used
to design the probability density function and how this probability density function will be shaped.

D.2.1. Distribution functions
In general process durations are positively skewed as the minimum process duration makes that a
process slower than average has a larger potential deviation than a process faster than average. A
well-known positively skewed distribution is the log-normal distribution which can be fitted through the
data logs. However, their is insufficient data logs available to assume a fitted log-normal to be accu-
rate and for the purpose of this research it would be better to introduce a maximum value to exclude
exceptional process durations that are too influential on the simulation results.

A triangular distribution is a very simple solution that aligns with the available data as it only requires
the minimum, maximum and mode value. It is often used in simulations when there is insufficient data
available (Kissell et al. 2017). The PERT distribution requires the same values, but generates a distri-
bution that more closely resembles a realistic probability distribution (RiskAMP n.d.). PERT is actually
a transformation of the more well known Beta distribution that is defined by two shape parameters. It
is preferred to define the probability density function as a Beta distribution as this can be implemented
directly in the simulation program Salabim.

D.2.2. Deriving Beta function shape parameters
This subsection will describe how the shape parameters of the Beta distribution can be derived based
on a mean, minimum and maximum value using the methodology of the PERT distribution as described
in Buchsbaum 2012. As themost reliable value available for the station durations is themeasuredmean
value provided by PPD, this will form the basis for shaping the distribution function.

Formula D.1 shows how the mean in modified PERT can be calculated given the minimum value min,
maximum value max, most common value mode and shape factor λ. This formula can be transformed
to Formula D.2, using the mean as input to calculate the mode.

mean =
(min+ λ ∗mode+max)

(λ+ 2)
(Buchsbaum 2012) (D.1)

mode =
mean ∗ (λ+ 2)−min−max

λ
(D.2)

The mean and mode for a Beta distribution can be calculated with the shape parameters α and β as
shown in Formula D.3 and Formula D.4.

mean =
α

α+ β
(Peleg 2019) (D.3)

mode =
α− 1

α+ β − 2
(Peleg 2019) (D.4)

As themean is given as an input and themode is calculated based on a givenmin,max and λ, we are
left with two functions and two variables α and β that can be transformed to Formula D.5 and Formula
D.6.

α = 1 + λ
mode−min

max−min
(D.5)

β = 1 + λ
max−mode

max−min
(D.6)

D.3. Probability density functions for process durations 94

These two formulas calculate the shape parameters that form the Beta functionBeta(α, β). As the Beta
function is a distribution function between 0 and 1, the actual probability density function is described
by Formula D.7.

PDF = min+Beta(α, β) ∗ (max−min) (D.7)

To create a distribution function with two peaks, a bimodal Beta function can be formulated given two
Beta functions and a weight factor w as shown in Formula D.8.

Betabimodal = w1 ∗Beta1(α1, β1) + w2 ∗Beta2(α2, β2) , with w1 + w2 = 1 (D.8)

D.3. Probability density functions for process durations
The previous section derived how the PDF for a process duration can be formulated as a Beta distri-
bution given the average duration (mean), the minimum duration (min), the maximum duration (max)
and a shape factor (λ). This section provides the probability density functions for the process duration
of bevelling, welding 1, welding 2 and welding 3/4.

Themean value for all processes have been measured by PPD. Themin andmax value are estimated
based on the data of the video analysis and evaluated using the 5th and 95th percentile. The mode
value can be calculated using Formula D.2. The shape factor λ is determined iteratively, shaping
the distribution to fit the histogram of the video analysis. To include the second peak in the bevelling
duration, this PDF is formulated as bimodal Beta function consisting of two Beta functions with the
same min and max value that are combined using a weight factor w. The final values for the Beta
distributions are summarized in Table D.6 and the resulting probability density functions are shown in
Figure D.1, plotted over the video analysis data.

In Table D.6 it can be seen that themin andmax values show similar percentages compared to the
mean value. All processes show a decrease around 30% for the min value and the shorter processes
show an increase around 100% for the max value while the longer processes show an increase around
75%. Figure D.1 highlights the 5th and 95th percentile and the amount of logs from the video analysis
that are within these ranges. Every range is expected to have around 2 logs (5% from 40 logs) which
matches with all stations except welding station 3/4 as the video analysis logged many high process
durations.

Without performing an actual goodness of fit test, it is clear that the log data does not fit the beta
distribution well enough for the welding stations to conclude that the beta distribution is an accurate
estimation of reality. The difference between the mean provided by PPD and the video analysis data is
too large to formulate a PDF fitting both data. As earlier mentioned the mean value provided by PPD
is assumed to be the most reliable and therefore the proposed distributions based on this mean value
are the most accurate data that can be generated with the available resources.

Table D.6: Beta distribution values

Process Mean Min Max Mode λ Beta: α β w

Bevelling (1) 280 180 (-36%) 560 (+100%) 243 12 2.99 11.01 0.9
Bevelling (2) 280 180 (-36%) 560 (+100%) 470 12 10.16 3.84 0.1
Welding 1 685 480 (-30%) 1200 (+75%) 633 6 2.27 5.72
Welding 2 656 450 (-31%) 1140 (+74%) 610 6 2.39 5.61
Welding 3/4 457 330 (-28%) 900 (+97%) 404 6 1.78 6.22

D.3. Probability density functions for process durations 95

(a) Bevelling

(b)Welding 1

(c)Welding 2

(d)Welding 3/4
Figure D.1: Probability density functions for process durations

E
Experimental run-length selection

This appendix presents the simulation output results used to determine the experimental run-length
based on the convergence of the following output parameters: DJF production, main pipeline length,
PTC wait time, DJF wait time, and waiting area wait time.

96

E.1. DJF production 97

E.1. DJF production
Table E.1: Convergence of the cumulative mean for the DJF production in joints per day

Day Run 1 Run 2 Run 3 Run 4 Run 5 Min Max Convergence
1 207.0 206.0 207.0 205.0 205.0 205.0 207.0 0.98%
2 208.0 208.0 208.5 205.5 205.5 205.5 208.5 1.46%
3 208.3 208.0 207.7 207.0 206.0 206.0 208.3 1.13%
4 208.5 208.0 208.0 207.5 206.5 206.5 208.5 0.95%
5 208.2 207.4 207.4 207.8 206.8 206.8 208.2 0.67%
6 207.5 207.0 207.0 207.8 206.1 206.1 207.8 0.82%
7 208.0 207.1 207.1 208.0 206.4 206.4 208.0 0.75%
8 207.7 207.4 207.4 207.5 206.1 206.1 207.7 0.80%
9 207.8 207.2 207.5 207.7 206.0 206.0 207.8 0.88%
10 207.7 207.2 207.8 207.9 206.1 206.1 207.9 0.87%
11 207.5 207.0 207.5 207.8 206.4 206.4 207.8 0.68%
12 207.7 207.3 207.8 208.2 206.7 206.7 208.2 0.75%
13 207.3 207.0 207.4 208.0 206.7 206.7 208.0 0.63%
14 207.7 207.1 207.9 208.3 206.9 206.9 208.3 0.65%
15 207.9 207.4 207.9 208.1 207.0 207.0 208.1 0.53%
16 208.0 207.4 207.9 208.2 207.0 207.0 208.2 0.57%
17 207.8 207.2 207.7 208.2 206.9 206.9 208.2 0.61%
18 207.8 207.2 207.8 208.2 206.9 206.9 208.2 0.65%
19 207.5 207.0 207.7 208.0 206.8 206.8 208.0 0.55%
20 207.5 207.0 207.5 207.9 206.8 206.8 207.9 0.54%
21 207.5 207.0 207.4 208.0 206.8 206.8 208.0 0.55%
22 207.5 207.1 207.6 208.0 206.9 206.9 208.0 0.51%
23 207.5 207.0 207.5 207.9 206.9 206.9 207.9 0.46%
24 207.4 207.0 207.5 207.9 206.9 206.9 207.9 0.48%
25 207.6 207.2 207.7 207.9 207.0 207.0 207.9 0.40%
26 207.5 207.3 207.6 207.9 207.0 207.0 207.9 0.46%
27 207.5 207.4 207.7 207.9 207.0 207.0 207.9 0.42%
28 207.4 207.3 207.6 207.8 207.0 207.0 207.8 0.42%
29 207.3 207.4 207.6 207.9 207.0 207.0 207.9 0.44%
30 207.5 207.4 207.6 207.8 206.9 206.9 207.8 0.42%
31 207.5 207.4 207.5 207.8 206.9 206.9 207.8 0.44%
32 207.5 207.3 207.6 207.8 207.0 207.0 207.8 0.40%
33 207.5 207.4 207.6 207.9 207.0 207.0 207.9 0.40%
34 207.6 207.4 207.7 207.8 207.0 207.0 207.8 0.36%
35 207.5 207.4 207.6 207.7 207.0 207.0 207.7 0.34%
36 207.5 207.5 207.7 207.8 207.0 207.0 207.8 0.38%
37 207.5 207.5 207.8 207.7 207.0 207.0 207.8 0.38%
38 207.5 207.3 207.7 207.7 207.0 207.0 207.7 0.36%
39 207.5 207.4 207.7 207.8 207.0 207.0 207.8 0.42%
40 207.6 207.5 207.7 207.9 207.0 207.0 207.9 0.42%
41 207.6 207.5 207.8 207.9 207.2 207.2 207.9 0.32%
42 207.6 207.5 207.9 208.0 207.3 207.3 208.0 0.34%
43 207.6 207.5 207.9 207.9 207.2 207.2 207.9 0.34%
44 207.6 207.6 208.0 208.0 207.2 207.2 208.0 0.40%
45 207.7 207.6 208.0 208.0 207.3 207.3 208.0 0.36%
46 207.7 207.5 208.0 208.0 207.3 207.3 208.0 0.38%
47 207.7 207.5 208.0 208.0 207.3 207.3 208.0 0.36%
48 207.6 207.5 208.0 208.0 207.2 207.2 208.0 0.40%
49 207.5 207.5 208.0 208.0 207.3 207.3 208.0 0.34%
50 207.5 207.4 208.0 208.0 207.3 207.3 208.0 0.34%

E.2. Main pipeline length 98

E.2. Main pipeline length
Table E.2: Convergence of the cumulative mean for the main pipeline length in meters per day

Day Run 1 Run 2 Run 3 Run 4 Run 5 Min Max Convergence
1 5026 5026 5100 4978 5002 4978 5100 2.45%
2 5075 5063 5100 5014 5014 5014 5100 1.72%
3 5091 5083 5059 5043 5018 5018 5091 1.45%
4 4984 4965 4959 4959 4929 4929 4984 1.12%
5 5022 5002 5007 5017 4987 4987 5022 0.70%
6 4929 4917 4908 4921 4888 4888 4929 0.84%
7 4936 4911 4915 4929 4890 4890 4936 0.94%
8 4910 4895 4895 4914 4880 4880 4914 0.70%
9 4913 4904 4910 4913 4872 4872 4913 0.84%
10 4914 4900 4914 4917 4870 4870 4917 0.97%
11 4896 4882 4900 4898 4884 4882 4900 0.37%
12 4900 4890 4910 4913 4874 4874 4913 0.80%
13 4904 4906 4916 4925 4901 4901 4925 0.49%
14 4932 4915 4934 4944 4910 4910 4944 0.69%
15 4942 4930 4945 4953 4924 4924 4953 0.59%
16 4929 4918 4930 4935 4906 4906 4935 0.59%
17 4932 4919 4930 4936 4909 4909 4936 0.55%
18 4914 4902 4918 4925 4896 4896 4925 0.59%
19 4894 4881 4898 4903 4874 4874 4903 0.59%
20 4898 4887 4903 4909 4881 4881 4909 0.57%
21 4894 4877 4892 4903 4877 4877 4903 0.53%
22 4898 4883 4899 4908 4880 4880 4908 0.57%
23 4878 4866 4880 4891 4863 4863 4891 0.58%
24 4892 4879 4894 4900 4879 4879 4900 0.43%
25 4900 4893 4905 4908 4888 4888 4908 0.41%
26 4895 4882 4898 4902 4880 4880 4902 0.45%
27 4902 4895 4906 4910 4886 4886 4910 0.49%
28 4885 4882 4890 4895 4871 4871 4895 0.49%
29 4888 4888 4893 4900 4877 4877 4900 0.47%
30 4896 4892 4900 4903 4883 4883 4903 0.41%
31 4887 4886 4890 4897 4882 4882 4897 0.31%
32 4891 4887 4894 4899 4878 4878 4899 0.43%
33 4891 4890 4895 4901 4881 4881 4901 0.41%
34 4900 4897 4904 4904 4889 4889 4904 0.31%
35 4889 4886 4890 4891 4877 4877 4891 0.29%
36 4898 4894 4900 4902 4885 4885 4902 0.35%
37 4896 4894 4902 4902 4883 4883 4902 0.39%
38 4886 4882 4892 4892 4872 4872 4892 0.41%
39 4889 4886 4893 4894 4876 4876 4894 0.37%
40 4891 4887 4896 4896 4876 4876 4896 0.41%
41 4897 4896 4903 4903 4887 4887 4903 0.33%
42 4900 4900 4907 4910 4891 4891 4910 0.39%
43 4905 4904 4912 4914 4896 4896 4914 0.37%
44 4906 4903 4914 4913 4896 4896 4914 0.37%
45 4902 4900 4910 4909 4892 4892 4910 0.37%
46 4909 4906 4914 4916 4898 4898 4916 0.37%
47 4905 4902 4911 4913 4893 4893 4913 0.41%
48 4905 4901 4913 4914 4895 4895 4914 0.39%
49 4895 4891 4900 4899 4886 4886 4900 0.29%
50 4896 4893 4907 4907 4889 4889 4907 0.37%

E.3. PTC wait time 99

E.3. PTC wait time
Table E.3: Convergence of the cumulative mean for the PTC wait time in minutes per day

Day Run 1 Run 2 Run 3 Run 4 Run 5 Min Max Convergence
1 26 39 28 29 28 26 39 50.00%
2 37 37 16 18 17 16 37 131.25%
3 33 36 20 31 21 20 36 80.00%
4 37 41 24 26 23 23 41 78.26%
5 35 39 32 28 26 26 39 50.00%
6 31 38 30 26 23 23 38 65.22%
7 31 36 27 28 21 21 36 71.43%
8 32 33 26 28 22 22 33 50.00%
9 29 38 27 32 22 22 38 72.73%
10 30 39 27 32 23 23 39 69.57%
11 29 37 28 34 23 23 37 60.87%
12 29 36 28 33 22 22 36 63.64%
13 28 37 27 31 23 23 37 60.87%
14 28 35 27 31 23 23 35 52.17%
15 28 35 26 31 26 26 35 34.62%
16 32 34 25 30 27 25 34 36.00%
17 33 35 25 29 26 25 35 40.00%
18 32 34 25 29 28 25 34 36.00%
19 30 34 28 29 27 27 34 25.93%
20 31 35 28 29 27 27 35 29.63%
21 31 34 28 29 26 26 34 30.77%
22 31 33 29 29 26 26 33 26.92%
23 31 32 28 30 27 27 32 18.52%
24 31 32 28 32 27 27 32 18.52%
25 31 32 28 31 27 27 32 18.52%
26 30 32 28 31 26 26 32 23.08%
27 30 31 28 30 26 26 31 19.23%
28 30 31 28 30 26 26 31 19.23%
29 30 31 29 31 26 26 31 19.23%
30 30 31 30 30 26 26 31 19.23%
31 30 31 30 31 26 26 31 19.23%
32 29 30 30 31 26 26 31 19.23%
33 29 30 30 30 26 26 30 15.38%
34 29 31 31 30 26 26 31 19.23%
35 30 31 32 31 26 26 32 23.08%
36 29 31 32 31 26 26 32 23.08%
37 29 32 32 32 25 25 32 28.00%
38 30 31 31 32 25 25 32 28.00%
39 29 30 31 32 25 25 32 28.00%
40 29 30 31 32 25 25 32 28.00%
41 29 29 31 32 25 25 32 28.00%
42 29 29 30 32 25 25 32 28.00%
43 28 29 30 32 25 25 32 28.00%
44 29 29 30 32 24 24 32 33.33%
45 28 29 30 32 25 25 32 28.00%
46 28 29 29 31 26 26 31 19.23%
47 28 29 29 32 26 26 32 23.08%
48 28 29 28 31 26 26 31 19.23%
49 28 30 28 32 26 26 32 23.08%
50 28 30 28 31 26 26 31 19.23%

E.4. DJF wait time 100

E.4. DJF wait time
Table E.4: Convergence of the cumulative mean for the DJF wait time in minutes per day

Day Run 1 Run 2 Run 3 Run 4 Run 5 Min Max Convergence
1 47 41 46 61 61 41 61 48.78%
2 52 44 56 53 57 44 57 29.55%
3 48 49 56 52 60 48 60 25.00%
4 46 51 57 51 55 46 57 23.91%
5 51 47 59 53 55 47 59 25.53%
6 49 51 58 53 53 49 58 18.37%
7 52 49 57 51 52 49 57 16.33%
8 52 52 55 51 49 49 55 12.24%
9 50 54 58 50 48 48 58 20.83%
10 51 54 57 52 48 48 57 18.75%
11 50 52 54 53 48 48 54 12.50%
12 48 53 52 51 46 46 53 15.22%
13 50 53 52 53 46 46 53 15.22%
14 52 54 51 52 46 46 54 17.39%
15 50 54 53 53 48 48 54 12.50%
16 49 55 53 53 48 48 55 14.58%
17 51 54 53 52 48 48 54 12.50%
18 52 53 54 54 48 48 54 12.50%
19 51 53 53 54 48 48 54 12.50%
20 51 53 53 55 48 48 55 14.58%
21 51 52 53 55 48 48 55 14.58%
22 50 51 53 54 48 48 54 12.50%
23 50 52 53 53 48 48 53 10.42%
24 51 53 54 54 48 48 54 12.50%
25 50 53 55 53 48 48 55 14.58%
26 50 53 54 54 47 47 54 14.89%
27 49 54 54 53 48 48 54 12.50%
28 49 54 53 53 48 48 54 12.50%
29 49 54 53 53 49 49 54 10.20%
30 50 54 53 54 48 48 54 12.50%
31 50 54 52 53 48 48 54 12.50%
32 50 54 52 53 48 48 54 12.50%
33 51 54 53 53 49 49 54 10.20%
34 51 54 54 53 49 49 54 10.20%
35 51 55 53 52 49 49 55 12.24%
36 51 55 54 52 49 49 55 12.24%
37 51 54 53 51 48 48 54 12.50%
38 51 54 54 52 48 48 54 12.50%
39 51 55 54 52 48 48 55 14.58%
40 51 55 54 52 48 48 55 14.58%
41 50 55 54 51 48 48 55 14.58%
42 50 55 55 52 48 48 55 14.58%
43 50 55 55 52 48 48 55 14.58%
44 50 54 55 52 48 48 55 14.58%
45 50 54 55 52 48 48 55 14.58%
46 51 54 55 52 49 49 55 12.24%
47 51 54 55 52 49 49 55 12.24%
48 50 54 54 51 49 49 54 10.20%
49 50 54 55 51 49 49 55 12.24%
50 50 54 54 51 50 50 54 8.00%

E.5. Waiting area wait time 101

E.5. Waiting area wait time
Table E.5: Convergence of the cumulative mean for the waiting area wait time in minutes per day

Day Run 1 Run 2 Run 3 Run 4 Run 5 Min Max Convergence
1 22 14 11 42 27 11 42 281.82%
2 16 17 18 29 21 16 29 81.25%
3 13 18 26 25 18 13 26 100.00%
4 11 14 20 20 15 11 20 81.82%
5 12 13 17 16 12 12 17 41.67%
6 11 11 17 15 11 11 17 54.55%
7 10 12 17 13 13 10 17 70.00%
8 8 11 15 11 11 8 15 87.50%
9 9 9 13 11 15 9 15 66.67%
10 10 10 12 10 16 10 16 60.00%
11 11 10 11 9 14 9 14 55.56%
12 10 9 10 8 13 8 13 62.50%
13 14 11 13 9 12 9 14 55.56%
14 13 13 13 9 14 9 14 55.56%
15 14 14 14 10 14 10 14 40.00%
16 13 13 14 11 15 11 15 36.36%
17 13 13 14 11 15 11 15 36.36%
18 13 13 14 10 15 10 15 50.00%
19 12 12 13 9 15 9 15 66.67%
20 12 12 12 9 14 9 14 55.56%
21 11 11 13 9 13 9 13 44.44%
22 11 11 12 8 14 8 14 75.00%
23 10 10 12 8 13 8 13 62.50%
24 10 11 11 9 13 9 13 44.44%
25 10 11 11 9 14 9 14 55.56%
26 10 12 11 8 13 8 13 62.50%
27 11 11 11 8 14 8 14 75.00%
28 10 11 11 8 14 8 14 75.00%
29 10 11 11 8 13 8 13 62.50%
30 10 11 11 9 13 9 13 44.44%
31 10 11 11 9 14 9 14 55.56%
32 10 11 11 9 14 9 14 55.56%
33 10 11 11 9 13 9 13 44.44%
34 10 12 11 10 13 10 13 30.00%
35 10 11 10 9 13 9 13 44.44%
36 9 12 10 9 13 9 13 44.44%
37 10 12 10 9 14 9 14 55.56%
38 9 11 10 9 14 9 14 55.56%
39 9 11 9 9 13 9 13 44.44%
40 9 11 9 9 13 9 13 44.44%
41 9 11 9 9 13 9 13 44.44%
42 10 12 10 8 14 8 14 75.00%
43 10 12 10 9 14 9 14 55.56%
44 10 12 10 9 14 9 14 55.56%
45 10 12 10 9 14 9 14 55.56%
46 10 12 10 8 14 8 14 75.00%
47 10 12 10 8 14 8 14 75.00%
48 11 12 10 8 14 8 14 75.00%
49 10 12 10 8 13 8 13 62.50%
50 10 12 10 8 13 8 13 62.50%

F
Experimentation Output Data

This appendix presents all extensive simulation output results for the batch experiments described in
Chapter 5.

102

F.1. Base performance 103

F.1. Base performance
F.1.1. Route (a)

Table F.1: Output Data - Base Performance for Route PS (a)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 549 0 549 573 0 573

Marked joints (PS/SB) 81 351 432 327 221 549 364 209 573

Cleaned joints (PS/SB) 177 242 419 209 209 418 209 209 418

Sent to hold joints (Normal/Anode) 11 3 13 109 22 130 130 25 155

Sent to hold ratio - (Normal/Anode) 0.80 0.20 0.03 0.83 0.17 0.24 0.84 0.16 0.27

DJF production joints (PS/SB) 104 104 207 104 104 207 103 104 207

DJF rejects joints (Normal/Anode) 1.4 0.5 1.9 1.3 0.6 1.9 1.0 1.0 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.2 6.9 4.6 2.2 6.9 4.6 2.2 6.9

Main pipeline length m 4886 4889 4880

PTC wait count - (PS/SB) 0 0 0 41 0 41 173 0 173

PTC wait time min (PS/SB) 0 0 0 69 0 69 291 0 291

DJF wait count - (PS/SB) 18 21 39 17 19 36 19 23 42

DJF wait time min (PS/SB) 21 32 53 19 27 46 22 34 56

Waiting area wait count - (Normal/Anode) 2 1 2 1 1 2 1 1 2

Waiting area wait time min (Normal/Anode) 5 6 11 4 8 11 4 8 12

Firing line wait count - (Normal/Anode) 7 3 10 7 4 11 7 5 11

Firing line wait time min (Normal/Anode) 20 11 30 14 15 29 15 17 32

Figure F.1: Snapshot at end of simulation for Base Performance Route PS (a) with slow PTC rate

Figure F.2: Snapshot at end of simulation for Base Performance Route PS (a) with avg PTC rate

Figure F.3: Snapshot at end of simulation for Base Performance Route PS (a) with fast PTC rate

F.1. Base performance 104

F.1.2. Route (b)
Table F.2: Output Data - Base Performance for Route PS (b)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 433 0 433 542 0 542 557 0 557

Marked joints (PS/SB) 87 346 433 320 221 542 348 209 557

Cleaned joints (PS/SB) 197 222 419 210 210 420 209 209 418

Sent to hold joints (Normal/Anode) 11 3 14 102 20 122 116 23 139

Sent to hold ratio - (Normal/Anode) 0.81 0.19 0.03 0.83 0.17 0.22 0.84 0.16 0.25

DJF production joints (PS/SB) 103 104 207 104 104 208 103 104 207

DJF rejects joints (Normal/Anode) 1.4 0.5 1.9 1.2 0.7 1.9 1.2 0.7 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.2 6.9 4.6 2.2 6.9 4.6 2.2 6.9

Main pipeline length m 4892 4903 4888

PTC wait count - (PS/SB) 0 0 0 53 0 53 185 0 185

PTC wait time min (PS/SB) 0 0 0 90 0 90 323 0 323

DJF wait count - (PS/SB) 18 26 44 17 22 39 16 22 38

DJF wait time min (PS/SB) 23 40 63 19 32 51 17 29 46

Waiting area wait count - (Normal/Anode) 1 2 3 1 1 2 1 1 2

Waiting area wait time min (Normal/Anode) 4 7 11 3 7 10 4 4 9

Firing line wait count - (Normal/Anode) 6 4 10 7 4 11 7 3 10

Firing line wait time min (Normal/Anode) 13 16 30 16 14 29 16 10 26

Figure F.4: Snapshot at end of simulation for Base Performance Route PS (b) with slow PTC rate

Figure F.5: Snapshot at end of simulation for Base Performance Route PS (b) with avg PTC rate

Figure F.6: Snapshot at end of simulation for Base Performance Route PS (b) with fast PTC rate

F.1. Base performance 105

F.1.3. Route (c)
Table F.3: Output Data - Base Performance for Route PS (c)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 433 0 433 539 0 539 559 0 559

Marked joints (PS/SB) 81 352 433 309 230 539 345 214 559

Cleaned joints (PS/SB) 247 172 418 257 162 419 257 161 419

Sent to hold joints (Normal/Anode) 12 3 15 101 20 121 117 23 140

Sent to hold ratio - (Normal/Anode) 0.83 0.17 0.03 0.84 0.16 0.22 0.83 0.17 0.25

DJF production joints (PS/SB) 103 104 207 104 104 208 103 104 207

DJF rejects joints (Normal/Anode) 1.4 0.5 1.9 1.0 0.9 1.9 1.5 0.4 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.2 6.9 4.6 2.2 6.9 4.6 2.2 6.9

Main pipeline length m 4880 4894 4886

PTC wait count - (PS/SB) 0 0 0 51 0 51 173 0 173

PTC wait time min (PS/SB) 0 0 0 91 0 91 324 0 324

DJF wait count - (PS/SB) 19 22 41 19 20 39 18 21 39

DJF wait time min (PS/SB) 23 33 56 21 27 48 21 30 50

Waiting area wait count - (Normal/Anode) 1 1 2 1 1 2 2 1 2

Waiting area wait time min (Normal/Anode) 5 8 12 4 4 9 8 3 11

Firing line wait count - (Normal/Anode) 5 4 9 7 4 10 8 3 11

Firing line wait time min (Normal/Anode) 14 17 31 16 11 27 23 7 30

Figure F.7: Snapshot at end of simulation for Base Performance Route PS (c) with slow PTC rate

Figure F.8: Snapshot at end of simulation for Base Performance Route PS (c) with avg PTC rate

Figure F.9: Snapshot at end of simulation for Base Performance Route PS (c) with fast PTC rate

F.1. Base performance 106

F.1.4. Route (d)
Table F.4: Output Data - Base Performance for Route PS (d)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 552 0 552 599 0 599

Marked joints (PS/SB) 65 367 432 310 242 552 377 222 599

Cleaned joints (PS/SB) 207 212 419 267 151 419 268 150 418

Sent to hold joints (Normal/Anode) 11 2 13 112 21 133 152 29 181

Sent to hold ratio - (Normal/Anode) 0.83 0.17 0.03 0.84 0.16 0.24 0.84 0.16 0.30

DJF production joints (PS/SB) 104 104 208 104 103 207 103 104 207

DJF rejects joints (Normal/Anode) 1.1 0.8 1.9 1.1 0.8 1.9 1.0 0.9 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.2 6.9 4.6 2.2 6.9 4.6 2.2 6.9

Main pipeline length m 4888 4885 4880

PTC wait count - (PS/SB) 0 0 0 32 0 32 141 0 141

PTC wait time min (PS/SB) 1 0 1 62 0 62 240 0 240

DJF wait count - (PS/SB) 18 23 41 18 23 41 18 24 41

DJF wait time min (PS/SB) 20 34 54 20 32 52 21 33 54

Waiting area wait count - (Normal/Anode) 1 1 3 1 2 2 1 1 2

Waiting area wait time min (Normal/Anode) 4 7 11 3 10 13 3 13 16

Firing line wait count - (Normal/Anode) 7 4 11 6 4 10 7 4 11

Firing line wait time min (Normal/Anode) 16 16 32 11 18 29 13 22 34

Figure F.10: Snapshot at end of simulation for Base Performance Route PS (d) with slow PTC rate

Figure F.11: Snapshot at end of simulation for Base Performance Route PS (d) with avg PTC rate

Figure F.12: Snapshot at end of simulation for Base Performance Route PS (d) with fast PTC rate

F.1. Base performance 107

F.1.5. Route (e)
Table F.5: Output Data - Base Performance for Route PS (e)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 561 0 561 610 0 610

Marked joints (PS/SB) 183 249 432 351 209 561 401 209 610

Cleaned joints (PS/SB) 170 249 418 209 209 419 209 209 418

Sent to hold joints (Normal/Anode) 11 2 13 118 24 142 160 32 192

Sent to hold ratio - (Normal/Anode) 0.77 0.18 0.03 0.83 0.17 0.25 0.83 0.17 0.31

DJF production joints (PS/SB) 103 104 207 103 104 208 103 104 207

DJF rejects joints (Normal/Anode) 1.4 0.5 1.9 1.3 0.6 1.9 1.4 0.5 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.2 6.9 4.6 2.2 6.9 4.6 2.2 6.9

Main pipeline length m 4889 4896 4880

PTC wait count - (PS/SB) 0 0 0 25 0 25 152 0 152

PTC wait time min (PS/SB) 1 0 1 38 0 38 221 0 221

DJF wait count - (PS/SB) 18 23 41 19 22 41 15 22 37

DJF wait time min (PS/SB) 21 32 53 23 32 54 18 30 48

Waiting area wait count - (Normal/Anode) 1 1 2 1 1 2 1 1 2

Waiting area wait time min (Normal/Anode) 5 5 10 2 9 11 3 10 13

Firing line wait count - (Normal/Anode) 7 4 11 5 4 10 6 5 10

Firing line wait time min (Normal/Anode) 18 13 30 10 18 28 13 19 32

Figure F.13: Snapshot at end of simulation for Base Performance Route PS (e) with slow PTC rate

Figure F.14: Snapshot at end of simulation for Base Performance Route PS (e) with avg PTC rate

Figure F.15: Snapshot at end of simulation for Base Performance Route PS (e) with fast PTC rate

F.1. Base performance 108

F.1.6. Route (f)
Table F.6: Output Data - Base Performance for Route PS (f)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 431 0 431 570 0 570 624 0 624

Marked joints (PS/SB) 32 399 431 253 317 570 389 237 626

Cleaned joints (PS/SB) 146 272 418 209 209 419 209 209 418

Sent to hold joints (Normal/Anode) 11 2 13 125 26 151 173 36 209

Sent to hold ratio - (Normal/Anode) 0.79 0.21 0.03 0.83 0.17 0.27 0.83 0.17 0.33

DJF production joints (PS/SB) 104 103 207 104 104 208 104 105 209

DJF rejects joints (Normal/Anode) 1.3 0.6 1.9 1.4 0.5 1.9 0.0 1.0 1.0

Firing line rejects joints (Normal/Anode) 4.6 2.2 6.9 4.6 2.2 6.9 8.0 4.0 12.0

Main pipeline length m 4880 4893 4733.6

PTC wait count - (PS/SB) 0 0 0 13 0 13 124 0 124

PTC wait time min (PS/SB) 0 0 0 20 0 20 190 0 190

DJF wait count - (PS/SB) 20 25 45 16 23 39 11 23 34

DJF wait time min (PS/SB) 24 37 61 18 32 50 9 30 39

Waiting area wait count - (Normal/Anode) 1 2 2 1 1 2 0 2 2

Waiting area wait time min (Normal/Anode) 4 10 14 4 6 10 0 19 19

Firing line wait count - (Normal/Anode) 6 4 10 6 4 10 4 7 11

Firing line wait time min (Normal/Anode) 13 19 32 13 13 26 3 32 35

Figure F.16: Snapshot at end of simulation for Base Performance Route PS (f) with slow PTC rate

Figure F.17: Snapshot at end of simulation for Base Performance Route PS (f) with avg PTC rate

Figure F.18: Snapshot at end of simulation for Base Performance Route PS (f) with fast PTC rate

F.2. Conclusive batch experimentation 109

F.2. Conclusive batch experimentation
F.2.1. Route (a)

Table F.7: Output Data - Final Performance for Route PS (a)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 577 0 577 716 0 716

Marked joints (PS/SB) 12 420 432 172 405 577 329 387 716

Cleaned joints (PS/SB) 96 324 419 209 210 419 209 209 419

Sent to hold joints (Normal/Anode) 10 3 13 131 27 158 247 50 297

Sent to hold ratio - (Normal/Anode) 0.66 0.34 0.03 0.83 0.17 0.27 0.83 0.17 0.42

DJF production joints (PS/SB) 104 104 208 104 104 208 104 104 207

DJF rejects joints (Normal/Anode) 1.3 0.6 1.9 1.4 0.5 1.9 1.3 0.6 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.3 6.9 4.6 2.3 6.9 4.6 2.3 6.9

Main pipeline length m 4896 4894 4890

PTC wait count - (PS/SB) 0 0 0 0 0 0 11 0 11

PTC wait time min (PS/SB) 0 0 0 0 0 0 7 0 7

DJF wait count - (PS/SB) 23 25 48 13 18 31 13 17 30

DJF wait time min (PS/SB) 41 55 96 12 21 33 12 20 32

Waiting area wait count - (Normal/Anode) 2 0 2 2 0 2 2 0 2

Waiting area wait time min (Normal/Anode) 7 1 7 7 0 7 8 0 8

Firing line wait count - (Normal/Anode) 9 2 11 9 2 11 10 2 12

Firing line wait time min (Normal/Anode) 24 3 27 23 2 25 28 1 29

Figure F.19: Snapshot at end of simulation for Route PS (a) with slow PTC rate

Figure F.20: Snapshot at end of simulation for Route PS (a) with avg PTC rate

Figure F.21: Snapshot at end of simulation for Route PS (a) with fast PTC rate

F.2. Conclusive batch experimentation 110

F.2.2. Route (b)
Table F.8: Output Data - Final Performance for Route PS (b)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 430 0 430 575 0 575 711 0 711

Marked joints (PS/SB) 10 420 430 177 397 575 346 365 711

Cleaned joints (PS/SB) 119 300 419 209 209 418 208 208 417

Sent to hold joints (Normal/Anode) 10 2 11 130 26 156 245 49 294

Sent to hold ratio - (Normal/Anode) 0.83 0.17 0.03 0.83 0.17 0.27 0.83 0.17 0.41

DJF production joints (PS/SB) 104 103 207 104 104 207 103 103 207

DJF rejects joints (Normal/Anode) 1.1 0.8 1.9 1.0 0.9 1.9 1.3 0.6 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.3 6.9 4.6 2.3 6.9 4.6 2.3 6.9

Main pipeline length m 4883 4886 4868

PTC wait count - (PS/SB) 0 0 0 1 0 1 20 0 20

PTC wait time min (PS/SB) 0 0 0 0 0 0 19 0 19

DJF wait count - (PS/SB) 23 25 47 13 20 34 15 18 32

DJF wait time min (PS/SB) 36 45 81 12 23 35 12 20 32

Waiting area wait count - (Normal/Anode) 1 1 3 2 0 3 3 0 3

Waiting area wait time min (Normal/Anode) 6 7 13 9 1 10 9 0 9

Firing line wait count - (Normal/Anode) 6 4 10 9 2 11 12 1 14

Firing line wait time min (Normal/Anode) 17 14 31 27 3 30 34 1 36

Figure F.22: Snapshot at end of simulation for Route PS (b) with slow PTC rate

Figure F.23: Snapshot at end of simulation for Route PS (b) with avg PTC rate

Figure F.24: Snapshot at end of simulation for Route PS (b) with fast PTC rate

F.2. Conclusive batch experimentation 111

F.2.3. Route (c)
Table F.9: Output Data - Final Performance for Route PS (c)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 577 0 577 713 0 713

Marked joints (PS/SB) 10 422 432 180 397 577 343 370 713

Cleaned joints (PS/SB) 184 236 420 209 209 417 209 209 418

Sent to hold joints (Normal/Anode) 10 2 12 134 26 160 246 49 295

Sent to hold ratio - (Normal/Anode) 0.83 0.17 0.03 0.84 0.16 0.28 0.83 0.17 0.41

DJF production joints (PS/SB) 104 104 208 104 103 207 103 104 207

DJF rejects joints (Normal/Anode) 1.2 0.7 1.9 1.2 0.7 1.9 1.1 0.8 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.3 6.9 4.6 2.3 6.9 4.6 2.3 6.9

Main pipeline length m 4901 4873 4881

PTC wait count - (PS/SB) 0 0 0 1 0 1 20 0 20

PTC wait time min (PS/SB) 0 0 0 1 0 1 15 0 15

DJF wait count - (PS/SB) 18 22 39 14 19 33 15 19 34

DJF wait time min (PS/SB) 20 33 53 13 22 35 13 21 34

Waiting area wait count - (Normal/Anode) 1 1 3 2 0 2 3 0 3

Waiting area wait time min (Normal/Anode) 4 5 10 9 0 9 10 0 10

Firing line wait count - (Normal/Anode) 8 3 11 10 2 12 10 2 12

Firing line wait time min (Normal/Anode) 18 11 28 31 2 33 30 2 32

Figure F.25: Snapshot at end of simulation for Route PS (c) with slow PTC rate

Figure F.26: Snapshot at end of simulation for Route PS (c) with avg PTC rate

Figure F.27: Snapshot at end of simulation for Route PS (c) with fast PTC rate

F.2. Conclusive batch experimentation 112

F.2.4. Route (d)
Table F.10: Output Data - Final Performance for Route PS (d)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 576 0 576 713 0 713

Marked joints (PS/SB) 12 421 432 173 403 576 328 385 713

Cleaned joints (PS/SB) 111 308 419 249 171 419 263 156 420

Sent to hold joints (Normal/Anode) 11 2 13 131 26 157 244 49 293

Sent to hold ratio - (Normal/Anode) 0.82 0.18 0.03 0.84 0.16 0.27 0.83 0.17 0.41

DJF production joints (PS/SB) 104 103 208 104 104 208 104 104 208

DJF rejects joints (Normal/Anode) 1.5 0.4 1.9 1.5 0.4 1.9 1.2 0.7 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.3 6.9 4.6 2.3 6.9 4.6 2.3 6.9

Main pipeline length m 4899 4899 4901

PTC wait count - (PS/SB) 0 0 0 1 0 1 22 0 22

PTC wait time min (PS/SB) 0 0 0 1 0 1 16 0 16

DJF wait count - (PS/SB) 25 27 52 18 22 40 18 23 40

DJF wait time min (PS/SB) 39 53 92 21 31 52 20 31 51

Waiting area wait count - (Normal/Anode) 2 0 2 2 0 2 1 0 1

Waiting area wait time min (Normal/Anode) 6 2 7 9 1 10 6 1 6

Firing line wait count - (Normal/Anode) 8 3 11 10 2 12 8 2 10

Firing line wait time min (Normal/Anode) 23 5 28 27 3 30 21 3 24

Figure F.28: Snapshot at end of simulation for Route PS (d) with slow PTC rate

Figure F.29: Snapshot at end of simulation for Route PS (d) with avg PTC rate

Figure F.30: Snapshot at end of simulation for Route PS (d) with fast PTC rate

F.2. Conclusive batch experimentation 113

F.2.5. Route (e)
Table F.11: Output Data - Final Performance for Route PS (e)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 433 0 433 577 0 577 710 0 710

Marked joints (PS/SB) 134 299 433 180 397 577 492 218 710

Cleaned joints (PS/SB) 122 297 419 209 209 417 209 209 418

Sent to hold joints (Normal/Anode) 11 2 14 134 26 160 243 48 292

Sent to hold ratio - (Normal/Anode) 0.82 0.18 0.03 0.84 0.16 0.28 0.83 0.17 0.41

DJF production joints (PS/SB) 104 104 208 104 103 207 104 104 207

DJF rejects joints (Normal/Anode) 1.3 0.6 1.9 1.2 0.7 1.9 1.3 0.6 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.3 6.9 4.6 2.3 6.9 4.6 2.3 6.9

Main pipeline length m 4897 4873 4887

PTC wait count - (PS/SB) 0 0 0 1 0 1 23 0 23

PTC wait time min (PS/SB) 0 0 0 1 0 1 18 0 18

DJF wait count - (PS/SB) 15 19 35 14 19 33 15 17 32

DJF wait time min (PS/SB) 17 28 45 13 22 35 14 20 34

Waiting area wait count - (Normal/Anode) 2 0 2 2 0 2 2 0 2

Waiting area wait time min (Normal/Anode) 8 1 9 9 0 9 9 0 9

Firing line wait count - (Normal/Anode) 8 2 10 10 2 12 11 2 13

Firing line wait time min (Normal/Anode) 23 5 28 31 2 33 29 1 31

Figure F.31: Snapshot at end of simulation for Route PS (e) with slow PTC rate

Figure F.32: Snapshot at end of simulation for Route PS (e) with avg PTC rate

Figure F.33: Snapshot at end of simulation for Route PS (e) with fast PTC rate

F.2. Conclusive batch experimentation 114

F.2.6. Route (f)
Table F.12: Output Data - Final Performance for Route PS (f)

slow PTC rate (18 SJ/h) avg PTC rate (24 SJ/h) fast PTC rate (30 SJ/h)
Data Unit (1/2) (1) (2) Total (1) (2) Total (1) (2) Total

PTC delivery joints (PS/SB) 432 0 432 576 0 576 722 0 722

Marked joints (PS/SB) 0 431 432 16 560 576 44 677 722

Cleaned joints (PS/SB) 97 322 419 207 212 419 209 209 419

Sent to hold joints (Normal/Anode) 11 2 13 131 26 157 252 51 303

Sent to hold ratio - (Normal/Anode) 0.84 0.16 0.03 0.83 0.17 0.27 0.83 0.17 0.42

DJF production joints (PS/SB) 104 104 207 104 103 207 104 104 208

DJF rejects joints (Normal/Anode) 1.1 0.8 1.9 1.2 0.7 1.9 1.5 0.4 1.9

Firing line rejects joints (Normal/Anode) 4.6 2.3 6.9 4.6 2.3 6.9 4.6 2.3 6.9

Main pipeline length m 4889 4890 4893

PTC wait count - (PS/SB) 0 0 0 0 0 0 0 0 0

PTC wait time min (PS/SB) 0 0 0 0 0 0 0 0 0

DJF wait count - (PS/SB) 15 19 35 15 18 33 14 18 32

DJF wait time min (PS/SB) 16 24 40 14 21 34 13 20 33

Waiting area wait count - (Normal/Anode) 1 1 2 2 0 2 2 0 2

Waiting area wait time min (Normal/Anode) 3 6 9 8 0 8 8 0 8

Firing line wait count - (Normal/Anode) 7 3 9 11 2 13 9 2 11

Firing line wait time min (Normal/Anode) 16 10 27 31 1 32 26 1 27

Figure F.34: Snapshot at end of simulation for Route PS (f) with slow PTC rate

Figure F.35: Snapshot at end of simulation for Route PS (f) with avg PTC rate

Figure F.36: Snapshot at end of simulation for Route PS (f) with fast PTC rate

G
Python Code

This appendix presents the Python code for the simulation model with implementation of the final rout-
ing strategies applied for the conclusive batch experiments presented in Section 5.6. The Python code
consists of four scripts: parameters, map, main and a run script. The parameters script loads all input
parameters defined in an Excel sheet. The map script generates the environment of the simulation
model including all positional coordinates and loads the move map of the routing strategy that is de-
fined in another Excel sheet. The main script generates the simulation components and applies the
parameters script and map script to run the simulation. The run script is used to define the pipe supply
scenario and route configuration, and run the main script accordingly.

115

G.1. Parameters 116

G.1. Parameters
Listing G.1: Parameters Python Script

1 import pandas as pd
2 import random
3

4 import os
5 psv = os.environ.get('PSV', 'PS')
6 ptc_rate = os.environ.get('PTC_RATE', 'avg')
7 live_animation = os.environ.get('LIVE_ANIMATION', 'False') == 'True'
8 video = os.environ.get('VIDEO', 'False') == 'True'
9

10 scale = 7 # Scale for the animation
11 stepsize = 0.02 # Step size for the animation
12

13 # Load datafiles
14 parameters_df = pd.read_excel('input/parameters.xlsx', sheet_name=f'Parameters {psv} {

ptc_rate} PTC')
15 parameters = {}
16 for _, row in parameters_df.iterrows():
17 component = row["Component"]
18 variable = row["Variable"]
19 value = row["Value"]
20 if component not in parameters:
21 parameters[component] = {}
22 parameters[component][variable] = value
23

24 if live_animation or video:
25 parameters['PSVps']['joint_amount'] = 200
26

27 #Joint parameters
28 joint_length = parameters["Joint"]["length"] * scale
29 joint_width = parameters["Joint"]["diameter"] * scale
30

31 #LCO parameters
32 LCO_v = parameters["LCO"]["velocity"]
33 LCO_a_time = parameters["LCO"]["acceleration_time"]
34 LCO_a_distance = parameters["LCO"]["acceleration_distance"]
35

36 #TC parameters
37 tc_length = parameters["TC"]["length"] * scale
38 tc_width = parameters["TC"]["width"] * scale
39 TC_v = parameters["TC"]["velocity"]
40 TC_a_time = parameters["TC"]["acceleration_time"]
41 TC_a_distance = parameters["TC"]["acceleration_distance"]
42

43 #Crane parameters
44 crane_length = parameters["Crane38"]["length"] * scale
45 crane_width = parameters["Crane38"]["width"] * scale
46 crane_v = parameters["Crane38"]["velocity"]
47 crane_a_time = parameters["Crane38"]["acceleration_time"]
48 crane_a_distance = parameters["Crane38"]["acceleration_distance"]
49

50 #Empirical station duration parameters
51 SEE_data = pd.read_excel('Input/parameters.xlsx', sheet_name='SEE data')
52

53 def sample_duration(station):
54 data = SEE_data[station].dropna()
55 data = data[data < data.quantile(0.8)]
56 sample = random.choice(data)
57 return sample

G.2. Map
Listing G.2: Map Python Script

1 import salabim as sim
2 import pandas as pd

G.2. Map 117

3 from input.parameters import *
4

5 import os
6 psv = os.environ.get('PSV', 'PS')
7 ptc_rate = os.environ.get('PTC_RATE', 'avg')
8 route = os.environ.get('ROUTE', 'a')
9 djf_supply_line = os.environ.get('DJF_SUPPLY_LINE', 'False') == 'True'
10

11 position_map_df = pd.read_excel('input/map.xlsx', sheet_name='Position Map')
12 position_map = {
13 eval(row["Position"]) if isinstance(row["Position"], str) and row["Position"].startswith(

"(") else row["Position"]:
14 (row["X"], row["Y"])
15 for _, row in position_map_df.iterrows()
16 }
17

18 pos = {
19 row["Name"]: row["Position"] if isinstance(row["Position"], tuple) else eval(row["

Position"])
20 for _, row in position_map_df.iterrows()
21 if pd.notna(row["Name"]) and row["Name"] != ""
22 }
23

24 posRouting = [eval(row["Position"]) for _, row in position_map_df.iterrows() if row["
posRouting"]]

25 posSingleJoints = [eval(row["Position"]) for _, row in position_map_df.iterrows() if row["
posSingleJoint"]]

26 posDoubleJoints = [eval(row["Position"]) for _, row in position_map_df.iterrows() if row["
posDoubleJoint"]]

27 posMarking = [pos["Marking_sb"], pos["Marking_ps"]]
28 posCleaning = [pos["Cleaning_sb"], pos["Cleaning_ps"]]
29 posBevelling = [pos["Bevelling_sb_aft"], pos["Bevelling_sb_fore"], pos["Bevelling_ps_aft"],

pos["Bevelling_ps_fore"]]
30 posHeating = [pos["Heating_sb_aft"], pos["Heating_sb_fore"], pos["Heating_ps_aft"], pos["

Heating_ps_fore"]]
31 posWelding1 = [pos["Welding1_sb_aft"], pos["Welding1_sb_fore"], pos["Welding1_ps_aft"], pos["

Welding1_ps_fore"]]
32 posWelding2 = [pos["Welding2_sb"], pos["Welding2_ps"]]
33 posWelding34 = [pos["Welding34_sb"], pos["Welding34_ps"]]
34 posNDT = [pos["NDT_sb"], pos["NDT_ps"]]
35 posWaitingArea = [pos["waiting_sb"], pos["waiting_ps"]]
36 posProcessingStations = [pos for sublist in [posMarking, posCleaning, posBevelling,

posHeating, posWelding1, posWelding2, posWelding34, posNDT] for pos in sublist]
37

38

39 if psv == 'PS+SB':
40 move_sheet = 'Move Map PS+SB'
41 elif psv == 'PS':
42 move_sheet = f'Move Map PS ({route})'
43 elif psv == 'SB':
44 move_sheet = 'Move Map SB'
45

46 move_map_df = pd.read_excel('input/map.xlsx', sheet_name=move_sheet)
47

48 move_map_marking = {
49 eval(row["Position"]): (eval(row["Marking"]), None if row["Marking Resource"] == "LCO"

else row["Marking Resource"])
50 for _, row in move_map_df.iterrows()
51 if pd.notna(row["Marking"])
52 }
53

54 move_map_hold = {
55 eval(row["Position"]): (eval(row["Hold"]), None if row["Hold Resource"] == "LCO" else row

["Hold Resource"])
56 for _, row in move_map_df.iterrows()
57 if pd.notna(row["Hold"])
58 }
59

60 move_map_cleaning = {
61 eval(row["Position"]): (eval(row["Cleaning"]), None if row["Cleaning Resource"] == "LCO"

else row["Cleaning Resource"])

G.2. Map 118

62 for _, row in move_map_df.iterrows()
63 if pd.notna(row["Cleaning"])
64 }
65

66 move_map_djf = {
67 eval(row["Position"]): (eval(row["DJF"]), None if row["DJF Resource"] == "LCO" else row["

DJF Resource"])
68 for _, row in move_map_df.iterrows()
69 if pd.notna(row["DJF"])
70 }
71 if djf_supply_line:
72 move_map_djf[(0, 0)] = None, None
73 move_map_djf[(1, 0)] = None, None
74

75

76 env = sim.Environment()
77 occupancy_map = {
78 position: sim.State(name=str(position), value=0)
79 for position in position_map
80 if not isinstance(position, str)
81 }
82

83 background = {}
84

85 def create_background():
86 for position in posSingleJoints:
87 x, y = position_map[position]
88 rectangle = sim.AnimateRectangle(
89 spec=((-0.52*joint_length), (-0.7*joint_width), (0.52*joint_length), (0.7*

joint_width)),
90 fillcolor="",
91 linewidth=0.5,
92 linecolor="black",
93 textcolor="black",
94 text=f"{position}",
95 text_anchor="e",
96 fontsize=1.2*joint_width,
97 layer=10,
98 x=x * scale,
99 y=y * scale,
100)
101 background[position] = rectangle
102

103 for position in posDoubleJoints:
104 x, y = position_map[position]
105 rectangle = sim.AnimateRectangle(
106 spec=((-1.02*joint_length), (-0.7*joint_width), (1.02*joint_length), (0.7*

joint_width)),
107 fillcolor="",
108 linewidth=0.5,
109 linecolor="black",
110 textcolor="black",
111 text=f"{position}",
112 text_anchor="e",
113 fontsize=1.2*joint_width,
114 layer=11,
115 x=x * scale,
116 y=y * scale,
117)
118

119 if position in [(2.5, -3), (2.5, 3), (6.5, 6)]:
120 rectangle.text = None
121 if position in [(2.5, -3), (2.5, 3)]:
122 rectangle.spec = ((-1.37*joint_length), (-0.7*joint_width), (1.37*

joint_length), (0.7*joint_width))
123 elif position == (6.5, 6):
124 rectangle.spec = ((-1.05*joint_length), (-0.7*joint_width), (1.05*

joint_length), (0.7*joint_width))
125 background[position] = rectangle
126

127

G.3. Main 119

128

129 line_positions = [
130 ((0, 0), (0, 10)),
131 ((1, 0), (1, 6)),
132 ((0, 3), (1, 3)),
133 ((0, 4), (1, 4)),
134 ((0, 5), (1, 5)),
135 ((-1, 6), (7, 6)),
136 ((1, 0), (3, 0)),
137 ((2, -3), (2, 3)),
138 ((3, -3), (3, 3)),
139 ((2.5, -3), (4, -3)),
140 ((2.5, 3), (4, 3)),
141 ((4, -3), (4, -1)),
142 ((4, 3), (4, 1)),
143 ((4, -1), (6, -1)),
144 ((4, 1), (6, 1)),
145 ((6,-2), (6.5,6))
146]
147

148 for pos1, pos2 in line_positions:
149 x1, y1 = position_map[pos1]
150 x2, y2 = position_map[pos2]
151 sim.AnimateLine(
152 spec=(x1 * scale, y1 * scale, x2 * scale, y2 * scale),
153 linecolor="lightgray",
154 linewidth=1,
155 layer=90,
156)

G.3. Main
Listing G.3: Main Python Script

1 import salabim as sim
2 import random
3 import numpy as np
4 import time
5 from input.parameters import *
6 from input.map import *
7 from statistics import mean
8 import openpyxl
9

10 import os
11 psv_side = os.environ.get('PSV')
12 route = os.environ.get('ROUTE')
13 scenario = f'Route ({route})'
14 ptc_rate = os.environ.get('PTC_RATE')
15 seed = int(os.environ.get('SEED'))
16

17 # region Simulation Settings
18

19 title = f"{scenario} with {ptc_rate} PTC"
20 warm_up_period = 4 * 3600
21 period_duration = 24 * 3600
22 periods = 21
23 simulation_duration = periods * period_duration + warm_up_period
24 animation = os.environ.get('ANIMATION', 'False') == 'True'
25 blind_animation = True
26 animation_speed = 100
27

28 # end region
29

30 random.seed(seed)
31 rng_djf = random.Random(44)
32 rng_firingline = random.Random(69)
33

34

35 # region Components

G.3. Main 120

36 class PSV(sim.Component):
37 def setup(self, position, joint_amount, anode_ratio):
38 self.position = position
39 self.joint_count = int(joint_amount)
40 self.anode_ratio = anode_ratio
41 self.queue = []
42

43 self.x, self.y = position_map[self.position]
44 psv_length = 1.5 * joint_length
45 psv_width = 4 * joint_width
46 self.rectangle = sim.AnimateRectangle(
47 spec=(-0.5*psv_length, -0.5*psv_width,
48 0.5*psv_length, 0.5*psv_width),
49 fillcolor='darkblue',
50 linewidth=0,
51 layer=100,
52 x=(self.x * scale) + 0.1*psv_length,
53 y=self.y * scale,
54)
55 self.circle = sim.AnimateCircle(
56 radius=(0.5*psv_width),
57 fillcolor='darkblue',
58 linewidth=0,
59 text='PSV',
60 fontsize=1.8*joint_width,
61 text_anchor='e',
62 layer=100,
63 x=(self.x * scale) + 0.6*psv_length,
64 y=self.y * scale,
65)
66

67

68 def process(self):
69 anode_count = int(self.joint_count * self.anode_ratio)
70 regular_count = self.joint_count - anode_count
71

72 regular_joints = [
73 Joint(
74 name=f'Joint',
75 position=self.position,
76 anode=False,
77)
78 for i in range(regular_count)
79]
80 anode_joints = [
81 Joint(
82 name=f'AnodeJoint',
83 position=self.position,
84 anode=True,
85)
86 for i in range(anode_count)
87]
88

89 anode_interval = int(1/self.anode_ratio)
90 regulars = [anode_interval -2, anode_interval -1, anode_interval]
91 while regular_joints or anode_joints:
92 if anode_joints:
93 aj = anode_joints.pop(0)
94 self.queue.append(aj)
95 for i in range(random.choice(regulars)):
96 if regular_joints:
97 j = regular_joints.pop(0)
98 self.queue.append(j)
99

100 for joint in self.queue:
101 joint.rectangle.visible = False
102 self.passivate()
103

104 class PTC(sim.Component):
105 def setup(self, position, psv):
106 self.position = position

G.3. Main 121

107 self.x, self.y = position_map[self.position]
108 self.psv = psv
109 self.joint_counter = 0
110 self.lift_time_min = parameters['PTC']['lift_time_min']
111 self.lift_time_mode = parameters['PTC']['lift_time_mode']
112 self.lift_time_max = parameters['PTC']['lift_time_max']
113 self.lift_time_mean = parameters['PTC']['lift_time_mean']
114 self.lift_time_constant = parameters['PTC']['lift_time_constant']
115 self.lift_time = sim.Triangular(self.lift_time_min, self.lift_time_max, self.

lift_time_mode)
116 self.drop_time = parameters['PTC']['drop_time']
117 self.wait_memory = []
118 self.process_memory = []
119

120 self.rectangle = sim.AnimateRectangle(
121 spec=(-0.5*joint_length, -0.5*joint_width, 0.5*joint_length, 0.5*joint_width),
122 fillcolor='',
123 linewidth=0,
124 text=f'Delivery PS' if self.position == pos['Delivery_ps'] else f'Delivery SB',
125 textcolor='black',
126 text_anchor='w',
127 fontsize=1.2*joint_width,
128 layer=100,
129 x=self.x * scale,
130 y=self.y * scale,
131)
132

133

134 def process(self):
135 while self.psv.queue:
136 joint = self.psv.queue.pop(0)
137 self.joint_counter += 1
138 joint.id = self.joint_counter
139 joint.name = f'Joint({joint.id})'
140 joint.rectangle.visible = True
141 process_time = self.lift_time.sample()
142 self.hold(process_time)
143 process_time = process_time + self.drop_time
144 self.process_memory.append(process_time)
145

146 if occupancy(self.position) != 0:
147 start_wait = env.now()
148 self.psv.circle.textcolor = 'red'
149 self.wait((env.occupancy_map[self.position], 0))
150 self.psv.circle.textcolor = 'white'
151 wait_time = int(env.now() - start_wait)
152 self.wait_memory.append(wait_time)
153

154 set_occupancy(self.position, 1)
155 self.hold(self.drop_time)
156

157 if self.position == pos['Delivery_ps']:
158 env.data['PTC delivery']['1'] += 1
159 elif self.position == pos['Delivery_sb']:
160 env.data['PTC delivery']['2'] += 1
161 env.data['PTC delivery']['Total'] += 1
162

163 set_position(joint, self.position)
164 joint.rectangle.layer = 1
165

166 pipe_routing_system.joints.append(joint)
167 joint.waiting_for_move = True
168 set_occupancy(self.position, 2)
169

170 self.psv.rectangle.visible = False
171 self.psv.circle.visible = False
172 self.passivate()
173

174 class PipeRoutingSystem(sim.Component):
175 def setup(self):
176 self.joints = []

G.3. Main 122

177 self.joints_with_remainders = []
178 self.anode_count = 0
179 self.normal_count = 0
180 self.joint_0_5_to_hold = False
181 self.djf_supply_line = [None, None, None, None, None] if route=='b' else [None, None,

None, None]
182 self.djf_supply_line_positions = [(1, 0)]
183 self.djf_supply_line_positions.append((0, 0)) if route in ['b', 'c', 'd'] else None
184 self.djf_supply_line_positions.append((1, 1)) if route == 'b' else None
185

186 def process(self):
187 while True:
188 move_assigned = False
189 for joint in self.joints:
190 if joint.ispassive() and joint.waiting_for_move:
191

192 if not joint.marked:
193 joint.destination, joint.resource = move_map_marking.get(joint.

position, (None, None))
194 elif joint.to_hold:
195 joint.destination, joint.resource = move_map_hold.get(joint.position,

(None, None))
196 elif joint.marked and not joint.cleaned:
197 joint.destination, joint.resource = move_map_cleaning.get(joint.

position, (None, None))
198 elif joint.marked and joint.cleaned:
199 if joint.position in self.djf_supply_line_positions:
200 if route in ['a', 'e', 'f']:
201 move_assigned = self.djf_supply_aef(joint)
202 elif route in ['c', 'd']:
203 move_assigned = self.djf_supply_cd(joint)
204 elif route in ['b']:
205 move_assigned = self.djf_supply_b(joint)
206 if move_assigned:
207 break
208 else:
209 continue
210 else:
211 joint.destination, joint.resource = move_map_djf.get(joint.

position, (None, None))
212

213 if joint.destination is None:
214 continue
215 elif joint.destination == (pos['Cleaning_sb']) and occupancy(pos['

Cleaning_ps']) == 2.2 and (route == 'e' or route == 'f'):
216 continue
217

218 move, remainder = self.path(joint.position, joint.destination)
219

220 if move and (joint.resource is None or self.resource_available(joint.
resource)):

221 joint.move = move
222 joint.remainder = remainder
223

224 for position in move:
225 set_occupancy(position, 1)
226 joint.activate()
227 move_assigned = True
228

229 if remainder:
230 self.joints_with_remainders.append(joint)
231

232 self.hold(0.1)
233 break
234

235 if not move_assigned:
236 tc_1ps = resources['TC1ps']['component']
237 if tc_1ps.ispassive():
238 new_position = (0, 10)
239 for position in [(0, 7), (0, 8), (0, 9), (0, 10)]:
240 if occupancy(position) >= 1:

G.3. Main 123

241 new_position = position
242 break
243 tc_1ps.new_position = new_position
244 tc_1ps.activate()
245

246 tc_2ps = resources['TC2ps']['component']
247 if tc_2ps.ispassive() and tc_2ps.position in posCleaning:
248 new_position = (1, 5)
249 tc_2ps.new_position = new_position
250 tc_2ps.activate()
251

252 if route in ['a', 'e', 'f']:
253 tc_2sb = resources['TC2sb']['component']
254 if tc_2sb.ispassive():
255 new_position = (1, 2)
256 for position in [(1, 1), (1, 2), (1, 3), (1, 4)]:
257 if occupancy(position) >= 2:
258 new_position = position
259 break
260 tc_2sb.new_position = new_position
261 tc_2sb.activate()
262

263 tc_1sb = resources['TC1sb']['component']
264 if tc_1sb.ispassive():
265 if route == 'a' and tc_1sb.position in posMarking:
266 tc_1sb.new_position = (0, 4)
267 tc_1sb.activate()
268 elif route == 'e':
269 new_position = (0, 4)
270 for position in [(0, 4), (0, 5)]:
271 if occupancy(position) >= 2:
272 new_position = position
273 break
274 tc_1sb.new_position = new_position
275 tc_1sb.activate()
276 elif route == 'f':
277 new_position = (0, 4)
278 for position in [(0, 5), (0, 6)]:
279 if occupancy(position) >= 2:
280 new_position = position
281 break
282 tc_1sb.new_position = new_position
283 tc_1sb.activate()
284

285 elif route == 'b':
286 tc_1sb = resources['TC1sb']['component']
287 if tc_1sb.ispassive():
288 new_position = (0, 4) if occupancy((1, 4)) > occupancy((1, 3)) and

occupancy((1, 3)) >= 0 else (0, 3)
289 for position in [(0, 2), (0, 3), (0, 4)]:
290 if occupancy(position) >= 1:
291 new_position = position
292 break
293 tc_1sb.new_position = new_position
294 tc_1sb.activate()
295

296 elif route == 'c':
297 tc_1sb = resources['TC1sb']['component']
298 if tc_1sb.ispassive():
299 new_position = (0, 4)
300 for position in [(0, 2), (0, 3), (0, 4)]:
301 if occupancy(position) >= 1:
302 new_position = position
303 break
304 tc_1sb.new_position = new_position
305 tc_1sb.activate()
306

307 tc_2sb = resources['TC2sb']['component']
308 if tc_2sb.ispassive():
309 new_position = (1, 2)
310 for position in [(1, 1), (1, 2), (1, 3)]:

G.3. Main 124

311 if occupancy(position) >= 2:
312 new_position = position
313 break
314 tc_2sb.new_position = new_position
315 tc_2sb.activate()
316

317 elif route == 'd':
318 tc_1sb = resources['TC1sb']['component']
319 if tc_1sb.ispassive():
320 new_position = (0, 3)
321 for position in [(0, 2), (0, 3)]:
322 if occupancy(position) >= 1:
323 new_position = position
324 break
325 tc_1sb.new_position = new_position
326 tc_1sb.activate()
327 tc_2sb = resources['TC2sb']['component']
328 if tc_2sb.ispassive():
329 new_position = (1, 2)
330 for position in [(1, 1), (1, 2), (1, 4)]:
331 if occupancy(position) >= 2:
332 new_position = position
333 break
334 tc_2sb.new_position = new_position
335 tc_2sb.activate()
336

337 self.passivate()
338 self.hold(0.1)
339

340

341

342 def path(self, start, end):
343 start_x, start_y = start
344 end_x, end_y = end
345 move = []
346 remainder = []
347

348 if start_x != end_x:
349 step = 1 if start_x < end_x else -1
350 for x in range(start_x + step, end_x + step, step):
351 position = (x, start_y)
352 if occupancy(position) != 0:
353 remainder.append(position)
354 break
355 move.append(position)
356

357 elif start_y != end_y:
358 step = 1 if start_y < end_y else -1
359 for y in range(start_y + step, end_y + step, step):
360 position = (start_x, y)
361 if position not in env.occupancy_map:
362 continue
363 if occupancy(position) != 0:
364 remainder.append(position)
365 break
366 move.append(position)
367 return move, remainder
368

369 def path_update(self):
370 self.hold(0.1)
371 for joint in self.joints_with_remainders:
372 if joint.path_updateable:
373 move_extend, new_remainder = self.path(joint.move[-1], joint.destination)
374 if (0, 6) in move_extend and self.joint_0_5_to_hold:
375 move_extend.remove((0, 6))
376 new_remainder.append((0, 6))
377

378 if move_extend:
379 joint.move.extend(move_extend)
380 joint.remainder = new_remainder
381 for pos in move_extend:

G.3. Main 125

382 set_occupancy(pos, 1)
383

384 if not new_remainder:
385 self.joints_with_remainders.remove(joint)
386

387 def joint_to_hold(self, marking_position, marking_joint):
388 if marking_joint.to_hold:
389 return
390 joint_0_5 = next((j for j in self.joints if j.position == (0, 5)), None)
391

392 anode_ratio = 1 / (2 * parameters['FiringLine']['anode_interval'])
393 total_count = self.normal_count + self.anode_count
394 if total_count < 20:
395 return
396

397 system_minus6normal_ratio = (self.anode_count) / (total_count - 6)
398 system_minus2anode_ratio = (self.anode_count - 2) / (total_count - 2)
399 normal_to_hold = True if (system_minus6normal_ratio < anode_ratio) else False
400 anode_to_hold = True if system_minus2anode_ratio > anode_ratio else False
401

402 if not marking_joint.anode:
403 if normal_to_hold:
404 marking_joint.to_hold = True
405 elif route == 'f':
406 if marking_position == (0, 5):
407 marking_joint.to_hold = True if occupancy((0, 4)) != 0 else False
408 elif marking_position == (0, 6):
409 marking_joint.to_hold = True if occupancy((0, 4)) != 0 or (joint_0_5 and

not joint_0_5.to_hold) else False
410 else:
411 if marking_position == (0, 6):
412 marking_joint.to_hold = True if occupancy((1, 5)) != 0 else False
413 if marking_joint.to_hold:
414 self.normal_count -= 1
415 if route != 'f' and marking_position == (0, 5):
416 self.joint_0_5_to_hold = True
417 env.data['Sent to hold']['1'] += 1
418 env.data['Sent to hold']['Total'] += 1
419

420 elif marking_joint.anode:
421 marking_joint.to_hold = True if anode_to_hold else False
422 if marking_joint.to_hold:
423 self.anode_count -= 1
424 if route != 'f' and marking_position == (0, 5):
425 self.joint_0_5_to_hold = True
426 env.data['Sent to hold']['2'] += 1
427 env.data['Sent to hold']['Total'] += 1
428

429

430 def djf_supply_aef(self, joint):
431 move_assigned = False
432 self.djf_supply_line[1] = joint
433 joint_0, joint_1, joint_aft, joint_fore = self.djf_supply_line
434 if joint_1 and not joint_0 and not joint_aft and not joint_fore:
435 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore']) ==

0:
436 joint_1.destination = pos['DJFsupply_fore']
437 joint_1.move = [pos['DJFsupply_aft'], pos['DJFsupply_fore']]
438 for position in joint_1.move:
439 set_occupancy(position, 1)
440 self.djf_supply_line[1] = None
441 self.djf_supply_line[3] = joint_1
442 joint_1.activate()
443 move_assigned = True
444 elif joint_1 and joint_fore and not joint_aft:
445 if not joint_fore.anode or not joint_1.anode:
446 joint_1.destination = pos['DJFsupply_aft']
447 joint_1.move = [pos['DJFsupply_aft']]
448 for position in joint_1.move:
449 set_occupancy(position, 1)
450 self.djf_supply_line[1] = None

G.3. Main 126

451 self.djf_supply_line[2] = joint_1
452 if djf.start_real_wait_ps or djf.start_real_wait_sb:
453 start_wait = min(djf.start_real_wait_ps, djf.start_real_wait_sb) if djf.

start_real_wait_ps and djf.start_real_wait_sb else djf.
start_real_wait_ps if djf.start_real_wait_ps else djf.
start_real_wait_sb

454 wait_time = round(env.now() - start_wait)
455 if start_wait == djf.start_real_wait_ps:
456 djf.real_wait_memory_ps.append(wait_time)
457 djf.start_real_wait_ps = None
458 elif start_wait == djf.start_real_wait_sb:
459 djf.real_wait_memory_sb.append(wait_time)
460 djf.start_real_wait_sb = None
461

462 joint_1.activate()
463 move_assigned = True
464 elif not joint_0:
465 joint_1.destination = (0, 0)
466 joint_1.move = [(0, 0)]
467 for position in joint_1.move:
468 set_occupancy(position, 1)
469 self.djf_supply_line[1] = None
470 self.djf_supply_line[0] = joint_1
471 joint_1.activate()
472 move_assigned = True
473 else:
474 joint_1.destination = pos['DJFsupply_aft']
475 joint_1.move = [pos['DJFsupply_aft']]
476 for position in joint_1.move:
477 set_occupancy(position, 1)
478 self.djf_supply_line[1] = None
479 self.djf_supply_line[2] = joint_1
480 if djf.start_real_wait_ps or djf.start_real_wait_sb:
481 start_wait = min(djf.start_real_wait_ps, djf.start_real_wait_sb) if djf.

start_real_wait_ps and djf.start_real_wait_sb else djf.
start_real_wait_ps if djf.start_real_wait_ps else djf.
start_real_wait_sb

482 wait_time = round(env.now() - start_wait)
483 if start_wait == djf.start_real_wait_ps:
484 djf.real_wait_memory_ps.append(wait_time)
485 djf.start_real_wait_ps = None
486 elif start_wait == djf.start_real_wait_sb:
487 djf.real_wait_memory_sb.append(wait_time)
488 djf.start_real_wait_sb = None
489 joint_1.activate()
490 move_assigned = True
491 elif not joint_0 and joint_1 and joint_aft and joint_fore:
492 joint_1.destination = (0, 0)
493 joint_1.move = [(0, 0)]
494 for position in joint_1.move:
495 set_occupancy(position, 1)
496 self.djf_supply_line[1] = None
497 self.djf_supply_line [0] = joint_1
498 joint_1.activate()
499 move_assigned = True
500 elif joint_0 and joint_1 and not joint_aft and not joint_fore:
501 if joint_0.anode and joint_1.anode:
502 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore'])

== 0:
503 joint_1.destination = pos['DJFsupply_fore']
504 joint_1.move = [pos['DJFsupply_aft'], pos['DJFsupply_fore']]
505 for position in joint_1.move:
506 set_occupancy(position, 1)
507 self.djf_supply_line[1] = None
508 self.djf_supply_line[3] = joint_1
509 joint_1.activate()
510 move_assigned = True
511 else:
512 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore'])

== 0:
513 joint_1.destination = pos['DJFsupply_fore']

G.3. Main 127

514 joint_1.move = [pos['DJFsupply_fore']]
515 joint_0.destination = pos['DJFsupply_aft']
516 joint_0.move = [(1, 0), pos['DJFsupply_aft']]
517 for position in joint_1.move + joint_0.move:
518 set_occupancy(position, 1)
519 self.djf_supply_line[3] = joint_1
520 self.djf_supply_line[2] = joint_0
521 self.djf_supply_line[1] = None
522 self.djf_supply_line[0] = None
523 if djf.start_real_wait_ps:
524 wait_time = round(env.now() - djf.start_real_wait_ps)
525 djf.real_wait_memory_ps.append(wait_time)
526 djf.start_real_wait_ps = None
527 elif djf.start_real_wait_sb:
528 wait_time = round(env.now() - djf.start_real_wait_sb)
529 djf.real_wait_memory_sb.append(wait_time)
530 djf.start_real_wait_sb = None
531 joint_1.free_pos = False
532 joint_1.activate()
533 joint_0.activate()
534 move_assigned = True
535 else:
536 move_assigned = False
537

538 return move_assigned
539

540

541 def djf_supply_b(self, joint):
542 move_assigned = False
543 if joint.position == (0,0):
544 self.djf_supply_line[0] = joint
545

546 joint_0, joint_1, joint_aft, joint_fore, joint_reserve = self.djf_supply_line
547

548 if joint == joint_reserve:
549 if not joint_aft and joint_fore and joint_fore.anode:
550 move_assigned = False
551 elif joint_0 and joint_0.anode:
552 move_assigned = False
553 else:
554 if occupancy((1, 0)) == 0:
555 joint.destination = (1, 0)
556 joint.move = [(1, 0)]
557 joint.resource = 'TC2sb'
558 for position in joint.move:
559 set_occupancy(position, 1)
560 self.djf_supply_line[4] = None
561 self.djf_supply_line[1] = joint
562 joint.activate()
563 move_assigned = True
564

565 elif joint == joint_1:
566 if joint.anode and ((not joint_aft and joint_fore and joint_fore.anode) or (

joint_0 and joint_0.anode)):
567 if occupancy((1, 1)) == 0:
568 joint.destination = (1, 1)
569 joint.move = [(1, 1)]
570 joint.resource = 'TC2sb'
571 for position in joint.move:
572 set_occupancy(position, 1)
573 self.djf_supply_line[1] = None
574 self.djf_supply_line[4] = joint
575 joint.activate()
576 move_assigned = True
577 elif not joint_0:
578 if not joint_aft and not joint_fore:
579 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore

']) == 0:
580 joint.destination = pos['DJFsupply_fore']
581 joint.move = [pos['DJFsupply_aft'], pos['DJFsupply_fore']]
582 for position in joint.move:

G.3. Main 128

583 set_occupancy(position, 1)
584 self.djf_supply_line[1] = None
585 self.djf_supply_line[3] = joint
586 joint.activate()
587 move_assigned = True
588 elif not joint_aft and joint_fore:
589 if occupancy(pos['DJFsupply_aft']) == 0:
590 joint.destination = pos['DJFsupply_aft']
591 joint.move = [pos['DJFsupply_aft']]
592 for position in joint.move:
593 set_occupancy(position, 1)
594 self.djf_supply_line[1] = None
595 self.djf_supply_line[2] = joint
596 joint.activate()
597 move_assigned = True
598

599 elif joint == joint_0:
600 if not joint_1 and not joint_aft and not joint_fore:
601 if occupancy((1, 0)) == 0 and occupancy(pos['DJFsupply_aft']) == 0 and

occupancy(pos['DJFsupply_fore']) == 0:
602 joint.destination = pos['DJFsupply_fore']
603 joint.move = [(1, 0), pos['DJFsupply_aft'], pos['DJFsupply_fore']]
604 for position in joint.move:
605 set_occupancy(position, 1)
606 self.djf_supply_line[0] = None
607 self.djf_supply_line[3] = joint
608 joint.activate()
609 move_assigned = True
610 elif not joint_1 and not joint_aft and joint_fore:
611 if (not joint.anode or not joint_fore.anode) or joint_reserve:
612 if occupancy((1, 0)) == 0 and occupancy(pos['DJFsupply_aft']) == 0:
613 joint.destination = pos['DJFsupply_aft']
614 joint.move = [(1, 0), pos['DJFsupply_aft']]
615 for position in joint.move:
616 set_occupancy(position, 1)
617 self.djf_supply_line[0] = None
618 self.djf_supply_line[2] = joint
619 joint.activate()
620 move_assigned = True
621 else:
622 if not joint_reserve:
623 if occupancy((1, 0)) == 0:
624 joint.destination = (1, 0)
625 joint.move = [(1, 0)]
626 for position in joint.move:
627 set_occupancy(position, 1)
628 self.djf_supply_line[0] = None
629 self.djf_supply_line[1] = joint
630 joint.activate()
631 move_assigned = True
632 elif not joint_1 and joint_aft and joint_fore:
633 if occupancy((1, 0)) == 0:
634 joint.destination = (1, 0)
635 joint.move = [(1, 0)]
636 for position in joint.move:
637 set_occupancy(position, 1)
638 self.djf_supply_line[0] = None
639 self.djf_supply_line[1] = joint
640 joint.activate()
641 move_assigned = True
642 elif joint_1 and not joint_aft and not joint_fore:
643 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore'])

== 0:
644 joint_1.destination = pos['DJFsupply_fore']
645 joint_1.move = [pos['DJFsupply_fore']]
646 joint.destination = pos['DJFsupply_aft']
647 joint.move = [(1, 0), pos['DJFsupply_aft']]
648 for position in joint_1.move + joint_0.move:
649 set_occupancy(position, 1)
650 self.djf_supply_line [3] = joint_1
651 self.djf_supply_line [2] = joint

G.3. Main 129

652 self.djf_supply_line [1] = None
653 self.djf_supply_line [0] = None
654 joint_1.free_pos = False
655 joint_1.activate()
656 joint.activate()
657 move_assigned = True
658 else:
659 move_assigned = False
660

661 return move_assigned
662

663

664 def djf_supply_cd(self, joint):
665 move_assigned = False
666 if joint.position == (0,0):
667 self.djf_supply_line[0] = joint
668 elif joint.position == (1,0):
669 self.djf_supply_line[1] = joint
670 joint_0, joint_1, joint_aft, joint_fore = self.djf_supply_line
671

672 if joint_aft and joint_fore:
673 move_assigned = False
674 elif not joint_aft and not joint_fore:
675 if joint_0 and not joint_1:
676 if occupancy((1, 0)) == 0 and occupancy(pos['DJFsupply_aft']) == 0 and

occupancy(pos['DJFsupply_fore']) == 0:
677 joint_0.destination = pos['DJFsupply_fore']
678 joint_0.move = [(1, 0), pos['DJFsupply_aft'], pos['DJFsupply_fore']]
679 for position in joint_0.move:
680 set_occupancy(position, 1)
681 self.djf_supply_line [0] = None
682 self.djf_supply_line [3] = joint_0
683 joint_0.activate()
684 move_assigned = True
685 elif not joint_0 and joint_1:
686 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore'])

== 0:
687 joint_1.destination = pos['DJFsupply_fore']
688 joint_1.move = [pos['DJFsupply_aft'], pos['DJFsupply_fore']]
689 for position in joint_1.move:
690 set_occupancy(position, 1)
691 self.djf_supply_line [1] = None
692 self.djf_supply_line [3] = joint_1
693 joint_1.activate()
694 move_assigned = True
695 elif joint_0.anode and joint_1.anode:
696 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore'])

== 0:
697 joint_1.destination = pos['DJFsupply_fore']
698 joint_1.move = [pos['DJFsupply_aft'], pos['DJFsupply_fore']]
699 for position in joint_1.move:
700 set_occupancy(position, 1)
701 self.djf_supply_line [1] = None
702 self.djf_supply_line [3] = joint_1
703 joint_1.activate()
704 move_assigned = True
705 else:
706 if occupancy(pos['DJFsupply_aft']) == 0 and occupancy(pos['DJFsupply_fore'])

== 0:
707 joint_1.destination = pos['DJFsupply_fore']
708 joint_1.move = [pos['DJFsupply_fore']]
709 joint_0.destination = pos['DJFsupply_aft']
710 joint_0.move = [(1, 0), pos['DJFsupply_aft']]
711 for position in joint_1.move + joint_0.move:
712 set_occupancy(position, 1)
713 self.djf_supply_line [0] = None
714 self.djf_supply_line [1] = None
715 self.djf_supply_line [2] = joint_0
716 self.djf_supply_line [3] = joint_1
717

718 joint_1.free_pos = False

G.3. Main 130

719 joint_1.activate()
720 joint_0.activate()
721 move_assigned = True
722 elif not joint_aft and joint_fore:
723 if joint_1:
724 if occupancy(pos['DJFsupply_aft']) == 0:
725 joint_1.destination = pos['DJFsupply_aft']
726 joint_1.move = [pos['DJFsupply_aft']]
727 for position in joint_1.move:
728 set_occupancy(position, 1)
729 self.djf_supply_line [1] = None
730 self.djf_supply_line [2] = joint_1
731 joint_1.activate()
732 move_assigned = True
733 elif joint_0 and not joint_1:
734 if not joint_0.anode or not joint_fore.anode:
735 if occupancy((1, 0)) == 0 and occupancy(pos['DJFsupply_aft']) == 0:
736 joint_0.destination = pos['DJFsupply_aft']
737 joint_0.move = [(1, 0), pos['DJFsupply_aft']]
738 for position in joint_0.move:
739 set_occupancy(position, 1)
740 self.djf_supply_line [0] = None
741 self.djf_supply_line [2] = joint_0
742 joint_0.activate()
743 move_assigned = True
744

745 else:
746 move_assigned = False
747

748 return move_assigned
749

750

751 def resource_available(self, resource):
752 '''Check if a resource is available.'''
753 tc = resources[resource]['component']
754 tc_available = resources[resource]['resource'].available_quantity() > 0
755 return tc.ispassive() and tc_available
756

757

758 class Joint(sim.Component):
759 def setup(self, position, anode):
760 self.id = None
761 self.length = joint_length
762 self.anode = anode
763 self.position = position
764 self.x, self.y = position_map[position]
765 self.destination = None
766 self.waiting_for_move = False
767 self.path_updateable = False
768 self.marked = False
769 self.cleaned = False
770 self.to_hold = False
771 self.free_pos = True
772

773 self.rectangle = sim.AnimateRectangle(
774 spec=(-0.5*joint_length, -0.5*joint_width, 0.5*joint_length, 0.5*joint_width),
775 fillcolor='gray',
776 linewidth=0.5,
777 linecolor='black',
778 text=f'J' if not self.anode else 'AJ',
779 fontsize=1.4*joint_width,
780 textcolor='white' if not self.anode else 'orange',
781 layer=1,
782 x=self.x * scale,
783 y=self.y * scale,
784)
785

786 def process(self):
787 self.passivate()
788 while True:
789 self.waiting_for_move = False

G.3. Main 131

790 self.path_updateable = True
791 new_position = self.move[-1]
792 new_x, new_y = position_map[new_position]
793

794 if new_x != self.x:
795 set_occupancy(self.position, -1) if self.free_pos else None
796 joint_lco_move(self, self.move)
797 set_occupancy(self.position, 2)
798

799 if new_y != self.y:
800 resource_name = self.resource
801 resource = resources[resource_name]['component']
802 self.request(resources[resource_name]['resource'])
803 set_occupancy(self.position, -1)
804 resource.joint = self
805 resource.new_position = self.position
806 resource.activate()
807 self.passivate()
808

809 component = 'TC'
810 joint_y_move(self, component, self.move)
811 self.passivate()
812

813 self.release(resources[resource_name]['resource'])
814 set_occupancy(self.position, 2)
815

816 self.destination = None
817 self.move = []
818

819 if self.position in posProcessingStations:
820 self.passivate()
821

822 if not self.move:
823 self.waiting_for_move = True
824 pipe_routing_system.activate()
825 self.passivate()
826

827 class DoubleJoint(sim.Component):
828 def setup(self, position, aft, fore, anode):
829 self.id = (aft.id, fore.id)
830 self.position = position
831 self.x, self.y = position_map[self.position]
832 self.aft = aft
833 self.fore = fore
834 self.anode = anode
835 self.waiting_for_move = False
836 self.marked = True
837 self.cleaned = True
838 self.reject = False
839 self.to_hold = False
840 self.length = 2 * joint_length
841 self.free_pos = True
842

843 self.rectangle = sim.AnimateRectangle(
844 spec=(-joint_length, -0.5*joint_width, joint_length, 0.5*joint_width),
845 fillcolor='gray',
846 linewidth=0.5,
847 text=f'({aft.id}) DJ ({fore.id})' if not self.anode else f'({aft.id}) ADJ ({fore.

id})',
848 fontsize=1.4*joint_width,
849 textcolor='white' if not self.anode else 'orange',
850 layer=1,
851 x=self.x * scale,
852 y=self.y * scale,
853)
854

855 def process(self):
856 self.passivate()
857 while True:
858 self.waiting_for_move = False
859 new_x, new_y = position_map[self.destination]

G.3. Main 132

860

861 if new_x != self.x:
862 set_occupancy(self.position, -1)
863 joint_lco_move(self, self.move)
864 set_occupancy(self.position, 2)
865

866 if new_y != self.y:
867 resource_name = self.resource
868 resource = resources[resource_name]['component']
869 self.request(resources[resource_name]['resource'])
870 set_occupancy(self.position, -1)
871 resource.joint = self
872 resource.new_position = self.position
873 resource.activate()
874 self.passivate()
875 if resource_name == 'Crane38':
876 component = 'Crane38'
877 else:
878 component = 'TC'
879 joint_y_move(self, component, self.move)
880 self.passivate()
881 self.release(resources[resource_name]['resource'])
882 set_occupancy(self.position, 2)
883

884 self.destination = None
885 self.move = []
886

887 if self.position in posProcessingStations:
888 self.passivate()
889

890 if not self.move:
891 self.waiting_for_move = True
892 if self in pipe_routing_system.joints:
893 pipe_routing_system.activate()
894 elif self in waitingarea.doublejoints:
895 waitingarea.activate()
896 self.passivate()
897

898 class TC(sim.Component):
899 def setup(self, position):
900 self.position = position
901 self.x, self.y = position_map[position]
902 self.lift_time = parameters['TC']['lift_time']
903 self.drop_time = parameters['TC']['drop_time']
904 self.new_position = self.position
905 self.joint = None
906

907

908 self.rectangle = sim.AnimateRectangle(
909 spec=(-0.5*tc_length, -0.5*tc_width, 0.5*tc_length, 0.5*tc_width),
910 fillcolor='darkred',
911 text=f'{self.name()}',
912 textcolor='white',
913 fontsize=1.4*joint_width,
914 layer=2,
915 x=self.x * scale,
916 y=self.y * scale,
917)
918

919 def process(self):
920 while True:
921 self.passivate()
922 component = 'TC'
923 move = [self.new_position]
924 y_move(self, component, move)
925

926 if self.joint:
927 self.hold(self.lift_time)
928 self.joint.activate()
929 y_move(self, component, self.joint.move)
930 self.hold(self.drop_time)

G.3. Main 133

931 self.joint.activate()
932 self.joint = None
933

934 class MarkingStation(sim.Component):
935 def setup(self, position):
936 self.position = position
937 self.x, self.y = position_map[self.position]
938 self.marking_time = parameters['MarkingStation']['process_time']
939

940 self.rectangle = sim.AnimateRectangle(
941 spec=(-0.52*joint_length, -0.7*joint_width, 0.52*joint_length, 0.7*joint_width),
942 fillcolor='wheat',
943 text=f'{self.name()}',
944 fontsize=1.2*joint_width,
945 textcolor='black',
946 text_anchor='w',
947 layer=80,
948 x=self.x * scale,
949 y=self.y * scale,
950)
951

952 def process(self):
953 while True:
954 self.wait((env.occupancy_map[self.position], 2))
955

956 set_occupancy(self.position, 2.1)
957

958 joint = next((j for j in pipe_routing_system.joints if j.position == self.
position), None)

959 if not joint.marked:
960 self.hold(self.marking_time)
961 joint.rectangle.text = f'J {joint.id}' if not joint.anode else f'AJ {joint.id

}'
962 joint.marked = True
963 if joint.anode:
964 pipe_routing_system.anode_count += 1
965 else:
966 pipe_routing_system.normal_count += 1
967 if self.position == pos['Marking_ps']:
968 env.data['Marked']['1'] += 1
969 elif self.position == pos['Marking_sb']:
970 env.data['Marked']['2'] += 1
971 env.data['Marked']['Total'] += 1
972 elif self.position == pos['Marking_ps'] and joint.to_hold:
973 pipe_routing_system.joint_0_5_to_hold = False
974 set_occupancy(self.position, 2.2)
975 pipe_routing_system.joint_to_hold(self.position, joint)
976 joint.activate()
977

978 class CleaningStation(sim.Component):
979 def setup(self, position):
980 self.position = position
981 self.x, self.y = position_map[self.position]
982 self.cleaning_time = parameters['CleaningStation']['process_time']
983

984 self.rectangle = sim.AnimateRectangle(
985 spec=(-0.52*joint_length, -0.7*joint_width, 0.52*joint_length, 0.7*joint_width),
986 fillcolor='wheat',
987 text=f'{self.name()}',
988 fontsize=1.2*joint_width,
989 textcolor='black',
990 text_anchor='w',
991 layer=80,
992 x=self.x * scale,
993 y=self.y * scale,
994)
995

996 def process(self):
997 while True:
998 self.wait((env.occupancy_map[self.position], 2))
999 set_occupancy(self.position, 2.1)

G.3. Main 134

1000

1001 joint = next((j for j in pipe_routing_system.joints if j.position == self.
position), None)

1002 if not joint.cleaned:
1003 self.hold(self.cleaning_time)
1004 joint.cleaned = True
1005 if self.position == pos['Cleaning_ps']:
1006 env.data['Cleaned']['1'] += 1
1007 elif self.position == pos['Cleaning_sb']:
1008 env.data['Cleaned']['2'] += 1
1009 env.data['Cleaned']['Total'] += 1
1010 set_occupancy(self.position, 2.2)
1011 joint.activate()
1012

1013 class Hold(sim.Component):
1014 def setup(self, position, location, storage_active, retrieval_active):
1015 self.position = position
1016 self.storage_location = location
1017 self.storage_active = storage_active
1018 self.retrieval_active = retrieval_active
1019 self.x, self.y = position_map[self.storage_location]
1020 self.lift_time = parameters['Hold']['lift_time']
1021 self.storage_time = parameters['Hold']['storage_time']
1022 self.retrieval_time = parameters['Hold']['retrieval_time']
1023 self.normal_storage = []
1024 self.anode_storage = []
1025

1026 self.rectangle = sim.AnimateRectangle(
1027 spec=(-0.6*joint_length, -joint_width, 0.6*joint_length, joint_width),
1028 fillcolor=f'black' if not self.storage_active and not self.retrieval_active else

'lightgray',
1029 linewidth=1,
1030 linecolor='black',
1031 text=f'{self.name()}' if not self.storage_active and not self.retrieval_active

else f'{self.name()} with {len(self.normal_storage)} J and {len(self.
normal_storage)} AJ',

1032 fontsize=1.4*joint_width,
1033 textcolor='white' if not self.storage_active and not self.retrieval_active else '

black',
1034 layer=10,
1035 x=self.x * scale,
1036 y=self.y * scale,
1037)
1038

1039 def process(self):
1040 while self.storage_active:
1041 self.wait((env.occupancy_map[self.position], 2))
1042 joint = next((j for j in pipe_routing_system.joints if j.position == self.

position), None)
1043 if joint.to_hold:
1044 self.hold(self.lift_time)
1045 set_position(joint, self.storage_location)
1046 set_occupancy(self.position, 0)
1047 self.hold(self.storage_time)
1048

1049 joint.rectangle.visible = False
1050 self.anode_storage.append(joint) if joint.anode else self.normal_storage.

append(joint)
1051 self.rectangle.text = f'{self.name()} with {len(self.normal_storage)} J and {

len(self.anode_storage)} AJ'
1052 pipe_routing_system.joints.remove(joint)
1053 self.passivate()
1054

1055 class DJF(sim.Component):
1056 def setup(self):
1057 self.posAft = pos['DJFsupply_aft']
1058 self.posFore = pos['DJFsupply_fore']
1059 self.start_wait_ps = None
1060 self.start_wait_sb = None
1061 self.start_real_wait_ps = None
1062 self.start_real_wait_sb = None

G.3. Main 135

1063 self.wait_memory_ps = []
1064 self.wait_memory_sb = []
1065 self.real_wait_memory_ps = []
1066 self.real_wait_memory_sb = []
1067 self.doublejoints = []
1068

1069 def process(self):
1070 while True:
1071 self.wait((env.occupancy_map[self.posAft], 2), (env.occupancy_map[self.posFore],

2), all=True)
1072

1073 if occupancy(self.posAft) == 2 and occupancy(self.posFore) == 2:
1074 joint_aft = next((j for j in pipe_routing_system.joints if j.position == self

.posAft), None)
1075 joint_fore = next((j for j in pipe_routing_system.joints if j.position ==

self.posFore), None)
1076

1077 if occupancy(bevelling_psa.position) == 0 and occupancy(bevelling_psf.
position) == 0:

1078 joint_aft.destination, joint_aft.resource = bevelling_psa.position, '
TC3ps'

1079 bevelling_psa.joint = joint_aft
1080 joint_fore.destination, joint_fore.resource = bevelling_psf.position, '

TC4ps'
1081 bevelling_psf.joint = joint_fore
1082 for joint in [joint_aft, joint_fore]:
1083 set_occupancy(joint.position, 2.1)
1084 joint.move = [joint.destination]
1085 set_occupancy(joint.destination, 1)
1086 joint.activate()
1087 pipe_routing_system.djf_supply_line[2] = None
1088 pipe_routing_system.djf_supply_line[3] = None
1089 if self.start_wait_ps is not None:
1090 wait_time = round(env.now() - self.start_wait_ps)
1091 self.wait_memory_ps.append(wait_time)
1092 self.start_wait_ps = None
1093

1094

1095 elif occupancy(bevelling_sba.position) == 0 and occupancy(bevelling_sbf.
position) == 0:

1096 joint_aft.destination, joint_aft.resource = bevelling_sba.position, '
TC3sb'

1097 joint_fore.destination, joint_fore.resource = bevelling_sbf.position, '
TC4sb'

1098 for joint in [joint_aft, joint_fore]:
1099 set_occupancy(joint.position, 2.1)
1100 joint.move = [joint.destination]
1101 set_occupancy(joint.destination, 1)
1102 joint.activate()
1103 pipe_routing_system.djf_supply_line[2] = None
1104 pipe_routing_system.djf_supply_line[3] = None
1105 if self.start_wait_sb is not None:
1106 wait_time = round(env.now() - self.start_wait_sb)
1107 self.wait_memory_sb.append(wait_time)
1108 self.start_wait_sb = None
1109

1110 else:
1111 self.passivate()
1112

1113 else:
1114 if occupancy(bevelling_psa.position) == 0 and occupancy(bevelling_psf.

position) == 0:
1115 if self.start_wait_ps is None:
1116 self.start_wait_ps = env.now()
1117 if self.start_real_wait_ps is None:
1118 if (pipe_routing_system.djf_supply_line[2] is None or

pipe_routing_system.djf_supply_line[3] is None) and (
pipe_routing_system.djf_supply_line[0] is None or
pipe_routing_system.djf_supply_line[1] is None):

1119 self.start_real_wait_ps = env.now()

G.3. Main 136

1120 elif occupancy(bevelling_sba.position) == 0 and occupancy(bevelling_sbf.
position) == 0:

1121 if self.start_wait_sb is None:
1122 self.start_wait_sb = env.now()
1123 if self.start_real_wait_sb is None:
1124 if (pipe_routing_system.djf_supply_line[2] is None or

pipe_routing_system.djf_supply_line[3] is None) and (
pipe_routing_system.djf_supply_line[0] is None or
pipe_routing_system.djf_supply_line[1] is None):

1125 self.start_real_wait_sb = env.now()
1126

1127

1128 class BevelStation(sim.Component):
1129 def setup(self, position, next_position, tc):
1130 self.position = position
1131 self.x, self.y = position_map[self.position]
1132 self.bevel_time_min = parameters['BevelStation']['process_time_min']
1133 self.bevel_time_ppd = parameters['BevelStation']['process_time_ppd']
1134 self.bevel_time_max = parameters['BevelStation']['process_time_max']
1135 self.beta1 = sim.Beta(parameters['BevelStation']['alpha1'], parameters['BevelStation'

]['beta1'])
1136 self.beta2 = sim.Beta(parameters['BevelStation']['alpha2'], parameters['BevelStation'

]['beta2'])
1137 self.w = parameters['BevelStation']['weight_factor']
1138 self.data_name = 'Bevel_aft' if self.position[0] == 2 else 'Bevel_fore'
1139 self.process_memory = []
1140 self.next_position = next_position
1141 self.tc = tc
1142

1143 self.rectangle = sim.AnimateRectangle(
1144 spec=(-0.52*joint_length, -0.7*joint_width, 0.52*joint_length, 0.7*joint_width),
1145 fillcolor='wheat',
1146 text=f'{self.name()}',
1147 fontsize=1.2*joint_width,
1148 textcolor='black',
1149 text_anchor='w',
1150 layer=80,
1151 x=self.x * scale,
1152 y=self.y * scale,
1153)
1154

1155 def process(self):
1156 while True:
1157 self.wait((env.occupancy_map[self.position], 2))
1158 set_occupancy(self.position, 2.1)
1159 if occupancy(self.next_position) >= 2:
1160 self.tc.new_position = self.next_position
1161 self.tc.activate()
1162

1163 joint = next((j for j in pipe_routing_system.joints if j.position == self.
position), None)

1164 if random.random() < self.w:
1165 process_time = self.beta1.sample() * (self.bevel_time_max - self.

bevel_time_min) + self.bevel_time_min
1166 else:
1167 process_time = self.beta2.sample() * (self.bevel_time_max - self.

bevel_time_min) + self.bevel_time_min
1168 self.hold(process_time)
1169 self.process_memory.append(process_time)
1170 set_occupancy(self.position, 2.2)
1171 joint.activate()
1172

1173 class HeatingStation(sim.Component):
1174 def setup(self, position, next_station):
1175 self.position = position
1176 self.x, self.y = position_map[self.position]
1177 self.heating_time = parameters['HeatingStation']['process_time']
1178 self.next_station = next_station
1179

1180 self.rectangle = sim.AnimateRectangle(
1181 spec=(-0.52*joint_length, -0.7*joint_width, 0.52*joint_length, 0.7*joint_width),

G.3. Main 137

1182 fillcolor='wheat',
1183 text=f'{self.name()}',
1184 fontsize=1.2*joint_width,
1185 textcolor='black',
1186 text_anchor='w',
1187 layer=80,
1188 x=self.x * scale,
1189 y=self.y * scale,
1190)
1191

1192 def process(self):
1193 while True:
1194 self.wait((env.occupancy_map[self.position], 2))
1195 set_occupancy(self.position, 2.1)
1196 djf.activate()
1197 joint = next((j for j in pipe_routing_system.joints if j.position == self.

position), None)
1198 self.hold(self.heating_time)
1199

1200 set_occupancy(self.position, 2.2)
1201 self.wait((env.occupancy_map[self.next_station.position], 0))
1202 joint.activate()
1203

1204

1205 class WeldingStation1(sim.Component):
1206 def setup(self, position, posAft, posFore, next_station):
1207 self.position = position
1208 self.x, self.y = position_map[self.position]
1209 self.welding1_time_min = parameters['WeldingStation1']['process_time_min']
1210 self.welding1_time_ppd = parameters['WeldingStation1']['process_time_ppd']
1211 self.welding1_time_max = parameters['WeldingStation1']['process_time_max']
1212 self.beta = sim.Beta(parameters['WeldingStation1']['alpha'], parameters['

WeldingStation1']['beta'])
1213

1214 self.data_name = 'Welding1_ps' if self.position[1] == 3 else 'Welding1_sb'
1215 self.posAft = posAft
1216 self.posFore = posFore
1217 self.next_station = next_station
1218 self.doublejoint_count = 0
1219 self.wait_memory = []
1220 self.process_memory = []
1221

1222 self.rectangle = sim.AnimateRectangle(
1223 spec=(-1.37*joint_length, -0.7*joint_width, 1.37*joint_length, 0.7*joint_width),
1224 fillcolor='wheat',
1225 text=f'{self.name()}',
1226 fontsize=1.2*joint_width,
1227 textcolor='black',
1228 text_anchor='c',
1229 layer=80,
1230 x=self.x * scale,
1231 y=self.y * scale,
1232)
1233

1234 def process(self):
1235 while True:
1236 self.wait((env.occupancy_map[self.posAft], 2), (env.occupancy_map[self.posFore],

2), all=True)
1237

1238 set_occupancy(self.posAft, 2.1)
1239 set_occupancy(self.posFore, 2.1)
1240 joint_aft = next((j for j in pipe_routing_system.joints if j.position == self.

posAft), None)
1241 joint_fore = next((j for j in pipe_routing_system.joints if j.position == self.

posFore), None)
1242

1243 set_occupancy(self.position, 2.1)
1244 process_time = self.beta.sample() * (self.welding1_time_max - self.

welding1_time_min) + self.welding1_time_min
1245 self.hold(process_time)
1246 self.process_memory.append(process_time)

G.3. Main 138

1247 start_wait = env.now()
1248

1249 pipe_routing_system.joints.remove(joint_aft)
1250 pipe_routing_system.joints.remove(joint_fore)
1251 joint_aft.rectangle.visible = False
1252 joint_fore.rectangle.visible = False
1253 set_occupancy(self.posAft, 0)
1254 set_occupancy(self.posFore, 0)
1255 if not joint_aft.anode and not joint_fore.anode:
1256 doublejoint = DoubleJoint(name=f'DoubleJoint({joint_aft.id},{joint_fore.id})'

, position=self.position, aft=joint_aft, fore=joint_fore, anode=False)
1257 elif joint_aft.anode or joint_fore.anode:
1258 doublejoint = DoubleJoint(name=f'DoubleJoint({joint_aft.id},{joint_fore.id})'

, position=self.position, aft=joint_aft, fore=joint_fore, anode=True)
1259 set_occupancy(self.position, 2.2)
1260 self.hold(0.1)
1261 pipe_routing_system.joints.append(doublejoint)
1262 self.doublejoint_count += 1
1263

1264 while occupancy(self.next_station.position) != 0:
1265 self.wait((env.occupancy_map[self.next_station.position], 0))
1266 wait_time = int(env.now() - start_wait)
1267 self.wait_memory.append(wait_time)
1268

1269 doublejoint.destination = self.next_station.position
1270 doublejoint.move = [doublejoint.destination]
1271 set_occupancy(doublejoint.destination, 1)
1272 doublejoint.activate()
1273

1274 class Weldingstation2(sim.Component):
1275 def setup(self, position):
1276 self.position = position
1277 self.x, self.y = position_map[self.position]
1278 self.welding2_time_min = parameters['WeldingStation2']['process_time_min']
1279 self.welding2_time_ppd = parameters['WeldingStation2']['process_time_ppd']
1280 self.welding2_time_max = parameters['WeldingStation2']['process_time_max']
1281 self.beta = sim.Beta(parameters['WeldingStation2']['alpha'], parameters['

WeldingStation2']['beta'])
1282 self.data_name = 'Welding2_ps' if self.position[1] == 3 else 'Welding2_sb'
1283 self.process_memory = []
1284

1285 self.rectangle = sim.AnimateRectangle(
1286 spec=(-1.02*joint_length, -0.7*joint_width, 1.02*joint_length, 0.7*joint_width),
1287 fillcolor='wheat',
1288 text=f'{self.name()}',
1289 fontsize=1.2*joint_width,
1290 textcolor='black',
1291 text_anchor='w',
1292 layer=80,
1293 x=self.x * scale,
1294 y=self.y * scale,
1295)
1296

1297 def process(self):
1298 while True:
1299 self.wait((env.occupancy_map[self.position], 2))
1300 set_occupancy(self.position, 2.1)
1301

1302 doublejoint = next((dj for dj in pipe_routing_system.joints if dj.position ==
self.position), None)

1303 process_time = self.beta.sample() * (self.welding2_time_max - self.
welding2_time_min) + self.welding2_time_min

1304 self.hold(process_time)
1305 self.process_memory.append(process_time)
1306

1307 set_occupancy(self.position, 2.2)
1308 doublejoint.activate()
1309

1310 class WeldingStation34(sim.Component):
1311 def setup(self, position):
1312 self.position = position

G.3. Main 139

1313 self.x, self.y = position_map[self.position]
1314 self.welding34_time_min = parameters['WeldingStation34']['process_time_min']
1315 self.welding34_time_ppd = parameters['WeldingStation34']['process_time_ppd']
1316 self.welding34_time_max = parameters['WeldingStation34']['process_time_max']
1317 self.beta = sim.Beta(parameters['WeldingStation34']['alpha'], parameters['

WeldingStation34']['beta'])
1318 self.data_name = 'Welding34_ps' if self.position[1] == 2 else 'Welding34_sb'
1319 self.process_memory = []
1320

1321 self.rectangle = sim.AnimateRectangle(
1322 spec=(-1.02*joint_length, -0.7*joint_width, 1.02*joint_length, 0.7*joint_width),
1323 fillcolor='wheat',
1324 text=f'{self.name()}',
1325 fontsize=1.2*joint_width,
1326 textcolor='black',
1327 text_anchor='w',
1328 layer=80,
1329 x=self.x * scale,
1330 y=self.y * scale,
1331)
1332

1333 def process(self):
1334 while True:
1335 self.wait((env.occupancy_map[self.position], 2))
1336 set_occupancy(self.position, 2.1)
1337

1338 doublejoint = next((dj for dj in pipe_routing_system.joints if dj.position ==
self.position), None)

1339 process_time = self.beta.sample() * (self.welding34_time_max - self.
welding34_time_min) + self.welding34_time_min

1340 self.hold(process_time)
1341 self.process_memory.append(process_time)
1342

1343 set_occupancy(self.position, 2.2)
1344 doublejoint.activate()
1345

1346 class NDT(sim.Component):
1347 def setup(self, position, next_position):
1348 self.position = position
1349 self.x, self.y = position_map[self.position]
1350 self.testing_time = parameters['NDT']['process_time']
1351 self.reject_probability = parameters['NDT']['reject_probability']
1352 self.next_position = next_position
1353

1354 self.rectangle = sim.AnimateRectangle(
1355 spec=(-1.02*joint_length, -0.7*joint_width, 1.02*joint_length, 0.7*joint_width),
1356 fillcolor='wheat',
1357 text=f'{self.name()}',
1358 fontsize=1.2*joint_width,
1359 textcolor='black',
1360 text_anchor='w',
1361 layer=80,
1362 x=self.x * scale,
1363 y=self.y * scale,
1364)
1365

1366 def process(self):
1367 while True:
1368 self.wait((env.occupancy_map[self.position], 2))
1369 set_occupancy(self.position, 2.1)
1370

1371 doublejoint = next((dj for dj in pipe_routing_system.joints if dj.position ==
self.position), None)

1372 self.hold(self.testing_time)
1373 if rng_djf.random() < self.reject_probability:
1374 doublejoint.reject = True
1375 doublejoint.rectangle.textcolor = 'red'
1376 if not doublejoint.anode:
1377 pipe_routing_system.normal_count -= 2
1378 env.data['DJF rejects']['1'] += 1
1379 elif doublejoint.anode:

G.3. Main 140

1380 for joint in [doublejoint.aft, doublejoint.fore]:
1381 if not joint.anode:
1382 pipe_routing_system.normal_count -= 1
1383 elif joint.anode:
1384 pipe_routing_system.anode_count -= 1
1385 env.data['DJF rejects']['2'] += 1
1386 env.data['DJF rejects']['Total'] += 1
1387 else:
1388 doublejoint.reject = False
1389 if self.position == pos['NDT_ps']:
1390 env.data['DJF production']['1'] += 1
1391 elif self.position == pos['NDT_sb']:
1392 env.data['DJF production']['2'] += 1
1393 env.data['DJF production']['Total'] += 1
1394 set_occupancy(self.position, 2.2)
1395 pipe_routing_system.joints.remove(doublejoint)
1396 waitingarea.doublejoints.append(doublejoint)
1397 waitingarea.activate()
1398 self.wait((env.occupancy_map[self.next_position], 0))
1399 doublejoint.destination = self.next_position
1400 doublejoint.move = [doublejoint.destination]
1401 set_occupancy(doublejoint.destination, 1)
1402 doublejoint.activate()
1403

1404

1405 class Crane(sim.Component):
1406 def setup(self, position):
1407 self.position = position
1408 self.x, self.y = position_map[position]
1409 self.hoist_time = parameters['Crane38']['hoist_time']
1410 self.hoist_time_firingline = parameters['Crane38']['hoist_time_firingline']
1411 self.new_position = self.position
1412 self.joint = None
1413 self.idle = sim.State(name='Crane38_Idle', value=True)
1414

1415 self.rectangle = sim.AnimateRectangle(
1416 spec=(-0.5*crane_length, -0.5*crane_width, 0.5*crane_length, 0.5*crane_width),
1417 fillcolor='',
1418 linewidth=2,
1419 linecolor='darkred',
1420 text=f' {self.name()}',
1421 textcolor='darkred',
1422 text_anchor='w',
1423 fontsize=1.4*joint_width,
1424 layer=0,
1425 x=self.x * scale,
1426 y=self.y * scale,
1427)
1428

1429 def process(self):
1430 while True:
1431 self.idle.set(True)
1432 self.passivate()
1433 self.idle.set(False)
1434 component = 'Crane38'
1435 move = [self.new_position]
1436 y_move(self, component, move)
1437

1438 if self.joint and self.joint.position is firingline.position:
1439 lift_time = 2 * self.hoist_time_firingline
1440 self.hold(lift_time)
1441 while occupancy(deconstructor.position) != 0:
1442 self.wait((env.occupancy_map[deconstructor.position], 0))
1443 set_occupancy(self.joint.destination, 1)
1444 elif self.joint:
1445 lift_time = 2 * self.hoist_time
1446 self.hold(lift_time)
1447 else:
1448 return
1449

1450 self.joint.activate()

G.3. Main 141

1451 y_move(self, component, self.joint.move)
1452

1453 drop_time = self.hoist_time
1454 self.hold(drop_time)
1455 self.joint.activate()
1456

1457 self.hold(self.hoist_time)
1458 self.joint = None
1459

1460 class Buffer(sim.Component):
1461 def setup(self, position):
1462 self.position = position
1463 self.x, self.y = position_map[self.position]
1464 self.retrieval = False
1465 self.capacity = 6
1466 self.DJbuffer = []
1467 self.ADJbuffer = []
1468

1469 self.rectangle = sim.AnimateRectangle(
1470 spec=(-1.02*joint_length, -0.7*joint_width, 1.02*joint_length, 0.7*joint_width),
1471 fillcolor='wheat',
1472 text=f'{self.name()} with {len(self.DJbuffer)} DJ and {len(self.ADJbuffer)} ADJ',
1473 fontsize=1.2*joint_width,
1474 textcolor='black',
1475 text_anchor='w',
1476 layer=80,
1477 x=self.x * scale,
1478 y=self.y * scale,
1479)
1480

1481 def process(self):
1482 while True:
1483 self.wait((env.occupancy_map[self.position], 2))
1484

1485 doublejoint = next((dj for dj in waitingarea.doublejoints if dj.position == self.
position), None)

1486 if doublejoint:
1487 doublejoint.rectangle.visible = False
1488 doublejoint.position = 'Buffer'
1489 set_occupancy(self.position, 0)
1490 if not doublejoint.anode:
1491 self.DJbuffer.append(doublejoint)
1492 elif doublejoint.anode:
1493 self.ADJbuffer.append(doublejoint)
1494 self.rectangle.text = f'{self.name()} with {len(self.DJbuffer)} DJ and {len(

self.ADJbuffer)} ADJ'
1495 doublejoint = None
1496

1497 elif self.retrieval:
1498 if not firingline.anode:
1499 doublejoint = self.DJbuffer.pop()
1500 elif firingline.anode:
1501 doublejoint = self.ADJbuffer.pop()
1502 self.rectangle.text = f'{self.name()} with {len(self.DJbuffer)} DJ and {len(

self.ADJbuffer)} ADJ'
1503 doublejoint.position = self.position
1504 doublejoint.rectangle.visible = True
1505 set_occupancy(self.position, 2.1)
1506 doublejoint.destination = elevator.position
1507 doublejoint.move = [doublejoint.destination]
1508 doublejoint.resource = 'Crane38'
1509 set_occupancy(doublejoint.destination, 1)
1510 doublejoint.activate()
1511 self.retrieval = False
1512 doublejoint = None
1513

1514 class WaitingArea(sim.Component):
1515 def setup(self, position):
1516 self.position = position
1517 self.x, self.y = position_map[self.position]
1518 self.crane = resources['Crane38']['component']

G.3. Main 142

1519 self.doublejoints = []
1520 self.wait_memory_normal = []
1521 self.wait_memory_anode = []
1522

1523 def process(self):
1524 start_wait_normal = None
1525 start_wait_anode = None
1526 while True:
1527 self.hold(1)
1528 doublejoint_sb = next((dj for dj in self.doublejoints if (dj.position == pos['

waiting_sb'] and dj.waiting_for_move == True)), None)
1529 doublejoint_ps = next((dj for dj in self.doublejoints if (dj.position == pos['

waiting_ps'] and dj.waiting_for_move == True)), None)
1530 doublejoint_reserve = next((dj for dj in self.doublejoints if (dj.position == pos

['waiting_reserve'] and dj.waiting_for_move == True)), None)
1531

1532 doublejoints = [dj for dj in [doublejoint_sb, doublejoint_ps, doublejoint_reserve
] if dj is not None]

1533 normal_doublejoints = len([dj for dj in doublejoints if not dj.anode]) + len(
buffer.DJbuffer)

1534 anode_doublejoints = len([dj for dj in doublejoints if dj.anode]) + len(buffer.
ADJbuffer)

1535

1536 if start_wait_normal is None:
1537 if firingline.waiting and occupancy(elevator.position) == 0 and not

firingline.anode and normal_doublejoints == 0:
1538 start_wait_normal = env.now()
1539 elif start_wait_normal is not None:
1540 if normal_doublejoints > 0:
1541 wait_time = round(env.now() - start_wait_normal)
1542 self.wait_memory_normal.append(wait_time)
1543 start_wait_normal = None
1544 if start_wait_anode is None:
1545 if firingline.waiting and occupancy(elevator.position) == 0 and firingline.

anode and anode_doublejoints == 0:
1546 start_wait_anode = env.now()
1547 elif start_wait_anode is not None:
1548 if anode_doublejoints > 0:
1549 wait_time = round(env.now() - start_wait_anode)
1550 self.wait_memory_anode.append(wait_time)
1551 start_wait_anode = None
1552

1553 if firingline.rejects:
1554 for doublejoint in list(firingline.rejects):
1555 while not self.crane.idle():
1556 self.wait((self.crane.idle, True))
1557 doublejoint.destination = deconstructor.position
1558 doublejoint.move = [doublejoint.destination]
1559 doublejoint.resource = 'Crane38'
1560 doublejoint.activate()
1561 firingline.rejects.remove(doublejoint)
1562 self.hold(1)
1563 firingline.activate()
1564 elif occupancy(pos['Elevator']) == 0 and doublejoint_sb and not doublejoint_sb.

reject and doublejoint_sb.anode == firingline.anode:
1565 self.move(doublejoint_sb, elevator.position)
1566 elif occupancy(pos['Elevator']) == 0 and doublejoint_ps and not doublejoint_ps.

reject and doublejoint_ps.anode == firingline.anode:
1567 self.move(doublejoint_ps, elevator.position)
1568 elif occupancy(pos['Elevator']) == 0 and doublejoint_reserve and

doublejoint_reserve.anode == firingline.anode:
1569 self.move(doublejoint_reserve, elevator.position)
1570 elif occupancy(pos['Elevator']) == 0 and not firingline.anode and buffer.DJbuffer

:
1571 buffer.retrieval = True
1572 buffer.activate()
1573 elif occupancy(pos['Elevator']) == 0 and firingline.anode and buffer.ADJbuffer:
1574 buffer.retrieval = True
1575 buffer.activate()
1576 elif doublejoint_ps and doublejoint_ps.reject and occupancy(deconstructor.

position) == 0:

G.3. Main 143

1577 self.move(doublejoint_ps, deconstructor.position)
1578 elif doublejoint_sb and doublejoint_sb.reject and occupancy(deconstructor.

position) == 0:
1579 self.move(doublejoint_sb, deconstructor.position)
1580 elif doublejoint_ps and not doublejoint_ps.reject and occupancy(ndt_ps.position)

== 2.2 and (occupancy(pos['waiting_reserve']) == 0 or len(buffer.DJbuffer)+
len(buffer.ADJbuffer) < buffer.capacity):

1581 if occupancy(pos['waiting_reserve']) == 0:
1582 self.move(doublejoint_ps, pos['waiting_reserve'])
1583 else:
1584 self.move(doublejoint_ps, buffer.position)
1585 elif doublejoint_sb and not doublejoint_sb.reject and occupancy(ndt_sb.position)

== 2.2 and (occupancy(pos['waiting_reserve']) == 0 or len(buffer.DJbuffer)+
len(buffer.ADJbuffer) < buffer.capacity):

1586 if occupancy(pos['waiting_reserve']) == 0:
1587 self.move(doublejoint_sb, pos['waiting_reserve'])
1588 else:
1589 self.move(doublejoint_sb, buffer.position)
1590 else:
1591 self.passivate()
1592 self.hold(1)
1593

1594 while not self.crane.idle():
1595 self.wait((self.crane.idle, True))
1596

1597 def move(self, doublejoint, destination):
1598 doublejoint.destination = destination
1599 doublejoint.move = [doublejoint.destination]
1600 doublejoint.resource = 'Crane38'
1601 set_occupancy(doublejoint.position, -1)
1602 set_occupancy(doublejoint.destination, 1)
1603 doublejoint.activate()
1604

1605

1606 class Elevator(sim.Component):
1607 def setup(self, position):
1608 self.position = position
1609 self.x, self.y = position_map[self.position]
1610 self.elevator_time_empty = parameters['Elevator']['lift_time_empty']
1611 self.elevator_time_loaded = parameters['Elevator']['lift_time_loaded']
1612 self.unloading_time = parameters['Elevator']['unloading_time']
1613

1614 self.rectangle = sim.AnimateRectangle(
1615 spec=(-1.02*joint_length, -0.7*joint_width, 1.02*joint_length, 0.7*joint_width),
1616 fillcolor='wheat',
1617 text=f'{self.name()}',
1618 fontsize=1.2*joint_width,
1619 textcolor='black',
1620 text_anchor='w',
1621 layer=80,
1622 x=self.x * scale,
1623 y=self.y * scale,
1624)
1625

1626 def process(self):
1627 while True:
1628 self.wait((env.occupancy_map[self.position], 2))
1629 set_occupancy(self.position, 2.1)
1630 doublejoint = next((dj for dj in waitingarea.doublejoints if dj.position == self.

position), None)
1631 self.hold(self.elevator_time_loaded)
1632 self.hold(self.unloading_time)
1633 set_occupancy(self.position, 2.2)
1634

1635 doublejoint.rectangle.visible = False
1636 self.wait((env.occupancy_map[self.position], 2.3))
1637

1638 doublejoint = None
1639 self.hold(self.elevator_time_empty)
1640

1641 set_occupancy(self.position, 0)

G.3. Main 144

1642 waitingarea.activate()
1643

1644 class FiringLine(sim.Component):
1645 def setup(self, position):
1646 self.position = position
1647 self.x, self.y = position_map[self.position]
1648 self.processing_time_mean = parameters['FiringLine']['process_time_mean']
1649 self.processing_time_ppd = parameters['FiringLine']['process_time_ppd']
1650 self.processing_time_pull = parameters['FiringLine']['process_time_pull']
1651 self.processing_time_min = parameters['FiringLine']['process_time_min']
1652 self.processing_time_max = parameters['FiringLine']['process_time_max']
1653 self.reject_length = parameters['FiringLine']['reject_length']
1654 self.reject_probability = parameters['FiringLine']['reject_probability']
1655 self.anode_interval = parameters['FiringLine']['anode_interval']
1656 self.anode = False
1657 self.counter = 1
1658 self.pipeline = []
1659 self.rejects = []
1660 self.wait_memory_normal = []
1661 self.wait_memory_anode = []
1662 self.process_memory = []
1663 self.waiting = False
1664

1665 self.rectangle = sim.AnimateRectangle(
1666 spec=(-1.02*joint_length, -0.7*joint_width, 1.02*joint_length, 0.7*joint_width),
1667 fillcolor='white',
1668 text=f'Hatch to {self.name()} (Normal)',
1669 fontsize=1.2*joint_width,
1670 textcolor='black',
1671 text_anchor='w',
1672 layer=80,
1673 x=self.x * scale,
1674 y=self.y * scale,
1675)
1676

1677 def process(self):
1678 while True:
1679 if occupancy(pos['Elevator']) != 2.2:
1680 self.waiting = True
1681 waitingarea.activate()
1682 start_wait = env.now()
1683 self.wait((env.occupancy_map[pos['Elevator']], 2.2))
1684 self.waiting = False
1685 wait_time = int(env.now() - start_wait)
1686 if not self.anode:
1687 self.wait_memory_normal.append(wait_time)
1688 else:
1689 self.wait_memory_anode.append(wait_time)
1690

1691 set_occupancy(pos['Elevator'], 2.3)
1692 doublejoint = next((dj for dj in waitingarea.doublejoints if dj.position == pos['

Elevator']), None)
1693 doublejoint.position = self.position
1694 self.counter += 1
1695 if self.counter % self.anode_interval == 0:
1696 self.anode = True
1697 self.rectangle.text = f'Hatch to {self.name()} (Anode)'
1698 else:
1699 self.anode = False
1700 self.rectangle.text = f'Hatch to {self.name()} (Normal)'
1701 self.pipeline.append(doublejoint)
1702 env.data['Main pipeline length']['Total'] += 2 * parameters["Joint"]["length"]
1703 if len(self.pipeline) > self.reject_length:
1704 ndt_doublejoint = self.pipeline.pop(0)
1705 waitingarea.doublejoints.remove(ndt_doublejoint)
1706 if not ndt_doublejoint.anode:
1707 pipe_routing_system.normal_count -= 2
1708 elif ndt_doublejoint.anode:
1709 for joint in [ndt_doublejoint.aft, ndt_doublejoint.fore]:
1710 if not joint.anode:
1711 pipe_routing_system.normal_count -= 1

G.3. Main 145

1712 elif joint.anode:
1713 pipe_routing_system.anode_count -= 1
1714

1715 process_time = sample_duration('FiringLine')
1716 self.hold(process_time - self.processing_time_pull)
1717 self.process_memory.append(process_time)
1718

1719 if rng_firingline.random() < self.reject_probability:
1720 self.rejects = self.pipeline[::-1]
1721 self.counter = self.counter - len(self.rejects)
1722 for doublejoint in self.rejects:
1723 self.pipeline.remove(doublejoint)
1724 doublejoint.reject = True
1725 doublejoint.rectangle.textcolor = 'red'
1726 set_position(doublejoint, self.position)
1727 if not doublejoint.anode:
1728 pipe_routing_system.normal_count -= 2
1729 env.data['Firing line rejects']['1'] += 1
1730 elif doublejoint.anode:
1731 for joint in [doublejoint.aft, doublejoint.fore]:
1732 if not joint.anode:
1733 pipe_routing_system.normal_count -= 1
1734 elif joint.anode:
1735 pipe_routing_system.anode_count -= 1
1736 env.data['Firing line rejects']['2'] += 1
1737 env.data['Main pipeline length']['Total'] -= len(self.rejects) * 2 *

parameters["Joint"]["length"]
1738 env.data['Firing line rejects']['Total'] += len(self.rejects)
1739 waitingarea.activate()
1740 while self.rejects:
1741 self.passivate()
1742 else:
1743 self.hold(self.processing_time_pull)
1744

1745 doublejoint = None
1746

1747 class Deconstructor(sim.Component):
1748 def setup(self):
1749 self.position = pos['Deconstruction']
1750 self.position_aft = pos['Deconstruction_aft']
1751 self.position_fore = pos['Deconstruction_fore']
1752 self.x, self.y = position_map[self.position]
1753 self.deconstruction_time = parameters['Deconstructor']['process_time']
1754

1755 self.rectangle = sim.AnimateRectangle(
1756 spec=(-1.05*joint_length, -0.7*joint_width, 1.05*joint_length, 0.7*joint_width),
1757 fillcolor='wheat',
1758 text=f' {self.name()}',
1759 fontsize=1.2*joint_width,
1760 textcolor='black',
1761 text_anchor='c',
1762 layer=80,
1763 x=self.x * scale,
1764 y=self.y * scale,
1765)
1766

1767 def process(self):
1768 while True:
1769 self.wait((env.occupancy_map[self.position], 2))
1770 set_occupancy(self.position, 2.1)
1771

1772 doublejoint = next((dj for dj in waitingarea.doublejoints if dj.position == self.
position), None)

1773 aft_joint = doublejoint.aft
1774 fore_joint = doublejoint.fore
1775 self.hold(self.deconstruction_time)
1776

1777 doublejoint.rectangle.visible = False
1778 waitingarea.doublejoints.remove(doublejoint)
1779 doublejoint.position = None
1780 set_position(aft_joint, self.position_aft)

G.3. Main 146

1781 set_position(fore_joint, self.position_fore)
1782 for joint in [fore_joint, aft_joint]:
1783 set_occupancy(joint.position, 2)
1784 joint.cleaned = False
1785 joint.to_hold = True
1786 pipe_routing_system.joints.insert(0, joint)
1787 joint.activate()
1788

1789 doublejoint = None
1790 self.wait((env.occupancy_map[self.position_aft], 0), (env.occupancy_map[self.

position_fore], 0), all=True)
1791 set_occupancy(self.position, 0)
1792 waitingarea.activate()
1793 # endregion
1794

1795

1796 # Create an environment
1797 env = sim.Environment(blind_animation=blind_animation)
1798 env.random_seed(seed)
1799

1800 env.occupancy_map = {
1801 position: sim.State(name=str(position), value=0)
1802 for position in position_map
1803 if not isinstance(position, str)
1804 }
1805

1806 def set_occupancy(position, value):
1807 '''Set the occupancy state of a position.'''
1808 env.occupancy_map[position].set(value)
1809 rectangle = background.get(position, None)
1810

1811 if value == 0:
1812 rectangle.linecolor = 'black'
1813 rectangle.linewidth = 0.5
1814 if position in posRouting:
1815 pipe_routing_system.activate()
1816 pipe_routing_system.path_update()
1817 elif value == 1:
1818 rectangle.linecolor = 'darkorange'
1819 rectangle.linewidth = 1
1820 elif value == 2 or value == 2.1:
1821 rectangle.linecolor = 'red'
1822 rectangle.linewidth = 1
1823 if position in posRouting:
1824 pipe_routing_system.activate()
1825 elif value == -1:
1826 rectangle.linecolor = 'green'
1827 rectangle.linewidth = 1
1828 else:
1829 rectangle.linecolor = 'darkgreen'
1830 rectangle.linewidth = 1
1831

1832 def occupancy(position):
1833 '''Get the occupancy state of a position.'''
1834 return env.occupancy_map[position]()
1835

1836 def set_position(joint, position):
1837 '''Animate the position of a joint.'''
1838 joint.position = position
1839 joint.x, joint.y = position_map[joint.position]
1840 joint.rectangle.x = joint.x * scale
1841 joint.rectangle.y = joint.y * scale
1842 joint.rectangle.visible = True
1843

1844 def joint_lco_move(self, move):
1845 # acceleration
1846 next_x = position_map[move[0]][0]
1847 direction = 1 if (next_x - self.x) > 0 else -1
1848 dx_acc = direction * LCO_a_distance
1849 steps = max(int(abs(dx_acc) / stepsize), 1)
1850 for step in range(steps):

G.3. Main 147

1851 t = step / steps
1852 interpolated_x = self.x + t * dx_acc
1853 self.rectangle.x = interpolated_x * scale
1854 self.hold(LCO_a_time / steps)
1855 self.x = interpolated_x
1856

1857 # constant speed
1858 for i, position in enumerate(move):
1859 old_position = self.position
1860 old_x = position_map[old_position][0]
1861 next_x = position_map[position][0]
1862 dx = next_x - self.x
1863 final_position = True if i == len(move) - 1 else False
1864 if final_position:
1865 dx -= direction * LCO_a_distance
1866 movement_time = abs(dx) / LCO_v
1867 steps = max(int(abs(dx) / stepsize), 1)
1868 for step in range(steps):
1869 t = step / steps
1870 interpolated_x = self.x + t * dx
1871 self.rectangle.x = interpolated_x * scale
1872

1873 # Free the old position
1874 x_space = self.length / scale
1875 if abs(interpolated_x - old_x) > x_space and old_position:
1876 set_occupancy(old_position, 0) if self.free_pos else None
1877 self.free_pos = True
1878 old_position = None
1879

1880 self.hold(movement_time / steps)
1881

1882 self.x = interpolated_x
1883 self.position = position
1884 self.path_updateable = False
1885

1886 # deceleration
1887 dx_dec = direction * LCO_a_distance
1888 steps = max(int(abs(dx_dec) / stepsize), 1)
1889 for step in range(steps):
1890 t = step / steps
1891 interpolated_x = self.x + t * dx_dec
1892 self.rectangle.x = interpolated_x * scale
1893 if abs(interpolated_x - old_x) > x_space and old_position:
1894 set_occupancy(old_position, 0)
1895 old_position = None
1896 self.hold(LCO_a_time / steps)
1897 self.x = position_map[self.position][0]
1898

1899 def y_acceleration(self, component, direction):
1900 dy_acc = direction * parameters[component]['acceleration_distance']
1901 steps = max(int(abs(dy_acc) / stepsize), 1)
1902 for step in range(steps):
1903 t = step / steps
1904 interpolated_y = self.y + t * dy_acc
1905 self.rectangle.y = interpolated_y * scale
1906 self.hold(parameters[component]['acceleration_time'] / steps)
1907 self.y = interpolated_y
1908

1909 def y_deceleration(self, component, direction):
1910 dy_dec = direction * parameters[component]['acceleration_distance']
1911 steps = max(int(abs(dy_dec) / stepsize), 1)
1912 for step in range(steps):
1913 t = step / steps
1914 interpolated_y = self.y + t * dy_dec
1915 self.rectangle.y = interpolated_y * scale
1916 self.hold(parameters[component]['acceleration_time'] / steps)
1917 self.y = position_map[self.position][1]
1918

1919 def y_move(self, component, move):
1920 # direction
1921 next_y = position_map[move[0]][1]

G.3. Main 148

1922 if next_y == self.y:
1923 return
1924 direction = 1 if (next_y - self.y) > 0 else -1
1925

1926 # acceleration
1927 y_acceleration(self, component, direction)
1928

1929 # constant speed
1930 for i, position in enumerate(move):
1931 next_y = position_map[position][1]
1932 dy = next_y - self.y
1933 final_position = True if i == len(move) - 1 else False
1934 if final_position:
1935 dy -= direction * parameters[component]['acceleration_distance']
1936 movement_time = abs(dy) / parameters[component]['velocity']
1937 steps = max(int(abs(dy) / stepsize), 1)
1938 for step in range(steps):
1939 t = step / steps
1940 interpolated_y = self.y + t * dy
1941 self.rectangle.y = interpolated_y * scale
1942 self.hold(movement_time / steps)
1943 self.y = interpolated_y
1944 self.position = position
1945

1946 # deceleration
1947 y_deceleration(self, component, direction)
1948

1949 def joint_y_move(self, component, move):
1950 # direction
1951 next_y = position_map[move[0]][1]
1952 direction = 1 if (next_y - self.y) > 0 else -1
1953

1954 # acceleration
1955 y_acceleration(self, component, direction)
1956

1957 # constant speed
1958 for i, position in enumerate(move):
1959 old_position = self.position
1960 old_y = position_map[old_position][1]
1961 next_y = position_map[position][1]
1962 dy = next_y - self.y
1963 final_position = True if i == len(move) - 1 else False
1964 if final_position:
1965 dy -= direction * parameters[component]['acceleration_distance']
1966 movement_time = abs(dy) / parameters[component]['velocity']
1967 steps = max(int(abs(dy) / stepsize), 1)
1968 for step in range(steps):
1969 t = step / steps
1970 interpolated_y = self.y + t * dy
1971 self.rectangle.y = interpolated_y * scale
1972

1973 # Free the old position
1974 y_space = joint_width / scale
1975 if abs(interpolated_y - old_y) > y_space and old_position:
1976 set_occupancy(old_position, 0)
1977 old_position = None
1978

1979 self.hold(movement_time / steps)
1980

1981 self.y = interpolated_y
1982 self.position = position
1983 self.path_updateable = False
1984

1985 # deceleration
1986 y_deceleration(self, component, direction)
1987

1988 # region Generate components
1989 resources = {
1990 'TC1ps': {
1991 'resource': sim.Resource(name='TC1ps', capacity=1),
1992 'component': TC(name='TC1ps', position=(0,11)),

G.3. Main 149

1993 },
1994 'TC1sb': {
1995 'resource': sim.Resource(name='TC1sb', capacity=1),
1996 'component': TC(name='TC1sb', position=(0,0)),
1997 },
1998 'TC2ps': {
1999 'resource': sim.Resource(name='TC2ps', capacity=1),
2000 'component': TC(name='TC2ps', position=(1,6)),
2001 },
2002 'TC2sb': {
2003 'resource': sim.Resource(name='TC2sb', capacity=1),
2004 'component': TC(name='TC2sb', position=(1,0)),
2005 },
2006 'TC3ps': {
2007 'resource': sim.Resource(name='TC3ps', capacity=1),
2008 'component': TC(name='TC3ps', position=(2,3)),
2009 },
2010 'TC3sb': {
2011 'resource': sim.Resource(name='TC3sb', capacity=1),
2012 'component': TC(name='TC3sb', position=(2,-3)),
2013 },
2014 'TC4ps': {
2015 'resource': sim.Resource(name='TC4ps', capacity=1),
2016 'component': TC(name='TC4ps', position=(3,3)),
2017 },
2018 'TC4sb': {
2019 'resource': sim.Resource(name='TC4sb', capacity=1),
2020 'component': TC(name='TC4sb', position=(3,-3)),
2021 },
2022 'TC5ps': {
2023 'resource': sim.Resource(name='TC5ps', capacity=1),
2024 'component': TC(name='TC5ps', position=(4,1)),
2025 },
2026 'TC5sb': {
2027 'resource': sim.Resource(name='TC5sb', capacity=1),
2028 'component': TC(name='TC5sb', position=(4,-1)),
2029 },
2030 'Crane38': {
2031 'resource': sim.Resource(name='Crane38', capacity=1),
2032 'component': Crane(name='Crane38', position=(6, 2)),
2033 },
2034 }
2035

2036 deconstructor = Deconstructor(name='Deconstructor')
2037 firingline = FiringLine(name='Firing Line', position=pos['FiringLine'])
2038 elevator = Elevator(name='Elevator', position=pos['Elevator'])
2039 waitingarea = WaitingArea(name='Waiting Area', position='WaitingArea')
2040 buffer = Buffer(name='Buffer', position=pos['Buffer'])
2041

2042 ndt_ps = NDT(name='NDT ps', position=pos['NDT_ps'], next_position=pos['waiting_ps'])
2043 ndt_sb = NDT(name='NDT sb', position=pos['NDT_sb'], next_position=pos['waiting_sb'])
2044

2045 welding34_ps = WeldingStation34(name='Welding34 ps', position=pos['Welding34_ps'])
2046 welding34_sb = WeldingStation34(name='Welding34 sb', position=pos['Welding34_sb'])
2047

2048 welding2_ps = Weldingstation2(name='Welding2 ps', position=pos['Welding2_ps'])
2049 welding2_sb = Weldingstation2(name='Welding2 sb', position=pos['Welding2_sb'])
2050

2051 welding1_ps = WeldingStation1(name='Welding1 ps', position=pos['Welding1_ps'], posAft=pos['
Welding1_ps_aft'], posFore=pos['Welding1_ps_fore'], next_station=welding2_ps)

2052 welding1_sb = WeldingStation1(name='Welding1 sb', position=pos['Welding1_sb'], posAft=pos['
Welding1_sb_aft'], posFore=pos['Welding1_sb_fore'], next_station=welding2_sb)

2053

2054 heating_psa = HeatingStation(name='Heating ps aft', position=pos['Heating_ps_aft'],
next_station=welding1_ps)

2055 heating_psf = HeatingStation(name='Heating ps fore', position=pos['Heating_ps_fore'],
next_station=welding1_ps)

2056 heating_sba = HeatingStation(name='Heating sb aft', position=pos['Heating_sb_aft'],
next_station=welding1_sb)

2057 heating_sbf = HeatingStation(name='Heating sb fore', position=pos['Heating_sb_fore'],
next_station=welding1_sb)

G.3. Main 150

2058

2059 bevelling_psa = BevelStation(name='Bevelling ps aft', position=pos['Bevelling_ps_aft'],
next_position=pos['Heating_ps_aft'], tc=resources['TC3ps']['component'])

2060 bevelling_psf = BevelStation(name='Bevelling ps fore', position=pos['Bevelling_ps_fore'],
next_position=pos['Heating_ps_fore'], tc=resources['TC4ps']['component'])

2061 bevelling_sba = BevelStation(name='Bevelling sb aft', position=pos['Bevelling_sb_aft'],
next_position=pos['Heating_sb_aft'], tc=resources['TC3sb']['component'])

2062 bevelling_sbf = BevelStation(name='Bevelling sb fore', position=pos['Bevelling_sb_fore'],
next_position=pos['Heating_sb_fore'], tc=resources['TC4sb']['component'])

2063

2064 djf = DJF(name='DJF')
2065

2066 hold1 = Hold(name='Hold 1', position=(5, 6), location='Hold1', storage_active=False,
retrieval_active=False)

2067 hold2 = Hold(name='Hold 2', position=(4, 6), location='Hold2', storage_active=True,
retrieval_active=False)

2068 hold3 = Hold(name='Hold 3', position=(3, 6), location='Hold3', storage_active=True,
retrieval_active=False)

2069 hold4 = Hold(name='Hold 4', position=(2, 6), location='Hold4', storage_active=False,
retrieval_active=False)

2070 hold5 = Hold(name='Hold 5', position=(1, 6), location='Hold5', storage_active=False,
retrieval_active=False)

2071 hold6 = Hold(name='Hold 6', position=(-1, 6), location='Hold6', storage_active=False,
retrieval_active=False)

2072

2073 marking_ps = MarkingStation(name='Marking ps', position=pos['Marking_ps'])
2074 marking_sb = MarkingStation(name='Marking sb', position=pos['Marking_sb'])
2075

2076 cleaning_ps = CleaningStation(name='Cleaning ps', position=pos['Cleaning_ps'])
2077 cleaning_sb = CleaningStation(name='Cleaning sb', position=pos['Cleaning_sb'])
2078

2079 psv_ps = PSV(name='PSV', position='PSVps', joint_amount=parameters['PSVps']['joint_amount'],
anode_ratio=parameters['PSVps']['anode_ratio'])

2080 ptc_ps = PTC(name='PTC', position=pos['Delivery_ps'], psv=psv_ps)
2081

2082 psv_sb = PSV(name='PSV', position='PSVsb', joint_amount=parameters['PSVsb']['joint_amount'],
anode_ratio=parameters['PSVsb']['anode_ratio'])

2083 ptc_sb = PTC(name='PTC', position=pos['Delivery_sb'], psv=psv_sb)
2084

2085 pipe_routing_system = PipeRoutingSystem(name='PipeRoutingSystem')
2086 # endregion
2087

2088 create_background()
2089 def format_sim_time():
2090 now = int(env.now()) - warm_up_period
2091 days = now // 86400
2092 hours = (now % 86400) // 3600
2093 minutes = (now % 3600) // 60
2094 seconds = now % 60
2095 return f"{days:02d}d {hours:02d}:{minutes:02d}:{seconds:02d}"
2096

2097 def right_align_lines(text, width=30):
2098 lines = text.split('\n')
2099 return '\n'.join(line.rjust(width) for line in lines)
2100

2101 sim.AnimateText(
2102 text=lambda: right_align_lines(f"{title}\nSeed {seed}\nTime: {format_sim_time()}"),
2103 x=deconstructor.x * scale + joint_length,
2104 y=2.3 * deconstructor.y * scale,
2105 fontsize=10,
2106 textcolor="black",
2107 text_anchor="e",
2108 layer=200
2109)
2110

2111 # region Output data
2112 env.data = {
2113 'PTC delivery': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2114 'Marked': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2115 'Cleaned': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2116 'Sent to hold': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},

G.3. Main 151

2117 'Sent to hold ratio': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit': '-'
},

2118 'DJF production': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2119 'DJF rejects': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2120 'Firing line rejects': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit': '

joints'},
2121 'Main pipeline length': {'(1/2)': None,'1': None, '2': None, 'Total': 0, 'Unit': 'm'},
2122 }
2123

2124 def data_report():
2125 env.data['Sent to hold ratio']['1'] = round(env.data['Sent to hold']['1'] / env.data['

Sent to hold']['Total'], 2) if env.data['Sent to hold']['Total'] > 0 else 0
2126 env.data['Sent to hold ratio']['2'] = round(env.data['Sent to hold']['2'] / env.data['

Sent to hold']['Total'], 2) if env.data['Sent to hold']['Total'] > 0 else 0
2127 env.data['Sent to hold ratio']['Total'] = round(env.data['Sent to hold']['Total'] / env.

data['PTC delivery']['Total'], 2) if env.data['PTC delivery']['Total'] > 0 else 0
2128 df_data = pd.DataFrame(env.data).T
2129 return df_data
2130

2131 def wait_report():
2132 env.wait_report = {
2133 'PTC wait count': {
2134 '(1/2)': '(PS/SB)',
2135 '1': len(ptc_ps.wait_memory),
2136 '2': len(ptc_sb.wait_memory),
2137 'Total': len(ptc_ps.wait_memory) + len(ptc_sb.wait_memory),
2138 'Unit': '-'
2139 },
2140 'PTC wait time': {
2141 '(1/2)': '(PS/SB)',
2142 '1': round(sum(ptc_ps.wait_memory) / 60),
2143 '2': round(sum(ptc_sb.wait_memory) / 60),
2144 'Total': round((sum(ptc_ps.wait_memory) + sum(ptc_sb.wait_memory)) / 60),
2145 'Unit': 'min'
2146 },
2147 'DJF wait count': {
2148 '(1/2)': '(PS/SB)',
2149 '1': len(djf.wait_memory_ps),
2150 '2': len(djf.wait_memory_sb),
2151 'Total': len(djf.wait_memory_ps) + len(djf.wait_memory_sb),
2152 'Unit': '-'
2153 },
2154 'DJF wait time': {
2155 '(1/2)': '(PS/SB)',
2156 '1': round(sum(djf.wait_memory_ps) / 60),
2157 '2': round(sum(djf.wait_memory_sb) / 60),
2158 'Total': round((sum(djf.wait_memory_ps) + sum(djf.wait_memory_sb)) / 60),
2159 'Unit': 'min'
2160 },
2161 'DJF real wait count': {
2162 '(1/2)': '(PS/SB)',
2163 '1': len(djf.real_wait_memory_ps),
2164 '2': len(djf.real_wait_memory_sb),
2165 'Total': len(djf.real_wait_memory_ps) + len(djf.real_wait_memory_sb),
2166 'Unit': '-'
2167 },
2168 'DJF real wait time': {
2169 '(1/2)': '(PS/SB)',
2170 '1': round(sum(djf.real_wait_memory_ps) / 60),
2171 '2': round(sum(djf.real_wait_memory_sb) / 60),
2172 'Total': round((sum(djf.real_wait_memory_ps) + sum(djf.real_wait_memory_sb)) /

60),
2173 'Unit': 'min'
2174 },
2175 'Waiting area wait count': {
2176 '(1/2)': '(Normal/Anode)',
2177 '1': len(waitingarea.wait_memory_normal),
2178 '2': len(waitingarea.wait_memory_anode),
2179 'Total': len(waitingarea.wait_memory_normal) + len(waitingarea.wait_memory_anode)

,
2180 'Unit': '-'

G.3. Main 152

2181 },
2182 'Waiting area wait time': {
2183 '(1/2)': '(Normal/Anode)',
2184 '1': round(sum(waitingarea.wait_memory_normal) / 60),
2185 '2': round(sum(waitingarea.wait_memory_anode) / 60),
2186 'Total': round((sum(waitingarea.wait_memory_normal) + sum(waitingarea.

wait_memory_anode)) / 60),
2187 'Unit': 'min'
2188 },
2189 'Firing line wait count': {
2190 '(1/2)': '(Normal/Anode)',
2191 '1': len(firingline.wait_memory_normal),
2192 '2': len(firingline.wait_memory_anode),
2193 'Total': len(firingline.wait_memory_normal) + len(firingline.wait_memory_anode),
2194 'Unit': '-'
2195 },
2196 'Firing line wait time': {
2197 '(1/2)': '(Normal/Anode)',
2198 '1': round(sum(firingline.wait_memory_normal) / 60),
2199 '2': round(sum(firingline.wait_memory_anode) / 60),
2200 'Total': round((sum(firingline.wait_memory_normal) + sum(firingline.

wait_memory_anode)) / 60),
2201 'Unit': 'min'
2202 }
2203 }
2204

2205 df_wait_report = pd.DataFrame(env.wait_report).T
2206 return df_wait_report
2207

2208 def station_report():
2209 env.station_report = {
2210 'PTC process duration': {
2211 '(1/2)': '(PS/SB)',
2212 '1': round(mean(ptc_ps.process_memory)) if ptc_ps.process_memory else 0,
2213 '2': round(mean(ptc_sb.process_memory)) if ptc_sb.process_memory else 0,
2214 'Total': round(mean(ptc_ps.process_memory + ptc_sb.process_memory)) if (ptc_ps.

process_memory or ptc_sb.process_memory) else 0,
2215 'Unit': 's'
2216 },
2217 'Bevel process duration': {
2218 '(1/2)': '(PS/SB)',
2219 '1': round(mean(bevelling_psa.process_memory + bevelling_psf.process_memory)) if

(bevelling_psa.process_memory or bevelling_psf.process_memory) else 0,
2220 '2': round(mean(bevelling_sba.process_memory + bevelling_sbf.process_memory)) if

(bevelling_sba.process_memory or bevelling_sbf.process_memory) else 0,
2221 'Total': round(mean(bevelling_psa.process_memory + bevelling_psf.process_memory +

bevelling_sba.process_memory + bevelling_sbf.process_memory)) if (
bevelling_psa.process_memory or bevelling_psf.process_memory or bevelling_sba
.process_memory or bevelling_sbf.process_memory) else 0,

2222 'Unit': 's'
2223 },
2224 'Welding 1 process duration': {
2225 '(1/2)': '(PS/SB)',
2226 '1': round(mean(welding1_ps.process_memory)) if welding1_ps.process_memory else

0,
2227 '2': round(mean(welding1_sb.process_memory)) if welding1_sb.process_memory else

0,
2228 'Total': round(mean(welding1_ps.process_memory + welding1_sb.process_memory)) if

(welding1_ps.process_memory or welding1_sb.process_memory) else 0,
2229 'Unit': 's'
2230 },
2231 'Welding 2 process duration': {
2232 '(1/2)': '(PS/SB)',
2233 '1': round(mean(welding2_ps.process_memory)) if welding2_ps.process_memory else

0,
2234 '2': round(mean(welding2_sb.process_memory)) if welding2_sb.process_memory else

0,
2235 'Total': round(mean(welding2_ps.process_memory + welding2_sb.process_memory)) if

(welding2_ps.process_memory or welding2_sb.process_memory) else 0,
2236 'Unit': 's'
2237 },

G.3. Main 153

2238 'Welding 3/4 process duration': {
2239 '(1/2)': '(PS/SB)',
2240 '1': round(mean(welding34_ps.process_memory)) if welding34_ps.process_memory else

0,
2241 '2': round(mean(welding34_sb.process_memory)) if welding34_sb.process_memory else

0,
2242 'Total': round(mean(welding34_ps.process_memory + welding34_sb.process_memory))

if (welding34_ps.process_memory or welding34_sb.process_memory) else 0,
2243 'Unit': 's'
2244 },
2245 'Firing line process duration': {
2246 '(1/2)': None,
2247 '1': None,
2248 '2': None,
2249 'Total': round(mean(firingline.process_memory)) if firingline.process_memory else

0,
2250 'Unit': 's'
2251 }
2252 }
2253 df_station_report = pd.DataFrame(env.station_report).T
2254 return df_station_report
2255

2256 def reset_data():
2257 env.data = {
2258 'PTC delivery': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2259 'Marked': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2260 'Cleaned': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2261 'Sent to hold': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit': '

joints'},
2262 'Sent to hold ratio': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit':

'-'},
2263 'DJF production': {'(1/2)': '(PS/SB)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints'},
2264 'DJF rejects': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit': 'joints

'},
2265 'Firing line rejects': {'(1/2)': '(Normal/Anode)','1': 0, '2': 0, 'Total': 0, 'Unit':

'joints'},
2266 'Main pipeline length': {'(1/2)': None,'1': None, '2': None, 'Total': 0, 'Unit': 'm'

},
2267 }
2268

2269 for component in [ptc_ps, ptc_sb]:
2270 component.wait_memory = []
2271 for component in [djf]:
2272 component.wait_memory_ps = []
2273 component.wait_memory_sb = []
2274 component.real_wait_memory_ps = []
2275 component.real_wait_memory_sb = []
2276 for component in [waitingarea, firingline]:
2277 component.wait_memory_normal = []
2278 component.wait_memory_anode = []
2279

2280 for station in [ptc_ps, ptc_sb, bevelling_psa, bevelling_psf, bevelling_sba,
bevelling_sbf, welding1_ps, welding1_sb, welding2_ps, welding2_sb, welding34_ps,
welding34_sb, firingline]:

2281 station.process_memory = []
2282

2283 data_reports = []
2284 wait_reports = []
2285 station_reports = []
2286

2287 def save_data(datafile, sheet_name):
2288 file_path = f'output/Output data - {title}.xlsx'
2289

2290 if os.path.exists(file_path):
2291 with pd.ExcelWriter(file_path, engine='openpyxl', mode='a', if_sheet_exists='replace'

) as writer:
2292 datafile.to_excel(writer, sheet_name=sheet_name, index=True)
2293 else:
2294 with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
2295 datafile.to_excel(writer, sheet_name=sheet_name, index=True)
2296

G.3. Main 154

2297 if sheet_name == 'Result' or sheet_name == 'KPI':
2298 wb = openpyxl.load_workbook(file_path)
2299 result_sheet = wb[sheet_name]
2300 result_sheet.title = f'{sheet_name} Seed{seed}'
2301 wb._sheets.remove(result_sheet)
2302 wb._sheets.insert(0, result_sheet)
2303 wb.save(file_path)
2304

2305 print(f'Data saved to {file_path} in sheet {sheet_name}.')
2306

2307 def mean_data(reports):
2308 reports_clean = [df.replace({None: np.nan}) for df in reports]
2309 concat_df = pd.concat(reports_clean)
2310 numeric_cols = concat_df.select_dtypes(include=[np.number]).columns
2311 mean_df = concat_df[numeric_cols].groupby(concat_df.index).mean()
2312 for col in reports_clean[0].columns:
2313 if col not in mean_df.columns:
2314 mean_df[col] = reports_clean[0][col]
2315 mean_df = mean_df[reports_clean[0].columns]
2316 mean_df = mean_df.reindex(reports_clean[0].index)
2317 return mean_df
2318

2319 def round_data(df):
2320 rows_to_round_1 = ['DJF rejects', 'Firing line rejects']
2321 rows_to_round_2 = ['Sent to hold ratio']
2322 rounded_0 = df.drop(rows_to_round_1 + rows_to_round_2).round()
2323 rounded_1 = df.loc[rows_to_round_1].round(1)
2324 rounded_2 = df.loc[rows_to_round_2].round(2)
2325 df_rounded = pd.concat([rounded_0, rounded_1, rounded_2]).reindex(df.index)
2326 return df_rounded
2327

2328 # endregion
2329

2330 # region Simulation setup
2331

2332 start_time = time.time()
2333 print("Simulating warm-up period...")
2334 env.run(till=warm_up_period)
2335 reset_data()
2336 data_report_start = data_report()
2337 wait_report_start = wait_report()
2338 station_report_start = station_report()
2339 df_start = pd.concat([data_report_start, wait_report_start, station_report_start])
2340 save_data(df_start, 'Start')
2341

2342 if animation is True:
2343 env.animate(True)
2344 env.show_fps(False)
2345 env.animation_parameters(
2346 width=1600,
2347 height=400,
2348 speed=animation_speed,
2349 x0=-200,
2350 y0=-80,
2351 background_color='white',
2352 show_time=False
2353)
2354

2355 snapshot_folder = f'output/snapshots/{title}'
2356 os.makedirs(snapshot_folder, exist_ok=True)
2357 env.snapshot_folder = snapshot_folder
2358 snapshot_path = os.path.join(env.snapshot_folder, f'{title} - Start.png')
2359 env.snapshot(snapshot_path)
2360

2361 for period in range(periods):
2362 print(f'Simulating period {period+1}...')
2363 start_period = time.time()
2364 env.run(till=(period+1)*period_duration + warm_up_period)
2365 data_report_period = data_report()
2366 wait_report_period = wait_report()
2367 station_report_period = station_report()

G.4. Run script 155

2368 data_reports.append(data_report_period)
2369 wait_reports.append(wait_report_period)
2370 station_reports.append(station_report_period)
2371

2372 print(f'Period {period+1} finished in {round(time.time() - start_period)} seconds.')
2373 print("DATA REPORT")
2374 print(data_report_period)
2375 df_period = pd.concat([data_report_period, wait_report_period, station_report_period])
2376 sheet_name_period = f'Period {period+1}'
2377 save_data(df_period, sheet_name_period)
2378 reset_data()
2379

2380 if animation is True:
2381 snapshot_path = os.path.join(env.snapshot_folder, f'{title} - Day {period+1}.png')
2382 env.snapshot(snapshot_path)
2383

2384 end_time = time.time()
2385

2386 simulation_time = int(end_time - start_time)
2387 print(f'Simulation finished in {simulation_time} seconds.')
2388 print(f'Using seed: {seed}')
2389

2390 data_report_result = round_data(mean_data(data_reports))
2391 wait_report_result = mean_data(wait_reports).round()
2392 station_report_result = mean_data(station_reports).round()
2393 df_result = pd.concat([data_report_result, wait_report_result, station_report_result])
2394

2395 kpi_data = data_report_result.loc[['DJF production', 'Main pipeline length']]
2396 kpi_wait = wait_report_result.loc[wait_report_result.index.str.contains('wait time', case=

False)]
2397 kpi_report = pd.concat([kpi_data, kpi_wait])
2398

2399 print(f'KPI report for seed {seed}:')
2400 print(kpi_report)
2401

2402 save_data(kpi_report, 'KPI')
2403 save_data(df_result, 'Result')
2404

2405 # endregion

G.4. Run script
Listing G.4: Run Python Script

1 import os
2 import secrets
3

4 script = 'main.py'
5

6 os.environ['PSV'] = 'PS'
7 routes = ['a', 'b', 'c', 'd', 'e', 'f']
8 ptc_rates = ['slow','avg', 'fast']
9 os.environ['DJF_SUPPLY_LINE'] = 'True'
10 os.environ['ANIMATION'] = 'True'
11 os.environ['LIVE_ANIMATION'] = 'False'
12 os.environ['VIDEO'] = 'False'
13

14 for route in routes:
15 os.environ['ROUTE'] = route
16 for ptc_rate in ptc_rates:
17 seed = secrets.randbits(32)
18 os.environ['SEED'] = str(seed)
19 os.environ['PTC_RATE'] = ptc_rate
20 print(f'Running {script} for Route ({route}) with {ptc_rate} PTC rate ...')
21 os.system(f'python {script}')
22

23 print('ALL RUNS COMPLETED')

	Summary
	AI statement
	Terminology and abbreviations
	Introduction
	System analysis
	Methodology for modelling and solving the pipe routing problem
	Modelling of the pipe handling system
	Experimentation with routing strategies
	Conclusion
	Recommendations
	References
	Research Paper
	Selection of simulation software
	Conceptual model formulation
	Process duration data
	Experimental run-length selection
	Experimentation Output Data
	Python Code

