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The pressing need to mitigate climate change and
drastically reduce environmental pollution and loss
of biodiversity has precipitated a so-called energy
transition aimed at the decarbonization of energy
and defossilization of the chemical industry. The
goal is a carbon-neutral (net-zero) society driven
by sustainable energy and a circular bio-based
economy relying on renewable biomass as the raw
material. It will involve the use of green carbon,
defined as carbon derived from terrestrial or aquatic
biomass or organic waste, including carbon dioxide
and methane emissions. It will also necessitate
the accompanying use of green hydrogen that is
generated by electrolysis of water using a sustainable
source of energy, e.g. solar, wind or nuclear. Ninety
per cent of the industrial chemicals produced in oil
refineries are industrial monomers that constitute
the precursors of a large variety of polymers,
many of which are plastics. Primary examples of
the latter are polyolefins such as polyethylene,
polypropylene, polyvinyl chloride and polystyrene.
Polyolefins are extremely difficult to recycle back
to the olefin monomers and discarded polyolefin
plastics generally end up as the plastic waste that is
responsible for the degradation of our natural habitat.
By contrast, waste biomass, such as the lignocellulose
contained in forestry residues and agricultural
waste, constitutes a renewable feedstock for the
sustainable production of industrial monomers and
the corresponding polymers. The latter could be the
same polyolefins that are currently produced in oil
refineries but a more attractive long-term alternative
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is to produce polyesters and polyamides that can be recycled back to the original monomers:
a paradigm shift to a truly bio-based circular economy on the road to a net-zero chemical
industry.

This article is part of the discussion meeting issue ‘Green carbon for the chemical industry
of the future’.

1. Introduction

There is mounting global support for the mitigation of climate change by drastically reduc-
ing the carbon footprint of chemicals manufacture and eliminating the vast environmental
pollution resulting from the massive amounts of waste generated, directly or indirectly, by
the chemical and allied industries. This forms the prime motivation for a paradigm shift to a
carbon neutral, circular economy [1,2]. In order to maintain global warming below the 1.5°C
specified in the Paris Agreement, all anthropogenic CO; emissions will need to reach net zero
by mid-century. The chemical industry accounts for ca 2 billion tonnes of CO; emissions per
annum, which corresponds to 5% of total greenhouse gas (GHG) emissions [3]. In order to
achieve the net-zero goal, the chemical industry must undergo a complete metamorphosis
to emerge as a truly sustainable carbo-chemical industry [4,5]. The linear flow of materials
that pervades the twentieth century consumer society is not appropriate for addressing the
ecological challenges that society currently faces.

The root cause of these ecological problems is waste, in its many manifestations [6]. It
includes the prodigious amounts of CO, generated as waste by the processing of fossil
resources, waste from plastics used for packaging, food supply chain waste (FSCW) and
industrial waste produced by the chemical and allied industries such as steel and cement
manufacture (see figure 1).

2. The worldwide chemical industry

Chemicals manufacture has always been based on raw materials produced as waste from other
industries. In the mid-nineteenth century coal was used to provide the energy needed to drive
the wheels of the industrial revolution. In 1856, W. H. Perkin, in an attempt to synthesize
quinine for the treatment of malaria, by oxidation of toluidine with potassium dichromate,
serendipitously invented the synthetic dye, mauveine [7]. Toluidine is a constituent of coal-tar,
a waste material derived from the use of coal as an energy source, and this monumental
invention formed the basis for a chemical industry based on coal tar as the basic raw material.

The first petrochemicals, ethylene and propylene, were produced in West Virginia, USA, in
1921 by thermal cracking of ethane and propane, waste products of petroleum (oil) refining
[8]. This marked the advent of the petrochemical industry as a spin-off of oil refining for the
production of liquid fuels. It subsequently led in the 1930-1950s, to a flourishing petrochemical
industry based on lower olefins and aromatics, the by-products of oil refining for transportation
fuels. The industry had its heyday in the 1960s and 1970s but suffered a serious hiccup in
October 1973 when the Arab members of the Organisation of Petroleum Exporting Countries
imposed an oil embargo on countries—the United States, United Kingdom, Canada, Japan and
The Netherlands (and later South Africa)—that had supported Israel during the Arab-Israeli
conflict in 1973. It resulted in an immediate increase in the price of crude oil, from $2.90 to
$11.65 per barrel in January 1974.

Although the embargo was lifted in March 1974, the first ‘oil crisis’ sent shock waves
through the global oil industry, with long-term effects on geopolitics and the global economy.
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Figure 1. The ubiquity of waste.

It sent a particular message to the major oil companies worldwide. The message was this: we
better start thinking about how we will produce commodity chemicals and liquid fuels if we
have no or limited access to crude oil as the feedstock?

The technical solution was waiting in the wings. Coal was still an inexpensive, readily
available and popular raw material back in 1974 when there was no talk of a road to carbon
neutrality despite the Limits to Growth Report of the Club of Rome published in 1972 [9] and
the UN Conference on the Human Environment, held in Stockholm in the same year [10],
which was the first conference to mention climate change. Coal is a solid and more difficult
to process than a liquid such as crude oil. On the other hand, coal gasification processes were
already known at the time. Hence, the oil crisis led to renewed interest in chemicals from coal,
especially because the oil to coal price ratio had dramatically increased as a result of the oil
crisis. Moreover, it was also acknowledged that coal could be replaced by any biomass as the
feedstock [11].

There were basically two technologies for converting coal to liquid hydrocarbons: hydroge-
nation (Bergius process) and gasification to a mixture of carbon monoxide and hydrogen,
known as syngas, followed by the Fischer-Tropsch process to convert the syngas to hydrocar-
bon fuels (figure 2). Similarly, bulk chemicals could be produced from syngas but it was
recognized that if transport from remote locations was needed, the syngas could be first
converted to methanol, which could be easily transported to the desired location where, if
necessary, it is converted back to syngas or processed further as in Olah’s methanol economy
[12]. Oil-based petrochemicals manufacture in oil refineries is still the underpinning technology
but it is coming under increasing pressure to change in the envisaged decarbonization of the
energy sector and defossilization of chemicals manufacture on the road to sustainable chemicals
manufacture with net-zero GHG emissions.

Currently, ca 400 million tonnes per annum of lower olefins and aromatics (base chemicals)
are produced from fossil feedstocks: oil, coal and natural gas. Roughly, 90% of these base
chemicals are further converted to a wide variety of polymers, most of which are plastics. One
could say therefore, that the petrochemical industry is primarily a plastics industry using lower
olefins and aromatics, derived from fossil resources, as the major feedstocks. This situation is
not sustainable in the current drive to reduce GHG emissions and plastic waste in the environ-
ment that are the root causes of climate change and environmental degradation, respectively.

What has changed in the last 50 years with regard to the challenges and the possible
solutions?

Challenges:

— Climate change: the road to net zero
— The decarbonization of energy: coal no longer a viable option
— The defossilization of chemicals manufacture
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Figure 2. Conversion of coal to commodity chemicals via syngas.

— The plastic pollution challenge

Solutions:

— Sustainable electricity from wind, solar and nuclear energy

— The circular bio-based economy

— Chemicals from renewable biomass

— The ascendance of biocatalysis as an enabling sustainable technology

With regard to technical solutions the influence of biocatalysis cannot be overestimated. As a
result of spectacular developments in protein engineering and directed evolution, underpinned
by advances in (meta)genomics and bio-informatics, the scope and power of both whole cell
and cell-free biocatalysis have made it the method of choice for a variety of transformations.
Syngas fermentation to directly afford a variety of commodity chemicals, for example, was
not on the agenda 50 years ago. Enzymatic recycling of polyethylene tetraphthalate (PET) and
related polyester plastics is rapidly becoming a viable solution to the plastic pollution problem
caused by these polymers (see later). What is clearly needed, therefore, is a transformation to
a Circular Carbo-Chemical Industry (Waste to Wealth) based on a renewable feedstock and
resulting in a drastic reduction in waste plastics. Indeed, the valorization of waste biomass is at
the very heart of the bio-based economy.

3. Waste in the chemical industry: the E-Factor and beyond

In 1992, we introduced the E(nvironmental)-Factor that drew attention to the enormous
amounts of waste generated in the production of fine chemicals and pharmaceuticals [13].
The E-Factor was defined as ‘everything but the desired product’, including, by definition,
carbon dioxide formed as a by-product of energy usage. The enormous amounts of waste
could be largely attributed to the widespread use of reactions, such as reductions and oxida-
tions, involving stoichiometric amounts of mainly inorganic reagents. The solution was clear:
replace such antiquated stoichiometric methodologies with greener, catalytic alternatives, such
as catalytic hydrogenation and catalytic oxidations with dioxygen or hydrogen peroxide. This
was not only limited to fine chemicals and pharmaceuticals. In some cases, the production
of industrial monomers for bulk polymers afforded substantial amounts of inorganic salts as
waste. Prominent examples included 3 kg of calcium chloride per kg of propylene oxide and 4.5
kg of ammonium sulfate per kg of caprolactam [14]. In the meantime, these processes have been
largely displaced by cleaner catalytic alternatives.

The E-Factor also included waste, expressed as kg of CO,, generated from the energy
consumption in the process but the data were generally not widely available in 1992. How-
ever, the currently envisaged energy transition to net zero necessitates a decarbonization of
the energy sector and a defossilization of chemicals manufacture. In this scenario, the carbon
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Figure 3. Chemicals from carbon dioxide, water and sustainable energy.

footprints of products are continually increasing and the amounts of CO;, generated have
become part of the equation. Relevant numbers include [4]:

— The organic chemical industry accounts for ca 5% of global CO, emissions.
— Base chemicals production accounts for 1-2.5 kg COy/kg product.

— Plastics production accounts for 2.5 kg COy/kg product, which becomes 5 kg COy/kg
product when use and disposal are included.
— Co-production of 5-10 kg inorganic waste in the whole chain of some plastics production.

4. The chemical industry of the future

It is important to note [4] that in the near future, as a result of extensive decarbonization of
the energy sector, there is more likely to be an excess rather than a shortage of fossil resources
for chemicals production. Taken together with the expectation that defossilization will likely be
a slow process, this means that there will very likely be an excess of fossil feedstocks that the
petrochemical companies will mobilize for chemicals manufacture. However, from the point of
view of continuity, it makes more sense to transform the industry into chemicals production
based on green hydrogen, generated by electrolysis of water or valorization of waste, e.g. waste
plastics [15] using a sustainable source of electricity [16] and a source of green carbon or carbon
waste, e.g. carbon dioxide (figure 3) or waste plastic.

First, we need to clearly define what we mean by green hydrogen and green carbon. A whole
rainbow of colours is currently used to distinguish between the different origins of the carbon
and hydrogen. The hydrogen rainbow is shown in figure 4 [17]. Green hydrogen is hydrogen
produced by electrolysis of water using green electrons from a sustainable source of energy. The
latter is currently viewed as being solar, wind, hydroelectric or geothermal energy. Hydrogen
produced using solar energy is also designated as yellow hydrogen which would seem to be
superfluous.

Hydrogen produced using nuclear energy is designated as pink hydrogen. However, there
are convincing arguments for considering nuclear energy to be sustainable and green [18].
In the energy option, ‘sustainable’ implies the ability to supply energy for indefinitely long
periods on a timescale spanning civilizations without depriving future generations and in a
way that is environmentally friendly, safe, reliable and economically viable. This is particularly
the case with modern fast-neutron uranium fission reactors. In the longer term, thorium molten
salt fast reactors could be an even more attractive proposition [19]. Another recent development
that could benefit the use of nuclear energy in chemical manufacturing facilities is the use of
small modular reactors that deliver low carbon energy at a reasonable price [20].

The carbon rainbow is shown in figure 5 [21]. In this scenario, the term green carbon
is currently restricted to carbon from terrestrial plants. Carbon stored in ocean plants and
sediments is regarded as blue carbon and carbon stored in fresh water and wetlands as teal
carbon. Red carbon is reserved for carbon released through biological particles on snow. Purple
and grey carbon are carbon captured from air or industrial emissions and carbon released
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Green Hydrogen Electrolysis of water with renewable energy (solar, wind,
hydroelectric, geothermal)

Yellow Hydrogen Electrolysis using solar energy

Pink Hydrogen Electrolysis using nuclear energy

Blue Hydrogen Natural gas / methane steam reforming

Turquoise Hydrogen Methane pyrolysis to hydrogen and carbon

Grey Hydrogen Methane steam reforming

Brown Hydrogen From lignite (brown coal)

Black Hydrogen From black coal

Green Hydrogen Electrolysis of water with sustainable energy (solar, wind,
hydroelectric, geothermal, nuclear)

Black Hydrogen Hydrogen from unsustainable fossil resources
Figure 4. The hydrogen rainbow.

through industrial emissions. Brown carbon is carbon released by incomplete combustion of
organic matter. We propose that this be simplified to: green carbon is carbon stored in terres-
trial, ocean and freshwater plants and algae. Brown carbon is carbon from industrial emissions
and combustion of fossil resources.

5. Chemicals from biomass valorization: the bio-based circular economy

By analogy with the production of chemicals and liquid fuels from coal envisaged in the
1970s, lignocellulosic waste can be chemo-catalytically converted to the same products (figure
6) via gasification to syngas followed by methanol synthesis or Fischer-Tropsch conversion to
hydrocarbons [22,23]. Alternatively, fermentation of syngas using acetogenic bacteria produces
essentially the same pallet of products as that produced by the fermentation of glucose [24]. It
has also been integrated with microbial electrosynthesis (MES) in the production of acetic acid
[25].

Waste lignocellulosic biomass also provides a range of monomers and polymers that have
the potential to replace petrochemical-based materials in a wide range of applications [26]. For
example, hydrolytic conversion (saccharification) of lignocellulose affords Cg and Cs monosac-
charides, e.g. glucose and xylose, that are subsequently fermented to ethanol, and a variety
of other alcohols, diols and dicarboxylic acids for use as industrial monomers [27]. Indeed,
defossilization of chemicals manufacture, by switching to a Circular Carbo-Chemical Industry
based on waste biomass as feedstock (Waste to Wealth), that is regenerative by design [28], is
the quintessence of the bio-based economy.

In a circular economy, natural resources are preserved and waste is reduced or, better still,
eliminated by designing products for recycling and reuse. It corresponds with the concept of
sustainable development, which requires that a technology fulfil two conditions: (i) the rate
of consumption of natural resources should not deplete supplies over the long term and (ii)
the rate of residue generation should be no higher than the natural environment can readily
assimilate [29,30]. As the iconic Barry Commoner already remarked in 1971:

‘Here is the great fault of the life of man in the ecosphere [31]. We have broken out of the circle of life,
converting its endless cycles into man-made linear events: oil is taken from the ground, distilled into
fuel, burned in an engine, converted thereby into noxious fumes which are emitted in the air.”

Currently, the bio-based economy is based almost exclusively on first generation (1G)
feedstocks consisting primarily of corn and cassava starch, sugar cane and sugar beet and
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Green Carbon Carbon stored in terrestrial plants

Blue Carbon Carbon stored in ocean plants and sediments

Teal Carbon Carbon stored in freshwater and wetlands

Red Carbon Carbon released through biological particles on snow

Purple carbon Carbon captured through air or industrial emissions

Grey Carbon Carbon released through industrial emissions

Brown Carbon Carbon released by incompete combustion of organic matter
4

Green Carbon Carbon stored in terrestrial, ocean and freshwater plants, algae

or produced using green hydrogen from carbon captured from air
Brown Carbon Carbon from industrial emissions & combustion of fossil resources

Figure 5. The carbon rainbow.
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Figure 6. Conversion of lignocellulose to chemicals and biofuels.

triglycerides from vegetable oils such as rape seed oil. However, their use as feedstocks for
chemicals manufacture is not perceived as sustainable in the longer term because of competi-
tion, directly or indirectly, with food production. By contrast, second generation (2G) biomass
feedstocks, comprising lignocellulose, hemicellulose, pectin and chitin, are not used in food
production. In addition, various aquatic polysaccharides from micro- and macro-algae, that
differ structurally from terrestrial counterparts, are potential feedstocks for third generation
(3G) biorefineries [32,33].

Lignocellulosic waste contained in agricultural and forestry residues, constitutes a suitable
feedstock for valorization to commodity chemicals in integrated biorefineries [34,35]. It is
generated, in the form of sugar cane bagasse, sugar beet pulp, cassava pulp [36], corn stover,
wheat straw and rice straw, in hundreds of millions of tonnes per annum [37], far exceeding the
annual global production of the major petrochemicals, ethylene (150 million tonnes), propylene
(90 million tonnes) and para-xylene (40 million tonnes). Valorization of this waste is at the heart
of a bio-based circular economy [38-40]. Similarly, ca 1.3 billion tonnes per annum [41] of FSCW,
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corresponding to ca 30% of total food production [42-44], can be converted to value-added
products.

Historically, the goal of lignocellulose biorefining was to produce high-quality cellulose for
paper manufacture. However, the harsh conditions resulted in irreversible degradation of the
lignin to an intractable material that is only suitable for use as an inexpensive energy source. By
contrast, it is now acknowledged that economic viability depends on the valorization all three
components of lignocellulose, that is cellulose (35-50%), hemicellulose (20-35%) and lignin (10—
25%). Lignin is potentially an important source of renewable aromatic building blocks. This
led to the design of ‘lignin first’ pretreatment concepts [45,46] that rely on the stabilization of
reactive lignin intermediates during lignocellulose fractionation.

(a) Bio-based building blocks and polymers

The motivation for switching to bio-based plastics is to reduce CO; emissions but their facile
recyclability and biodegradability can also be valuable assets. Bio-based polymers are divided
into two categories: drop-in replacements and new bio-based polymers [47]. The former are
chemically identical to their petrochemical counterparts but are, at least partially, produced
from renewable biomass. Examples include polyethylene (PE) from bioethanol and PET from
bioethylene glycol. The overall market leader is drop-in bio-based PET with a 20% bio-based
carbon content, derived from bioethanol (2 C atoms) and fossil-derived p-xylene (8 C atoms).
Currently, much research effort is devoted to the synthesis of bio-based terephthalic acid, which
would enable the production of 100% bio-based PET.

On the other hand, PET could be substituted with polyethylene furandicarboxylate (PEF), a
fully bio-based alternative developed by Avantium [48]. PEF is produced from (bio) ethylene
glycol and an ester of furan-2,5-dicarboxylic acid (FDCA). The latter is prepared by chemo- [49]
or biocatalytic oxidation [50-52], or electro-catalytic oxidation [53,54] of 5-hydroxymethylfurfu-
ral (HMF) or 5-chloromethylfurfural (figure 7) [55]. In addition to being 100% bio-based, i.e.
carbon neutral, PEF has superior mechanical, thermal and gas barrier properties compared with
PET and is processed in the same way and using the same machinery as PET [56,57]. Similarly,
a variety of carbon neutral bio-polyesters (see figure 7 for structures), derived from FDCA and
bio-based diols, such as 1.3-propane diol and 1,4-butane diol, have been commercialized [58]
and the topic has recently been reviewed [59]. The various possibilities for replacing PET by
PEF and analogous fully bio-based alternatives formed the subject of a tutorial review [57].

It is also noteworthy that plastic films have been made from natural biopolymers such as
starch and chitosan [60,61] and polyhydroxy alkanoates (PHAs; see §5b).

(b) The way forward

As we move towards a circular bio-based economy involving the replacement of fossil
hydrocarbon resources (oil and gas) with sustainable polysaccharides from waste biomass,
we are substituting low oxidation state hydrocarbons with high oxidation state carbohydrates
as feedstocks. On the other hand, ca 90% of the products of the petrochemical industry are
polymers and the largest group of polymers are the polyolefins, particularly PE and PP. These
very same polyolefin plastics are by far the major cause of plastic pollution (see §6) and they
cannot be recycled to the original monomers to achieve a circular economy.

Consequently, the business as usual scenario of defossilization that involves conversion of
renewable biomass to low-valent olefins, in an update of the 1973 model (see §2), e.g. via syngas
or by fermentation of glucose to ethanol and dehydration of the latter to ethylene, is not circular
as there is no recycling back to the monomers.

By contrast, bio-based condensation polymers (see figure 8), such as polyesters (e.g. PET
and PEF) and polyamides involve monomers, e.g. diesters and diamides, respectively, that are
in higher oxidation states than olefins and can be produced by fermentation of sugars. In
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Figure 7. Production of PEF and related polyesters.

contrast to polyolefins, recycling of polyesters and polyamides to the constituent monomers is,
in principle, feasible via chemo- or biocatalytic methods. Moreover, in addition to being more
easily recycled, bio-based condensation polymers [62,63] are generally safer, and biodegradable
[64,65].

The downside is that bio-based condensation polymers are currently more expensive to
produce than the polyolefins they seek to replace. It is noteworthy, however, that the cost-price
of polyolefins has been optimized over a period of more than 70 years, whereas the correspond-
ing polyesters have not yet reached their optimum cost of goods. However, application of
the principle of extended producer responsibility (EPR), whereby the costs of treating and/or
disposing of waste are integrated into the cost of goods of plastics, would result, overnight, in a
much more favourable cost differential for polyester replacements [66].

What is the conclusion? As we move from an unsustainable polyolefins industry based on
oil and gas to a carbon neutral polymer industry based on renewable biomass, we have the
chance to combine the envisaged defossilization of the polymer industry with seriously starting
the change to a truly sustainable polymer industry based on condensation polymers, such as
polyesters and polyamides, that can be recycled back to the original monomers. The substantial
progress in the use of metabolic pathway engineering [67,68] to optimize existing biochemical
pathways or to develop new pathways for the fermentative production of bio-based monomers
such as diols and di-carboxylic acids lends significant support to this change. In short, this is
a unique moment in the history of the chemical industry. Can we afford to miss this golden
opportunity for designing and implementing this long-awaited transmutation of the plastics
industry?

6. The plastic pollution challenge

We cannot imagine a world without plastics today. However, the massive contamination by
single-use plastics (SUPs) has a devastating effect on our natural environment. These plastics
are produced from fossil-derived hydrocarbons, notably ethylene, propylene and aromatics.
The largest volume non-fibre plastics are PE (36%), polypropylene, PP (21%) and polyvinyl
chloride (12%), followed by PET, polystyrene (PS) and polyurethanes. Together, these seven
products account for 92% of all the polymers that were ever made. Polyesters, particularly
PET, account for most of the fibre production. Single-use applications in packaging, primarily
involving PE, PP and PET, involves 42% of all non-fibre plastics.
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In the period 1950-2015, the cumulative generation of primary and secondary (recycled)
plastic waste amounted to 6300 million tonnes [69], of which ca 800 million tonnes (12%) was
incinerated and 600 million tonnes (9%) was recycled. Roughly, 4900 million tonnes, i.e. 60%
of all the plastics ever made, were discarded and accumulated in landfills or in the natural
environment. Clearly, single-use application of non-biodegradable plastics is unsustainable and
must be replaced by a circular economy in which plastics are designed for recyclability. None of
these currently used plastics biodegrade in the natural environment but sunlight can cause their
fragmentation into microplastics (50 um-5 mm) [70] or nanoplastics (less than 0.1 um) [71], the
long-term environmental impact of which is largely unknown.

(a) Enzymatic synthesis of (bio-based) polyesters and polyamides

The sustainability of polymers is also enhanced by using green enzymatic methods for their
production. This is not feasible with polyolefins, but polyesters [72-74] and polyamides [75] are
amenable to enzymatic production. Polybutylene succinate (PBS), for example, is biodegradable
and produced from raw materials—1,4-butane diol and succinic acid—that are derived from
renewable biomass. Applications, in biodegradable thermoplastics, require a high-molecular
weight (>20 000) polymer, the production of which requires the use of organometallic catalysts
at elevated temperatures (>190°C). This results in discoloration and difficult removal of residual
amounts of metals from the polymer. By contrast, PBS with a molecular weight of 38000
was produced by polymerization of diethyl succinate with 1.4-butane diol catalysed by the
well-known lipase, Nov435, at 95°C in diphenyl ether as solvent [76] to create a single liquid
phase.

Bio-based polyesters and polyamides can be produced by Nov435 catalysed reaction of
FDCA esters with diols [11] or diamines [77]. Similarly, the diol produced by hydrogenation
of HMF (2,5-bis-hydroxymethylfuran (BHMF)) can be converted to polyesters by Nov435
catalysed polymerization with esters of dicarboxylic acids, including FDCA (figure 9).

Lactic acid is a prime example of a commodity chemical produced by fermentation and
polylactic acid (PLA) is 100% bio-based. It is also biodegradable but only under certain
conditions, i.e. strictly speaking, it is industrially compostable. It is the most well-established
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Figure 9. Nov435 catalysed synthesis of biobased polyesters and polyamides.

bio-based polymer with a production of 195000 tonnes per annum in 2015 and is expected to
grow substantially in the future [78].

The structurally similar PHAs are examples of new bio-based polymers that are biodegrad-
able, even in cold sea water (figure 10). PHAs are responsible for energy and carbon storage
in certain species of acetogenic bacteria, such as Plasticicumulans acidivorans, and can comprise
up to 90% of the dry weight of the microorganism [79]. Whereas industrial monomers can
be produced from waste lignocellulose, PHAs can be produced directly from any organic
waste, such as FSCW [80] or even waste plastics such as PS [81]. Some PHAs are suitable for
producing plastic films and are potential replacements for polyolefins as SUPs in packaging
but the current high cost of goods is a serious obstacle. This scenario would change drastically
by application of EPR. A recent review of the environmental impact of bio-based plastics
[82] concluded that substitution of two-thirds of the global plastics demand with bio-based
alternatives would deliver an annual reduction of 241-316 million tonnes of CO, equivalents.

7. E-biorefineries: electrons as reagents

In the chemical industry of the future, sustainable, green electricity will be used to con-
vert waste carbon—as CO; (or methane) or waste biomass—into commodity chemicals and
corresponding downstream polymers in e-biorefineries [83-85]. As discussed in §4, green
hydrogen, derived from water electrolysis, can be used in the catalytic hydrogenation of CO;
to syngas and be followed by further conversion to chemicals and liquid fuels. However, in an
e-biorefinery, the hydrogen and the CO could be coproduced by electrolysis of a mixture of
water and CO,. This could involve concurrent generation of CO and Hj in the same electrolyser
cell or separated generation of CO and Hj in two different electrolysers. Raya-Imbernon et al.
[86] compared these two approaches, using a combination of experimental data and techno-eco-
nomic analysis, and came to the conclusion that the most economical way of producing syngas
is by operating a CO; electrolyser with the goal of producing only CO as the final product
and then coupling it to a polymer electrolyte membrane electrolyser for Hp supply. Since many
industries rely on a consistent supply of syngas, the electrochemical reduction of CO; and water
to syngas can contribute to their transformation to become more sustainable and eventually
carbon negative [87].
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Figure 11. Electrobiocatalytic deracemization of a secondary alcohol.

(a) The renaissance of organic electrosynthesis

Future scenarios with widespread availability of sustainable electricity have led to a verita-
ble renaissance in organic electrosynthesis as an environmentally friendly methodology in
which electrons serve as green and sustainable reagents to replace stoichiometric oxidants
and reductants with low waste and correspondingly low E-Factors [88]. A prominent example
is the use of the well-known aminoxyl radicals TEMPO or derivatives thereof, such as 4-acet-
amido-TEMPO, as catalysts in the electrocatalytic oxidation of alcohols [89]. In particular, in the
context of renewable biomass conversion, water soluble biomass-derived hexose and pentose
building blocks and their downstream products are particularly interesting substrates for such
electrocatalytic oxidations. For example, 5-HMF (see earlier) was efficiently converted under
mild conditions, to either 2,5-FDCA or 2,5-BHMF, using a carbon-supported silver catalyst
(Ag/C) as the cathode catalyst together with the homogeneous 4-acetamido-TEMPO, and an
inexpensive carbon felt electrode. The insensitivity of the oxidation to anode potential made
it feasible to conduct HMF reduction to BHMF at the cathode and oxidation to FDCA at the
anode, in a single divided cell operated under cathode potential control, to achieve high yields
of BHMF (85%) and FDCA (98%) and a combined electron efficiency of 187% [90]. Another
interesting possibility is in situ electrolytic generation of hydrogen peroxide [91], which can
then be used for selective oxidation of a variety of substrates.

(b) Electrobiocatalysis

Sustainable electricity can also be utilized to drive biocatalytic processes involving whole-cell
or cell-free biocatalysis. An example of the former is MES in which the electricity is coupled
to the carbon and energy metabolism of electroactive acetogenic bacteria that mediate the
conversion of a mixture of CO, and water to acetic acid, ethanol, formate and methanol [92,93].
The production of bio-based acetic acid using acetogenic bacteria could provide a commercially
viable route for producing acetic acid from carbon capture CO, (carbon capture and utilization
(CCU)) [94]. The initial product mixture obtained by MES can also be converted further by
electrofermentation [95,96]. An intriguing possibility is direct production of PHAs by reduction
of CO; to short-chain fatty acids that are further converted by PHA accumulating microorgan-
isms [97]. Electrobiocatalysis with free enzymes involves the electrochemical regeneration of
redox cofactors such as NAD(P)/NAD(P)H catalysed in enzymatic reductions and oxidations as
an alternative for using a second enzyme and a co-substrate. An elegant example is provided by
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the one-pot, two-electrode deracemization of chiral secondary alcohols (figure 11) reported by
Turner et al. [98].

8. Conclusions and outlook

The chemical industry of the future will be very much influenced and shaped by the ongo-
ing transition involving the decarbonization of the energy sector and the defossilization
of chemicals manufacture. This transition is necessary in order to mitigate climate change
resulting from fossil resource-derived waste carbon dioxide and other GHGs and to combat
other major sources of waste such as that caused by SUPs. Decarbonization of the energy sector
will involve switching from the use of fossil resource-derived oil, coal and natural gas to the use
of sustainable electricity, from solar, wind, hydro and nuclear, as the energy source for heating,
transport and major industries. The (organic) chemical industry will use sustainable electricity
for its energy requirements but it will also require a source of green, sustainable carbon as an
alternative for fossil resources.

In order to create a circular economy green carbon will be derived from hydrogenation
of COy with green hydrogen or electrolytic reduction of CO, with water, to afford syngas.
Alternatively, the green carbon can be derived from 2G waste lignocellulosic biomass, such
as agricultural and forestry residues, by hydrolysis to hexoses and pentoses and subsequent
catalytic conversion or fermentation. Ninety per cent (in volume) of the chemicals produced
by the (petro)chemical industry are raw materials for polymers and 90% of these polymers
are plastics, primarily PE and PP for single use packaging applications. Although these olefins
can be produced from sustainable biomass or syngas, by fermentation to ethanol and subse-
quent dehydration to ethylene, polyolefin plastics are a major source of pollution as SUPs. It
could make more sense, therefore, to convert waste CO; or lignocellulose or plastic waste to
monomers for bio-based plastics or directly by fermentation to PHA plastics in e-biorefineries.
Moreover, current and future developments in metagenomics, directed evolution of enzymes
and metabolic pathway engineering of whole microbial cells, aided by advances in bioinformat-
ics and machine learning, will enable the development of even more cost-effective biocatalytic
conversions.

One might ask the question: How will the biorefineries of the future chemical industry
compare with existing refineries, with regard to reactor size, rate of production, location, etc.
However, this is difficult to answer as the choice of technology or, rather, technologies still has
to be made. One thing is reasonably certain and that is that the feedstock for the carbon of the
future will not be fossilized hydrocarbons. It will be either carbon dioxide or waste biomass
and, possibly, small amounts of waste polyolefin plastics. As we have shown, there are various
possibilities for converting this biomass to commodity chemicals (mostly industrial monomers)
and the choice for which possibility still has to be made. As we noted already in the 1970s,
the choice will probably be dependent on geographical location. In remote locations, either
CO; or biomass could be converted into syngas or methanol and the latter transported to, for
example, Europe for further conversion. In this case, reactors and processes would be similar
to those currently used in South Africa for conversion of syngas to liquid fuels and chemicals.
Alternatively, waste polysaccharide biomass can be converted, using chemo- or biocatalysis in
liquid phase processes. The choice of technology will also be influenced by the use of green
electricity as the energy source. The refineries of the future will largely be e-biorefineries, using
electrocatalytic processes, which will also have an important influence on reactor type and size.

In short, the future of a chemical industry based on green carbon looks bright from several
viewpoints. Although the contribution of the (organic) chemical industry to CO, emissions
represents only 5% of the total emissions, the major technical developments on the road to net
zero have far reaching implications for industry in general. To cite one of the many examples,
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the application of CCU to the production of cement, which is responsible for 7% of all CO;
emissions [99]. In order to end on an optimistic note: if we are prepared to make the effort,
perhaps we could even be the first generation to be fully sustainable [100].
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