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Abstract

Diffusion-weighted chemical shift imaging (DW-CSI) is a recently developed MRI modality that en-
ables radiologists to reveal the diffusion properties of small molecules that act in metabolic reactions
in-vivo. In order to extract this diffusion information from a patient, DW-CSI requires approximately
one hour of scan time. This extensive scan time makes DW-CSI currently inapplicable for the clinical
setting. This thesis describes the closely intertwined implementation of compressed sensing with
parameter mapping (CS-PM) in the DW-CSI processing pipeline to accelerate its acquisition. The
CS-PM algorithm enables DW-CSI to acquire less measurements (sample under Nyquist) and subse-
quently reconstruct the missing samples with the use of a custom designed, model-based sparsifying
dictionary. As proof of concept, CS-PM was evaluated on the water signal of a non-water-suppressed
DW-CSI scan. The results of the integration of CS-PM in the DW-CSI processing pipeline already indi-
cates a feasible acceleration factor of 1.5 (scan time reduction of ca. 20 minutes) along with valuable
insight to further improve the performance of DW-CSI in combination with CS-PM.
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Preface

In the thesis you have in front of you, I will explain the research I have performed for my final project
for the Master’s degree in Electrical Engineering with a specialisation in the signal processing of med-
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ing, working in the academic environment and of course magnetic resonance imaging. Frustratingly
enough, I have not been able to meet the acceleration as I initially hoped for. On the other hand,
Itamar and I have gained considerable insight in the possibilities to further accelerate DW-CSI. This
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1
Introduction

Magnetic resonance imaging (MRI) is a medical imaging modality with countless measurement con-
figurations and possibilities. One of these MR measurements is the recently developed diffusion-
weighted chemical shift imaging (DW-CSI) at a magnetic field strength of 7T. DW-CSI is a unique tool
for the noninvasive exploration of the structure and physiology of the intracellular space in vivo [1–4].
This clinically valuable insight is achieved since DW-CSI is able to measure and quantify the diffusion
properties of intracellular metabolites, such as N-acetylaspartate (NAA), choline (Cho) and creatine
(Cr). An informative diffusion property is the apparent diffusion coefficient (ADC ). A brief schematic
description of DW-CSI is provided in Figure 1.1, the elements in this figure will be explained in more
detail in the following chapters.

Figure 1.1: Schematic description of the acquisition and processing overview for DW-CSI [1].
The first block visualizes the anatomical planning of a DW-CSI scan with in yellow the volume-of-interest (VOI) within the
larger red grid of the field-of-view (FOV). Of one voxel the acquired chemical shift spectra are depicted under their different
diffusion conditions. The second block shows the CSI images of the total NAA under the different diffusion conditions derived
from the spectra. The last block shows the resulting ADC -map derived from the diffusion-weighted CSI images.

1



2 1. Introduction

1.1. Problem Statement
In order to estimate the ADC of certain metabolites, multiple spectroscopy scans are required under
various diffusion conditions. In addition, since MR acquisitions are already time restricted due to
the intrinsic properties of the tissue being examined (as T1 time), the extensive scan time (ca. 1 hour)
becomes a cumbersome issue for DW-CSI. The long scan time counteracts with the patient’s com-
fort as well as the signal-to-noise ratio (SN R) of the ADC -map due to inter alia patient movement.
Thus, in order to make DW-CSI more applicable for the clinical setting, the scan time will have to
be reduced.

Because the scan time in MR is proportional to the number of separate acquisitions with their
phase encodings (PEs), a straightforward manner to reduce the scan time is to reduce the number
of PEs. Parallel imaging (PI) and compressed sensing (CS) showed to be successful reconstruction
approaches to work with a reduced number of PE without reducing the spectral resolution [5, 6].

1.2. Project Goal
The goal of this thesis project is to implement a signal reconstruction algorithm to accelerate the
DW-CSI acquisition and estimate the ADC -map. We will combine prior DW-CSI knowledge and the
algorithms of PI and CS achieve this goal.

1.3. Thesis Outline
In Chapter 2: Background of DW-CSI we will first set forth the background knowledge for this thesis
beginning with a brief introduction to MRI and CSI followed by a more in depth explanation of
DW-CSI: from acquisition to ADC -map.

In Chapter 3: Scan Time Reduction Algorithms possible algorithms will be discussed with their ap-
plicability to DW-CSI to reduce the scan time.

In Chapter 4: Compressed Sensing Parameter Mapping for DW-CSI we will present our proposed
acceleration method: compressed sensing parameter mapping together with its adjustments to the
conventional DW-CSI.

In Chapter 5: Results & Evaluation the compressed sensing parameter mapping algorithm with all
its subelements will be evaluated according to synthetic and acquired in-vivo data.

In Chapter 6: Discussion & Conclusion we will further discuss and conclude the performance of the
compressed sensing parameter mapping method to accelerate the DW-CSI acquisition.



2
Background of DW-CSI

In this chapter we briefly set forth the concepts of magnetic resonance imaging required for this
thesis, followed by its extension to chemical shift imaging. Subsequently, diffusion-weighted chem-
ical shift imaging as described in the paper by Ercan et al. (2014) [1] will be explained. The DW-CSI
acquisition pulse sequence will be set forth followed by the post-processing with eventually the data
analysis with the calculation of the apparent diffusion coefficient.

2.1. Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique which exploits the
magnetic properties of the human body [8, 9]. As visual reference a cutaway of an MR scanner is
displayed in Figure 2.1. An MR scanner uses a strong, static magnetic field (B0) to align the magnetic
moments of protons in the body in the direction of this magnetic field. When a radio frequency (RF)
pulse is applied where its frequency matches the precession frequency of the protons in the body,
the magnetic moments of the protons change. This precession frequency (or Larmor frequency f0)
of the protons is defined as

f0 = γB0 (2.1)

where γ is the gyromagnetic ratio of the nucleus and B0 the external magnetic field. Since water is
abundant in the human body, the gyromagnetic ratio of hydrogen (γ {1H} = 42.58 MHz/T) is selected
for most MRI scans. After the RF pulse is applied, the magnetic moments of the protons will recover
to their equilibrium according to the external magnetic field, emitting a RF pulse: the free induction
decay (FID). This FID is the signal that is measured in MRI and its magnitude depends on the amount
of protons in the body. However, in this manner it is yet only possible to measure the "bulk" signal
and it is not possible to distinguish where in the body the signals originate from. In order to resolve

Figure 2.1: MR scanner and its principal components [7].
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4 2. Background of DW-CSI
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Figure 2.2: k-space and image space with their Fourier transform ( F ) relation.

this, the gradient coils in the scanner slightly alter the static B0 field spatially, inducing a change in
the Larmor frequency. These gradient fields generated by the gradient coils can be applied during
the RF pulse, creating spatial selective excitation, as well as after the RF pulse while the magnetic
moments of the protons are recovering to induce phase and frequency encoding in the measured
signal (readout). With these steps, the MR scanner is able to measure the frequency components of
the desired image or volume. In other words: the scanner is able to measure the Fourier space of
the desired image, or in MRI jargon: k-space. The relation between the desired image and the raw
measured k-space is visualized in Figure 2.2.

2.1.1. Chemical Shift Imaging
The technique for imaging can be extended to magnetic resonance (MR) spectroscopic imaging, also
called chemical shift imaging (CSI). With CSI different nuclei can be distinguished by their chemical
frequency shift [10]. The chemical shift is expressed in parts per million (ppm) with respect to the
Larmor frequency. This unit of measurement has the advantage that the expressed chemical shift is
independent of the MR system with its magnetic field. In a CSI acquisition, the MR scanner spatial
selectively excites the volume-of-interest (VOI) and phase encodes a single location in k-space. The
subsequent acquired signals contain the phase encoded free induction decays (FIDs) of the nuclei in
the excited VOI and span k-space. After a spatial inverse- and a temporal forward Fourier transform,
the spectroscopy dataset emerges. This dataset contains a spectroscopy readout at each voxel in the
VOI. However, in order to reveal the signals originating from small metabolites of interest, which are
currently overshadowed by the abundant water signal, a water suppression pulse sequence will have
to be applied prior to each acquisition. An example of a resulting dataset with water suppression
is visualized in Figure 2.3. If, for example, the signal peak around the NAA resonance (2.0 ppm) is
integrated, an image can be formed indicating the relative quantities of total NAA in those voxels.
The next section will explain CSI in more detail within the framework of DW-CSI.

Figure 2.3: MR spectroscopy example based on Figure 1.1.
The left part visualizes the anatomical planning of a CSI scan with in yellow the volume-of-interest (VOI) within the larger red
grid of the field-of-view (FOV). The right part depicts the acquired CSI spectra of one voxel.
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2.2. Diffusion-Weighted Chemical Shift Imaging
As briefly explained in the Introduction, diffusion-weighted chemical shift imaging can reveal loca-
tion specific diffusion properties of small molecules that act in metabolic reactions, the metabo-
lites. This section will set forth how DW-CSI is able to measure and analyze this. First the MR pulse
sequence is explained that makes it able to measure the signals that contain the diffusion properties
of the metabolites. Subsequently, these acquired signals are corrected for artifacts from the acquisi-
tion in the post-processing. Finally, the ADC -map is calculated from the corrected signals in the data
analysis.

2.2.1. Pulse Sequence
In order to extract the diffusion properties from a subject in the scanner, an MR pulse sequence is
developed consisting of several blocks. The following paragraphs will set forth and explain these
elements.

VAPOR First, the variable power and optimized relaxation delays (VAPOR) [11] water suppression
sequence is applied. The VAPOR sequence consists of seven consecutive chemical shift-selective
(CHESS) RF pulses with varying power. CHESS uses a frequency-selective 90° RF pulse to selectively
excite the water signal followed by a spoiler gradient, which causes the transverse water magneti-
zation to dephase, as illustrated in Figure 2.4. This makes it possible to acquire the signal from the
metabolites, which otherwise would have been overshadowed by the water signal.

In the DW-CSI scheme, the VAPOR sequence is slightly deoptimized to retain a small amount of
the water signal in the FID. The deoptimization is achieved by increasing the delay between the last
VAPOR pulse and the excitation pulse to 250 ms. The information in the water signal allows us to
correct for eddy currents in the acquisition later in the post-processing.

PRESS After the VAPOR pulse train, the DW-CSI scan is mainly based on the point-resolved spec-
troscopy (PRESS) [12] sequence. PRESS excites the preselected volume-of-interest (VOI) by apply-
ing slab selection in three spatial dimensions: a 90° RF pulse with two subsequent 180° pulses each
under a gradient field perpendicular to the previous. In this way, only the volume under the three
overlapping perpendicular slices is exited as demonstrated in Figure 2.5. After exiting the VOI, phase
encoding is applied within the larger field-of-view (FOV) to later distinguish the spatial origin of the
signals.

Figure 2.4: VAPOR sequence illustrated with its effect on the water MZ magnetization after applying each of the seven CHESS
varying power RF pulses to suppress this water signal [11]. Three different values of nominal flip angles (β = {65°, 95°, 125°})
are depicted as example.
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Figure 2.5: Principles of volume selection visualized [13].

DW-PRESS The extension from regular spectroscopy to spectroscopy under different diffusion con-
ditions is achieved by applying bipolar diffusion gradients around the two PRESS 180° RF pulses. The
pair of opposite operating diffusion gradients around the first 180° pulse induce a location specific
phase offset in the transverse magnetization. The pair of diffusion gradients around the second 180°
pulse tries to refocus this. After these two de- and refocusing diffusion gradient pairs, the net phase
shift of stationary molecules is zero. However, any molecules which spatially drifted (diffused) will
have a phase offset. This phase offset is dependent on the net travelled distance of the molecules
within a voxel (the diffusion coefficient D), the time between the two 180° pulses (∆), the ON-time of
one diffusion gradient pair (δ), the time delay between the opposite gradients of one pair (τ) and the
gradient amplitude (g ) of the applied diffusion gradients. The last four parameters can be controlled
and expressed in the b-value which depicts the diffusion condition of a scan [14]. This b-value is
determined by

b = γ2g 2δ2
(
∆− δ

3
− τ

2

)
(2.2)

and is expressed in time/area [s/mm2]. In this equation, γ represents the gyromagnetic ratio of the
observed nucleus. After the applied diffusion gradients, the resulting acquired signal can be modeled
as an exponential decayed version of the signal at baseline, formulated as

S(b) = S0 e−bD (2.3)

where the signal at baseline is defined as S0 = S(b = 0). However, the estimation of D is very suscep-
tible to noise, considering the already small signals from the metabolites. Furthermore, the parame-
ters D and b are directional dependent, given the cellular physiology and microanatomy. Therefore,
in this implementation, the apparent diffusion coefficient (ADC ) is used to describe the average dif-
fusion rate and is estimated from the measurements as

ADC =− 1

n

n∑
i=1

ln
(

S(bi )
S0

)
bi

(2.4)

with the different b-values applied with equal magnitude in n directions and the ADC -value ex-
pressed in area/time [mm2/s]. These ADC -values will be estimated later on in the data analysis from
the post-processed measurements and visualized in an ADC -map.

Navigator To improve the stability of the DW-CSI measurements, navigators were introduced to the
scheme [1]. These navigators are small samples (ca. 25-30 data points) taken after the applied VAPOR
and DW-PRESS sequence and prior to the PE and its consecutive readout. Depending on the naviga-
tor, the subsequent readout is accepted or rejected in real time. This navigator-based accept/reject
strategy is valuable because it can detect corrupted signals due to bulk motion (e.g. patient move-
ment and the pulsating of the brain [15]). During the applied diffusion gradients, linear motion will
result in a phase fluctuation on the readout and rotational movement will result in an amplitude fluc-
tuation in the readout [3]. The amplitude fluctuations are very hard to correct for and a reacquisition
is required. The phase fluctuations can be corrected in the post-processing using the information
from the navigators. For each diffusion condition, the sum of the moduli of six navigator data points
(points 5-10) is calculated. The highest sum of the first five acquisitions is selected as amplitude
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Figure 2.6: Schematic representation of the two echo acquisition DW-CSI pulse sequence with bipolar diffusion gradients
around the two 180° PRESS RF pulses [1]. The navigators are acquired prior to the phase encoding steps. Note that the VAPOR
sequence is located prior to the first 90° PRESS RF pulse.

reference. For the accept/reject criterion, the navigator threshold is empirically defined as 85% of
this amplitude reference. An upper bound of 100 reacquisitions is set for each diffusion condition to
restrict the scan time.

Cardiac Triggering In order to reduce the influence of the pulsating of the brain, and thereby the
possible navigator-based rejections, the DW-CSI scheme is cardiac triggered. The cardiac cycle is
measured by a peripheral pulse unit (PPU) on the finger of the subject. The first MR excitation pulse
of each acquisition is applied 230 ms after each trigger to minimize the amplitude fluctuations [3].

DW-CSI Sequence This brings us to the pulse and diffusion gradient sequence as depicted in Figure
2.6. Note that this is a spectroscopy imaging mode with two phase encoded echo acquisitions. Even-
tually, for each DW-CSI measurement, five consecutive scans are acquired with different settings in
this sequence:

• one CSI scan without water suppression,
without an applied diffusion condition (b = 0 s/mm2);

• one CSI scan with water suppression,
without an applied diffusion condition (b = 0 s/mm2);

• three CSI scan with water suppression,
with different diffusion conditions in observed diffusion directions.

In these non-PE reduced (conventional) scans, k-space (12×12) is filled with a spiral PE trajectory
to include circular k-space coverage. In practice the total scan time of these acquisitions is about
one hour, though varies as a result of of the real-time navigator-based reacquisitions and the cardiac
triggering.

2.2.2. Post-processing
With the subject scanned, the acquired DW-CSI data is exported as raw data (.DATA/.LIST in Philips
format). In this raw data, each readout contains the navigator, N av {0}

i j ,m,c (t ), and the subsequent FID,

s{0}
i j ,m,c (t ), in one array of each location in k-space, (i , j ), from each individual receive coil c, for each

scan with diffusion condition m, formulated as

RE ADOU T {0}
i j ,m,c (t ) =

[
N av {0}

i j ,m,c (t ), s{0}
i j ,m,c (t )

]
(2.5)

where the superscript {0} indicates the raw unprocessed data.
To perform the offline analysis the raw data is imported into MATLAB. Here, all the readouts

span the k-space-time domain matrices for each scan. The next seven paragraphs, will explain the
MATLAB post-processing steps. Several blocks will preform corrections on the data, altering the FID
(si j ,m(t )) or spectrum (Sx y,m( f )) in k-space (si j ) or image space (sx y ) of a scan with diffusion condi-
tion m. The result of each process on s(t ) will be marked with the superscript of that block. Thus, the
phase fluctuation corrected FID of paragraph (c) will be depicted as: s{c}

i j ,m(t ).
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(a) Combine parallel data. First, the data of the 32 separate receive coils is combined to one
dataset. This procedure is performed as

RE ADOU T {a}
i j ,m(t ) =

32∑
c=1

| RE ADOU T {0}
(0,0),m,c (0) |∑32

c ′=1 | RE ADOU T {0}
(0,0),m,c ′ (0) |

·
RE ADOU T {0}

i j ,m,c (t )

e i∠RE ADOU T {0}
(0,0),m,c (0)

(2.6)

and combines the readouts at each PE according to the SN R and phase of each receive coil.

(b) Navigator processing. Next, the navigators under each PE and each diffusion condition are
extracted from the dataset, zero padded to 128 points and line-broadened in the temporal
direction, as

N av {b}
i j ,m(t ) = N av {a}

i j ,m(t ) ·e−π lb t (2.7)

where N av {b}
i j ,m(t ) is the zero padded, line-broadened navigator and lb ≈ 50 Hz. After a tempo-

ral Fourier transform, the phase of the navigator (θN av (i j ,m)) is estimated from the complex
integral around the residual water peak (ca. 7 points).

(c) Correct phase fluctuations. With the phase of the navigators known at each location in k-space
at each diffusion condition, the diffusion-induced phase fluctuations can be corrected. This is
accomplished by multiplying the FID (s{a}

i j ,m) with the navigator-based phase correction factor

given by

s{c}
i j ,m(t ) = s{a}

i j ,m(t ) · e iθN av (i j ,b=0)

e iθN av (i j ,m)
(2.8)

for all k-space locations and all b 6= 0 scans. Note that the phase at the b = 0 scan includes the
effect of the VOI matrix shift in image space of the water.

(d) Filter & transform & frequency shift. The phase corrected datasets can now be spatially Han-
ning filtered and zero padded from 12×12 tot 16×16, followed by a spatial and temporal Fourier
transform depicted as

Sx y,m( f ) =Ft

{
F−1

i j

{
s{c}

i j ,m(t ) ·Hi j

}}
(2.9)

where Hi j is the Hanning filter and Ft and F−1
i j are the temporal forward and spatial inverse

Fourier transform, respectively. To correct for B0 inhomogeneity, the resulting spectra at each
image location (x, y) of each water suppressed scan are frequency shifted, as

S{f}
x y,m( f ) = Sx y,m( f −∆ fx y ) (2.10)

where the applied frequency shift (∆ fx y ) is determined by the frequency offset from the center
of the water peak in the non-water-suppressed scan.

(e) Eddy current correction. To correct for eddy currents induced by the gradients, the residual
water signal in the FID is used. This is the residual water signal in the water-suppressed scan
as the VAPOR pulse scheme was slightly deoptimized. The influence of the eddy currents can
be modeled as a location and time specific added phase on the FID, matching

φ(t ) =φFID(t ) + φEC(t ) (2.11)

whereφ(t ) is the measured phase,φFID(t ) is the phase of the FID if there were no eddy currents
and φEC(t ) is the phase contribution of the eddy currents. With this model, the FID without
eddy current influences can be calculated simply by subtracting the eddy current phase from
the phase of the FID. This is equivalent to division of the measured FID by the complex unit
vector with the estimated eddy current phase, as

s{e}
x y,m(t ) = s{d}

x y,m(t )/e iφEC x y,m (t ) (2.12)

and results in the eddy current corrected FID: s{e}
x y,m(t ). In order to apply equation (2.12) on

the acquired data, the voxel-time specific phase contribution of the eddy currents needs to be
estimated. This phase can be estimated from the residual water signal in the FID [3].
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First, the spectra are transformed back to the temporal domain, retrieving the FIDs in image
space. Next, linear prediction singular value decomposition (LPSVD) [16] is applied on the FIDs
to isolate the water signal in the FIDs with its spectral components in a 1 ppm region around
the water resonance. This results for each voxel, in the FID originating from the residual water:
sW x y,m(t ) and is utilized as

φEC x y,m(t ) =∠sW x y,m(t ) (2.13)

to calculate φEC x y,m(t ). With the phase contribution of the eddy currents estimated, equation
(2.12) can be applied on the data for each voxel x y and each diffusion condition m.

(f ) Remove residual water resonance. With the isolated water FIDs known from the LPSVD algo-
rithm, the residual water resonance in the FID can be removed easily by extracting this from
the eddy current corrected FID, as

s{f}
x y,m(t ) = s{e}

x y,m(t ) − sW x y,m(t ) (2.14)

resulting in the post-processed FID s{f}
x y,m(t ).

(g) Export. Now all the corrections have been applied on the measured data and the data has the
correct format (s{f}

x y,m(t )), the 5 data matrices of the five scans can be exported to the .SDAT/
.SPAR Philips format for further spectral analysis.

2.2.3. Data Analysis
The spectral analysis is performed with LCModel [17]. LCModel produces an output table of metabo-
lite quantities for each diffusion condition. In this table, the peak estimations and Cramér-Rao lower
bounds (CRLB) are noted for each metabolite for each voxel (x, y).

These tables are loaded into MATLAB where the ADC can be calculated according to

ADCx y =−

3∑
m=1

ln

(
sx y,m(b)

sx y (0)

)
3 ·b

∧
{b = 0} ∉ {m} (2.15)

for each metabolite of interest. If, however, the CRLB of the estimated signal of a metabolite in a voxel
exceeds 10%, this value is discarded.

Here, sx y,m(b) is the metabolite signal intensity at image location (x, y) and diffusion condition
m with corresponding b-value (b > 0). Logically, sx y (0) is the signal intensity at image location (x, y)
without diffusion weighting. Once all the ADC s are calculated, the ADC -map is composed offering
a new MR diagnostic tool. Such ADC -maps for the total NAA, Cr and Cho are shown in Figure 2.7.

Figure 2.7: Metabolite ADC -maps with (a) T1-weighted image as anatomical reference and (b)-(d) the corresponding the
ADC -maps for tNAA, tCr, and tCho, respectively. The shifted VOI of the water resonance is framed in white [1].





3
Scan Time Reduction Algorithms

In this chapter we will briefly discuss and consider possible methods to reduce the scan time of
diffusion-weighted chemical shift imaging.

In MRI, each raw measurement (readout) contains the free induction decay echo under a phase
encoding. All these readouts with their PEs contain the discretized spatial frequency components of
the sample within the FOV and span k-space. By applying a multidimensional inverse spatial Fourier
transform on k-space, an image (or volume) is obtained of the sample.

With MR spectroscopy, or chemical shift imaging (CSI), the readout contains the FID of a single
location in k-space (PE), representing the time signal of the spectroscopy information. By applying a
temporal Fourier transform in the k-space’ time dimension and a multidimensional spatial inverse
Fourier transform on the PE dimension, the spectroscopy dataset emerges.

However, since Nyquist states that the sampling frequency has to be twice the frequency of the
highest frequency component in the signal and since in CSI every location in k-space (PE) requires
a separate measurement, where each PE measurement cannot be accelerated due to the intrinsic
properties of the tissue (as the T1 time), it becomes quite a time-consuming task to fill k-space the
Nyquist-way. In order to scan faster we aim to measure less PEs and still be able to reconstruct a full
informative image.

3.1. Parallel Imaging
In parallel imaging (PI) the MR measurement setup consists of multiple parallel receive coils placed
around the subject. This allows the FIDs to be measured simultaneously by the multiple parallel
receive coils where each receive coil is characterized by its own spatial sensitivity. These multiple
simultaneous measurements of the FID allow to sample under the Nyquist rate [5, 18, 19]. The alias-
ing due to the undersampling can be resolved using the prior knowledge of the specific undersam-
pling pattern in k-space in combination with the parallel measurements. The two most common PI
reconstruction algorithms are sensitivity encoding (SENSE) and generalized autocalibrating partial
parallel acquisition (GRAPPA). GRAPPA [20] works as an interpolator on the missing PEs in k-space
combining the data from the parallel receive coils and SENSE [21] unfolds and combines the aliased
images from the parallel receive coils using the coil sensitivity maps (CSMs). The SENSE algorithm
proved to be well applicable to spectroscopic imaging [22–24].

3.2. Compressed Sensing
Compressed sensing (CS) is a quite new signal processing technique which also allows to sample
under the Nyquist rate. This technique is based on the observation that most modern signals/data
(e.g. sound and images) can be compressed without any perceptual differences [25, 26]. Compressed
sensing uses this compressibility property already in the acquisition to endeavour to efficiently mea-
sure only the principal data components and reconstruct according to l0-norm minimization.

11
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In order to apply CS on an MR dataset, the data must satisfy two conditions:

(a) the data must have a sparse representation in a known transform domain;

(b) in the data, the aliasing artifacts due to k-space undersampling must be incoherent in that
transform domain.

Besides these two conditions on the data, CS itself requires a nonlinear reconstruction to enforce
both sparsity of the data representation and consistency with the acquired data [6, 27]. As it turned
out, CS was found well suited for MRI in the application of scan time reduction as well as noise
reduction with the wavelet transform [28] as the most popular sparsifying transform. Also with spec-
troscopic imaging, compressed sensing already showed very promising results [29].

3.3. Parallel Imaging meets Compressed Sensing
Compressed sensing is, however, not an algorithm that combines the data from the multiple parallel
receive coils, while most modern clinical scanners are equipped with a parallel receive coil system. To
resolve this issue, PI-CS hybrids where developed to make CS applicable for the clinical MRI setting
[30, 31]. Such hybrids are SPIRiT and ESPIRiT, where SPIRiT (iterative self-consistent parallel imaging
reconstruction) [32] is an algorithm mainly based on GRAPPA and ESPIRiT (efficient L1-SPIRiT) [33]
is its SENSE-incorporated extension.

Both PI-CS algorithms as well as CS are well described and implemented in the Berkeley Ad-
vanced Reconstruction Toolbox (BART) [34]. This toolbox has been introduced to the MRI commu-
nity at the ISMRM 2016 Data Sampling and Image Reconstruction Workshop [35]. However, since
SPIRiT and ESPIRiT are both autocalibrating imaging algorithms, they are presumably not flexible
enough for the integration in the DW-CSI post-processing pipeline.

3.4. Compressed Sensing Parameter Mapping
In the last few years, CS has also been used as a tool for MR parameter mapping with its supplemen-
tary scan time reduction. In the case of T1 and T2-mapping, conventionally multiple full scans are
required with different echo times (TEs) to depict the exponential T1 recovery and T2 decay, respec-
tively. Compressed sensing, on the other hand, can preform the reconstruction and the estimation in
one iterative scheme from the undersampled scans [36, 37]. Compressed sensing can achieve this by
exploiting sparsity in the dataset through a custom overcomplete dictionary designed for parameter
mapping. This has already been applied to T1, T2 and diffusion imaging [38, 39], however not yet to
the diffusion of metabolites (DW-CSI).

Conclusion We believe that the iterative CS parameter estimation, pre-combined with the parallel
coil combination according to the CSMs, will be the most flexible and appropriate method for accel-
erating DW-CSI. Compressed sensing parameter mapping and the CSMs will be explained further in
the next chapter.



4
Compressed Sensing Parameter

Mapping for DW-CSI

In this chapter we will set forth our method to accelerate and analyze diffusion-weighted chemical
shift imaging. First the differences in acquisition and initial post-processing will be explained, fol-
lowed by the compressed sensing parameter mapping algorithm with its required elements.

4.1. Acquisition and Initial Post-Processing
In contrast to the DW-CSI acquisition of Subsection 2.2.1, we simulate to pseudo-random under-
sample the data in k-space, thus acquire less phase encodings in a predefined manner. This al-
lows us to reduce the scan time of the DW-CSI scan. The PE undersampling pattern is different
for each diffusion-weighted scan to enhance the incoherence in the aliasing artifacts. Only the first
non-water-suppressed scan will contain all PEs used in the subsequent diffusion-weighted scans. To
compensate for the loss in energy, the acquired PEs are divided by their corresponding k-space PE-
probabilities as defined by the PE’s probability density function. The design of the pseudo-random
undersampling pattern will be further explained in Subsection 4.1.1. Furthermore, the diffusion gra-
dients will be applied in one direction with three increasing b-values greater than zero, instead of one
b-value in three perpendicular directions and the MR pulse scheme is set to only acquired the first
echo.

In contrast to the post-processing of Subsection 2.2.2, we will combine the spectra from the paral-
lel receive coils more accurate according to the Roemer reconstruction with the coil sensitivity maps
instead of the SN R-phase weighted combination. This will be described in more detail in Subsection
4.1.2. The navigators measured by each receive coil, however, will still be combined according to step
(a), since these signals are not spatially encoded.

A last deviation from the post-processing of Subsection 2.2.2 is in step (c). We no longer base
the phase correction factor on the phase of the navigator of the water-suppressed b = 0 s/mm2 scan,
as depicted in the numerator of equation (2.8). Instead, we replace this numerator by the phase of
the navigator of the non-water-suppressed scan. As these should give the same phase correction
and will less restrict the DW-CSI acceleration, since all the navigators are required at each PE of the
subsequent diffusion-weighted scans.

The rest of the operations on the data ((b), (d) - (f) of Subsection 2.2.2) will remain the same. Their
outcome followed by a temporal inverse Fourier transform will result in a [N f ×Nx ×Ny ×Nm] mul-
tidimensional complex k-space matrix s. The data at the acquired PE locations of spatially Fourier
transformed matrix s will act as "ground truth measurements" or data consistency term.

Due to the applied operations in the image domain in the post-processing, the not-acquired PEs
of s in k-space will not be empty or zero anymore. This data together with the data consistency term
will serve as our initial input in the compressed sensing parameter mapping (CS-PM) algorithm. This
algorithm will be set forth in the next section (Section 4.2).

13
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(a) MIP pattern
R1 = 1.71.

(b) Unique pattern
R2 = 3.65.

(c) Unique pattern
R3 = 3.65.

(d) Unique pattern
R4 = 3.65.

(e) Unique pattern
R5 = 3.65.

Figure 4.1: Phase encoding undersampling patterns generated with Rnet = 3.0 on 12×12 k-space.
The gray circular background highlights the full PE acquisition with circular k-space coverage.

4.1.1. Phase Encoding Undersampling Pattern
In several previous studies, a pseudo-random PE undersampling pattern has been applied. However,
in most of these studies [18, 27, 30, 36, 40–42] an explanation of the generation of the undersampling
pattern from a pre-described probability density function (PDF) was not clearly stated. We have
implemented a fast and intuitive method to generate a PE undersampling pattern according to a
given 2D PDF. This allows us to simulate a pseudo-random undersampled acquisition from a full
acquired dataset.

According to the predefined acceleration factor R, the full acquisition pattern (PEfull,i j ) and its
spatial dimensions (Ni , N j ), a pseudo-random PE undersampling pattern is generated. First, from R
and Ni , N j a 2D spatial Gaussian PDF is calculated. With µi j in the center of k-space ((i , j ) = (0,0))
and σ iteratively scaled such that∑

i j
PDFi j = 1

R

∑
i j

PEfull,i j
∧

PDF0,0 = 1 (4.1)

holds. Note that in this equation, the values of PDFi j on each point in k-space (i , j ) indicate the
probability of that PE being acquired and the sum of PDFi j over all k-space must be equal to number
of PEs in the full acquisition divided by the acceleration factor R. In this way, the loss in energy in
the undersampled acquisition can be compensated as stated in the first paragraph of Section 4.1.
Besides a Gaussian PDF, other distributions can also easily be incorporated.

Next, for the sampling pattern random values (U (0,1)) are assigned to a grid with spatial dimen-
sions (Ni , N j ). To determine which of these grid points will result in an acquired PE, T is used as
threshold on this grid. This threshold is set by the earlier calculated PDF and a scalar τ, formulated
as

T = 1−PDF+τ (4.2)

where this τ is iteratively scaled such that only 1
R

∑
i j PEfull,i j PEs remain above the threshold. To

enhance the incoherence of the aliasing artifacts, a different PE undersampling pattern is created for
each diffusion-weighted scan [6]. If k-space data of a previous scan is required to correct for certain
effects, as in DW-CSI post-processing 2.2.2, (c), the PE acquisition pattern of that scan can be gen-
erated by a projection over the PE patterns of the other scans, as a maximum intensity projection
(MIP). To maintain the net acceleration factor R as specified, the generation of the PDF, the PE sam-
pling pattern of the unique scans and the MIP PE sampling pattern can again be iteratively scaled to
comply with this R. Figure 4.1 visualizes an example set of PE undersampling patterns.

4.1.2. Roemer Reconstruction
To combine the data from the parallel receive coils more accurately than the SN R-phase coil com-
bination of the DW-CSI post-processing of Subsection 2.2.2, step (a), the Roemer reconstruction is
applied [43]. The Roemer reconstruction uses the coil sensitivity maps (CSMs) of the parallel receiver
coils to combine the parallel measurements to the most optimal reconstructed image [43]. The Roe-
mer reconstruction states that the acquired coil images (S) are the linear combination of the desired
full image (ρ) and the CSMs (C). This is expressed voxel-wise in

s1,x y

s2,x y
...

sNc,x y

=


c1,x y

c2,x y
...

cNc,x y

 ρx y (4.3)
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where Nc depicts the number of parallel receive coils. These CSMs are estimated from a reference
scan. This additional imaging scan has a wide FOV, a low resolution and takes approximately 1.5
minutes. The RF signals emitted by the object after excitation are received by the parallel receive
coils as well as the body coil. The image from the body coil is assumed to have a homogeneous
sensitivity [21].

By dividing the parallel receive coil images by both the body coil image and the coil noise vari-
ance, anatomical related structures are canceled out. The addition of the coil noise variance on the
denominator prevents division by zero. The resulting images (CSMraw) contain the complex coil
sensitivities and exploding background noise. The background noise can later on easily be discarded
with the use of a binary object mask. This object mask can be determined from the body coil image.
To eliminate the influence of the noise within the object, the raw coil sensitivity maps are smoothed.
This smoothing can be performed by Gaussian filtering or by polynomial fitting. Polynomial fitting
results in a more accurate CSM on the boundaries of the object however pays in its computational
cost. Gaussian filtering will comply with the requirements of DW-CSI scans, since the selected VOI
will always be planned within the object. After filtering, the smoothed CSM and its binary mask are
rescaled to the FOV of the DW-CSI dataset. Eventually, the rescaled smoothed CSM and its binary
mask are multiplied with each other. Figure 4.2 visualizes these steps for coil 12 as example.

For each voxel a CSM vector Cx y can be composed as

Cx y =
[
c1,x y c2,x y . . . cNc,x y

]T
(4.4)

that indicates the spatial sensitivity of each receive coil on that voxel. With this vector, the spectra
measured by each receive coil (S{0}

x y,m( f )) can be combined in image space with the best linear unbi-
ased estimator (BLUE) [44], given by

S{a}
x y,m( f ) =

(
CH

x yΞ
−1Cx y

)−1
CH

x yΞ
−1 S{0}

x y,m( f ) (4.5)

where S{0}
x y,m( f ) ∈ CNc×1. We assume that the incoherent noise-like artifacts originating from the PE

undersampling pattern, will remain incoherent and noise-like after applying this linear reconstruc-
tion. In equation (4.5), Ξ ∈ CNc×Nc is the parallel coil noise covariance matrix and is estimated from
the voxel outside the dilated object mask (Γ ∈ CNvxls×Nc ) in the raw sensitivity maps as in

Ξ= E
[
(Γ−E[Γ])(Γ−E[Γ])H ]

(4.6)

where the noise is assumed to be Gaussian.

Figure 4.2: Construction of coil sensitivity maps with Gaussian filtering.
The bottom left figure visualizes 3 object masks: dilated, normal and eroded. Coil 12 is depicted as example.
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4.2. Reconstruction
After the data is acquired according to a PE undersampling pattern (Subsection 4.1.1); from the sep-
arate coil measurements: the FIDs are combined according to the CSMs (Subsection 4.1.2) and the
navigators are combined according to their SN R and phase (Subsection 2.2.2, step (a)); and post-
processing steps (b) - (f) of Subsection 2.2.2 have been applied on the data, the resulting s{f}

x y,m(t ) is

temporally Fourier transformed and stored in matrix s ∈ CN f ×Nx×Ny×Nm .
On matrix s, the signal of the metabolite of interest is isolated on its resonance frequency. Subse-

quently, the compressed sensing parameter mapping technique is applied to reconstruct the missing
k-space data and the metabolites diffusion properties are extracted. This will be explained in the fol-
lowing subsections.

4.2.1. Compressed Sensing in MRI
As stated earlier in Section 3.2, compressed sensing is a technique that allows to sample under the
Nyquist rate and uses an inverse problem optimization to reconstruct the missing samples. Two
requirements on the MR dataset need to be satisfied in order to apply CS:

(a) the data must have a sparse representation in a known transform domain;

(b) in the data, the aliasing artifacts due to k-space undersampling must be incoherent in that
transform domain.

In theory, CS uses the l0-norm minimization to solve the optimization mathematically formu-
lated as

minimize
x

‖γ‖0, subject to ‖y−Φx‖2 ≤ ε (4.7)

and describes the inverse problem for finding the optimal solution for signal x, where x =Ψγ with
γ the sparse representation,Ψ the sparsifying transform, y the measurement vector,Φ the measure-
ment matrix and ε the noise related error [36].

However, since this l0 minimization problem is not convex, finding a solution numerically is in-
tractable. Therefore, as convex approximation, the l1-norm inversion is generally used. It has been
shown that this will result in approximately the same solution as the l0-norm if the result is suffi-
ciently sparse [25]. The method used to solve this l0 minimization problem in this study will be set
forth in Subsection 4.2.5. The estimated sparsity domain will be that of the diffusion parameter:
ADC .

Numerically, CS with its l1-norm minimization, can by performed iteratively. In this iterative
scheme the signals have a representation in the measurement domain and a sparse domain. This
measurement domain can be, for example, k-space. If the signal to be recovered/estimated is not
naturally sparse, the measurements in that same signal domain will have to be transformed to a
sparse domain by, for example, a wavelet transformation [45]. In this sparse domain a soft-threshold
can be applied to extract the significant signal components from the noise-like aliasing artifacts [6,
29, 30]. In this way, the absolute sum of the elements in γ is minimized: l1-norm minimization. This
soft-threshold function is defined as

Ts (γ,λ) =


(|γ|−λ)

|γ| γ if |γ| >λ

0 if |γ| ≤λ

(4.8)

where λ is the threshold level. Subsequently, the resulting thresholded, denoised data is transformed
back to the measurement domain and the actual measurements are forced on this dataset as the data
consistency term. The initially missing samples (zero-valued samples) in the measurement domain
will now contain nonzero values. Thus, in this manner the data is polished with each iteration, esti-
mating the missing samples in the measurement domain. This iterative process continues until the
l2-norm of the difference between each iteration of the measurement domain becomes smaller than
the estimated noise level. Figure 4.3 visualizes this iterative CS reconstruction for an MRI dataset
with wavelets as sparsifying representation.
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Figure 4.3: Iterative compressed sensing reconstruction scheme visualized for MRI data. Starting with the undersampled
k-space data. This data is transformed to the image domain and, subsequently, the wavelet domain where the soft-threshold
is applied for denoising. Next, the thresholded data is transformed back to the image domain and to k-space. In the new
estimated k-space the initially non-acquired data is selected and combined with the data consistency term. This iterative
scheme continues until the reconstruction converges.

4.2.2. k-p space
In order to use CS for parameter mapping, Doneva et al. (2010) [36] introduced a generalized frame-
work based on the model f (p;θ) [36]. Here, θ is our parameter of interest and can be spatially esti-
mated with the information of the multiple scans with each a different encoding parameter p. In the
case of DW-CSI, θ resembles the ADC and p the diffusion condition m with its b-value.

The measured data is collected in a measurement space called k-p space. Figure 4.4 shows an ex-
ample of such a k-p space for T1 and T2-mapping. Here, the readouts are stored in the kx dimension
under their PEs in ky . The multiple scans with different encoding parameter setting are collected in
the p dimension.

In our implementation, k-p space will be constructed from matrix s. To estimate the signal con-
tribution of the metabolite of interest, pole estimation is applied on the FID of each voxel of s by
LPSVD [16]. The resulting magnitude of the estimated pole is then equal to its energy contribution in
the spectrum. For the metabolite NAA, which has its resonance frequency at 2.0 ppm, all estimated
poles within a range of 2.0±0.25 ppm are added up and form the scalar complex value of that voxel
in S ∈ CNx×Ny×Nm . Subsequent, S is spatial Fourier transformed creating the k-p space matrix y.

4.2.3. Sparsity
In compressed sensing MRI, a wavelet transformation [45] is the most common sparsifying trans-
formation. However, if we design a custom parametric model-based sparsifying transformation, the
parameter to be estimated can be directly read from this sparse domain. This model-based trans-
form is the dictionary [36] together with the orthogonal matching pursuit (OMP) algorithm. The
dictionary Ψ forms the translation between the sparse parameter domain γ and the measurements
in image space x. Here, x is the spatial inverse Fourier transform of the measurements y. The design
of the dictionary and the explanation of OMP are further described in Subsections 4.2.4 and 4.2.5,
respectively.
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Figure 4.4: Imaging example of data acquisition in Cartesian k-p space, with the readout, phase encoding and parameter
directions in kx , ky and p, respectively [36]. (a) Conventional full sampling for each imposed parameter value p. (b) Pseudo-
random undersampling in k-p space for compressed sensing (readout is orthogonal to the drawing plane).

4.2.4. Dictionary
The dictionary Ψ serves as model-based sparsity transform and is an overcomplete collection of
discrete-parameter signal prototypes (atoms) [36]. It is important that this dictionary is overcom-
plete to enforce sparsity. Starting with a generalized exponential model from Doneva et al. (2010)
[36] formulated as

M(p) =α+β e−p/τ (4.9)

and with equations (2.3) and (2.4) of Subsection 2.2.1, the generalized model can be rewritten to

Sx y (b) = Sx y (0) e−b ADC (4.10)

where Sx y represents the metabolites signal in voxel (x, y) under diffusion condition b. The param-
eter we would like to estimate is the ADC . With this model and the expected range of ADC , the
dictionary is composed as

Ψ=


e−b1 ADC1 e−b1 ADC2 . . . e−b1 ADCn

e−b2 ADC1 e−b2 ADC2 . . . e−b2 ADCn

...
...

. . .
...

e−bm ADC1 e−bm ADC2 . . . e−bm ADCn



= [
a1 a2 . . . an

]
(4.11)

whereby, each column in Ψ represents an atom, a, of length m (number of scans), n indicates the
number of atoms and determines the resolution in the parameter range and provides the overcom-
pleteness of the dictionary. The ADC values range linear from ADC1 = 0 to ADCn = 7.0 ·10−3 mm2/s.
The maximum ADC -value was chosen at approximately two times the maximum expected ADC of
water in the human brain [46]. The number of atoms is set at 10,000.

With this configuration the dictionary has a precision defined by

ψ= ADCn − ADC1

n
(4.12)

resulting in ψ= 7.0 ·10−7 mm2/s. Currently the atoms ofΨ do not have equal norm and this leads to
a bias in the parameter mapping. To resolve this, all the columns ofΨ are normalized as

Ψ̂=
[

a1
‖a1‖

a2
‖a2‖ . . . an

‖an‖
]

(4.13)

resulting in Ψ̂ which is applied in the parameter mapping. Figure 4.5 shows a visual representation
of matrices Ψ and Ψ̂. As an optional step, wavelets or finite differences can be applied to further
sparsify the image domain [36] and to act as regularization.
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Figure 4.5: Dictionary matricesΨ and Ψ̂ visualized for diffusion conditions b = {0, 382, 1531, 3445} in s/mm2.

4.2.5. Orthogonal Matching Pursuit
Orthogonal matching pursuit [47, 48] is a recursive search algorithm which tries to solve the inverse
problem of the linear system depicted as

Ψ̂ γ= x (4.14)

where x ∈ Rm×1 is our given signal and Ψ̂ ∈ Rm×n is the non-orthogonal and overcomplete dic-
tionary constructed of normalized signal prototypes (atoms â). The vector γ ∈ Rn×1 is the desired
sparse representation and indicates the linear combination of atoms of Ψ̂ to reconstruct x. This can
be reformulated as an optimization problem stated as

minimize
γ

‖x− Ψ̂γ‖2, subject to ‖γ‖0 ≤ K (4.15)

where this mathematical expression is actually telling that a γ should be found that minimizes the
error produced in the model above and at the same time where γ should be as sparse as possible: at
most K nonzero entries. Orthogonal matching pursuit can do this by calculating all the inner prod-
ucts between the signal x and all the dictionaries atoms â. The highest inner product (highest corre-
lation) is stored in γ at the index of the corresponding atom. Subsequently, a residual perpendicular
to the space spanned by the set of selected atoms is calculated. In this way, signal x is decomposed
in a linear combination of orthogonal atoms.

If only the first found atom is used (K= 1), the OMP algorithm will produce the same outcome as
basic matching pursuit. This will be in fact the case for our reconstruction since we assume only one
ADC -value per voxel.

4.2.6. Regularization
The CS-PM algorithm discussed up till now only reconstructs the data voxel-wise in the parameter
direction. This implies that the spatial smoothness of CSI images in the image domain might not
be preserved. With operations in the image domain such as wavelets or finite differences to further
sparsify the data, as proposed by Doneva et al. [36], the coherence in the image domain can be
preserved. However, these two methods are not presumed appropriate methods for the CSI images
considering the size and data density. These two arguments are the main reason wavelets cannot act
as a proper sparsification method. Finite differences could most likely not sparsify the image within
the VOI, considering the shape of the CSI signal and its large voxel size.

Instead of wavelets or finite differences, we propose a simple 2D low-pass filter that is applied
in k-space after the OMP estimation and before the data consistency term is applied. This low-pass
filter, or regularization filter, H is defined as a 2D periodic generalized Hamming filter with an am-
plitude at the center of k-space of hc and an amplitude at the periphery of k-space of hp, where
0 < hc < 1 and 0 < hp < hc. The overall attenuation from the hc coefficient at the center of k-space will
slow down the reconstruction, but will constrain the chance of divergence of the data. The slightly
lower coefficients at the periphery of k-space (hp) will induce a coupling of the voxels in the image
domain without enforcing to much blurring. The values of hc and hp were empirically determined to
0.9 and 0.65, respectively.
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4.2.7. Reconstruction Algorithm
With the measured and processed data collected in k-p space and a proper dictionary defined, the
CS-PM iterative algorithm can be applied.

First, the data consistency term y|acq is assigned as:

yi j ,m |acq =
{

yi j ,m if (i j ,m) is acquired PE,

0 otherwise.
(4.16)

Next, the iterative process is initiated with ŷ(0) = y and x(0) = 0.
For each iteration i = {1, 2, . . . , imax}:

1. Fourier transform ŷ(i−1) to image space:

x(i ) =F−1
i j

{
ŷ(i−1)

}
(4.17)

2. For each voxel, transform the magnitudes of x(i )
x y to sparse parameter domain using OMP with

K= 1:
γ(i )

x y = OMP
( ∣∣∣x(i )

x y

∣∣∣ , Ψ̂, K
)

(4.18)

3. Transform of each voxel γ back to image space:∣∣∣x̂(i )
x y

∣∣∣= Ψ̂ · γ(i )
x y (4.19)

4. Add original phase to x̂(i )
x y :

x̂(i )
x y =

∣∣∣x̂(i )
x y

∣∣∣ · e i·∠x(i )
x y (4.20)

5. Fourier transform x̂(i ) to k-p space:

ỹ(i ) =Fx y

{
x̂(i )

}
(4.21)

6. Low-pass filter ỹ(i ) to restrict divergence and maintain spatial smoothness:

ŷ(i ) = ỹ(i ) · H (4.22)

7. Enforce data consistency term y|acq on ŷ(i ):

ŷ(i ) =
{

y|acq if PE is acquired,

ŷ(i ) otherwise.
(4.23)

8. Repeat steps 1 - 7, until change in energy in image space becomes smaller than ε or when the
maximum iteration number is reached:∥∥x(i ) −x(i−1)

∥∥
2∥∥x(i )

∥∥
2

< ε
∨

i > imax (4.24)

The values of ε and imax were set empirically to 1−5 and 500, respectively.

At the end of this CS-PM iterative algorithm, the index of the nonzero entry in the sparse vector γ(i )
x y

indicates the eventual estimated ADC value of the metabolite of interest for that voxel (x, y).
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Results & Evaluation

In this chapter we will test and discuss the compressed sensing parameter mapping algorithm on
diffusion-weighted chemical shift imaging. First we will present our synthetic and acquired data.
This data is subsequently used to evaluate the subelements of our CS-PM and the performance of
the complete algorithm.

5.1. Data
To design and evaluate the compressed sensing parameter mapping algorithm, synthetic data has
been generated and actual MR diffusion brain data has been acquired.

5.1.1. Synthetic Data
The synthetic dataset of four CSI scans has been designed with two principal components: the ADC -
map and the b = 0 CSI scan, both in an FOV of 16×16 voxels. The ADC -map is designed with its ADC
values ranging from 0.54 ·10−3 to 1.37 ·10−3 mm2/s in a diagonal infinity

(
∞

)
figure as visualized in

Figure 5.1b.
The b = 0 CSI scan is designed as the magnitude of a 2D Hamming window multiplied with Gaus-

sian noise describes as NVOI

(
1, 1/10

2
)

within and NVOI

(
0, 1/10

2
)

outside the VOI. The VOI is defined as
the rectangular region in the FOV spanning the voxels xVOI ∈ [4, 13] and yVOI ∈ [5, 12]. This simulates
the major CSI signal originating from the PRESS excited volume in the larger phase encoded FOV.

Subsequently, three b > 0 CSI scans are calculated according to the exponential decay model as
described earlier in equation (2.3). The applied b-values are b = {0, 382, 1531, 3445} in s/mm2. This
results in the CSI images shown in Figure 5.1a.
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(a) Synthetic CSI images [a.u.].
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(b) Synthetic ADC -map [mm2/s].

Figure 5.1: Synthetic diffusion-weighted chemical shift imaging dataset.
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Figure 5.2: A plan of a DW-CSI scan slightly superior to the corpus callosum. The FOV (red) and the VOI (green) are visualized
on top of the anatomical survey scan in sagittal, coronal and transverse view.

5.1.2. Acquired Data
The acquired in-vivo data was obtained from two healthy volunteers at Leiden University Medical
Center (LUMC). The MR acquisitions were performed on a 7T Achieva Philips whole-body MRI scan-
ner with a 32-channel Nova Medical head coil. The total set of acquired scans for each dataset is
composed of:

1. an anatomical 3D survey scan, for further scan planning;

2. a reference scan, for the CSMs;
(exported as: .DATA/.LIST & .PAR/.REC)

3. an anatomical 3D T1-weighted scan, as anatomical reference later on;
(exported as: .DICOM)

4. a non-PE-reduced DW-CSI scan, consisting of the five subscans:
(exported as: .DATA/.LIST & .PAR/.REC)

• one CSI scan without water suppression,
without an applied diffusion condition (b = 0 s/mm2);

• one CSI scan with water suppression,
without an applied diffusion condition (b = 0 s/mm2);

• three CSI scan with water suppression,
with increasing diffusion conditions in a fixed diffusion direction (b > 0 s/mm2).

Besides these scans, the examcard is also exported, providing a retrospective overview of all scan
settings. Figure 5.2 shows the plan of a DW-CSI scan overlaid on the anatomical survey scan.

One dataset was scanned without and one with water suppression where the water (H2O) and
N-acetylaspartate (NAA) signal are examined, respectively. Figure 5.3 shows the CSI images of these
acquired datasets in full acquisition after the conventional post-processing. These and all subse-
quent CSI images and ADC -maps will have the anterior to posterior direction on the vertical axis
and the right to left direction on the horizontal axis with most anterior-right voxel on the top left of
the images. As proof of concept and due to SN R considerations, we shall for most results only focus
on the performance on the H2O scan.
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(a) Acquired H2O DW-CSI images [a.u.].
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(b) Acquired NAA DW-CSI images [a.u.].

Figure 5.3: Full acquired diffusion-weighted CSI images after post-processing.
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5.2. Results
To evaluate the CS-PM algorithm, first multiple sub-elements are evaluated on its performance on
the H2O scan before examining the whole algorithm. The evaluations are mainly based on visual
examinations as well as numerical evaluations on the resulting normalized root mean square error
(NRMSE) [44], when instructive. The NRMSE is defined as

NRMSE(θ̂) = 1

θmax −θmin

√
1

n

n∑
i=1

(
θ̂i −θi

)2
(5.1)

where θ̂ represents the estimation of the parameter of interest θ. The normalization in the NRMSE
is achieved by dividing the root mean square error by the range of θ. The estimated ADC -maps are
evaluated only within the VOI since this volume provides the main signal of interest as it is excited by
the PRESS sequence.

In the following analyses, we will refer to the acquired datasets with full circular k-space coverage,
simply as the full acquisition. Moreover, the data from the parallel receive coils is combined with the
conventional SN R-phase combination of post-processing step (a) of Subsection 2.2.2, unless explicit
described otherwise.

All analyses were performed in MATLAB on a laptop (CPU i5-5200U@2.20GHz, 16.00GB RAM) or
more equipped desktop computer.

5.2.1. Dictionary
The completeness of the dictionary was evaluated by verifying that the parameter-image space can
be spanned by the column space of the dictionary, mathematically expressed by: |X| ⊂ C

(
Ψ̂

)
. This

was investigated by finding the best linear orthogonal combination of atoms with OMP (K = 4) to
span |X|. The full acquired datasets of the H2O and the NAA scans were used to test this. The result
for the H2O scan is visualized in Figure 5.4. As can be seen in Figure 5.4b, the resulting error between
the signal |X| and its estimation by OMP |X̂| is in the order of 10−14, with as error mean µ = −3.36 ·
10−18 and standard deviation σ = 1.54 · 10−15. The dictionary evaluation on the NAA scan showed
similar results with: µ=−3.28 ·10−19 and σ= 4.80 ·10−18. With these results we can conclude that the
dictionary can sufficiently span the signals to be estimated.
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(a) Parameter-Image space of |x(1)| of the full H2O
acquisition.
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(b) Parameter-Image space of residual |x(1)|−|x̂(1)|
of the full H2O acquisition with K= 4 in OMP.
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Figure 5.4: Dictionary validation.
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Figure 5.5: Parameter mapping validation with synthetic data [mm2/s].
(a) synthetic benchmark; (b) direct PM estimation and (c) their difference.
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Figure 5.6: Direct parameter mapping on full H2O scan [mm2/s].
(a) LUMC benchmark; (b) SN R-phase combination and (c) their difference.

5.2.2. Parameter Mapping
The accuracy of the parameter mapping was evaluated with the synthetic data. By direct parameter
estimation with OMP (K = 1), an ADC -map was estimated. The difference between the synthetic
benchmark ADC -map and the estimated ADC -map was found to be within the precision of the dic-
tionary as ψ= 7.0 ·10−7, as can be reviewed in Figure 5.5.

The direct parameter mapping was also applied on the full acquired H2O dataset. As can be ob-
served in Figure 5.6, the result of the direct parameter mapping resembles the benchmark ADC -map
quite well. The difference made by the OMP estimation (|x̂(1)|) and the measured data (|x(1)|) can be
characterized by a Gaussian distribution (µ= 8.3·10−3 andσ= 5.8·10−3). The benchmark ADC -map
in Figure 5.6a was provided by the LUMC. The two major differences that can be observed are a slight
amplitude overestimation and two voxels on the anatomic mid-right side of the VOI. Considering the
small error made by the OMP estimation on the data, the significant visual resemblance between the
LUMC benchmark and the parameter mapping result from the same measured and processed input
data, we argue that our estimated ADC -map is equally informative.

As a more appropriate comparison, the direct PM estimation will function as benchmark for the
succeeding evaluations.
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Figure 5.7: Acquired H2O CSI images after post-processing with Roemer reconstruction [a.u.].
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Figure 5.8: Direct parameter mapping on full H2O scan [mm2/s].
(a) SN R-phase combination; (b) Roemer reconstruction and (c) their difference.

5.2.3. Roemer Reconstruction
The Roemer reconstruction has already proven its value in the MR field to combine the data from
the parallel receive coils with their CSMs in the past 26 years [18, 19, 21, 43]. Thus, it would be un-
necessary to validate every aspect of this reconstruction. In fact, the use of the CSMs to combine
the parallel coil data should perform better than the LUMC benchmark which was calculated by the
SN R-phase coil combination. In this evaluation, the result of the Roemer reconstruction on the full
H2O datasets is examined.

The CSI result of the Roemer reconstruction on the full H2O acquisition is visualized in Figure 5.7.
Comparing these CSI images with the images from Figure 5.3, this Roemer reconstructed result and
the SN R-phase combined result correspond quite well. The first significant dissimilarity that can
be observed is the global amplitude difference. Even though, the relative spatial profile is preserved
over the multiple diffusion scans, this should not entail any problems. The second dissimilarity that
can be observed is a slight difference in intensity between the voxels including more detected noise
outside the VOI. We argue that this is the result of the more sensitive Roemer reconstruction than
the SN R-phase combination method. From these CSI images the ADC -map is calculated by direct
PM and compared with the SN R-phase combination benchmark from subsection 5.2.2. As can be
observed in Figure 5.8, the resulting ADC -map calculated with the Roemer reconstruction shows
close resemblance to the SN R-phase combined ADC -map. Although again, a slight overestimation
with respect to the benchmark ADC -map can be observed.

5.2.4. Phase Encoding Undersampling Pattern
In order for CS-PM to be able to reconstruct the missing samples in k-space depicted by the gener-
ated PE undersampling pattern, this pattern must satisfy the condition that the resulting aliasing will
induce only incoherent noise-like artifacts. This has been evaluated by generating multiple sets of
pseudo-random PE undersampling patterns: seven sets for each PE reduction factor: R = {2, 3, 4}.
These patters are enforced on the data and the difference with the full acquired data is visualized.
This is evaluated before and after the DW-CSI post-processing on the whole spectra and the esti-
mated pole magnitude, respectively. The results are displayed in histograms in Figures A.1 and A.2
of Appendix A. In these figures the distributions of the normalized aliasing induced errors in image
space can be examined. These distributions are visualized for each diffusion condition, each PE re-
duction factor and each set of pseudo-random PE undersampling patterns. In the spectra histograms
of Figure A.1, it can be observed that all sets have their mode at zero and the introduced error is
centered around this mode. There are, however, a few PE undersampling patterns that evidently in-
troduce a positive bias. The histograms of Figure A.2 show the aliasing introduced errors after post-
processing on the H2O signal. These results were generated with the same PE undersampling pat-
terns as the results from Figure A.1. From the results of Figure A.2 it can be observed that the DW-CSI
post-processing introduces a bias with an increased tend to overestimation. From the histograms of
Figure A.2 each first (most left) set of PE undersampling patterns is further examined in image space,
the resulting aliasing induced errors are visualized in the DW-CSI images in Figures 5.9a - 5.9c for
R = 2 to 4, respectively. Considering the already limited FOV, it is difficult to conclude whether the
induced aliasing is sufficient noise-like and incoherent besides the already noted bias. However we
argue that for our proof of concept, from these results we can conclude that for most generated PE
undersampling patterns these patterns induce sufficiently incoherent and noise-like artifacts.
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Figure 5.9: PE undersampling error of H2O DW-CSI images after post-processing with SN R-phase combination [a.u.].
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Figure 5.10: PE undersampling error of H2O DW-CSI images after post-processing with Roemer reconstruction [a.u.].

An equal analysis has been performed to evaluate the effect of the Roemer reconstruction on the
performance of the PE undersampling patterns. The distributions of the normalized aliasing induced
errors in image space after applying the Roemer reconstruction are visualized in Figures B.1 and B.2
of Appendix B, before and after the DW-CSI post-processing on the whole spectra and the estimated
pole magnitude, respectively. For an objective comparison, the same sets of PE undersampling pat-
terns are applied as in the analysis of Appendix A. When the histograms of the Roemer reconstruc-
tion are compared with the SN R-phase combination, it can be observed that the aliasing artifacts
are more or less preserved by the Roemer reconstruction though smaller in deviation. The DW-CSI
images of Figure 5.10 present the analogue analysis of the DW-CSI images of Figure 5.9 for the Roe-
mer reconstruction with their data drawn from the first (most left) set of PE undersampling patterns
of the histograms in Figure B.2 for R = 2 to 4, respectively. In DW-CSI images of Figures 5.10a - 5.10c
it can be observed that the aliasing artifacts appear to some degree more clustered than the aliasing
artifacts after the SN R-phase combination.

5.2.5. Compressed Sensing Parameter Mapping
To evaluate the compressed sensing parameter mapping reconstruction algorithm, first the global
minimum of the compressed sensing procedure is determined. This is not per se equal to the direct
parameter mapped result on the full acquired H2O dataset (R = 1.0) for two reasons: first because
with each iteration CS-PM also acts as a noise reduction algorithm in the parameter direction of
each voxel; and second because CS-PM also tries to estimate the frequency components outside the
circular k-space coverage of the full acquisition, the corners of k-space. The result is illustrated in
Figure 5.12b where it is compared with the benchmark generated by the direct parameter mapping
on the full acquired dataset from Subsection 5.2.2 as visualized in Figure 5.12a. The difference be-
tween these two ADC -maps is sufficiently small as can visually be observed, as also confirmed by the
corresponding difference map of Figure 5.12c and the NRMSE of 0.0078.

Subsequently, the PE reduction factor R is increased to 1.5, 2.0, 2.5 and 3.0. Their outcomes are
illustrated in Figures 5.12d - 5.12k. From these resulting ADC -maps with their corresponding differ-
ence maps and NRMSEs, it is evident that an acceleration factor of R = 1.5 for this DW-CSI dataset is
achievable with reasonable visual and numerical accuracy (NRMSE = 0.064). For higher acceleration
factors it is noticeable that the CS-PM reconstruction visually does not comply with the benchmark
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anymore. This is emphasized by the NRMSE values which exceed 0.10 for R > 1.5. An argumentation
for this limited acceleration is the already limited data size of DW-CSI. This limited data size makes
it difficult for the PE undersample pattern to only acquire the principal data components and sub-
sequent for CS to reconstruct the full data from these measured data components. Remarkable is
difference in NRMSE of the R = 3 and R = 2.5 reconstructions, where counter intuitively the recon-
struction on the further PE reduced scan performs better. This is, most likely, because in the further
reduction of PEs, the PE undersampling pattern discarded profitably just the proper encodings to
satisfy the CS incoherence conditions to a greater degree than with the R = 2.5 PE reduction.

The run time over all the computations from reading the raw data to reconstructing an ADC -map
was approximately 110 seconds, where the CS-PM algorithm occupied approximately 15 seconds of
the total run time.

The performance of the CS-PM algorithm was also evaluated on the H2O dataset after the Roe-
mer reconstruction. As valid comparison, the estimated ADC -map of Subsection 5.2.3 is used as
benchmark and the same PE undersampling pattern set of of the previous analysis is applied. Again
the reconstruction on the non-PE reduced dataset resembles the benchmark adequately well, as can
be observed in Figures 5.13a - 5.13c. However, if the acceleration factor is increased, the estimated
ADC -maps start to diverge from the benchmark rapidly. Observing the R = 1.5 reconstruction, the
resemblance with the benchmark is still visible apart from one significantly overestimated voxel that
sequentially overshadows the other voxels. The reconstructions for R > 1.5 do not visually comply
with the benchmark anymore. Where as assumed in Chapter 4, that the use of Roemer reconstruc-
tion with the coil sensitivity maps should increase the accuracy with respect to the SN R-phase com-
bination, the performance evidently decreases when applied on an undersampled dataset.

The computation time from raw data to ADC -map with the Roemer reconstruction and the cal-
culation of the CSMs increased to approximately 180 seconds, where the CS-PM algorithm remained
approximately 15 seconds.

5.2.6. Regularization
The effect of the regularisation term H of Subsection 4.2.6 on k-p space is demonstrated in Figure
5.11. This figure depicts the result of the CS-PM algorithm without the use of this regularization term
on the full circular k-space acquired H2O data after 500 iterations. In this reconstruction, CS-PM
only estimates the non-acquired peripheral k-spacePEs. In Figure 5.11 it becomes clear that all the
voxel-wise operations of the CS-PM algorithm direct the data to a minimum-norm solution that is in-
consistent with the expected medical physics. Thus, to maintain the spatial coherence of the DW-CSI
images, coupling between the voxels is required in the CS-PM reconstruction.

b-value = 0 s/mm2
b-value = 382 s/mm2

b-value = 1531 s/mm2
b-value = 3445 s/mm2
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Figure 5.11: DW-CSI image of CS-PM reconstruction without regularization on H2O scan without PE reduction (R = 1) and
500 iterations [a.u.].
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Figure 5.12: CS-PM on H2O scan with SN R-phase combination, increasing acceleration factor R and 500 iterations [mm2/s].
(a) Direct PM without PE reduction; (b) - (k) CS-PM reconstructions with R = {1.0, 1.5, 2.0, 2.5, 3.0} and their corresponding
difference maps.
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Figure 5.13: CS-PM on H2O scan with Roemer reconstruction, increasing acceleration factor R and 500 iterations [mm2/s].
(a) Direct PM without PE reduction; (b) - (k) CS-PM reconstructions with R = {1.0, 1.5, 2.0, 2.5, 3.0} and their corresponding
difference maps.





6
Discussion & Conclusion

The compressed sensing parameter mapping reconstruction algorithm has been implemented and
demonstrated for the application of diffusion-weighted chemical shift imaging. From the results, an
acceleration factor of R = 1.5 with the conventional SN R-phase combination presented the most
clinical informative and reliable reconstruction for R > 1. Although this achieved acceleration factor
might not sound like much, it will still save 20 minutes on a one hour scan.

A notable observation, is that the implementation of the Roemer reconstruction does not im-
prove the accuracy after CS-PM reconstruction on a PE reduced dataset, in fact its effect on the data
appears to corrupt the CS-PM reconstruction. The reason the linear Roemer reconstruction does not
contribute to the performance of CS-PM is expected because the Roemer reconstruction is applied
in image space. It is hypothesized that all the operations applied on the data in another domain than
k-space before CS-PM, make up one of the three main factors of limitation on the performance of
CS-PM. This is due to the fact that operations applied in another domain than k-space on the un-
dersampled data, will lead to information ’leakage’ to the non-PE acquired locations in k-space. This
information is not preserved in the CS-PM reconstruction since it is not included in the data consis-
tency term. The same holds for the DW-CSI post-processing steps that are applied in image space
(steps (d), (e) and (f)). Several approaches could resolve this limitation on CS-PM. A recommended
approach is to reformulate all the DW-CSI post-processing in k-space and to incorporate the Roemer
reconstruction in the iterative CS-PM algorithm. In this fashion, the DW-CSI post-processing is ap-
plied on the acquired k-space of each parallel receive coil separately and the resulting k-p space for
each coil is adopted as data consistency term in the CS reconstruction. The Roemer reconstruction
in the CS-PM scheme then combines and divides the separate coil data with each iteration. Another
approach would be to combine the parallel measurements with the conventional SN R-phase com-
bination or another algorithm applied in k-space and to apply the CS reconstruction in the post-
processing between steps (c) and (d) on the whole spectroscopic dataset. Parameter mapping can
eventually estimate the ADC -values.

A second limitation on CS-PM is the already limited data size in the full acquisition. Since the
k-space matrix is spatially only 12× 12, it becomes complicated to discard a significant portion of
the phase encodings and to still acquire the principal signal components to reconstruct the whole
dataset. This could on the other hand imply that it is possible to increase the effective FOV and VOI
without increasing the scan time.

The third limitation on the performance of CS-PM is imposed by the applied PE undersam-
pling patterns. Further research can determine if and which generated undersampling patterns
are suitable to measure the DW-CSI principal data components and to imply sufficient incoher-
ence in the resulting aliasing for an effective PE reduction and proper reconstruction. An evaluation
of the point spread function of the undersampling patterns could function as measure of imposed
incoherence [6]. The use of the undersampling patterns can be further enhanced when combined
with the navigator accept/reject strategy. In this way, dynamic undersampling patterns are imposed
on the acquisition, while the design and performance of the undersampling pattern are monitored
and adjusted according to the point spread function in real time.
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With these discussed limitations further studied and resolved, the algorithm should be evaluated
on more datasets to prevent overfitting on the limited training data and to further tailor it for the
diffusion of the metabolites of interest. Furthermore, to test the stability of CS-PM, a noise-imposing
Monte-Carlo simulation on the algorithm could provide this valuable insight.

Further improvement can be achieved by considering and investigating other regularisation meth-
ods that work efficiently on these small datasets. Another asset that could boost the performance of
CS-PM is to complement non-acquired PEs as complex conjugates from their mirror k-space data as
initial guess for CS.

In conclusion, the acceleration of DW-CSI still requires a lot of work, however, let this thesis be a
first step in right direction.
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A
Aliasing Artifact Distributions after

SNR-Phase Combination

This appendix displays the results discussed in Subsection 5.2.4.

The histograms of Figure A.1 show the normalized aliasing induced errors of all the voxels in
image space of S{a}

x y,m( f ) of Subsection 2.2.2 after the SN R-phase coil combination, calculated by:

e S{a} (R) = S{a}
x y,m( f )

∣∣
R>1 −S{a}

x y,m( f )
∣∣
R=1∥∥∥S{a}

x y,m( f )
∣∣
R=1

∥∥∥
2

(A.1)

The histograms of Figure A.2 show the normalized aliasing induced errors of all the voxels in
image space of S of Subsection 4.2.2 after the SN R-phase coil combination, calculated by:

e S(R) = S
∣∣
R>1 −S

∣∣
R=1∥∥S

∣∣
R=1

∥∥
2

(A.2)
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Figure A.1: Set of histograms visualizing the normalized difference in data between the PE undersampled vs full acquired before post-processing of spectra in image-space: equation (A.1).
Each row depicts a different diffusion condition, each set of four rows a different acceleration factor (R), each column a different set of pseudo-random PE undersampling patterns for that R.
Note: logarithmic scale on Y-axis.
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Figure A.2: Set of histograms visualizing the normalized difference in data between the PE undersampled vs full acquired after post-processing in parameter-image space: equation (A.2).
Each row depicts a different diffusion condition, each set of four rows a different acceleration factor (R), each column a different set of pseudo-random PE undersampling patterns for that R.





B
Aliasing Artifact Distributions after

Roemer Reconstruction

This appendix displays the results discussed in Subsection 5.2.3.

The histograms of Figure B.1 show the normalized aliasing induced errors of all the voxels in
image space of S{a}

x y,m( f ) of Subsection 2.2.2 after the Roemer reconstruction, calculated by:

e S{a}
csm

(R) = S{a}
x y,m( f )

∣∣
R>1 −S{a}

x y,m( f )
∣∣
R=1∥∥∥S{a}

x y,m( f )
∣∣
R=1

∥∥∥
2

(B.1)

The histograms of Figure B.2 show the normalized aliasing induced errors of all the voxels in
image space of S of Subsection 4.2.2 after the Roemer reconstruction, calculated by:

e Scsm (R) = S
∣∣
R>1 −S

∣∣
R=1∥∥S

∣∣
R=1

∥∥
2

(B.2)
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Figure B.1: Set of histograms visualizing the normalized difference in data between the PE undersampled vs full acquired before post-processing after the Roemer reconstruction of spectra in image-space:
equation (B.1). Each row depicts a different diffusion condition, each set of four rows a different acceleration factor (R), each column a different set of pseudo-random PE undersampling patterns for that R.
Note: logarithmic scale on Y-axis.
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Figure B.2: Set of histograms visualizing the normalized difference in data between the PE undersampled vs full acquired after post-processing with the Roemer reconstruction in parameter-image space:
equation (B.2). Each row depicts a different diffusion condition, each set of four rows a different acceleration factor (R), each column a different set of pseudo-random PE undersampling patterns for that R.
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