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Abstract

In this thesis we model extreme log-returns on economic variables and apply this to Ortec Finance’s model.
These extreme log-returns are relevant for risk management applications such as Value-at-Risk and other
measures of tail risk. We use extreme value theory to simulate economic variables with the desired tail be-
haviour. We pay special attention to correlations between economic variables, since these tend to increase
during financial crises. This suggest the possibility of tail dependence and we use copula theory to model
behaviour similarly to what we observed historically.

We find that a single parameter, the tail index, can be used to model the tail behaviour of an economic
variable. To model the tail dependence between economic variables we can also use a single parameter
namely the tail dependence coefficient. We model the complete dependence structure with a semipara-
metric copula, such that the copula has the desired tail dependence coefficient, but also approximates the
dependence outside the tails.

These techniques are applied in the context of vector autoregressive models, since these models are used
to describe the statistical factors in Ortec Finance’s Dynamic Scenario Generator, which generates future
economic scenarios. We provide a first stylized indication on how these techniques could be applied in the
context of Ortec Finance’s model.
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List of notation and abbreviations

Below we give a list of the most important notation and abbreviations used in this thesis. This list applies
throughout the thesis, unless specifically mentioned otherwise.

γ tail index (of the upper tail if not mentioned which tail)
γL lower tail index
γU upper tail index
ρ second order parameter
F distribution function
F = 1−F survival function
U the inverse of 1

F
Xi ,n i-th smallest value of {X1, · · · , Xn}
Cov(X1, X2) covariance between X1 and X2

E[X ] expectation of X
Var(X ) variance of X
VaRp the p Value-at-Risk
(V)AR(p) (vector) autoregressive with p lags
(V)MA(q) (vector) moving average with q lags
ft (vector of) factor(s) at time t
OLS ordinary least square
WLS weighted least square
C copula
C survival copula
c copula density
g generator of Archimedean copula

R j
i rank dimension i of the j -th element

τ Kendall’s tau
ρS Spearman’s rho
α significance level
TDC tail dependence coefficient
λU upper tail dependence coefficient (sometimes denoted by λ)
λL lower tail dependence coefficient
λU ,L upper-lower tail dependence coefficient
λL,U lower-upper tail dependence coefficient
MSE mean squared error
AMSE average mean squared error
∀ for all
∃ (there) exists
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1
Introduction

In this master thesis we will analyse the way Ortec Finance models extreme log-returns on financial instru-
ments and comes up with a different approach to handle this problem. Extreme returns are large losses or
gains that occur with a low probability. For risk management applications we wish to estimate the probability
of very large losses. To do this, the behaviour of returns of financial instruments has to be modelled and in
many financial applications parametric models are used. The dependence between two financial variables
could be modelled with a single correlation parameter. This parametric model, can be fitted using maximum
likelihood or other estimators, and in this case it approximates the behaviour of financial instruments around
its mean. It does, however, not describe the behaviour of the outliers. Therefore, this method could underesti-
mate the probability of extreme events corresponding to these outliers. The literature shows us that many log-
returns of financial instruments show so-called heavy-tailed behaviour, while models sometimes use light-
tailed distributions (e.g. the normal distribution). These models can severely underestimate the probability
of extremely negative returns, for example the probability of a financial crisis or a single bankruptcy.

This is aggravated by the fact that correlations between economic variables increase during financial
crises, indicating that a single constant correlation parameter might not be enough to model the depen-
dence observed in the market. It is therefore important to model the behaviour of a set of variables correctly,
especially the lower tail, since this part of the distribution explains the behaviour in critical financial times.
To describe this lower tail we will explain the concept tail dependence and introduce a technique to estimate
the tail dependence coefficients, that are single parameters used to describe the dependence in the tails of a
distribution.

1.1. Ortec Finance model
Ortec Finance uses a dynamic factors model to describe the behaviour of many financial variables. These
financial variables can be described by a linear combination of factors, lagged factors and an individual error
term. The dynamics of these factors is captured by a vector autoregressive model with one lag (VAR(1) model)
and normally distributed errors. Afterwards the factors are adjusted to account for the skewness and the tails
that are fatter than normal distribution tails, but extreme value theory and copulas are not used to capture
the tail dependence.

At Ortec Finance, a distinction is made between core variables and regression variables. The regression
variables depend on the core variables and for the core variables Ortec Finance uses an advanced model to
describe their behaviour. In this model the core variables are first decomposed in a trend and various fre-
quency components and the core variable is then simply the sum of the different components. These com-
ponents are obtained via a frequency decomposition, which will not be elaborated on here. Each frequency
component of an individual economic variable depends on some statistical factors. The number of factors
can be different for every frequency component. The dynamics of these factors is captured by a vector au-
toregressive model with one lag. The errors are described by normal distributions and the components of the
errors can be correlated. These factors are adjusted to account for the skewness and tails that are fatter than
tails from a normal distribution. We will show that extreme value theory and copulas are valuable tools to
model individual tails and tail dependence. Besides, we will give an indication on how Ortec Finance could
implement this in their current modelling.

1



2 1. Introduction

1.2. Goals of the project
The main goal of the project is to provide an indication of whether extreme value theory and copula theory
can be used within the VAR framework, which is used to model the statistical factors.

• We wish to be able to accurately estimate the historical tail behaviour of an economic variable, in par-
ticular a statistical factor.

• We wish to be able to accurately estimate the historical dependence structure, including tail depen-
dence, between sets of economic variables, especially statistical factors. We will use copulas for this.

• We wish accurately draw samples from this copula to generate scenarios that match historically ob-
served behaviour.

• We wish to generate statistical factors with similar tail index and dependence structure as observed
historically.

1.3. Organisation of thesis report
In Chapter 2 we apply extreme value theory to simulate univariate factors with tail behaviour similar to what
we have observed historically. In this chapter we model the tails of distributions with a single parameter, the
tail index. We compare different estimators for this parameter and choose a combination that will be used on
the factors. In many tail index estimators we need to select a threshold. We introduce the intuitive stability
method for this and show that this method works better in mean squared error (MSE) for some of the tail
index estimators than other methods from the literature.

Since the factors themselves are modelled by a VAR model, we analyse the link between the tails of the
factors and the error in the VAR model in Chapter 3. We show that, under some conditions, the tail index
of factors equals the largest tail index of the errors if the errors are independent and identically distributed.
We should therefore be careful when modelling the factors by a VAR model with independent and identically
distributed errors, since we have no indication that all factors have the same tail index.

In Chapter 4 we pay special attention to correlations between economic variables. These correlations
tend to increase during financial crises and my therefore not be modelled appropriately by a single constant
parameter. This increasing dependence in stressed scenarios suggests the possibility of tail dependence and
we use copula theory to capture the multivariate behaviour in such a way that we can include tail depen-
dence. The tail dependence coefficient (TDC) is a measure for this tail dependence and we compare different
methods to use this to estimate this parameter. We will select one method, which performs best on the test
samples and use this for estimating the TDC between factors. The TDC estimator that we use has an upward
bias and may give positive values when there is in fact no tail dependence present in the sample. Therefore
we will also test for tail dependence using hypothesis testing. We come up with a copula estimation proce-
dure which includes a similar dependence structure and TDCs as observed historically for the 2-dimensional
setting. Using this copula we can generate scenarios that show the same dependence structure as historically
observed. With a small introduction to vine copulas we give a promising direction for the extension to more
dimensions.

These techniques for describing the dependence are applied in the context of VAR models in Chapter 5.
Using a copula to describe the dependence in the errors gives a copula autoregressive (COPAR) model. The
aim is to provide a first stylized indication of whether or not these techniques could be promising for the
Ortec Finance model.

We will complete this thesis with a discussion of the results and make recommendations for further re-
search on related topics in Chapter 6.

The most important results, proofs and theory can be found in the chapters. In the appendix we will give
additional results, proofs and theory.
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Extreme value theory

2.1. Introduction
For risk management purposes we sometimes wish to estimate the probability of the realisation of certain
losses on a portfolio. To describe the log-returns of the portfolio we can use parametric models and we can
calculate the probability of certain losses under the assumption that the model holds true. The left tail of
distribution functions corresponds to these large losses and we are therefore interested in the tail behaviour
of the log-returns. Extreme value theory is a valuable tool that we will use to describe the tails of distribution
functions. We will apply it to estimate the probabilities of the occurrences of extreme events. Extreme value
theory distinguishes three cases for the distribution function:

• The density has no tail, meaning that the density has a finite endpoint (e.g. a uniform distribution).

• The density has a light tail, meaning that the density decays exponentially or faster to zero, such that
all moments exist (e.g. a normal distribution).

• The density has a heavy tail, meaning that the density decays polynomially to zero, meaning that only
a finite number of moments exist (e.g. a Cauchy distribution).

Malevergne and Sornette (2006) explain that the log-return distributions of equities do not behave according
to a normal distribution. They state that the returns should be modelled with heavy-tailed distributions.

In this chapter, we will first show the relevance of extreme value theory in financial settings. Next, we
will define a measure for the fatness of the tail of a distribution, namely the tail index γ, which can be used to
estimate the probability of extreme events. In the final part we will introduce estimators for this γ and analyse
the performance of each estimator, based on samples from simulated data. Furthermore, we will use these
estimators on financial data.

2.2. The need for extreme value theory
Without the use of extreme value theory the probability of extreme events is likely to be underestimated. As a
result the risk on a portfolio could be underestimated. We will illustrate this in this section by an example, but
first we will introduce a risk measure. A widely used measure for risk of returns on an investment portfolio is
the Value at Risk (VaR), which is given in Definition 2.1.

Definition 2.1 (Value at Risk). For a portfolio with return X , the VaRp is the value for which the probability of
dropping below this value is p. Mathematically we write:

P(X ≤ VaRp ) = p.

In other words: there is a probability p that the return is below VaRp .

For a given sample size n we have that the lower p the more difficult to estimate VaRp , since fewer events
below this level have been observed for a lower p. Especially the p < 1

n case is difficult, since the correspond-
ing events have never occurred in the historical data. The data in the centre of the distribution does not

3



4 2. Extreme value theory

say anything about how the distribution behaves in the tail and therefore how the extremes behave. These
extremes are important, because these correspond to large losses on a portfolio. The following example illus-
trates how large the mistakes can be by using a naive approach without using extreme value theory.

Example 2.1. Consider a setting in which we wish to estimate the probability that a risky portfolio loses 20%
of its value in one day (i.e. the return X < −20%), based on historical data. Suppose we have data available
for 1000 daily returns X1, · · · , X1000, which are plotted in Figure 2.1. Since we simulated this data from a static
distribution, we know the underlying distribution, which has no end points and two heavy tails. As we can
see, the negative returns never exceed 20% and therefore counting the number of occurrences and dividing
by the sample size will estimate the probability to be zero. We need to somehow extrapolate the distribution
function to be able to say something useful about this probability.

Figure 2.1: Log-returns on a portfolio

This figure shows the simulated log-returns for a certain portfolio over 1000 days. The data is simulated from
a double Pareto density.

We could also fit a certain model, for example a normal distribution, to the data and estimate the param-
eters in the model. When we fit a normal density, we can calculate the variance and mean of the data and
assume that the return of the portfolio behaves according to a normal distribution with this estimated mean
and variance. Based on this normal distribution we can simply calculate the probability that X <−20%. The
downside of this approach is that we do not know what type of distribution X follows and we assume it to be
of some parametric form. This could result in large errors when this assumption is not valid. In the case that
we consider this is especially true in the tails of the distributions.

Suppose we take this approach and fit such a normal distribution to the daily returns X1, · · · , X1000. This
is shown in Figure 2.2, where we see that the normal distribution does not have the proper shape. Using this
normal distribution we can now compute any probability P(X < −d) or P(X > d), so also the probability of
losing 20%.



2.2. The need for extreme value theory 5

Figure 2.2: Histogram and normal fit on simulated log-returns

This figure gives a histogram of the simulated log-returns, a normal fit and the original density from which
we drew the log-returns.

Using the normal estimate we could also write down the 4σ (99.994%) confidence interval, which is given
by [−0.0624,0.0628]. Under the normal assumption, these so-called 4σ-events (events outside this interval)
occur once in 15787 data points (i.e. for 250 trading days per year this event would occur once every 63 years),
but in the example it happens 9 out of 1000 times (i.e. just more than twice a year). The probability of such an
event is then underestimated by a factor greater than 100, which becomes even worse when we look further
in the tails, 5σ, 6σ, etc. events. It is clear that the assumption of the underlying process behaving according
to a normal distribution is not correct, but we do not know which other distribution we should try. We could
of course try other models, but these might also not describe the data in the tails as accurately as we wish. We
therefore wish to avoid using a parametric approach that describes the whole distribution of the log-returns
and this is where extreme value theory comes into play.

In all cases in which we want to estimate the probability of dropping below a certain value or conversely
cases in which we want to estimate this value for a given probability we need some description of the tail. To
describe this tail of distributions, often described by the tail index γ, we first introduce some notation. All
the definitions are based on the right tail of the distribution. If we wish to know what happens in the left tail,
which in financial applications correspond to large losses, we can simply consider−X with the corresponding
distribution and apply the definitions to −X . The definitions and propositions of this section, including
further details, can be found in Haan and Ferreira (2006).

Definition 2.2 (Domain of attraction). F is in the domain of attraction of extreme value distribution Gγ if and
only if there exist sequences an ∈R>0 and bn ∈R such that ∀x with 1+γx > 0:

lim
n→∞F n(an x +bn) =Gγ(x) =

{
exp

(
−(1+γx)−

1
γ

)
, if γ 6= 0

exp(−exp(−x)), if γ= 0
, (2.1)

where γ ∈R. We write F ∈D(Gγ).

When for the distribution function of X we have F ∈ D(Gγ), we say that X has tail index γ. If γ > 0 there
are several ways to determine γ, which leads to the following proposition, see Haan and Ferreira (2006).

Proposition 2.1. For X a random variable from distribution function F and γ> 0 the following statements are
equivalent:
(1) F ∈D(Gγ)
(2) X has tail index γ.
(3) x+ = sup{x : F (x) < 1} =∞ and for x > 0:

lim
t→∞

1−F (t x)

1−F (t )
= x− 1

γ . (2.2)
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(4) x+ = sup{x : F (x) < 1} =∞ and for x > 0:

lim
t→∞

U (t x)

U (t )
= xγ, (2.3)

where U is the inverse of 1
1−F .

(5) For x:

P(X > x) → Ax− 1
γ +O

(
x−β

)
, (2.4)

for some β> 1
γ .

We will not give the proof here, but we will use the result. If γ> 0, referred to as the Fréchet domain, then
the underlying distribution has a heavy right tail and the right endpoint x+ is infinite. This also means that
the moments of order greater than 1

γ do not exist (e.g. student’s t-distribution, Cauchy distribution).

Other examples of distributions with a positive tail index are the Pareto, Fréchet and Burr distribution,
given in Tadikamalla (1980). Later we will use samples from these distributions as test data to determine how
well each estimator performs. The densities and distributions function are given in Table 2.1.

Table 2.1: The density and distribution functions of the Pareto, Fréchet and Burr distribution.

This table shows the density and distribution functions of the Pareto, Fréchet and Burr distribution with scale
parameter 1 and domain (0,∞).

Type Density Distribution

Pareto f (x) = 1
γ (x +1)−γ

−1−1 F (x) = 1− (x +1)−γ
−1

Fréchet f (x) = 1
γx−γ−1

e−x−γ−1

F (x) = e−x−γ−1

Burr f (x) = 1
γx−γ−1−1

(
1+x−γ−1

)−2
F (x) =

(
1+x−γ−1

)−1

All these distributions have no lower tail, since all densities have support (0,∞). The upper tail index is
given by parameter γ> 0.

When a distribution of a random variable is not heavy-tailed, we can either use Proposition 2.2 or 2.3 to
compute the tail index, see Haan and Ferreira (2006).

Proposition 2.2. A random variable X with distribution function F has a light (upper) tail, meaning γ= 0, if
and only if there exists a positive function f , such that:

lim
t↑x∗

1−F (t +x f (t ))

1−F (t )
= e−x , (2.5)

where x∗ can be either finite or infinite. We refer to this as the Gumbel domain. All moments for these distribu-
tions exist (e.g. normal distribution, gamma distribution).

Proposition 2.3. A random variable X with distribution function F has no upper tail, meaning γ < 0, if and
only if:

lim
t↓0

1−F (x∗− t x)

1−F (x∗− t )
= x− 1

γ , (2.6)

where x∗ < ∞ (i.e. F has a finite endpoint). We refer to this as the reverse-Weibull domain (e.g. uniform
distribution).

The tail index gives information about the speed of convergence of the density function towards zero.
Figure 2.3 shows the tails of three density functions with different corresponding tail indices.
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Figure 2.3: Tails of three different density functions.

This figure show the right tails of a normal density and two Pareto distributions.

Of the three densities in Figure 2.3, the normal density converges fastest to zero, since it has the low-
est tail index. The other two have a positive tail index and therefore decay polynomially to zero instead of
exponentially, for these two distributions not all moments exist.

The tail index γ is a first order parameter which shows the fatness of the tail. It does, however, not say
anything about the speed of convergence towards this tail. Hence, we introduce the second order parameter
in Definition 2.3, see Haan and Resnick (1996).

Definition 2.3. For a heavy-tailed distribution with tail index γ the second order parameter is the ρ ≤ 0 for
which the following holds:

lim
t→∞

U (t x)
U (t ) −xγ

A(t )
=

{
xγ xρ−1

ρ if ρ 6= 0

xγ log x if ρ = 0
, for some A(t ) → 0 (t →∞). (2.7)

When we wish to estimate probabilities of extreme events, estimating the tail index γ is important. To
improve this estimate, some estimators also include an estimate of this ρ.

Now suppose we have sample {X1, ...Xn} where all Xi ’s independently follow the same distribution as X
and we wish to estimate xp , where P(X > xp ) = p for some p close to zero. Note that this is equivalent to
estimating VaRp . Haan and Ferreira (2006) show us how we can do this by applying extreme value theory
in which case we do not have to assume any parametric form of the underlying distribution. First we will

combine equation (2.3) with the fact that xp =U
(

1
p

)
to obtain the following estimate.

xp =U

(
1

p

)
≈U

(n

k

)(
k

np

)γ
, (2.8)

which is an accurate approximation for n
k ,k À 1 and here we have to choose the threshold k. We continue by

introducing the ordered sample of {X1, ..., Xn}, which is given in Definition 2.4.

Definition 2.4 (Ordered sample). Let {X1, ..., Xn} be a sample. Then the ordered sample is written as {X1,n , X2,n , ..., Xn,n}
where X1,n ≤ X2,n ≤ ... ≤ Xn,n and {X1, ..., Xn} = {X1,n , X2,n , ..., Xn,n}.

We can estimate U
( n

k

)
by Xn−k,n and obtain the following estimator for xp :

xp ≈ x̂p = Xn−k,n

(
k

np

)γ
. (2.9)

Here the tail index γ is still unknown and we therefore proceed with estimation methods for this γ in the next
section.
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2.3. Tail index estimation
In this section we will first introduce the relatively simple Hill and Moment estimators. It is know that these
estimators have a bias (see Haan and Ferreira (2006)). This bias increases with the threshold and we will
elaborate on this in the next section. Other more advanced estimators, that correct for the bias of these
estimators are introduced next: the Regression and adjusted Hill estimator. Subsequently, we will show ways
to determine the optimal threshold for all the estimators and show the performance of the estimators on
simulated data sets with different tail indices, the test data. We will finally consider all linear combinations
with equal weight of the four estimators and select the one which performs best on the test data. This best
linear combination will be used throughout the rest of this thesis.

The estimation of the tail index γ is not an easy task. This index describes the first order behaviour of the
tail of the distribution, but in a finite sample it can be the case that only a few observations are representative
for this tail. For describing the behaviour of the tail we only look at the largest values (or smallest when
dealing with the lower tail). Taking many observations into account for estimating this tail behaviour usually
goes hand in hand with a large bias, since more observations will be outside the tail when we look at more
observations. On the other hand, taking too few observations into account gives an estimate with a larger
standard error. Choosing the right number of data points used for the estimate and methods to reduce the
bias are important in making an accurate estimation for γ.

2.3.1. The Hill and Moment estimator
The Hill estimator is the most well-known estimator for the tail index and defined by Definition 2.5.

Definition 2.5 (Hill estimator). Suppose we have a sample {X1, · · · , Xn} of which {X1,n , · · · , Xn,n} is the ordered
sample, then the Hill estimator is given by:

γ̂H = 1

k

k∑
i=1

(
log Xn−i+1,n − log Xn−k,n

)= 1

k

k∑
i=1

log
Xn−i+1,n

Xn−k,n
, (2.10)

where we see that the estimator is a function of the threshold k.

In general we wish to have k large such that we have a sufficient number of observations. Also we wish k
n to

be small, such that we have many tail observations relative to observations from the centre of the distribution,
since those in the centre are not representative for the tail behaviour. The behaviour of the Hill estimator is
discussed by Haan and Ferreira (2006) and we summarize this by the following two theorems. The proofs of
both theorems are also given in Haan and Ferreira (2006) and will not be elaborated on here.

Theorem 2.4. For any random variable X with tail index γ> 0, k fixed and n →∞ we have that:

p
k(γ̂H −γ)

d→N (0,γ2), (2.11)

so the Hill estimator is asymptotically consistent.

In the estimations we deal with a finite sample and therefore we need to choose an appropriate threshold.
Choosing k large gives us many data points resulting in a small variance, but it also means that we have more
observations outside the tail leading to a larger bias. Theorem 2.5 shows the trade-off we have to make here.

Theorem 2.5. For any random variable X with tail index γ > 0 and γ̂H based on sample {X1, ..., Xn}, where k
is chosen as threshold, the following holds:

γ̂H −γ d→N

(
µ(k)

k
,
γ2

k

)
, (2.12)

where the bias µ(k)
k for which the µ function is unknown, increases in k and the standard error γp

k
is decreasing

in k.

Since Xn−i+1,n ≥ Xn−k,n∀i ≤ k all the logs are positive and the Hill estimator cannot be negative. This is
an issue when we try to estimate the tail index for data generated from a distribution with γ < 0. It can be
shown that γ̂H estimates γ+ = max{0,γ}. If we find an estimator for γ− = min{0,γ}, then we can use the fact
that γ= γ++γ− to obtain a general estimate for γ ∈R. Now define the log-moments of the sample as:

M ( j )
n = 1

k

k∑
i=1

(
log

Xn−i+1,n

Xn−k,n

) j

. (2.13)
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Then Haan and Ferreira (2006) discuss that 1− 1
2

(
1− (γ̂H )2

M (2)
n

)−1

is an accurate estimate for γ− and this leads to

the Moment estimator.

Definition 2.6 (Moment estimator). Suppose we have a sample {X1, · · · , Xn} of which {X1,n , · · · , Xn,n} is the
ordered sample, then the Moment estimator is given by:

γ̂M = γ̂H +1− 1

2

(
1−

(
γ̂H

)2

M (2)
n

)−1

, (2.14)

where γ̂H and M (2)
n can be computed using equations (2.10) and (2.11). This is again a function of a threshold

k.

This estimator corrects the Hill estimator and has a smaller bias when we are dealing with small γ, close to
and below 0. As an example we show the estimates of the tail index of the log-returns on the S&P 500, using the
Hill and Moment estimators. We should realise here that both estimators work best for independent samples
from a static distribution. If there is autocorrelation the estimator could perform worse. Furthermore the
data might not follow a static distribution.

Figure 2.4: Hill and Moment estimator on S&P 500 data

This figure shows the Moment and Hill estimator for the daily returns of the S&P 500 in the period between
2006 and 2016.

In Figure 2.4 we see that the estimation for γ depends strongly on the choice of the threshold k. Both
estimators show large fluctuations for thresholds k < 10. As k increases these fluctuations become smaller,
because the variance of the estimators decrease with k. We should however realise that the bias increases in
k, which cannot be directly observed in this plot. For the Moment estimator the fluctuations are larger, but
the bias smaller. The optimal threshold is therefore usually larger for this Moment estimator.

We can choose the threshold in several ways, that will be discussed in more detail in section 2.4. One way
to do this is to check where the tail index is stable for the first time with respect to the threshold. For the Hill
estimator we would choose a threshold of k ≈ 55 corresponding to γ ≈ 0.34 and for the Moment estimator
k ≈ 88 corresponding to γ≈ 0.23. The estimators have that γM < 1

4 < 1
3 < γH and if the Hill estimator with this

threshold gives the true value ofγwe should conclude that the 3-rd and 4-th moment of the log-returns on the
S&P 500 do not exist. If we suppose that the Moment estimator gives the true value of γ we should conclude
that these moments do exist, which is a completely different result. It is therefore important to come up
with a threshold selection method that results in accurate estimates and to choose the best estimator for the
problem.

There exist many estimators that try to improve on the Hill estimator. We can for example take even higher

order log-moments (M ( j )
n for j > 2) into account to try and improve on the Hill estimator. Considering these

estimators can possibly improve our estimates. We can also take the second order parameter ρ into account
to improve the estimate, recall that ρ is given in Definition 2.3. This is done in the Regression estimator and
adjusted Hill estimator, given in sections 2.3.2 and 2.3.3.
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2.3.2. The Regression estimator
To be able to come up with the Regression estimator we first rewrite the Hill estimator in equation (2.15).

γ̂H = 1

k

k∑
i=1

log Xn−i+1,n − log Xn−k,n = 1

k

k∑
i=1

i log
Xn−i+1,n

Xn−i ,n
= 1

k

k∑
i=1

yi . (2.15)

Beirlant et al. (1999) show that yi approximately behaves according to an exponential distribution:

yi = i log
Xn−i+1,n

Xn−i ,n

d≈
(
γ+bn,k

(
i

k +1

)−ρ)
gi , (2.16)

where ρ < 0 the second order parameter, bn,k unknown but does not depend on i and gi are independent
and identically distributed standard exponential random variables. We can substitute ei := gi −1, where ei is
independent and identically distributed with zero-mean and obtain the following:

yi = γ+bn,k

(
i

k +1

)−ρ
+

(
γ+bn,k

(
i

k +1

)−ρ)
ei . (2.17)

Beirlant et al. (1999) use an ordinary least square (OLS) regression to minimize the mean squared error and
obtain estimates for γ and bn,k of which we are especially interested in the tail index γ. In equation (2.18) we
write y in a different form.

y = Ax +ε, (2.18)

where y = (y1, ..., yk )T , x = (γ bn,k )T and

A =


1

( 1
k+1

)−ρ
1

( 2
k+1

)−ρ
...

...

1
(

k
k+1

)−ρ

 .

Here, the error vector ε is component-wise independent, but heteroscedastic (i.e. the error does not have the

same variance for each component). The variance of the errors, given by
((
γ+bn,k

( i
k+1

)−ρ))2
, is namely a

function of i . In case of independent and identically distributed random variables we could simply use an
ordinary least squares (OLS) regression which is given by:(

γ̂(1) b̂(1)
n,k

)T = x̂(1) = (AT A)−1 AT y. (2.19)

Since the errors do not have the same variance for each component we can use some weighting such that
the errors with larger variance contribute less to the estimate and improve the estimate. The first regression
step gives an initial guess of γ and bn,k . We therefore have an indication of the variances of the errors and we
can rescale using this variance such that all error components have approximately the same variance, given
that the initial estimate is close to the true values of γ and bn,k . Using the rescaled values we can again do
the regression. When we repeat this procedure we end up with the weighted least squares (WLS) method and
more details can be found in Fahrmeir et al. (2007). This results in the following:

yi

c(1)
i

≈ γ+bn,k
( i

k+1

)−ρ
c(1)

i

+
(
γ+bn,k

( i
k+1

)−ρ)
c(1)

i

ei , (2.20)

where c(1)
i = γ(1) +b(1)

n,k

( i
k+1

)−ρ
. This gives us:

(
γ̂(2) b̂(2)

n,k

)T = c(1)
i x̂(2) = c(1)

i

(
AT

1 A1
)−1

AT
1 y (1), (2.21)

where y (1) = y

c(1)
i

, A1 = 1
c(1)

i

A. This procedure can be repeated for c(2)
i ,c(3)

i , ...,c(n)
i with stop condition

|γ(n) −γ(n−1)| < δ for some small δ. In the cases that we have considered, with δ = 0.01, three or four iter-
ations suffice, since the γ estimates do not change much. For a given k and y this can be summarized in
Algorithm 2.1.
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Algorithm 2.1 (Regression estimator).

y (0) = y
A(0) = A
b = 0,γ0 = 0, γ1 = 1

while |γ1 −γ0| < δ: do
ci = γ1 +b

( i
k+1

)−ρ ∀1 ≤ i ≤ k

yi = y (0)
i /ci ∀1 ≤ i ≤ k

Ai = A(0)/ci ∀1 ≤ i ≤ k (update the rows of A)
γ0 = γ1

[γ1,b] = (
AT A

)−1
AT yi

end while
return γ1

Here y (0) and A(0), first two lines of the algorithm, are the same as in equation (2.18). The second order
parameter ρ is usually not known and there are several ways to deal with this. The estimate of γ turns out to
be not so dependent on the choice of ρ and Vandewalle et al. (2004) suggested to take ρ =−1 or ρ =− 1

2 . One
could also estimate ρ first and then use the estimate of ρ in the regression. This estimation procedure for ρ
will be discussed in section 2.3.4.

2.3.3. Adjusted Hill estimator
Just like the Regression estimator, the Adjusted Hill estimator uses the second order parameter ρ to correct for
the bias, which is present in the Hill estimator. It does, however, assume a parametric form of the underlying
data, which holds true for the most used heavy-tailed distributions, for example for the Student’s t and Fréchet
distributions this is satisfied. However, for an arbitrary financial instrument this does not need to be the case,
so we should be careful when using this estimator on arbitrary financial data. The assumption is that for
some β 6= 0 and x →∞:

P(X > x) →
( x

C

)− 1
γ

(
1+ β

ρ

( x

C

) ρ
γ +O

(
x
ρ
γ

))
, (2.22)

where ρ is defined above and C > 0. Based on equation (2.22) Gomes and Martins (2002) introduced the
Adjusted Hill estimator. Since the assumption is not valid for γ ≤ 0 we should be careful when using this
estimator. This estimator is given in Definition 2.7 and for statistical behaviour we refer to Gomes and Martins
(2002).

Definition 2.7 (Adjusted Hill estimator). Suppose we have a sample {X1, · · · , Xn} of which {X1,n , · · · , Xn,n} is the
ordered sample, then the Adjusted Hill estimator is given by:

γ̂A = γ̂H

(
1− β̂

1− ρ̂
(n

k

)ρ̂)
(2.23)

.

Here we need to find estimators ρ̂ and β̂ for ρ and β. Gomes and Martins (2002) also come up with
methods to estimate these parameters. We will start with the estimator of β, which is given by equation
(2.24).

β̂(k) :=
(

k

n

)ρ̂ (
1
k

∑k
i=1

( i
k

)−ρ̂)( 1
k

∑k
i=1 Ui

)− (
1
k

∑k
i=1

( i
k

)−ρ̂
Ui

)
(

1
k

∑k
i=1

( i
k

)−ρ̂)(
1
k

∑k
i=1

( i
k

)−ρ̂
Ui

)
−

(
1
k

∑k
i=1

( i
k

)−2ρ̂
Ui

) , (2.24)

where Ui are the log-spacings Ui := i (log Xn−i+1,n−log Xn−i ,n). For details on the derivation and the statistical
behaviour of this estimator we refer to the paper. We will only use it and show how well it works for the data
that we consider.

We still need to estimate the second order parameterρ. This parameter is also important for the regression
estimator. Different possibilities for estimating ρ are discussed in the next section.



12 2. Extreme value theory

2.3.4. Estimating the second order parameter
A method for estimating this ρ is proposed by Gomes and Martins (2002) and given by:

ρ̂τ(k) = ρ̂(τ)
n (k) :=−

∣∣∣∣3(T τ
n (k)−1)

T τ
n (k)−3

∣∣∣∣ , (2.25)

where

T τ
n (k) :=



(
M (1)

n (k)
)τ−(

1
2 M (2)

n (k)
) τ

2(
1
2 M (2)

n (k)
) τ

2 −
(

1
6 M (3)

n (k)
) τ

3
, if τ> 0,

log
(
M (1)

n (k)
)
− 1

2 log
(

1
2 M (2)

n (k)
)

1
2 log

(
1
2 M (2)

n (k)
)
− 1

3 log
(

1
6 M (3)

n (k)
) , if τ= 0,

(2.26)

with M ( j )
n given by (2.13). Here we see that the estimate still depends on a tuning parameter τ. Gomes and

Martins (2002) suggest that for ρ ∈ (−∞,−1) we use τ = 0, and for ρ ∈ [−1,0) we use τ = 1. The way we can
implement this is by first choosing τ = 0 and if this gives ρ ∈ [−1,0) we will use this as the estimate and
otherwise we set τ= 1 and calculate ρ for this tuning parameter. If τ= 0 gives ρ ∈ [−1,0), we need to be sure
that τ= 1 gives ρ ∈ [−1,0) too. This leads to the following claim.

Claim. If τ= 0 gives ρ ∈ (−∞,−1) then τ= 1 gives ρ ∈ (−∞,−1) as well.

Proof. Note that: ρ <−1 ⇐⇒ T τ
n > 3

2 or T τ
n < 0 from equation (2.25).

Assume τ= 0 gives ρ ∈ (−∞,−1).
Then we distinguish two cases:

(1) T 0
n < 0;

(2) T 0
n > 3

2 .

If (1) holds, using equation (2.26), we can obtain that the following should hold too.

log
(
M (1)

n (k)
)> 1

2
log

(
1

2
M (2)

n (k)

)
and

1

2
log

(
1

2
M (2)

n (k)

)
< 1

3
log

(
1

6
M (3)

n (k)

)
or

log
(
M (1)

n (k)
)< 1

2
log

(
1

2
M (2)

n (k)

)
and

1

2
log

(
1

2
M (2)

n (k)

)
> 1

3
log

(
1

6
M (3)

n (k)

)
.

From the monotonicity of the log it follows that we should also have that for τ> 0:

(
M (1)

n (k)
)τ > (

1

2
M (2)

n (k)

) τ
2

and

(
1

2
M (2)

n (k)

) τ
2 <

(
1

6
M (3)

n (k)

) τ
3

or

(
M (1)

n (k)
)τ < (

1

2
M (2)

n (k)

) τ
2

and

(
1

2
M (2)

n (k)

) τ
2 >

(
1

6
M (3)

n (k)

) τ
3

.

Thus T τ
n (k) < 0 as well for τ> 0 and therefore we have that τ= 1 gives ρ ∈ (−∞,−1).

If (2) holds this means that:

T 0
n (k) = log a − logb

logb − logc
> 3

2
,

for a = M (1)
n (k), b =

(
1
2 M (2)

n (k)
) 1

2
and c =

(
1
6 M (3)

n (k)
) 1

3
. We now wish to show that T 1

n (k) = a−b
b−c > 3

2 as well.

We will show that if T 0
n (k) > 0 then T 1

n (k) > T 0
n (k), which suffices. Again we distinguish two cases:

(a) a > b > c;

(b) a < b < c.

Assume (a). Applying the mean value theorem, given in Stewart (2011), on f (x) = log x gives us that for some
x and y for which a > x > b > y > c:

log a − logb

a −b
= 1

x
< 1

y
< logb − logc

b − c
,
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and therefore T 1
n (k) = a−b

b−c > log a−logb
logb−logc = T 0

n (k) > 3
2 , which is as desired.

Assuming (b) and again applying the mean value theorem gives the same result and therefore under (2)
we obtain T 1

n (k) > 3
2 implying ρ ∈ (−∞,−1) and under (1) we obtain ρ ∈ (−∞,−1) as well. Thus, when τ = 0

gives ρ ∈ (−∞,−1), then τ= 1 gives ρ ∈ (−∞,−1) as well.

Gomes and Martins (2002) suggest to use the threshold k1 = min{n −1,b n
loglogn c}, which leads to the fol-

lowing estimator of ρ:
ρ̂1 = ρ̂τ(k1). (2.27)

Hall and Welsh (1985) introduced another estimator of ρ, which is given by:

ρ̂2 =
∣∣∣∣∣∣log

∣∣∣∣∣∣
1

γ̂H (bn0.9c)
− 1

γ̂H (bn0.5c)

1
γ̂H (bn0.95c)

− 1
γ̂H (bn0.5c)

∣∣∣∣∣∣
∣∣∣∣∣∣ · (logn−0.05)−1

. (2.28)

We simply use these two estimators, compare their performance and check whether they are appropriate for
the data. For the statistical behaviour of these estimators we refer to the papers that introduce the estimators.

For the regression estimator we can deal with ρ by taking a range of ρ’s and for a threshold k fixed we
perform the regression for all these ρ’s. Then for each threshold we select ρ for which the squared errors of
the residuals are minimized. We select the threshold after we have found this ρ and we write ρ̂MSE .

2.3.5. Pros and cons of the estimators
The Hill and Moment estimators are easiest to implement. For large tail indicesγ> 1 the Hill estimator should
work better than the Moment estimator, but the Hill estimator fails for γ≤ 0, which is the regime for which we
need the Moment estimator or other alternatives. The other two and more technical estimators considered
in this thesis are more difficult to implement, but should adjust for the bias in the Hill estimator and therefore
be an improvement under some conditions. In Haan and Ferreira (2006) it is discussed that the tail index of
log-return data is typically around 0.3, so we should still see if the improvements hold for data of γ≈ 0.3.

The adjusted Hill estimator assumes a parametric form given in equation (2.22) and based on this form
it improves the estimate by adjusting the Hill estimator with parameters ρ and β. This parametric form does
not necessarily hold for arbitrary financial data and it might be the case that the adjusted Hill estimator does
not work for distributions where this assumption is not valid. In the simulations we will see how well this
adjusted Hill estimator performs on samples where the assumption does and does not hold.

The Regression estimator does require that γ> 0 but does not require any parametric form and therefore
seems to be more robust than the adjusted Hill estimator. Of all methods this is the most time consuming
method, since we have to do the complete regression for every threshold.

2.4. Threshold selection for tail index estimators
In this section we introduce three methods for selecting the threshold k for the Hill estimator. The first
method called stability method is a new method that we propose and the Guillou Hall method is obtained
from the literature. Hall and Guillou (2001) discuss that the threshold can be chosen in the region where the
stochastic fluctuations in γ are small for the first time. The idea behind this is that the variance in the esti-
mator is probably small in this region because of the small fluctuations. Since we look at the first time this
happens the bias should not be too large either. The precision of the estimator can therefore be expected to
be high in this region. Based on this insight we choose the tail index in Figure 2.4. This method is intuitive
and for a single Hill plot we can simply choose the threshold by looking at the plot. When we wish to do more
tail index estimations, an automated procedure becomes more convenient. To be able to do this we need to
mathematically quantify how we choose this threshold.

We propose the following. First we choose a domain of thresholds that is allowed, i.e. any interval for
which k ∈ {kmi n , · · · ,kmax } where kmi n = bc1npc and kmax = bc2npc. Here 0 < c1 < c2 and 0 < p < 1 will make
sure that k

n →∞ and that k →∞, which is what we need for the estimator to be asymptotically consistent.
Also we should have a sufficient number of thresholds in the interval to be able to choose from and therefore
p and c2−c1 should not be too small. To determine the first stable period we define a quantity for the stability
around k in equation (2.29).

S(k) =
k+m−1∑
i=k−m

(|γ(i +1)−γ(i )|) , (2.29)
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which is a moving average of the absolute changes in the tail index. Here m ∈N should be small such that this
estimate is representative for k, but not too small, since we could be dealing with a coincidental stable period
then. The smaller S the more stable the tail index is around k.
A possible threshold is defined to be:

kS = argmin
k

{S(k) ·kq }, (2.30)

where q > 0 and S(k) defined above. This method is very easy to implement, gives freedom in the choice of q
and is not time consuming. We can also use it on other estimators, since the bias-variance trade-off appears
for other estimators as well. Suppose we have n data points X1, · · · , Xn , then we can compute the threshold
for the Hill estimator by using the following algorithm.

Algorithm 2.2 (Stability method).

for k = m +1, · · · ,kmax −m
S(k) :=∑k+m−1

i=k−m

(|γH (i +1)−γH (i )|)
end for
kS := argmink {S(k) ·kq }
return kS

Caeiro and Gomes (2016) introduce another method, which is also based on these stochastic fluctuations.
The details of this method can be found in their paper and we will only summarize and use the result, given
in Algorithm 2.3. Suppose we have n data points X1, · · · , Xn , then we can compute the threshold for the Hill
estimator as follows.

Algorithm 2.3 (Guillou Hall method).

Order the sample to get {X1,n , · · · , Xn,n}
yi := i {log Xn−i+1,n − log Xn−i ,n}

Tn(k) :=
√

3
k

∑k
i=1(k−2i+1)yi∑k

i=1 yi

Qn(k) :=
√

1
b k

2 c+1

∑k+b k
2 c

j=k−b k
2 c

T 2
n ( j )

kG H := inf{k : Qn( j ) ≥ c ∀ j ≥ k}
return kG H

This threshold selection method works for the Hill estimator and appears to be a accurate threshold
choice for 1.25 ≤ c ≤ 1.5, see Caeiro and Gomes (2016). It makes sure that the variance and bias are small.
Since the Moment estimator and the Adjusted Hill estimator are second order adjustments of the Hill esti-
mator, we can expect those methods to have large stochastic fluctuations when the Hill estimator has large
fluctuations. Therefore, this method might work on these estimators and we will apply this as well. The results
will be given in the next section.
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2.5. Results for the different thresholds methods and estimators
2.5.1. Simulation study
Now that we have methods to determine the threshold we can test these methods on simulated data. This test
data is simulated from multiple distribution types with multiple known tail indices. The threshold method
that has the smallest mean squared error (MSE) on the test data will be our preferred method. This method
can be different for different sample sizes.

After we have chosen the preferred method for every sample size and every estimator that we considered
we can compare these estimators on the test data. Assuming γ > 0, all the four estimators should give a
reasonable estimate of γ. The performance, however, will depend on the tail index itself. We can determine
which estimator or linear combination of estimators to use for the tail index estimation. Choosing the best
linear combination is a large optimization problem. We will not consider all the possible linear combinations
and also no initial guess will be used. We can already improve our estimate by simply considering the averages
of all possible combinations.

The results of the threshold selection methods on the four estimators are given in the next section, where
we choose the threshold selection method with the minimum mean squared error (minimum MSE). After
choosing a method for each estimator we can consider averages of combinations and we will show that this
improves our estimate with respect to MSE.

Since we wish to use the estimates on financial data, we should test the estimators on data with a tail index
in the same range as tail indices from financial data. In Haan and Ferreira (2006) it is discussed that the tail
index of financial data is typically around 0.3 such that the variance exists, but the skewness and kurtosis do
not necessarily exist. To test the estimators and threshold selection methods we test the methods on samples
from the Pareto, Burr and Fréchet distribution, all with tail indices ranging from 0.1 to 0.5. First we test the
threshold methods on the estimators. Afterwards we use these methods on the estimators and see which
estimator works best for which sample.

2.5.2. Threshold methods Hill estimator
We first analyse the threshold methods for the Hill estimator. We also use the stability method, that is given
in Algorithm 2.2, with c1 = 0.2, c2 = 3, p = 1

2 and q = 0,0.5,1,1.5,2,3. Considering additional values of q might
improve the result slightly, but we will see that the estimate is not strongly dependent on q for q values around
the optimal value. Lastly we use the Guillou and Hall method with c = 1.25,1.5, which is given in Algorithm
2.3. The methods are tested on data generated from Pareto, Burr, and Fréchet distributions with sample
sizes of 300, 1000 and 10000. The performance of the estimate depends on the underlying distribution and
on the sample size. For a Fréchet and Burr distribution all the threshold methods work quite well since the
difference between the mean of the estimates is small indicating a small bias, but the MSEs differ significantly
for different methods. We cannot safely say that one method is the best method, since no method is best for all
underlying distributions. To select our method we compute the average MSE over all the different underlying
distributions (AMSE) for every threshold selection method and use the one with the smallest AMSE value.

The results for the AMSE of each threshold selection method are given in Table 2.2. The stability method
for q ≥ 1.5 is never among the best in performance. The stability methods with q = 0,0.5,1 perform well
compared to the others for all data sizes and the results are quite similar for the three values. The Guillou
Hall method performs well for the largest data set. Since the stability method with q = 0.5 performs best for
sample sizes of 1000 and 10000 and second best for size 300 we choose to work with this stability method for
the Hill estimator independent of the sample size throughout the rest of this thesis.
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Table 2.2: Average mean squared errors of the Hill estimates.

This table shows the square root of the average mean squared error (
p

AMSE) for the stability and Guillou Hall
threshold selection methods for sample sizes of 300, 1000 and 10000.

Sample size
Method Parameter 300 1000 10000
Stability q=0 † 0.127 0.102 0.065
Stability q=0.5 0.128 † 0.100 † 0.063
Stability q=1 0.131 0.100 0.066
Stability q=1.5 0.138 0.118 0.105
Stability q=2 0.157 0.148 0.142
Stability q=3 0.176 0.174 0.170
Guillou Hall c=1.25 0.173 0.118 0.063
Guillou Hall c=1.5 0.189 0.134 0.069

†Denotes the best estimator for this sample size.

2.5.3. Threshold methods Moment estimator
When we work with the Moment estimator we cannot simply apply all the methods from the previous sec-
tions. The stability estimator should however still work, because the first stable period for the Moment esti-
mator is also the threshold range where the variance has decreased and the bias is still relatively small. For
the same reason we can use the Guillou and Hall method.

Since the Moment estimator corrects for the Hill bias we can expect the bias to be smaller. Therefore we
will have the same bias for a larger threshold which is why we will consider a larger range of thresholds. As
a consequence we will choose c2 = 5 and c1 = 0.2 and leave the other parameters unchanged with respect to
previous section. The resulting AMSEs are given in Table 2.3.

Table 2.3: Average mean squared errors of the Moment estimates.

This table shows the square root of the average mean squared error (
p

AMSE) for the stability and Guillou Hall
threshold selection methods for sample sizes of 300, 1000 and 10000.

Sample size
Method Parameter 300 1000 10000
Stability q=0 † 0.128 0.092 0.053
Stability q=0.5 0.130 0.097 0.061
Stability q=1 0.139 0.111 0.089
Stability q=1.5 0.156 0.145 0.135
Stability q=2 0.192 0.183 0.180
Stability q=3 0.232 0.223 0.224
Guillou Hall c=1.25 0.164 0.095 0.035
Guillou Hall c=1.5 0.145 † 0.080 † 0.032

†Denotes the best estimator for this sample size.

Here we see that the Guillou Hall method with c = 1.5 performs best for sample sizes of 1000 and 10000,
but for size 300 the stability method with q = 0 is best and clearly better than the Guillou Hall method. De-
pending on the sample size we choose one of these methods throughout the rest of this thesis. With this
choice, for sample sizes of 300 the AMSE is comparable to the Hill estimator and for the other sample sizes it
performs better.

2.5.4. Threshold methods Regression estimator
For the regression estimator we have to choose a method for the estimation of ρ as well as a method for
the determination of the threshold. We run the regression on the same samples as in the previous sections
for first ρ = −1 and then for ρ estimated by equation (2.27). We do not consider all the possible estimators,
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since according to Vandewalle et al. (2004), the regression is not very much dependent on ρ. After these
estimations we determine the threshold for each of these choices of ρ. We do this using the stability method,
giving kS , and by choosing the threshold that minimizes the mean squared error multiplied by the number
of explanatory variables (i.e. the threshold), giving kMSE . We consider the same threshold range as with
the Moment estimator, since the Regression estimator should also have a lower bias than the Hill estimator.
Lastly we let ρ = −2,−1.9, · · · ,−0.1 and choose the ρMSE and kMSE simultaneously. The summarized results
can be found in Table 2.4.

Table 2.4: Average mean squared errors of the Regression estimates.

This table shows the square root of the average mean squared error (
p

AMSE) for the stability and Guillou Hall
threshold selection methods for sample sizes of 300, 1000 and 10000.

Sample size
Method Parameter ρ̂ 300 1000 10000
Minimizing the error ρ̂MSE 0.184 0.161 0.142
Minimizing the error ρ̂1 1.578 0.826 0.172
Minimizing the error ρ̂ =−1 0.235 0.198 0.177
Stability q = 0 ρ̂1 0.495 0.379 † 0.056
Stability q = 0 ρ̂ =−1 0.425 0.382 0.058
Stability q = 0.5 ρ̂1 0.518 0.361 0.085
Stability q = 0.5 ρ̂ =−1 † 0.133 † 0.097 0.057
Stability q = 1 ρ̂1 0.144 0.106 0.060
Stability q = 1 ρ̂ =−1 0.166 0.135 0.090

†Denotes the best estimator for this sample size.

For sample sizes of 300 and 1000 we see that the best combination is the stability method with q = 0.5 and
ρ̂ =−1. For a sample size of 10000 the performance of this method is comparable to the performance stability
method with q = 0 and ρ̂ = ρ̂1. For convenience we use the method with q = 0.5 and ρ̂ = −1 for all sample
sizes throughout the rest of this thesis, even though it performs second best on the test data for size 10000.

2.5.5. Threshold methods Adjusted Hill estimator
The Adjusted Hill estimator uses the Hill estimator with an adjustment dependent on second order parame-
ters ρ and β. Besides those two parameters, we also have to choose a threshold. We used the stability method
and the Guillou Hall method for this threshold selection. ρ is estimated by equation (2.27) and (2.28) and β

by equation (2.24). We choose the ranges of thresholds considered to be the same as with the Hill estimator
and the Moment estimator and choose the range which performs best.
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Table 2.5: Average mean squared errors of the Adjusted Hill estimates.

This table shows the square root of the average mean squared error (
p

AMSE) for the stability and Guillou Hall
threshold selection methods for sample sizes of 300, 1000 and 10000.

Sample size
Method Parameter ρ̂ 300 1000 10000
Stability q = 0 ρ̂1 0.140 0.102 0.065
Stability q = 0 ρ̂2 0.134 0.095 0.059
Stability q = 0.5 ρ̂1 0.141 0.100 0.063
Stability q = 0.5 ρ̂2 † 0.134 † 0.095 †0.059
Stability q = 1 ρ̂1 0.140 0.102 0.065
Stability q = 1 ρ̂2 0.135 0.099 0.065
Guillou Hall c = 1.25 ρ̂1 0.675 0.153 0.067
Guillou Hall c = 1.25 ρ̂2 0.150 0.124 0.064
Guillou Hall c = 1.5 ρ̂1 0.301 0.125 0.066
Guillou Hall c = 1.5 ρ̂2 0.316 0.101 0.063

† Denotes the best estimator for this sample size.

Here the stability method with q = 0.5 and ρ̂ = ρ̂2 performs best for all sample sizes (the difference with
the stability method with q = 0, is made only in the fourth decimal). Therefore, when using the Adjusted Hill
estimator, we will work with the stability method with q = 0.5 throughout the rest of this thesis.

2.5.6. Average of estimators
All the four estimators give a reasonable estimate of γ. The performance, however, depends on the tail index
itself as we can see from the overview in the appendix. Considering a weighted average of these four esti-
mators should also give a reasonable estimate and by using a model averaging approach one can determine
those weights. Model averaging is a large field of study and beyond the scope of this thesis. For determining
our final estimate we will only consider the four estimators and the averages of all possible combinations of
two, three and four estimators.

In Tables B.1, B.2 and B.3 in the appendix the average mean squared errors are given of all these estimates
for sample sizes 300, 1000 and 10000, respectively. Estimating γ as the average of the Hill, Moment and
Regression estimator gives the best results for sample sizes 300 and 1000. For a sample size of 10000 the
average of the Moment, Regression and Adjusted Hill estimator performs best. The final estimator we will
use in the rest of this thesis will therefore be this average of three of the four estimtors. The results of this
estimator compared with the individual estimators are given Tables 2.6, 2.7 and 2.8.

In conclusion, for every estimator, except the Moment estimator we can choose the threshold selection
method independent of the sample size. For this Moment estimator we are better off choosing a different
method for the sample size of 300, namely the stability method with q = 0 instead of the Guillou Hall method
with c = 1.5. The stability method with q = 0.5 performs best (or almost best) for all other estimators. The
best choice for the second order parameter is different for the Adjusted Hill estimation and the Regression
estimation. In the Regression method we choose ρ̂ = −1 and in the Guillou Hall method we choose ρ̂ = ρ̂2.
With those methods we calculate four estimates and depending on the sample size we take the average of the
Moment, Regression and Hill or Adjusted Hill estimator. The final results of these methods are given in Tables
2.6, 2.7 and 2.8
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Table 2.6: Performance in AMSE of the final estimate for sample size 300.

This table shows the square root of the average mean squared error (
p

AMSE) for the final estimator for a sam-
ple size of 300. For the same samples we also show the AMSE of the Hill, Moment, Regression and Adjusted
Hill estimator.

γ

Estimator 0.1 0.2 0.3 0.4 0.5 mean
Hill 0.137 0.126 0.122 0.130 0.137 0.131
Moment 0.112 0.134 0.141 0.145 0.147 0.136
Regression 0.132 0.132 0.129 0.149 0.165 0.142
Adjusted Hill 0.133 0.126 0.124 0.136 0.150 0.134
Final estimate 0.116 0.117 0.119 0.128 0.136 0.124

Table 2.7: Performance in AMSE of the final estimate for sample size 1000.

This table shows the square root of the average mean squared error (
p

AMSE) for the final estimator for a
sample size of 1000. For the same samples we also show the AMSE of the Hill, Moment, Regression and
Adjusted Hill estimator.

γ

Estimator 0.1 0.2 0.3 0.4 0.5 mean
Hill 0.117 0.099 0.090 0.089 0.098 0.099
Moment 0.084 0.097 0.105 0.102 0.104 0.099
Regression 0.106 0.094 0.095 0.101 0.118 0.103
Adjusted Hill 0.107 0.091 0.087 0.090 0.099 0.095
Final estimate 0.089 0.088 0.085 0.091 0.098 0.090

Table 2.8: Performance in AMSE of the final estimate for sample size 10000.

This table shows the square root of the average mean squared error (
p

AMSE) for the final estimator for a
sample size of 10000. For the same samples we also show the AMSE of the Hill, Moment, Regression and
Adjusted Hill estimator.

γ

Estimator 0.1 0.2 0.3 0.4 0.5 mean
Hill 0.088 0.067 0.058 0.054 0.052 0.065
Moment 0.058 0.056 0.062 0.056 0.057 0.058
Regression 0.075 0.059 0.050 0.054 0.057 0.060
Adjusted Hill 0.077 0.061 0.053 0.053 0.053 0.060
Final estimate 0.060 0.050 0.048 0.051 0.052 0.052

As expected, the final estimate is better than all the other estimators on average for the three sample sizes
and the 15 distributions considered. We should here realize that average of three is however not best for all
γ. It is for example outperformed by the Moment estimator for γ = 0.1, but since we do not know γ a priori
and since Haan and Ferreira (2006) discusses that γ is typically around 0.3, we will use the final estimate (i.e.
linear combination of three estimators) as the estimate for γ.

2.6. Conclusion
From the literature we know that log-return type financial variables typically show heavy-tailed behaviour
in the lower tail. Under this assumption we can use the estimators explained in this section, which work
for γ > 0. For all estimators we need to choose a threshold and we found threshold selection methods from
the literature for each estimator, except for the Regression estimator. Furthermore, we came up with a new
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threshold selection method, the stability method, which is based on the bias-variance trade-off we have to
make in tail index estimations. This stability method performs better than the considered methods from the
literature for the adjusted Hill and Hill estimator, but not for the Moment estimator. We also used it for the
Regression estimator to determine the threshold there.

The MSEs of all estimators are close over the considered range of tail indices. Some estimators perform
better for smaller tail indices and some for larger tail indices. By combining the estimators and taking the
average over three of the four we improve the estimators MSE. The choice here depends on the sample size.
Thus, we now have an automated procedure for estimating tail indices of heavy-tailed data for different sam-
ple sizes. We can model the tails of the distributions of these heavy-tailed variables more accurately. Using
estimates we can now simulate financial variables with similar tails to what has been observed historically.
Furthermore, we can obtain appropriate estimates of risk measures for tail risk such as the VaRp for low p.



3
VAR models and tail indices

3.1. Introduction
In finance and economics data often takes the form of a time series. A simple time series model that can be
used to describe a single financial time series is the autoregressive (AR) model. Here the time series variable
depends on previous values, a constant and an error term, usually assumed to be white noise. Another model
that can be used is a moving average (MA) model, where the value of the variable is a linear combination of
error terms. Both of these models will be introduced and elaborated on in the next section. Subsequently, we
will extend these models to the multivariate case, which will give us a vector autoregressive (VAR) and vector
moving average (VMA) model, respectively.

At Ortec Finance, a large number of economic variables are decomposed into three frequency compo-
nents. Every frequency component is then modelled as a function of factors and an error term. These factors
capture the complete dynamics of a frequency band of the economy as a whole and are described by a VAR
model. The time series variables we are dealing with are possibly heavy-tailed. A kernelling method is used in
conjunction with a moment-matching method to account for these heavy tails. Here the moment-matching
is used to adjust the distribution function obtained from kernelling, such that the third and fourth moment
match the third and fourth moment of the data. We wish to apply extreme value theory here to model the tails
of the distribution and explore how this can be implemented in the current approach of Ortec. We will show
analytically that, under some conditions, the tail index of the errors equals the tail index of the time series
variable and we will show what this means for the tail index estimation. This also shows that for a time series
that is heavy-tailed, we should model the error as a heavy-tailed random variable. Definitions of this section
and more details on this topic can be found in Shumway and Stoffer (2010).

3.2. AR and MA models
The definition of an autoregressive model, which can be used to describe certain one-dimensional time series
in finance, is given in Definition 3.1.

Definition 3.1 (AR model). An autoregressive model of order p (AR(p) model) is of the form:

yt = c +
p∑

i=1
φp yt−p +et , (3.1)

where c and φi are constants ∀i , with φp 6= 0 and et is zero-mean white noise.

We can assume c = 0 for any AR(p) model, since we can de-mean the series yt to obtain:

xt = yt −µ=
p∑

i=1
φp (yt−p −µ)+et =

p∑
i=1

φp xt−p +et , (3.2)

where µ = c
(
1−∑p

i=1φp
)−1

and proceed with the analysis of xt , which can in the end easily be transformed
back to yt . We also introduce a more compact form, where we use the so-called autoregressive operator.

21
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Definition 3.2. We define the autoregressive operator as:

φ(B) = 1−φ1B −·· ·−φp B p , (3.3)

where the backshift operator B is such that B xt = xt−1.

Then we can rewrite equation (3.1) as:
φ(B)yt = et , (3.4)

where the φ-function completely captures the autoregressive part. A time series can also be modelled as an
MA model, which is given by the definition below.

Definition 3.3 (MA model). A moving average model of order q (MA(q) model) is of the form:

yt = c +
q−1∑
i=0

θi et−i , (3.5)

where c,θi ∈R ∀i are constants, θq 6= 0 and et is zero-mean white noise.

Important characteristics of time series are stability and stationarity, which we will give in two forms,
namely strongly stationary and weak-sense stationary. Both of these characterestics are introduced below.

Definition 3.4. We say that a process is strongly stationary if F (yt ) = F (ys ) ∀t , s, with F (y) the distribution
function of y (i.e. the probability distribution is not a function of time).

Definition 3.5. We say that a process is stationary in a weak sense if E[xt ] = E[xs ] ∀t , s and
Cov(xt , xs ) = E[(xs − E[xs ])(xt − E[xt ])] = E[(x|t−s| − E[x|t−s|])(x0 − E[x0])] = Cov(x|t−s|, x0) ∀t , s (i.e. the mean
does not vary with respect to time and the autocovariance is a function of the lag |t − s| only).

From now on we will use the term stationary to indicate stationary in a weak sense. It follows directly
that strong stationarity implies stationarity if the variance is finite. F (yt ) = F (ys ) namely implies f (yt ) = f (ys )
almost surely, which implies E[xt ] = E[xs ] and E[(xs −E[xs ])(xt −E[xt ])] = E[(x|t−s|−E[x|t−s|])(x0 −E[x0])]. The
reverse is not necessarily true, see the following example.

Example 3.1. Consider xt to be normally distributed white noise for t < 1 and t-distributed white noise for
t ≥ 1, such that the variances equal σ ∀t .
Then xt is not strongly stationary, since the distribution function is not constant in t . It is however weak-
sense stationary, since the autocovariance equals σ for t = s (i.e. for |t − s| = 0) and 0 elsewhere. Therefore the
autocovariance function is a function of the lag |t − s| only. Furthermore, the mean is 0 everywhere and thus
independent of t .

In financial data we often work with the log-differences of time series, for example the log-return of a
stock. This is the log-difference of the stock price. These log-returns are usually assumed to be stable, mean-
ing that the errors in an early stage do not blow up at a later stage.

Definition 3.6. An AR(p) process given by equation (3.1) is stable if and only if the roots of the lag polynomial
lie outside the unit circle (i.e. solutions of 0 = 1−φ1z −φ2z2 −·· ·−φp zp have that |z| < 1).

Theorem 3.1. An AR(p) process which is stable and has finite variance errors is stationary.

The proof of this theorem is given in Shumway and Stoffer (2010). They also state that a time series de-
scribed by an AR(1) model can be written as the weighted sum of a countably infinite number of errors of the
model (i.e. an MA(∞) model) if this AR model is stationary, which leads to the following proposition.

Proposition 3.2. Any stationary AR(1) model can be written as a stationary MA(∞) model.

Proof. Let yt be described by a stationary AR(1) model, meaning that we can write yt = φyt−1 + et with 0 <
|φ| < 1, where et is zero-mean white noise. Then we can rewrite as follows:

yt =φyt−1 +et =φ(φyt−2 +et−1)+et =φ2 yt−2 +φet−1 +et = ·· · =
∞∑

i=0
φi et−i ,

which is an MA(∞) model with θi =φi .

In the next section, we will generalize this result for vector autoregressive models (VAR model) with an
arbitrary lag p.



3.3. VAR models 23

3.3. VAR models
To gain insight into the dynamics of a number of financial time series, we can extend the autoregressive mod-
els to the multivariate case. This extension gives us a vector autoregressive (VAR) model, which is formally
defined below. In this model a vector of economic variables depends linearly on previous vectors (via a ma-
trix vector product) and an error term. Due to the matrix product, different time series can exhibit correlation
even though the error terms can be uncorrelated.

Definition 3.7 (VAR model). A vector autoregressive model of order p (VAR(p) model) is of the form:

y (t ) = c +
p∑

i=1
Ai y (t−i ) +ε(t ), (3.6)

where c ∈ Rn and Ai ∈ Rn×n are constants ∀i , Ap has at least one non-zero element and y (t ),ε(t ) ∈ Rn , with
E[ε(t )] = 0, E[ε(t )ε(t )′] =Ω the contemporaneous covariance matrix and E[ε(t )ε(t−k)′] = 0 ∀k > 0.

Similar to the AR(p) model, we can assume c = 0 without loss of generality.

Definition 3.8 (VMA model). A vector moving average model of order q (VMA(q) model) is of the form:

y (t ) = c +
q∑

i=0
Ai ε

(t−i ), (3.7)

where c ∈Rn and Ai ∈Rn×n are constants ∀i , Aq has at least one non-zero element and ε(t ) is zero-mean white
noise.

We wish to express the resulting tail index of a VAR(p) time series in terms of the error tail indices. To be
able to do this we will rewrite the VAR(p) model.

Theorem 3.3. Any stationary n-dimensional VAR(p) model can be written as a stationary n ·p-dimensional
VMA(∞) model.

The proof of this theorem follows directly from the two lemmas below, of which we will give the proofs.

Lemma 3.4. Any stationary n-dimensional VAR(p) model can be written as a stationary n · p-dimensional
VAR(1) model.

Proof. Let the n-dimensional VAR(p) model be given by equation (3.6), such that we have

y (t ) = A1 y (t−1) + A2 y (t−2) +·· ·+ Ap y (t−p) +ε(t ).

Now choosing A ∈Rn·p×n·p and e(t ) ∈Rn·p as follows:

A =



A1 A2 A3 · · · Ap

I 0 0 · · · 0

0 I 0
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 I 0

 and e(t ) =


ε(t )

0
...
0

 ∀t ,

gives us that
ỹ (t ) = Aỹ (t−1) +e(t ) (3.8)

where ỹ (t ) =
((

y (t )
)T (

y (t )
)T · · ·(y (t−p+1)

)T
)T

. Then the vector ỹ (t ) ∈Rn·p follows a VAR(1) and the first n com-

ponents correspond to the components of y t , which was the original time series from the n-dimensional
VAR(p) model.
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Lemma 3.5. Any stationary VAR(1) model can be written as a stationary VMA(∞) model.

Proof. Let a VAR(1) model be given by
y (t ) = Ay (t−1) +e(t ) (3.9)

Then we can rewrite

y (t ) = A(Ay (t−2) +e(t−1))+e(t ) = A2 y (t−2) + Ae(t−1) +e(t ) = ·· · =
∞∑

j=0
A j e(t− j ),

which is the representation of a VMA(∞) model.

Combining the results of Lemma 3.4 and Lemma 3.5 proves Theorem 3.3.

Theorem 3.6. All components of y (t ), which follows a VAR(p) process, can be written as a countably infinite
linear combination of the errors of the VAR(p) process.

Proof. Suppose we have an n-dimensional VAR(p) model defined by equation (3.6), then for arbitrary com-
ponent i of y (t ) we can write:

y (t )
i =

∞∑
j=0

(
A j e(t− j )

)
i

=
∞∑

j=0

(
A j

)
i

e(t− j )

=
∞∑

j=0

n·p∑
k=1

(
A j

)
i ,k

e(t− j )
k

=
∞∑

j=0

n·p∑
k=1

(
A j

)
i ,k

e(t− j )
k

=
∞∑

j=0

n∑
k=1

(
A j

)
i ,k
ε

(t− j )
k ,

where
(

A j
)

i is the i ’th row of A j and then (A j )i ,k is simply the matrix element of A j at row i and column k.

All the ε(t− j )
k ’s are errors with tail index γk . Since this is a countable number of variables and ε(t ) has the same

underlying distribution for every t , we can rewrite this even further and see that ỹ (t )
i can be written as follows:

ỹ (t )
i =

∞∑
m=0

cmε
(tm )
km

, (3.10)

where ε(tm )
km

follows a distribution with tail index γkm for all m.

The concepts of stationarity and stability can be extended from the one-dimensional case to the multi-
dimensional case and we obtain the following.

Definition 3.9. y (t ) described by a VAR(p) model is weak-sense (or strongly) stationary if and only if each
component of y (t )

i is weak-sense (or strongly) stationary.

Definition 3.10. Let y (t ) be described by a VAR(1) model given by equation (3.9). y (t ) is said to be stable if and
only if all the eigenvalues of A lie within the unit circle.
Note: A VAR(p) process is stable if and only if its VAR(1) representation is stable, see Shumway and Stoffer (2010).

Theorem 3.7. A VAR(p) process which is stable and has errors with finite variances for all components is sta-
tionary.

When the errors are described by a heavy-tailed distribution, we are interested in the tail index of the time
series. Since we can write any time series described by a VAR(p) model as a VMA(∞) model, calculating the
tail index of the VAR(p) model is equivalent to calculating the tail index of the corresponding VMA(∞) model.
Every single component of this time series can then be described by a countably infinite weighted sum of ran-
dom variables. Therefore, calculating the tail index of a time series described by a VAR model corresponds to
calculating the tail index of a countably infinite weighted sum of random variables with different tail indices.
The latter calculation will be the topic of the next section.
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3.4. Linear combinations of independent random heavy-tailed variables
As a start we will calculate the tail index of a finite weighted sum of heavy-tailed variables. First we will show
what happens when we scale a variable and then we will show what happens when we take a sum of heavy-
tailed variables. We combine these to get the tail of a weighted sum and by taking limits we will obtain the
final result for a countably infinite weighted sum. These three steps will be the topic of this section and in
section 3.5 we will show what this means for arbitrary VAR models.

3.4.1. Scaling a heavy-tailed random variable
For a random variable X from a heavy-tailed distribution with upper tail index γ and lower tail index γL we
have that for x →∞:

P(X > x) → Ax− 1
γ +O

(
x−β

)
and P(X <−x) → AL x

− 1
γL +O

(
x−βL

)
Scaling X by parameter c > 0 does not change the tail index, since:

P(c X > x) =P
(

X > x

c

)
→ A

( x

c

)− 1
γ +O

(
x−β

)
= Ãx− 1

γ +O
(
x−β

)
.

Scaling X by parameter −b = c < 0 interchanges the tail indices, because then:

P(c X > x) =P
(

X < x

c

)
=P

(
X <−x

b

)
→ AL

( x

c

)−αL

+O
(
x−βL

)
= B̃ x−αL +O

(
x−βL

)
and similarly

P (c X <−x) → C̃ x−α+O
(
x−β

)
To see what happens in the tail when we take the sum of two heavy-tailed distributions, we need some more
calculations. We do this in the next section.

3.4.2. Sum of heavy-tailed random variables
Theorem 3.8. Suppose we have X1 and X2 independent from a heavy-tailed distribution with upper tail in-
dices γ1 = 1

α1
and γ2 = 1

α2
, respectively, where we assume γ1 6= γ2. Also suppose that the density functions f1 and

f2 are bounded almost surely by some C1 ∈ R and C2 ∈ R. Then the tail index of X1 + X2 is given by max{γ1,γ2}
(the largest tail index survives in the upper tail).

Proof. Without loss of generality assume 0 <α1 <α2. We will show that for large s: P(X1 +X2 > s) ≈C s−α1 for
some constant C and therefore the tail index of the sum is the tail index of the heaviest individual tail.
P(X1+X2 > s) can be calculated by making a partition of the complement set {X1+X2 ≤ s} and calculating the
probabilities of X1 and X2 to be in this partition. The idea comes from Hyung and de Vries (2007), but here
we relax the condition 2 <α1 <α2 to the more general case 0 <α1 <α2. First we create a partition such that
{X1 +X2 ≤ s} = A∪B ∪C ∪D ∪E , where:

A =
{

X1 +X2 ≤ s, X1 > −s

2
, X2 > s

2

}
,

B =
{

X1 +X2 ≤ s, X1 > s

2
, X2 > −s

2

}
,

C =
{

X1 ≤ s

2
, X2 ≤ s

2

}
,

D =
{

X1 +X2 ≤ s, X1 ≤ −s

2
, X2 > s

2

}
,

E =
{

X1 +X2 ≤ s, X1 > s

2
, X2 ≤ −s

2

}
.

(3.11)

Then we have that P(X1 + X2 > s) = 1−P(A)−P(B)−P(C )−P(D)−P(E) and we can proceed by calculating
these probabilities separately. P(C ) is the easiest and for large s we have:

P(C ) =P
(

X1 ≤ s

2
, X2 ≤ s

2

)
=P

(
X1 ≤ s

2

)
P

(
X2 ≤ s

2

)
=

(
1− A1

( s

2

)−α1 +O
(
s−β

))(
1− A2

( s

2

)−α2 +O
(
s−β

))
= 1− A12α1 s−α1 +O

(
s−β

)
,
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where β>α1. P(A) requires more computation, which is given below:

P(A) =P
(

X1 +X2 ≤ s, X1 > −s

2
, X2 > s

2

)
=

∫ s
2

−s
2

[
F2(s −x)−F2

( s

2

)]
f1(x)d x

=
∫ s

2

−s
2

F2(s −x) f1(x)d x −
∫ s

2

−s
2

F2

( s

2

)
f1(x)d x

= IA − IIA .

Here IA can be worked out using a Taylor expansion for (s − x)−α1 and (s − x)−β. We can use the fact that for

x ∈ (− s
2 ,− s

2

)
we have (s−x)−y = s−y +y xs−y−1+ (y+1)y

2 x2(s−qy )−y−2 for some qy ∈
(− s

2 , s
2

)
, see Stewart (2011).

From this, IA can be calculated as follows:

IA =
∫ s

2

−s
2

F2(s −x) f1(x)d x

=
∫ s

2

−s
2

(
1− A2(s −x)−α2 +O

(
(s −x)−β2

))
f1(x)d x

=
∫ s

2

−s
2

(
1− A2s−α2 +O

(
s−β2

))
f1(x)d x −

∫ s
2

−s
2

(
A2α2s−α2−1 +O

(
s−β2−1

))
x f1(x)d x

−
∫ s

2

−s
2

(
A2

(α2 +1)α2

2
(s −qα2 )−α2−2 +O

(
(s −qβ2 )−β2−2

))
x2 f1(x)d x

= a
∫ s

2

−s
2

f1(x)d x −b
∫ s

2

−s
2

x f1(x)d x − c
∫ s

2

−s
2

x2 f1(x)d x,

where

a =
(
1− A2s−α2 +O

(
s−β2

))
,

b =
(

A2α2s−α2−1 +O
(
s−β2−1

))
,

c =
(

A2
(α2 +1)α2

2
(s −qα2 )−α2−2 +O

(
(s −qβ2 )−β2−2

))
Further evaluation gives for s large enough:

∫ s
2

−s
2

f1(x)d x = 1− A1

( s

2

)−α1 − AL
1

( s

2

)−αL
1 +O

(
s−β1

)
+O

(
s−β

L
1

)
,

where β> max
{
α1,αL

1

}
.

∫ s
2

−s
2

x f1(x)d x =
∫ −ps

−s
2

x f1(x)d x +
∫ 0

−ps
x f1(x)d x +

∫ p
s

0
x f1(x)d x +

∫ s
2

p
s

x f1(x)d x = (1)+ (2)+ (3)+ (4),

and ∫ s
2

−s
2

x2 f1(x)d x =
∫ − 3ps

−s
2

x2 f1(x)d x +
∫ 3ps

− 3ps
x2 f1(x)d x +

∫ s
2

3ps
x2 f1(x)d x = (5)+ (6)+ (7).

Substitution of y = x2 for the integral expression in (3) gives the following:

(3) =
∫ p

s

0
x f1(x)d x =

∫ s

0

1

2
f1

(p
y
)

d y ≤ s

2
C1 =O (s),

where we use that f1 ≤C1 a.s. In the same way we can show that expression (2) = O (s). (4) can be calculated
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as well and we obtain:

(4) =
∫ s

2

p
s

x
dP(X1 ≤ x)

d x
d x

=
∫ s

2

p
s

x
d

d x

(
A1x−α1 +O

(
x−β1

))
d x

=
∫ s

2

p
s

(
−α1 Ax−α1 +O

(
x−β1

))
d x

∗=
[ −α1

−α1 +1
A1x−α1+1 +O

(
x−β1+1

)] s
2

p
s

=O
(
sk

)
,

where k = max
{−α1 +1,−α1

2 + 1
2

} < 1. Note that ∗ only holds for α1,β1 6= 1. If α1 = 1 or β1 = 1 we would get
a O (log s) < O (s) and this will therefore not change the end result. Using a similar derivation we obtain that

expression (1) =O
(
sl

)
, where l = max

{
−αL

1 +1,−αL
1

2 + 1
2

}
< 1.

Substitution of y = x3 for the integral expression in (6) gives us the following:

(6) =
∫ s

−s

1

3
f1( 3

p
y)d y ≤ 2s

3
C1 =O (s),

where we use that f1 ≤C1 a.s. again. (5) and (7) can be approximated for large s and for (7) this gives us:

(7) =
∫ s

2

3ps
x2 dP(X1 ≤ x)

d x
d x

=
∫ s

2

3ps
x2 d

d x

((
1− A1x−α1

)+O
(
x−β1

))
d x

=
∫ s

2

3ps

(
α1 A1x−α1+1 +O

(
x−β1+1

))
d x

*=
[ −α1

−α1 +2
A1x−α1+2 +O

(
x−β1+2

)] s
2

3ps

= α1

α1 −2
A1

(( s

2

)−α1+2
− s−

α1
3 + 2

3 +O
(
s−β1+2

)
+O

(
s−

β1
3 + 2

3

))
=O

(
sm)

,

where m = max
{−α1 +2,−α1

3 + 2
3

}< 2. Note that ∗ only holds for α1,β1 6= 2. α1 = 2 or β1 = 2 would give terms

of order O (log s) <O
(
s2

)
. The derivation of (5) is similar and (5) =O (sn) where n = max

{
−αL

1 +2,−αL
1

3 + 2
3

}
<

2. Combining these results and using the expressions for a, b and c gives for IA :

IA =
(
1− A2(s −x)−α2 +O

(
(s −x)−β2

))
·
(
1− A1

( s

2

)−α1 − AL
1

( s

2

)−αL
1
)
−

(
A2α2s−α2−1 +O

(
s−β2−1

))
·O (s)

−
(

A2
(α2 +1)α2

2
(s −qα2 )−α2−2 +O

(
(s −qβ2 )−β2−2

))
· (O (s)+O

(
sm)+O

(
sn)

)

= 1− A
( s

2

)−α
+O

(
s−β

)
,

where β>α= min{α1,αL
1 }, since m,n ≤ 2.

IIA is easier to compute and gives:

IIA = F2

( s

2

)∫ s
2

−s
2

f1(x)d x

=
(
1− A2

( s

2

)−α2 +O
(
s−β

))
·
(
1− A1

( s

2

)−α1 − AL
1

( s

2

)−αL
1 +O

(
s−β

))
= 1− A

( s

2

)−α
+O

(
s−β

)
,
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where β>α= min{α1,αL
1 }. Therefore we have that:

P(A) = IA − IIA =O
(
s−β

)
,

with β>α. P(B) can be calculated in the same way. This also gives us:

P(B) = IB − IIB =O
(
s−β

)
.

P(D) and P(E) are of lower order. Namely:

P(D) ≤P
(

X1 ≤ −s

2
, X2 > s

2

)
=O

(
s−α

L
1

)
O

(
s−α2

)=O
(
s−α

L
1−α2

)
,

and similarly P(E) =O
(
s−α1−αL

2

)
. Adding up all these probabilities gives us:

P(X1 +X2 > s) = 1−P(A)−P(B)−P(C )−P(D)−P(E) = A12α1 s−α1 +O
(
s−β

)
,

where β>α1. Therefore, the largest upper tail index survives in the upper tail.

Note that also in the lower tail the largest lower tail index survives, the derivation is similar and we get:

P(X1 +X2 ≤−s) = AL
1 2α

L
1 s−α

L
1 +O

(
s−β

)
,

where β>αL
1 .

If we drop the assumption that one of the tail indices is larger than the other we get α1 =α2 > 0 and the result
will stay the same. The proof is similar to the proof of the γ1 6= γ2 case (i.e. α1 6= α2). We can combine this
result with the result of section 3.4.1 to obtain the following corollary.

Corollary 3.9. If X = ∑n
i=1 ci Xi , where ci 6= 0, Xi has lower tail index γL

i and upper tail index γU
i , then X has

tail index γ, where γ= max1≤i≤n{γi }, with:

γi =
{
γL

i , if ci < 0,

γU
i , if ci > 0.

3.4.3. Infinite sum of heavy-tailed random variables
Theorem 3.10. Suppose that we have a countable infinitely weighted sum of independent and identically
distributed random variables y = ∑∞

j=0 c j x j , where x j follows a heavy-tailed distribution with finite expec-

tation (i.e. lower tail index γL < 1, upper tail index γU < 1), almost surely continuous density function and∑∞
j=0 c j =C <∞.

Then y follows a heavy-tailed distribution with upper tail index γ, where

γ=


γL , if c j < 0 ∀ j ,

γU , if c j > 0 ∀ j ,

max
{
γL ,γU

}
, else.

(3.12)

Proof.
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For some s large enough and β> 1
γ we have that:

P

( ∞∑
j=0

c j x j > s

)
=P

(
lim

n→∞
n∑

j=0
c j x j > s

)

= E
[
1

(
lim

n→∞
n∑

j=0
c j x j > s

)]

(1)= E

[
lim

n→∞1

(
n∑

j=0
c j x j > s

)]

(2)= lim
n→∞E

[
1

(
n∑

j=0
c j x j > s

)]

= lim
n→∞P

(
n∑

j=0
c j x j > s

)
(3)≈ lim

n→∞

(
An s−

1
γ +O

(
s−β

))
= As−

1
γ +O

(
s−β

)
,

for some A ∈ R. A = limn→∞ An exists, since the probability is bounded by 1. Here (3) follows directly from
Corollary 3.9. For (1) we will show that:

lim
n→∞1

(
n∑

j=0
c j x j > s

)
= 1

(
lim

n→∞
n∑

j=0
c j x j > s

)
a.s.

For (2) we will use dominated convergence, but first we will show (1).
To show (1) we will distinguish the following two cases:

(a) limn→∞
∑n

j=0 c j x j = L > s (then 1
(
limn→∞

∑n
j=0 c j x j > s

)
= 1);

(b) limn→∞
∑n

j=0 c j x j = L < s (then 1
(
limn→∞

∑n
j=0 c j x j > s

)
= 0).

From the definition of the limit we have that for ε > 0 arbitrary we can find an N ∈ N such that ∀n ≥ N :
L−ε<∑n

j=0 c j x j < L+ε.
First assume (a).
We choose ε= 1

2 |L− s| and pick N ∈N such that ∀n ≥ N :
∑n

j=0 c j x j > L−ε> s.
Therefore

lim
n→∞1

(
n∑

j=0
c j x j > s

)
= 1 = 1

(
lim

n→∞
n∑

j=0
c j x j > s

)
.

Similarly when (b) holds we obtain that:

lim
n→∞1

(
n∑

j=0
c j x j > s

)
= 0 = 1

(
lim

n→∞
n∑

j=0
c j x j > s

)
.

The equality therefore holds under (a) and under (b). We will show that (a) or (b) happens almost surely by
showing that the limit L exists almost surely. Note that the case L = s happens with probability 0, since the
density function is bounded a.s. That limit L exists almost surely can be shown by showing that:

E

(
lim

n→∞
n∑

j=0
c j x j

)
<∞.

We know that:

E

(
lim

n→∞
n∑

j=0
c j x j

)
≤ E

(∣∣∣∣∣ lim
n→∞

n∑
j=0

c j x j

∣∣∣∣∣
)
≤ E

(
lim

n→∞
n∑

j=0

∣∣c j
∣∣ · ∣∣x j

∣∣) ∗= lim
n→∞E

(
n∑

j=0

∣∣c j
∣∣ · ∣∣x j

∣∣)<∞,
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where (*) is possible because E
[∑n

j=0

∣∣c j
∣∣ · ∣∣x j

∣∣] is uniformly bounded by:

E

[
n∑

j=0

∣∣c j
∣∣ · ∣∣x j

∣∣]=
n∑

j=0

∣∣c j
∣∣E[∣∣x j

∣∣]≤ n∑
j=0

∣∣c j
∣∣E [|x1|] = E [|x1|]C <∞.

Since (a) or (b) holds almost surely, we have that:

lim
n→∞1

(
n∑

j=0
c j x j > s

)
= 1

(
lim

n→∞
n∑

j=0
c j x j > s

)
a.s.

Now we will show (2):
Define g = 1

(∑∞
j=0 |c j x j | > s

)
, then clearly |1

(∑n
j=0 c j x j > s

)
| ≤ g and g is measurable. Also 1

(∑n
j=0 c j x j > s

)
converges to limn→∞ 1

(∑n
j=0 c j x j > s

)
pointwise and from the dominated convergence theorem:

lim
n→∞E

[
1

(
n∑

j=0
c j x j > s

)]
= E

[
lim

n→∞1

(
n∑

j=0
c j x j > s

)]

So, now we have that P
(∑∞

j=0 c j x j > s
)
= As−

1
γ +O

(
s−β

)
for s large enough and β> 1

γ . Thus, using Proposition

2.1, we can conclude that y =∑∞
j=0 c j x j has tail index γ.

Note that the convergence towards the tail can be significantly slower than the convergence in the orig-
inal errors. This may make it more difficult to estimate the tail parameter γ on this sum than on the errors,
especially for small-sized data sets. In the next section we will extend this result to VAR time series with
heavy-tailed input errors.

3.5. Tail index of VAR time series
The following theorem relates the time series to the input errors of a VAR(p) model. We will show that it
follows directly from the result of Theorems 3.3 and 3.10.

Theorem 3.11. Suppose that y (t ) ∈Rn is described by a stationary VAR(p) model through:

y (t ) = A1 y (t−1) + A2 y (t−2) +·· ·+ Ap y (t−p) +ε(t ),

where the errors are independent and identically distributed with respect to time. Then component y (t )
i can be

written as a countable infinite sum of the errors, namely:

y (t )
i =

n∑
k=1

∞∑
p=0

cp,kε
(t−p)
k , (3.13)

which has upper tail index γi = maxk≤n

{
max

{
1U

i ,kγ
U
k ,1L

i ,kγ
L
k

}}
, where

1U
i ,k =

{
0, if cp,k ≤ 0 ∀p,

1, else,
(3.14)

and

1L
i ,k =

{
0, if cp,k ≥ 0 ∀p,

1, else.
(3.15)

(i.e. the tail index of y is equal to the largest of the upper and lower tail indices of the tails that influence y.)

Proof. First use Theorem 3.3, which states that any stationary n-dimensional VAR(p) model can be written as
a VMA(∞) model. From this theorem it follows that every component of this VAR(p) time series y (t )

i can be
written as a countably infinite sum of error components and therefore equation (3.13) holds.

y (t )
i =

n∑
k=1

∞∑
p=0

cp,kε
(t−p)
k , (3.16)
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where for every k the errors ε(t )
k are independent and identically distributed with respect to t . From Theorem

3.10 we have that
∑∞

p=0 cp,kε
(t−p)
k has tail index γk , where

γk =


0, if cp,k = 0 ∀p,

γL
k , if cp,k ≤ 0 ∀p and ∃p such that cp,k 6= 0,

γU
k , if cp,k ≥ 0 ∀p and ∃p such that cp,k 6= 0,

max
{
γL

k ,γU
k

}
, else.

(3.17)

From Corollary 3.9 we have that the tail index of y (t )
i equalsγ= maxk≤n{γk }. Furthermoreγk = max

{
1U

i ,kγ
U
k ,1L

i ,kγ
L
k

}
and it follows that the tail index is given by:

γ= max
k≤n

{γk } = max
k≤n

{
max

{
1U

i ,kγ
U
k ,1L

i ,kγ
L
k

}}
.

Example 3.2. Suppose that factors f (t ) =
(

f (t )
1 f (t )

2

)T
are described by a VAR(1) model through:

f (t ) =
(−0.5 −0.4
−0.4 −0.5

)
f (t−1) +ε(t ),

with ε(t )
i following a heavy-tailed distribution with upper and lower tail index γU

1 = γL
1 = 0.1 and γU

2 = γL
2 = 0.5.

Then we can diagonalise A as follows A = PDP−1, where:

P =
(

1 1
−1 1

)
,

and

D =
(−0.1 0

0 −0.9

)
.

Using Theorem 3.3 we can write:

f (t ) =
∞∑

p=0
Apε(t−p) =

∞∑
p=0

Apε(t−p) =
∞∑

p=0
PDp P−1ε(t−p).

After working out the matrix products, we can write:

f (t )
1 = 0.5

∞∑
p=0

((−0.1)p + (−0.9)p )ε(t−p)
1 +0.5

∞∑
p=0

(−(−0.1)p + (−0.9)p )ε(t−p)
2 ,

and:

f (t )
2 = 0.5

∞∑
p=0

(−(−0.1)p + (−0.9)p )ε(t−p)
1 +0.5

∞∑
p=0

((−0.1)p + (−0.9)p )ε(t−p)
2 .

In all the sums the coefficients take positive as well as negative values and depend on ε1 and ε2. Hence, the
upper and lower tail indices of both factors are given by γU = γL = max

{
γU

1 ,γL
1 ,γU

2 ,γL
2

}= 0.5.

In Example 3.2 we see that the upper and lower tail index of every factor can depend on every individual
upper and lower tail index of the errors. When the matrix A contains elements that are equal to 0, this result
can be very different, which is illustrated by Example 3.3.

Example 3.3. Suppose that factors f (t ) =
(

f (t )
1 f (t )

2

)T
are described by a VAR(1) model through:

f (t ) =
(
0.5 0
0 −0.5

)
f (t−1) +ε(t ),

with ε(t )
1 and ε(t )

2 following a heavy-tailed distribution with upper and lower tail index γU
1 = γL

1 = 0.1 and
γU

2 = γL
2 = 0.5, respectively.

For factor 1 we then have that:

f (t )
1 =

∞∑
p=0

0.5pε
(t−p)
1 ,
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and factor 1 follows a heavy-tailed distribution with γU = γU
1 = 0.1 and γL = γL

1 = 0.1, since ε2 does not influ-
ence f1 and 0.5p > 0 ∀p. Similarly factor 2 is given by:

f (t )
2 =

∞∑
p=0

(−0.5)pε
(t−p)
2 ,

and factor 2 follows a heavy-tailed distribution with γU = γL = max
{
γU

2 ,γL
2

} = 0.5, since ε1 does not influence
f2 and (−0.5)p takes as well positive as negative values.

Due to the fact that the matrix can be decoupled in Example 3.3, the tail index of factor i only depends on
the tail index of εi . When we would not have had zero entries, this would not have been the case, since the
indicators in equations (3.14) (3.15) would be zero.

3.6. Estimation of tail indices of VAR models
In this section we will estimate the tail index on the errors of a VAR model and directly on the factors that are
described by the VAR model. If indeed the tail index of time series modelled as a VAR model is the same as the
tail index of its errors, we should see convergence towards this tail index in the estimation when the sample
size increases. First we will estimate the tail index of a simple AR(1) time series and in the second part of this
section we will do this for a VAR(1) time series.

3.6.1. Tail index of AR time series
Let us consider a simple AR(1) model with φ=−0.9,−0.6, · · · ,0.9, recall Definition 3.1. Here, the errors ei are
simulated from a double Pareto distribution with upper and lower tail index equal and ranging from 0.1 to 0.5
again. The density function of this distribution is the average of a Pareto and a mirrored Pareto density such
that this distribution is symmetric around 0 if the upper and lower tail are equal. Therefore, we also have that
E[ei ] = 0 ∀i . Note thatφ= 0 corresponds to the time series variable being equal to the errors and corresponds
to direct estimation of γ on the errors.

The estimation of the upper tail indices of 500 simulated AR(1) time series with 600 data points is given
in Figure 3.1. In the estimation we only consider the positive data {X1, · · · , Xn}, since the estimators are based
on having only positive (or only negative) data. We will have E[n] = 300 and therefore use the estimator we
found in section 2.5.6 based on sample size 300. Similarly, we simulated the time series for sample sizes 2000
and 20000 of which the results are given in Figures 3.2 and 3.3. Here we took the average over 200 simulations,
since the estimator variance is smaller for larger sample sizes. In Tables C.4, C.5 and C.6 in the appendix we
show the MSEs of these estimates.
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Figure 3.1: Estimated tail index of AR time series

This figure shows the estimates of the tail index of the factor described by an AR(1) model as a function of the
tail index of the error, which ranges from 0.1 to 0.5. The value of the AR coefficient φ ranges from −0.9 to 0.9
and the sample size of the positive data is on average approximately 300.

Figure 3.2: Estimated tail index of AR time series

This figure shows the estimates of the tail index of the factor described by an AR(1) model as a function of the
tail index of the error, which ranges from 0.1 to 0.5. The value of the AR coefficient φ ranges from −0.9 to 0.9
and the sample size of the positive data is on average approximately 1000.
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Figure 3.3: Estimated tail index of AR time series

This figure shows the estimates of the tail index of the factor described by an AR(1) model as a function of the
tail index of the error, which ranges from 0.1 to 0.5. The value of the AR coefficient φ ranges from −0.9 to 0.9
and the sample size of the positive data is on average approximately 10000.

In Figures 3.1, 3.2 and 3.3 we see that the estimate of the tail index decreases when φ moves away from
zero. This effect is stronger when the sample size is smaller and the estimates are closer to the theoretical
value for larger sample sizes. In Tables C.4, C.5 and C.6 in the appendix we can also see that the MSE decreases
for larger sample sizes. This is in line with the fact that the theoretical tail index of the AR model equals the
tail index of the error.

In the tables of Appendix B, the appendix with results of the previous chapter, we can see that the tail
index estimator has a positive bias for the Pareto distribution. Therefore, we expect to have a positive bias for
φ= 0 as well, since the time series is then equal to the error series, which follows a double Pareto distribution.
For the |φ| ≥ 1 case the distribution of the time series variable is not stationary, meaning that we cannot speak
of a tail index. For |φ| between 0 and 1 the time series is equal to a weighted sum of the errors. Extreme obser-
vations for individual errors will therefore be less prominent in the resulting time series. For finite samples,
this may lower the tail index estimate even though the theoretical value is unchanged. Since the φ = 0 case
gives a positive bias, at first we expect the bias to decrease as |φ| increases. When |φ| increases too much,
however, the bias will be negative and increase in absolute value. The performance of the estimator will then
deteriorate.

This behaviour can be seen in all three figures. As |φ| increases slightly, see the φ = ±0.3 lines, the bias
generally gets smaller. The φ = ±0.3 lines are mostly below the φ = 0 lines. From Tables C.4, C.5 and C.6 we
also see that the MSE decreases. This bias decreases even more when |φ| increases by a larger amount. The
best estimates, in MSE, are the estimates for the |φ| = 0.6 case. This result holds for double Pareto distributed
errors, but not for arbitrary distributions. We should also note here that the estimators are designed for in-
dependent samples. When φ 6= 0 we however have autocorrelation and therefore the observations are not
mutually independent, which might affect the performance of the estimators.

3.6.2. Tail index of VAR time series

In Examples 3.2 and 3.3 we discussed the differences between the final tail indices for different VAR models.
In Figures 3.4 and 3.5 the results are given for the resulting upper tail indices when we plug in double Pareto
errors with equal upper and lower tail indices γ1 = 0.1, · · · ,0.5 and γ2 = 0.5 for ε(t )

1 and ε(t )
2 .
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Figure 3.4: Estimated tail indices in Example 3.2

This figure shows the estimates of the tail indices of the factors described by the VAR model in Example 3.2.
Here, the tail index of the first error varies from 0.1 to 0.5 and of the second error is 0.5.

Figure 3.5: Estimated tail indices in Example 3.3

This figure shows the estimates of the tail indices of the factors described by the VAR model in Example 3.3.
Here, the tail index of the first error varies from 0.1 to 0.5 and of the second error is 0.5.

The estimation on time series of 600 points can have a large bias see for example the line for γ1 in Figure
3.4. In both figures we see that when the sample size increases, that the average tail index gets closer to the
theoretical values, which is what we expect.

3.7. Conclusion
At Ortec Finance, a dynamic factor model is used to describe the behaviour of economic and financial vari-
ables. The model makes use of statistical factors that are described by a VAR model. We found that, under
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some assumption, a countable sum of heavy-tailed random variables has the same tail index as the largest
tail index of these random variables. As a result, we obtain that in VAR models with heavy-tailed errors the tail
index of a factor equals the largest tail index of the errors, which influences this factor. Therefore, if we model
the input errors as heavy-tailed random variables and if all factors influence each other through the matrix
product, the factors will all have the same tail index. Since all other financial variables depend on the factors
through a regression or depend on it indirectly we will model all financial variables with the same tail index.
We have no indication that all financial variables have the same tail index and therefore we should be careful
in using this approach for modelling the tails.

Simulations support this theoretical result, but the convergence of estimations towards this theoretical
tail index can be slower for the factors than for the errors.



4
Modelling tail dependence using copulas

4.1. Introduction
In financial data stocks, bonds, and many other financial variables often show high correlation during crisis
times, while in normal times this is not necessarily the case, see Aloui et al. (2011). This indicates that we
should not only use one constant correlation coefficient to model the dependence between financial vari-
ables. Using a single, constant correlation index can underestimate the dependence in the tails of distribu-
tions and therefore underestimates the corresponding risks. By the use of copulas, a more advanced way to
capture dependence relations, we aim to model the dependence of different random variables on the whole
range of possible outcomes of this random variable. A copula is used to link the marginal distributions of
several variables to a multivariate distribution and this is given in equation (4.1), see Nelsen (1999).

F (x1, x2, · · · , xn) =C (Fx1 (x1),Fx2 (x2), · · · ,Fxn (xn)), (4.1)

where F is the multivariate distribution function and Fxi is the marginal distribution function of variable xi .
As we can see here, this decouples the dependence and the individual behaviour of the xi ’s. The copula cap-
tures the multivariate behaviour of x1, · · · , xn and the marginal distribution functions describe the individual
behaviour of each xi . In this thesis we use static copulas that are suitable when the multivariate distributions
are static, meaning that this distribution itself is constant in time. This assumption does not generally hold,
but in many applications it can be an accurate approximation. In the modelling of Ortec Finance the VAR
model captures the dynamical part of the factors and all underlying errors that we will analyse are assumed
to be independent of time.

In this chapter we will first introduce copulas and some of their properties. We will also elaborate on some
dependence measures, especially tail dependence. Subsequently parametric copulas, such as Archimedean
copulas, are studied and we will show this copula approach has some possible limitations. We proceed with
a semiparametric approach of which it is a challenge to include tail dependence. This problem will be solved
for the 2-dimensional setting and we will find ways to estimate the tail dependence coefficients. Lastly, we
will use this copula with this estimated tail dependence to generate tail dependent random variables and
ultimately tail dependent factors.

4.2. Copulas and properties
A copula has to satisfy some conditions that are formally defined by Nelsen (1999) and its definition is given
below.

Definition 4.1 (Copula). C : [0,1]n → [0,1] is called an n-dimensional copula if and only if the following holds:
(1) ∀u = (u1,u2, · · · ,un)T ∈ [0,1]n ,C (u1, · · · ,un) = 0 if ∃1 ≤ i ≤ n such that ui = 0 (i.e. C is grounded).
(2) C has marginals Ci satisfying ∀i = 1, · · · ,n,∀u ∈ [0,1] : Ci (u) = u, (here Ci (u) =C (1, · · · ,1,u,1, · · · ,1), where
u is on position i ).
(3) ∀u = (u1,u2, · · · ,un)T , v = (v1, v2, · · · , vn)T ∈ [0,1]n , such that ∀ j ∈ {1, · · · ,n}: v j ≤ u j ,

VC (B) := Dvn
un

· · ·Dv1
u1

C (t1, · · · tn) ≥ 0,

37
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where B = ([u1, v1]×·· ·× [un , vn]), t ∈ [0,1]n and
Dvi

ui
C (t1, · · · tn) =C (t1, · · · , t j−1, v j , t j+1, · · · , tn)−C (t1, · · · , t j−1,u j , t j+1, · · · , tn) (i.e. C is n-increasing).

Figure 4.1: Copula example.

This figure shows an example of a widely used copula, namely the Gumbel copula with model parameter
θ = 2.

In Figure 4.1 we see an example of a 2-dimensional copula. This is a Gumbel copula, which will be further
discussed in section 4.5. It is difficult to distinguish between different copulas, since all copulas are identical
on the boundary of their domain. It is easier to distinguish between different copulas using the copula den-
sity, which does not necessarily exist everywhere. For points where the copula is continuously differentiable
it is given by:

c(u1,u2) = ∂2C (u1,u2)

∂u1∂u2
. (4.2)

The copula density corresponding to the copula in Figure 4.1 is given in Figure 4.2. In this figure we also show
a sample drawn from this copula. This sample and density give more insight in the behaviour of the under-
lying distributions. The copula density tends to infinity for u1,u2 → 1 and we therefore see some clustering
close to (1,1) in the sample. This indicates that there is some extra dependence in the upper tail of the distri-
bution, which suggests the possible phenomenon of tail dependence. We will introduce the definition of tail
dependence and elaborate on this topic in section 4.3.
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Figure 4.2: Copula density example.

The left figure shows an example of the density of a widely used copula, namely the Gumbel copula with
model parameter θ = 2. In the right figure we give a sample of 1000 independent pairs of random variables
from the same copula.

(a) Copula density (b) Sample from copula

Computations show that its density function is not defined for the points (0,0) and (1,1), since the density
diverges to infinity there. This divergence in (0,0), (0,1), (1,0) and/or (1,1) is common for many parametric
copulas.

A copula is a function, which is used to link the marginal distributions to the multivariate distribution.
Whether this link is unique is discussed in Sklar (1973) and they proved that this is the case for continuous
marginal distributions. We will not give the proof, but the result is given in Theorem 4.1.

Theorem 4.1 (Sklar). Let F be an n-dimensional distribution function with continuous margins F1, · · · ,Fn .
Then ∃! C : [0,1]n → [0,1] such that

F (x1, x2, · · · , xn) =C (Fx1 (x1),Fx2 (x2), · · · ,Fxn (xn)) ∀x ∈R.

Conversely, we also have that if Fx1 , · · · ,Fxn are distribution functions and C is an n-dimensional copula, then
F is a distribution function and its margins are given by Fx1 , · · · ,Fxn .

When one or more of the marginal distributions are not continous, this is no longer the case, see Genest
and Neslehova (2007). We will continue with more properties of copulas, in particular for the 2-dimensional
case. Schweizer and Wolff (1981) show that a copula is Lipschitz continuous and this gives us Proposition 4.2.

Proposition 4.2. Any copula C : [0,1]n → [0,1] is Lipschitz continuous with upper bound ‖C (u)−C (v)‖ ≤
‖u − v‖1 ∀u, v ∈ [0,1]n .

Proof. We will show it only for the bivariate case, but the proof for the n-dimensional case is similar.
Let us assume 0 ≤ u2 ≤ v2 ≤ 1. Then from property (3) of Definition 4.1 we obtain C (u1, v2)−C (u1,u2) ≤
C (1, v2)−C (1,u2) ≤ v2 −u2.
Then we generally have that |C (u1, v2)−C (u1,u2)| ≤ |v2 −u2| ∀u1,u2, v2 ∈ [0,1].
Similarly |C (u1,u2)−C (v1,u2) ≤ |v1 −u1| ∀u1,u2, v1 ∈ [0,1] and it follows that for general u1,u2, v1, v2 ∈ [0,1]:

|C (u1,u2)−C (v1, v2)|
= 1

2
{|C (u1,u2)−C (u1, v2)+C (u1,u2)−C (v1,u2)+C (v1,u2)−C (v1, v2)+C (u1, v2)−C (v1, v2)|}

≤ 1

2
{|C (u1,u2)−C (u1, v2)|+ |C (u1,u2)−C (v1,u2)|+ |C (v1,u2)−C (v1, v2)|+ |C (u1, v2)−C (v1, v2)|}

≤ 1

2
{|u2 − v2|+ |u1 − v1|+ |u2 − v2|+ |u1 − v1|}

= |u1 − v1|+ |u2 − v2|
= ‖u − v‖1.
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Note that a copula is therefore also absolutely continuous and continuous. It does not follow that it is con-
tinuously differentiable, although from the absolute continuity, it does follow that the copula is continuously
differentiable almost everywhere, see Aliprantis and Burkinshaw (1998).

For describing multivariate financial random variables we start working with the 2-dimensional copula
and use this as a building block for higher dimensions. Filling in n = 2 in Definition 4.1 gives us the bivariate
copula definition. This is given in Definition 4.2.

Definition 4.2. A function C : [0,1]2 → [0,1] is a 2-dimensional copula if and only if the following holds:
(1) ∀u ∈ [0,1] : C (0,u) =C (u,0) = 0,
(2) ∀u ∈ [0,1] : C (1,u) =C (u,1) = u,
(3) ∀(u1,u2)T , (v1, v2)T , with u1 ≤ v1, u2 ≤ v2: C (v1, v2)+C (u1,u2) ≥C (u1, v2)+C (v1,u2).

Example 4.1. Some special cases of copulas are given below.

(1) C 0(u1,u2, · · · ,un) = u1u2 · · ·un .
(2) C+(u1,u2, · · · ,un) = min{u1, · · · ,un}.
(3) C−(u1,u2, · · · ,un) = max{

∑n
i=1 ui +1−n,0}.

Here, C 0 is the independence copula describing the behaviour of independent distributions. This form is
what we would expect, since filling in Fxi (xi ) for ui gives us that:

F (x1, x2, · · · , xn) =C 0(Fx1 (x1),Fx2 (x2), · · · ,Fxn (xn)) = Fx1 (x1)Fx2 (x2) · · ·Fxn (xn),

which must hold for independent data.

C+ is the comonotonic copula, describing the behaviour of perfectly correlated distributions and C− is the
countermonotonic copula for n = 2, describing the behaviour of perfectly anti-correlated data. In higher di-
mensions this is not a copula, since it is not n-increasing for n > 2. This means that one of the marginal
distributions is not non-decreasing (i.e. the density function is negative on a set A ⊂ Rn with measure greater
than 0) and therefore this copula is not a distribution function.

The copulas of Example 4.1 for the 2-dimensional setting are shown in Figure 4.4. When the underlying
distributions would be a standard normal distributions, these would correspond to a multivariate standard
normal with ρ = 0, ρ = 1 and ρ =−1. We give these 2-dimensional distribution functions in Figure 4.3.

Figure 4.3: The cases of copulas.

This figure shows three bivariate normal distributions with standard normal margins. The first figure shows
the bivariate case with ρ = 0, the second ρ = 1 and the third ρ =−1.

(a) ρ = 0 (b) ρ = 1 (c) ρ =−1
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Figure 4.4: The three special cases of copulas.

This figure shows the independent, comonotonic, and countermonotonic copula for the 2-dimensional set-
ting.

(a) Independent copula (b) Comonotonic copula (c) Countermonotonic copula

Definition 4.3. A function C1 is bounded from below by a function C2 on D (i.e. C1 ÂC2) if and only if C1(u) ≥
C2(u) ∀u ∈ D.
Similarly a function C1 is bounded from above by a function C2 on D (i.e. C1 ≺ C2) if and only if C1(u) ≤
C2(u) ∀u ∈ D and obviously: C2 ÂC1 ⇐⇒C1 ≺C2.

Fréchet and Hoeffding showed independently for any copula that the counter- and comonotonic copula
are a lower and upper bound respectively, see Nelsen (1999). This leads to Definition 4.3.

Theorem 4.3 (Fréchet-Hoeffding). For any copula C : [0,1]n → [0,1] we have that C− ≺C ≺C+.

Proof. C ≺C+ follows directly from property (2) in Definition 4.1.
Furthermore, we know that C is Lipschitz continuous with bound ‖C (u)−C (v)‖ = ‖u − v‖1 = ∑n

i=1 |ui − vi |.
Thus, we have that for arbitrary u, v ∈ [0,1]n : C (u) = 1−‖C (1, · · · ,1)−C (u)‖ ≥ 1−∑n

i=1 |1−ui | = 1−n+∑n
i=1 ui

and so C− ≺C .

In Propositions 4.4 and 4.5 we give some important properties of copulas. For details and proofs, that are
straightforward from the definition of a copula, we refer to Nelsen (1999).

Proposition 4.4 (Survival Copula). Suppose C is a 2-dimensional copula for random variables X1 and X2.
Then:
(1) C defined by C (u1,u2) = u1 +u2 −1+C (1−u1,1−u2) is also a copula.
(2) C1 defined by C1(u1,u2) = u2 −C (1−u1,u2) is also a copula.
(3) C2 defined by C2(u1,u2) = u1 −C (u1,1−u2) is also a copula.
C is the so-called survival copula of C and Ci is the Xi -survival copula of C .

Proposition 4.5. Suppose C1 and C2 are n-dimensional copulas. Then C defined by C (u) := λC1(u)+ (1−
λ)C2(u) ∀u ∈ [0,1]n gives another copula if λ ∈ [0,1]. (The convex combination of two copulas is a copula).

Corollary 4.6. Directly from these two propositions we get that any convex combination of copulas and sur-
vival copulas is still a copula.

Important properties of copulas are its dependence measures, that will be introduced in the next section.
For extreme risk management we are especially interested in the tail dependence, which is a measure for the
probability of extreme events for two random variables occurring at the same time. We are not only interested
in the dependence in, but also outside the tails. In the next section we discuss a number of dependence
measures for copulas.

4.3. Dependence measures for random variables
4.3.1. Tail dependence
In financial crises we see that most financial variables tend to move in the same direction and thus the de-
pendence between variables is higher in the lower tail of the distribution, see Aloui et al. (2011). This extra
dependence in the lower tail of the distributions suggests that there might be lower tail dependence. Similarly
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there can be upper tail dependence and so it is important to come up with measures for this special depen-
dence. We introduce the tail dependence coefficients (TDCs) as a measure for this and define it in Definition
4.4. We refer to Nelsen (1999) for this definition.

Definition 4.4. Let X and Y be random variables with distribution functions Fx and Fy respectively. Then the
upper tail dependence coefficient of (X ,Y )T is given by:

λU = lim
u↑1

P
(
Y > F−1

y (u)|X > F−1
x (u)

)
, (4.3)

similarly the lower tail dependence coefficient is given by:

λL = lim
u↓0

P
(
Y ≤ F−1

y (u)|X ≤ F−1
x (u)

)
. (4.4)

Definition 4.5. We say that X and Y are upper (lower) tail dependent if λU > 0 (λL > 0). Similarly X and Y are
upper (lower) tail independent if λU = 0 (λL = 0).

From a risk management perspective we can also express the tail dependence in terms of VaR (Value at
Risk), recall Definition 2.1. This expression is given in Proposition 4.7.

Proposition 4.7. The coefficient of upper and lower tail dependence of random variables X and Y can be
written as:

λU = lim
u↑1

P (Y > VaRu(Y )|X > VaRu(X )) , (4.5)

λL = lim
u↓0

P (Y ≤ VaRu(Y )|X ≤ VaRu(X )) . (4.6)

A risk manager’s interpretation for the lower tail dependenceλL between two portfolios X and Y can be as
follows. For small u we have: when a portfolio X drops below the VaRu level (i.e. an extremely negative event
for X ) the probability of Y dropping below the VaRu (i.e. an extremely negative event for Y ) is approximately
λL . Investing in two portfolios which have a large λL means that the probability of both dropping below the
VaRu level is relatively large.

Nelsen (1999) state that we can rewrite this definition for the tail dependence in a different manner and
express it in terms of copulas. This expression is given in Proposition 4.8.

Proposition 4.8. Let X and Y be random variables whose dependence structure is given by copula C (i.e.
F (X ,Y ) =C (Fx (X ),Fy (Y ))). Then for the upper and lower tail dependence we have that:

λU (C ) = lim
u↑1

1−2u +C (u,u)

1−u
, (4.7)

λL(C ) = lim
u↓0

C (u,u)

u
. (4.8)

These measures are important to model the dependence in extreme market conditions. Some financial
variables tend to move in an opposite direction and therefore show no upper or lower tail dependence. Gold
for example is known to increase in value during crises, see Baur and McDermott (2010), and to capture this
in our copula we introduce another measure of tail dependence in Definition 4.6.

Definition 4.6. Let X and Y be random variables whose dependence structure is given by copula C (i.e. F (X ,Y ) =
C (Fx (X ),Fy (Y ))), then we can define the upper-lower tail dependence coefficient and the lower-upper tail de-
pendence coefficient to be:

λU ,L = lim
u↓0

P
(
Y >G−1(1−u)|X ≤ F−1(u)

)= 1− lim
u↓0

C (1−u,u)

u
, (4.9)

λL,U = lim
u↓0

P
(
Y ≤G−1(u)|X > F−1(1−u)

)= 1− lim
u↓0

C (u,1−u)

u
. (4.10)
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Calculating the tail dependence coefficients for C−(u1,u2) = max{u1 + u2 − 1,0}, C 0(u1,u2) = u1u2,
C+(u1,u2) = min{u1,u2} and some other widely used copulas gives us Table 4.1.

Table 4.1: Tail dependence for important copulas

This table gives the coefficients for tail dependence for seven copula families and the countermonotonic,
comonotonic and independence copula.

Copula λL λU λL,U λU ,L

C− 0 0 1 1
C 0 0 0 0 0
C+ 1 1 0 0
Gaussian 0 0 0 0

Gumbel 0 2−2
1
α 0 0

Clayton 2
1
α 0 0 0

Frank 0 0 0 0
Plackett 0 0 0 0

Joe 2
1
α 0 0 0

Student’s t 2−2tν
(√

(ν+1)(1−ρ)
1+ρ

)
0 0

As we can see from the table for the independence copula we indeed have that all the tail dependence
measures are zero. The countermonotonic copula has no upper and lower tail dependence, but it is fully
upper-lower and lower-upper tail dependent. The comonotonic copula is fully upper and lower tail depen-
dent and therefore not upper-lower and lower-upper tail dependent. The Gumbel, Clayton, Joe and Student’s
t copula show tail dependence in one tail of the distribution. The Student’s t copula shows tail dependence
and is symmetric and thus has λL =λU > 0.

These coefficients only describe the dependence in the tails of the distribution but do not describe the
dependence outside the tails. It is also important to come up with dependence measures for the whole range
of possible outcomes, that will be the topic of the next section.

4.3.2. Other dependence measures
Widely used measures for the dependence between two variables over all possible outcomes is the Pearson’s
correlation coefficient and it is defined below.

Definition 4.7. For X1 and X2 random variables with E
[

X 2
1

]
,E

[
X 2

2

]<∞ the Pearson’s correlation coefficient is
given by:

ρ = ρ(X1, X2) = Cov[X1, X2]p
(Var[X1]Var[X2])

. (4.11)

As discussed in Embrechts et al. (2003) there are some drawbacks in the use of this dependence coeffi-
cient, namely that:
(1) ρ depends on the marginal distributions and not only on the copula.
(2) ρ only exists when Var[X1] and Var[X2] exist.
(3) It is not invariant with respect to increasing transformations of X1 and X2 (i.e. ρ(T1(X1),T2(X2)) 6= ρ(X1, X2)
for increasing functions T1 and T2).

To avoid having these drawbacks we introduce two other important measures of dependence, namely Kendall’s
tau and Spearman’s rho. Those two measures are alternatives to a linear correlation coefficient which may
be inappropriate. To define them we use the number of concordant and discordant pairs. Whether a pair is
concordant (move in the same direction) or discordant (move in opposite directions) depends on the rank of
the data. This concordance concept is defined below.

Definition 4.8. A pair
{

X i
1, X i

2

}
and

{
X j

1 , X j
2

}
is concordant if and only if

(
R i

1 −R j
1

)(
R i

2 −R j
2

)
> 0 and discordant

if and only if
(
R i

1 −R j
1

)(
R i

2 −R j
2

)
< 0.
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Then Kendall’s tau is simply the probability of concordance minus the probability of discordance and it is
defined below.

Definition 4.9. We define Kendall’s tau for a random vector (X ,Y )T to be equal to:

τ(X ,Y ) =P(
(X − X̃ )(Y − Ỹ ) > 0

)−P(
(X − X̃ )(Y − Ỹ ) < 0

)
, (4.12)

where (X̃ , Ỹ )T is an independent copy of (X ,Y )T . Spearman’s rho is similar and defined below.

Definition 4.10. We define Spearman’s rho for a random vector (X ,Y )T to be equal to:

ρS (X ,Y ) = 3
(
P

(
(X − X̃ )(Y −Y ′) > 0

)−P(
(X − X̃ )(Y −Y ′) < 0

))
, (4.13)

where (X̃ , Ỹ )T and (X ′,Y ′)T are independent copies of (X ,Y )T (also mutually independent).

In Propositions 4.9 and 4.10 we show that we can express those dependence measures as functions of the
ranks only.

Proposition 4.9. Let us have m observations {X 1, · · · , X m} where X i = (X i
1, X i

2)T and let c be the number of
concordant and d be the number of discordant pairs. Then we have that:

τ= 2(c −d)

m(m −1)
. (4.14)

Proposition 4.10. Let us have m observations {X 1, · · · , X m} where X i = (X i
1, X i

2)T and let R i
1 and R i

2 be the
corresponding ranks. Then we have that:

ρS = 1− 6
∑(

R i
1 −R i

2

)2

m(m2 −1)
. (4.15)

These two measures do not suffer from the three drawbacks of the Pearson’s rho. There is, however, a new
drawback here, which occurs when we have ties in our observations. Under the assumption of continuous
density functions, in theory, two or more arbitrary observations are unequal almost surely. In practice on
the other hand, they can be equal due to the truncation of the data. There are several ways to deal with this,
since the rank is not uniquely defined in this case. In Appendix E we explain the different possible ranking
methods and the combination of ordinal and the fractional ranking method. This ranking choice solves for
the non-uniqueness problem and as a result we obtain two robust dependence measures.

The ρS and τ that follow from our ranks and ranking method are important characteristics of a copula.
We can directly express the measures ρS and τ in terms of copulas as well, which is shown in Nelsen (1999).
The results are shown in the Proposition 4.11.

Proposition 4.11. Let X and Y be random variables whose dependence structure is given by copula C (i.e.
F (X ,Y ) =C (Fx (X ),Fy (Y ))). Then for Kendall’s tau we have that:

τ(X ,Y ) = 4
∫ ∫

[0,1]2
C (u, v)dC (u, v)−1 = 4E[C (U ,V )]−1, (4.16)

where U ,V ∼U (0,1) with joint distribution C . For Spearman’s rho we have that:

ρS (X ,Y ) = 12
∫ ∫

[0,1]2
uvdC (u, v)−3 = 12

∫ ∫
[0,1]2

C (u, v)dud v −3. (4.17)

From this proposition we see that these two measures do not depend on the marginal distributions, but
only on the copula. Directly from the definitions we see that ρS and τ always exist. Also these two measures
are invariant with respect to an increasing transformation, since they can be expressed in term of a copula,
which itself is invariant with respect to increasing transformations of its margins. Thus, none of the draw-
backs that apply for ρ apply for ρS and τ.
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4.3.3. Link between dependence measures and copulas
In the previous sections we saw that we can express the τ, ρS and TDCs in terms of copulas. Thus, for a
survival copula we can express all these dependence measures in terms of the dependence measures of the
original copula. These expressions are given in Nelsen (1999) and in Proposition 4.12. Similarly we can link
the dependence measures of a linear combination of copulas C1 and C2 to the individual dependence mea-
sures of C1 and C2, that are given in Proposition 4.13.

Proposition 4.12. Suppose we have a copula C with dependencies λL(C ),λU (C ),λU ,L(C ),λL,U (C ),τ(C ) and
ρS (C ). Then the following holds.
For the survival copula C : λL(C ) = λU (C ) and λU (C ) = λL(C ) (i.e. the survival copula’s upper tail dependence
is equal to the copula’s lower tail dependence and vice versa).
Similarly we have that λL,U (C ) = λU ,L(C ). Furthermore, τ(C ) = τ(C ), ρS (C ) = ρS (C ) (i.e. the Kendall’s tau and
Spearman’s rho of the survival copula are equal to those of the original copula).

Proposition 4.13. Assume we have copulas Ci for i = 1,2 with dependencies λL(Ci ),λU (Ci ),τ(Ci ) and ρS (Ci ).
Then the following holds for C =αC1 + (1−α)C2, with α ∈ [0,1]:
(1) λ(C ) =αλ(C1)+ (1−α)λ(C2) for all four tail dependence coefficients.
(2) ρS (C ) =αρS (C1)+ (1−α)ρS (C2).
(3) τ(C ) =ατ(C1)+ (1−α)τ(C2) does not necessarily hold.

Proof. (1) follows from the linearity of the limit and (2) from the linearity of the integral. We show this for (2)
only:

ρS (C ) = 12
∫ ∫

[0,1]2
C (u, v)dud v −3

= 12

(
α

∫ ∫
[0,1]2

C1(u, v)dud v + (1−α)
∫ ∫

[0,1]2
C2(u, v)dud v

)
−3

=α
(
12

∫ ∫
[0,1]2

C (u, v)dud v −3

)
+ (1−α)

(
12

∫ ∫
[0,1]2

C2(u, v)dud v −3

)
=αρS (C1)+ (1−α)ρS (C2).

For (3) we give a counterexample. Let C1(u, v) = C 0(u, v) = uv and C2(u.v) = C+(u, v) = min{u, v}. Then for
C (u, v) = 1

2 (C1(u, v)+C2(u, v)) we obtain the following:

τ(C ) = 4
∫ ∫

[0,1]2
C (u, v)c(u, v)dud v −1

= 4
1

4

∫ ∫
[0,1]2

(C1(u, v)+C2(u, v))(c1(u, v)+ c2(u, v))dud v −1

=
∫ ∫

[0,1]2
(uv +min{u, v})(1+δ(u − v))dud v −1

=
∫ ∫

[0,1]2
uvdud v +

∫ ∫
[0,1]2

uvδ(u − v)dud v +
∫ ∫

[0,1]2
min{u, v}dud v

+
∫ ∫

[0,1]2
min{u, v}δ(u − v)dud v −1

= 1

4
+ 1

2
+ 1

3
+

∫ 1

0

(∫ v

0
udu +

∫ 1

v
vdu

)
d v −1

= 1

4
+ 1

2
+ 1

3
+

(
1

2
− 1

6

)
−1 = 5

12

6= 1

2
τ(C1)+ 1

2
τ(C2).

4.4. COPAR models
Copula theory is a valuable theory that we can use to model tail dependence. To model tail dependence
between factors we can implement copulas in the modelling for the statistical factors. Recall that the factors
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are currently modelled with a VAR model where the errors are normally distributed and show dependence
but no tail dependence. To be able to model the tail dependence between the factors we can use copulas to
describe the dependence in the errors. Describing the dependence in the errors by a copula generalizes our
VAR model to a copula autoregressive (COPAR) model. We formally define this COPAR model in Definiton
4.11.

Definition 4.11 (COPAR model). A copula autoregressive model of order p (COPAR(p) model) is of the form:

y (t ) = c +
p∑

i=1
Ai y (t−i ) +ε(t ), (4.18)

where c ∈ Rn and Ai ∈ Rn×n are constants ∀i , Ap has at least one non-zero element and ε(t ) ∈ Rn is time inde-
pendent, zero-mean and its dependence can be described by a copula C .

If the errors exhibit correlation due to the copula then the factors will exhibit correlation as well. Also tail
dependence in the errors implies tail dependence in the factors. We can unfortunately not directly link the
TDCs of the errors to the TDCs of the factors, since this depends on the matrices Ai and possibly on under-
lying distributions as well. Larger tail dependence in the errors will however imply larger tail dependence in
the factors. We will do some simulations in section 5.5 to show that there is a positive relation between the
TDCs of the errors and TDCs of the factors in our test scenarios.

4.5. Parametric copulas
In many applications parametric copulas can be used to model the dependence between random variables.
A special case of parametric copulas are the Archimedean copulas. This class of copulas is convenient to
use, because of its simple mathematical form, which we will elaborate on later. The Gaussian copula is an
example of an Archimedean copula and is simply a copula which describes multivariate normal distributions.
Li (2000) shows how default correlation can be modelled using these copulas. After this introduction some
years before the credit crisis, the Gaussian copula was widely used to estimate especially default probabilities.
Salmon (2012) discuss this and state that the use of this model could have contributed to the credit crisis. The
Gaussian method was adopted by many investors, yet it has drawbacks that were not always considered. The
Gaussian copula namely does not include tail dependence (unless ρ = 1) and it can therefore underestimate
the risk if data shows lower tail dependence. Malevergne and Sornette (2003) address this problem and show
that the use of the Gaussian copula can be inappropriate in financial settings. The formula for the Gaussian
copula is given by:

C N (u1,u2) =ΦR (Φ−1(u1)+Φ−1(u2)), (4.19)

with Φ the cumulative distribution function of a standard normal and ΦR the joint distribution function of a
multivariate zero-mean normal with covariance matrix R (equal to the correlation matrix). This copula can
capture the dependence in the centre of the distribution, but due to the Gaussian form all the variables are tail
independent, unless ρ = 1. We know that financial variables can show large positive correlation in a financial
crisis even when they usually show small or negative correlation. This suggests that there might be lower tail
dependence in the data and we should be able to capture this with our copula, which cannot be done with
the Gaussian copula. This is an argument against the use of the Gaussian copula to model dependence of
financial variables.

When we wish to model financial data using a parametric copula we can link the parameters of the model
to the Kendall’s tau, Spearman’s rho, and/or tail dependence coefficients. Estimations of those measures
consequently give information on what parametric copula we can use and what the values of the parameters
in the model should be. Using linear combinations of copulas and survival copulas give us freedom in our
parameters, such that we can make sure that the copula we use has the same dependence coefficients as the
data.

The Gaussian copula introduced in the previous section is a special case of an Archimedean copula. The
popularity of Archimedean copulas comes from their simple mathematical form. Archimedean copulas are
copulas generated by a function g and depends on the pseudo-inverse g [−1] as well, which is defined as
follows.

Definition 4.12. Let g : [0,1] → [0,∞] be a continuous, strictly decreasing function with g (1) = 0. Then the
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pseudo-inverse of g is g [−1] : [0,∞] → [0,1] and given by:

g [−1](t ) =
{

g−1(t ), 0 ≤ t ≤ g (0),

0, g (0) ≤ t ≤∞.
(4.20)

Here, g (0) =∞⇐⇒ g [−1] = g−1 (i.e. the pseudo-inverse of g equals the inverse of g ).

We can now define the Archimedean copula as follows.

Definition 4.13. A copula C : [0,1]n → [0,1] is called an Archimedean copula if and only if there exists a con-
tinuous, strictly decreasing, convex g such that:

C (u1, · · · ,un) = g [−1](g (u1)+·· ·+ g (un)),

where g is called the generator of C . If g [−1] = g−1, g is called a strict generator and C the corresponding strict
Archimedean copula.

This expression in terms of a generator is convenient since it gives a simple representation of a copula
in n dimensions. In addition, we can now express the Kendall’s tau in terms of the generator using equation
(4.16) and simplify, see Nelsen (1999), to obtain:

τ= 1+4
∫ 1

0

g (t )

g ′(t )
d t . (4.21)

Using equation (4.17) we can also compute the Spearman’s rho as a function of g , this can generally not be
simplified and gives:

ρS = 12
∫ ∫

[0,1]2
g−1(g (u1)+ g (u2))du1du2 −3. (4.22)

We proceed with some examples of widely used Archimedean copulas. Nelsen (1999) summarizes a list of
many copulas and we give five below.

Example 4.2. Some examples of 2-dimensional Archimedean copulas are:

C A(u1,u2;θ) = u1u2
1−θ(1−u1)(1−u2) , θ ∈ [−1,1], (Ali-Mikhail-Haq copula),

CC (u1,u2;θ) = max{(u−θ
1 +u−θ

2 −1)−θ
−1

,0}, θ ∈ [−1,∞]\{0}, (Clayton copula),

C F (u1,u2;θ) =− 1
θ log

[
1+ (e−θu1−1)(e−θu2−1)

e−θ−1

]
, θ 6= 0, (Frank copula),

CG (u1,u2;θ) = exp

[
−{

(− logu1)θ+ (− logu2)θ
}θ−1

]
, θ ∈ [1,∞], (Gumbel copula),

C J (u1,u2;θ) = 1− [
(1−u1)θ+ (1−u2)θ− (1−u1)θ(1−u2)θ

]θ−1

, θ ∈ [1,∞], (Joe copula).

If we wish to fit a certain model to the data, we can consider some copulas and linear combinations
of copulas and estimate the parameter(s) in the model. The choice of the final copula can then be made by
comparison of for example the Akaike information criterion, see Akaike (1974). There are different methods to
estimate the parameters in these models. In section E.2 in the appendix we will discuss how we can estimate
the parameters using maximum likelihood estimation (MLE).

4.5.1. Pros and cons parametric copulas
It is convenient to assume some parametric form for copulas, especially when they take a simple mathemat-
ical form, like Archimedean copulas. Archimedean copulas are convenient for higher dimensional cases too,
because of the simple form and associativity. We can write them as follows:

C (ui ,C (u1, · · · ,ui−1,ui+1, · · · ,un)) =C (u1, · · · ,un) ∀i . (4.23)

Also we can use MLE to find the parameters in the model and use known sampling methods to generate
scenarios.

However, we should be careful in doing so, since assuming a certain form goes hand in hand with ex-
cluding certain behaviour. For example assuming a Gaussian copula excludes tail dependence, while Aloui
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et al. (2011) show there are indications of tail dependence. Using a copula which includes tail dependence
might not appropriately describe the dependence in other parts of the distribution. All these Archimedean
copulas have only one or two parameters, which might accurately describe 2-dimensional behaviour, but
this accuracy does not necessarily carry over to higher dimensions. We could also choose to take a convex
combination of copulas and survival copulas to be more flexible, but this makes it more difficult to estimate
the parameters, since there are more. Furthermore, it is more difficult to sample from them. Also a linear
combination of Archimedean copulas is not necessarily an Archimedean copula, which is inconvenient for
especially higher dimensional cases, since we lose the associativity. Hence, we preferably do not assume any
parametric form and introduce semiparametric copulas.

4.6. Semiparametric copulas and tail dependence estimation
In a semiparametric copula approach we do not assume any parametric form of the copula. However, we
make an assumption by choosing a certain approach and if we do not take care, we may exclude specific
behaviour here as well. We first introduce the empirical copula, which is based on the same concept as the
empirical distribution function. We will show later that this empirical copula is strictly speaking not a copula.

Definition 4.14. Let {X 1, · · · , X m} ∈Rn be independent and identically distributed random variables from dis-
tribution function F . Then its empirical distribution function is given by:

F̂ (x1, · · · , xn) = 1

m

m∑
i=1

1{X i
1 ≤ x1, · · · , X i

n ≤ xn}. (4.24)

Since we also have that X i
j ≤ x j ⇐⇒ F−1

x j

(
X i

j

)
≤ F−1

x j
(x j ) and F (x1, · · · , xn) = C

(
F−1

x1
(x1), · · · ,F−1

xn
(xn)

)
, we

can get an estimation for the copula. This so-called empirical copula is defined in Definition 4.15.

Definition 4.15. Let {X 1, · · · , X m} ∈ Rn be independent, identically distributed random variables from distri-
bution function F . Then the corresponding empirical copula, of which we will show that it is not a copula later,
is given by:

Ĉn(u1, · · · ,un) = 1

m

m∑
j=1

1

{
R j

1

m
≤ u1, · · · ,

R j
n

m
≤ un

}
, (4.25)

where 1 ≤ R j
i ≤ m denotes the rank of X j

i with respect to X 1
i , · · ·X m

i ∀1 ≤ i ≤ n.

We perform this estimation for the copula between the Tokyo and the New York stock exchange indices
(i.e. the Nikkei 225 and S&P 500). The copula is shown in Figure 4.5.
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Figure 4.5: The empirical copula for the Nikkei 225 and S&P 500 for the years 2006-2016.

This figure shows the dependence structure between the daily log-return of the Nikkei 225 and S&P 500 for
the period between 2006 and 2016 .

Note that this can be done under the assumption that the multivariate distribution function is static,
which does not need to be the case here. In Chapter 5 we will make this assumption for the underlying errors
in the dynamic factor modelling, details can be found in that section.

This empirical copula is not smooth, since the indicator function causes it to jump. From Proposition 4.2,
which states that a copula is Lipschitz continuous, it must then also be continuous, thus the empirical copula
is not a copula. Based on this copula estimation formula we can estimate the TDC for the 2-dimensional case.
Recall equations (4.7)-(4.10), that link the copula to tail dependence and enables us to obtain estimators for
the TDCs. Schmidt (2005) shows this and we obtain the following.

λ̂(1)
U (k) = 1

k

n∑
i=1

1{R i
1 > n −k,R i

2 > n −k},

λ̂(1)
L (k) = 1

k

n∑
i=1

1{R i
1 ≤ k,R i

2 ≤ k},

λ̂(1)
U ,L(k) = 1

k

n∑
i=1

1{R i
1 > n −k,R i

2 ≤ k},

λ̂(1)
L,U (k) = 1

k

n∑
i=1

1{R i
1 ≤ k,R i

2 > n −k},

(4.26)

where we should have that k, n
k →∞ for these to converge to the theoretical coefficients. We can also write:

λU = lim
v↑1

1−2v +C (v, v)

1− v
= 2− lim

v↑1

1−C (v, v)

1− v
= 2− lim

v↑1

logC (v, v)

log v
≈ 2−

logĈn

(
n−k

n , n−k
n

)
log n−k

n

,

where the approximation should be close for k small. Using this approximation and similar approximations
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for λL , λU ,L and λL,U , introduced by Coles et al. (1999), we can also obtain the following estimators.

λ̂(2)
U = 2−

logĈn

(
n−k

n , n−k
n

)
log n−k

n

,

λ̂(2)
L =

log
(
1− Ĉn

(
k
n , k

n

))
log n−k

n

,

λ̂(2)
L,U = 1−

log
(
1− Ĉn

(
n−k

n , k
n

))
log n−k

n

,

λ̂(2)
U ,L = 1−

log
(
1− Ĉn

(
k
n , n−k

n

))
log n−k

n

.

(4.27)

that are the same in the limit and therefore approximately the same for small k, where k is to be chosen
as threshold. We have illustrated the estimates for the lower and upper tail dependence coefficients for the
Nikkei 225 and the S&P 500 in Figure 4.6.

Figure 4.6: The tail dependence coefficients for different thresholds

This figure shows the three estimators for the coefficents of lower and upper tail dependence between the
Nikkei 225 and the S&P 500.

(a) Lower tail (b) Upper tail

Both estimators are accurate when there is tail dependence in the data. However, they always give values
greater than or equal to zero. For uncorrelated data, we can show that the expectation of this estimator E[λ̂i ] >
0, while we know that λU = λL = 0. There is namely always a possible probability that λ̂i > 0, unless the data
has τ=−1.

Thus, before using these estimates we wish to test if there even is tail dependence, which will be the topic
of section 4.8. Before we proceed with this test, we will discuss ways to select a threshold and show that a
regression method can be appropriate for determining λ in the next section.

4.7. Threshold selection for the tail dependence coefficients estimators
As we have seen in the previous section we still need to choose a threshold for both estimators. Similar to
previous threshold methods, we are dealing with an increasing bias of our estimate and decreasing variance
of our estimate with respect to the threshold. We therefore again need to make a bias efficiency trade-off. In
this section we introduce two methods for dealing with this problem. The first method is one which looks for
the first plateau where the estimate does not change that much, which is similar to the Stability method for
the tail index. The other method uses regression of the estimates as a function of the threshold. In the latter
method we base our estimate λ̂ on λ̂(1), · · · λ̂(m), where we still have to choose m.



4.8. Hypothesis testing for tail dependence 51

4.7.1. Plateau-finding method
Recall the Stability method introduced in section 2.4. We designed this method for the Hill estimator in partic-
ular, but it also worked for the other tail index estimators. In all these tail index estimators the bias efficiency
trade-off needs to be made and this trade-off occurs here too. We can simply fill in the estimates λ̂(1) and λ̂(2)

in Algorithm 2.2 instead of filling in γ̂H . The main difference between this data and the data for the tail index
is that this data is never constant. Taking an extra value into account for the estimation of λ (i.e. increasing
the threshold by one) always makes the estimator jump up or down, unless it is zero or one. Because of these
jump that will always occur in tail dependent data with λ< 1, we can expect this method not to work as well
as for the tail index estimations. Smoothing the estimates for determination of the threshold should improve
this method and Frahm et al. (2005) use this so-called Plateau-finding method. We have considered both ap-
proaches and as expected the plateau method is better in MSE. Besides we come up with a regression method
to determine the TDC’s. The method and the idea behind the method are described in the next section.

4.7.2. Regression method
Instead of using one value λ̂(k) for k ∈ {1, · · · ,m} we can also use more values λ̂(1), · · · λ̂(m), that all give infor-
mation about λ. We know that the value of the estimator in k = 1 has the lowest bias but the highest variance.
There is no bias in 0, but we do not have a value for the estimator in 0. If the bias increases linearly in the
threshold, we can regress the estimates on the thresholds and then the value of the regressed line in 0 should
have no bias. This should therefore consistently approximate the theoretical value of λ̂. This linearity as-
sumption does not generally hold, because the bias depends on the rate of convergence towards the TDC,
which itself depends on the underlying copula as we can see in Proposition 4.8. This bias therefore does not
need to be linear in the threshold. This linear approximation does however give an approximation of the
TDC and in section 4.11 we will show that it performs better in MSE than the Plateau-finding method on the
simulated data we considered (i.e. for Clayton and Gumbel copulas).

Since the variance is not constant we could also use a WLS regression, but we do not know which weights
we should use. The relation between the variance of the estimate and the threshold depends on the under-
lying distribution and is therefore not known. We here consider a WLS regression with the square root of the
thresholds as weights and a regression with equal weights and compare the results with the Plateau-finding
method in section 4.11.

4.8. Hypothesis testing for tail dependence
Before using the above mentioned method, we first wish to check whether there even is tail dependence at all.
We will do this via hypothesis testing, where as the null hypothesis we take H0: "the data is tail dependent."
We do this because from a risk management perspective it is worse to underestimate risk than to overestimate
risk. Rejecting tail dependence under tail dependence corresponds to underestimating the risk. Conversely,
not rejecting tail dependence under tail independence corresponds to overestimating the risk. We therefore
wish to reject tail dependence under tail dependence only with small probabilityα, the so-called significance
level. Equation (4.28) gives α mathematically, see Young and Smith (2005).

α=P(
reject H0|H0

)
. (4.28)

Another important quantity in hypothesis testing is the power p, which we give in equation(4.29), see Young
and Smith (2005).

p =P(
reject H0|H1

)
(4.29)

We want our test to have p as large andα as small as possible. To do this we use a method introduced by Reiss
and Frick (2009) which uses the radial component of the data. We define the radial component in Definition
4.16.

Definition 4.16 (Radial component). The radial components T 1, · · · ,T m for a sample X 1, · · · , X m ∈ Rn are

given by T j =∑n
i=1 X j

i for 1 ≤ j ≤ m.

Theorem 4.14 shows that we can link the radial component to tail dependence.

Theorem 4.14. For random variable X1, X2, · · · , Xn described by distribution functions Fx1 ,Fx2 , · · ·Fxn we can
define Ui = F−1

xi
(Xi )−1∀i . Then for the radial component T of the vector U we have that:

P (T > ct |T > c) = t 1+β for some β≥ 0, (4.30)
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where β= 0 is equivalent to having upper tail dependence.

Proof. The proof of this theorem is given by Falk and Michel (2006) and we will not elaborate on this here.

From a data set we can simply compute the radial components and use them to determine whether we are
dealing with tail dependence or not. Reiss and Frick (2009) state that the Neyman-Pearson test is uniformly
most powerful and its critical region as function of α is given in equation (4.31).

Km,α =
{

m∑
i=1

log
Ti ,n

Tm,n
> H−1

m (1−α)

}
, (4.31)

where T1,n , · · · ,Tn,n are the ordered T1, · · ·Tn such that T1,n is the largest value. This critical region is an asymp-
totic result for m →∞ and m

n → 0, so for finite sample sizes we can expect a larger percentage of incorrect
rejections than α. We will use this test for different α and approximate the probability of rejection for these
samples (divide the number of rejections by the amount of simulations). For m →∞ and m

n → 0 we expect
these percentages of tail dependent samples to converge to α.

The results of these simulations are given in section 4.11. Here, we considered samples from a Clayton
and Gumbel copula to see if these approximated percentages indeed converge to the theoretical values for
different TDCs. Next, we will consider samples from a Gaussian copula to see what the power of the test is for
Gaussian copulas (i.e. probability of rejection under H1).

4.9. Subcopulas and extension
In the section 4.6 we introduced the empirical copula, which contains discontinuities and is therefore not
a copula. The lower TDC of the empirical copula is 0 and the upper tail dependence does not exist even if
there is lower and/or upper tail dependence in the data. Since we wish to be able to include tail dependence
in our copula we need a different approach. A possible method is via the extension of a subcopula, which
will be the topic of this section. This subcopula is defined on a subset D ⊂ [0,1]n , for example on a grid,
and we expand this continuously to obtain a continuous copula on [0,1]n . Using this approach we can make
sure that the copula has the right properties on the subset. One of these properties is tail dependence and in
section 4.9.1 we show that this method is appropriate for including tail dependence. Let us first consider the
2-dimensional case. Higher dimensional cases are discussed in section 4.9.4.

Definition 4.17. Cs : D1×D2 → [0,1] is called a 2-dimensional subcopula if and only if the following properties
hold.
(1) D1,D2 are subsets of [0,1], both containing 0 and 1.
(2) Cs (u1,0) =Cs (0,u2) = 0 ∀u1 ∈ D1 and u2 ∈ D2.
(3) Cs (u1,1) = u1 and Cs (1,u2) = u2 ∀u1 ∈ D1 and u2 ∈ D2.
(4) Cs (u1,u2)+Cs (v1, v2) ≥Cs (v1,u2)+Cs (u1, v2) ∀u1 ≤ v1 and u2 ≤ v2, where u1, v1 ∈ D1 and u2, v2 ∈ D2.

Theorem 4.15. Let Cs be a subcopula defined on D1 ×D2. Then there exists a copula C such that:

C (u1,u2) =Cs (u1,u2) ∀u1 ∈ D1, u2 ∈ D2.

(i.e. any subcopula can be extended to a copula.)
Note: this C is not necessarily unique.

Proof. The proof is given by Schweizer and Sklar (1974).

They show that the subcopula Cs can be extended to a subcopula Cs on D1 ×D2 the closure of D1 ×D2.
For any point (u1,u2) not in the domain of Cs we can use a 2-dimensional linear interpolation and define:

CL(u1,u2) =(1−λ1)(1−µ1)Cs (u−
1 ,u−

2 )+ (1−λ1)µ1Cs (u−
1 ,u+

2 )

+λ1(1−µ1)Cs (u+
1 ,u−

2 )+λ1µ1Cs (u+
1 ,u+

2 ),
(4.32)

where u−
1 ,u+

1 ∈ D1 are the points closest to u1 such that u−
1 ≤ u1 ≤ u+

1 and u−
2 ,u+

2 ∈ D2 are the points closest
to u2 such that u−

2 ≤ u2 ≤ u+
2 , λ1 and µ1 are defined as follows:

λ1 =
{ u1−u−

1
u+

1 −u−
1

, if u−
1 < u+

1 ,

1, if u−
1 = u+

1 ,
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µ1 =
{ u2−u−

2
u+

2 −u−
2

, if u−
2 < u+

2 ,

1, if u−
2 = u+

2 .

This is always a copula and we call this the linear extension of our copula.
Suppose we have a set of 2-dimensional data with m observations, then we can estimate the copula on a

grid (grid copula). Theorem 4.16 gives the estimate on this grid and Schweizer and Sklar (1974) state that this
is a subcopula.

Theorem 4.16. Let CG be defined as follows:

CG

(
i

m
,

j

m

)
=CG

(
ai ,b j

)= 1

m

m∑
k=1

1
(
Rk

1 ≤ i ,Rk
2 ≤ j

)
∀0 ≤ i , j ≤ m, (4.33)

Then this a subcopula.

Proof. From Definition 4.17 we see that the first three subcopula conditions are clearly satisfied and the
last condition is also satisfied, since 1

(
Rk

1 ≤ i ,Rk
2 ≤ j

)+1(Rk
1 ≤ a,Rk

2 ≤ b
)≥ 1(Rk

1 ≤ a,Rk
2 ≤ j

)+1(Rk
1 ≤ i ,Rk

2 ≤ b
)

∀i ≥ a, j ≥ b.

The copula is defined on a grid which is a union of points and therefore closed. Since the closure of the
grid is the grid itself, we can immediately use the extension defined by equation (4.32). We denote this exten-
sion by CG ,L , which describes the dependence in the data. To see if this copula has the desired properties, we
first calculate the tail dependence coefficients.

Proposition 4.17. The linear extension of the grid subcopula, defined by equation (4.33) has the following
TDCs:

λL =λU =λL,U =λU ,L = 0

.

Proof.

λL = lim
a↓0

C (a, a)

a

= lim
a↓0

1

a

(
(1−λ1)(1−µ1)C (0,0)+ (1−λ1)µ1C (0,b1)+λ1(1−µ1)C (a1,0)+λ1µ1C (a1,b1)

)
= lim

a↓0

1

a
λ1µ1C (a1,b1)

= lim
a↓0

1

a

a

a1

a

b1
C (a1,b1)

= lim
a↓0

a

a1b1
C (a1,b1)

= 0.

The derivations of λU ,λU ,L ,λL,U are a bit more involved and can be found in Appendix A.

Thus, the TDCs equal 0, independent of the underlying distribution. This is undesirable when we wish to
fit the copula to data where tail dependence could occur. In the next section we will change the copula, such
that tail dependence can be incorporated.

4.9.1. Copula construction with tail dependence
To obtain tail dependence in a copula we will adjust the copula for values close to (0,0), (0,1), (1,0) and (1,1)
in such a way that our copula is still a copula and tail dependence could occur. We do this via a subcopula of
which the domain is given by D = D1 ×D2, where D1 = D2 =

[
0, 1

m

]∪ 2
m ∪·· ·∪ m−2

m ∪ [ m−1
m ,1

]
. An example of

this domain is given by Figure 4.7, where m = 8, corresponding to m pairs of observations. Note that we are
typically dealing with significantly larger sample sizes (e.g. in the order of 100 or 1000).
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Figure 4.7: Domain of subcopula

This figure shows the domain of the subcopula defined by equation (4.34).

u1

u2

(1,0)

(1,1)(0,1)

(0,0)

Durante et al. (2017) use a similar approach, but define the copula on the squares near (0,0) and (1,1) only
and not on the other squares, grid points and lines. They give an upper and lower bound for the extension of
this copula, but do not show how we can use information we obtain from non-tail observations in our copula.
Using the methodology of Durante et al. (2017) we can therefore approximate the copula on the squares, but
they do not propose a method to approximate the copula outside the squares, which is what we will do here.

In Theorem 4.18 we define the subcopula on the domain of Figure 4.7 such that it can include tail depen-
dence and that it approximates the copula on the grid points.

Theorem 4.18. Suppose we have a sample X1, · · · , Xm ∈ R2 for X . Then let us define

CS :
(
[0, 1

m ]∪ 2
m , · · · , m−2

m ∪ [ m−1
m ,1]

)2 → [0,1] by the linear extension of the grid copula CG on the blue dots,
the blue lines and the squares including (0,1) and (1,0). Let us define it by the scaled comonotonic copula on
the squares including (0,0) and (1,1) Then this gives us:

CS (u1,u2) =


m min{u1,u2}CG

( 1
m , 1

m

)
, for (u1,u2) ∈ [

0, 1
m

]2
,

u1 +u2 −1+min{1−u1,1−u2}
(
2−m +mCG

( m−1
m , m−1

m

))
, for (u1,u2) ∈ [ m−1

m ,1
]2

.

CG ,L(u1,u2), else.

(4.34)

Then this is a subcopula.

Proof. The proof can be found in Appendix A, where this theorem is a special case of Theorem 4.21 with
a = b = 1.

Theorem 4.19. The linear extension of the subcopula defined by equation (4.34) based on m observations is a
copula with tail dependence coefficientsλL = mCG

( 1
m , 1

m

)
,λU = 2−m+mC

( m−1
m , m−1

m

)
,λL,U = 1−mC

( 1
m , m−1

m

)
and λL,U = 1−mC

( m−1
m , 1

m

)
.

Proof. Any extension of a subcopula defined by equation (4.32) is a subcopula and we show the equality for
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λL ,λU and λL,U (the derivation of λU ,L is similar to the derivation of λL,U ):

λL = lim
a↓0

C (a, a)

a
= lim

a↓0

(
mCG

(
1

m
,

1

m

)
min{a, a}

a

)
= mCG

(
1

m
,

1

m

)
,

λU = lim
a↑1

1−2a +C (a, a)

1−a
= lim

a↑1

min{1−a,1−a}
(
2−m +mCG

( m−1
m , m−1

m

))
1−a

= 2−m +mCG

(
m −1

m
,

m −1

m

)
,

λL,U = 1− lim
a↓0

C (a,1−a)

a
= 1− lim

a↓0

a −min{a, a}
(
1−mCG

( 1
m , m−1

m

))
a

= 1−mCG

(
1

m
,

m −1

m

)
.

(4.35)

Recall that, using equation (4.33), we can use the following for the linear extension of the subcopula in
equation (4.34).

λL =
m∑

b=1
1
(
Rb

1 ≤ 1,Rb
2 ≤ 1

)
= λ̂(1)

L (k = 1),

λU =2−m +
m∑

b=1
1
(
Rb

1 ≤ m −1,Rb
2 ≤ m −1

)
=

m∑
b=1

1
(
Rb

1 > m −1,Rb
2 > m −1

)
= λ̂(1)

U (k = 1),

λL,U =1−
m∑

b=1
1
(
Rb

1 ≤ m −1,Rb
2 ≤ 1

)
=

n∑
i=1

1{R i
1 ≤ 1,R i

2 > n −1} = λ̂(1)
L,U (k = 1),

λU ,L =1−
m∑

b=1
1
(
Rb

1 ≤ 1,Rb
2 ≤ m −1

)
=

n∑
i=1

1{R i
1 ≤ n −1,R i

2 > 1} = λ̂(1)
U ,L(k = 1),

where k = 1 means the estimation is done for a threshold of 1. This estimate has a low bias, but a high standard
error and we can only obtain the values 0 or 1, which is inconvenient. Another undesired effect is that we are
overfitting the data, since we take every grid point into account. The first problem will be solved in section
4.9.2. The latter problem can simply be solved by considering a subgrid, which leads to Proposition 4.20.

Proposition 4.20. Let Cs : D1 ×D2 → [0,1] be a 2-dimensional subcopula then for D∗
1 ⊆ D1 and D∗

2 ⊆ D2 both
containing 0 and 1 we have that C∗

s defined by C∗
s =Cs on D∗

1 ×D∗
2 is a subcopula.

Proof. This follows directly from the definition of a subcopula, since D∗
1 ⊆ D1 ⊆ [0,1] and D∗

2 ⊆ D1 ⊆ [0,1] and
both contain 0 and 1, thus (1) must hold. Also (2), (3), (4) hold for D∗

1 ×D∗
2 since these (in)equalities hold on

a set containing D∗
1 ×D∗

2 , namely D1 ×D2.

According to Proposition 4.20 we can safely define the subcopula on any subgrid and extend this copula
linearly. This gives us freedom in choosing how many grid points we will take into account. To keep the tail
dependence in the copula we will still use the different expressions for the blue squares in Figure 4.7. We can
also make the squares larger when we consider different subgrids.

4.9.2. Tail dependence estimation and subcopula
To get a lower variance in the estimate of the tail dependence, we can take more grid points into account
for the four corners, which corresponds to making the blue squares in Figure 4.7 larger. This is equivalent to
using a larger threshold in the estimation of tail dependence. We will use this fact to generalize our subcopula.

Suppose we consider a subgrid of m times m points for the copula for which we have d ·m data points
instead of m, then the lower tail dependence coefficient will be:

λL = mCG

(
d

dm
,

d

dm

)
= m · 1

dm

dm∑
b=1

1
(
Rb

1 ≤ d ,Rb
2 ≤ d

)
= 1

d

dm∑
b=1

1
(
Rb

1 ≤ d ,Rb
2 ≤ d

)
= λ̂L(k = d),

which is the estimator for the tail dependence coefficient for threshold d . Now we can get the values λL ={
0, 1

d , · · · ,1
}
, which raises the bias, but significantly lowers the variance and gives more possible values of λL .

For the estimates of the upper TDC we get a similar result, making this an appropriate method. It also
gives us freedom in the tail dependence estimation. Using this approach we need to choose the same thresh-
old for upper and lower TDC. This means that we cannot choose the optimal threshold for both estimators.
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Figure 4.8: Domain of subcopula

This figure shows an example of a domain of the subcopula defined by equation (A.1).

u1

u2

(1,0)

(1,1)(0,1)

(0,0)

We can find a way around this problem and use a different thresholds for the estimation of the coefficients
of upper and lower tail dependence. For this subcopula we define the copula on two squares of different sizes
in the neighbourhood of (0,0) and (1,1). Due to the difference in size we need to define it on rectangles in the
neighbourhood of (0,1) and (1,0) such that it still is a subcopula. Besides, we may freely choose a subgrid, so
the grid points do not need to be equally spaced as they were in equation (4.34). An example of a domain is
given by Figure 4.8. Still assuming we have m data points and taking thresholds a and b in the estimation of
the coefficients of lower and upper tail dependence, we define the subcopula in Theorem 4.21.

Theorem 4.21. Let D1,D2 ⊆
{

a+1
m , a+2

m , · · · , m−b−1
m

}
and CS :

([
0, a

m

]∪D1 ∪
[

m−b
m ,1

])
×

([
0, a

m

]∪D2 ∪
[

m−b
m ,1

])
→

[0,1] be defined by the linear extension of the grid copula CG on the blue dots, the blue lines and the rectangles
including (0,1) and (1,0). Let us define it by the scaled comonotonic copula on the squares including (0,0) and
(1,1). Then this gives us:

CS (u1,u2) =


m
a min{u1,u2}CG

( a
m , a

m

)
, for (u1,u2) ∈ [

0, a
m

]2 ,

u1 +u2 −1+min{(1−u1), (1−u2)}
(
2− m

b + m
b CG

(
m−b

m , m−b
m

))
, for (u1,u2) ∈

[
m−b

m ,1
]2

,

CG ,L(u1,u2) else.
(4.36)

Then this is a subcopula.

Proof. The proof can be found in Appendix A.

Again we can extend this copula and see whether this copula has the desired properties. First we calculate
the tail dependence coefficients and give those in the following proposition.
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Proposition 4.22. Let C be the linear extension of Cs defined by equation (A.1). Then C has the following tail
dependence coefficients:

λL = λ̂L(k = a)

λU = λ̂U (k = b)

λL,U = 0

λU ,L = 0

(4.37)

Proof. The derivation of λL,U =λU ,L = 0 is the same as in Proposition 4.17. For λL and λU we can write:

λL = lim
u↓0

C (u,u)

u
= lim

u↓0

(
m

a
CG

( a

m
,

a

m

) min{u,u}

u

)
= m

a
CG

( a

m
,

a

m

)
= 1

a

m∑
j=1

1
(
R j

1 ≤ a,R j
2 ≤ a

)
= λ̂L(k = a)

λU = lim
a↑1

1−2a +C (a, a)

1−a

= lim
u↑1

min{1−u,1−u}
(
2− m

b + m
b CG

(
m−b

m , m−b
m

))
1−u

= 2− m

b
+ m

b
CG

(
m −b

m
,

m −b

m

)
= 2− m

b
+ 1

b

m∑
j=1

1
(
R j

1 ≤ m −b,R j
2 ≤ m −b

)
= 2− m

b
+ 1

b

m∑
j=1

1− 1
(
R j

1 > m −b or R j
2 > m −b

)
= 2− 1

b

m∑
j=1

1
(
R j

1 > m −b or R j
2 > m −b

)

= 2− 1

b

(
2b −

m∑
j=1

1
(
R j

1 > m −bR j
2 > m −b

))

= 1

b

m∑
j=1

1
(
R j

1 > m −b,R j
2 > m −b

)
= λ̂U (k = b).

So the TDCs of linear extension of the copula defined by equation (A.1) are equal to the lower and upper
tail dependence estimators for thresholds a and b, respectively. We can therefore first perform the estimation
of the TDCs where we have to choose thresholds a and b. For the subcopula defined by equation (A.1) we use
the same a and b, such that the created copula has the tail dependence coefficients of the estimates.

WhenλL,U >λU ,λL orλU ,L >λU ,λL holds, the lower-upper or upper-lower tail dependence is the strongest.
It then makes more sense to base the copula estimate on these two coefficients, so that we capture this ex-
treme dependence with our copula and set λU = 0 and λL = 0. We could then apply the copula estimation
to X and −Y instead of X and Y . Using equation (4.10) we can easily calculate the corresponding copula for
X and Y . When all coefficients are 0 it does not make sense to use equation (A.1) and we can simply use the
linear extension of the grid copula CG ,L , instead of the linear extension of CS . The copula therefore differs for
different tail dependence coefficients, which leads to the copula estimation procedure given in section 4.9.3.

4.9.3. Final copula estimation procedure
Suppose we have data {X1,Y1}, · · · {Xn ,Yn} available on which we wish to estimate the copula. Then we distin-
guish the following cases in the estimation of the copula:

(1) All TDC estimates are 0;
(2) One of the TDC estimates is non-zero;
(3a) More than one of TDC estimates are non-zero and max{λL ,λU } ≥ max{λL,U ,λU ,L};
(3b) More than one of TDC estimates are non-zero and max{λL ,λU } < max{λL,U ,λU ,L}.
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Under (1), we can simply use the linear extension of the grid copula CG ,L .
Under (2), we can fit a copula with lower tail dependence only for the copula of (X ,Y ), (X ,−Y ), (−X ,Y )

or (−X ,−Y ) dependent on which of the coefficients is non-zero. Lower tail dependence can be obtained by
using the linear extension of the subcopula defined by equation (A.1) with a 6= 0 and b = 0. After this we can
calculate the corresponding copula for (X ,Y ) using Proposition 4.4.

Under (3a), we can fit a copula for (X ,Y ) by extending the subcopula of equation (A.1).
Under (3b), we can fit a copula for (X ,−Y ) by extending the subcopula of equation (A.1). After this we can

calculate the corresponding copula for (X ,Y ) using Proposition 4.4.
Under (2), (3a) or (3b), we need to determine the thresholds a and/or b. These values are determined by

the threshold selection method in section 4.7. We can use values of a and b such that the tail dependence
coefficients implied by the choices of a and b are closest to the estimated values from the regression. Here,
we should only consider small values, for example, a,b ≤p

n for n the sample size. Then a and b are given by
equation (4.38).

a = argmin
a∈{1,

p
n}
|λ̂(1)

L (a)− λ̂L |,

b = argmin
b∈{1,

p
n}
|λ̂(1)

U (b)− λ̂U |,
(4.38)

where λ̂L and λ̂U are given by the best performing regression estimators for the TDCs in our simulation study.
We will find these in section 4.11.3.

4.9.4. Extension of subcopula in higher dimensional cases
The copula extension of our subcopula is now only defined for the 2-dimensional setting. Since the VAR(1)
model that Ortec Finance uses to describe factors dynamics is typically m-dimensional for m ≈ 10, we can
only cover dependence between sets of 2 errors. Since we do not know a priori the dependence between the
m errors, we wish to extend our 2-dimensional copula to the m-dimensional setting. To do this we can use
vine copulas. A vine copula is obtained by decomposing the density function of a multi-dimensional variable
into a product of conditional density functions that can all be described by a 2-dimensional copula, see Aas
et al. (2009). Equation (4.39) gives an example of how we can decompose the 3-dimensional density function
of random variables x1, x2 and x3.

f (x1, x2, x3) = f1(x1) f2(x2) f3(x3)c12 (F1(x1),F2(x2))c23 (F2(x2),F3(x3))c13|2
(
F1|2(x1|x2),F3|2(x3|x2)

)
. (4.39)

There are three different possible decompositions, we can namely permute x1, x2 and x3 in equation (4.39).
These different decompositions correspond to different vines.

An important component in the vine copula approach is the assumption of conditional independence be-
tween two variables. Assuming that x1 and x3 are independent given x2 gives us
c13|2

(
F1|2(x1|x2),F3|2(x3|x2)

)= 1 and therefore equation (4.39) simplifies to equation (4.40).

f (x1, x2, x3) = f1(x1) f2(x2) f3(x3)c12 (F1(x1),F2(x2))c23 (F2(x2),F3(x3)) . (4.40)

From this representation we see that we only have to estimate the copulas that describe the dependence
between the pair x1 and x2 and the pair x2 and x3. Algorithms for sampling from vine copulas are given in
Aas et al. (2009).

Joe et al. (2010) discusses the link between vine copulas and tail dependence, but how the tail dependence
depends on the vine structure is not discussed. It is clear that different vine structures can lead to different
dependence structures and this could therefore also lead to different TDCs. We should choose the vine struc-
ture such that the mistake induced by the constant conditional distribution assumption is minimal. For the
three dimensional we can consider the three possible vine structures, but as the dimension of the problem
increases so does the amount of possible vine structures. In five dimensions we are already dealing with 240
possible vine structures, see Aas et al. (2009), making this vine structure selection difficult for large dimen-
sions.

4.10. Sampling from a copula
When we have determined the copula and the underlying distributions of a set of variables X1, · · · , Xn , we
will need to find a method for sampling from this copula. For an arbitrary copula this can be done using the
conditional distribution method, which uses the conditional copula.
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Theorem 4.23. Let C be an n-dimensional copula, strictly increasing on (0,1)n in both variables, continuously
differentiable with Fx1 , · · · ,Fxn as distribution functions. Then, for U1, · · · ,Un ∼ U [0,1] independent we write

cu1,···u j−1 (u j ) = ∂ j−1

∂u1···∂u j−1
C (u1, · · · ,un) and let X1, · · · , Xn be sampled as follows:

X1 = F−1
x1

(U1),

X2 = F−1
x2

(c−1
U1

(U2)),

...

Xn = F−1
xn

(c−1
U1,··· ,Un−1

(Un)).

(4.41)

Then we have that the dependence between X1, · · · , Xn is described by copula C and Xi has distribution function
FXi for i = 1,2, · · · ,n,

Apart from a little adjustment, this theorem is the conditional distribution method explained in Schmitz
(2003). They also prove that the theorem holds.

Suppose we wish to sample from the linear copula extension of the subcopula defined by (A.1). To be able to
sample from the copula estimate, we need to be able to compute the inverse of cu1 . This can be a problem,
since this function cu1 is not necessarily bijective. For an arbitrary copula it can even be the case that this
function is neither injective nor surjective. Example 4.3 shows this problem.

Example 4.3. Let C be the comonotonic copula, recall that: C (u1,u2) = min{u1,u2}.
Then for any given u1 we have that cu1 (u2) is neither injective nor surjective and so we cannot use the sampling
method in Theorem 4.23.

Proof.

cu1 (u2) = ∂

∂u1
C (u1,u2) = ∂

∂u1
min{u1,u2} =

{
0 if u1 > u2

1 else u1 < u2

Therefore, the values between 0 and 1 are not attained, meaning that C is not surjective. Besides, 0 and 1
are not uniquely attained, meaning that C is not injective. Note that the function here is not defined for
u1 = u2.

To overcome this problem, we define a generalized inverse, such that we can sample from the generalized
inverse. It is defined in Definition 4.18.

Definition 4.18. Let h be a non-decreasing function. Then we define the generalized inverse of h by:

h{−1}(x) = inf{u : h(u) ≥ x}, (4.42)

which is also non-decreasing.

Using this generalized inverse we can sample from distribution functions that are not bijective. This is
given in Theorem 4.24.

Theorem 4.24. Let C be the extended subcopula of equation (A.1), with Fx1 , · · · ,Fxn as distribution functions.

Then for U1, · · · ,Un ∼U [0,1] independent, we write cu1,···u j−1 (u j ) = ∂ j−1

∂u1···∂u j−1
C (u1, · · · ,un) and let X1, · · · , Xn be

sampled as follows:

X1 = F {−1}
x1

(U1),

X2 = F {−1}
x2

(c−1
U1

(U2)),

...

Xn = F {−1}
xn

(c−1
U1,··· ,Un−1

(Un)).

(4.43)

Then we have that the dependence between X1, · · · , Xn is described by copula C and Xi has distribution function
FXi for i = 1,2, · · · ,n,
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This is a generalized version of Theorem 4.23 and the proof can be found in Schmitz (2003).
In Example 4.3 we have seen that we could not apply Theorem 4.23 to generate random numbers from the

comonotonic copula, but we will now show that we can use Theorem 4.24 for this. Let us apply this theorem to
the example to see whether this sampling method works for this special case. First simply compute c {−1}

U1
(U2),

which gives us:

c {−1}
U1

(U2) = inf{u : cU1 (u) ≥U2} = inf{u : 1{U1 < u} ≥U2} = inf{u : u >U1} =U1.

This means that X1 = F−1
x1

(U1) and X2 = F−1
x2

(U1), indicating that X1 and X2 are fully correlated, which is
indeed the case for the comonotonic copula.

To find the generalized inverse for arbitrary functions we use the bisection method, see Stewart (2011).
The Newton Raphson method cannot be used here because the derivative of cU1 can equal zero, meaning
that the method will not converge to the solution. In section 4.11.4 we sample from the copula estimate using
this method. The results of the methods introduced in this chapter are given in the next section.

4.11. Results of estimations
4.11.1. Simulation study
In this section we will show the results for the tail dependence test, the tail dependence coefficients and the
copula estimation. For the tail dependence test we use the Neyman-Pearson test for differentα and show the
results in section 4.11.2. In section 4.11.3 we give the results of the final TDC estimator, where we test the
performance of the two regression methods on the two estimators λ(1) and λ(2). Recall that in both sections
we do a WLS regression with the thresholds as weigths and an OLS regression. Besides, we will compare
the methods with the Plateau-finding method. Lastly, in section 4.11.4 we will estimate the copula using the
subcopula extension.

4.11.2. Test for tail dependence
In this section we will show the results for the tests for tail dependence based on the Clayton, Gumbel and
Gaussian copulas. We know there is tail dependence for the Clayton and Gumbel copulas and tail indepen-
dence for the Gaussian copula. In Tables 4.2, 4.3 and 4.4 we show the results for these three distributions for
sample sizes 10000. In Appendix D we will give the results for smaller-sized data sets (300 and 1000).

Table 4.2: Percentage of rejections of tail dependence for data from Clayton copula.

This table shows the percentage of rejections of H0 when the underlying is a Clayton copula. This percentage
should approximate the significance level of the test. This is based on 1000 samples with sample size 10000
for λ= 0.1, · · · ,0.9.

α ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% 25.0% 6.5% 2.6% 1.6% 0.9% 0.8% 0.9% 1.0% 0.9%
3% 40.8% 14.1% 7.2% 3.9% 3.0% 2.8% 4.0% 2.6% 2.4%
5% 49.1% 21.0% 10.9% 6.9% 5.7% 3.8% 6.8% 5.5% 3.9%
10% 63.6% 35.8% 21.2% 15.2% 10.5% 8.9% 12.3% 10.4% 8.7%
20% 78.0% 51.5% 34.5% 27.9% 18.6% 18.8% 22.1% 23.2% 19.2%
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Table 4.3: Percentage of rejections of tail dependence for data from Gumbel copula.

This table shows the percentage of rejections of H0 when the underlying is a Gumbel copula. This percentage
should approximate the significance level of the test. This is based on 1000 samples with sample size 10000
for λ= 0.1, · · · ,0.9.

α ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1% 32.8% 6.3% 1.8% 1.1% 0.7% 1.4% 0.9% 1.0% 1.6%
3% 49.4% 12.2% 5.0% 3.6% 3.4% 4.2% 2.4% 2.7% 3.4%
5% 57.4% 17.3% 7.2% 5.9% 5.9% 6.2% 4.2% 5.1% 5.5%
10% 71.1% 27.7% 14.1% 11.6% 11.1% 11.2% 10.2% 9.8% 9.9%
20% 83.2% 45.0% 27.2% 23.1% 22.9% 22.2% 19.8% 18.9% 18.3%

In Tables 4.2 and 4.3 we would expect the percentage of rejections to be close to α. This is indeed the case
for the larger tail dependence coefficients λ≥ 0.5. For the smaller tail dependence coefficients, λ≤ 0.2 we are
not at all close to this expectation. This may be due to the slower convergence towards the asymptotic result
of equation (4.31), which is logical since the tail dependence is smaller in these cases.

We choose to work with α = 5% for the rest of the thesis, which indicates that asymptotically we can
expect to reject tail dependence in 5% of the tail dependent cases. When our sample of 10000 data points has
TDC λ= 0.1 we will reject H0 with probability 49% and 57% for the underlying Clayton and Gumbel copulas,
respectively. The significance level for finite samples is therefore larger than α= 5%.

The Gaussian copula has no tail dependence unless ρ = 1 and we therefore know that H1 holds. We can
therefore approximate the power p = P (C |H1) by the amount of rejections under H1 over the amount of
calculations.

Table 4.4: Percentage of rejections of tail dependence for data from Gaussian copula.

This table shows the percentage of rejections of H0 when the underlying is a Gaussian copula. This percentage
should approximate the significance level of the test. This is based on 1000 samples with sample size 10000
for ρ = 0,0.1, · · · ,1.0.

α ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1% 100% 99.9% 99.9% 99.1% 93.0% 80.8% 57.6% 35.2% 15.6% 8.0% 0.8%
3% 100% 100% 100% 99.8% 97.6% 91.0% 75.3% 52.7% 29.8% 15.0% 2.5%
5% 100% 100% 100% 99.8% 99.2% 94.6% 82.6% 64.0% 37.9% 21.5% 4.4%
10% 100% 100% 100% 100% 99.9% 98.0% 90.5% 77.4% 53.5% 32.9% 9.6%
20% 100% 100% 100% 100% 99.9% 99.3% 96.0% 89.3% 71.4% 49.0% 19.7%

4.11.3. Estimation of tail dependence coefficients
In the case that our test from the previous section does not reject tail dependence, we can estimate the tail
dependence coefficient. This is done for the same copulas as in the previous section. For each copula and
sample size the result can be found in Appendix D. We summarize the result, average of all mean squared
errors, in Table 4.5. For the value of m, the number of estimates taken into account, we chose m = D

p
n,

where n is the sample size and we considerd various D’s. Based on some test simulations we choose D to be
equal to 10.
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Table 4.5: Average MSE of regressions for coeffient of tail dependence estimation on different copulas.

This table shows the square root of the mean squared errors (
p

MSE) for the WLS and OLS regression of the
two tail dependence estimators. For comparison we also give these results for the plateau-finding method.
This is based on 2000 simulations (1000 simulations for sample size 10000) of random variables from the
Clayton and Gumbel copulas with tail dependence coefficients uniformly distributed between 0 and 1.

Estimator Regression/threshold type 300 1000 10000

λ̂(1) WLS regression † 0.060 † 0.050 † 0.029
OLS regression 0.065 0.052 0.031

λ̂(2) WLS regression 0.063 0.051 0.030
OLS regression 0.066 0.052 0.031

λ̂(1) Plateau-finding/Constant threshold 0.094 0.076 0.052
λ̂(2) Plateau-finding/Constant threshold 0.086 0.075 0.049

† Denotes the best estimator for this sample size.

Note that for the size of 10000 the Plateau-finding method does not work properly, since it sometimes does
not find Plateaus and sets λ̂ := 0 or λ̂ := 1 even though λ is not close to 0 or 1. The numbers in the table

represent the estimates we obtain from always using k = 0.05n = 500 as a threshold.

In Table 4.5 we see that the WLS regression on λ̂(1) performs best for all sample sizes, but the differences
in MSE with the other regression methods are not that large. Also it is better than the Plateau-finding method
from the literature. We will use this estimator for the rest of this thesis independent of the sample size. As
expected, we also see a clear decay in the MSE when the sample size increases.

4.11.4. Estimation of copula
When we wish to estimate the copula on data we first test for tail dependence using the Neyman-Pearson
test and afterwards we determine the TDCs. Next we can use the techniques in section 4.9.3 to obtain a
mathematical expression for the copula. From this copula we can draw scenarios using the sampling method
from 4.10. We can compare the dependence measures of these scenarios to the dependence measures of the
data on which we fitted the copula. Table 4.6 shows the resulting Kendall’s tau and upper TDC when using
this procedure on data from underlying Gumbel copula, where we use 40 grid points for u1 (excluding 0 and
1) and 40 grid points for u2. Figure 4.9 shows the simulated data from this Gumbel copula and one scenario
generated from the copula fitted on this data.

Table 4.6: Comparison dependence measures of scenarios and historical data.

This table shows important dependence measures of our 50 generated scenarios of 1000 observations and
compares those to the dependence measures of the underlying sample, which are samples of 1000 observa-
tions generated from a Gumbel copula for λ= 0.2,0.4,0.6,0.8.

TDC

Theoretical 0.2 0.4 0.6 0.8
Sample 0.200 0.351 0.492 0.780
Scenarios 0.201 0.336 0.467 0.761
Rejection percentage of scenario 44% 38% 16% 14%

Tau

Theoretical 0.152 0.322 0.515 0.737
Sample 0.168 0.301 0.491 0.726
Scenarios 0.172 0.302 0.491 0.721
MSE 0.022 0.019 0.019 0.011

In Table 4.6 we see that the TDC estimate of the scenarios are on average lower than the estimated TDCs
on the sample generated from the Gumbel copula. This underestimation is due to the underestimation of
the dependence caused by the linear extension. When we make the grid finer, the estimation should become
better and we show this in Table 4.7.
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Table 4.7: Comparison MSEs of scenarios for different grid sizes.

This table shows the average MSE of the scenarios τ̂ and λU for a Gumbel copula as a function of the grid size.
The size of the historical and scenario data is 1000 and the grid sizes are 10, 20 and 40.

Amount of grid points 10 20 40
TDC 0.106 0.037 0.015
tau 0.029 0.018 0.018

Similar results are obtained for the dependence measures when we do the estimation on samples ob-
tained from a Clayton copula. We show these in Tables D.7 and D.8 in the appendix. In Figure 4.9 we show
one of the samples for 40 grid points and λU = 0.8

Figure 4.9: Generated historical sample and scenario sample.

This figure gives the historical sample on which we base our copula on the left and a scenario generated from
this historical sample on the right. The historical sample is generated from a Gumbel copula with λU = 0.8

(a) Sample from Gumbel copula (b) Sample from copula estimated on left sample

In Figure 4.9 we see that the structure of the samples looks similar on the eye and their estimated Kendall’s
taus are similar: τ̂ = 0.727 versus τ̂ = 0.724. In both samples we see clustering close to (1,1), but for the sce-
nario this clustering is on a line caused by the parametric form of the subcopula close to (1,1). The estimated
TDCs are nevertheless similar too: λ̂U = 0.806 versus λ̂U = 0.796. In Figure D.1 we show a scenario plot, where
the underlying data is generated from a Clayton copula.

4.12. Conclusion
Many economic variables exhibit tail dependence, see for example Starica (1999). This tail dependence can
be effectively captured with certain copulas that are used to describe dependence between random variables.
Many parametric copula models have only one or two parameters that are fitted to the data. We cannot
generally approximate the behaviour of arbitrary data by a model in which we fit only one or two parameters
and we therefore come up with another approach.

In our approach we constructed a copula via an extension of a subcopula, which may include historically
observed tail dependence and still accurately approximates the dependence outside the tails of the distribu-
tion. For the tail dependence estimation we introduce the WLS and OLS regression method that approximate
the TDC better in MSE than the Plateau-finding method from the literature for our test cases. Since our esti-
mation can overestimate the TDC when there is no tail dependence, we also test for tail dependence, based
on the Neyman-Pearson lemma. Tail dependence is rejected more often when the TDC becomes smaller for
the Clayton and Gumbel copulas and when ρ becomes smaller for Gaussian copulas. As expected, for larger
sample sizes our test has the largest power, recall equation (4.29).
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In conclusion, we have used a method to test for tail dependence, and came up with a method to de-
termine the tail dependence coefficients. We used these in the semiparametric copula to approximate the
historically observed dependence structure which has the estimated tail dependence coefficients. We did
this for the 2-dimensional setting. We can use this copula to generate scenarios and except when tail depen-
dence is rejected under tail dependence dependence, we estimate similar TDCs for the generated scenario as
for the sample on which we base our copula. Estimations of Kendall’s tau have showed that the correlation
of the scenarios are similar to the correlation of the samples on which we base our copula. This suggests that
this method works well for the considered data.
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Practical implications for factor modelling

5.1. Introduction
At Ortec Finance it is important to determine the tail risks associated with all financial instruments in which
clients are interested. This tail risk of a portfolio of multiple financial instruments depends on the tail risk
of each individual financial instrument, for which we need to know the tail index. Also this tail risk depends
on the tail dependence between the financial instruments and so we need to know the TDCs. In the model
of Ortec Finance, financial and economic variables typically depend on factors and lagged factors linearly,
meaning that it is important to model the factors and tail behaviour of the factors correctly.

In section 5.2 we briefly show how the economic variables depend on the factors and how the factors
themselves are modelled. We have seen how copulas can be used to model the (tail) dependence between
static random variables. For the factors, that are described by a VAR(1) model, we can use a copula to de-
scribe the (tail) dependence between the underlying errors in the VAR model. We will elaborate on this in
section 4.4 and show what this means for the tail dependence of the factors. We should also realise that mod-
elling the errors as independent in the VAR model already introduces some dependence structure caused by
the VAR interactions. This could possibly even mean that there is tail dependence between the factors. We
will elaborate on this in section 5.4. In section 5.6 we will conclude and recommend an approach for Ortec
Finance.

It is interesting to see how the copula, used to describe the dependence between the errors, affects the
time series. We are especially interested in the link between the tail dependence in the errors and the tail
dependence in the factors. This is important for modelling the extreme behaviour of financial variables, since
all financial variables depend on some of the factors through a regression, directly or indirectly. Therefore
these variables will also have the tail index of at least the factor’s tail index. The tail index of a financial
variable will be larger when the distribution of the errrors in the regression is modelled with a larger tail index
than the factor’s tail index.

5.2. Ortec Finance model
Ortec Finance uses a scenario approach to predict future economic outcomes. The scenarios are generated
from a dynamic factor model, which combines statistical analysis of historical data, stylized facts and expert’s
knowledge. In the analysis of the historical behaviour of economic variables Ortec Finance decomposes all
economic variables into three frequency bands. This is done via a frequency decomposition, on which we
will not elaborate here, but refer to Steehouwer (2010) for further details. We will simply assume that the
data is within one of these frequency bands. In every frequency band a distinction is made between core
variables and regression variables. The regression variables are typically variables for which there is not a
sufficiently large sample to reliably estimate the lowest frequency component in the model. These regression
variables are modelled as a function of the core variables. The core variables depend on multiple statistical
factors and an error term. Here, the core variable at time t is a linear combination of these factors, lagged
factors, possibly lagged values of the core variable and an error term. Ortec Finance describes the factors by
a VAR model. To obtain the factors, that explain most of the behaviour of the economy, Ortec Finance uses a
principal component analysis, see Jolliffe (1986). We will not elaborate on the principal component analysis
here and assume the factors are given.

65
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We summarize this dynamic factor model of Ortec Finance mathematically in Definition 5.1.

Definition 5.1 (Dynamic factor model).
yt ∈Rn follows a dynamic factor model if it can be written as follows:

yt =
p∑

i=0
Mi ft−i +

q∑
j=1

D j yt− j +εt ,

ft = A ft−1 +et ,

(5.1)

with Mi ∈ Rn×m ∀i , D j ∈ Rn×n diagonal matrices ∀ j and A ∈ Rm×m a constant matrix. ft ∈ Rm is the vector
of factors at time t , εt ∈ Rn a vector of time independent and component wise independent and identically
distributed errors and et ∈ Rm a vector of time independent but not necessarily independent and identically
distributed error vectors at time t .

At Ortec Finance this dynamic factor model is used to describe frequency components of economic vari-
ables. The amount of factors m differs per frequency component, but typically m ≈ 10. The amount of core
variables we wish to describe with our model is much larger.

The yt represent the financial and economic variables of interest. If we wish to model the tails of yt cor-
rectly, we have to model the tails of ft and εt accordingly. Ultimately, to correctly model the (tail) dependence
between the components of yt , we need to model the (tail) dependence between the factors correctly. Sec-
tion 5.3 explains what to do for the former problem and section 4.4 explains how we can use copulas for the
latter problem. In section 5.4 we show that heavy-tails in the errors of the VAR model can possibly induce tail
dependence between the factors, but this needs mathematical back-up.

5.3. Heavy tails in VAR models
Recall we have shown the theoretical results of the tail indices of factors, that are described by a VAR model
with independent errors in section 3.5. Due to the interactions between the factors caused by the matrix in
the VAR model the tail of fi ,t depends on more errors than ei ,t . As a result the tail indices of the factors equal
the largest tail index of the errors. This makes the modelling of the tail difficult if we observe different tail
indices for the factors. The financial time series yt is a linear combination of its own lags, an error and the
factors. We can describe the tail of the errors in the VAR model by the smallest tail index of the factors γmin,
meaning that the tail index of each factor will be γmin. To get the correct tail index for yt we can describe the
error εt by a heavy-tailed distribution with the correct tail index.

If these factors were to be mutually independent, we could use Theorem 3.11 to conclude that the tail
index of component y i

t equals the largest tail index of the εi
t and the factors influencing y i

t . The factors are
however not mutually independent due to the underlying VAR model, which makes this more complicated.
It is clear that the factors show some dependence implied by the VAR model. In the next section we will show
some indications of this VAR model implying tail dependence.

5.4. Tail dependence between factors induced by VAR modelling
Since the factors are influenced by the errors through the VAR modelling, the factors can depend on the same
errors and therefore be mutually dependent. Recall Example 3.2 where f1 and f2 both depended on as well ε1

as ε2 and we can therefore expect that f1 and f2 are dependent. We know that the factors are tail independent
if they are modelled by independent normal errors. In this section we will investigate whether this is the case
for heavy-tailed distributions as well.

To see if heavy-tailed distributions can induce tail dependence we estimate the TDC between the factors
in Example 3.2 for t-distributions as well. We do this for tail indices γ = 0.1,0.2, · · · ,0.5. Before estimating
the TDCs, we test for tail dependence and set the TDC to be λ = 0 if the test rejects tail dependence. For
comparison we will also do this for a standard normal distribution (i.e. γ = 0). The results for sample sizes
300, 1000 and 10000 are given in Tables 5.1, 5.2, and 5.3, respectively. The upper and lower TDC are the same
due to the symmetry of the problem. In the simulations they are very close and in the resulting tables we
show the averages of the upper and lower tail results.
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Table 5.1: Tail dependence coefficient of factors described by VAR model.

This table shows the average TDC estimates (upper and lower) of factors described by VAR model with inde-
pendent underlying errors. The errors are drawn from a t-distribution with tail index γ= 0.1,0.2, · · · ,0.5 and
standard normal distribution (γ= 0). The table shows the results for 1000 iterations of sample size 300.

Tail index 0 0.1 0.2 0.3 0.4 0.5
Percentage of rejections 40.3% 41.4% 44.9% 40.5% 35.1% 24.4%
Average non-rejected TDC estimate 0.405 0.410 0.423 0.459 0.502 0.550
Average TDC estimate 0.242 0.241 0.233 0.273 0.326 0.416

Table 5.2: Tail dependence coefficient of factors described by VAR model.

This table shows the average TDC estimates (upper and lower) of factors described by VAR model with inde-
pendent underlying errors. The errors are drawn from a t-distribution with tail index γ= 0.1,0.2, · · · ,0.5 and
standard normal distribution (γ= 0). The table shows the results for 1000 iterations of sample size 1000.

Tail index 0 0.1 0.2 0.3 0.4 0.5
Percentage of rejections 50.7% 51.4% 56.8% 49.2% 32.5% 19.6%
Average non-rejected TDC estimate 0.360 0.366 0.371 0.411 0.463 0.542
Average TDC estimate 0.178 0.178 0.160 0.209 0.312 0.435

Table 5.3: Tail dependence coefficient of factors described by VAR model.

This table shows the average TDC estimates (upper and lower) of factors described by VAR model with inde-
pendent underlying errors. The errors are drawn from a a t-distribution with tail index γ= 0.1,0.2, · · · ,0.5 and
standard normal distribution (γ= 0). The table shows the results for 200 iterations of sample size 10000.

Tail index 0 0.1 0.2 0.3 0.4 0.5
Percentage of rejections 76.0% 93.0% 93.0% 66.5% 31.0% 6.0%
Average non-rejected TDC estimate 0.268 0.269 0.277 0.322 0.418 0.547
Average TDC estimate 0.064 0.019 0.019 0.108 0.289 0.514

In the tables for the smaller sample sizes 300 and 1000 we cannot clearly reject tail dependence. For
the normal distribution we know that there is no tail dependence, but we cannot always reject this from the
estimates. The least rejections and largest TDC estimate is obtained for γ= 0.5. The percentage of rejections
is 6.0% here which is close to the asymptotic 5%, that is expected for tail dependent data. This suggests that
there is indeed tail dependence present in the data. For other tail indices we cannot conclude this. It would
be interesting for further research to explore the behaviour for larger samples.

5.5. Tail dependence between factors in COPAR model
From the previous section we learned that a larger tail index for the errors in the VAR model describing the
factors possibly implies a larger TDC between the factors. If we wish the tail dependence to be larger for a
given tail index, we should use a copula which includes tail dependence to describe the dependence between
the errors. Recall the COPAR model which is described in section 4.4. The tail dependence of the factors in a
COPAR model is a function of the tail index of the errors and the tail dependence between the errors. Here, a
larger tail index and a larger TDC between the errors implies a larger TDC between the factors.

Theoretically we can use an n-dimensional copula to describe the n errors in the VAR model. In practice,
accurate estimation of such a copula for n ≥ 3 is difficult, especially when we wish to have the correct tail
dependence between every pair of variables. To see what happens with the tail dependence of the factors
when we model the errors in the VAR model by copulas we perform some simulations for the 2-dimensional
setting. We do this for the Gumbel and Clayton copulas and the results are given in Tables 5.4, 5.5 and 5.6.
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Table 5.4: Tail dependence coefficient of factors described by COPAR model.

This table shows the TDC estimates for factors described by a COPAR model. We estimates on the factors from
Example 3.2 where the errors are described by a Clayton copula and a Gumbel copula with standard normal
margins. The table shows the percentage of TDC rejections and the average TDC estimate for the factors. The
table shows the results for 1000 iterations of sample size 300.

TDC of errors 0 0.2 0.4 0.6 0.8
Percentage of rejections 39.3% 18.3% 9.8% 5.6% 0.6%
TDC of factors 0.404 0.551 0.625 0.713 0.825

Table 5.5: Tail dependence coefficient of factors described by COPAR model.

This table shows the TDC estimates for factors described by a COPAR model. We estimates on the factors from
Example 3.2 where the errors are described by a Clayton copula and a Gumbel copula with standard normal
margins. The table shows the percentage of TDC rejections and the average TDC estimate for the factors. The
table shows the results for 500 iterations of sample size 1000.

TDC of errors 0 0.2 0.4 0.6 0.8
Percentage of rejections 50.6% 19.4% 8.6% 1.4% 0.2%
TDC of factors 0.360 0.522 0.603 0.701 0.824

Table 5.6: Tail dependence coefficient of factors described by COPAR model.

This table shows the TDC estimates for factors described by a COPAR model. We estimates on the factors from
Example 3.2 where the errors are described by a Clayton copula and a Gumbel copula with standard normal
margins. The table shows the percentage of TDC rejections and the average TDC estimate for the factors. The
table shows the results for 100 iterations of sample size 10000.

TDC of errors 0 0.2 0.4 0.6 0.8
Percentage of rejections 76% 28% 12% 2% 0%
TDC of factors 0.263 0.465 0.569 0.678 0.816

As expected we see that there is a positive relation between the TDC between the errors and the TDC
between the factors. Also we see that the percentage of rejections decreases as the tail dependence coeffi-
cients of the errors increase. When our TDC equals zero (in this case independent errors) we see that for the
factors tail dependence is rejected 39.3%, 50.6% and 76% of the times for sample sizes 300, 1000 and 10000
respectively. From the literature we know that there is no tail dependence and we thus see that the hypoth-
esis testing improves when our sample becomes larger but for 10000 we still do not reject 24% of the tail
independent samples, but still the percentage is clearly larger than for the tail dependent samples.

We should note here that we used the Neyman-Pearson test to determine whether the data is tail depen-
dent and the WLS regression on λ̂1 to determine the TDC estimates. Both of these methods are designed for
independent samples, but the time series described by the COPAR model shows autocorrelation. The perfor-
mance of the estimators on this data may therefore be worse than the performance on the errors, that do not
show autocorrelation.

5.6. Conclusion and recommendations
In conclusion, to correctly model the individual tail behaviour of the core variables we recommend describing
et in equation (5.1) by a distribution with tail index γmin where this is the minimum of the factor’s tail indices.
We can also model them without heavy tail and make sure that yt gets the right tail index through the errors
εt . The constructed copula can be used to make sure that the tail dependence coefficients of the factors are
correct. This modelling makes sure that we can incorporate tail dependence between the core variables by
the factors, but it does not make sure that the TDCs of the core variables are the same as those observed
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historically. The core variables themselves are also described by a VAR model, which causes the TDCs of the
core variables to differ from the TDCs of the factors.

To have the same tail index as observed historically for the core variables, each component εi
t should have

the same tail index as observed historically for y i
t . In this way we can make sure that the individual tails of the

the core variables are correct. Also we can include the tail dependence of the core variables, that is implied
by the tail dependence of the factors. We can make sure that the factors have approximately the same depen-
dence structure and tail dependence coefficients as observed historically. That this also closely approximates
the tail dependence coefficients and dependence structure of the core variables cannot be concluded directly.
Due to the complex interactions between the dimensions in the VAR modelling we cannot directly link the
TDCs of the core variables to the TDCs of the factors.

In Table 5.6 we only reject the tail dependence hypothesis for 76% of the tail independent factors. These
scenarios correspond to VAR scenarios, since the errors are described by the independence copula if λ = 0.
We can then compute that the Pearson’s correlation between f1,t and f2,t equals ρ = 0.678. From Table 4.4
we have learned that we reject tail dependence less for larger ρ-values, so it is logical that we reject only 76%.
Considering larger time series should show even larger percentages, but this is computationally very time
consuming. This would also give more accurate TDC estimates for the factors.

We should also note here that the copula is constructed for the 2-dimensional setting and for the exten-
sion to more dimensions the use of vine copulas seems promising, but before applying this approach it needs
further research. Using the 2-dimensional copula we can therefore only describe pairs of errors and we sug-
gest to describe the two errors that exhibit the largest tail dependence by the copula. Next, we choose the pair
with the largest tail dependence from the errors that are left and so forth. Doing this leaves us with the model
defined in Definition 5.2.

Definition 5.2 (Dynamic copula factor model). yt ∈ Rn follows a dynamic copula factor model if it can be
written as follows:

yt =
p∑

i=0
Mi ft−i +

q∑
j=1

D j yt− j +εt ,

ft = A ft−1 +et ,

(5.2)

with all variables the same as in equation (5.1), except for et ∈ Rm which is not necessarily componentwise in-
dependent, but still time independent. Here, the dependence between e1,t and e2,t is described by C1,2, which is
estimated using the copula estimation procedure described in section 4.9.3 applied to e1,t and e2,t . The depen-
dence between e3,t and e4,t is described by C3,4 using the same procedure and so forth until there are no pairs
left.

Using this model enables us to generate core variables with individual tails similar to what we observed
historically. Besides, it enables us to incorporate tail dependence between the different core variabels via
the COPAR model that describes the factors. Since we can yet only describe pairs of variables we do not
capture the dependence between all the error components and therefore all the factors and core variables.
It should however capture the strongest tail dependence by using copulas for the pairs which exhibit the
strongest historical tail dependence. For an extension to more dimensions we can use vine copulas, which
are discussed in section 4.9.4.
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Conclusion and discussion

6.1. Conclusion
We have implemented methods to approximate the tail index and tail dependence coefficients of random
variables. We also used a testing procedure to see if we are indeed dealing with tail dependence. In the
context of the dynamic factor model of Ortec Finance, we can apply these methods and the testing procedure
to the errors in the factor model corresponding to each frequency band, but we should take care. Under some
weak conditions the tails of all factors can be described by the strongest tail index of the errors. To deal with
this issue, we describe the errors by a heavy-tailed distribution with the smallest tail index of the factors γmin

as tail index. The factors will therefore have tail index of at most γmin.
To correctly model the individual tail behaviour of the core variables the errors εt in equation (5.1) should

be modelled with the same tail index as the core variables themselves. To make sure that we can model tail
dependence as well, we use copulas to describe the dependence between the errors et in equation (5.1). In
this way we approximate the tail dependence between the errors, but whether this also models the factor’s
tail dependence similar to what we observed historically remains the question. Since the copula is suitable
for the 2-dimensional setting we can only capture the dependence between pairs.

6.2. Tail index estimation
In finding a tail index estimation procedure we assumed that the extremes of the factors were of some para-
metric form and we considered a limited number of possible tail indices. These heavy-tailed parametric
forms do not hold generally and whether the data is heavy-tailed remains the question. We use the Hill, Mo-
ment, Adjusted Hill and Regression estimators for the estimation and take an average of three of those to
improve the estimate. We have only considered equally weighted averages of estimators here. Using model
averaging, in which we can consider any linear combinations of these four estimators, can possibly improve
the estimator.

6.2.1. Heavy-tailed underlying distribution assumption
We have implemented the tail index estimation procedure on samples from three families of distributions,
namely the Pareto, Burr and Fréchet family. For arbitrary financial data it is not guaranteed that one of these
is the underlying distribution and therefore the estimates for financial data could have a larger (but possibly
also smaller) MSE than estimates for the simulated data. We have also considered data with tail indices γ =
0.1,0.2, · · · ,0.5 only and no values in between. We know that our final estimator performs well for these values
of γ and it is therefore likely to perform well for values between 0.1 and 0.5.

In Haan and Ferreira (2006) it is discussed that γ> 0 is typically the case for financial time series, but we
cannot be entirely sure whether all the factors show this heavy-tailed behaviour. For light-tailed data (i.e.
γ ≤ 0) we know that our estimator overestimates γ and should therefore not be used. To make sure that we
do not use the estimator on light-tailed data we could first test whether indeed γ> 0. We propose to use the
Moment estimator for this, since it is the only estimator we considered, which can also estimate γ≤ 0. If this
Moment estimator gives γ> 0 we can proceed with the tail index estimation, otherwise we should conclude
that the data is possibly not heavy-tailed and we do not need to model it as such.
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Considering underlying distributions with γ> 0.5 for our test data and choosing the method based on this
data might make the estimator more robust, but it could also mean that we lose performance (larger MSE)
with respect to the currently used estimator for 0.1 ≤ γ ≤ 0.5, which is undesirable. For further research it
might be interesting to test whether we can make the estimator more robust without losing too much accu-
racy for 0.1 ≤ γ≤ 0.5. We however think it is unlikely that we have factors with γ≥ 0.5, since this would mean
that the variance of the core variables that depend on these factors does not exist.

6.2.2. Model averaging
In our analysis of choosing a linear combination of estimates, we only considered unweighted averages of
two, three or four estimators. We could however choose a weighted average too, which increases the degrees
of freedom we have and the parameters we have to fit in the procedure. More degrees of freedom implies that
we can possibly get an estimate with smaller MSE on our test data, but here we might be overfitting. Model
averaging deals with this trade-off and can be applied in our tail index estimation. In the model averaging
framework we can also first make an initial guess on γ and then decide on using an estimator or a linear
combination, which has a small MSE for γ’s close to the initial guess. This could be an interesting topic for
further research.

6.3. Regression in TDC estimation
In our decision on which estimator to use we use simulated data to represent financial data. This data is
simulated from two parametric families, namely Clayton and Gumbel copula. These parametric forms do
not hold for arbitrary financial data, and therefore have a different rate of convergence towards the TDC.
The methods we propose could therefore perform worse (or better), in MSE sense, than on data from these
parametric families. For the TDC estimation, using λ̂(1) and λ̂(2) we used an OLS and WLS regression. In both
methods we however know that there is an underlying assumption, which does not generally hold.

In both regressions we assume that the bias increases linearly with the threshold, which is not necessarily
the case. To deal with this we could generalize to a polynomial regression method to see if we can improve
our MSE. We did this for second degree polynomial regression, but the resulting MSEs became larger. For
further research it will be interesting to see if taking more degrees into account will significantly improve the
estimation.

We also know that the variance in the estimates decreases as a function of the threshold. In the OLS
regression we do not account for this relation and in the WLS regression we assume this relation to be lin-
ear. Since the relation depends on the underlying, we do not know which weights to choose a priori. Also
we should take into account that there is mutual dependence between the estimates. If we take these two
points into account, we should be able to improve the regression. For further research we recommend using
a generalized least squares regression to deal with these two problems.

6.4. Theoretical behaviour of factors with underlying copula
The theoretical behaviour of the tails in VAR models is clear when the error components are independent and
identically distributed. When however the error components are dependent and described by a copula the
situation becomes much more involved. We did not find a mathematical expression which links the TDCs of
the copula describing the dependence between the error components to the TDCs of the factors. Based on
simulation results we have found strong indications that larger tail dependence in the errors implies larger
tail dependence in the factors. We have also found indications, less strong however, that a larger tail index for
the errors implies stronger tail dependence in the factors.

For further research it will be interesting to see if we can link the factor TDCs to the error TDCs and tail
indices and if we can mathematically prove that tail dependence between the errors implies tail dependence
between the factors.

6.5. Copula estimation
In our approach we fit a copula to the historical data, which is in our case simulated, and we have some
choices to make here. One of these choices is the subgrid, which can contain a small number of points, which
reduces the computational effort at the cost of accuracy in describing the data. Taking more grid points into
account makes the method more time consuming, but should describe the data more accurately. When we
take too many grid points into account we will however overfit the data, which we wish to prevent. In this
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thesis we only considered equally spaced subgrids, but we could also use unequally spaced subgrids. We
could for example make the grid finer in the tails of the distribution when the tail exhibits tail dependence,
such that the TDCs of our generated scenarios will resemble the TDCs of the historical data more closely.

The extension we use to extend our subcopula from the subdomain to [0,1]n is a linear extension. The
linear extension has constant density on each square between four points from the subdomain. This is what
we expect for independent data, but not for data with positive or negative correlation. Therefore we will
underestimate this positive or negative correlation, especially when we do not take enough grid points into
account, which leads to underfitting. Taking many grid points into account reduces this effect, but overfitting
could then take place.

We could also use other, possibly more advanced extensions here, but we should be careful, since naively
extending could result in an extension which is not a copula. In the copula estimation procedure I considered
using a cubic and quintic spline instead of a linear spline between the grid points. This however gave a func-
tion that was not 2-increasing and therefore not a copula. Durante et al. (2017) determines upper and lower
bounds for the extension where the copula is given on a rectangle including (0,0) and a rectangle including
(1,1) only. Our extension is different since it extends a subcopula, which is given on the grid points as well.
Using a similar approach we should be able to find upper and lower bounds for our extension as well.

For further research it will be interesting to see if we can use these extensions and possible other exten-
sions to obtain a copula from the subcopula, which does not underestimate the correlation. Also the trade-off
between the overfitting and underfitting should be taken into consideration here to make a good decision on
the amount of grid points which will be used. Lastly, we can consider unequally spaced grids to better de-
scribe the tails and generalize our method even further.

6.6. Dimensionality
Dealing with large dimensionality is a challenge in copula theory. The copula we introduced accurately de-
scribes the dependence for the 2-dimensional case. We can therefore only describe dependence between
pairs. To be able to deal with more dimensions we could apply vine copulas. The higher the dimension, the
more difficult it is to make an accurate approximation and draw representative scenarios. It will be interest-
ing to see with what level of accuracy we can describe (tail) dependence between random variables for higher
dimensions by combining the copula designed in this thesis with vine copulas.





A
Proofs

In this part of the appendix we will give the proofs or part of the proofs of some theorems and propositions,
that we have not given in the main text.

Proposition 4.17 The linear extension of the grid subcopula, defined by equation (4.33) has the following
TDCs:

λL =λU =λL,U =λU ,L = 0

.

Proof.

λU = lim
a↑1

1−2a +C (a, a)

1−a

= lim
a↑1

1−2a + a−am−1
1−am−1

a−bm−1
1−bm−1

+ a−am−1
1−am−1

1−a
1−bm−1

bm−1 + a−bm−1
1−bm−1

1−a
1−am−1

am−1 + (1−a)2

(1−am−1)(1−bm−1)C (am−1,bm−1)

1−a

= lim
a↑1

1−2a + (ma −m +1)2 + (ma −m +1)(1−a)(m −1)+ (ma −m +1)(1−a)(m −1)+ (1−a)2m2C ( m−1
m , m−1

m )

1−a

= lim
a↑1

1−2a + (ma −m +1)2 + (ma −m +1)(1−a)(m −1)+ (ma −m +1)(1−a)(m −1)

1−a

= lim
a↑1

1−2a + (ma −m +1)(m −ma −1+2a)

1−a

= lim
a↑1

1−2a +−m2(a −1)2 +m(a −1)(2a −2)+2a −1

1−a

= lim
a↑1

1−2a + (−m2 +2m)(a −1)2 +2a −1

1−a

= (−m2 +2m) lim
a↑1

(1−a)2

1−a
= 0

λL,U = 1− lim
a↓0

C (a,1−a)

a
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a1
a−a0
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= 0
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The derivation of λU ,L = 0 is equivalent due to the symmetry and the derivation of λL is given right after
Proposition 4.17.

Theorem 4.21 Let D1,D2 ⊆
{

a+1
m , a+2

m , · · · , m−b−1
m

}
and CS :

([
0, a

m

]∪D1 ∪
[

m−b
m ,1

])
×

([
0, a

m

]∪D2 ∪
[

m−b
m ,1

])
→

[0,1] be defined by the linear extension of the grid copula CG on the blue dots, the blue lines and the rectangles
including (0,1) and (1,0). Let us define it by the scaled comonotonic copula on the squares including (0,0) and
(1,1). Then this gives us:

CS (u1,u2) =


m
a min{u1,u2}CG

( a
m , a

m

)
, for (u1,u2) ∈ [

0, a
m

]2 ,

u1 +u2 −1+min{(1−u1), (1−u2)}
(
2− m

b + m
b CG

(
m−b

m , m−b
m

))
, for (u1,u2) ∈

[
m−b

m ,1
]2

,

CG ,L(u1,u2) else.
(A.1)

Then this is a subcopula.

Proof. We will give the proof for the D1 = D2 =
{

a+1
m , a+2

m , · · · , m−b−1
m

}
case. The D1,D2 ⊆

{
a+1
m , a+2

m , · · · , m−b−1
m

}
then follows from Proposition 4.20.

By construction CS is continuous on its domain. To prove this is a copula we need to prove (1), (2), (3) and
(4) of Definition 4.17 of which the first three are clearly satisfied.
So it is left to prove that ∀(u1,u2)T , (v1, v2)T , with u1 ≤ v1 and u2 ≤ v2. To do this we first define the quantity
M(u1,u2, v1, v2) in equation (A.2).

M(u1,u2, v1, v2) =C (v1, v2)+C (u1,u2)−C (u1, v2)−C (v1,u2) (A.2)

Any M can be seen as a function of a rectangle of which the corners should be in the domain of the subcopula
for which we have to show that M(u1,u2, v1, v2) ≥ 0. We show this in Figure A.1.

Figure A.1: Domain of subcopula
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(1,0)

(1,1)(0,1)
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C (u1, v2) C (v1, v2)

C (v1,u2)C (u1,u2)

Claim: For u1,u2, v1, v2 arbitrary in the domain of CS , such that u1 ≤ v1 and u2 ≤ v2, we can write
M(u1,u2, v1, v2) as follows:

M(u1,u2, v1, v2) =
k∑

i=1
M

(
ui

1,ui
2, v i

1, v i
2

)
, (A.3)
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where uk
1 ,uk

2 , vk
1 , vk

2 are such that uk
1 ≤ vk

1 and uk
2 ≤ vk

2∀k and (i), (ii), (iii), (iv), (v), (vi) or (vii) holds ∀k, where
(i)-(vii) are defined below:
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When (i) holds we have:

M(u1,u2, v1, v2) =CS (v1, v2)+CS (u1,u2)−CS (u1, v2)−CS (v1,u2)

=CG ,L(v1, v2)+CG ,L(u1,u2)−CG ,L(u1, v2)−CG ,L(v1,u2)

≥ 0,

since CG ,L is a subcopula.
When (ii) holds we find:

M(u1,u2, v1, v2) = m

a
CG

( a

m
,

a

m

)
(min{v1, v2}+min{u1,u2}−min{u1, v2}−min{v1,u2}) ≥ 0,

where the inequality follows by distinguishing the cases:

(a) u1, v1 ≤ u2, v2;

(b) u1, v1 ≥ u2, v2;

(c) u2 ≤ u1 ≤ v1 ≤ v2;

(d) u2 ≤ u1 ≤ v2 ≤ v1;

(e) u1 ≤ u2 ≤ v1 ≤ v2.

When (iii) holds we get:

M(u1,u2, v1, v2) =
(
2− m

b
+ m

b
C

(
m −b

m
,

m −b

m

))
(min{u1,u2}+min{v1, v2}−min{u1, v2}−min{v1,u2}) ≥ 0,

where, again, the inequality follows from the cases (a),· · · ,(e).
When (iv) holds (the (v) case is similar due to symmetry) we find:

M(u1,u2, v1, v2) =CG ,L(v1, v2)+CG ,L(u1,u2)−CG ,L(u1, v2)−CG ,L(v1,u2) ≥ 0,

Similarly when (vi) holds (the (vii) case is similar due to symmetry) we get:

M(u1,u2, v1, v2) =CG ,L(v1, v2)+CG ,L(u1,u2)−CG ,L(u1, v2)−CG ,L(v1,u2) ≥ 0,

Then M
(
ui

1,ui
2, v i

1, v i
2

) ≥ 0∀i , so M(u1,u2, v1, v2) = ∑k
i=1 M

(
ui

1,ui
2, v i

1, v i
2

) ≥ 0, which proves (4) of Defini-
tion 4.17. So all properties of a subcopula hold true, but we still need to prove the claim.

We can prove the claim for the most advanced case, namely the case that u1,u2 ∈ (0, a
m ) and v1, v2 ∈(

m−b
m ,1

)
. By Figure A.2 we show that we can write the rectangle corresponding to M as a sum of 9 other

rectangles.
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Figure A.2: Domain of subcopula
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For each of these rectangles (i),(ii)(iii),(iv) or (v) holds and so the claim follows for the most advanced case,
where we need k = 9 for the nine rectangles. Mathematically we have that:
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which is clearly of the same form as equation (A.3). The other cases are not considered in this proof, but
follow more easily with k < 9, so the claim is proven. Thus, Cs is a subcopula.



B
Extreme value theory results

In this part of the appendix we will present the tables from which we have obtained our major results on the
threshold selection choice and the estimation of the second order parameter.

B.1. Linear combinations of estimators

Tables B.1, B.2 and B.3 show the average mean squared errors of the final estimators. These estimates are the
average of 1000 estimates for samples from Burr, Pareto and Féchet distributions.

Table B.1: Average mean squared errors of the estimators.

This table shows the square root of the average mean squared error
p

AMSE for the four estimators and some
linear combinations for a sample size of 300.

Estimator 0.1 0.2 0.3 0.4 0.5 mean
Hill (H) 0.137 0.126 0.122 0.130 0.137 0.131
Moment (M) 0.112 0.134 0.141 0.145 0.147 0.136
Regression (R) 0.132 0.132 0.129 0.149 0.165 0.142
Adjusted Hill (A) 0.133 0.126 0.124 0.136 0.150 0.134
HM 0.119 0.119 0.119 0.129 0.139 0.125
HA 0.134 0.125 0.121 0.130 0.140 0.130
HR 0.132 0.125 0.120 0.132 0.142 0.131
MA 0.111 0.119 0.123 0.132 0.141 0.125
MR 0.112 0.123 0.126 0.140 0.149 0.131
AR 0.130 0.125 0.121 0.134 0.148 0.132
MRA 0.115 0.119 0.121 0.133 0.143 0.127
HRA 0.132 0.124 0.119 0.130 0.141 0.129
HMA 0.116 0.119 0.120 0.131 0.139 0.125
HMR 0.116 0.117 0.119 0.128 0.136 0.124
All 0.119 0.119 0.119 0.129 0.139 0.125
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Table B.2: Average mean squared errors of the estimators.

This table shows the square root of the average mean squared error
p

AMSE for the four estimators and some
linear combinations for a sample size of 1000.

Estimator 0.1 0.2 0.3 0.4 0.5 mean
Hill (H) 0.118 0.104 0.089 0.088 0.099 0.099
Moment (M) 0.086 0.097 0.102 0.102 0.106 0.099
Regression (R) 0.106 0.096 0.096 0.108 0.109 0.103
Adjusted Hill (A) 0.109 0.099 0.087 0.088 0.102 0.095
HM 0.095 0.090 0.083 0.088 0.097 0.091
HA 0.113 0.101 0.086 0.087 0.098 0.098
HR 0.111 0.097 0.088 0.092 0.099 0.098
MA 0.085 0.088 0.086 0.091 0.099 0.090
MR 0.084 0.087 0.089 0.097 0.102 0.092
AR 0.106 0.096 0.087 0.093 0.100 0.097
MRA 0.089 0.088 0.085 0.091 0.098 0.090
HRA 0.110 0.097 0.086 0.089 0.097 0.096
HMA 0.091 0.088 0.084 0.090 0.097 0.090
HMR 0.093 0.090 0.083 0.087 0.097 0.090
All 0.095 0.090 0.083 0.088 0.097 0.091

Table B.3: Average mean squared errors of the estimators.

This table shows the square root of the average mean squared error
p

AMSE for the four estimators and some
linear combinations for a sample size of 10000.

Estimator 0.1 0.2 0.3 0.4 0.5 mean
Hill (H) 0.088 0.067 0.058 0.054 0.052 0.065
Moment (M) 0.058 0.056 0.062 0.056 0.057 0.058
Regression (R) 0.075 0.059 0.050 0.054 0.057 0.060
Adjusted Hill (A) 0.077 0.061 0.053 0.053 0.053 0.060
HM 0.066 0.053 0.049 0.051 0.051 0.054
HA 0.082 0.063 0.055 0.053 0.051 0.062
HR 0.081 0.062 0.053 0.052 0.052 0.061
MA 0.057 0.049 0.051 0.051 0.052 0.052
MR 0.055 0.049 0.050 0.052 0.055 0.052
AR 0.076 0.059 0.050 0.052 0.052 0.058
MRA 0.060 0.050 0.048 0.051 0.052 0.052
HRA 0.079 0.061 0.052 0.052 0.051 0.060
HMA 0.063 0.052 0.049 0.051 0.052 0.054
HMR 0.064 0.052 0.050 0.051 0.050 0.054
All 0.066 0.053 0.049 0.051 0.051 0.054



C
VAR results

This section shows the remaining results of the vector autoregressive models, that were not presented in
Chapter 3.

Table C.1: Average tail index estimates of the final estimate on a time series of 600 data points.

This table shows the average of the final estimator taken over 500 tail index calculations. The calculations are
done on a AR(1) time series with φ=−0.9,−0.6, · · · ,0.9.

Tail index
φ 0.1 0.2 0.3 0.4 0.5
-0.9 0.136 0.178 0.191 0.265 0.229
-0.6 0.192 0.251 0.395 0.425 0.499
-0.3 0.210 0.263 0.426 0.511 0.568
0 0.223 0.269 0.412 0.527 0.610
0.3 0.217 0.258 0.397 0.517 0.537
0.6 0.163 0.196 0.311 0.459 0.501
0.9 0.094 0.146 0.172 0.276 0.309

Table C.2: Average tail index estimates of the final estimate on a time series of 2000 data points.

This table shows the average of the final estimator taken over 200 tail index calculations. The calculations are
done on a AR(1) time series with φ=−0.9,−0.6, · · · ,0.9.

Tail index
φ 0.1 0.2 0.3 0.4 0.5
-0.9 0.121 0.206 0.194 0.261 0.347
-0.6 0.158 0.282 0.329 0.407 0.471
-0.3 0.200 0.347 0.369 0.406 0.560
0 0.198 0.344 0.394 0.443 0.589
0.3 0.197 0.316 0.385 0.410 0.547
0.6 0.169 0.272 0.349 0.355 0.402
0.9 0.097 0.159 0.194 0.199 0.232
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Table C.3: Average tail index estimates of the final estimate on a time series of 20000 data points.

This table shows the average of the final estimator taken over 200 tail index calculations. The calculations are
done on a AR(1) time series with φ=−0.9,−0.6, · · · ,0.9.

Tail index
φ 0.1 0.2 0.3 0.4 0.5
-0.9 0.114 0.206 0.271 0.361 0.455
-0.6 0.161 0.257 0.315 0.409 0.520
-0.3 0.187 0.275 0.349 0.439 0.543
0 0.195 0.279 0.362 0.448 0.548
0.3 0.189 0.273 0.355 0.443 0.544
0.6 0.178 0.251 0.336 0.428 0.541
0.9 0.102 0.182 0.309 0.354 0.466

Table C.4: MSE of the final estimate on a time series of 600 data points.

This table shows the square root of the mean squared error (
p

MSE) for the final estimate on 500 AR(1) time
series with φ=−0.9,−0.6, · · · ,0.9.

Tail index
φ 0.1 0.2 0.3 0.4 0.5 average
-0.9 0.065 0.041 0.162 0.209 0.300 0.182
-0.6 0.110 0.072 0.135 0.107 0.088 0.105
-0.3 0.133 0.092 0.158 0.148 0.122 0.132
0 0.145 0.100 0.153 0.161 0.152 0.144
0.3 0.135 0.088 0.134 0.149 0.106 0.125
0.6 0.084 0.073 0.121 0.137 0.108 0.107
0.9 0.051 0.102 0.172 0.183 0.234 0.162

Table C.5: MSE of the final estimate on a time series of 2000 data points.

This table shows the square root of the mean squared error (
p

MSE) for the final estimate on 200 AR(1) time
series with φ=−0.9,−0.6, · · · ,0.9.

Tail index
φ 0.1 0.2 0.3 0.4 0.5 average
-0.9 0.043 0.043 0.148 0.179 0.203 0.141
-0.6 0.072 0.095 0.075 0.075 0.080 0.080
-0.3 0.111 0.154 0.096 0.070 0.089 0.108
0 0.111 0.154 0.112 0.082 0.116 0.117
0.3 0.108 0.125 0.107 0.070 0.077 0.099
0.6 0.083 0.088 0.095 0.094 0.139 0.101
0.9 0.045 0.071 0.149 0.227 0.308 0.187
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Table C.6: MSE of the final estimate on a time series of 20000 data points.

This table shows the square root of the mean squared error (
p

MSE) for the final estimate on 200 AR(1) time
series with φ=−0.9,−0.6, · · · ,0.9.

Tail index
φ 0.1 0.2 0.3 0.4 0.5 average
-0.9 0.025 0.026 0.048 0.068 0.098 0.060
-0.6 0.066 0.062 0.031 0.031 0.047 0.049
-0.3 0.091 0.078 0.056 0.048 0.056 0.068
0 0.098 0.082 0.069 0.055 0.061 0.075
0.3 0.093 0.077 0.061 0.051 0.061 0.070
0.6 0.082 0.055 0.050 0.048 0.076 0.064
0.9 0.030 0.041 0.047 0.084 0.097 0.065





D
Copulas and tail dependence results

In this section we present some results of Chapter 4 that are not presented in the chapter. First we show the
tables that summarize the results for the estimation of the coefficients of tail dependence in section D.1. In
section D.2 we will give the results for the copula estimation.

D.1. Coefficients of tail dependence

In this section we give the results of the estimations of the coefficients of tail dependence on samples drawn
from a Clayton and a Gumbel copula per tail dependence coefficient. For sample sizes of 300 the results are
given in Tables D.1 and D.2. For sample sizes of 1000 the results are given in Tables D.3 and D.4. Lastly, for
sample sizes of 10000 the results are given in Tables D.5 and D.6.

Table D.1: Regression results for coefficient of tail dependence estimation of Clayton copula.

This table shows the means and the mean squared errors (MSE) for the WLS and OLS regression of the two
tail dependence estimators. This is based on 200 simulations of 300 pairs of random variables drawn from a
Clayton copula with tail dependence coefficient λ= 0.1,0.2, · · · ,0.9.

Estimator Regression type λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂(1) WLS
mean 0.188 0.249 0.328 0.397 0.479 0.570 0.677 0.783 0.893p

MSE 0.106 0.083 0.068 0.069 0.071 0.067 0.056 0.044 0.023

λ̂(1) OLS
mean 0.177 0.246 0.316 0.395 0.477 0.577 0.676 0.784 0.886p

MSE 0.100 0.086 0.073 0.081 0.082 0.066 0.059 0.042 0.029

λ̂(2) WLS
mean 0.204 0.263 0.339 0.407 0.488 0.579 0.686 0.792 0.901p

MSE 0.119 0.091 0.072 0.069 0.070 0.065 0.056 0.044 0.025

λ̂(2) OLS
mean 0.187 0.254 0.322 0.400 0.482 0.581 0.681 0.789 0.890p

MSE 0.107 0.090 0.074 0.080 0.081 0.065 0.058 0.041 0.028
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Table D.2: Regression results for coefficient of tail dependence estimation of Gumbel copula.

This table shows the means and the mean squared errors (MSE) for the WLS and OLS regression of the two
tail dependence estimators. This is based on 200 simulations of 300 pairs of random variables drawn from a
Gumbel copula with tail dependence coefficient λ= 0.1,0.2, · · · ,0.9.

Estimator Regression type λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂(1) WLS
mean 0.097 0.195 0.289 0.392 0.483 0.592 0.690 0.785 0.892p

MSE 0.057 0.064 0.065 0.059 0.063 0.053 0.045 0.042 0.022

λ̂(1) OLS
mean 0.101 0.191 0.285 0.386 0.477 0.587 0.689 0.783 0.888p

MSE 0.064 0.078 0.078 0.074 0.076 0.062 0.054 0.043 0.026

λ̂(2) WLS
mean 0.118 0.211 0.301 0.400 0.489 0.597 0.693 0.787 0.894p

MSE 0.057 0.063 0.063 0.058 0.062 0.054 0.047 0.045 0.024

λ̂(2) OLS
mean 0.113 0.200 0.292 0.391 0.480 0.590 0.691 0.784 0.889p

MSE 0.064 0.076 0.076 0.073 0.075 0.062 0.054 0.043 0.027

Table D.3: Regression results for coefficient of tail dependence estimation of Clayton copula.

This table shows the means and the mean squared errors (MSE) for the WLS and OLS regression of the two
tail dependence estimators. This is based on 100 simulations of 1000 pairs of random variables drawn from a
Clayton copula with tail dependence coefficient λ= 0.1,0.2, · · · ,0.9.

Estimator Regression type λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂(1) WLS
mean 0.182 0.251 0.332 0.411 0.493 0.594 0.692 0.794 0.895p

MSE 0.093 0.067 0.062 0.048 0.048 0.045 0.041 0.032 0.018

λ̂(1) OLS
mean 0.166 0.234 0.321 0.404 0.494 0.588 0.691 0.787 0.892p

MSE 0.085 0.067 0.064 0.049 0.056 0.047 0.040 0.033 0.018

λ̂(2) WLS
mean 0.188 0.255 0.336 0.414 0.496 0.596 0.695 0.797 0.896p

MSE 0.098 0.071 0.063 0.048 0.048 0.045 0.041 0.033 0.019

λ̂(2) OLS
mean 0.170 0.237 0.323 0.406 0.495 0.590 0.692 0.788 0.893p

MSE 0.087 0.068 0.065 0.049 0.056 0.047 0.040 0.033 0.018

Table D.4: Regression results for coeffient of tail dependence estimation of Gumbel copula.

This table shows the means and the mean squared errors (MSE) for the WLS and OLS regression of the two
tail dependence estimators. This is based on 100 simulations of 1000 pairs of random variables drawn from a
Gumbel copula with tail dependence coefficient λ= 0.1,0.2, · · · ,0.9.

Estimator Regression type λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂(1) WLS
mean 0.102 0.191 0.303 0.395 0.499 0.593 0.695 0.797 0.898p

MSE 0.038 0.054 0.053 0.052 0.044 0.046 0.038 0.022 0.016

λ̂(1) OLS
mean 0.101 0.192 0.302 0.389 0.498 0.589 0.692 0.792 0.896p

MSE 0.043 0.057 0.060 0.058 0.050 0.049 0.039 0.025 0.016

λ̂(2) WLS
mean 0.110 0.197 0.307 0.398 0.501 0.594 0.695 0.797 0.899p

MSE 0.038 0.052 0.052 0.052 0.044 0.046 0.039 0.023 0.017

λ̂(2) OLS
mean 0.106 0.196 0.305 0.390 0.499 0.590 0.692 0.793 0.896p

MSE 0.043 0.056 0.059 0.058 0.050 0.049 0.040 0.025 0.016
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Table D.5: Regression results for coeffient of tail dependence estimation of Clayton copula.

This table shows the means and the mean squared errors (MSE) for the WLS and OLS regression of the two
tail dependence estimators. This is based on 100 simulations of 10000 pairs of random variables drawn from
a Clayton copula with tail dependence coefficient λ= 0.1,0.2, · · · ,0.9.

Estimator Regression type λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂(1) WLS
mean 0.097 0.200 0.291 0.401 0.496 0.595 0.702 0.799 0.899p

MSE 0.019 0.025 0.030 0.027 0.033 0.025 0.018 0.016 0.008

λ̂(1) OLS
mean 0.094 0.201 0.292 0.401 0.497 0.591 0.699 0.797 0.898p

MSE 0.022 0.030 0.039 0.033 0.042 0.030 0.022 0.016 0.008

λ̂(2) WLS
mean 0.098 0.201 0.291 0.401 0.496 0.595 0.702 0.799 0.900p

MSE 0.019 0.025 0.030 0.027 0.033 0.025 0.018 0.016 0.008

λ̂(2) OLS
mean 0.095 0.202 0.293 0.401 0.497 0.591 0.699 0.797 0.898p

MSE 0.022 0.030 0.039 0.033 0.042 0.030 0.022 0.016 0.008

Table D.6: Regression results for coeffient of tail dependence estimation of Gumbel copula.

This table shows the means and the mean squared errors (MSE) for the WLS and OLS regression of the two
tail dependence estimators. This is based on 100 simulations of 10000 pairs of random variables drawn from
a Gumbel copula with tail dependence coefficient λ= 0.1,0.2, · · · ,0.9.

Estimator Regression type λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂(1) WLS
mean 0.158 0.230 0.317 0.406 0.496 0.599 0.705 0.798 0.903p

MSE 0.065 0.039 0.033 0.033 0.027 0.028 0.022 0.014 0.010

λ̂(1) OLS
mean 0.150 0.224 0.316 0.404 0.496 0.597 0.701 0.798 0.900p

MSE 0.060 0.038 0.035 0.035 0.030 0.027 0.022 0.013 0.008

λ̂(2) WLS
mean 0.159 0.231 0.318 0.407 0.497 0.599 0.705 0.798 0.903p

MSE 0.066 0.040 0.033 0.033 0.027 0.028 0.022 0.014 0.010

λ̂(2) OLS
mean 0.151 0.224 0.316 0.405 0.496 0.597 0.701 0.798 0.901p

MSE 0.060 0.038 0.035 0.035 0.030 0.027 0.022 0.013 0.008

For both estimators we see that both regressions works better for large tail indices. This effect is stronger
for a sample from a Clayton copula.

D.2. Copula estimation
In section 4.11.4 we showed the performance of the copula estimation introduced in section 4.9.3 on samples
from a Gumbel copula. Here, we do the same for a Clayton copula. In Table D.7 we compare the dependence
measures of the sample from the Clayton copula and the sample from our copula estimation procedure,
based on 50 samples for each TDC.
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Table D.7: Comparison dependence measures of scenarios and historical data.

This table shows important dependence measures of our 100 generated scenarios of 1000 observations and
compares those to the dependence measures of the underlying sample, which are four samples of 1000 ob-
servations generated from a Clayton copula for λ= 0.2,0.4,0.6,0.8.

TDC

Theoretical 0.2 0.4 0.6 0.8
Sample 0.250 0.395 0.509 0.770
Scenarios 0.233 0.382 0.501 0.731
Rejection percentage of scenario 14% 32% 38% 30%

Tau

Theoretical 0.177 0.274 0.404 0.608
Sample 0.161 0.258 0.395 0.617
Scenarios 0.162 0.258 0.395 0.616
MSE 0.021 0.021 0.019 0.014

The differences in the dependence measures in Table D.1 are small, but we underestimate the TDC slightly.
This underestimation depends on the grid size and we therefore compute the MSEs in the Kendall’s tau and
TDC for different grid sizes and show these in Table D.8.

Table D.8: Comparison MSEs of scenarios for different grid sizes.

This table shows the average MSE of the scenarios τ̂ and λU for a Clayton copula as a function of the grid size.
The size of the historical and scenario data is 1000 and the grid sizes are 10, 20 and 40.

Amount of grid points 10 20 40
TDC 0.156 0.039 0.019
tau 0.026 0.018 0.018

Table D.8 shows that the MSEs of the dependence measures are smaller for finer grids. An example of
a scenario generated from the copula is given in Figure D.1 and compared to the original sample generated
from the Clayton copula. We have a grid of 40 equally spaced points.

Figure D.1: Generated historical sample and scenario sample.

This figure gives the historical sample on which we base our copula on the left and a scenario generated from
this historical sample on the right. The historical sample is generated from a Clayton copula with λL = 0.8

(a) Sample from Clayton copula (b) Sample from copula estimated on left sample

In Figure fi:copula historical and scenario clayton the estimated Kendall’s taus are simular: τ = 0.613 vs
τ= 0.611. The TDC estimates are given by λL = 0.802 and λL = 0.784.
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Methods

E.1. Ranking method
In section 4.3.2 we introduce the Kendall’s tau and Spearman’s rho, that both depend on the ranking of the
data. Due to truncation in the data we can have degenerate pairs and we need to find a method to rank these.
Ordinal and average ranking seem to be accurate options to deal with degeneracy and are explained below.
We come up with a third way of ranking, namely reverse ordinal ranking, which might be counter-intuitive
but may be useful in some cases. This method ranks completely opposite to the ordinal ranking method and
is also explained below.
(1) Ordinal ranking: Give the smallest rank to the first element, the second smallest rank to the second ele-
ment and so forth.
(2) Average ranking: Give all these observations the average rank of the above method.
(3) Reverse ordinal ranking: Give the largest rank to the first element, the largest but one rank to the second
element and so forth.

When ranking 2-dimensional data we can use combinations of these methods on the two dimensions. We
illustrate three possible ranking methods in Example E.1.

Example E.1. Suppose we have the following observations: (10,8), (2,4), (2,4), and (1,1). Then we obtain the
ranks in Table E.1 by using the ordinal, average and reverse ordinal ranking methods.

Table E.1: Different ranking methods.

This figure shows the results of three ranking methods applied to the observations in Example E.1. The three
methods are: ordinal ranking on both dimensions (1), average ranking on both dimensions (2), and ordinal
ranking on the first dimension and reverse ordinal ranking on the second dimension (3).

Observations R(1) R(2) R(3)

(10,8) (4,4) (4,4) (4,4)
(2,4) (2,2) (2.5,2.5) (2,3)
(2,4) (3,3) (2.5,2.5) (3,2)
(1,1) (1,1) (1,1) (1,1)

Suppose we have fully correlated variables, with one equal observation X i = X j . Then average ranking

gives us that R i
1 = R j

1 = R i
2 = R j

2 , such that ρS still gives 1. The pair is however neither concordant nor dis-
cordant, so we will have τ < 1. Using ordinal ranking, we find concordance for these pairs and thus τ = 1,
also ρS = 1 still holds. The reverse ordinal ranking gives an even smaller τ than the average ranking and also
gives ρS < 1 and should therefore not be used for fully correlated variables. Hence, ordinal ranking is the best
for the fully correlated case. Using other ranking methods namely underestimates the dependence when we
have degeneracy. In case of anticorrelation it is the other way around and in this case we should use reverse
ordinal ranking. The best estimator, thus, depends on the data.

To decide which ranking method to use, we can simply make an initial guess of the dependence using
the average ranking and then use the right ranking method. When the initial guess gives ρS > 0 we will use
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ordinal ranking and when ρS < 0 we will use reverse ordinal ranking (in case of ρS = 0 we will stay with the
initial guess).

A similar problem with ranking arises when from a pair of observations one of the two vector elements
is equal and the other elements differ (e.g. Example E.1 with (2,4) and (2,4.1) instead of (2,4) and (2,4)). In
this case we propose a similar ranking method as the one before. We would first rank using average ranking,
which would give (2.5,2.5) for both of these observations. When this ranking gives ρS > 0, which is the case
here, we will give the one with the larger rank for the second element the larger rank for the first element. The
ranks for (2.4) and (2,4.1) will then become (2,2) and (3,3) respectively. When ρS < 0 we would rank the other
way around and obtain ranks (3,2) and (2,3).

We illustrate the method in the following example for further clarification.

Example E.2. Suppose we have the following observations: (10,8), (2,4.1), (2,4), (2,4), and (1,1). Then we
would get initial guess R(0) using the average ranking. Next, based on the ρS calculation, we will choose the
final ranking method and get R(1).

Table E.2: Ranks of our observations.

This figure show the initial ranks using the average ranking method and the final ranks using the ordinal
ranking method, which is used since the initial ranking gives ρS > 0.

Observations R(0) R(1)

(10,8) (5,5) (5,5)
(2,4.1) (3,4) (4,4)
(2,4) (3,2.5) (2,2)
(2,4) (3,2.5) (3,3)
(1,1) (1,1) (1,1)

We can immediately see from the ranks that we obtain τ = ρS = 1 by using R(1) in this example, which is
what we want, since we do not want to exclude full dependence.

E.2. Estimation of parameters for parametric copulas
Suppose we have chosen a parametric model for the copula, which describes the multivariate behaviour of X
and Y . Before we can proceed with the maximum likelihood estimation (MLE) for the model parameter θ, we
need the expression for the multivariate density function of X and Y . The likelihood for a single observation
when the samples are independent is given in equation E.1, see Jaworski et al. (2010).

L(x1, · · · , xn) = f (x1, · · · , xn) = ∂n

∂x1 · · ·∂xn
C (F1(x1), · · · ,Fn(xn);θ) = c(F1(x1), · · · ,Fn(xn);θ)

n∏
i=1

fi (xi ), (E.1)

where c is the copula density, recall equation (4.2). The corresponding log-likelihood is then given by:

l (x1, · · · , xn) = logc(F1(x1), · · · ,Fn(xn);θ)+
n∑

i=1
log fi (xi ),

where c is the copula density given by equation (4.2). For independent observations {X 1, · · · , X m} ∈Rn we get
the following likelihood:

l (X 1, · · · , X m) =
m∑

j=1

{
logc

(
F1

(
X j

1

)
, · · · ,Fn

(
X j

n

)
;θ

)
+

n∑
i=1

log fi

(
X j

i

)}
. (E.2)

Minimizing this log-likelihood gives us the parameters of the model. We can therefore obtain the MLE esti-
mate by solving equation (E.3), see Jaworski et al. (2010).

∂

∂θ
l (X 1, · · · , X m) = ∂

∂θ

m∑
j=1

{
logc

(
F1

(
X j

1

)
, · · · ,Fn

(
X j

n

)
;θ

)
+

n∑
i=1

log fi

(
X j

i

)}
= 0. (E.3)
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