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Abstract
This paper proposes a nondestructive evaluation method based on deep learn-
ing using combined ground-penetrating radar (GPR) and electromagnetic induc-
tion (EMI) data for autonomic and accurate estimation of the cover thickness
and diameter of reinforcement bars. A real-time object detection algorithm—
You Only Look Once–version 3 (YOLO v3)—is adopted to automatically identify
the reinforcement bar reflected signals from radargrams, withwhich the range of
the cover thickness is roughly predicted. Subsequently, EMI data, accompanied
with the cover thickness range, are imported to a one-dimensional convolutional
neural network (1D CNN), pretrained by calibrated EMI and GPR data, to simul-
taneously estimate the cover thickness and reinforcement bar diameter. Testing
with the on-site GPR data shows that YOLO v3 is superior to Single Shot Multi-
box Detector method in GPR hyperbolic signal identification. Testing of 1D CNN
with the EMI and GPR data collected in an in-house sand pit experiment shows
that the estimation accuracy of the cover thickness and reinforcement bar diame-
ter is, respectively, 96.8% and 90.3% with a permissible error of 1 mm. Further, an
experiment with concrete specimens demonstrates that among the 22 estimated
values (including the reinforcement bar diameter and cover thickness), there are
17 values accurately estimated, while the inaccurately estimated values have an
error up to 2 mm. The experimental results show that the proposed method can
autonomically evaluate the reinforcement bar diameter and cover thicknesswith
a high accuracy.

1 INTRODUCTION

In civil and infrastructure engineering practice, it is of
great importance to inspect and estimate the quality of the
reinforced concrete after its construction (Leet & Bernal,
1982; Taheri, 2019). According to conventional supervi-
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sion and acceptance standards, in the stage of project
acceptance, some crucial properties of the reinforcement
bars, for instance, the diameter and cover thickness,
are required to be strictly examined (Hai et al., 2002).
Nondestructive testing (NDT), including electrical and
sonic methods, has been frequently used for noninvasive
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estimation of construction details (Forde et al., 2013). How-
ever, to date, some significant challenges still exist in the
practical estimation of reinforced concrete, especially in
quantitative characterizations of details. On the one hand,
a high estimation accuracy, up to an order of 1 mm, is
required when inspecting the reinforcement bar diameter
and cover thickness (Zhang et al., 2019); on the other hand,
intelligent data processing and interpretation are required
for rapid on-site testing and estimation (Kim et al., 2021).
In concrete reinforcement inspection, cover meter is a

frequently used commercial NDT instrument because it
is highly sensitive to metal targets, low-cost, and trivially
deployable (Rathod et al., 2019). Cover meters are based
on electromagnetic induction (EMI). Under the excitation
of time-varying current, a conductive object induces a sec-
ondary magnetic field, whereas concrete, as a nonferro-
magnetic background material, does not induce eddy cur-
rent and thus contributes nothing to the secondary mag-
netic field (Xiao et al., 2017). The intensity distributions
of the received secondary fields are dependent on the geo-
metric properties and the compositions of the conductive
objects. Therefore, the cover thickness and diameter of
the reinforcement bars are able to be estimated by the
EMI responses once a wide range of properties of rein-
forcement bars are exactly calibrated by the cover meters.
However, there exist multiple solutions for certain sets of
EMI responses. In practice, by referring to the construc-
tion drawings or digging test, the diameter of reinforce-
ment bar is preset as the prior knowledge to accurately esti-
mate the cover thickness, or vice versa (Forde et al., 2013).
However, the prior knowledge is not always available. A
solution was proposed that can simultaneously derive the
reinforcement bar diameter and cover thickness by deploy-
ing two spaced receiving coils to obtain two sets of EMI
readings at different distances (Alldred, 1995). However,
the scheme makes the instrument structure sophisticated,
and the mutual interference between the coils is unavoid-
able. Quek et al. (2003) established a curvilinear model
to estimate the reinforcement diameter and cover thick-
ness by extracting the peak amplitude and the full width
at half height (FWHH) from the measured EMI curves.
Their results show that, at a given diameter of the rein-
forcement bar, the relative error of the estimated cover
thickness is±5%; whereas when the diameter is unknown,
the relative error of the estimated cover thickness reaches
±10%, implying that the estimation accuracy depends on
prior knowledge.
Ground-penetrating radar (GPR) is another commercial

NDT technology that has been widely applied in various
fields of civil and infrastructure engineering. It utilizes
wideband antennas to transmit high-frequency (tens to
thousands ofmegahertz) electromagnetic (EM)waves, and
records the echoes to infer the information of the targets
in the background material media (Lai et al., 2018). GPR

has been successfully applied to pavement defect exami-
nation (Zhang et al., 2020), bridge deck monitoring (Belli
et al., 2008), urban underground pipeline detection (Prego
et al., 2017), and so on. In particular, GPR has been applied
to examine the reinforced concrete due to the great con-
ductivity contrast between the concrete and the steel bars.
In the concrete inspection, the GPR instrument is moved
on the surface of the concrete in a straight path, collecting
multiple traces of echoes from the bars (Lai et al., 2018).
The formed radargrams result in some signatures simi-
lar to hyperbolic curves, which are caused by the strong
reflectedwaves from the cylindrical targets. Thehyperbolic
signals are treated as key signatures for reinforcement bar
detection (Lei et al., 2019). However, the hyperbolic signals
are unable to straightforwardly quantify the properties of
the inspected reinforcement bars. As a result, it is signif-
icant to process the hyperbolic signals in the radargrams
before the quantitative interpretation. Conventional data
processing techniques include time-zero correction, direct
wave removal, filtering, and migration, however, interpre-
tation remains manual and heavily relies on the experi-
ence of the practitioners (Jol, 2008). Some image process-
ingmethods, including curve fitting andHough transform,
have been applied to extract the hyperbolic signals from the
radargrams (Ristic et al., 2009; Windsor et al., 2013). The
disadvantages of thesemethods are that a template of curve
fitting has to be prepared in advance and the computa-
tion cost is high. Some postprocessing algorithms have also
been applied to process hyperbolic signals. Dou et al. (2016)
proposed a postprocessing method that uses the column-
connection clustering algorithm to segment the hyperbolic
signals in radargrams from the background. Further, X.
Zhou et al. (2018) proposed an improved algorithm, called
open-scan clustering, to evaluate buried pipes based on
the features of the downward opening of hyperbolic sig-
nals. To obtain the cover thickness, the wave velocity (cor-
responding to the permittivity of the background mate-
rial) needs to be accurately acquired (Sham & Lai, 2016).
However, the wave velocity is usually evaluated by expe-
rience, which unavoidably brings errors in the interpreta-
tion. Liu and Sato (2014) developed a multiple offset array
GPR system and conducted a common-source measure-
ment to improve the precision of the velocity evaluation in
estimating pavement thickness. When estimating the rein-
forcement bar properties with GPR, the reinforcement bar
diameter is smaller than the working wavelength of GPR
in the general reinforced concrete circumstances (Jazay-
eri et al., 2019). Consequently, the features of the hyper-
bolic signals are not sufficiently sensitive to the diameter
of the reinforcement bars. Sensitivity analyses based on the
in-house GPR measurements proved that it is difficult to
acquire accurate estimation of the diameter of reinforce-
ment bars using GPR hyperbolic signals (Wiwatrojanagul
et al., 2017). Therefore, estimating the cover thickness and
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diameter of reinforcement bars is particularly challenging
using GPR, with no conclusive and universal interpreta-
tion methods to this day.
A combination of GPR and EMI sensing techniques

can compensate for the respective limitations of the two
methods, and it has been successfully applied in land-
mine detection (Sato et al., 2018), underground histori-
cal site exploration (Saey et al., 2014), and soil water con-
tent assessment (Barca et al., 2019). In concrete inspec-
tion, a combined EMI and GPR framework is expected
to reduce the dependence of EMI data on prior informa-
tion. In our previous work, a novel prototype has been
developed that combines GPR and EMI in a compact box
(hereinafter referred to as dual-sensing prototype). The
developed system is capable of simultaneously collecting
EMI and GPR data in a single scanning measurement (F.
Zhou et al., 2018). However, the manual interpretation is
time-consuming and labor-intensive, which dramatically
increases the costs for the practical applications in build-
ing sites. Therefore, developing an efficient and automatic
data processing and interpretation method is of signifi-
cance for the NDT community (Liu et al., 2020).
In the recent decades, machine learning has attracted

significant interest in a wide range of fields, including
civil and infrastructure engineering (Amezquita-Sanchez
et al., 2016). There have been some reports on the suc-
cessful applications of machine learning techniques to
concrete quality evaluation (Rafiei et al., 2017; Valikhani
et al., 2021), bridge crack inspection (Okazaki et al., 2020),
and estate sales price prediction (Rafiei & Adeli, 2016).
Meanwhile, as an important subset of machine learning,
deep learning, featured with multiple layers of neural net-
work architecture to solve some complex problems, is
becoming the current study hotspot as high-performance
computing and big data become more trivially accessi-
ble (Feng et al., 2017). Zhang et al. (2021) applied genera-
tive adversarial network to impute link travel times with
trajectory data; Hu et al. (2021) used a modified recursive
binary tree network to reconstruct 3D bridge structure;
Maeda et al. (2021) used generative adversarial network
for road damage detection; Guo et al. (2021) proposed a
semisupervised learning-based convolutional neural net-
work (CNN) to classify architectural appearance defects
from image data; Sajedi et al. (2021) used deep Bayesian
neural networks for vision-based structural inspections.
These studies demonstrate promising prospects of deep
learning applications to civil and infrastructure engineer-
ing.
In terms of GPR data interpretation, Wang et al. (2020)

proposed a method using genetic algorithm to semiau-
tomatically identify the buried reinforcement bars using
solely GPR data. The results show that the missed detec-
tion rate and false alarm rate are, respectively, 11.98% and

9.08%. Lei et al. (2019) used Faster Region-based CNN
(Faster R-CNN) to delimit the candidate regions of hyper-
bolic signals, and then adopted the so-called “double clus-
ter seeking estimate” and “column-based transverse filter
points” algorithms to further segment and fit the hyper-
bolic signals. Their method is proved to have ability of
extracting useful features from synthetic and on-site GPR
data sets. Liu et al. (2020) utilized Single Shot Multi-Box
Detector (SSD) to recognize hyperbolic signals from GPR
data for the cover thickness estimation, and the testing
results showed that SSD outperforms Faster R-CNN in
GPR hyperbolic signal recognition. Giannakis et al. (2020)
combined neural network and random forest regression
algorithm to estimate the diameter of reinforcement bars.
Although their network was trained using entirely syn-
thetic data, nonetheless, it performed sufficiently well
using real data, showing good generalization capabilities.
The methods mentioned above applied deep learning

to the GPR data processing and interpretation in NDT.
To date, deep learning has not been applied to the inter-
pretation of the fused data collected by multiple sensing
techniques in NDT. Inspired by the previous work, this
study combines deep learning algorithms with the pro-
cessing and interpretation of EMI and GPR data, extend-
ing the potential applications of deep learning to the non-
destructive evaluation of structural concrete. The pro-
posed method takes full advantage of the information con-
tained in different types of measurement data, aiming for
autonomous and accurate evaluation of the cover thick-
ness and reinforcement bar diameter. A deep learning
algorithm, You Only Look Once–version 3 (YOLO v3), is
deployed to locate and identify the hyperbolic signals from
the radargrams, and the recognition performance is com-
pared with the SSD method. The extracted hyperbolic sig-
nals, reflected from the reinforcement bars, are used for
the rough estimation of the cover thickness range. Subse-
quentially, the EMI data, accompanied with the roughly
estimated cover thickness range, are imported to a one-
dimensional CNN (1D CNN), which is pretrained by the
calibrated EMI and GPR data collected from the in-house
sand pit experiment, for autonomic estimation of the cover
thickness and the diameter of reinforcement bars.

2 METHODOLOGY

The proposed framework applies deep learning algorithms
to EMI and GPR data for autonomic evaluation of the
cover thickness and diameter of reinforcement bars in con-
crete. Figure 1 shows the flowchart of the data process-
ing and interpretation combined with YOLO v3 and 1D
CNN. In this frame, YOLO v3 is first trained by GPR data
measured from two construction sites, and the trained
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F IGURE 1 Flowchart of the reinforcement bar detection and
evaluation

network is used to identify hyperbolic signals, which are
reflected from the reinforcement bars. The use of YOLO
v3 is to autonomously process large amounts of field GPR
data in order to dramatically decrease the labor costs and
time. Subsequently, Sobel operator, a frequently used edge
extraction algorithm, is implemented to further extract
the reflected signals from the identified regions. These
extracted signals are deemed the real reflected wavelets
from the bar surfaces. Then, by empirically evaluating the
EM wave velocity in the background material, the cover
thickness is roughly estimated and the possible range is
constrained. The range values, as the prior information, are
to be used for the subsequential reinforcement bar estima-
tion. Another deep learning network—1D CNN—is intro-
duced to simultaneously estimate the reinforcement bar
diameter and cover thickness by fusing GPR and EMI data.
The network is trained in advancewith the calibration data
measured in an in-house sand pit setup. The collected EMI
data are preprocessed by smoothing filter, and an effective
portion of EMI curves are extracted based on the principle
of twice of FWHH. Finally, both the extracted EMI data
and the estimated cover thickness range are imported into
the trained 1DCNN, and the estimated cover thickness and
diameter of the reinforcement bars are exported.More spe-
cific workflow and procedure of the proposed method are
to be described in the following subsections.
It is noted that the current study is limited in the cir-

cumstances of single layer of reinforcement bars. Some
special scenarios, for example, closely adjacent or welded
steel bars, are not considered. In these complicated envi-
ronments, the EMI signals are severely disturbed by the
adjacent or additive metal components. In addition to the
diameter of the reinforcement bars and the cover thick-

F IGURE 2 Schematic diagram of the in-house EMI and GPR
calibration data acquisition. Note that the cover thickness in this
study refers to the clear cover thickness, i.e., the distance between
the concrete surface (or the sand surface in this setup) to the nearest
surface of the reinforcement bars (Vélez et al., 2016)

ness, more variables are introduced to dominate the ampli-
tudes and distribution characters of the EMI signals (Forde
et al., 2013). Therefore, the estimation process becomes
more sophisticated, and more prior information is needed
to relieve the uncertainty and nonuniqueness.

2.1 Data sets

Two types of data sets were collected for training the deep
learning networks. One is the EMI data for 1D CNN train-
ing. Theyweremeasured in an in-house sand pit setup, and
the data were calibrated with the configured cover thick-
ness and diameter of the steel bars. The other is the GPR
data for YOLOv3 training. Theyweremeasured in the real-
istic construction buildings, where a variety of typical rein-
forcement configurations are presented.

2.1.1 In-house calibration data

The 1D CNN needs to be trained with the calibration data
before it is used for the estimation of the bar diameter and
cover thickness. To this end, it is critical to collect the EMI
responses on the reinforcement bars with varying cover
thickness and diameter. Figure 2 shows the schematic
diagram of the in-house calibration data collection. The
cover meter and GPR were slowly and uniformly moved
upon the sand surface to collect the EMI responses and
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F IGURE 3 The EMI response curves measured in the
backgrounds of dry sand and concrete, respectively

radargrams on the buried steel bars, where the survey
lines are orthogonal to the axis of steel bars. The data
directly collected on the construction sites are not appli-
cable for training 1D CNN, because it is impossible to cal-
ibrate the measurement data with the true cover thick-
ness and diameter of reinforcement bars unless massive
destructive drillings are allowed.
Some researchers made use of gelatin or sand replacing

concrete to carry out in-house reinforced concrete exper-
iments (Warren & Giannopoulos, 2011; Wiwatrojanagul
et al., 2017). In order to further verify the feasibility of sub-
stituting the concrete with some othermaterials in the cur-
rent calibration work, a comparative experiment was car-
ried out to study the influence of background materials on
EMI response. A steel bar was, respectively, embedded in
dry sand and concrete at a same depth, and EMI responses
were collected. As Figure 3 shows, there are not observable
differences in the EMI curves between dry sand and con-
crete. That is because theirmagnetic permeability and con-
ductivity are extremely small relative to those of steel bar.
A sand pit setup was established to conduct the cali-

bration experiment sand pit, as Figure 4 shows. The sand
pit is filled with compacted dry sand to mimic the con-
crete material. A customized mechanical scanning frame
was installed on the sand pit and can implement a three-
dimensional motion in a stepping precision of 1 mm. A
plastic plate with a thickness of 5 mm was linked with
the mechanical arm of the scanning frame to lift the test-
ing instruments. During the calibration measurements, a
single reinforcement bar is horizontally buried inside the
sand. By controlling the scanning frame, the plastic plate
clears up the sand surface in a steppingmode, and thus can
control the cover thickness with a precision of 1 mm. The
previously mentioned dual-sensing prototype was utilized
in this experiment to collect the EMI data (F. Zhou et al.,
2018). The current excitation frequency is 40 kHz, and the
EMI response is sensitive to a metal objective at a depth

TABLE 1 True reinforcement bar diameter and evaluated
range of cover thickness corresponding to the retained EMI curves

Diameter (mm) Range of cover thickness (mm)
6 [5, 20]
8 [5, 27]
10 [5, 38]
12 [5, 51]
14 [5, 54]
16 [5, 59]
18 [5, 60]
20 [5, 60]
22 [5, 60]
25 [5, 60]
28 [5, 60]

up to 100 mm (Gao et al., 2015). A commercial GPR sys-
tem with a center frequency of 2.6 GHz was used for GPR
data collection. It is a ground-coupled radar system with a
pair of bowtie antennas. In general concrete materials, the
penetrating depth can reach 500 mm (Liu et al., 2021).
Eleven round steel bars with different diameters were

used as samples for the calibration experiments, referring
to the Chinese Industrial Building Standards (Zhu et al.,
2017). The diameter of the steel bars is 6, 8, 10, 12, 14, 16,
18, 20, 22, 25, and 28 mm, respectively. The cover thickness
was decreased from 60mm to 5mmwith a stepped interval
of 1 mm. Therefore, there are a total of 616 configuration
schemes of steel bars. Considering the systematic errors
caused by the intrinsic noise of the used dual-sensing pro-
totype, for each configuration scheme of the reinforce-
ment bars, measurements were taken for six times, with
a total of 3696 sets of EMI data collected. Figure 5 presents
some typical EMI curves collected in the sand pit. The data
were processed by smoothing to alleviate the measuring
errors and noise effects. In addition, in some cases that
the reinforcement bar diameter is excessively small while
the cover thickness is excessively large, the EMI intensity
becomes comparable with the noise, and therefore the tar-
get responses are difficult to be distinguished, as Figure 6
shows. For this reason, some data sets without recogniz-
able target signals were ticked out of the training data set.
As a result, a total of 1898 sets of EMI datawere retained for
the following processing and interpretation. Table 1 shows
the setting range of the cover thickness and diameter cor-
responding to the retained EMI data. Generally, in the
EMI curves, the portions above the half of the peak value,
defined as FWHH, are extracted as the effective signals for
the reinforcement bar estimation (Quek et al., 2003; Zaid
et al., 2004). To further utilize the information contained in
the EMI curves, the signals above the twice of the width at
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(a) (b)

F IGURE 4 Photos of in-house calibration setup: (a) three-dimensional movable scanning frame and (b) measurement scheme

F IGURE 5 Samples of EMI curves (a) when reinforcement bar diameter is 20 mm for different cover thickness (𝐻) and (b) when the
cover thickness is 20 mm for different diameter (𝜙)

F IGURE 6 EMI curves submerged by noises when the
reinforcement bar diameter is 6 mm and the cover thickness is 30
mm

the half height of the peak were extracted as the imported
data of the 1D CNN, as illustrated in Figure 7.
In the in-house EMI measurements, there exist cer-

tain cases that the steel bars generate highly similar EMI

F IGURE 7 Extracting the effective EMI with twice of FWHH.
The symbol 2𝑊 represents twice of FWHH, i.e., the extracted EMI
segment corresponding with twice of the width at the half height of
the peak

response curves in different settings. Figure 8 presents a
typical example measured in the setup. This finding, in
turn, proves that a single EMI sensing technique tends to
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F IGURE 8 Example of similar EMI curves with different
reinforcement bar settings

derivemultiple solutions, which has beenwidely acknowl-
edged by the NDT community (Quek et al., 2003). In the
practical applications, one solution is to preset either the
cover thickness or the reinforcement bar diameter (Forde
et al., 2013); and the other is to collect extra information
as a constraint condition for accurately inferring, exem-
plified by the dual orthogonal EMI sensing method (All-
dred, 1995). In this study, GPR data were collected accom-
panied with EMI measurements, and the possible range of
the cover thickness was roughly evaluated using the GPR
data as the constraint condition for EMI estimation.
Figure 9 shows the workflow of GPR data processing

in this study. First, time-zero correction was conducted
to pick up the starting point of EM wave propagation on
the sand surface. Next, the hyperbolic signals were identi-
fied and extracted with a well-trained YOLO v3 network.
Then, the direct wave was removed to retain only the
reflected signals. Some regular denoising approaches, such
as wavelet threshold denoising and median filtering, were
conducted to improve the quality of the radargrams (Jol,
2008). Afterwards, an edge extraction algorithm, Sobel
operator, was adopted to extract the edge curves of the
hyperbolic signals (Sami & Abdulmunem, 2020). Subse-
quently, the coordinates of the vertex of the hyperbolic sig-
nal were determined. By this means, the two-way travel
time, that is, the time taken for an EM wave to propa-
gate from the transmitter down to a reflector and back
to the receiver, is acquired. Finally, with the actual spac-
ing between the transmitting and receiving antennas and
the evaluated wave velocity, the cover thickness is roughly
derived by the formulas below:

𝐻 =
1

2

√
𝑆2 − 𝑥2 (1)

𝑆 = 𝑣𝑡 (2)

𝑣 =
c

√
𝜀r

(3)

where 𝐻 is the cover thickness, 𝑆 is the actual travel dis-
tance of EM wave, 𝑥 is the antenna spacing, 𝑣 is the EM
wave velocity in the background material, 𝑡 is the two-way
travel time, c is the EM wave velocity in free space, that
is, 0.3 m/ns, and 𝜀r is the relative permittivity of the back-
ground material. In the sand pit experiment, the relative
permittivity of dry sand was assumed to range from 3 to
5. Time-depth conversion was implemented to derive the
cover thickness through the measured travel time and the
evaluated wave velocity.

2.1.2 On-site GPR data

A great number of radargrams, which represent realis-
tic and diverse reinforced concrete scenarios, are required
to train a YOLO v3 network. The GPR data used in
the identification of hyperbolic signals were collected
from two newly completed residential buildings located
in Guangzhou, China. The commercial GPR system was
operated on the concrete wall sides to collect the radar-
grams, which contain reflected signals from the reinforce-
ment bars. The majority of data were collected on the
slabswhere a single layer of reinforcement bars are embed-
ded inside, whereas a small portion of data were from the
beams and columns withmultiple layers of steel bars. Nor-
mally, the slabs account for the large percentage of the
reinforced concrete constructions in a residential building.
Therefore, most GPR data contain signals reflected from a
single layer of reinforcement bars,which substantially sim-
plifies certain complicated scenarios but accords with the
investigation scope of this study as specified before.
The measured reinforcement bars have diverse diame-

ter, cover thickness, and spatial distribution. The diam-
eter changes between 6 and 25 mm, the cover thickness
changes between 5 and 30 mm, and the spaced distance
changes between 40 and 300 mm. Note that the basic
information of reinforcement bar settings were obtained
by referring to the construction drawings. Certain devi-
ations, which exist in the practical constructions, do not
have an essential impact on the network training and ver-
ifying because the use of YOLO v3 aims only for automati-
cally extracting the hyperbolic signals instead of quantita-
tively evaluating the reinforcement bars.
Due to the GPR polarization effects (Slob et al., 2010),

the measurement lines were taken perpendicular with the
direction of the reinforcement bars to collect the strong
reflected signals from the steel bars. The measurements
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F IGURE 9 Flowchart of processing GPR data

(a) (b)

F IGURE 10 Photos of the on-site data acquisition from (a)
ceilings and (b) walls

were kept away from the binding points to avoid the inter-
ference from the additional metal components. Totally,
9143 hyperbolic signals were obtained from the radargrams
collected in the construction buildings. These radargrams
are to be utilized to train the YOLO v3 network for hyper-
bolic signal identification. Figure 10 shows the on-site
data collection, and Figure 11 demonstrates several typical
radargram samples.

2.2 Network architectures

2.2.1 YOLO v3

In this study, a deep learning architecture of YOLO v3
is used to recognize hyperbolic signals in the radargrams
because it outperforms some other networks by balanc-
ing recognition accuracy and speed (Redmon & Farhadi,
2018). Figure 12 shows the architecture of YOLO v3, which
is a fully convolutional network primarily connected by a
series of residual (Res) layers and convolutional (Conv) lay-
ers. Taken as a whole, the architecture of YOLO v3 con-
tains a backbone network called Darknet-53 (Figure 12(a)),
which is responsible for extracting the convolutional fea-

(a) (b)

(d)(c)

F IGURE 11 Hyperbolic signals in GPR data samples collected
from (a) evenly distributed and (b) (c) (d) densely distributed
reinforcement bars

turemaps of the input images (Krizhevsky et al., 2017). This
part consists of two Conv layers and five Res modules (Fig-
ure 12(a)). The five Res modules are composed of a Conv
layer and Res units of 1, 2, 8, 8, and 4, respectively (Fig-
ure 12(e)). Each Res unit consists of a 1×1 and 3×3 Conv
layer (Figure 12(f)). The total number of Conv layers in
this part is 53. The Conv layers implement three sequential
operations—convolution, batch normalization, and leaky
rectification linear unit activation. In Darknet-53, the con-
siderable number of the Conv layers can greatly improve
the performance of the network. In principle, the deeper
the neutral network is, the more powerful the capability of
image identification is. However, an excessively deep net-
work is prone to a vanishing gradient problem, and thus
lowers the network performance (Bengio & LeCun, 2007).
To solve this problem, in each Res units, the input is added
to the output (Figure 12(f)) to retain the influence of the
previousRes units. In addition, aConv layerwith a stride of
2 is inserted in the front of each Res module (Figure 12(e))
to implement downsampling, which reduces half of the
dimensionality (width and height) of the feature maps.



LI et al. 9

(a) (b)

(c)

(d)

(e)

(g) (h) (i)

(f)

F IGURE 1 2 Network architecture of YOLO v3 for GPR hyperbolic signal identifications. The basic network units are Conv layers (green
blocks). The network structure is divided into two parts: (a) backbone network composed of Darknet-53, and (b)–(d) YOLO layers composed
of only Conv layers or Conv layers concatenated by upsampling layers. The other functional units include: (e) Res module (yellow) consisting
of a Conv layer and several Res units, (f) Res unit (brown) consisting of two Conv layers, (g) upsampling layer (blue), (h) concatenation
operator, and (i) output map

After extracted by Darknet-53, the feature maps, repre-
senting three different scales, are, respectively, imported to
three sets of standard Conv networks (Figures 12(b)–(d))
for constructing multiple-scale feature maps. The fea-
ture maps, which undergo more Conv operations (Fig-
ure 12(b)), have lower resolutions, smaller scales, and less
information, and are suitable only for detecting larger scale
targets in the images. To recognize targets with smaller
scales, the feature maps with smaller scale are upsam-
pled and then concatenated with the larger scale fea-
ture maps, which are obtained by less Conv operations
(Figures 12(c) and (d)). The resulting feature maps con-
tain more information and can recognize targets with
smaller scales at higher resolutions. In this study, three
different scales of feature maps are used to detect targets
with the sizes of 13×13, 26×26, and 52×52 pixels, respec-
tively, and the identified targets are marked with a bound-
ing box and an indicator of confidence. More details on
YOLO v3 architecture can be found in Redmon et al.
(2018).

2.2.2 1D CNN

The effective EMI curves extracted with FWHH method
and the ranges of the cover thickness, which are esti-
mated from GPR data, are treated as 1D vectors. There-
fore, a 1D CNN is designed referring to the Visual Geom-
etry Group-16 network architecture, which is typically
used in image recognition (Simonyan & Zisserman, 2014).

Figure 13 shows the architecture of the 1D CNN. There
are four Conv blocks, and each Conv layer sequentially
performs convolution, batch normalization, and rectified
linear unit activation. The established 1D CNN is primar-
ily composed of a number of 1D Conv layers. Follow-
ing each Conv block, a max pooling layer is deployed to
reduce the dimensionality of features. Finally, four fully
connected layers are used to output the predicted values,
among which the first three layers apply L2 regularization
to reduce overfitting (Cortes et al., 2012). In addition, a
global average pooling layer is inserted between the Conv
blocks and the fully connected layers to reduce the num-
ber of parameters andmitigate overfitting (Lin et al., 2013).
The 1D vectors containing the effective EMI curve and the
cover thickness range are imported into the 1D CNN as the
input variables, while the cover thickness and reinforce-
ment bar diameter are the estimated values exported from
the output nodes.

3 RESULTS

Training and testing the YOLOv3 networkwere performed
on the Google Colaboratory, a cloud platform deployed
with the deep learning environments. In terms of the eval-
uation of the cover thickness and diameter of reinforce-
ment bars, the training and testing were run on a personal
computer with Intel I7-9750HCPU and RTX 2070 8GGPU.
The open source software compilation library TensorFlow
2.0 was used for deployment.
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F IGURE 13 Network architecture of 1D CNN for evaluation of cover thickness and diameter of reinforcement bars

3.1 Hyperbolic signal identification

To match the size of the input unit of YOLO v3 network,
the continuously measured radargram, which contains a
total number of 9143 hyperbolic signals, was divided into
1877 images with a size of 416×416 pixels. All the images
were randomly divided into training set (80%) and testing
set (20%). In the training set, 20% of the training data were
used as the validation set to verify the generalization of
the network during the training (Chollet, 2017). After train-
ing, the testing set was used to evaluate the performance of
YOLO v3. The YOLO loss, a key indicator of YOLO v3, was
adopted as the loss function. To improve performance of
the YOLO v3 network, transfer learning, which migrates
the pretrained model to the new model, was adapted in
the network training process (Yosinski et al., 2014). There-
fore, the pretrainingweights ofDarknet-53, whichwaswell
trained with the ImageNet data set, were loaded to initial-
ize the weights of network (Krizhevsky et al., 2017). Ini-
tially, the learning rate was set to 10−3, and subsequently,
it was set to 10−4 and 10−5 at the 1600th and 1800th itera-
tions, respectively, using a momentum of 0.9 and a weight
decay of 5×10−4. The batch size and subdivisions were set
to 64 and 8, respectively, to maximize the utilization of
GPU memory. To enhance the robustness of the network,
random multiscale training and data augmentation were
applied during the training process. Random multiscale
training was used to generate new images with different
resolutions (Redmon & Farhadi, 2018). The image resolu-
tions at each iteration were randomly set in the range from
320×320 to 608×608 pixels with a stride of 32 pixels. Data
augmentationwas used to generatemore data based on the
existing data to increase the number of the samples by ran-
domly changing the saturation, exposure, and hue of the
training data (Wong et al., 2016). The confidence thresh-
old, ranging between 0 and 1, was set to 0.3.
Figure 14 displays some correctly recognized reinforce-

ment bars by the YOLO v3 network in diverse reinforced

structures. The detected reinforcement bars were framed
with red bounding boxes. Meanwhile, each bounding box
was labeled with the category name (i.e., “hyperbola”) and
a confidence value above the confidence threshold of 0.3.
The confidence reflects how the model ensures that the
box contains a hyperbolic signal reflected by a reinforce-
ment bar (Redmon et al., 2016). From Figures 14(a)–(e),
it can be seen that all of the hyperbolic signals reflected
by the reinforcement bars were successfully identified,
including some complicated scenarios. In particular, Fig-
ures 14(d)–(f) show that even if the reinforcement bars are
in dense and staggered distributions and the reflected sig-
nals are blurred and overlapped, YOLO v3 has the capabil-
ity of identifying these hyperbolic signals with a high con-
fidence.
In order to evaluate the performance of YOLOv3 in iden-

tifying hyperbolic signals, three indicators, that is, preci-
sion (𝑃𝑟), recall (𝑅𝑒), and 𝐹-score, were introduced as for-
mulated by:

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4)

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5)

𝐹-score = 2𝑃𝑟 ⋅ 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
(6)

where 𝑇𝑃 stands for the True Positive, 𝐹𝑃 for the False
Positive, and 𝐹𝑁 for the False Negative. Table 2 shows
an overview of the evaluation metrics on hyperbolic sig-
nal identification. True Positive is the number of correctly
identified hyperbolic signals. False Positive is the number
of the signals that are misidentified as hyperbolic signals,
which are caused by clutter or noise. False Negative is the
number of hyperbolic signals that are unrecognized. True
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(a) (b) (c)

(d) (e) (f)

F IGURE 14 Identified hyperbolic signals with YOLO v3 when the reinforcement bars are (a) evenly distributed, (b) closely distributed,
and (c) unevenly distributed, and when the reflected signals are (d) excessively overlapped, (e) blurred, and (f) blurred and overlapped

TABLE 2 Evaluation metrics of hyperbolic signal identification

Ground truth
Predicted Hyperbolic signal Background
Hyperbolic signal True Positive False Positive
Background False Negative True Negative

Negative is the number of the background signals that are
not identified as hyperbolic signals, which is not included
in Equations (4)–(6). In this study, precision expresses the
number percentage of the correctly identified hyperbolic
signals out of the total signals classified into the hyper-
bolic signals, and recall is the number percentage of the
correctly identified hyperbolic signals out of all the true
hyperbolic signals.
In fact, precision and recall are two incompatible indi-

cators. Increasing the precision tends to cause some of the
hyperbolic signals misrecognized, resulting in a decreased
recall; conversely, increasing the recall tends to cause some
of the background signals to be identified as hyperbolic sig-
nals, resulting in a decreased precision. Therefore, it is not
practical to simultaneously keep both of the indicators at a
high level. For this reason, 𝐹-score is introduced to eval-
uate the performance of the network since it is the har-
monic mean of the precision and recall, as formulated in
Equation (6). In addition, frame per second (FPS), which
reflects the number of the frames that are processed in a
unit time, is introduced to evaluate the processing speed of
the network.
Some other target identification algorithms have been

applied to hyperbolic signal recognition in the radargrams,

TABLE 3 Performance comparison of hyperbolic signal
identification with SSD and YOLO v3 methods

Method Precision (%) Recall (%) 𝑭-score (%) FPS
SSD 92.77 76.61 83.92 9.09
YOLO v3 94.62 95.28 94.45 9.97

of which SSD has proved to be superior to conventional
processing algorithms exemplified by Faster R-CNN (Liu
et al., 2020). To evaluate the performance of YOLO v3 in
hyperbolic signal recognition, the same data set was used
to train and test the SSD network, and the results of the
two algorithms were compared with the aforementioned
indicators. As Table 3 shows, the precision of YOLO v3
is 94.62%, the recall is 95.28%, and the 𝐹-score is 94.45%,
which are higher than those of SSD. In particular, the recall
and𝐹-score of YOLO v3 are significantly higher than those
of SSD, implying that YOLO v3 can recognize a greater
number of hyperbolic signals at a higher accuracy than
SSD. In terms of processing speed, both networks can pro-
cess approximately nine images per second, and the FPS
of YOLO v3 is slightly higher than that of SSD. In practice,
themovement speed of the instrument is limited under the
radargram processing speed to ensure the synchronization
of the on-site data collecting and processing. The current
processing speed of YOLO v3 and SSD can satisfy a real-
time reinforcement bar identification.
The precision–recall (P-R) curve and receiver oper-

ating characteristic (ROC) curve are introduced as the
comprehensive evaluation indicators (Bradley, 1997; Chin-
chor & Sundheim, 1993). The cumulative areas under the



12 LI et al.

(a) (b)

F IGURE 15 Comparison of the performance of SSD and YOLO v3 by (a) P-R curve and (b) ROC curve

(a) (b)

F IGURE 16 Cases that hyperbolic signals are (a)
misrecognized and (b) unrecognized by YOLO v3

P-R curves are called average precision (AP), representing
the performance of the network on recognizing the True
Positives. The area under the ROC curve (AUC) signifies
the probability that the network ranks a random positive
example more highly than a random negative example.
These two areas range value from 0 to 1, which can explic-
itly compare the performance of different networks, where
a larger area implies a higher network performance. In
the reinforcement bar recognition, hyperbolic signals are
treated as positive samples, whereas the background sig-
nals are treated as negative samples.When the ratio of pos-
itive to negative samples is large, the P-R curve can better
reflect the recognition performance.When the positive and
negative samples have similar numbers, theROCcurve has
a strong robustness since it takes both positive and neg-
ative samples into account. Figure 15 shows that the AP
and AUC of YOLO v3 in this study are 94.8% and 94.6%,
respectively, which are higher than those of SSD (75.4%
for AP and 86.3% for AUC, respectively). The comparisons
between the two plots evidently indicate that YOLO v3 out-
performs SSD in hyperbolic signal identification of radar-
grams.
However, there still exist some cases that hyperbolic

signals are misrecognized or unrecognized. Figure 16(a)

shows twomisrecognition cases. In this image, four hyper-
bolic signals reflected by the reinforcement bars are cor-
rectly identified and labeled with bounding boxes; how-
ever, two pseudo target echo signals are wrongly identi-
fied as true hyperbolic signals. The misrecognition of the
first pseudo target signal (on the left side of the image)
is mainly caused by the image segmentation. A contin-
uously measured radargram needs to be segmented into
a series of small-size images for training. Some hyper-
bolic signals adjacent to the edge of the image are trun-
cated and then labeled for training the network. These
parts of signals have high similarity with the pseudo tar-
get signals, and therefore the trained network is prone
to misrecognize the pseudo target signal as a truncated
hyperbolic signal. The other misrecognized signal (in the
lower part of the image) may be aroused by a nonmetal-
lic buried object. For example, a gravel stone with the size
comparable to a steel bar can generate a hyperbolic signal
with the relatively weak amplitude. This signal is possi-
bly recognized as a hyperbolic signal reflected by a rein-
forcement bar once they have some similarities on signal
features.
Figure 16(b) shows an unrecognized case. There are six

hyperbolic signals in the radargram, among which five
are correctly identified and labeled with bounding boxes.
However, at the left bottom of the image, a hyperbolic sig-
nal is not recognized although it is clearly visible. This
is inferred to be caused by the relatively weak amplitude
of the reflected signal. In addition, another possible cause
is that portions of the hyperbolic signal are overlapped
with the adjacent signal reflected from a steel bar. This
inference can be further verified by the hyperbolic signal,
which is located in the left bottom and overlapped by the
upper one. This signal is correctly identified, but its con-
fidence is as low as 0.33. The data from the complicated
scenarios account for a relatively low portion of the data
collected from the buildings, less than 10%. To decrease
the rates of misrecognition and unrecognition, a practical
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(a)

(b)

F IGURE 17 Examples of roughly estimated cover thickness range through radargrams when the true cover thickness is (a) 60 mm and
(b) 5 mm, respectively

solution is to further increase the number of the training
samples, which can represent more complicated and
diverse scenarios.
The radargrams collected in the in-house calibration

experiment are imported to the trained YOLO v3 for
hyperbolic signal identification. All hyperbolic reflection
signals are successfully identified. After data processing,
the ranges of the cover thickness are roughly estimated
and regarded as constraints for the accurate evaluation
of cover thickness and reinforcement bar diameter. Fig-
ure 17 shows two sets of estimated cover thickness range
when the true cover thickness is 60 mm and 5 mm,
respectively.

3.2 Reinforcement bar evaluation

The effective EMI curves, extracted with twice of FWHH,
and the possible range of cover thickness, evaluated by
GPR data, are concatenated into a 1D vector and imported
into the 1D CNN. The estimated values of the cover thick-
ness and diameter of reinforcement bars are exported from
the network. Among the 1898 sets of EMI data, the number
allocation of training sets, testing sets, and validation sets
follow the proportions allocated in the YOLO v3 network,
as stated in Section 3.1. After network training, 380 sets of
EMI data were utilized to evaluate the performance of the
1DCNN. In the training process, themean square errorwas
selected as the loss function. The network employed the
Adam optimizer to implement 5000 iterations with a batch
size of 256 (Kingma & Ba, 2014). The initial learning rate
was 10−3 with a decay factor of 0.1 and a patience of 200.
This signifies that if the validation loss does not decline
after 200 iterations, the learning rate will reduce to one-
tenth of its current value for the convergence of the net-
work.

(a) (b)

(c) (d)

F IGURE 18 Comparisons of estimated results with scatter
diagrams: (a) cover thickness estimated by 1D CNN without any
constraint, (b) cover thickness estimated by 1D CNN under the
constraint of the possible range of the cover thickness, (c) diameter
of reinforcement bars estimated by 1D CNN without any constraint,
and (d) diameter of reinforcement bars estimated by 1D CNN under
the constraint of possible range of the cover thickness

In order to evaluate the performance of the combination
of EMI and GPR data in improving the estimation accu-
racy, a network trained by the sole EMI data was tested,
and the estimated results were compared with the cur-
rentmethod. Figure 18 presents the estimated and true val-
ues of the cover thickness and reinforcement bar diameter
obtained by the two different methods, and Figure 19 com-
pares the statistical distributions of the estimation errors.
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(a) (b)

(c) (d)

F IGURE 19 Comparisons of estimated results with error bars:
(a) cover thickness estimated by 1D CNN without any constraint, (b)
cover thickness estimated by 1D CNN under the constraint of the
possible range of the cover thickness, (c) diameter of reinforcement
bars estimated by 1D CNN without any constraint, and (d) diameter
of reinforcement bars estimated by 1D CNN under the constraint of
possible range of the cover thickness

TABLE 4 Accuracy with different permissible errors

Accuracy
Permissible
error (mm)

Cover
thickness (%)

Diameter
(%)

1 96.8 90.3
2 98.9 98.2
3 100 100

It can be seen that in the sole EMI estimation, there exist
considerable errors, up to 15 mm, between the estimated
and true values (Figures 19(a) and (c)). On the contrary, in
the combinedEMI andGPRmethod, the estimation errors,
both for cover thickness and diameter of reinforcement
bars, are below 3 mm, and the majority of the tested sam-
ples have the estimation errors within 1 mm (Figures 19(b)
and (d)). The comparisons imply that the method com-
bining the cover thickness range as a constraint condition
greatly decreases the estimation errors compared with the
method using the sole EMI data. It is safely concluded that
in the proposed estimation scheme, the range of the cover
thickness, derived by GPR data, plays an essential role in
improving the estimation accuracy.
In practical engineering applications, there exists an

acceptable error range. Table 4 counts the accuracy of the
proposed method when the permissible errors are 1, 2, and
3 mm, respectively. It can be seen that under a permissible
error of 1 mm, over 90% of the reinforcement bars in the

F IGURE 20 Confusion matrix of estimated and true values of
reinforcement bar diameter

experiment are accurately estimated; while once an error
of 3 mm is acceptable, all the reinforcement bars are accu-
rately estimated. The statistical results demonstrate that
the estimation accuracy is sufficient for engineering appli-
cations.
In practical constructions, the used reinforcement bars

have discrete values of diameter with the size intervals of
2, 3, or 5 mm according to the industrial standards (Zhu
et al., 2017). Therefore, the initially predicted values of the
reinforcement bar diameter are artificially classified to the
nearest possible values. In this experiment, the samples of
reinforcement bars have a diameter of 6, 8, 10, 12, 14, 16, 18,
20, 22, 25, and 28, with the size intervals of 2 and 3 mm,
respectively. In this case, if the true diameter of the rein-
forcement bars is 10 mm while the initial prediction is 8.9
mm, then the estimated result is 8 mm instead of 9 mm,
signifying an error of 2 mm. Similarly, if the reinforcement
bar with a true diameter of 22 mm is initially predicted
as 25.5 mm, then the estimated diameter is 25 mm, which
means the estimation error is 3 mm. A confusion matrix
was introduced to assess the deviation between the esti-
mated and true values in the reinforcement bar diameter,
as Figure 20 presents. In the diagram, the reinforcement
bars with the same diameter are treated as an independent
sample category, wherefore there are totally 11 categories.
It can be seen that when the diameter of the reinforcement
bars is smaller than 12 mm or larger than 22 mm, the esti-
mated values agree with the true values; whereas when
the diameter ranges from 12 to 22 mm, the numbers of the
accurately estimated samples account for 81% to 97% of the
tested sample numbers in the respective categories. These
inaccurately estimated samples are classified to their near-
est categories.
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F IGURE 2 1 Specimen experiment photo and acquired data: (a) four casted concrete specimens embedded with 11 round steel bars and
one PVC pipe, (b) GPR radargram after hyperbolic signal recognition and edge extraction, and (c) EMI data before and after FWHH processing

3.3 Verification with specimens

In the concrete environment, the EMI responses are highly
similar with those in the sand (as explained in Sec-
tion 2.1.1); while the GPR data have certain differences as
the permittivity of sand differs from that of concrete. In
this proposedmethod, GPR data are treated solely as a con-
straint condition through roughly evaluating the possible
range of the cover thickness. Therefore, even though the
1D CNN is trained by sand pit data, it can be adapted in
the realistic concrete structures after repredicting the con-
crete permittivity.
To further verify the proposed method, an outdoor spec-

imen experiment was conducted. Four concrete specimens
were casted and cured in the outdoor environment fol-
lowing the industrial criterions, as Figure 21(a) shows. A
total of 11 round steel bars were embedded in the speci-
mens with their diameter ranging from 6 to 28 mm and
cover thickness ranging from 15 to 50 mm. An additional
polyvinyl chloride (PVC) pipe was embedded in one of the
specimens to test the identification ability of the YOLO
v3 network for the pseudo target signals. The dimensions
of the concrete specimens are 1000×250×150 mm3. The
instruments were operated along the survey line on the

specimens, collecting GPR and EMI data. Figures 21(b)
and (c) show the preprocessed radargram and EMI curve,
which were collected on the concrete specimen contain-
ing the PVC pipe. It can be seen that two target signals
reflected from the steel bars were successfully identified
and extracted by the YOLO v3 network and edge extraction
algorithms. The PVC pipe arouses weak reflected waves
relative to the steel bars, and therefore its echo was not
recognized. In the meanwhile, the PVC pipe contains no
metal and therefore contributes nothing to EMI responses.
The EMI and GPR data collected from the specimens

were tested using the well-trained 1D CNN as described
early. The relative permittivity in the concrete was roughly
set from 6 to 11 (Forde et al., 2013). Referring to the instruc-
tion of commercial cover meters and industrial technical
standards on reinforcement bar testing, the permissible
error was set as 1 mm in this experiment (Zhang et al.,
2019). Table 5 shows that among the 22 estimated values,
there are 17 values correctly estimated, while the 5 inac-
curately estimated values have errors of 1 mm or 2 mm.
The testing results from the specimen experiment further
verify the effectiveness and accuracy of the proposed non-
destructive estimation method in the reinforced concrete
structures.
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TABLE 5 The estimation results of cover thickness and diameter of the reinforcement bars by 1D CNN with a permissible error of 1 mm

Cover thickness Diameter
True (mm) Estimated (mm) Error (mm) True (mm) Estimated (mm) Error (mm)
15 15 0 6 6 0
21 21 0 8 8 0
25 25 0 10 10 0
37 37 0 12 12 0
35 35 0 14 14 0
42 42 0 16 18 2
32 34 2 18 18 0
38 39 1 20 20 0
43 43 0 22 20 −2
46 48 2 25 25 0
50 50 0 28 28 0

4 DISCUSSION

The results from the experiments with in-house sand pit
and concrete specimens indicate that the proposedmethod
can autonomously and accurately evaluate the diameter
of reinforcement bar and cover thickness. The deep learn-
ing algorithm YOLO v3, which has been widely applied
to the general target identification in the image process-
ing field, is verified to have the capability of recognizing
echo signals in GPR images. The successful application is
based on the principle that a mass of hyperbolic signals
are treated as typical image features to train the YOLO v3
network. As previously mentioned, the sole EMI data tend
to bring about multiple solutions when inferring the rein-
forcement bar diameter and cover thickness. The introduc-
tion of GPR data can provide extra information to charac-
terize the position features of the reinforcement bars. The
cover thickness derived by GPR data, in spite of a rough
range, can impose an essential constraint on the interpreta-
tion of EMI data, wherefore relieves the multiple solutions
and improves estimation accuracy. The 1D CNN, primarily
consisting of multiple Conv layers, can fuse GPR and EMI
data, and autonomously map the features of EM signals
with the cover thickness and the diameter of the reinforce-
ment bars.
In the experiments of hyperbolic signal identification,

there are still few reflected signals unrecognized ormisrec-
ognized in certain complicated scenarios. The phenomena
are due to the fact that the samples in the training set do not
represent all realistic possibilities. In principle, increasing
the sample amount of field data in different scenarios can
further improve the performance of the network (Chen &
Lin, 2014). However, it costs more human resources, and
some special scenarios are not often encountered in the
realistic environments. When estimating the cover thick-
ness and diameter of reinforcement bars with 1D CNN,

the estimation errors are primarily produced from two
aspects: (1) the noise arising from the instrument system
and the external environments and (2) the deviation of
the roughly estimated wave velocity from its true value.
The formermainlymakes influence on the EMI responses,
whereas the latter on the GPR estimated cover thickness
range. To relieve the noise effects, a practical solution is
to make multiple measurements on the same reinforce-
ment bars, as have been conducted in the sand pit experi-
ments. The errors brought by the roughly estimated wave
velocity range can be decreased if a narrow velocity range
is imposed. However, the following problem is that the
robustness of the network will decline.
In the realistic reinforced concrete structures, round

steel bars and ribbed steel bars are two types of frequently
used reinforcement bars. The proposed method and work-
flow are applicable to inspect and estimate these two types
of reinforcement bars. In the target signal identification
with YOLO v3, the GPR echo signals, whether reflected
by round steel bars or ribbed steel bars, have the same
hyperbolic shapes if they have the same cover thickness
and diameter (Wiwatrojanagul et al., 2017). Although there
exist slight differences in the reflectedwave strength due to
the different roughness of the steel bar surfaces, the identi-
fication of the hyperbolic signals is not influenced because
YOLO v3 recognizes the reflected signals based on the geo-
metric features of the hyperbolas. Therefore, the YOLO v3
network, which has been trained by the field GPR data,
can be directly applied to the scenarios of round and ribbed
steel bars without retraining. In the reinforcement bar esti-
mation with 1D CNN, although the network is trained by
the data calibrated by round steel bars, the correspond-
ing algorithm and workflow can be extended to the esti-
mation of ribbed steel bars, only if the calibration data
are recollected from ribbed steel bars and the network is
retrained. Theoretically, the same estimation accuracy can



LI et al. 17

be acquired. However, one of the potential challenges is
that the unevenness of the ribbed steel bar surface requires
high-precise experimental settings and elaborated opera-
tions when measuring the calibration data. Besides, the
ribbed steel bars generally have three kinds of azimuthal
distributions of ribs on the surface, that is, spiral shape,
herringbone shape, and crescent shape (Zhu et al., 2018);
and the steel barswith differentmodels have different alloy
compositions (A.R.C, 2010; Manera et al., 2008). The two
aspects influence the intensity of the EMI responses to
some extent. Therefore, special attention is to be paid to the
following points: (1) the inspected ribbed steel bars should
be ensured in strict conformancewith the industrialmanu-
facturing and processing standards and (2) their types and
models should accord with those of the calibrated ribbed
steel bars.
There are still some limitations on the practical appli-

cations of the current method. First, the conducted exper-
iments present a single layer of reinforcement bars with
considerable spacings between each other, where the adja-
cent bars have a negligible influence on the EM response
of the target steel bars (Forde et al., 2013). However, in
some realistic environments, there exist closely aligned,
staggered, or welded reinforcement bars, where the mea-
sured EMI data cannot accord with the calibration EMI
curves due to the interference from the other metal objec-
tives or components. In principle, the proposed deep learn-
ing method has the potential to solve these complicated
problems once the network is trained by sufficient sam-
ple data collected in the corresponding circumstances.
However, extra prior knowledge is indispensable because
more unknowns are involved. These considerations, in
turn, require that in the on-site data collections of the
current method, the measurement lines should be kept
away from the welded and crosspoints. Second, the cur-
rent work does not consider the corrosion of the reinforce-
ment bars because the corrosion checking generally occurs
in the late phase of construction rather than in the accep-
tance inspection phase (James et al., 2019). Corrosion of
reinforcement bars has influence on the induced EM sig-
nals because the chemical components of the metal have
changed. It is fairly worthy of investigating the quantita-
tive relationship between the EM responses and the corro-
sion rate of the steel bars for assessing the quality of the old
buildings.
Due to the limitation of the penetrating range of the

instruments (see the statement in Section 2.1.1), the pro-
posed method focuses on the applications in the residen-
tial buildings. However, the method and workflow can be
extended to some similar NDT environments in civil and
infrastructure engineering, typically exemplified by bridge
pier, underground metal pipes, and pile foundation. In
these scenarios, metallic annular or columnar objectives

are embedded in concrete or soil at a relatively large depth,
and an instrumentwith deeper detection range are needed.
From the angle of algorithm development, the proposed

deep learning algorithms can be further improved in the
future work to cope with the identification and evalua-
tion of reinforcement bars in the complicated scenarios
mentioned above. The current study does not address the
feature space that effectively characterizes the steel bar
properties in the networks, which is actually important in
improving the algorithms per se. In addition, it is worthy
of investigating the feasibility of adopting some new deep
learning algorithms in the current application. For exam-
ple, neural dynamic classification, which can discover
the most effective feature space, is especially valuable to
investigate the fused data of reinforcement bars (Rafiei
et al., 2017). Furthermore, a majority of deep learning
algorithms adjust the hyperparameters through trials and
errors,which is labor- and time-consuming. Some adaptive
algorithms, such as dynamic ensemble learning, have the
capability of automatically optimizing the hyperparame-
ters of the designed networks during the training, which
may be appealing for the NDT applications (Alam et al.,
2020). From the view of the intelligent instrument devel-
opment, the proposed deep learning algorithms are to be
transplanted onto an embedded system small-size elec-
tronic board integrated by microprocessors, which will be
convenient for a real-time testing and estimation on the
site (Mittal, 2019).

5 CONCLUSIONS

The current paper describes a deep learning–based strat-
egy to evaluate the cover thickness and diameter of steel
bars in reinforced concrete structures with combined GPR
and EMI data. The proposed framework consists of two
parts: (1) identification of hyperbolic signals in radargrams
and (2) estimation of reinforcement bar diameter and cover
thickness. In the hyperbolic signal recognition, a trained
YOLO v3 network is used to identify target echo signals,
which are characterizedwith hyperbolas, from radargrams
collected in the residential buildings. The testing results
show that 𝐹-score of YOLO v3 is 94.5%, AP is 94.8%, and
AUC is 94.6%. Compared with the SSD method, YOLO
v3 demonstrates a higher performance in identifying GPR
hyperbolic signals. In the evaluation of reinforcement bar
properties, a 1D CNN is trained with the EMI data cali-
brated in an in-house sand pit setup under the constraint
of GPR estimated cover thickness range. The testing results
show that under the permissible error of 1 mm, the estima-
tion accuracy of the cover thickness and diameter of the
reinforcement bars is 96.8% and 90.3%, respectively. Exper-
iments with concrete specimens, which are configured by
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22 estimated values of reinforcement bars, show that 17 val-
ues are accurately estimated and the error for the inaccu-
rately estimated values is within 2 mm. The results further
verify the effectiveness of the proposed method in rein-
forced concrete estimation. The study suggests that in the
NDT and estimation of reinforcement bars, deep learning
algorithms have the potentials of improving the efficiency
of data processing and interpretations, and a well-trained
deep learning network can take full advantage of the infor-
mation contained in the multiple-source data to improve
the estimation accuracy. Deep learning demonstrates great
prospects in the NDT and estimation of civil and infras-
tructure engineering.
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