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Abstract

Crafting and refining high-dose-rate brachytherapy treatment plans for cervical cancer is a
time-consuming process. In recent years, BRIGHT was developed, an Al-based automated
treatment planning method that provides not just one, but a set of optimized, patient-specific
treatment plans, each with a different trade-off between objectives of interest. BRIGHT’s
plans are optimized using protocols that define guidelines on the delivered doses. In this the-
sis, we explore an alternative approach using dose-response models. These models provide
insights into the estimated outcomes and risks of a treatment plan. Additionally, they offer
great adaptability by including external patient characteristics. Currently, the use of these
models remains limited to a feedback role. However, we instead include these models in
BRIGHT to optimize them directly. Using one Tumor Control Probability (TCP) model and
five Normal-Tissue Complication Probability (NTCP) models, we designed and tested sev-
eral dose-response objective formulations and optimization techniques. We found that with
the current models, these new objectives are insufficient as a replacement for BRIGHT s
protocol-based coverage and sparing objectives. The produced plans have greatly improved
dose-response outcomes but fall short in protocol compliance. Extending the existing ob-
jectives rather than replacing them proved more favorable. Average model improvements
around 0.004 for NTCP are observed among the best coverage-sparing plans satisfying the
protocol. Additionally, by sacrificing some sparing in the protocol-satisfaction range, im-
provements around 0.005 are possible for TCP and NTCP. Moreover, these dose-response-
focused plans show distinct differences in their dose distribution favoring the dose-response
targets compared to regular BRIGHT. Ultimately, the improvements we obtained are only
marginal, and the clinical implications of this are unclear. The covariates of the models used
in this thesis mostly overlapped with BRIGHT’s objectives and did not fully extract their
potential. Nevertheless, this thesis proves that the concept is viable and builds a foundation
for this technique for when more and better dose-response models become available.
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Chapter 1

Introduction

Cancer is a disease affecting millions each year worldwide. In this thesis, we specifically
focus on cervical cancer, a type that affects many women. A very common and effective
treatment for this type of cancer is brachytherapy in combination with External Beam Ra-
diation Therapy (EBRT) [24]]. In recent years, an automated treatment planning tool called
BRIGHT has been developed that helps create and optimize these brachytherapy treatment
plans [17, [33]. Our work focuses on extending this tool to include dose-response models
in this plan-optimization process to improve tumor control and normal-tissue complications
outcomes.

1.1 Problem Statement

Many factors, from one’s lifestyle to their genetics, influence the risk of developing cancer.
It is a diverse and widespread disease that is hard to prevent and difficult to cure. In 2022
alone, there were almost 20 million new cases and 9.7 million deaths spread over 36 types
of cancer in 185 countries. Cervical cancer ranks amongst the top five cancers affecting
women here, counting around 661 thousand cases and 348 thousand deaths [11]].

Several of these cancer types, including cervical cancer, are commonly treated with
EBRT and brachytherapy [23) 24]. First, the EBRT uses high-energy beams to irradiate
the cancer from outside the body. Next, the brachytherapy applies an additional dose of
radiation from inside the body directly to the tumor with reduced spread to the surrounding
organs. Brachytherapy has a number of variants; this thesis focuses on treatment planning
for the High-Dose-Rate (HDR) variant.

In HDR brachytherapy, a radioactive source is temporarily inserted using an applicator
with several tubes to irradiate the tumor close by from all directions. By controlling how
long the source is halted at various locations, the distributed dose can be controlled. A
treatment plan then defines all these halting times. In practice, these plans are often hand-
crafted and refined until an acceptable distribution is found. This refinement process and
the acceptability of a plan are based on protocols and dose-response relationships extracted
from studies on past cases [[18, 44] and on dose distributions.

Manually creating these treatment plans is an iterative and time-consuming process.

1



1. INTRODUCTION

This limits the options that can be explored, making it harder to fine-tune the patient’s
needs. To speed this up and explore more alternatives, Artificial Intelligence (AI) can be
used. Brachytherapy treatment planning can be defined as a multi-objective problem trying
to optimize multiple doses delivered to the tumor and the Organs at Risk (OARs). Such
problems can efficiently be solved using Evolutionary Algorithms (EAs), which the tool
BRIGHT leverages to tackle this problem [17) 33]. Given a protocol of planning aims
for the dosages, BRIGHT produces a set of plans considering various tumor coverage and
OAR-sparing trade-offs. It can produce more plans faster and often with better coverage
and sparing as well. In clinical use, these plans initially still required some fine-tuning by
the physicians [4]]. However, further developments of BRIGHT have since addressed these
problems and reduced the amount of fine-tuning needed. Moreover, as an assisting tool, it
still helped speed up the planning process and provided useful alternative trade-offs [4].

BRIGHT optimizes plans based on a protocol consisting of dosage planning aims. This
approach matches part of the clinical procedure and fits plans to general guidelines. Another
possible plan-evaluation method is to use dose-response models. Using patient- and plan-
variables, these models provide feedback on plans through predictions of their expected
outcomes, such as tumor control and normal-tissue complications. They offer a direct rela-
tion between a plan and its post-treatment effects, and their flexibility allows them to better
adapt to specific patient characteristics.

Currently, the use of these dose-response models remains limited to a feedback role such
as in [19]]. However, given that this feedback can be used when determining the clinical
acceptability of plans, these models might be worth optimizing. This thesis researches the
validity of this. Integrating these models into BRIGHT’s optimization process to produce
plans with an increased focus on the dose-response outcomes.

1.2 Research Questions

The goal of this research is to integrate dose-response models that predict cervical cancer
HDR brachytherapy treatment outcomes into the planning optimization of BRIGHT. At its
core, this thesis aims to answer the following main research question:

MRQ: How can dose-response models be integrated into BRIGHT to optimize high-dose-
rate brachytherapy treatment plans for cervical cancer that balance tumor control
and normal-tissue complications?

The first stage of this research focuses on how the dose-response models can be in-
tegrated into BRIGHT and the results this brings. On their own, a dose-response model
provides useful insights about a specific post-treatment effect. To optimize a set of these
models, they need to be carefully combined into objectives that preserve their essence while
striking a good optimization balance. Next, optimizing these dose-response objectives in
place of BRIGHT’s current target-coverage- and OAR-sparing-focused objectives should
provide similar quality plans based on the clinical protocols. We address these challenges
through the following two research questions:

2



1.3. Thesis Outline

RQ1: How can dose-response models be represented as objectives suitable for optimiza-
tion?

RQ2: How do dose-response objectives perform when replacing BRIGHT’s coverage and
sparing objectives in optimization?

Based on results from the first stage, the second stage of this research focuses on ex-
tending BRIGHT with the dose-response objectives rather than substituting its existing ob-
jectives. This transforms the optimization problem from multi-objective to many-objective.
Given the increased complexity of the many-objective space, a specialized extension us-
ing Tchebycheff scalarizations is also explored. Additionally, the area of interest relatively
shrinks with this increased search space. Further efforts are made to direct the optimization
towards the area of interest. To achieve all of this, we defined three more research questions:

RQ3: Can extending BRIGHT to many-objective optimization with dose-response objec-
tives improve Tumor Control Probability (TCP) and Normal Tissue Complication
Probability (NTCP) outcomes of the generated plans?

RQ4: How can the use of Tchebycheff scalarizations in the optimization algorithm improve
outcomes in the extended many-objective space?

RQS5: What methods can be employed to steer optimization outcomes in the many-objective
space toward clinically desirable regions?

1.3 Thesis Outline

This thesis is structured as follows. Chapter [2]explains the relevant background information
and techniques. Next, the methodology and experiments about the formulation and perfor-
mance of dose-response optimization in BRIGHT are described in Chapter [3| and Chapter
M} respectively. Continuing, Chapter [5] details the techniques used to solve our problem in
the complex many-objective space. Furthermore, the experiments and results for the vari-
ous many-objective solutions are shown in Chapter 6] Then, in Chapter[7, we analyze our
findings and discuss potential directions for future research. Finally, Chapter [8| concludes
this work.



Chapter 2

Background

This chapter explains the relevant background and gives an overview of the related work
that is key to this thesis. To start, we describe the clinical practices within cervical HDR
brachytherapy and outline the aspects targeted to optimize treatment plans. Next, we will
delve into the available options and the specific variant of dose-response models used, as this
is the main focus of this work. Then, we introduce several EA techniques used by BRIGHT
and the contributions introduced in this thesis. To conclude, the specifics of BRIGHT are
explained in detail.

2.1 High-Dose-Rate Brachytherapy

Brachytherapy is a form of internal radiation treatment used to treat cancer patients. Specif-
ically, high-dose-rate brachytherapy is a variant of this treatment with a short operating
time. Brachytherapy and its HDR variant are used to treat various types of cancer including
prostate [[16} [38]], head-and-neck [39], eye [36} 40], breast [1} 3], and cervical [31} 42} 59],
with this work focusing on the latter. For cervical cancer treatments, an applicator consist-
ing of thin, flexible tubes is inserted in the region of the tumor; additional hollow needles
can be inserted if necessary. A miniaturized radioactive source, commonly Iridium-192 or
Cobalt-60 [53}54], is passed through the applicator and the needles for several minutes to
irradiate the tumor. A treatment plan defines how to move the source to maximize tumor
coverage while minimizing exposure to the surrounding organs. The radioactive source
does not move in a continuous motion. Rather, it moves from one stopping point to the
next. At these stopping points, called dwell positions, it is held for a corresponding dwell
time defined by the treatment plan before moving on.

2.1.1 Treatment Plan Quality

To evaluate a treatment plan and gain insights into the dose received by each organ, the
Dose-Volume Indices (DVIs) are used. In practice, the quality of a plan is often assessed
based on a protocol and the dose distribution. These protocols consist of several dose and
volume indices for the various tumor targets and surrounding organs. These indices are
defined as the following:



2.1. High-Dose-Rate Brachytherapy

* DY is a dose index reporting the dose received by the most irradiated volume v of
organ o.

* V7 is a volume index reporting the volume of organ o that received at least a dose d.

The dose and volume values used by these indices can be represented in multiple for-
mats. Volumes are a percentage % of the organ’s volume or a specific value, commonly
reported in cubic centimeters cm® or cc. Doses also have a relative representation as a per-
centage of the planned radiation dose (commonly 7 Gy for 4 fractions [28| 141} 143]) and a
direct option reported in Gy. This dose representation in Gy is also used in two ways, ei-
ther with the reported dose value or as an Equivalent Dose in 2 Gy Fractions (EQD2). The
formula to calculate the EQD?2 given a reported dose value is provided in Equation|2.1

d+o/B

EQDZ:D-z_Hx/B

2.1

Here D is the total dose over all the fractions, d is the dose per fraction, and o/} represents
the intrinsic radiosensitivity of the target tissue. Note that if the patient underwent external
beam radiation therapy first, then that delivered dose is added to the EQD?2.

In a protocol, these DVIs are formulated as planning aims with a target dose or volume
to reach. For instance, an organ or target O might have the following DVIs, D900 > 90 Gy
and D)) < 95 Gy. These DVIs indicate that the 90% of the volume of O should receive
more than 90 Gy and less than 95 Gy (both in EQD2). Similarly, VI%O > 80% indicates that
80% of the volume of O should receive at least 100% of the planning radiation dose.

The exact DVI values cannot be calculated as that would require infinite precision. In-
stead, they are approximated using so-called Dose-Calculation Points (DCPs) [46]. Thou-
sands of these points are sampled uniformly for each target volume and OAR to model the
volumes. Then, for each point, the received dose is calculated as the sum of all received
doses from each dwell position for the corresponding dwell times. Given the dose received
in each DCP, the dose and volume indices can be calculated as shown in Equation [2.2] and
Equation respectively. Let P? denote the vector of all DCP doses p in organ o, with
P°* the descending dose-sorted version of P°. Furthermore, v°, is the volume represented

P
by each DCP in organ o.
D° = P’fﬁ | (2.2)
]
EP°Ap>d
yo — H{plp €PN p>dj (2.3)
P

2.1.2 The EMBRACE II study

EMBRACE 1I [44] is an observational multi-center study about the effects of EBRT and
Magnetic Resonance Imaging (MRI) guided brachytherapy treatments of cervical cancer.
Throughout several checkups up to five years post-treatment, they gather insightful data
about outcomes, such as tumor control, survival rates, side effects, and quality of life. This
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2. BACKGROUND

data is useful to build predictive models that can estimate treatment outcomes before de-
livery. We will delve deeper into the concept of these dose-response models and the ones
applied in this work in Section [2.2|and Section|3.1] respectively.

As with any research observing outcome trends, all treatments included in the study ad-
hered to a standardized setup. This setup prescribed 4 x 7Gy fractions of HDR brachyther-
apy, using EQD2 values with o/ = 10 for targets and o/} = 3 for OARs, and the EQD2
EBRT inclusion as 45 Gy/25 fractions [44]]. Using Equation [2.1] the EQD2 EBRT addition
equates to 45 - 1;1%0 = 44.25Gy ~ 44.3GYy for targets and 45 - % = 43.2Gy for OARs.
Given this, we can refine our EQD2 equations to Equation [2.4] and Equation [2.5] with d as
the dose per fraction.

The EMBRACE II setup also provides a protocol of planning aims and constraints for
the DVIs. These are expressed in EQD2 doses and percentage volumes for the targets and
cubic centimeters volumes for the OARs, consistent with the other setup parameters. It
covers various targets, including the High-Risk (CTVggr) and Intermediate-Risk (CTVr)
Clinical Target Volumes, the Residual Gross Tumor Volume (GTV,), and point A where
the uterine artery and ureter cross. The surrounding organs, such as the bladder, rectum, sig-
moid, and bowel. And an International Commission on Radiation Units and Measurements
(ICRU) point, the ICRU Recto-vaginal. The protocol is summarized in Table

d+10
EQDZTal‘gCt — EQDZI() — (4 N d) . m +443 (24)
d+3
EQD2oag = EQD2; = (4-d) - % +43.2 (2.5)

Table 2.1: The planning aims and constraints of the EMBRACE II protocol. Table adapted
from [44].

Target D90 CTVgr D98 CTVhr D98 GTV,s D98 CTVir Point A
EQD2 EQD2 EQD2 EQD2 EQD2
Planning Aims > 90 Gy > 75 Gy > 95 Gy > 60 Gy > 65 Gy
< 95 Gy
Constraints > 85 Gy - > 90 Gy - -
OAR Bladder D, Bowel Dy,  Rectum Dy, Sigmoid Dy, ICRU
Recto-vaginal
EQD23 EQD23 EQD23 EQD23 EQD23
Planning Aims < 80 Gy <70 Gy < 65 Gy <70 Gy < 65 Gy
Constraints <90 Gy <75 Gy <75 Gy <175 Gy <75 Gy

2.2 Dose-Response Models

Dose-response models describe the relationship between the quantity of dose applied and
the effect it causes. This can be applied to various instances, from predicting the impact
of pollutants on ecosystems [45]] to estimating infection risk from pathogen exposure [55]].
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2.3. Evolutionary Algorithms

In this work, we focus on its use with radiation doses and other relevant patient-health
factors to predict tumor control and OAR toxicity. Estimates for these post-treatment effects
provide valuable insights when assessing plans. Furthermore, the inclusion of additional
health factors helps clarify patient-specific needs.

In our radiotherapy use case, the dose-response models are split into two categories.
These categories are tumor control probabilities, which predict the chance of killing the
tumor, and normal-tissue complication probabilities, which predict the chance of specific
health complications [3]]. Together, these categories balance a treatment plan. Increasing
the dose will improve the TCP values but decrease the NTCP values and vice versa when
decreasing the dose.

2.2.1 Cox Proportional Hazards Models

The Cox proportional hazards model, also known as a Cox regression model, is a dose-
response model for time-to-event data [[13]]. Given a dose and possibly other covariates, it
models the risk of an event over time. A key assumption of this model is that the hazard
ratios between individuals are proportional over time. The formula to calculate this risk or
hazard given a time is formulated in Equation 2.6

h(t]X) = ho(t) - P X1 HBaXo+. 4B, X, (2.6)

In the equation above, A(¢|X) is the hazard at time ¢ given covariates X = (X1,X,...,X,),
ho(t) is the baseline hazard at time 7, where all covariates are zero, and By, B2, ..., 3, are the
covariate coefficients. This setup makes Cox regression both flexible in its handling of time
and interpretable in how the covariates increase the hazard given their coefficients.

With their flexible and interpretable setup, Cox regression has been used to model the
influence and risk of various factors regarding radiotherapy and cervical cancer treatment.
These uses range from survival analysis [[12]] to investigating external factors such as some-
one’s age or their age of marriage [26]] and research into recurrence and its effects [30].
Furthermore, using multiple models, they can also provide more general feedback on treat-
ment plans before applying them as EviGUIDE does [19]].

2.3 Evolutionary Algorithms

Evolutionary algorithms are metaheuristics algorithms within the class of evolutionary com-
putation that employ biologically-inspired techniques to solve difficult problems. The op-
timization procedure of an EA is inspired by Darwinian evolution to converge towards the
best solutions [21]. Based on their biological counterparts, these solutions, also called indi-
viduals, have a genotype, which is defined as a string of variables or genes. In the algorithm,
a group of these individuals, referred to as a population, is optimized simultaneously. In this
population, traits or genes are refined through variation of the better-performing solutions
as evaluated by their fitness, similar to how this would occur in nature.

A typical EA is initialized with a random population, and through selection, crossover,
and mutation, its solutions should gradually improve over many generations [2} [25]]. Each
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generation starts with a population of individuals, which, based on their fitness and ran-
dom chance, are used to pass on their genes to the next generation of the population. The
selection, crossover, and mutation operations guide the process of variation to, over many
generations, explore the search space and converge toward high-quality solutions. These
operations are explained further in Section|2.3.1

Optimization algorithms can be categorized into three types depending on their abil-
ity to exploit domain knowledge. On one extreme, there is white-box optimization, where
everything about a problem is well understood and can be exploited to solve it more effi-
ciently. On the other extreme, there is black-box optimization, where no information about
the problem is available except an evaluation function. In between exists Gray-Box Opti-
mization (GBO), where limited information about the problem structure is present. This
information could unlock partial evaluations. For partial evaluations, only the part of the
evaluation that changed is recalculated rather than the whole thing, which can result in sub-
stantial speedups. Fortunately, our treatment planning is such a problem allowing for more
efficient evaluations. How these partial evaluations are possible for our problem is briefly
explained in Section [2.4]

2.3.1 Selection, Crossover, and Mutation

Following the Darwinistic ”Survival of the fittest” principle, the selection operation filters
out weaker solutions based on a fitness function. Fitness is a problem-specific attribute
defining what constitutes a better or fitter individual. For instance, in the well-known One-
Max problem, a binary string is optimized to include the maximum number of ones. The
fitness for a six-variable solution "001100” would be only 2, while ”110010” would get 3
for its number of ones. In the selection procedure, these higher-fitness individuals are more
likely to get selected and pass their genes on to the next generation. In our OneMax ex-
ample, this would result in 7110010 with fitness 3 being more likely to be passed on than
”001100” with fitness 2. With a properly defined fitness function, the selection pressure
pushes the solutions in the desired direction [6, 20]. Note that real-world problems are of-
ten more complex than the OneMax example shown, and a clearly defined fitness function
might not even exist.

Applied either before or after the selection operation, crossover combines the popula-
tion or selected individuals to create new solutions. The complexity and implementation of
the crossover operation depends on the EA, but the goal is always to combine one or more
“parent” solutions into one or more “offspring” solutions [57]]. To continue our simple run-
ning example, we will apply the basic one-point crossover method to it. This method takes
two parent solutions and creates two offspring solutions by splitting both parents’ genes at
one point. If both our individuals from before ("001100” and 110010”) were selected and
matched for crossover, then given “random” crossover point 2, we would get the follow-
ing offspring: ”000010” and ”111100”. Both offspring contain the first two variables from
one parent and the other four from the other parent creating two brand-new solutions. As
shown, crossover allows us to combine genes in an attempt to create even fitter offspring.
One-point crossover is a simple method that explains this concept nicely, but these simple
methods fail on more complicated and deceptive tasks [14}[15]. In modern EAs, many new
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advanced methods exist, each with its niche.

Purely selecting fit individuals and performing crossover with them fails to explore out-
side of its initial information. These steps can only work with the genes present within the
population. If some allele values are not present from the start or lost along the way, they
are lost forever. A possible way to combat this would be to increase the population size,
but especially for complex problems, this is unsustainable. Mutation stimulates exploration
by introducing a small chance that an allele will randomly flip during crossover [29} 52].
When creating an offspring solution, each allele will have a tiny chance to mutate to a dif-
ferent value. This chance is kept low to not disturb the convergence too much and only
apply about a handful of mutations per generation. Returning to our example once more,
if given only those two individuals, the optimal solution is unreachable as the sixth allele
was 0 for both. With the mutation operation in place, this allele will eventually mutate
XXXXX0 — XXXXX1, allowing the algorithm to find better solutions later on. It should
be acknowledged that this effect works both ways. However, good genes are often more
prevalent in the population, thereby mitigating the risks if this mutation chance is kept low
enough.

2.3.2 GOMEA

Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [56] is a state-of-the-art
evolutionary algorithm. Compared to the regular EA structure, this algorithm varies most
in the crossover operation by introducing Gene-pool Optimal Mixing (GOM). GOM uses
a linkage model to represent the dependencies of the optimization problem. Exploiting
these dependencies, GOM separately tests various minor modifications for dependent sets
of genes. These modifications are taken from a pool of parents and only keep the beneficial
changes. The design of this process allows for considerable speed-ups, particularly in a
GBO setting where partial evaluations can be used for all these minor modifications.

The dependencies to exploit during GOM are defined by a Family of Subsets (FOS),
most commonly a Linkage-Tree FOS (LT-FOS). As the name indicates, a FOS is a set of
subsets originating from the same set. A mathematical definition is provided in Equation

F={FF',.. . F71Y where F' C {0,1,....—1} A i€ {0,1,...|F|-1} (@27)

The LT-FOS is a special FOS variant where the subsets can be placed in a hierarchical tree
structure as displayed in Figure 2.1} An LT-FOS tree has all the variables in independent
subsets at the bottom. Then, bottom-up, the subsets are hierarchically merged till the top-
level subset contains all the variables completing the tree. The LT-FOS requirement is
defined in Equation [2.8] This indicates that each FOS element of size larger than one is
composed of exactly the elements of two smaller FOS elements.

VF (|F'| > 1) = 3F/ F* = F NF =0, [F/| < |[F/|, |[F"| < |F'|, and FFUF* =F (2.8)

The LT-FOS creation depends on the problem. With clear gene-dependencies, it could be
done beforehand. Otherwise, it will be created and refined while running GOMEA. In the
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latter case, the LT-FOS is initialized randomly. Next, patterns in gene-relations are tracked
in what is called mutual information. Based on this mutual information, the strongest gene-
relations are merged iteratively until the LT-FOS tree structure is complete.

[730148596 2 |

59 62

5] [9] [6] [2]

Figure 2.1: An illustration of the LT-FOS structure and how variables are dependent and
independent depending on the subset.

Using these gene-dependency subsets from the LT-FOS, the GOM step transforms par-
ent solutions into new offspring for the next generation. First, a parent solution is copied
into a provisional offspring. Next, iteratively, the genes indicated by an LT-FOS subset are
injected from a random donor parent in the pool. If this change results in a better or equal
fitness value, then it is kept. Otherwise, it is discarded. This step is performed for each
LT-FOS subset in random order. The donor parent for the gene-mixing operations is se-
lected randomly each time. The entire process, starting from copying a parent solution into
a potential offspring, is repeated for the whole population such that each original solution
initializes one offspring. This GOM approach to crossover allows GOMEA to efficiently
explore while preserving performance and exploiting dependencies in the problem struc-
ture. Moreover, in a GBO setting, partial evaluations substantially reduce the evaluation
cost, further amplifying GOMEA’s efficiency.

2.3.3 Real-Valued Optimization

In Real-Valued (RV) optimization, the genes are represented with values in a continuous
range. Conventional crossover, consisting of swapping or mixing genes between solutions,
cannot explore continuous ranges. Instead, real-valued GOMEA [8]] uses variation through
multivariate Gaussian distribution sampling to update the offspring. For each FOS element,
instead of injecting genes from a donor parent, the injected genes are sampled from a mul-
tivariate Gaussian distribution defined over the FOS-indicated genes. Lastly, some extra
techniques to control variance and evolution rates similar to [7]] are used, but a detailed
explanation falls outside the scope of this background.

2.3.4 Multi-Objective Optimization

Multi-Objective (MO) optimization aims to simultaneously optimize for multiple objective
functions, finding solutions with varying objective trade-offs. A multi-objective problem
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with m-objectives is described in Equation[2.9] Here, x is a solution from the set of solutions
X, and f;(x) is the i-th objective value for solution x.

{(Iél)l(l f<X) = (fl (X)7"'afm(x)) (2.9)

Given the MO trade-offs, it is impossible to pinpoint an optimal solution as they each of-

fer different benefits and drawbacks, thus giving no clear answer. Instead, MO optimization
takes a different approach using Pareto dominance. Defined in Equation a solution x'
Pareto dominates a solution x/, if and only if it is equal or better for each objective value
and strictly better for at least one. Note that the equation considers objective minimization.

x'=x/ (Vi€ {l,...,m} : fixX) < filx) A G €{1,...m} : filx) < fi(x))) (2.10)

Following this Pareto dominance definition, a solution is Pareto optimal if it is not domi-
nated by any other solution. Formally, given a set of solutions X, x’ € X is Pareto optimal
if and only if, =3x/ € X : x/ = x'. The set of all these Pareto optimal solutions forms the
Pareto form the Pareto set, which in objective space describes a Pareto front. Figure
visualizes an approximation of such a front. This front can be described as the boundary
of the best solutions found for all trade-offs. With these techniques, MO optimization can
optimize and present solutions in the multi-objective space without bias.
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Figure 2.2: A visualization of an approximation front in a two-dimensional space, illustrat-
ing solutions for a minimization problem.

These MO optimization techniques have been applied to GOMEA producing multi-
objective GOMEA [32] and Multi-Objective Real-Valued GOMEA (MO-RV-GOMEA) [9]].
In this thesis, we focus on the real-valued variant. This variant includes the RV techniques
explained in Section [2.3.3| with a slight MO adjustment. The multivariate Gaussian distri-
bution sampling does not use the whole population. Instead, a selected subset of the best
individuals in the population is partitioned into overlapping clusters grouping similar indi-
viduals. The resulting clusters are centered around different trade-offs in the multi-objective
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space. Then, with separate LT-FOS and corresponding distributions for each cluster, they
are used for variation with the whole population.

Another important technique used by EAs, especially for MO optimization, is elitism.
An elitist archive stores the best solutions found throughout the generations. MO-RV-
GOMEMA exploits this archive to accelerate improvements and balance the population over
the entire front. To replace the worst solutions that got stuck in local optima, random elitists
are reintroduced into the population to spread their genes during variation. This improves
the gene-pool and prevents parts of the multi-objective front from vanishing.

2.3.5 Tchebycheff Scalarizations

Pareto dominance-based multi-objective evolutionary algorithms, such as MO-RV-GOMEA,
struggle with selection pressure toward the Pareto front in higher dimensional spaces. When
optimizing problems involving four or more objectives, defined as many-objective prob-
lems, the performance of these algorithms diminishes. To solve this, Luong et al. [34]]
integrated Tchebycheff scalarizations into MO-RV-GOMEA to improve the performance
on these many-objective problems.

The Weighted Tchebycheff Distance (TCH) metric in a multi-dimensional setting is de-
fined as the largest weighted dimensional distance between two points. In an m-dimensional
space with weight vector w = (w1,...,wy,) : w; >0 A Y7, = 1, the TCH between a point
z, and a reference point z*, is defined in Equation[2.11}

TCH(z,z",w) = 113,?1<§n{wi|zi -z} (2.11)

Combining the multi-objective definition of Equation [2.9] and the TCH of 2.11] Luong et
al. [34]) defines the Tchebycheff scalarizations formulation for many-objective problems as
Equation Here, the reference point z* is set as the utopian point (z; < min{ f;(x)|x €
X}, and a weight vector w is assigned to each individual x from the population P.

min {TCH(f(x),z'w)} = min { max {wilfi(x) —z}} (2.12)

The TCH integration of [34] adds a few steps to the MO-RV-GOMEA process. First,
at the start of the algorithm, the TCH weight vectors, defined as w = (wy,...,wy,) : w; >
0 A Y™, =1, are generated. A dense pool of vectors is generated to ensure they are
well-distributed. From this dense pool, a subset matching the population size is selected
using greedy scattered subset selection [47]]. Next, this same set of weight vectors is
(re)distributed over the population each generation. This weight vector association uses
TCH with the current population’s ideal objective vector z” as the reference point, defined
in Equation[2.13]

' =(,....20) + 2 =min{f;(x)|x € P} (2.13)

Source code was provided by the authors of [34]. In this code, the authors normalize z” and
all points based on the objective ranges. Normalized, z” should end up as the zero-vector;
the other point’s values should be between [0, 1] for each dimension. Next, with each weight
vector, the TCH between each (normalized) unassociated point and (normalized) z is cal-
culated, after which it is assigned to the TCH-nearest individual. Finally, an individual’s
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associated weight vector is used to check for improvements during the GOM operation.
Offspring modifications are only accepted if the improvement has a lower TCH; that is,
it improves in the direction of the associated weight vector. Effectively, this Tchebycheff
scalarizations integration introduces weight vectors that push the population into the shape
and direction of the Pareto front.

2.4 BRIGHT

BRIGHT is a tool for automated brachytherapy treatment planning, aiming to improve plan-
ning time and quality. In standard treatment planning, creating the plan is a time-consuming
process. Additionally, only a single plan is iteratively updated and checked, thus severely
limiting the insight of the clinical expert into the treatment planning process. Alternatively,
BRIGHT solves this by using MO-RV-GOMEA to optimize a whole population of plans. In
only a few minutes, it returns a Pareto approximation front of plans, allowing the physician
to choose the preferred trade-offs for the patient. Altogether, it generates more plans for
better patient-plan matching, takes less time than the clinical approach, and the optimized
plans tend to be preferred over the clinical result [35]. In clinical use, these improvements
are slightly reduced, though still relevant, as many plans still required some fine-tuning [4]].

A treatment plan is defined by its dwell times. This information determines how the
source is moved through the patient and how the dose is delivered. To optimize these plans
using an EA, each individual is defined exactly the same way, with the genes dictating how
the dose is distributed. This definition will have clear gene-dependencies, which is good for
the GOM crossover. Additionally, it enables partial evaluations during the GOM step. The
DVIs used to calculate the objectives are calculated using large matrix operations with the
dwell times and the dose calculation points. When testing a GOM modification, only a few
of these dwell times are updated. Usually, all values would be expensively recalculated.
Instead, partial evaluations are possible by calculating only the difference, considerably
reducing computation time. This speedup allows BRIGHT to optimize further within the
same time frame or increase precision by setting a higher number of DCPs.

24.1 Objective Formulation

BRIGHT combines the DVIs into grouped objectives while keeping the balance between
tumor coverage and OAR sparing. First, the DVIs, defined in Equations and are
represented by the normalized distance to their planning aims. The normalized distance
calculation, differing for coverage and sparing targets, are shown in Equations [2.14| and
[2.15| and Equations [2.16] and respectively. Here, D% is the highest desirable dose
for organ o and V' the total volume of organ o.

§1orm (Do) = (DO — D¢V;7aim) / (DPmax _Dg,aim) (2.14)
8L (Vi) = (Vi =V ™) | (Vo Vi) @15)
8™ (D7) = (Dy“™ ~ DY) | Dy 2.16)
8 (Vi) = (V" = Vi) Vi @17
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An objective of grouped DVIs, whose composition is explained in Section [2.4.2] is
represented with a single objective value based on the largest DVI violations. Initially, this
only considered the single worst-case. Later on, this was replaced with a weighted worst-
case to also improve non-worst-case targets where freely possible [10]]. In this weighted
worst-case approach, the least violated DVI is assigned a weight of 1. Then, the weight
is exponentially increased by a factor of 10 for each remaining least violated DVI. After
the weights have been assigned they are normalized between 0 and 1. Given a grouped
objective O, its DVI set Ag, and w; as the weight for the i-th DVI, the objective value is
calculated as shown in Equation [2.18]

0= ) wid""(Ao,) (2.18)

i€|Ao|

2.4.2 Coverage, Sparing, and Added Aims

Currently, BRIGHT considers three objectives when optimizing cervical cancer treatment
plans: coverage, sparing, and added aims. The first two, coverage and sparing, are the main
objectives used to quantify plan quality in accordance with the EMBRACE II protocol,
whereas the latter, added aims, is extra optimization guidance, customizable to align with
the preferences of any potential medical clinic.

The coverage objective contains only dose-maximizing planning aims. These planning
aims focus on the tumor targets containing several different risk areas of the tumor. An
overview of all DVIs and their respective planning aims is provided in Table [2.2] The spar-
ing objective contains only dose-minimizing planning aims. These planning aims primarily
focus on the various OARs in the direct vicinity of the tumor. However, this objective also
contains limits on the dose applied to the tumor. Table[2.3|provides an overview of the DVIs
and respective planning aims. The added aims objective contains a mix of maximizing and
minimizing planning aims over the tumor targets and Normal-Tissue (NT) regions. This ob-
jective can be used to introduce extra aims on some of the DVIs of the coverage and sparing
objective, as well as introducing some new DVIs. Once more, an overview of the DVIs and
their respective planning aims as used in this study is displayed in Table

To quantify plan performance, BRIGHT has defined the ”golden corner” illustrated in
Figure[2.3] The golden corner is an area in the objective space where both the coverage and
the sparing objective values are positive. As the objectives are based on DVI distances to
the planning aims, a positive value indicates that all planning aims are met. Therefore, plans
in this corner adhere to all the coverage and sparing aims, making them generally preferred
options.

Table 2.2: The DVIs used in the coverage objective along with their planning aims and
constraints.

DVI D98 GTVRes D90 CTVyr D98 CTVpr D98 CTVRR
EQD2 EQD2 EQD2 EQD2y

Planning Aims > 95 Gy > 90 Gy > 75 Gy > 60 Gy

Constraints > 90 Gy > 85 Gy - -
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Table 2.3: The DVIs used in the sparing objective along with their planning aims and con-
straints.

DVI D90 CTVyr  Bladder D,  Bowel Dy, Rectum Dy

EQD2g EQD23 EQD23 EQD23
Planning Aims < 95 Gy < 80 Gy <70 Gy < 65 Gy
Constraints - <90 Gy <75 Gy <75 Gy
DVI Sigmoid Dy, ICRU

Recto-vaginal

EQD23 EQD23
Planning Aims < 70 Gy < 65 Gy
Constraints <75 Gy <75 Gy

Table 2.4: The DVIs used in the added objective along with their planning aims and con-
straints.

DVI V200 Core CTVhgr V50 CTVRR V100 Mid CTVig V100 CTVyr
Planning Aims > 99.5% > 99.9% < 25.0% > 99.9%
Constraints > 90.0% > 90.0% < 35.0% > 90.0%
DVI V100 Mid NT V100 Top NT D90 Bot NT

Planning Aims < 0.1% < 0.2% < 25.0%

Constraints < 1.5% < 7.0% < 40.0%

[ oo b
0 0,1 0
Coverage

Figure 2.3: A front of generated plans displayed in the coverage-sparing space with the
”golden corner” marked, as shown in the BRIGHT application.
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Chapter 3

Dose-Response Optimization in
BRIGHT

To include dose-response relationships in BRIGHT, the models must be combined into op-
timizable objectives. This section aims to answer the first research question about how this
can be realized. We first describe the models we use. Then, given the models, we introduce
several normalization and aggregation methods to combine them to create the objectives.

3.1 Applied Dose-Response Models

We use the models from EviGUIDE [19], another tool assisting the brachytherapy cervical
cancer treatment pipeline. EviGUIDE employs one TCP model for the high-risk clinical
target volume and five NTCP models for the bladder, ICRU bladder point, rectum, ICRU
recto-vaginal point, and bowel. All models included are Cox proportional hazards models.
The covariates and coefficients are based on several works analyzing the EMBRACE data
[27, 137,148,149, 150L 151} 160]. Due to limitations of available clinical data, we use an adapted
version of the TCP model using only a subset of the covariates used by the version in [19].
A list of these models with their covariates and coefficients is displayed in Table

We divide these models into two objectives categorized by their TCP and NTCP val-
ues, referred to as Response Index (RI) objectives RIy and Rly, respectively. As there is
only one TCP model, it will make up the whole objective. On the other hand, the five
NTCP models require a balanced aggregation method to combine them. Figure dis-
plays the NTCP models plotted over their respective EQD2 dose. The figure shows that, in
our operating range from the EBRT dose onward, these models operate in varying ranges.
Therefore, some form of normalization is required to apply certain aggregation methods.
These normalization and aggregation methods are discussed in the upcoming sections.

16



3.1. Applied Dose-Response Models

Table 3.1: An overview of the Cox proportional hazards covariates and coefficients used for

the TCP and NTCP models.
Baseline
Endpoint Covariate Category cumulative  Coefficient
hazard!'
Local Tumor Control Histopathological SQ 0.2754 Ref
Type
AdSq 1.0976
CTVyr Volume < 30 cm3 Ref
30-45 cm3 0.1903
> 45 cm3 1.0749
Qvergll treatment continuous 0.0351
time in days
CTVur D90 continuous -0.0389
Pooled; Bleeding, )
Cystitis, Fistula G > 2 Bladder D, continuous  0.0108 0.0333
grila;y Incontinence  y-p1s Bladder continuous  0.0602 0.0132
Pooled; Proctitis, A/R .
bleeding G > 2 Rectum Dy, continuous  0.0008 0.0752
Vaginal Stenosis ICRU .
G>2 Recto-vaginal continuous  0.0662 0.0248
Flatulence G > 2 Bowel Dy continuous  0.0152 0.0335
I Risk over 5 years
0.6 1 !
| |
JuR HEN i /
| | -
0.4 M 1
N _ [ | HERE — /
: Recto- ﬂ/‘/ /
ICRU Bladder! BO'/e! —
e T | :_;7 :Rectun|1
%10 20 30 40 | 50 60 : | 80 90
| | ! bt £Qp?

Figure 3.1: The NTCP models plotted over their respective EQD2 doses.
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3.2 Target Normalization

The initial strategy for evaluating the objectives was a worst-case aggregation approach
similar to the current objectives. The issue with direct worse-case comparisons was the
ICRU Recto-vaginal model. As shown in Figure [3.1] it always had a worse value than
the other models for any dose in the expected operating range. The output ranges had to
be normalized, which meant fixing these models to reference points. With a lower and
upper reference point, we normalize a part of the range to [0, 1] with the rest following the
normalized formula.

The models use EQD2 doses, and all cases in this work treated the patients with EBRT
before HDR brachytherapy. This provided two natural lower bounds to consider. It could
be set either where the EQD2 in total was zero or where it was equal to the EBRT dose, thus
zero for the HDR brachytherapy treatment. The upper reference had only one logical target,
the planning aims of the DVI covariates. Four of the DVIs were part of the EMBRACE II
protocol and had a planning aim defined. From Table Bladder Dy, < 80 Gy, Rectum
Dy < 65 Gy, ICRU Recto-vaginal < 65 Gy, and Bowel Dy, < 65 Gy. For the remaining
model, we set ICRU Bladder < 65 Gy as the planning aim based on [44] 49]].

These choices lead to two target-based normalization variants: long-range and short-
range. Long-range normalization uses the whole range from the lower reference point at
zero EQD2. Short-range normalization focuses on only the added dose with its lower ref-
erence point at the EBRT dose EQD2. Figure [3.2a] and Figure [3.2b] show the normalized
models plotted over their respective doses for long-range and short-range, respectively.

/ '
/

08
ICRU.Blalider bel RU. Bladder
Recto Vag
04
/
ot
Blalader
02,
Recum Bt
E] £

EY £3 0 % g 0 % E] 3 Eg £3 0 %
EQD2 EQD2

(a) Long-range normalized NTCP models. (b) Short-range normalized NTCP models.

Figure 3.2: The target-normalized NTCP models plotted over their respective EQD2 doses.

Compared to before, these normalized models overlap in the expected operating range.
With these overlaps, each model can be the worst case if it gets too close to its target.
This is crucial for the worst-case aggregation to find balanced treatment plans. Equations
3.1l 3.2} and 3.3] formulate the long-range normalization, short-range normalization, and
the target-based RI objective, respectively. Here, f' and f* are the long-range and short-
range normalization functions, respectively. Additionally, m; is the i-th model which has
the current dose x;, the 0 EQD2 dose x;p, the EBRT dose x;., and the target dose x;,.
Finally, DR is the set of dose-response models used to calculate the objective, and f can be
either f! or f* depending on which normalization is applied.
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m;(x;) —m;(xi0)

Ji(mi; xi) = m;(xi;) —mi(Xi0) -

L m;(x;) —mi(xi,e)
fs(mixi) = mi(Xit) — mi(Xie) -
RI = irenfll;(m{f(mhxi)} Y

Ultimately, both methods allow for effective worst-case aggregation. However, this
target-based approach loses key aspects of the dose-response relationship. Inherently, these
models cannot be weighted equally without sacrificing information. Normalizing between
these zero- and target reference points only captures the dose-response model shape. The
values attached to that range and the clinical relevance behind those values are lost. For
instance, two models with identical shapes, normalized between NTCP values [1%,5%)] and
[10%,50%)], are treated the same. Increases in complication probability are only relevant
relative to the model range and shape. An NTCP increase of 2% — 3% has the same
effect as a 20% — 30% increase in our example. Additionally, the severity of the health
complications related to these probabilities is also ignored. Ultimately, this target-based
normalization has its flaws concerning these dose-response relationships. Nevertheless,
both variants are evaluated, though other options are also explored.

3.3 Multiplicative Aggregation

Multiplicative aggregation aims to combine the models while preserving their complication-
predicting relevance. Additionally, all models contribute to the objective value of every eval-
uation. In this method, the objective value represents the probability of the desired effects
by multiplying the individual model outputs. The probabilities multiplied are taken directly
in the case of TCP. For NTCP, they are flipped to represent the desired non-complication
outcome. The TCP and NTCP objective calculations are formulated in Equation [3.4] and
Equation [3.5] respectively. When optimizing, these objectives will be minimized as 1 —RI.
Note that these objective values only represent the probability of the desired effects. They
cannot be taken as the true probability since the multiplications do not consider model de-
pendencies.

Ri; = ] » (3.4)
p € TCP
Rlyv= [] (-p) (3.5)
p € NTCP

This natural approach to combining a set of probabilities strikes a delicate balance in
model influence. Each percent risk increase affects the objective value, and these effects
are more similar thanks to the flipped NTCP probabilities. The NTCP model complications
tend to be the more unlikely outcome. Thus, the flipped non-complication results are more
probable. When multiplied, percent changes are more influential in the lower ranges. A
5% — 6% increase applies the same change factor as 20% — 24% in another model. Using
the higher flipped ranges, this change becomes 95% — 94% and is matched by 80% —
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79.16%, a much smaller difference. Notably, the flip reduces the range disparity, but it also
switches it to be survivability-based.

This aggregation method preserves much of the dose-response relationship, though
complication severity is still not covered. However, all used models predict moderate-to-
severe (Grade > 2) events [S8]], thereby mitigating this issue. Additionally, if different
severity models are combined, this method could easily be expanded by adding powers to
the multiplied probabilities to add weight to specific models. Another minor drawback is
that the objective value range is inconsistent. It depends on the number of models as proba-
bility multiplications only reduce a value. Small values and inconsistent ranges could prove
awkward when extracting information from them or combining this method with other tech-
niques, such as epsilon dominance [22]].

3.4 Additive Aggregation

Additive aggregation is an adaptation of the multiplicative approach. Instead of combining
the models through multiplication, they are added together and averaged. This approach
entirely eliminates the range disparities as each percent change is uniformly represented in
the mean operation. Due to this, the NTCP flip is not used as it adds no value. Without
flipping, both objectives use the same formula shown in Equation Here, DR is the set
of dose-response models used to calculate the objective, which is TCP and NTCP for Rl
and Rly, respectively. When optimizing, the NTCP objective will directly minimize Rly,
while the TCP objective minimizes 1 — RIr.

1
|DR)| pEZDR

Similarly to the multiplicative setup, this approach does not cover complication severity
but could easily introduce it. Models could be weighted using multiple entries in the mean
operation to increase their influence. Furthermore, the mean operation generally stabilizes
the objective value ranges, making them independent of the number of models. Consistent
ranges could simplify integration with other techniques and visual information extraction.
Finally, there is a duality in removing the range disparities. It improves model balance when
dealing with diverse output ranges. However, compared to the multiplicative approach,
the influence of models no longer slightly scales as their organs get more irradiated. This
influence reduction could increase the chance of over-radiating organs.
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Chapter 4

Experiments for Dose-Response
Objectives

To answer the second research question, BRIGHT is optimized with the dose-response ob-
jectives for each of the objective formulations described in Chapter |3} The quality of the
resulting fronts are compared to the regular BRIGHT version. This evaluation analyses how
closely the generated fronts match for the DVI-based objectives and what the corresponding
dose-response outcome change is. Ultimately, these experiments show the validity of the
dose-response model objectives as an alternative to BRIGHT’s current approach and the
value that this outcome-based approach adds.

4.1 Experimental Setup

To ensure transparency and reproducibility, this section outlines all relevant aspects of the
experiment setup. These aspects detail how the experiments were conducted, describing the
dataset, hardware specifications, and experimental design. Additionally, they explain the
various settings optimized and evaluated during the experimental process.

4.1.1 Dataset and Hardware Specifications

The experiments were performed using private real-world data from 16 anonymized patients
treated at the Leiden University Medical Center. The data for each patient consists of a
set of annotated MRI scans and several recorded data points. The annotated MRI scans
indicate the dose applicator, tumor, and OAR positions. BRIGHT uses these positions and
scans to calculate the applied dosage of a potential treatment plan and visualize them in
a graphical interface. The recorded data points include information about the tumor and
patient treatment, among other details. The dose-response model covariates use the cancer
type and the duration of the treatment procedure extracted from this data.

Given the computationally expensive nature of Al and EAs, the hardware used has a
powerful impact on the performance in a given time frame. Specifically, the Graphics Pro-
cessing Unit (GPU) architecture is the most important factor as it handles the majority of
the computations. These experiments used the GPU model NVIDIA GeForce RTX 2080 Ti
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with a GPU memory of // GB, driver version 560.35.03, and CUDA version /2.6. The
supporting operations were performed using model Intel(R) Xeon(R) Silver 4110 CPU @
2.10GHz Central Processing Units (CPUs). The server that ran the experiments had 4 GPUs
and 2 CPUs of the aforementioned models.

4.1.2 Experimental Design

Running each patient with all available settings is a time-intensive process. To address this,
the experiments were divided into two parts, tuning and evaluation. The tuning phase used a
subset of the patients to gather information about the behavior of various parameter options.
Then, based on the tuning results, the parameter values were fixed for the rest of the patients
during the evaluation runs. Finally, in the evaluation phase, conclusions on the performance
of the tested run types were drawn based on all patients; this included the fixed-parameters
evaluation runs and the matching setting tuning runs.

Four patients were utilized for the tuning subset; the other twelve only appeared in the
evaluation runs. The tuning patients were semi-randomly selected to cover scenarios of
varying difficulties. These difficulties were determined using regular BRIGHT and prelim-
inary dose-response optimization results. First, patient 1 represents a simple case where
BRIGHT and dose-response optimization manage to achieve prominent results. Second,
patient 2 is moderately difficult, with BRIGHT still reaching the golden corner, but the
dose-response optimization is far off. Third, patient 3 is also moderately difficult, with
both approaches barely falling short of the golden corner. Fourth, patient 4 is a challenging
case where the best plans found are far off the desired results. Together, this set of patients
provided insights into how each parameter option performs under varying circumstances to
better determine the best values to extend to the entire dataset.

The performance of the settings tested in both phases was evaluated by analyzing the
results over ten runs to ensure robust statistical analysis. Moreover, to reduce the variance
between run types, we used ten predetermined seeds for sampling the DCPs, one for each
run. The plans of all ten runs were compared in DVI- and dose-response-based spaces
to determine the relative effects of each parameter and run type. Despite the results be-
ing three-dimensional, the comparisons use the two-dimensional fronts to reduce cluttering
and focus attention on the potential of the tested methods. The combined results from all
evaluated patients provided a detailed analysis of the effectiveness of each setting.

4.1.3 Run Types and Parameters

These experiments compare the performance of three-dimensional optimized plans using
BRIGHT for various objective definitions; these are the run types. The regular version
of BRIGHT using the coverage, sparing, and added objectives detailed in Section [2.4.2]
serves as the baseline; further referenced as “base”. Four candidate run types are compared
to this baseline. First and second, run types “long” and “short” are target normalization
methods described in Section[3.2] Third, multp” represents the multiplicative aggregation
approach detailed in Section[3.3] Fourth, run type "add” is the additive aggregation method
described in Section 3.4l Each candidate BRIGHT variation is run with TCP and NTCP
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objectives defined using its normalization or aggregation method and the added objective.
Including the added objective for the candidate run-types assures a fair comparison as this
objective focuses on additional goals beyond the other objectives. In total, five run-types
are evaluated; in the rest of the experiments, we will reference these based on their tested
methods: “base”, ”long”, ”short”, “multp”, and “add”.

Optimizing treatment plans with BRIGHT uses several parameters for the plan-quality
precision and the MO-RV-GOMEA algorithm. Here, we focus on five impactful parameters
in particular. First, the number of DCPs used to calculate the DVIs for evaluation accuracy.
Second, the time limit for how long we optimize. Third, the population size for how many
solutions we optimize simultaneously. Fourth, the number of GOM clusters to control how
many trade-offs the algorithm can focus on. Fifth, the elitist archive size to limit how many
of the best-found solutions are stored throughout the optimization process. In these experi-
ments, we fixed four of these parameters: 100.000 DCPs, 288 population size, 12 clusters,
and 1.000 archive size. The number of DCPs was empirically established, while the popu-
lation size, the number of clusters, and the archive size are well-defined for BRIGHT with
three objectives. For the time limit, multiple options are tested in the tuning phase. Given
the available hardware, time limits of 5, 10, and 15 minutes were chosen as improvements
are expected to plateau within this range. Additionally, a time limit option of 30 minutes
was added to verify if this was indeed the case. To summarize, 100.000 DCPs, 288 popula-
tion size, 12 clusters, and 1.000 archive size are fixed, and time limits ”5m”, ”10m”, ”15m”,
and ”30m” are tested during tuning.

4.2 Tuning Results

We determine the time limit parameter for the evaluation phase using the dose-response
run types results in the TCP-NTCP space. These run types are the main focus of these
experiments. Furthermore, their optimized spaces best display the improvements over time.
Most cases in these settings showed little to no improvements when increasing the time
limit. Specifically, the results of “easy case” patient 1 were effectively identical for all
options. Additionally, the aggregation approaches, "multp” and "add”, were less affected by
the increased optimization time than their target-based counterparts. Figure visualizes
the time-limit performances over a select number of cases that best display the differences;
additional plots are available in Appendix

The fronts plotted in Figure {.T] show a general trend of the 15- and 30-minute time
limit runs edging out the shorter variants. Though the 10-minute fronts remain relatively
close, they cannot consistently extract the desired performance. If time is of the essence,
it could be a viable option. However, these experiments evaluate the potential of the tested
methods which better fit the longer options. Between the longer time limits, the difference
is minimal. Results stagnate here; increasing the optimization time further is unlikely to
improve results. The 30-minute fronts slightly outperform the 15-minute fronts for some of
the target-based normalization cases in Figures[4.Taland[d.1b] Nevertheless, these improve-
ments are negligible and not worth doubling the optimization time. Given these results, we
set the time limit to 15 minutes for the evaluation phase. These findings align with intuition:
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challenging cases needing a finer dose-distribution balance demand more optimization time,
but beyond 15 minutes, the marginal gains are too small to warrant the extra runtime.
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Figure 4.1: The evaluated time-limits’ fronts for the used objective formulations plotted in
their own TCP-NTCP space. The displayed plots show the largest time limit differences

found over all tested patients and methods.
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4.3 Evaluation Results

In the evaluation phase, we analyze the effectiveness of substituting the coverage and spar-
ing objectives for the dose-response version. Moreover, we compare the various dose-
response objective formulations to determine which approach produces the best results.
There are vast differences in how close the dose-response optimization fronts match the
“base” results in the coverage-sparing space. The distance between the fronts depends on
the patient that was optimized for and the formulation method used. A few cases that
demonstrate these differences are displayed in Figure[4.2]

The few cases visualized in Figure 4.2{show the various patterns of front distances in the
evaluation set. In some cases, the target-based normalization methods outperform “multp”
and “add”, Figures |4.2al and Other times, this effect is the other way around, and
“multp” and ”add” provide better results, Figures4.2c|land#.2d] And for some patients, they
produce very similar fronts, Figures and .21 Additionally, the distances of the best
matching fronts seem to vary independent of which method performs best. Furthermore,
the aggregation methods “multp” and ”add” generally produce comparable results, and the
normalization approaches ”long” and “’short” match each other as well, albeit not as closely.

Based on these results, BRIGHT optimized using dose-response objectives cannot con-
sistently match the protocol-based coverage and sparing results of “base”. However, this
is expected as the “base” run type that directly optimizes these objectives should prevail
over the other run types that can only improve them through secondary effects. The large
difference shows a clear misalignment between the protocol-based objectives and the dose-
response objectives. Additionally, these objectives are broader than the set of DVIs covered
by the dose-response models; the objective-leading DVI for a patient might not be included.
Instead, the results should be analyzed in the TCP-NTCP space. The dose-response objec-
tives are designed to improve the post-treatment effects of the BRIGHT-generated plans.
Plotting the fronts in this space better visualizes these improvements that are integral to
determining the effectiveness of these objectives.

Figure displays such plots. Showing the TCP-NTCP space results for all evaluated
run types for each patient. Given the differing dose-response objective formulations of the
evaluated run types, the plotted values are recalculated utilizing the various methods tested.
To limit figure size, the results for each patient are only shown with one recalculation. With
an equal representation of each method, these plots clearly show the differences in dose-
response outcome improvements.

As expected, all candidate run-types improve their dose-response outcomes compared
to the baseline, which does not consider the dose-response objectives. Additionally, Figure
[.3] shows that the methods generally align, as in most cases, they also outperform “base”
when displayed in a recalculated space. Specifically, given the same TCP values, we see
that for ”add” the average complication probability represented improved as much as 0.01,
Figures [4.3b] [4.31, 4.3h| and #.3p| The combined no-complication probability of “multp”
increases nearly 0.02, Figures[d.3a [4.3c| d.3¢g] and[.3k] The target-based normalizations do
not directly characterize probabilities. Instead, they represent the worst-case relative to the
risk increase from a base to the planning aim dose. Utilizing the zero-dose base for ”long”,
the NTCP objective reduced up to almost 0.1 worst-case relative risk increase, Figures[4.3d]
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Figure 4.2: A display of a select few evaluation phase results that demonstrate how close the
dose-response optimization fronts match the ”base” results in the coverage-sparing space.

@3] @31 With the steeper relative risk increases from the EBRT-base of “’short”, this
is even reduced multiple tenths to the extent of 0.5, Figures [4.31, [#.3m] [4.3n] [4.30]
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Figure 4.3: The results fronts of the run types for each patient. Displayed in the dose-
response space using recalculated values for the tested objective formulations to show their

relative differences.
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Comparing the dose-response run types amongst themselves, there are some peculiar
differences between the target-based approaches and “multp” and “add”. Conceptually,
they differ. The target-based variants follow BRIGHT’s worst-case-based approach, while
the others combine the models prioritizing the dose-response relationships. As a result,
”long” and “’short” focus on the individual models during optimization, whereas “multp”
and ”add” focus on them together. In practice, both approaches appear beneficial in select
cases. Additionally, improvements are often shared as they are generally aligned. How-
ever, given the natural dose-response-probability combinations of “multp” and ”add”, one
would expect these values to improve when optimizing the dose-response outcomes with
any method. Nevertheless, for some patients, the "long” and “short” optimized results have
either, partially, Figure .3h] or entirely, Figures and .31, worse average-complication
and no-complication probabilities than “base”.

Altogether, the target-based normalizations sacrifice essential aspects of the dose-response
relationship and can potentially worsen the naturally interpretable probabilities of the com-
bined results. Considering this, we will answer our second research question based solely on
the “multp” and “add” results. Based on Figure [4.3] optimizing with these two aggregation
methods greatly improves the dose-response outcomes. However, as shown in Figure
they fail to consistently match BRIGHT in protocol compliance. Moreover, the plans with
the biggest dose-response outcome improvements are often not the best coverage-sparing
space plans. Figure .4]shows two extreme cases of this effect, where the fronts lie remark-
ably lower than previously in Figure To conclude, although substituting BRIGHT’s
coverage and sparing objectives for dose-response objectives substantially decreases the
post-treatment risks, they lack protocol compliance and, therefore, are not a suitable re-
placement.

(a) Patient 11: Run type comparison with (b) Patient 13: Run type comparison with
time limit ”15m” time limit ”15m”
Figure 4.4: The coverage-sparing fronts using only filtered results that have the best TCP-

NTCP values. The two cases displayed are extreme cases in which the front deteriorates
considerably due to the filtering.

Based on these results demonstrating the potential and flaws of our approach, we extend
our research question to explore an alternative direction. Rather than attempting to handle
the complex requirements of treatment planning entirely through the dose-response objec-
tives, we use these as extra objectives, extending this to a many-objective problem. With
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this formulation, BRIGHT’s current objectives should optimize the protocol’s planning aims
while the additional objectives steer those found plans to improve their dose-response out-
comes. The extra research questions created to address these challenges are provided in
Section[I.2] These questions bring new challenges that require solving. To focus our efforts
effectively, we only continue with one of the aggregation methods. The “multp” and “add”
methods produced comparable results and conceptually captured similar dose-response re-
lationship qualities; both are viable options without a clear favorite. Ultimately, we continue
with ”add” due to its extensibility; the design scales better and allows smoother integration
with other techniques.
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Chapter 5

Many-Objective BRIGHT

Many-objective optimization is used to address the research questions that arose from the
findings of the multi-objective experiments in Section The current MO-RV-GOMEA
used by BRIGHT can be extended to five objectives. However, as such multi-objective
algorithms struggle with more than four objectives, many-objective adaptations were also
explored. Given the Tchebycheff scalarizations adaptation from the literature [34], we ex-
plain the utopian point definition for usage with BRIGHT. Furthermore, we introduce two
alterations to this approach designed to improve objective balance and golden-corner focus.

5.1 BRIGHT Utopian Point

The proper utopian point definition is vital for the Tchebycheff scalarizations to function
optimally. After the weight vectors are assigned based on the best current objective factor,
the utopian point distance determines whether solutions have improved. If the optimal
objective values are known, this definition can be provided at the start of the algorithm;
otherwise, it needs to be refined with the best values found during the optimization. For our
BRIGHT objectives, these optimal values are known. However, as the solutions are pushed
into a constrained section of the search space, this refining approach is opted for instead.

Considering the whole search space, the optimal objective values for BRIGHT are gen-
erally easy to find. Note that the following values do not necessarily match with the results
plots as the objectives are redefined to minimize them during optimization. By minimizing
or maximizing the entire dose applied, the coverage, sparing, TCP, and NTCP objectives
can be fully optimized. The corresponding optimal values are —1 for coverage and sparing,
0 for TCP, and the NTCP value is calculated from its models at the EBRT dose; given our
models, this is approximately 0.081. Conversely, the added aims value is more complicated
as it comprises minimization and maximization targets. Therefore, it has no clear optimal
value, though for simplicity, it could be defined as —1.

The problem with using these values for the utopian point is that BRIGHT constrains
plans to the space where coverage and sparing are lower or equal to 0.2. To satisfy these
constraints, the plans must strike a minimum dose-distribution balance. As a result of this
minimum balance, the optimal values are unreachable. Given these restrictions, preferably,
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the best reachable values would be used for the utopian point instead. However, these
values are patient-specific and cannot be determined in advance. To solve this, we refine a
constrained utopian point during optimization.

The constrained utopian point is initialized as the worst case for all objectives. Then,
in each generation, all the individuals are checked for utopian point improvements. Im-
portantly, these utopian point improvements are only accepted if the containing individual
satisfies the constraints. This is possible as improvements are checked differently based on
whether the constraints are satisfied. If unsatisfied, the distance to the constrained space
is used as a quality measure; when this space is reached, the utopian point takes over. Al-
together, this approach provides a meaningful, constrained utopian point in the relevant
operating space that allows for more effective Tchebycheff-scalarizations guidance than the
’true” utopian point of the whole space.

5.2 Normalized Tchebycheff Evaluations

In the code of [34], the solutions are normalized during the weight vector association. In
the non-normalized space, the shape of the population might not fit that of the weight vec-
tor distribution. These mismatching shapes shift the relative TCH distances, which leads to
relatively incorrect associations. Given the iterative association procedure, this effect ampli-
fies with associations worsening throughout the loop as the intended weight vectors become
unavailable. The range normalization applied brings the population to a similar shape as the
weight vector distribution, fixing the relative TCH distances and reducing this problem. A
similar issue occurs for Tchebycheff evaluations where the objective ranges influence their
contributions. In this section, we explain these range disparity influences and how range
normalization can be applied to fix them.

5.2.1 Objective Range Disparity

When there are large discrepancies between the objective ranges, some objectives might
dominate or get ignored when evaluating TCH distances. This metric, defined as the largest
weighted distance, benefits the objectives that operate in a larger range and punishes those
with a smaller spread. Additionally, the uniform selection of weight vectors, designed to
balance the objectives, only perpetuates the existing imbalance and cannot actively enforce
balance.

With an example of the sparing and TCP objectives under the conditions of normalized
assignment, uniform weight vector selection, and an over-time refined utopian point, we
show this imbalance. The range for sparing and TCP is commonly around 0.3 — 0.5 and
0.03 — 0.05, respectively. Taking ranges 0.5 and 0.05, an order of magnitude difference,
the sparing objective dominates the TCH distance, even for a weight vector that should
prioritize TCP, such as [0.1,0.9]. Given the normalized assignment and assuming a well-
spread population, the solution associated with this weight vector should have sparing and
TCP values around 10% and 90% of their respective ranges, which given minimization is
(1-0.1)-0.5=0.45and (1 —-0.9)-0.05 = 0.005, respectively. Considering these values, the
TCH s 0.1-]|0.45—0| = 0.045 for sparing and 0.9 - |0.005 — 0| = 0.0045 for TCP. This much
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larger TCH for sparing hinders TCP improvements from being accepted as they need to be
much bigger. The range disparity effectively disables TCP improvements in this example
despite the chosen weight factor that should have favored this objective.

5.2.2 Range Normalized Evaluations

Applying the range normalization from the weight vector association to the Tchebycheff
evaluations removes all range disparity. Each objective range is normalized to [0, 1], where
0 represents the best value and 1 is the worst. Recalculating the TCH for the example in
Section the normalized versions of the objective values are around (1 —0.1)-1=0.9
for sparing and (1 —0.9)-1 = 0.1 for TCP. Using these normalized values, the new TCH
is 0.1-]/0.9—-0| =0.09 and 0.9- 0.1 — 0| = 0.09, for sparing and TCP, respectively. Using
the range normalized evaluations, the individual dimensions’ TCH distances converge to
the same value, allowing improvements for all objectives. Additionally, from this point, the
TCH influence of relatively similar improvements is properly scaled based on the associated
weight vector.

The use of range-normalized objective values also requires a redefinition of the utopian
point. One approach is to normalize the previously used refining utopian point during eval-
uation. However, the fixed normalized range allows for a more elegant yet balanced defini-
tion. Setting the utopian point at —0.1 for all dimensions provides a consistent improvement
direction with an equal focus on all objectives. Additionally, as it is an extension of the ref-
erence point at values 0, it improves the effectiveness of the weight vectors. Adding a
constant to each distance has a relatively larger effect on the smaller distances that coin-
cide with the focus of the weight vector, thus increasing its effectiveness. Combined, this
utopian point definition and the range normalization ensure that objectives are balanced and
effectively explored despite any range disparities.

5.3 Guided Weight Vector Spread

One of BRIGHT s advantages is that it provides a front of plans, considering various objec-
tive trade-offs. However, the main area of interest is the golden corner, where all the cover-
age and sparing planning aims are met. When extending BRIGHT to the five-dimensional
space, this area only represents a fractional part of the search space. The constraints in
place slightly reduce this effect by guiding the solutions toward a smaller space surround-
ing the golden corner. Nevertheless, the selection pressure remains overly diffused in the
many-objective space.

To increase the golden-corner focus, we modify the weight vector spread to increase
the vector density around this area. By increasing the amount of vectors with an even
objective trade-off, more improvements in this direction should be accepted. To achieve
this, we introduce quadratic guidance scaling for the weight vector spread. During the
greedy scattered subset selection to select the weight vectors, a scalar increases the inter-
vector distances with the effect strongest around the center and fading outwards. These
scalars quadratically scale based on a vector’s distance to the center weight vector (% for all
n objectives) as formulated in Equation[5.1] Here, gc, is the guidance scalar for vector v, v,
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5. MANY-OBIJECTIVE BRIGHT

is the center weight vector, and d(v,v.) is the Euclidean distance between vectors v and v,.

1
~ max(0.1, d(v,v.))

8¢y G.D

The inclusion of the 0.1 minimum scalar fraction in the denominator is designed to limit
the scaling effect. The limited scaling prevents extreme values excessively increasing center
distances and limits the guidance to a set radius inside which the selection is uniform again.
Additionally, the quadratic scaling always increases the inter-vector distances as it is always
greater than 1. The largest possible distances to the center weight vector are at the corners
weight-vector space; this maximum distance, shown in Equation[5.2] is always smaller than
1 given n > 1 dimensions.

n

Jo- bk @y 52

With this quadratic scaling, the weight vector spread is reshaped from a uniform spread
to a center-focused distribution. Figure [5.1] illustrates this change, depicting the uniform
selection on the left and the guided approach on the right. The figure shows that the guided
spread is much denser populated around the center weight vector, which should align with
the golden-corner’s direction. Furthermore, vector density reduces moving outwards from
the center yet keeps some focus here for exploration.

sixe-Z
sixe-Z

(a) The uniform weight vector distribution. (b) The guided weight vector distribution.

Figure 5.1: The weight vector spreads for the uniform and guided selection approaches
visualized for a three-dimensional example.
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Chapter 6

Experiments for Many-Objective
BRIGHT

These experiments aim to answer the third, fourth, and fifth research questions. Various
setups using the techniques detailed in Chapter[5|are evaluated on their ability to improve the
dose-response outcomes for plans protocol with good protocol compliance. Based on these
improvements, we determine the impact of including dose-response objectives in treatment
planning optimization.

6.1 Experimental Setup

The setup for these experiments is similar to that of the first experiments described in Sec-
tion 4.1l First, the dataset and hardware specifications remain unchanged. Second, the
experimental design is only slightly modified. To analyze the evaluation phase results, we
compare the achieved TCP and NTCP values displayed over the coverage-sparing space.
Third, new run types and parameters are evaluated and tuned during the experimental pro-
cess. To avoid redundancy, this section covers only the run types and parameters used.
Details on the dataset and hardware specifications can be found in Section and the
experimental design in Section|4.1.2

One addition to the experimental setup is the inclusion of a mini baseline experiment.
This mini-experiment applies the techniques developed for many-objective BRIGHT to the
three-dimensional baseline. The different many-objective techniques are designed for the
extra complications of the higher dimensional space. However, some additions, such as
the extra golden-corner focus, might also benefit the multi-objective definition. This mini-
experiment evaluates this. Additionally, it also serves as a reference for the effectiveness of
the designed techniques on simpler problems. This extra experiment will not have a tuning
phase. Instead, they continue with the fixed and tuned parameters from the experiments in
Chapter {] and are run with the run types explained below.
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6. EXPERIMENTS FOR MANY-OBJECTIVE BRIGHT

6.1.1 Run Types and Parameters

The extension of BRIGHT with the dose-response objectives should improve the TCP and
NTCP values of good coverage and sparing plans. As before, our baseline run type is
the regular 3-dimensional BRIGHT; we define this as “base”. Given the complexity of
the many-objective space, we apply several versions of the MO-RV-GOMEA algorithm to
explore it. This gives us four candidate run types. First, run type “normal” is the regular
MO-RV-GOMEA employed by BRIGHT. Second, “default” is the standard Tchebycheff
scalarizations variant from the literature [34] using our utopian point definition described in
Section[5.1] Third, we define “norm” as our altered Tchebycheff approach using normalized
evaluations as described in Section Fourth, run type “guide” uses the extension of
“norm” with the guided weight vector spread detailed in Section [5.3] In total, we evaluate
five run-types: “base”, "normal”, ”default”, "norm”, and ”guide”.

Similar to the previous experiments, we need to address the same five impactful pa-
rameters and choose which values to use. The number of DCPs remains unchanged at
100.000 as this amount still provides sufficient accuracy without excessive overhead. The
population size, the number of clusters, and the archive size should scale with the increased
dimensionality of our problem. Before, these values were well-defined for BRIGHT. For
the five-objectives variant, this is only the case for the population size, which becomes
480. Instead, we need to tune the number of clusters and the archive size. Scaling the
values defined for the lower-dimensional variants of BRIGHT, we decided to test 20 and
30 clusters and an elitist archive size of 5.000 and 10.000. The time limits also need to be
re-tuned as the many-objective space and evaluated run types operate differently than the
three-objective optimization. Given the available hardware, while keeping it relatable to the
clinical pipeline, the same values of 5, 10, 15, and 30 minutes are tested. To summarize, the
DCPs and population size are fixed at 100.000 and 480, respectively. The other parameters
are all tuned with clusters ”20c¢” and ”30c”, elitist archive sizes ’5ks” and ”10ks”, and time
limits ”5m”, ”10m”, ”15m”, and ”30m”.

6.2 Multi-Objective Application Results

As explained in the experimental setup above, this mini-experiment demonstrates the effec-
tiveness of the many-objective techniques in the simpler multi-objective setting. Figure
shows the results of this extra experiment. These plots show little to no differences between
the run types. For many patients, such as shown in Figures[6.1b] [6.1¢] and[6.11] the fronts of
all runs and run types overlap, forming almost a single line. Regular BRIGHT can already
find this front; the evaluated techniques do not improve upon this. In the other cases where
there is some variance between the runs, like Figures[6.Tal [6.1c| and[6.1d] they also achieve
similar results. The runs for each setting are generally spread across the same range with
near-equal consistency.

Overall, the application of many-objective techniques in this setting generally matches
the performance of regular BRIGHT but cannot improve on it. The three-dimensional def-
inition of BRIGHT is simple enough that the use of these adaptions designed for compli-
cated cases is not required. For most patients, the convergence of all runs onto a single
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6.2. Multi-Objective Application Results

line suggests that regular BRIGHT already extracts the maximum it can given the current
objective definitions. In the cases where the results vary more, the adaptations still fail to
improve. If anything, one could argue that they are even marginally worse. The patients
likely require complex inner-objective balances. However, with minimal objectives, these
complexities might not extend to the objective relations that the adaptations target. Ulti-
mately, these techniques do not add any value in the multi-objective setting. It can match
the performance of regular BRIGHT. However, it is not worth the added complexity.
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(a) Run type comparison for patient 2
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(b) Run type comparison for patient 5
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(f) Run type comparison for patient 15

Figure 6.1: The results of applying the designed many-objective techniques to the three-
dimensional definition of BRIGHT. The results were run with a time limit of 15 minutes

and are displayed in the coverage-sparing space.
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6.3 Tuning Results

Given the three tunable parameters, each run type was run for all possible combinations.
With these results, the differences for each set of parameter options are analyzed and set
in order from least to most dependent on the other parameters. This dependency ordering
dictates that the elitist archive size be set first, followed by the number of clusters, and
finally, the time limit. Considering the goal of the many-objective runs to achieve coverage-
sparing results similar to “base” while improving TCP-NTCP outcomes, both spaces are
used to determine the best parameter values.

When inspecting the results, we found our "harder” case, patient 4, to be more compli-
cated than previously anticipated. Due to this, BRIGHT’s optimization strategy of splitting
the time limit into three parts negatively impacts the results. To achieve fast initial improve-
ments but end with precision, a quarter, half, and all of the DCPs are used for the three
parts, resampling them between each split. The complexity of this case leads to many plans
falling outside the constraints after these resamplings. This resets most progress, notably re-
ducing the effective time used for optimization. As a result, the achieved fronts are slightly
inconsistent; we consider this when tuning the parameters.

6.3.1 Elitist Archive Size

The evaluated elitist archive sizes of 5.000 and 10.000 showed little to no distinctions for
most of the 128 patients, settings, and many-objective run-type combinations. Figure
visualizes six cases representing the differences found over all the results. More cases
are shown in Appendix |Al A few settings show minor improvement for ”5ks” over ”10ks”,
Figures[6.2c|and[6.2d] Larger differences are also observed for patient 4, Figure[6.2f] though
this is largely due to the inconsistency with this patient. However, the vast majority of cases
show no distinctions, as demonstrated by Figures[6.24l [6.2b] and [6.2€]

Based on these observations, we decided to continue with an elitist archive size of 5.000.
Both options achieved comparable results. However, the minor differences were more com-
monly favoring ”’5ks”, and a smaller archive size reduces computation requirements. We
suspect both archive sizes can sufficiently cover our five-dimensional space, consequently
causing the observed similar results. The slight distinction could potentially be explained by
the discretization algorithm used to shrink the elitist archive when it exceeds the maximum
size. The larger size of ”10ks” reduces the occurrence of this event. However, this comes
at the cost of increased computational scaling, which grows quadratically with the archive
size. With the elitist archive size set as ”5ks”, we continue to tune the other parameters with
this value fixed.
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tche-norm-5ks
tche-norm-10ks

(a) Patient 1: Elitist archive size comparison for
run type “norm”, clusters "20c”, and time limit
”10m” in TCP-NTCP space

five-normal-5ks
five-normal-10ks

(c) Patient 2: Elitist archive size comparison for
run type “normal”, clusters ”30c”, and time limit
”15m” in TCP-NTCP space

022 tche-guide-5ks
tche-guide-10ks

0.16

(e) Patient 3: Elitist archive size comparison for
run type “guide”, clusters ”30c”, and time limit
”30m” in TCP-NTCP space

tche-guide-5ks
tche-guide-10ks

-02 -0.1 0.0 01 02 03
Coverage

(b) Patient 2: Elitist archive size comparison for
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Figure 6.2: The evaluated elitist archive sizes’ fronts plotted in the coverage-sparing and
TCP-NTCP space. These plots visualize the difference in optimization potential between

the archive-size options.
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6.3.2 Number of Clusters

The number of clusters also did not particularly impact the resulting fronts. Comparisons
for some of these fronts are displayed in Figure [6.3] with additional cases in Appendix [A]
In most cases, the fronts overlap, Figures [6.3b} [6.3c| and [6.3d] Slightly larger differences
are visible in Figures and favoring ”20c” and ’30c”, respectively. However, these
improvements do not consistently carry over to similar settings and spaces, as demonstrated
by the varying results for patient 2. Lastly, patient 4 again shows the biggest differences for
both options as shown in Figure [6.31]

Although the results are generally consistent, small trends with patients favoring either
option can be observed. Patient 2 remains indifferent towards the number of clusters, but for
patients 1 and 3, the front overlaps are frequently slightly shifted with common beneficiaries
”20c” and ”30c”, respectively. Additionally, patient 4 also faintly favors ”20c”, although
the results vary too much to make any definitive claims.

We speculate that the similar results and patient-specific preferences depend on the ob-
jective correlation. The five objectives comprise DVIs targeting tumor coverage or OAR
sparing. These two types of DVIs are dependent, with one improving as the other decreases
and vice versa. Additionally, the use of these DVIs across multiple objectives further in-
creases objective correlation. This correlation reduces the five-dimensional search-space
spread, which affects the number of clusters needed. Due to this, 20 clusters are likely suffi-
cient to cover our heavily-correlated space. Notably, part of this correlation depends on the
main-contributing DVIs of the sparing objective and whether these match the DVIs used for
NTCP. Differences in the contributions of these DVIs could influence the optimal number
of clusters for a patient and cause the favoritism observed.

Ultimately, we decided to continue with ”20c”. Albeit marginally, it was the better value
for most tuning runs. Additionally, the population over clusters ratio % = 24 matches that
of the multi-objective approach % = 24. We fix this value of 20 clusters to determine the
value for the last tuned parameter and the evaluation runs.
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Figure 6.3: The evaluated number of clusters’ fronts plotted in the coverage-sparing and
TCP-NTCP space. These plots visualize the difference in optimization potential between

the clusters’ options.
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6.3.3 Time Limit

The optimization time limit is an important parameter trading off time usage for solution
quality. The relative front improvements in trade for our evaluated time limits are visualized
in Figure [6.4] using a few select cases. More cases are shown in Appendix [A] For a simpler
case, like Figure shorter times such as ”10m” are sufficient to find the best plans
possible given the used algorithm. However, most cases are more complicated and show
clearer improvements for the increased time limits. Some of these improvements continue
for all tested limits, such as in Figures[6.4b] [6.4c| and [6.4f] Others plateau after an adequate
time limit is reached, commonly after ”15m” as demonstrated by Figures and
Ideally, our time limit aligns with the moment the improvements plateau or are small enough
to be considered negligible.

Based on Figure [6.4] the longer options of ”15m” and ”30m” fit this description best.
These options show clear improvements on their predecessors. Moreover, ”30m” even
exceeds ”15m” in some cases, albeit less consistently. However, comparing these longer
options, ”15m” would be the preferred choice for the evaluation runs considering the per-
formance differences and clinical relevance of these limits. Over the entire tuning set, the
improvements of using ”30m” are, although apparent, marginal given the increased time
requirements. Additionally, the ”30m” time limit was designed to show whether improve-
ments plateaued, not as a realistic option since it does not fit in the clinical pipeline. One
could even argue that ”15m” is a stretch regarding clinical relevance. However, given the
essence of a higher limit in the scientific context of researching the viability of this method,
we justify it.

42



6.3. Tuning Results

tche-default-5m
- tche-default-10m
0.16 tche-default-15m
—— tche-default-30m
0.15
0.14
B
E
0.13
0.12
0.11

(a) Patient 1: Time limit comparison for run type
”default”, clusters ”20c”, and archive size ”5ks”
in TCP-NTCP space

019
five-normal-5m
five-normal-10m
0.18 five-normal-15m Iy
five-normal-30m /
017 7
016
o 015
S
3
014
013
012
011
093 0.94 0.95 0.96 097 098
Tcp

(c) Patient 2: Time limit comparison for run type
”normal”, clusters ”20c”, and archive size ’5ks”
in TCP-NTCP space

tche-norm-5m
tche-norm-10m
tche-norm-15m
0.20 tche-norm-30m
0.18
o
1=
z
0.16
0.14
0.84 0.86 0.88 0.90 0.92 0.94

(e) Patient 3: Time limit comparison for run type
“norm”, clusters ”20c¢”, and archive size ”5ks” in
TCP-NTCP space

tche-default-5m
0.2 tche-default-10m
tche-default-15m
tche-default-30m
0.1
2
£ 00
2
&
-01
-02
-0.2 -0.1 0.0 0.1 0.2 0.3
Coverage

(b) Patient 2: Time limit comparison for run type
”default”, clusters ”20c¢”, and archive size ”5ks”
in coverage-sparing space

tche-guide-5m
tche-guide-10m
0.1 tche-guide-15m
tche-guide-30m
0.0
2
g-01
&
-02
-03
-02 -0.1 0.0 01 02 03
Coverage

(d) Patient 3: Time limit comparison for run type
”guide”, clusters 20c”, and archive size ”5ks” in
coverage-sparing space

0.05
~
0.00 -
-0.05
2
3 -0.10
&
-015
-020 tche-guide-5m
tche-guide-10m
— tche-guide-15m
tche-guide-30m -
-025
-020 -015 -0.10 -0.05 0.00 0.05
Coverage

(f) Patient 4: Time limit comparison for run type
”guide”, clusters ”20c”, and archive size ”5ks” in
coverage-sparing space

Figure 6.4: The evaluated time limits’ fronts plotted in the coverage-sparing and TCP-NTCP
space. These plots visualize the difference in optimization potential between the time-limit

options.
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6.4 Evaluation Results

Using the evaluation set, we analyze the impact of optimizing dose-response models in
the many-objective formulation. Furthermore, we compare the performance of the various
approaches designed to assist this complex optimization. To start, Figure [6.5] shows how
combining all objectives allows the candidate run types to achieve results similar to "base”
in the coverage-sparing space while also finding plans with better dose-response outcomes.
Additionally, the candidates appear to generate comparable fronts. Only a rare few cases
show marginal differences between them, as displayed in Figure[6.5b]
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Figure 6.5: Evaluation-run plots that display the difference between fronts of the candidate
run types and baseline in the coverage-sparing and TCP-NTCP space. All results used
settings clusters ”20c”, archive size ”5ks” and time limit ”15m”.
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Given that the many-objective runs show admirable results when observing the objective
types independently, we are interested in how their combined results compare to “’base”.
To analyze these trade-offs, we plot the results in the coverage-sparing space with colors
that represent the TCP and NTCP values or differences. Figure [6.6] visualizes these color-
represented dose-response objective values and -differences used to evaluate the results for a
single patient. Using the same TCP and NTCP color scales, Figures [6.6a] and [6.6b] visualize
the colors for our baseline “three-base” and Figures and [6.6d| shows the same for a
candidate approach “tche-guide”. Additionally, Figures and focus on the dose-
response improvements of our candidate over the baseline in the golden corner.

These color-visualized insights for patient 9 demonstrate that the best dose-response
values gradually improve as the plans move toward the optimal found coverage and sparing
results. However, given the gradient-based color assignments, the exact values are hard
to extract from the color plots. Instead, the heatmaps highlight the differences found in
the golden corner. These differences show the direct improvements possible at the front
and those obtainable through sacrificing sparing while remaining at the same coverage. An
initial assessment of this single patient already shows various improvements possible at the
front and through sacrifices.
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Figure 6.6: The color-represented TCP and NTCP values and differences for run types
”base” and “guide”. The displayed results visualize these dose-response qualities for the
plans for patient 9 in the coverage-sparing space.

Notably, each of the candidate run types shows different levels of improvement com-
pared to the baseline. Figures [6.7] and [6.8] show the performances of the tested run-types
for two patients with different optimal found dose-response regions. For all patients, the
TCP improvement pattern observed was the same as shown in the figures. Improvements
only really show when sacrificing sparing. Additionally, the specific run type appears only

46



6.4. Evaluation Results

marginally impactful on the obtainable TCP improvements. For NTCP, there are two main
patterns. The biggest improvements are either found at the front, such as in Figure
or require balanced sacrifice, as in Figure Commonly, improvements up to 0.006 of
average NTCP model risk are possible on or near the front. Furthermore, larger perfor-
mance variations between the run types are observed for this more complicated objective
representing multiple models.

Table[6.1|compares the improvements obtained by the run types. Following the heatmap
pattern, we analyze the NTCP improvements on the front and TCP and NTCP improvements
achievable by sacrificing some sparing. For each category, we measure the best and average
cell improvements. Similar to the plots, these values suggest that the run types are most
influential for the NTCP results. We analyze the results using the Wilcoxon signed-rank test
with a p-value smaller than or equal to 0.05 indicating significance. The NTCP results for
”guide” are statistically significantly better than the others, while there is no clear significant
best option for TCP. Overall, run type “guide” showed the most consistent and biggest
improvements. Next, run types “normal” and “norm” achieved similar results, with the best
option usually depending on patient-specific characteristics. Lastly, “default” improved
the least overall. Despite finding the largest TCP improvements, it is already matched by
the others for the average TCP. Furthermore, it performed statistically significantly worse
compared to all other run types for the NTCP-objective metrics. Based on the results, we
continue with run type ’guide” as our final candidate. Statistical tests proved this method to
either significantly improve or match the best-found results for NTCP and TCP, respectively.

Table 6.1: The dose-response improvements obtained by the tested candidate run types
compared to the baseline in and around the golden corner. Bold values are statistically
significantly better than all others with a p-value smaller than or equal to 0.05 based on the
Wilcoxon signed-rank test. Values marked with * indicate a p-value smaller than 0.001.

Metric Normal Default Norm Guide
Best TCP 0.00597 + 0.00639 + 0.00578 + 0.00591 +
improvement 0.00185 0.00212 0.00182 0.00138
Average TCP 0.00166 + 0.00166 + 0.00165+ 0.00168 +
improvement 0.00067 0.00064 0.00064 0.00062
Best NTCP front 0.00392 + 0.00337 + 0.00389 + 0.00417 +
improvement 0.00174 0.00171 0.00176 0.00166
Average NTCP front 0.00311 + 0.00264 + 0.00315 + 0.00352*
improvement 0.00176 0.00191 0.00178 0.00169
Best NTCP non-front ~ 0.00472 + 0.00434 + 0.00479 + 0.00532* +
improvement 0.00125 0.00122 0.00125 0.00142
f:jf;ii?mp 0.00243£  0.00185+ 000251+  0.00303" %
. 0.00109 0.00102 0.00107 0.00122
improvement
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Figure 6.7: The color-represented TCP and NTCP differences for candidate run types “nor-
mal”, “default”, "norm”, and ”guide” compared to baseline “base”. These plots visualize
the dose-response qualities for the plans of patient 16 in the coverage-sparing space.
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the dose-response qualities for the plans of patient 12 in the coverage-sparing space.

49



6. EXPERIMENTS FOR MANY-OBJECTIVE BRIGHT

With our final candidate ”guide”, we have observed improvements around 0.005 TCP
with sparing sacrifices, 0.004 NTCP at the front, and 0.005 NTCP with sparing sacrifices, as
shown in Table Additional visualizations of these improvements achieved by “guide”
for the not yet shown patients are available in Appendix [A] However, besides these numeri-
cal improvements, it is also imperative to analyze how the inclusion of these dose-response
objectives influenced the plans themselves. BRIGHT has developed an app in which the
optimized plans can be examined and compared. Figures [6.9) and [6.10] show some dis-
tinct differences observed between the dose distributions of baseline “base” and candidate
”guide” plans given near-similar coverage and sparing values. The compared plans are taken
from the golden corner at the maximum coverage and maximum sparing cells following the
discretization used for the heatmaps.

Figure compares random front-plans for “base” where Figure preselects them
for the best NTCP values. The ”guide” plans are preselected for NTCP for both cases to
properly show what the dose-response objectives achieve. As the cases in Figure[6.9|demon-
strate, the dose distributions for the random front-plans can vary more compared to ’guide”,
whereas the preselected plans of Figure[6.10[have more similar shapes. However, both com-
parisons still show the same effects, albeit to different extents. Additional comparisons that
further show these effects on more cases are available in Appendix

These dose distributions demonstrate a shift in focus around the regions considered by
the dose-response models. The most important regions to visually analyze the shift for are
the CTVpyr in red, the bladder in blue, the rectum also in red, the sigmoid in yellow, and
the bowel in beige. Generally, the many-objective plans have a higher dose on the CTVygr
covered by the TCP objective. Furthermore, given the higher spiking dose in the center
of the tumor, the dose at its edges close to the NTCP-covered organs is reduced. Notably,
the edge close to the sigmoid, which the NTCP objective does not cover, is commonly
irradiated more as a trade-off. The extent of these effects naturally varies per patient and
plan. However, it can be observed that the inclusion of the dose-response objective produces
distinctly different plans with targeted dose concentrations and organ preservation for the
TCP and NTCP subjects, respectively.
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(b) Dose distribution comparison on coverage-oriented plans for patient 16.

Figure 6.9: The dose distribution comparisons of BRIGHT-base plans on the left and guide-
candidate plans on the right. The plans show their isodose lines, and the middle highlights
their differences. The purple areas indicate a higher BRIGHT-base dose, and the green areas
have a higher candidate-guide dose.
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(b) Dose distribution comparison on sparing-oriented plans for patient 9.
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(d) Dose distribution comparison on coverage-oriented plans for patient 14.

Figure 6.10: The dose distribution comparisons of NTCP-preselected BRIGHT-base plans
on the left and guide-candidate plans on the right. The plans show their isodose lines, and
the middle highlights their differences. The purple areas indicate a higher BRIGHT-base
dose, and the green areas have a higher candidate-guide dose.
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Chapter 7

Discussion

Throughout this thesis, various methods have been developed and tested to include dose-
response models into BRIGHT s optimization process and balance it with the existing objec-
tives during optimization. The experiments with these methods showed several limitations
regarding the integration of such models. However, the results also demonstrate distinct dif-
ferences and improvements that pave the way for future work. In this section, we examine
these limitations and achievements to detail the areas that future research could focus on.

7.1 Multi-Objective Usage

The results of the first experiments described in Chapter 4{ showed that the tested dose-
response objective definitions were insufficient replacements for BRIGHT’s existing cover-
age and sparing. Based on the results, our objectives produced plans with greatly improved
dose-response outcomes. However, they were unable to adhere to the protocol in many cases
and generally fell short considering the DVI-based metrics. The current dose-response ob-
jectives generally align with coverage and sparing but not enough for this substitution to be
viable.

This outcome was not entirely unsuspected. The protocol considers several DVIs for
various regions, many of which the dose-response models do not cover. Additionally, the
added objective mostly shapes the plans and cannot satisfy the remaining parts either. Nev-
ertheless, the idea of this approach can work. Dose-response models are still heavily re-
searched and keep improving. More or better models covering all aspects of the protocol are
required. With these, the objectives might be able to optimize the predicted dose-response
outcomes and the protocol compliance simultaneously. Only when this is achieved can
these objectives be considered a suitable replacement. Up till then, their usage should re-
main limited to the many-objective setting.

Nevertheless, despite the multi-objective usage not being viable considering the proto-
col compliance, it is useful to evaluate the dose-response objective formulations. Optimiz-
ing them separately from the coverage and sparing objectives provides useful insights into
their correlation and performance in the other space. Using this, we decided to continue
with the additive aggregation method in the many-objective setting. Importantly, compar-
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7.2. Many-Objective Usage

isons with this setup are not straightforward. Furthermore, there currently is no optimal way
to combine the predictions of several models for use in clinical practice. Through empirical
evaluation with the described technique, we landed at our choice. However, concerning both
clinical use and optimization use, more research into an optimal combination technique is
required here.

7.2 Many-Objective Usage

The inclusion of the dose-response objectives in a many-objective setting besides the exist-
ing objectives proved more successful. The results reported in Chapter [6] show improved
TCP and NTCP values while remaining on or close to the coverage-sparing front. Further-
more, distinct shifts in the dose distributions of the new plans have been observed. Plans
with improved dose-response outcomes often show increased dose intensities on CTVyr
and reduced intensities at the tumor edges close to the bladder, rectum, and bowel. Despite
improvements being small, the apparent change in distribution proves the potential of our
concept and execution.

Currently, the obtained improvements are around 0.004-0.005, an average half percent
improvement for each model. The biggest limitation here is that the current version of
BRIGHT already optimizes most DVIs used by the dose-response models, thus already
achieving good results. Alternatively, this limitation can be viewed as a lack of models
or model quality. Through the covariates and their slight non-linearity, these models can
provide unique insights and consider patient-specific needs that the DVI-based objectives
cannot cover. However, the current models used in this thesis fail to extract this potential.

The NTCP models do not consider any non-DVI covariate. Additionally, the single TCP
model does have multiple, but they are ineffective as there are no other TCP models. The
non-DVI covariate values are unaffected by the dose distributions and only shift the risk
functions. When combining multiple functions, these shifts change the relative balance.
However, for a single model, they act as a fixed shift for the objective value; this does not
affect the Pareto dominance or normalized Tchebycheff evaluations. Nevertheless, the slight
non-linearity and the reduced set of organs compared to the sparing objective still managed
to improve plans. However, it is up to future research to explore and exploit the power of
non-DVI covariates. To bring more models and covariates and study what improvements
are possible when this unique and patient-specific information directly influences the opti-
mization process.

A final direction that future work could focus on regards the Tchebycheff adaptations
we designed to improve the many-objective optimization process. The results from Chapter
[6] showed that directly using the default implementation was statistically significantly worse
than or equal to using the normal MO-RV-GOMEA. This was most likely due to the range
discrepancies as explained in Chapter[5] Our fixed version for this using range-normalized
evaluations was better and managed to match the normal setting with the best approach
depending on patient-specifics. Lastly, we introduced the guided weight vector spread on
top of the range-normalized evaluations. It outperformed all and was statistically equal or
significantly improved upon the others for TCP and NTCP, respectively.
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7. DISCUSSION

Notably, these techniques were developed for their use in BRIGHT with its highly cor-
related objectives and its golden-corner focus. Nevertheless, they could be relevant in both
general and niche applications. The range-normalized evaluations should transfer to almost
all use cases, as range discrepancies are common and generally undesired. Even when no
range discrepancies are present, its normalized utopian point definition can still improve op-
timization guidance. The guided weight vector spread is more niche but also configurable.
Its general use can shift the focus to one or possibly multiple areas of the search space
with variable intensities based on scalars and cutoffs. Future research can explore these
directions on more general many-objective problems.
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Chapter 8

Conclusion

This thesis demonstrates how dose-response models can be directly included in the op-
timization of cervical cancer HDR brachytherapy treatment plans using BRIGHT. Several
dose-response objective formulations and optimization techniques have been developed and
evaluated to investigate their impact as either a replacement or extension of the current ob-
jectives.

Empirical results show that for the current set of models, these dose-response objectives
are not a viable replacement for the existing coverage and sparing objectives. Although
plans with better dose-response outcomes are found, these plans fail to satisfy the protocol
for regions not covered by the models. A more complete set of models is required for this
to be feasible. The results also show that the natural objective formulations through mul-
tiplicative and additive aggregations perform best with the current models. Given this, the
additive approach is preferred due to its advantages concerning scalability and extensibility.

Optimizing these dose-response objectives alongside BRIGHT’s existing objectives per-
forms better. This approach produces plans with better dose-response outcomes while re-
maining on or near the coverage-sparing front. However, this many-objective definition
does complicate the optimization process, thereby worsening results. To combat this, we
applied the many-objective MO-RV-GOMEA variant with Tchebycheff scalarizations [34]]
and developed two new extensions for it: normalized evaluations and the guided weight
vector spread. Combining all of these techniques significantly improves the results, as indi-
cated by the Wilcoxon signed-rank test.

Final results in and around BRIGHT’s golden corner show average dose-response im-
provements of around 0.004 for NTCP models at the front and around 0.005 for TCP and
NTCP models by sacrificing some sparing. Furthermore, the plans with improved dose-
response outcomes show distinct differences in their dose distributions. Ultimately, the
results seem only marginal as the current models overlap too much with BRIGHT and lack
non-DVI covariates. However, these results prove that the concept is valid and the execu-
tion works. It sets a strong foundation to build from when more and better models become
available.
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Appendix A

Additional plots

This appendix provides additional plots for several figures shown throughout this thesis.
Figures [A. T [A.2] [A.3] and [A.4]show more cases for the tuning results to support the deci-
sions made. Furthermore, an overview of the golden-corner improvement heatmaps of the
best-performing method is provided in Figure [A.5] showing all cases not included in the
main text. Lastly, extra dose distribution comparisons are included in Figure giving
additional insights into their differences and demonstrating the observed effects over more
patients.
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Figure A.1: Additional plots showing the multi-objective time limit differences for the dose-
response objective formulations in their own TCP-NTCP spaces.
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Figure A.2: Additional plots showing the elitist archive size differences for the many-
objective techniques in the coverage-sparing and TCP-NTCP spaces.
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Figure A.3: Additional plots showing the number of clusters’ differences for the many-
objective techniques in the coverage-sparing and TCP-NTCP spaces.
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Figure A.4: Additional plots showing the time limit differences for the many-objective
techniques in the coverage-sparing and TCP-NTCP spaces.
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Figure A.5: Additional plots showing heatmap TCP and NTCP golden-corner differences
for baseline base” and best-performing candidate ”guide” for all patients not already shown
in the main text. The results are displayed in the coverage-sparing space.
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Figure A.6: Additional dose distribution comparisons of NTCP for the BRIGHT-base plans
on the left and guide-candidate plans on the right. The plans show their isodose lines, and
the middle highlights their differences. The purple areas indicate a higher BRIGHT-base
dose, and the green areas have a higher candidate-guide dose.
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