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Abstract
Proteins are vital in all biological systems as they constitute themain structural and functional
components of cells. Recent advances inmass spectrometry have brought the promise of complete
proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing
technique has fundamental limitations in sensitivity. Herewe propose amethod for single-molecule
(SM) protein sequencing. Amajor challenge lies in the fact that proteins are composed of 20 different
amino acids, which demands 20molecular reporters.We computationally demonstrate that it suffices
tomeasure only two types of amino acids to identify proteins and suggest an experimental scheme
using SM fluorescence.When achieved, this highly sensitive approachwill result in a paradigm shift in
proteomics, withmajor impact in the biological andmedical sciences.

In 2014 two international teams produced the first
draft of the human proteome, using mass spectro-
metry (MS) [1, 2]. By opening a new chapter in
proteomics, these large scale studies will help us
understand complex cellular processes. Yet, MS—the
most widely used protein sequencing technology—
requires a large amount of sample. This hampers
quantification, precludes detecting many proteins of
interest that are present only in low concentrations in
the cell, and renders single-cell analysis impossible.

Single-molecule (SM) protein sequencing would
bring about ‘protein deep sequencing’ [3–5]. How-
ever, unlike DNA sequencing that needs to read out
only four nucleotides, protein sequencing demands
differentiation of 20 amino acids, far beyondwhat cur-
rent SM techniques can offer [3]. SM protein sequen-
cing has therefore not followed up SM DNA
sequencing that uses fluorescence and nanopores [6–
8]. Here we propose a novel SM protein sequencing
method that overcomes this challenge and assess its
feasibility using computational analysis.

Unique to protein sequencing is that a protein can
be identified using incomplete information with

reference to proteomic databases. Consider a 2 bit fin-
gerprinting scheme in which only two types of amino
acids are labeled (figure 1). A consecutive read of 15
labeled amino acids is sufficient to identify up to
215 = 32 768 unique protein sequences. This exceeds
the number of (major isoform) protein species that
most organisms express. As the median length of a
protein ranges from 270 (bacteria) to 350 amino acids
(eukaryotes), it is not difficult to choose two amino
acid types that appear more than 15 times in each pro-
tein (supplementary figure 1, stacks.iop.org/PB/12/
055003/mmedia).

Figure 2 describes a SM protein fingerprinting
scheme using fluorescence. We chose to label two
highly nucleophilic amino acids, lysine (K) and
cysteine (C) as they are frequent (supplementary
figure 2) and can be labeled both efficiently and ortho-
gonally (NHS–ester coupling with lysine and mal-
eimide coupling with cysteine) [9]. A similar idea
using lysine and arginine for monitoring protein
synthesis inside a living cell was patented by Anima
Cell Metrology [10]. Recently, Swaminathan et al dis-
cussed fingerprinting schemes that are based on
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multiple labels, including two labels [3]. Separately, a
work published in 2013 shows how our fingerprinting
approachmight be implemented using nanopores [4].

To assess the predictive power of fingerprinting,
we developed a dedicated search algorithm. In brief,
we search CK (cysteine–lysine) fingerprints by com-
bining a filtering strategy to decrease computation
time with a dynamic programming-based alignment

step, considering a specific set of potential experi-
mental errors (seemethods).

For our analysis, we used a canonical human pro-
teome database based onUniprot release 2014.04 [11].
We simulated 2000 different read-outs, searched for
each of them in the database and measured the detec-
tion precision (P), i.e. the probability of retrieving the
correct sequence. In an ideal situation with no experi-
mental error, P is 90% (figure 3(a), blue). Next, we
assessed the robustness of the method against inac-
curacies that are expected from actual experiments, by
iteratively introducing errors into each fingerprint at
random (see error simulation inmethods for details) up
to a specified error level ( ,α a number of errors (k)
divided by a CK fingerprint length (lck, the length of
CK sequences excluding other amino acids). Figure 3
reports P of these computations. As expected, P drops
when α increases. For example, at 10%,α  =  half of
the sequences are correctly and uniquely retrieved
(figure 3(a), blue).

To improve performance, we considered other
information: the distance between C’s and K’s
(figure 3(a), red). At any ,α P was dramatically higher
with the distance included: at 10%,α  =  P increased to
85%. In general, P increases when lck becomes longer
(figures 3(b)–(c)). At any lck, P for CK fingerprinting
with distance information (named ‘CK-dist finger-
printing’) is higher than or equal to P for CK finger-
printing. A similar observation was made when
different additional information was considered (sup-
plementary figure 5). Taken together, these demon-
strate the feasibility of the technique for identifying
primary protein sequences.

Another application area could be clinical diag-
nostics. As an example of detecting infections, we
chose human respiratory syncytial virus (HRSV) and
tuberculosis (TB). We determined that a set of HRSV
and TB proteins contain a unique CK fingerprint and
thus can be detected at α as high as 15–20% and be
potentially used as markers for HRSV and TB (supple-
mentaryfigure 6).

The CK fingerprinting technique will also enable
us to detect post-translational modifications of pro-
teins when it is expanded to a three-color fluorescence
measurement. For example, glycosylated amino acids
can be labeled with a third acceptor dye using hydra-
zide–aldehyde coupling chemistry, which is orthogo-
nal to the labeling methods for lysine and cysteine
residues. Phosphorylated serine and threonine can be
labeled with a third acceptor using another coupling
scheme [12]. This will advance the proof-of-principle
of detecting a post-translationally modified peptide
using a nanopore that was reported in 2014 [5].

We described SM protein fingerprinting, a techni-
que that will provide proteomics with high sensitivity
and a large dynamic range. Our computational assess-
ment indicated that, even if we read only two amino
acid types, we could correctly identify proteins with
reference to proteomic databases. When this entirely

Figure 1.A single-molecule read-out. CKfingerprinting read:
the order of C’s andK’s are detected. CK-distfingerprinting
read: the distances betweenC’s andK’s are additionally
measured.

Figure 2.The schematic shows how single-molecule finger-
printing is carried out. (a) Proteins are obtained fromdiverse
sources including single cells, tissues, and body fluids. (b)
Extracted proteins are denatured, and cysteines and lysines
are labeledwithfluorescent dyes. (c) An engineered version of
a protein translocase (e.g. bacterial ClpX) grabs individual
substrate proteins, unfolds them, and translocates them
through its nanochannel. Proteins are sequenced using FRET
(Förster resonance energy transfer). The translocase is labeled
with a donor dye. FREToccurs between the donor on the
translocase and the two distinct acceptor dyes on a substrate
when the substrate passes through the nanomachine. The
FRET signals report the order of the labeled amino acids.
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new SM protein sequencing approach is achieved, it
will become a proteomics tool that complements MS
and opens up new avenues in global, high-throughput
protein analysis.

Methods

Here we describe the approaches that we used to
simulate errors and find protein fingerprints that
match a given queryfingerprint pattern.

Error simulation
We simulated 2000 read-outs, each for a different
protein. The proteins are randomly picked from the
database and thus contain random amino acids and
fingerprint lengths. Next, to assess the robustness of
the method against inaccuracies that are expected
from actual experiments, errors are iteratively intro-
duced for each read-out up to the error level we want
to investigate.

We expect that actual data will be convoluted with
poor dye-labeling, photoblinking and photobleaching
of dyes, local structures of a substrate protein, non-
uniform speed of substrate translocation, proximity
between dyes etc. The poor labeling, photoblinking,

and photobleaching of acceptor dyes will appear as
deletion errors (figure 4). The non-uniform speed of
translocation will introduce insertion and deletion
errors to CK-dist fingerprinting. The proximity of
acceptor dyes will bring deletion and transposition/
substitution errors. If a donor dye is photobleached
during a measurement, it will appear as a truncation
error. We do not consider this error for fingerprinting
analysis since donor photobleaching can be deter-
mined from SM time traces and thus can be easily
excluded from further analysis. Other complications,
such as aggregation of denatured proteins, may also be
expected but are not considered in our analysis. See a
pseudo-code for simulating these errors (supplemen-
tary information).

In figure 3, we investigated one combination of
errors (70% deletions, 20% insertions, 10% transposi-
tions) for CK fingerprinting, in which we assigned the
largest percentage to deletions since this error is the
most likely to occur (poor labeling of acceptors due to
incomplete denaturation of proteins, photoblinking/
photobleaching of acceptors, and presence of con-
secutive identical acceptor fluorophores). For CK-dist
fingerprinting analysis, we considered the same com-
bination of errors as for CK fingerprinting but with
errors at CK residues and errors of the distance
betweenCK residues equally likely to occur. In supple-
mentary figure 3, we expanded the error space that we
explored and obtained trends nearly identical to that
found infigure 3(a).

Overview of theCKfingerprinting
The 2000 simulated readouts are searched for in the
database, and the numbers of true positives and
the number of matches are recorded. To examine the

Figure 3. (a)Detection precision, P, at various error levels, :α blue for CKfingerprinting, red forCK-dist fingerprinting. Error bars are
the standard deviation from three independent simulations. (b) P as a function of CKfingerprint length (lck, the length of CK
sequences excluding other amino acids) at various α for CKfingerprinting. (c)P as a function of lck at various α for CK-dist
fingerprinting.

Figure 4.Expected experimental errors. ‘R’ is reference
sequence. ‘Q’ is query sequence.
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performance variability of our algorithm in retrieving
proteins using fingerprints, three independent repeti-
tions are executed. In each repetition, detection
precision (P) (figure 3) and detection recall (R)
(supplementary figure 4) are calculated based on the
outputs. P is defined as the number of true positives
divided by the number of read-outs returned by the
algorithm. R is the number of true positives divided by
the number of conditionalmatches.

The inputs to our method are a reference database
R containing fingerprint representations of protein
sequences, a query fingerprint Q and an error level .α
The alphabet is C K{ , },Σ = since we only compare
fingerprints of these two amino acids. Let LQ be the
query length and R Rx ∈ denote the xth reference

sequence in the database R with length L .x
R The dis-

tance S R Q( , )x between a reference fingerprint Rx

and a query Q is theminimal number of steps required
to transform Q into Rx. Formally, given Q, R, and ,α
the problem is to find all R Rx ∈ for which S R Q( , )x

is smaller than k = LQα × .
Given the inputs, the algorithm takes two steps to

retrieve matches: (1) a filtration strategy is applied to
identify candidate sequences in R; and (2) a verifica-
tionmethod is employed to examine all candidates for
possiblematches.

Filtration: eliminating uninteresting sequences
Dynamic programming is computationally costly,
prohibiting direct application on large databases in a
high-throughput setting [13]. In order to reduce the
running time without affecting sensitivity, we use
filtration to remove those references that definitely
cannot match the query fingerprint Q with distance
smaller than or equal to k. Filtration exploits the fact
that it is easier to tell a reference fingerprint that does
notmatch a query fingerprint than to tell one that does
match. Typically, it uses a simple and highly efficient
filter criterion to analyze the reference sequences,
leaving only a small number of R ’sx for further (more
expensive) analysis. We devised a new filtration
method combining two existing algorithms, partial
exactmatching and n gram− counting.

In partial exact matching, the query fingerprint Q
is divided into k( 1)+ pieces q q q, , , ,k0 1 … where k
equals L .Qα × For a match to be possible, there must
be at least one piece that appears exactly in a reference
sequence Rx [15]. If this is not the case, Rx is
discarded.

A faster filtration method is n gram− counting,
which compares the n grams− of two fingerprints. An
n gram− [16] on the alphabet set C K{ , }Σ = is any
string in ,nΣ where nΣ is the set of all possible strings of
length n over .Σ For example, the 2 grams− for

C K{ , }Σ = are CC, CK, KC and KK. The n gram−
distance is defined as the sum of the absolute differ-
ences between the numbers of occurrences of each
n gram.− If the n gram− distance exceeds nk2 , Rx is
discarded [16].

We combined the partial exact matching and
n gram− counting approaches to decide whether there
exists at least one piece in Q that appears with a limited
amount of errors as a piece of Rx [17]. The distance

function between two pieces of Q and R ,x q j and r ,x
j

based on their n grams− was defined as:

(

)

( ) ( )

( )

S r q G q

G r

, max [ ]

[ ], 0 ,

npm x
j j j

x
j

n

∑ ν

ν

=

−
ν∈Σ

where [ ]ν is an n gram− and ( )G q [ ]j ν ( )G rand [ ]x
j ν

denote the total number of times [ ]ν occurs in q j and
r ,x

j respectively.

For each piece q j in the query, the corresponding

piece rx
j contains the same letters in the reference

sequence with an additional k letters on both sides, as
shown in figure 5. It is sufficient to compare the rx

j in

the reference with the q j in the query to determine

whether the piece q j appears in the reference R ,x since
k errors cannot alter more than k positions. Since a
query piece is searched in a limited range in the refer-
ence, it can discard more entries in the reference data-
base than the partial exact matching method, in which
the q j is comparedwith the entire reference sequence.

The distance between a piece q j in query Q and the

corresponding piece rx
j in Rx is computed to deter-

mine whether Rx is a candidate match. For each q j

and its corresponding r ,x
j we check whether any

n gram− occurs more often in q j than in r .x
j If not, the

S r q( , )npm x
j j is zero, i.e. the n-grams in q j appear

exactly in rx
j . Only if for at least one q ,j S r q( , )npm x

j j

is zero, Rx is kept as a candidate.

Verification:findingmatches
The remaining candidate matches are examined by a
global alignment dynamic programming approach
considering a number of possible error types. In our
analysis, four types of error may occur: deletion,
insertion, mismatching an amino acid with another
one (substitution), and swapping (transposition).

The dynamic programming algorithm is designed
to provide the optimal gapped alignment between two
sequences, i.e. an alignment with long regions of iden-
tical amino acid pairs and very few mismatches and
gaps [14]. As the sequences become more dissimilar,
more mismatched amino acid pairs and gaps should

Figure 5.Consecutive pieces q ,j 1− q j and q j 1+ of query Q
and their corresponding pieces r ,x

j 1− rx
j and rx

j 1+ in reference
R .x Each query piece is compared to a limited range in the
reference.
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appear. To find the optimal alignment, a dynamic pro-
gramming matrix M first needs to be calculated. Each
element Mi j, represents the maximum score of align-
ing the substrings Q i[1... ] and R j[1... ].x Let c
denote the scores of the four operations. The base
cases, M j0, and M ,i,0 are defined as (c j)del × and

(c i)ins × for all j L1 x
R⩽ ⩽ (length of R )x and

i L1 Q⩽ ⩽ (length of Q) respectively. Then, con-
sidering the four possibilities, M is updated using the
following recursive relation

M

M c

M c

M c

M c

max

,

,

,

.

i j

i j

i j

i j

i j

,

1, 1 sub

1, ins

, 1 del

2, 2 swap

⎧

⎨
⎪⎪

⎩
⎪⎪

=

+
+
+
+

− −

−

−

− −

The score for each operation is set based on the
estimation of how likely each error is to occur in
our measurements. Currently, deletions caused by
low labeling efficiency are the dominating errors, fol-
lowed by insertions, transpositions and substitutions
(i.e. matching C to K or vice versa) (see error simula-
tion). Hence we choose a relatively low penalty (nega-
tive) for deletions and higher penalties (negative) for
transpositions and substitutions. For the matching
positions, the score is positive (see supplementary
table 2).

By memorizing the solutions to the subproblems
for j L1 x

R⩽ ⩽ and i L1 Q⩽ ⩽ stored in the
dynamicmatrix, we can recursively compute themax-
imum score of aligning Rx and Q. Therefore we find
the score of the optimal alignment of the two sequen-
ces starting from themaximum value in the last row or
last column. We maintain a matrix of traceback poin-
ters in the recursion, so that we remember which case
was used to calculate every cell M ,i j, allowing to recon-
struct the optimal alignment.

From this alignment the numbers of errors for dif-
ferent types as well as the total number of errors can be
calculated. The distance between the query and the
reference S R Q( , )x is defined as the total number of
errors. If this distance is smaller than k, the reference
sequence Rx is considered as a match. Otherwise, it is
not a match of the query sequence within the error
bound k. A match is considered a true positive match
when the match is the exact query protein. If a match
has the same fingerprint but a different amino acid
sequence, it is not considered to be a true positive
match. In our analysis, this is determined by checking
the protein accession codes.

Additional information, such as the distance
between two read-outs, can be deduced from themea-
surements. This distance is the space between two
labeled amino acids, which is the number of non-
labeled amino acids in between, which show a differ-
ent pattern in the measurement. For this to be esti-
mated reliably, proteins will have to be sequenced at a
relatively constant speed, an assumption which is not

a priori valid. From the sequencing signals, we cannot
easily determine the start or the end of proteins in the
time trace if they do not correspond to a labeled amino
acid. Thus, the starting and ending non-labeled amino
acids are not included when we construct the finger-
print with distance information.

This distance information is added to the original
CK fingerprints using an additional symbol (say, ‘o’),
occurring multiple times (representing the length of
distance). Next, two distances between query and
reference are calculated to examine whether a refer-

ence sequence is a match. One is the ( )S R Q,x

between fingerprints with distance information, the

other the ( )S R Q,x′ between CK fingerprints only.

Reference sequence Rx is considered a match if and

only if ( )S R Q,x′ is smaller than k L( )Qα′ = × ′

and ( )S R Q,x is smaller than k L ,Qα= × where

LQ is the length of the query CK fingerprint, LQ′ is the
length of the query fingerprint with distance informa-
tion and k′ and k represent the numbers of errors
allowed. Experimental error on the distance informa-
tion is also taken into consideration.

Note: Supplementary information is available in
the online version of the paper. An animated experi-
mental scheme is available at https://youtube.com/
watch?v=YpWCCWO5q10.
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