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Abstract

The effect of soft impingement is modelled for the isothermal, diffusion-controlled growth of spherical precipitates

in the solid-state. A two-stage soft impingement phase, isotropic growth in 3D and site saturation are assumed,

which lead to a mean field approach for soft impingement. A mass balance is used in combination with a

non-linear concentration profile approximation [1], instead of the ordinary linear concentration profile [2][3][4],

to improve the description of growth under conditions of overlapping diffusion fields and low supersaturation.

In addition, the capillary effects, dislocation assisted growth via pipe diffusion, and boundary assisted growth

via boundary diffusion are discussed. The model has been applied to the growth of TiC-precipitates during

tempering of a quenched Fe-C-Mn-Ti steel. The results are in good agreement with published experimental data

of precipitate growth [2].
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1
Basics of Modeling Precipitation

In this chapter, we will introduce the basics of precipitation hardening and modeling of diffusion-controlled

growth to provide a basic understanding of this thesis work. The exact solution and different concentration

profile approximations will be introduced. We will compare the exact solution and the concentration profile

approximations to indicate the importance of using a new concentration profile approximation instead of

the widely used linear concentration profile approximation. Next, we will introduce soft impingement and

additional effects to particle growth. Here, we will discuss available soft impingement models and express the

need for the model introduced in this thesis work.

1.1. Precipitation Hardening
Precipitation hardening is the process in which, during a heat treatment, supersaturated solutes will form small

particles, called precipitates. The newly formed particles can act as barriers for the movement of dislocations,

increasing the yield strength of the material. If enough stress is applied, the dislocations can cut through the

particle or bow around the particle, leaving a dislocation loop. Whether the dislocation cuts or bows depend on

the precipitate size [5]. This can be seen in Figure 1.1.

Figure 1.1: Competition between cutting and bowing [5].

It can be seen that the smaller the precipitate, the easier it is to cut through it. For large precipitates, it is easier

to bow around it, since the distance between large precipitates is usually higher than that of smaller ones. Thus,

there is an optimal size for the precipitate, which resists cutting and bowing as much as possible, given the

radius 𝑅∗
. For this reason, it is important to be able to model the growth of the precipitates. If we understand

the growth mechanics of the precipitates, then we can modify the production method to obtain an optimal size

of the precipitate, which gives the best properties to the material.

1.2. Modeling Particle Growth
1.2.1. Diffusion-Controlled Growth
To be able to model the growth or precipitates, we will have to make use of some assumptions. First, we assume

that the precipitate is a spherical particle. Next, we assume diffusional growth. This means that the growth

1



1.2. Modeling Particle Growth 2

kinetics are controlled by the substituted solute diffusion in the parent matrix. The reason for this is that the

precipitates form from diffusion of alloying elements, which are located at substitutional lattice sites. The

diffusion of these elements is very slow, compared to elements located at interstitial sites. We also assume this

particle to be alone in an infinitely large lattice. Our starting point, to describe the diffusion-controlled growth

problem, is the concentration profile of the solute at the particle, this can be seen in Figure 1.2. The center of the

particle is at distance 0 and R is the radius. 𝑐𝑝 , 𝑐𝑚 and 𝑐∞ are the solute concentration in the particle, in the

matrix at the side of the interface and in the matrix far away from the particle respectively. For 𝑐𝑝 and 𝑐𝑚 , we

take the equilibrium solute concentrations given by the phase diagram. 𝑐∞ is given by the measured solute

concentration in the matrix. We assume a stoichiometric composition in the particle. Throughout the whole

particle the concentration is constant at 𝑐𝑝 . In addition, the concentration of solute in the matrix at the particle

interface approaches the equilibrium value with the particle phase according to the phase diagram 𝑐𝑚 . In the

Figure also mentioned is Ω, supersaturation is given as the relationship between the difference in the solute

concentration in the matrix and the interphase (𝑐∞ − 𝑐𝑚) and the difference in the solute concentration in the

particle and the interphase (𝑐𝑝 − 𝑐𝑚). The term Ω will come back frequently, as the growth rate depends on it.

Figure 1.2: The solute concentration profile [1].

1.2.2. Exact Solution
The exact solution was first produced by Dubé et al [6] and more recently reproduced by Hubert et al [7]. From

Zener [8], it shows that from dimensional arguments the particle radius is given by

𝑅 = 𝜆
√
𝐷𝑡 (1.1)

Where here D is the diffusion coefficient of the solute in the matrix, 𝑡 is time and 𝜆 is the parabolic growth

constant. 𝜆 is a function of the solute concentrations 𝑐𝑝 , 𝑐𝑚 and 𝑐∞, usually by being a function of Ω. For the

given problem, two equations can be set. The flux of the solute atoms that will move away from the interface.

This equation is given by Fick’s law.

𝐹1 = −𝐷 𝛿𝑐
𝛿𝑟

����
𝑅

(1.2)

Where (𝛿𝑐/𝛿𝑥)𝑅 is the concentration gradient of the solute in the matrix near the interphase. Next, the flux of

the atoms that will enter the precipitate due to the movement of the interphase is given by

𝐹2 = (𝑐𝑚 − 𝑐𝑝) 𝑑𝑅
𝑑𝑡

(1.3)

Here R is the position of the interface of the particle and 𝑑𝑅/𝑑𝑡 is the rate of growth. If no accumulations of the

solute is present at the particle interface, then equation (1.2) and (1.3) must be equal. This is called the flux

balance equation.

𝐹1 = 𝐹2 (1.4)

(𝑐𝑚 − 𝑐𝑝)𝑑𝑅
𝑑𝑡

= −𝐷 𝛿𝑐
𝛿𝑟

����
𝑅

(1.5)
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Fick’s second law is used to get an equation for the solute concentration profile. For a spherical particle, this is

given by

𝑑𝑐

𝑑𝑡
= 𝐷( 𝑑

2𝑐

𝑑𝑥2

+ 𝑑2𝑐

𝑑𝑦2

+ 𝑑2𝑐

𝑑𝑧2

) (1.6)

Considering polar coordinates and assuming isotropic diffusion (no vary in 𝜃 and 𝜙). Equation (1.6) changes to

𝑑𝑐

𝑑𝑡
= 𝐷(𝑑

2𝑐

𝑑𝑟2

+ 2

𝑟

𝑑𝑐

𝑑𝑟
) (1.7)

Solving equation (1.5) and (1.7) gives the exact solution of the concentration profile as

𝑐(𝑟, 𝑡)3𝐷 = 𝑐∞ + 1

2

(𝑐𝑚 − 𝑐𝑝)𝜆3𝑒𝑥𝑝(𝜆
2

4

)(1
𝑟
𝑒𝑥𝑝(− 𝑟2

4𝐷𝑡

√
𝐷𝑡) −

√
𝜋

2

𝑒𝑟 𝑓 𝑐( 𝑟

2

√
𝐷𝑡

)) (1.8)

And the parabolic growth constant (𝜆) in 3D as

1

2

𝜆2(1 −
√
𝜋

2

𝜆 exp (𝜆
2

4

)𝑒𝑟 𝑓 𝑐(𝜆
2

)) = Ω (1.9)

The exact solution give a relationship between 𝜆 and Ω. This is a transcendental equation. It is not possible to

express 𝜆 as Ω due to the error function in equation (1.9). Thus is it not possible to express

𝑅 = 𝑓 (Ω, 𝑡) (1.10)

This gives rise to the use of approximations. The available approximations are either made by simplifying either

the diffusion equations (1.2) and (1.3) under specific assumptions, examples are the invariant size and invariant

field approximation [9][10], or by the concentration profile in Figure 1.2, examples are the linear, parabolic

or ”modified linear” concentration profiles [1][3][4]. The terminology for the ”modified linear” concentration

profiles comes from the function of the concentration profile, where the 1D linear concentration profile has been

modified to work for all values of Ω in 3D. This can be confusing, as the concentration profile is not linear itself.

We will from here on refer to the non-linear concentration profile when we mention the approximation. For the

use of our model, we will only focus on the concentration profile approximations.

1.2.3. Approximations
Linear concentration profile approximation [3]
The linear concentration profile approximation is illustrated in Figure 1.3.

Figure 1.3: The solute concentration profile, assuming a linear concentration profile.

The concentration profile is given as

𝑐(𝑟, 𝑡) = 𝑐∞ − 𝑐𝑚
𝐿

(𝑟 − 𝑅(𝑡)) + 𝑐𝑚 (1.11)

Where L is the diffusion length, given by the distance between the particle interface and the end of the

concentration gradient where the concentrations becomes constant. To get an expression for 𝐿, the following

mass balance is solved ∫ 𝑅

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑅+𝐿

𝑅

𝑐(𝑟, 𝑡)4𝜋𝑟2𝑑𝑟 =

∫ 𝑅+𝐿

0

𝑐∞4𝜋𝑟2𝑑𝑟 (1.12)
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This gives

𝐿 = (1
3

(44 + 54𝐵 + 6

√
54 + 132𝐵 + 81𝐵2) 1

3 − 2

3(44 + 54𝐵 + 6

√
54 + 132𝐵 + 81𝐵2) 1

3

− 4

3

)𝑅 (1.13)

Where 𝐵 = 𝑐∞−𝑐𝑝
𝑐𝑚−𝑐∞ = 1

Ω
− 1. To get an expression for 𝜆 in 𝑅 = 𝜆

√
𝐷𝑡, the following flux balance equation is used

(𝑐𝑚 − 𝑐𝑝)𝑑𝑅
𝑑𝑡

= −𝐷 𝛿𝑐
𝛿𝑟

����
𝑅

(1.14)

This gives

𝜆 =

√
2Ω

( 1

3
(44 + 54𝐵 + 6

√
54 + 132𝐵 + 81𝐵2) 1

3 − 2

3
(44 + 54𝐵 + 6

√
54 + 132𝐵 + 81𝐵2)− 1

3 − 4

3
) 1

2

(1.15)

Parabolic concentration profile approximation [4]
The parabolic concentration profile approximation is illustrated in Figure 1.4.

Figure 1.4: The solute concentration profile, assuming a parabolic concentration profile.

The concentration profile is given as

𝑐(𝑟, 𝑡) = 𝑐𝑚 − 2

𝑐∞ − 𝑐𝑚
𝐿

(𝑟 − 𝑅(𝑡)) + 𝑐∞ − 𝑐𝑚
𝐿2

(𝑟 − 𝑅(𝑡))2 (1.16)

𝐿 is calculated using the mass balance form eq (1.12).

𝐿 = (1
3

3

√
5(20 + 27𝐵 + 3

√
3

√
15 + 40𝐵 + 27𝐵2) 1

3 −
3

√
25

3(20 + 27𝐵 + 3

√
3

√
15 + 40𝐵 + 27𝐵2) 1

3

− 5

3

)𝑅 (1.17)

Where 𝐵 = 𝑐∞−𝑐𝑝
𝑐𝑚−𝑐∞ = 1

Ω
− 1. To get an expression for 𝜆 in 𝑅 = 𝜆

√
𝐷𝑡, the flux balance from equation (1.14) is used,

this gives

𝜆 =
2

√
3Ω− 1

2

( 3

√
5(20 + 27𝐵 + 3

√
3

√
15 + 40𝐵 + 27𝐵2) 1

3 − 3

√
25(20 + 27𝐵 + 3

√
3

√
15 + 40𝐵 + 27𝐵2)− 1

3 − 5) 1

2

(1.18)

Non-linear concentration profile approximation [1]
The non-linear concentration profile approximation is illustrated in Figure 1.5.

The concentration profile is given as

𝑐(𝑟, 𝑡) = (𝑐𝑚 − 𝑐∞)𝑅
𝑟
(1 − 𝑟 − 𝑅

𝐿
) + 𝑐∞ (1.19)
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Figure 1.5: The solute concentration profile, assuming a non-linear concentration profile.

𝐿 is calculated using the mass balance form eq (1.12).

𝐿 = (3
2

(−1 +
√

1 + 8

9

(1 −Ω

Ω
)))𝑅 (1.20)

To get an expression for 𝜆 in 𝑅 = 𝜆
√
𝐷𝑡, the flux balance from equation (1.14) is used, this gives

𝜆 =

√√√
2Ω(1 + 2

3

1

−1 +
√

1 + 8

9
( 1−Ω

Ω
)
) (1.21)

Comparing the concentration profile approximations
To test the validity of the different concentration profile approximations, we will compare the resulting parabolic

growth constant (𝜆) with that of the exact solution. This can be seen in Figures 1.6 and 1.7.

Figure 1.6: A comparison of 𝜆 for the exact solution and the concentration profile approximations.

From Figures 1.6 and 1.7, it can be seen that the linear and parabolic concentration profile approximation perform

poorly at low Ω compared to that of the non-linear concentration profile approximation. All concentration

profile approximations seem to perform well at higher Ω. To be exact, the non-linear concentration profile

approximation performs best at Ω < 0.486, and the parabolic concentration profile approximation at Ω > 0.486.
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Figure 1.7: A comparison of 𝜆 for the exact solution and the concentration profile approximations. Normalized to 𝜆 of the exact solution.

1.3. Introducing Soft Impingement
Soft impingement is an effect that slows precipitate growth due to overlapping concentration profiles. Usually,

growth occurs in two stages [3][4]. The first stage is where there is no overlap in the concentration profile

of different precipitates. In the second stage, the concentration profiles of different precipitates will start to

overlap and reduce the growth rate. We now remove the assumption made earlier that there is only a single

precipitate. The second stage includes overlap of the solute concentration profiles of the initial and neighboring

particles. Many soft impingement models are available [3][4][11][12][13]. Most models focus only on the linear

concentration profile [3][11][12][13][14]. Chang et al. [4] also include other polynomial functions, like the

parabolic concentration profile, but only focuses on 1D soft impingement and Fang et al. [14] introduced a 3D

mixed-mode model and focused on the parabolic concentration profile. We saw in Figure 1.6 and 1.7 that the

linear and parabolic concentration profile approximation perform less accurate at lower supersaturation. This

shows that there is a gap in the literature for an accurate soft impingement model for low supersaturation, which

is usually the case for precipitation. This thesis work aims to apply the new ’modified’ linear or non-linear

concentration profile for the design of a new soft impingement model which will accurately predict particle

growth for precipitation but is also valid at all values for Ω. This thesis also aims so address the difference

between the non-linear and the poly nominal concentration profile approximations to validate the use of the

non-linear concentration profile approximation. The soft impingement models will be introduced in Chapter 2
and its application will be discussed in Chapter 4. All the calculations for the model design are available in the

appendix.

1.4. Introducing Additional Effects
Besides the design of a soft impingement model with the non-linear concentration profile approximation, this

thesis also introduces additional effects to the particle growth like the Gibbs Thomson effect, which accounts for

the change in equilibrium concentration at the interface of the particle due to interfacial energies, and assisted

growth effects, which account for highly diffusive paths like dislocations and boundaries. The additional effects

will be introduced separately of the soft impingement model design in Chapter 3 and will be discussed in

Chapter 4.



2
Soft Impingement Model

In this chapter, we will first explain the basis of the model. We will list and validate all the assumptions used in

the soft impingement model. Next, we will talk about three concentration profiles that we will apply the model

to. Namely, the widely used linear concentration profile, the parabolic concentration profile and a non-linear

concentration profile. We will preform the 3D mass balance on the given concentration profiles to calculate the

start of soft impingement, end of soft impingement, and growth during soft impingement. We will end the

chapter with a summary and flow chart of the model.

2.1. Model Description
The diffusional growth model is based on the work of Chen et al. [4]. For the assumption of diffusional growth,

a one-dimensional mass balance was used to account for the effect of soft impingement. Chen et al. applied the

model to the austenite to ferrite transformation. The assumption of one dimension is valid for this case, since

the ’particle’, in this case ferrite, is large enough to assume a planar interface. The one-dimensional assumption

becomes invalid for the case of smaller particles, such as precipitation of alloy carbides in steel. In this case, it

is more accurate to assume a spherical particle. As a result of the problem being thee-dimensional, the mass

balance will change, as will be seen in this chapter. In addition, Chen et al. worked with a polynomial function

of the concentration profile. Here we will include a non-polynomial function for the concentration profile to

improve the model at low supersaturation.

The 3D soft impingement model is based on the following mass balance.∫ 𝑅

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑥

𝑅

𝑐(𝑟, 𝑡 , 𝑐𝑠)4𝜋𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞
0

4𝜋𝑟2𝑑𝑟 (2.1)

Where 𝑥 is half the distance from the center of the initial particle to the neighboring particle, 𝑐∞
0

is the solute

concentration in the matrix, far away from the particle, before soft impingement and 𝑐𝑠 is the solute concentration

at 𝑟 = 𝑥. A visualization of the model, using the linear concentration profile approximation, can be seen in

Figure 2.1. The gray area under the function represents the left side of the mass balance equation. The right side

represents the mass over the same volume before nucleation.

2.2. Assumptions
We need some assumptions to be able to model the growth of precipitates. Below is a summary of all the

assumptions and their validation used in the model of which most are already mentioned:

• The precipitate is a spherical particle (𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 4

3
𝜋𝑟3):

Precipitates can be assumed spherical since this is the optimal morphology due to the smallest area over

volume ratio. Especially for small particles, because their ratio is highest.

• Growth of the particle is diffusion-controlled (𝑅 = 𝑓 (𝐷, 𝑡,Ω)):
The growth or precipitates can be assumed to be controlled by diffusion since precipitates contain alloying

elements located at substitutional lattice sites, which means that diffusion will occur through vacancy

diffusion and is very slow compared to elements at interstitial lattice sites.

7
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Figure 2.1: Model for growth of particles using the linear concentration profile approximation. 𝑐𝑝 is the solute concentration in the particle,

𝑐∞
0

far away from the particle before soft impingement, 𝑐𝑚 is the solute concentration in the matrix at the interface of the particle, 𝑐𝑠 is the

solute concentration at 𝑟 = 𝑥, 𝑅 is the particle radius and 𝑥 is half the distance from the center of the initial particle to the neighboring

particle.

• The particle has stoichiometric composition (𝑐𝑝 = constant):
To simplify the mathematics, we assume that the concentration in the particle is constant from the center

until the interface.

• All particles nucleate at the same time (𝑅1 = 𝑅2, 𝐿1 = 𝐿2):
If nucleation rate is high, we can assume that all particles nucleate at the same time. The initial particle

will have the same size and diffusion length as the neighboring particle.

• Uniform distribution of particles (𝑥)
Every particle has its neighboring particle at the same distance. The distance from the center of the initial

particle to the middle of the initial and neighboring particle is 𝑥.

• Soft impingement occurs in two stages:
The first stage includes non-overlapping concentration profiles and the second stage includes overlapping

concentration profiles.

• No hard impingement:
We assume that the particle will not reach a surface or second phase that forces growth to slow down or

stop.

In addition to the assumptions mentioned, we will include some assumptions in the soft impingement model,

which will be removed in Chapter 3, where we discuss additional effects on the growth of particles:

• No capillary effects or ”Gibbs Thomson Effect” (𝑐𝑚 = constant equilibrium concentration):
The concentration at in the matrix at the particle interface will be at the concentration according to the phase

diagram taken from Thermo-Calc. The interfacial energy of the particle will not affect the equilibrium

concentration.

• No dislocations or boundaries:
No defects are present that can act as highly diffusive paths, such as dislocations or boundaries.
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2.3. Concentration Profiles
As mentioned, we will use the linear, parabolic and non-linear concentration profile. A summary of the

concentration profiles and their dependence on 𝐿 and 𝑅 is given in Table 2.1. Here, 𝑐𝑖(𝑟, 𝑡) is the concentration

profile of the initial particle for values of 𝑟 in the range 𝑅 < 𝑟 < (𝑅 + 𝐿).

Linear concentration profile 𝐿𝑙𝑖𝑛(Ω) = ( 1

3
(𝐴𝑙𝑖𝑛)

1

3 − 2

3(𝐴𝑙𝑖𝑛 )
1

3

− 4

3
)𝑅

𝑐𝑖(𝑟, 𝑡) = 𝑐∞−𝑐𝑚
𝐿 (𝑟 − 𝑅(𝑡)) + 𝑐𝑚 𝐴𝑙𝑖𝑛 = 44 + 54𝐵 + 6

√
54 + 132𝐵 + 81𝐵2

𝐵 = 1

Ω
− 1

Parabolic concentration profile 𝐿𝑝𝑎𝑟(Ω) = ( 1

3

3

√
5(𝐴𝑝𝑎𝑟)

1

3 −
3
√

25

3(𝐴𝑝𝑎𝑟 )
1

3

− 5

3
)𝑅

𝑐𝑖(𝑟, 𝑡) = 𝑐𝑚 − 2
𝑐∞−𝑐𝑚
𝐿 (𝑟 − 𝑅(𝑡)) + 𝑐∞−𝑐𝑚

𝐿2
(𝑟 − 𝑅(𝑡))2 𝐴𝑝𝑎𝑟 = 20 + 27𝐵 + 3

√
3

√
15 + 40𝐵 + 27𝐵2

𝐵 = 1

Ω
− 1

non-linear concentration profile 𝐿𝑚𝑜𝑑(Ω) = ( 3

2
(−1 +

√
1 + 8

9
( 1−Ω

Ω
)))𝑅

𝑐𝑖(𝑟, 𝑡) = (𝑐𝑚 − 𝑐∞)𝑅𝑟 (1 − 𝑟−𝑅
𝐿 ) + 𝑐∞

Table 2.1: Functions of 𝐿(Ω) for different concentration profiles where Ω = 𝑐∞−𝑐𝑚
𝑐𝑝−𝑐𝑚 .

To plot the concentration profiles of the neighboring particles, we need to adjust the initial concentration profiles

as described below:

Linear approximation: 𝑐𝑎(𝑟, 𝑡) = 𝑐𝑖(−(𝑟 − (⟨𝑑⟩ − 𝐿)), 𝑡) + (𝑐∞
0
− 𝑐𝑚)

Parabolic approximation: 𝑐𝑎(𝑟, 𝑡) = 𝑐𝑖((𝑟 + (2𝐿 − (⟨𝑑⟩ − 2𝑅)), 𝑡)
Non-linear approximation: 𝑐𝑎(𝑟, 𝑡) = 𝑐𝑖(−(𝑟 − ⟨𝑑⟩), 𝑡)

Here, 𝑐𝑎(𝑟, 𝑡) is the concentration profile of the neighboring particle for values of 𝑟 in the range (2𝑥 − 𝑅 − 𝐿) <
𝑟 < (2𝑥 − 𝑅).

2.4. Start of Soft Impingement (𝑅𝑐)
First we calculate the critical radius the precipitate where soft impingement’s starts (𝑅𝑐). This is the radius of the

particle where the concentration profile of the initial particle and neighboring particle meet. This is illustrated

for the linear concentration profile in Figure 2.2.

Here, 𝑥 is half of the average distance between the center of neighboring particles, we assume that all particles

are at a distance ⟨𝑑⟩ from each other. Since we know 𝐿 for all three concentration profiles, we can calculate 𝑅𝑐 .

𝑅𝑐 + 𝐿 = 𝑥 (2.2)

For all concentration profiles, 𝐿 can be written as

𝐿 = 𝑚(Ω)𝑅𝑐 (2.3)

This gives

𝑅𝑐 + 𝑚(Ω)𝑅𝑐 = 𝑥 (2.4)

𝑅𝑐(1 + 𝑚(Ω)) = 𝑥 (2.5)

𝑅𝑐 =
𝑥

1 + 𝑚(Ω) (2.6)

Functions for 𝑚(Ω) are shown it Table 2.2. Since 𝑚(Ω) is different for each concentration profile, there will be

different starting points for soft impingement.
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Figure 2.2: Start of soft impingement for the linear concentration profile approximation. 𝑅𝑐 is the critical radius, 𝐿 is the diffusion length, 𝑥
is the distance from the center of the initial particle to the middle of the initial and neighboring particle.

Linear concentration profile 𝑚𝑙𝑖𝑛(Ω) = 1

3
(𝐴𝑙𝑖𝑛)

1

3 − 2

3(𝐴𝑙𝑖𝑛 )
1

3

− 4

3

𝑐(𝑟, 𝑡) = 𝑐∞−𝑐𝑚
𝐿 (𝑟 − 𝑅(𝑡)) + 𝑐𝑚 𝐴𝑙𝑖𝑛 = 44 + 54𝐵 + 6

√
54 + 132𝐵 + 81𝐵2

𝐵 = 1

Ω
− 1

Parabolic concentration profile 𝑚𝑝𝑎𝑟(Ω) = 1

3

3

√
5(𝐴𝑝𝑎𝑟)

1

3 −
3
√

25

3(𝐴𝑝𝑎𝑟 )
1

3

− 5

3

𝑐(𝑟, 𝑡) = 𝑐𝑚 − 2
𝑐∞−𝑐𝑚
𝐿 (𝑟 − 𝑅(𝑡)) + 𝑐∞−𝑐𝑚

𝐿2
(𝑟 − 𝑅(𝑡))2 𝐴𝑝𝑎𝑟 = 20 + 27𝐵 + 3

√
3

√
15 + 40𝐵 + 27𝐵2

𝐵 = 1

Ω
− 1

Non-linear concentration profile 𝑚𝑚𝑜𝑑(Ω) = ( 3

2
(−1 +

√
1 + 8

9
( 1−Ω

Ω
)))

𝑐(𝑟, 𝑡) = (𝑐𝑚 − 𝑐∞)𝑅𝑟 (1 − 𝑟−𝑅
𝐿 ) + 𝑐∞

Table 2.2: Functions of 𝑚(Ω) for different concentration profiles where Ω = 𝑐∞−𝑐𝑚
𝑐𝑝−𝑐𝑚 .
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2.5. End of Growth (𝑅 𝑓 )
The growth of the particle end when the concentration in the matrix reaches 𝑐𝑚 , this happens when the particle

radius reaches 𝑅 𝑓 and is independent of concentration profile approximation. This is illustrated in Figure 2.3.

Figure 2.3: End of soft impingement and growth for any concentration profile approximation. 𝑅𝑐 is the critical radius, 𝐿 is the diffusion

length, 𝑥 is the distance from the center of the initial particle to the middle of the initial and neighboring particle.

To calculate 𝑅 𝑓 , we use the following mass balance∫ 𝑅 𝑓

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑥

𝑅 𝑓

𝑐𝑚4𝜋𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞4𝜋𝑟2𝑑𝑟 (2.7)

Solving for 𝑅 𝑓 gives

𝑅 𝑓 = 𝑥Ω
1

3 (2.8)

Since 𝑅 𝑓 depends on the supersaturation and is independent of the concentration profile, it will be the same for

all approximation.

2.6. Growth during Soft Impingement (𝑐𝑠)
It is now known when soft impingement starts and ends. From Figure 2.2 and 2.3 it can be seen that the

concentration at 𝑟 = 𝑥 starts at 𝑐∞ and ends at 𝑐𝑚 . The concentration at 𝑟 = 𝑥 during soft impingement will be in

the following range: 𝑐∞
0

< 𝑐𝑠 < 𝑐𝑚 . To define a function for 𝑐𝑠 , we will use the following mass balance:∫ 𝑅

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)4𝜋𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞
0

4𝜋𝑟2𝑑𝑟 (2.9)

We replace 𝑐∞ in the concentration profile by 𝑐𝑠 since this changes over time. Also, since the function for 𝐿 loses

its meaning after soft impingement, we replace 𝐿 by 𝑥 − 𝑅. The full calculations for 𝑐𝑠 for all concentration

profile approximations are available in the appendix in Appendix. The concentration profiles and solutions of

equation (2.9) are as followed:

Linear concentration profile

𝑐(𝑟, 𝑡) = 𝑐 𝑙𝑖𝑛𝑠 − 𝑐𝑚
𝑥 − 𝑅 (𝑟 − 𝑅) + 𝑐𝑚 (2.10)

𝑐 𝑙𝑖𝑛𝑠 =
𝑥3(𝑐∞

0
− 𝑐𝑚) + 𝑅3(𝑐𝑚 − 𝑐𝑝)

𝐴1

+ 𝑐𝑚 (2.11)

𝐴1 = 3( 1

𝑥 − 𝑅
1

4

(𝑥4 − 𝑅4) − 𝑅

𝑥 − 𝑅
1

3

(𝑥3 − 𝑅3)) (2.12)

Parabolic concentration profile

𝑐(𝑟, 𝑡) = 𝑐𝑚 − 2

𝑐
𝑝𝑎𝑟
𝑠 − 𝑐𝑚
𝑥 − 𝑅 (𝑟 − 𝑅) + 𝑐

𝑝𝑎𝑟
𝑠 − 𝑐𝑚
(𝑥 − 𝑅)2 (𝑟 − 𝑅)2 (2.13)
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𝑐
𝑝𝑎𝑟
𝑠 =

𝑥3(𝑐∞
0
− 𝑐𝑚) + 𝑅3(𝑐𝑚 − 𝑐𝑝)

𝐴2

+ 𝑐𝑚 (2.14)

𝐴2 = 3( 2

𝑥 − 𝑅 (1
4

(𝑥4 − 𝑅4) − 1

3

𝑅(𝑥3 − 𝑅3)) − 1

(𝑥 − 𝑅)2 (
1

5

(𝑥5 − 𝑅5) − 1

2

𝑅(𝑥4 − 𝑅4) + 1

3

𝑅3(𝑥3 − 𝑅3))) (2.15)

Non-linear concentration profile

𝑐(𝑟, 𝑡) = (𝑐𝑚 − 𝑐𝑚𝑜𝑑𝑠 )𝑅
𝑟
(1 − 𝑟 − 𝑅

𝑥 − 𝑅 ) + 𝑐𝑚𝑜𝑑𝑠 (2.16)

𝑐𝑚𝑜𝑑𝑠 =
𝑐∞

0
𝑥3 − 𝑐𝑝𝑅3 − 𝑐𝑚𝐴3

𝑥3 − 𝑅3 − 𝐴3

(2.17)

𝐴3 = 3(1
2

(𝑥2 − 𝑅2)𝑅 − 1

𝑥 − 𝑅 (1
3

(𝑥3 − 𝑅3)𝑅 − 1

2

(𝑥2 − 𝑅2)𝑅2)) (2.18)

𝑐𝑠 will now replace 𝑐∞ in the calculation of Ω.

Ω =
𝑐𝑠 − 𝑐𝑚
𝑐𝑝 − 𝑐𝑚 (2.19)

Note that 𝑐𝑠 for all concentration profiles is a function of 𝑅, while we know that 𝑅 = 𝑓 (Ω). Therefore, the

problem can only be solved numerically. For the model, we use 𝑐𝑠 from the last time step to calculate 𝑅 for the

new time step.
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2.7. Model Summary

Figure 2.4: Soft impingement model chart of particle growth assuming diffusional

growth.

In this part, we will explain the model

shown in Figure 2.4. This chart is the basis

for this thesis work.

To start, we need to input the concentra-

tion in the particle (𝑐𝑝), in the matrix far

from the particle (𝑐∞) and the concentra-

tion in the matrix at the particle interface

(𝑐𝑚). We also need a time step size (Δ𝑡)
and an end time (𝑡𝑠𝑡𝑜𝑝). The end time is

usually the time between nucleation and

annealing time. Next, we need a starting

size (𝑅0), this is the size of the particle after

nucleation, and the average distance of the

center of the particle until the middle of the

initial and neighboring particle (𝑥). Since

we assume diffusional growth, we need

the diffusion coefficient (𝐷). We calculate

𝐷 with

𝐷 = 𝐷0 exp ( −𝑄
𝑅𝑔𝑐𝑇

) (2.20)

Where 𝐷0 is the pre-exponential factor, 𝑄
is the activation energy for diffusion ,𝑇 is

the temperature (in K) and 𝑅𝑔𝑐 is the gas

constant, not to be confused with the par-

ticle radius. With this, we first calculate

𝑅𝑐 and 𝑅 𝑓 according to equation (2.6) and

(2.8) respectively.

The iterative loops start here. At the start

of the loop, we check if 𝑅 > 𝑅𝑐 . If this

is not the case, soft impingement has not

started and we will use 𝑐∞ in the calcula-

tion of Ω. Else, the concentration profiles

overlap, and we use 𝑐𝑠 , according to equa-

tion (2.11), (2.14) or (2.17) depending on

the concentration profile approximation,

for the calculation of Ω. We use Ω and 𝑅
to calculate 𝜆 according to equation (2.11),

(2.14) or 2.17.
𝑑𝑅
𝑑𝑡 is calculated by using the

derivative of equation (1.1), given by

𝑑𝑅

𝑑𝑡
=

1

2

𝜆

√
𝐷

𝑡
(2.21)

For R we use the following numerical cal-

culation.

𝑅𝑛 = 𝑅𝑛−1 + ( 𝑑𝑅
𝑑𝑡

)𝑡=𝑡𝑛−1+ 1

2
Δ𝑡 · Δ𝑡 (2.22)

Due to the numerical nature of the model

and the possibility of a large Δ𝑡, it is possi-

ble to pass 𝑅 𝑓 . In this case, the model will

break. Therefore, if 𝑅 > 𝑅 𝑓 , we set 𝑅 back to the value calculated for 𝑅 𝑓 . This loop will continue until the final

time is reached. From here it is possible to plot 𝑅 as a function of time or give the final particle size 𝑅𝑛 .
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3
Additional Effects

In addition to the effect of soft impingement, we will add the effects of capillary forces (Gibbs Thomson Effect)

from Perez et al. [15] and dislocation assisted growth, using the multi dislocation model from Porter et al. [16],

the single dislocation model from Wang et al. [17], the multi boundary model [18] and the single boundary

from Cheng et al. [19]. Lastly, we will summarize the soft impingement model with all its additions, including

an updated flow chart. A more detailed description of the additional effects and calculations can be found in the

appendix in Chapter 6.

3.1. Gibbs Thomson Effect
The Gibbs Thomson effect accounts for the effect interfacial energies have on the equilibrium concentration in

the matrix at the interface of the particle (𝑐𝑚). Most soft impingement models do not include the Gibbs Thomson

effect, due to it only playing a role if we assume a spherical particle in 3D space. We will be using the same

approximation for the Gibbs Thomson effect that Öhlund et al. [2] used. The approximation is from Perez et al.

[15].

The general Gibbs-Thomson equation is given by

2𝛾𝑣
𝛽
𝑎𝑡

𝑟𝑘𝑇
= (1 − 𝑐𝑝)𝑙𝑛(

1 − 𝑐𝑚
𝑅

1 − 𝑐𝑚 ) + 𝑐𝑝 𝑙𝑛(
𝑐𝑚
𝑅

𝑐𝑚
) (3.1)

Where 𝑐𝑝 , 𝑐𝑚 and 𝑐𝑚
𝑅

are the solute concentration in the particle, in the matrix at the side of the interface without

and with interfacial energies and 𝑣
𝛽
𝑎𝑡 is the atomic volume of the particle. This equation does not have simple

solutions. Perez [15] discussed three approximations for this equation, but we will only focus on one of the

approximation since the other two are not applicable in the radii range of precipitation (∼ 1.𝐸 − 09𝑚) according

to Perez [15] as seen in Figure 3.1.

For the assumption where 𝑐𝑚
𝑅
<< 1 and 𝑐𝑚 << 1, the first term in equation (A.84) can be neglected and then

rewritten so we obtain a function for 𝑐𝑚
𝑅

as

𝑐𝑚𝑅 = 𝑐𝑚𝑒𝑥𝑝(
2𝛾𝑣

𝛽
𝑎𝑡

𝑐𝑝𝑅𝑘𝑇
) (3.2)

We now have a function of 𝑐𝑚
𝑅

depending on 𝑅. Thus, this can only be solved numerically, similar to the functions

of 𝑐𝑠 . We will calculate 𝑐𝑚
𝑅

the same way that we calculate 𝑐𝑠 , where at every loop we use 𝑅 from the previous

step. Now Ω depends on 𝑐𝑚
𝑅

and 𝑐𝑠 as functions of 𝑅.

3.2. Assisted Growth Models
According to the classical nucleation theory, defects such as dislocations or boundaries serve as preferential

nucleation sites for precipitates because relieving some of the stress and interfacial energy associated with

defects lowers the activation energy for nucleation [20]. Wang et al.[17] mentioned the mechanisms in which

dislocation affects growth. Dislocations can attract solute elements because of attractive forces from their stress

fields. In addition, the diffusion coefficient inside the dislocations is higher than that of the matrix [7][16].

Dislocations will act as highly diffusive paths for the solute elements, increasing the growth rate of precipitates

15
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Figure 3.1: The exact solution of equation (A.84) compared with three approximations for 𝐹𝑒3𝐶 precipitation [15]. Note that in this thesis,

we use the following notation: 𝑟 = 𝑅, 𝑋𝑒𝑞 = 𝑐𝑚
𝑅

and 𝑋𝑒𝑞∞ = 𝑐𝑚 , where 𝑐 is the solute fraction.

located at the dislocation. Cheng et al. [19] mentioned a similar view on boundary diffusion. where boundaries

will also act as highly diffusive paths. In this part, we will discuss four models to add to our model from

Chapter 2, which include either the dislocation- or the boundary assisted growth effect.

3.2.1. Single Dislocation Model
Wang et al. [17] proposed a model to account for the effect that dislocations have on the growth rate of the

precipitate. Their model is illustrated in Figure 3.2.

Figure 3.2: Simplified geometry of a particle on a dislocation line [17].

They assumed the precipitate to be a spherical particle, in this case, laying in the center of the dislocation line,

which is assumed to be a cylinder with radius 𝑟0, usually related to the burgers vector (b) [2][17]. The overall

growth rate is approximated to be the sum of the growth rate due to the diffusion in the pipe and in the lattice.

𝑑𝑅

𝑑𝑡
|𝑡ℎ =

𝑑𝑅

𝑑𝑡
|𝑙 +

𝑑𝑅

𝑑𝑡
|𝑝 (3.3)



3.2. Assisted Growth Models 17

According to the model,
𝑑𝑅
𝑑𝑡 |𝑝 is given as

𝑑𝑅

𝑑𝑡
|𝑝 =

𝑐∞ − 𝑐𝑚
𝑐𝑝 − 𝑐𝑚

√
2𝑟0

𝜋𝑅2

√
𝐷𝑝𝐷𝑙

√
𝑓 (𝑡′) (3.4)

Where

𝑓 (𝑡′) =
∫ ∞

0

𝑒𝑥𝑝(−𝑡′𝑥2)
𝑥(𝐽2

0
(𝑥) + 𝑌2

0
(𝑥))

𝑑𝑥 (3.5)

and

𝑡′ =
𝐷𝑙𝑡

𝑟2

0

(3.6)

Here, 𝐽0(𝑥) and 𝑌0(𝑥) are Bessel functions of the first and second kind of the zeroth order and 𝐷𝑝 is the diffusion

coefficient of the solute in the dislocation pipe. To use the single dislocation model, we will add
𝑑𝑅
𝑑𝑡 |𝑝 to our

previously calculated
𝑑𝑅
𝑑𝑡 |𝑙 and use this summation as the total growth rate.

3.2.2. Single Boundary Model
Cheng et al. [19] proposed a model similar to the single dislocation model, but focused on boundary diffusion.

Their model is illustrated in Figure 3.3.

Figure 3.3: Simplified geometry of a particle on a boundary represented by a disk [19].

Here, they assumed a spherical precipitate located in the center of a disk with a finite thickness. The disk

represents the boundary, and the mass diffusion is accelerated in the disk. Like the single dislocation model, the

overall growth rate is approximated to be

𝑑𝑅

𝑑𝑡
|𝑡ℎ =

𝑑𝑅

𝑑𝑡
|𝑙 +

𝑑𝑅

𝑑𝑡
|𝑏 (3.7)

According to the model,
𝑑𝑅
𝑑𝑡 |𝑏 is given as

𝑑𝑅

𝑑𝑡
|𝑏 = Ω( 𝛿𝐷𝑏

4𝑅2

+ 𝛿𝐷𝑏𝛽

2𝑅
+ (𝐷𝑏

𝜋𝑡
) 1

2 ) (3.8)

Where

𝛽 =

√
4𝐷𝑙

𝐷𝑏𝛿𝑑0

(3.9)

Here, 𝐷𝑏 is the diffusion coefficient in the boundary, 𝛿 is the boundary thickness and 𝑑0 is the average grain size.

This model does not include Bessel functions, as approximations were made to simplify them, as seen in the

Appendix. In addition, Cheng et al. used the invariant size approximation [9] for
𝑑𝑅
𝑑𝑙 |𝑙 . Here we will only use

the function of
𝑑𝑅
𝑑𝑙 |𝑏 from the model and use the concentration profile approximations for

𝑑𝑅
𝑑𝑙 |𝑙 . To include the

single boundary model, we use the same process as for the single dislocation model.
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3.2.3. Use of apparent diffusivities to describe high-diffusivity paths
The assisted growth effect of highly diffusive paths can also be described by an apparent diffusion coefficient.

We will first introduce the multi dislocation model from from the book ’Phase Transformations in Metals and

Alloys’ by Porter and Easterling [16] and was used by Öhlund [2]. Secondly we will introduce a boundary

assisted growth model which we will name ’the multi boundary model’ mentioned in the book ’Microstructure

Control in Metals’ by Santofimia and Sietsma [18].

Figure 3.4: Multi dislocation model [16].

The multi dislocation model is illustrated in Figure 3.4. They assumed steady-state diffusion with equal

concentration gradients through both the dislocation and the lattice. The atom fluxes are then equal to

𝐽𝑙 = −𝐷𝑙
𝑑𝑐

𝑑𝑥
(3.10)

𝐽𝑝 = −𝐷𝑝
𝑑𝑐

𝑑𝑥
(3.11)

Where 𝐷𝑙 and 𝐷𝑝 are the diffusion coefficient for the lattice and the dislocation or pipe respectively. The total

flux then depends on the relative cross-sectional areas. Let us assume that the lattice area is 𝐴𝑙 and the area of

all dislocations in this area is 𝐴𝑝 . Then the total flux is given as

𝐽 =
𝐽𝑙𝐴𝑙 + 𝐽𝑝𝐴𝑝

𝐴𝑙
= −(

𝐷𝑙𝐴𝑙 + 𝐷𝑝𝐴𝑝

𝐴𝑙
) 𝑑𝑐
𝑑𝑥

(3.12)

The apparent diffusion coefficient is then given as

𝐷𝑎𝑝𝑝 =
𝐷𝑙𝐴𝑙 + 𝐷𝑝𝐴𝑝

𝐴𝑙
= 𝐷𝑙 + 𝐷𝑝

𝐴𝑝

𝐴𝑙
(3.13)

or

𝐷𝑎𝑝𝑝

𝐷𝑙
= 1 + 𝑔

𝐷𝑝

𝐷𝑙
(3.14)

Where 𝑔 is the cross-sectional area of the dislocation per unit area of the lattice. Note that 𝑔
𝐷𝑝

𝐷𝑙
is small at a

larger temperature, due to rapid diffusion through the lattice. At lower temperatures, 𝑔
𝐷𝑝

𝐷𝑙
is much larger, due to

the lower activation energy for diffusion through the dislocation. According to Öhlund [2], 𝑔 can be related to

the dislocation density.

𝑔 = 𝜌𝜋b2

(3.15)

Where b is the burgers vector and 𝜌 is the dislocation density. It is known that during annealing recovery of

dislocations occurs which makes 𝑔 a function of time. Öhlund extended equation (3.15) to include this recovery.

𝑔(𝑡) = 𝜌𝐴𝑠𝑄𝜋b2 − 𝐹(𝑡)(𝜌𝐴𝑠𝑄𝜋b2 − 𝜌𝑅𝜋b2) (3.16)

Where 𝜌𝐴𝑠𝑄 and 𝜌𝑅 are the dislocation densities as quenched and after recovery respectively. 𝐹(𝑡) is a function

that can be modelled to match the experimental data for the dislocation densities. Knowing the evolution of

the dislocation density allows for a more accurate description of the apparent diffusion coefficient (𝐷𝑎𝑝𝑝), but

separate measurements must be taken of the dislocation density before the growth rate for the precipitates can

be calculated. In addition, values for 𝐷𝑝 for alloying elements are usually not available. Öhlund assumed the

ratio of the pipe diffusion coefficient of the alloying element and the lattice diffusion coefficient to be related to
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the ratio between the lattice diffusion coefficient of the alloying element and iron, and the ratio of the matrix

element self-diffusion through the dislocation and through the lattice. In the case of steel, this is given as

𝐷
𝑥/𝑎𝑙𝑙𝑜𝑦
𝑝

𝐷
𝑥/𝑎𝑙𝑙𝑜𝑦
𝑙

=
𝐷
𝑥/𝐹𝑒
𝑙

𝐷
𝐹𝑒/𝐹𝑒
𝑙

∗
𝐷
𝐹𝑒/𝐹𝑒
𝑝

𝐷
𝐹𝑒/𝐹𝑒
𝑙

(3.17)

Where

𝐷
𝑥/𝑎𝑙𝑙𝑜𝑦
𝑝

𝐷
𝑥/𝑎𝑙𝑙𝑜𝑦
𝑙

is the ratio between the pipe and lattice diffusion coefficient of element x in the alloy lattice,

𝐷
𝑥/𝐹𝑒
𝑙

𝐷
𝐹𝑒/𝐹𝑒
𝑙

is the ratio between the lattice diffusion coefficient of element x and iron in an iron lattice and

𝐷
𝐹𝑒/𝐹𝑒
𝑝

𝐷
𝐹𝑒/𝐹𝑒
𝑙

is the ratio

between the pipe and lattice diffusion coefficient of iron in an iron lattice. The term

𝐷𝐹𝑒
𝑝

𝐷𝐹𝑒
𝑙

will be different at

different temperatures. The values of the diffusion coefficient in the lattice and in the dislocations are measured

by Shima et al. [21] for high purity iron. To use the multi dislocation model, we will change 𝐷 in the model to

𝐷𝑎𝑝𝑝 . If the change in dislocation density is included, then we will calculate 𝐷𝑎𝑝𝑝 at every time step.

The multi boundary model is illustrated in figure 3.5 [18]. It has a similar definition as the multi dislocation

model where steady-state diffusion with equal concentration gradients through both the boundary and lattice is

assumed.

Figure 3.5: Multi boundary model.

The apparent diffusion coefficient can be written as

𝐷𝑎𝑝𝑝 = (1 − 𝑓𝑏)𝐷𝑙 + 𝑓𝑏𝐷𝑏 (3.18)

Where 𝐷𝑏 is the diffusion coefficient in the boundary and 𝑓𝑏 is the volume fraction of the boundaries. 𝑓𝑏 can be

approximated as

𝑓𝑏 =
𝛿
𝑑0

(3.19)

Where 𝛿 and 𝑑0 are the boundary thickness and mean grain diameter respectively. This gives

𝐷𝑎𝑝𝑝 = (1 − 𝛿
𝑑0

)𝐷𝑙 +
𝛿
𝑑0

𝐷𝑏 (3.20)

Since 𝑓𝑏 << 1, we can approximate 𝐷𝑎𝑝𝑝 to be

𝐷𝑎𝑝𝑝 = 𝐷𝑙 +
𝛿
𝑑0

𝐷𝑏 (3.21)
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3.3. Model Summary Including Additional Effects
In Figure 3.6, the model chart from the previous chapter can be seen with additional effects. This chart gives

a summary of the models and indicates where in the soft impingement model is has an effect. The multi

dislocation model and multi boundary model have an effect on the diffusion coefficient used at the start of the

loop. Note that, for the multi dislocation model, if the dislocation density changes over time, the diffusion

coefficient has to be recalculated after every time step. The Gibbs Thomson effect is used in the loop for the

calculation of Ω. Lastly, the single dislocation model and the single boundary model are used in the loop to

calculate the growth rate (
𝑑𝑅
𝑑𝑡 |𝑡). It is important to mention that the four assisted growth models can not be used

at the same time. Only the Gibbs Thomson effect can be included and excluded in combination with any of the

other models.

Figure 3.6: Soft impingement model chart of particle growth assuming diffusional growth including additional effects. Orange is the multi

dislocation model, blue is the single dislocation model, yellow is the multi boundary model. green is the single boundary model and red is

the Gibbs Thomson effect. Note that out of the four assisted growth models only one can be used at a time. The Gibbs Thomson effect can

be included or excluded in combination with any of the models.



4
Application and Discussion

Here, we will apply the model to data for TiC precipitation in martensitic steel. First we will introduce the input

data, used for the soft impingement model and the additional effects. Then we will discuss and visualize the

effects of using difference concentration profile approximations, the Gibbs Thomson effect and the assisted

growth models. Lastly, we will compare the present model with experimental data and a theoretical model by

Öhlund et al. [2]. We will focus on a Fe-Ti-Mn-C martensitic steel with the composition shown in Table 4.1.

C Mn Si P S Al Ti Cu Cr O V

0.39 0.8700 0.0040 0.0011 0.0007 0.0047 0.0420 0.0012 0.0022 0.0046 0.0022

Table 4.1: Input data for the soft impingement model.

Figure 4.1 shows the heat treatment on the steel. This visualizes the time range in which we will apply our

model. First, the material is homogenized at 1350
◦
C to fully dissolve TiC in solid solution. The material is then

quenched at 180
◦

C / s until the start temperature of martensite, which is around 380-390
◦
C [2]. After that,

it continues to cool at 45
◦

C until room temperature. The material is heated up at 4
◦
C/s until the tempering

temperature of 550
◦
C. Here, it is kept for 60 min. This is the stage that allows the TiC precipitates to nucleate

and grow. According to Öhlund [2], the nucleation of the particles in the boundary (martensite laths) starts after

5 minutes of tempering and the nucleation in the matrix starts after 10-30 minutes of tempering. Our model will

be applied in the time range between nucleation and the end of the tempering stage.

4.1. Input data
Table 4.2 shows the input data for the soft impingement model. The equilibrium concentration of Ti in the particle

(𝑐𝑝) and in the matrix at the interface of the particle (𝑐𝑚) are from ThemoCalc [22]. 𝑐∞ is from experimental data

[2]. For Δ𝑡, one second is chosen. Increasing the time step would make the results less accurate, but decrease the

simulation time. The increase in accuracy for time steps smaller than one second seems to be negligible. 𝑡𝑠𝑡𝑜𝑝 is

3300 for nucleation on the boundary and 3000 or 1800 for nucleation in the matrix, according to Figure 4.1. Note

that the only difference, whether we focus on matrix nucleation or boundary nucleation, is the nucleation time.

Thus, precipitates in the matrix have 1800 - 3000 seconds to grow, while at the boundary the precipitates have

3300 seconds to grow. The starting size of the particle (𝑅0) is approximated to be 0.2 nm, which is the critical

radius of a TiC nucleus [2]. The half distance between the centers of two precipitates (𝑥) was estimated to be 5

nm according to the APT results (5 - 7.5 nm) [2].

𝑐𝑝 (wt%) 𝑐𝑚 (wt%) 𝑐∞ (wt%) Ω Δ𝑡 (s) 𝑡𝑠𝑡𝑜𝑝 (s) 𝑅0 (nm) 𝑥 (nm)

79.654 0.00084 0.042 0.0005 1 3300/3000/1800 0.2 5

Table 4.2: Input data for the soft impingement model [2]. Ω is rounded to 0.0005.

Table 4.3 shows the diffusion data for TiC used in equation (2.20) [2].

21
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Figure 4.1: Heat treatment of Fe-Mn-Ti-C Steel according to Öhlund et al. [2].

𝐷0 (𝑚2/𝑠) 𝑄 (J/mol) 𝑇 (K)

0.21 307010 823.15

Table 4.3: Diffusion data [2].

4.2. Concentration profile effect excluding soft impingement
First, we will compare the different concentration profile approximations without soft impingement. This is

done by ignoring the check if 𝑅 > 𝑅𝑐 . The aim is to compare the results with the exact solution. We can only use

the exact solution if soft impingement is not involved, since it is not possible to get a function for 𝑐𝑠 from the

exact solution.

Figure 4.2: TiC precipitate growth according to the diffusional growth model excluding soft impingement.

Figure 4.2 shows the results from using the model with the input data from Table 4.2. Figure 4.2 shows the

growth for 3300 seconds, but if we stop at 1800 - 3000 seconds, we will obtain the results for matrix diffusion.
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Table 4.4 shows the size of the precipitate at the end of tempering and the maximum precipitate size (𝑅 𝑓 )

according to the mass balance. We will focus more on the limitation of 𝑅 𝑓 in the next chapters.

𝑅𝑒𝑥𝑎𝑐𝑡 (nm) 𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅 𝑓 (nm)

Boundary nucleation 0.356 0.235 0.243 0.352 0.401

Matrix nucleation 0.315 - 0.349 0.226 - 0.234 0.231 - 0.241 0.312 - 0.345 0.401

Table 4.4: Precipitate size results excluding soft impingement. The results for boundary nucleation are gained at 𝑡 = 3300 and for matrix

nucleation at 𝑡 = 1800 and 𝑡 = 3000.

Figure 4.2 and Table 4.4 confirm our initial comparison for the different concentration profile approximations

from Figures 1.6 and 1.7. The results show that the non-linear concentration profile approximation gives more

accurate results than the linear and the parabolic concentration profile approximation. Figures 1.6 and 1.7 show

that the difference is very large at small Ω. We can see this in the results, since Ω = 0.0005. Figures 1.6 only

show the difference in 𝜆 at a given value for Ω, but do not indicate where the difference in 𝜆 comes from. For

this, we have to go back to the flux balance equation

(𝑐𝑚 − 𝑐𝑝)𝑑𝑅
𝑑𝑡

= −𝐷 𝛿𝑐
𝛿𝑟

����
𝑅

(4.1)

Here, we can see that the growth rate (
𝑑𝑅
𝑑𝑡 ) depends on the diffusion coefficient and the slope of the concentration

profile at the precipitate interface. 𝐷 is the same for all concentration profile approximations, but the slope will

differ. Figure 4.3 shows the three concentration profile approximations and confirms the effect that the profiles

have on the flux balance equation. The non-linear concentration profile has the steepest slope at the interface

and thus the largest growth rate. The parabolic profile has a slightly steeper slope, thus a sightly larger growth

rate than the linear profile, which aligns with the results in Figure 4.2.

Figure 4.3: Solute concentration profiles in front of the interface of the precipitate at 𝑅 = 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟𝑐 .

4.3. Concentration profile effect including soft impingement
In this part, we include the effect of soft impingement. In other words, 𝑐∞ is replaced by 𝑐𝑠 and changes over

time from 𝑐∞ to 𝑐𝑚 . Here, 𝑅𝑐 and 𝑅 𝑓 become important. Figure 4.4 visualizes the solute concentration profiles at

the start of the growth (𝑅0). Table 4.5 shows the results for 𝑅𝑐 for each concentration profile and 𝑅 𝑓 . 𝑅𝑐 differs

for each approximation since 𝑅𝑐 depends on the diffusion length.

𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟𝑐 and 𝑅
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐
𝑐 are smaller than 𝑅0. Because of this, the effect of soft impingement is already present

at the start of growth for the non-linear and parabolic concentration profile approximation. During growth, if

𝑅𝑐 has not been reached, the diffusion length will increase until the end of the concentration profile reaches

𝑟 = 𝑥. At this point, soft impingement takes effect, decreasing 𝑐𝑠 . In both steps, the slope at the interface of

the particle is decreasing. This decreases the growth rate. In addition, a lower value for 𝑐𝑠 will decrease the
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𝑅𝑙𝑖𝑛𝑒𝑎𝑟𝑐 (nm) 𝑅
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐
𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟𝑐 (nm) 𝑅 𝑓 (nm) 𝑅0 (nm)

0.257 0.191 0.081 0.401 0.2

Table 4.5: The critical radius (𝑅𝑐 ) for all approximations, the maximum precipitate size according to the mass balance (𝑅 𝑓 ) and the critical

nuclei size (𝑅0).

Figure 4.4: Solute concentration profiles between the initial and neighboring particle at 𝑅 = 𝑅0.

supersaturation and in turn decrease the growth rate.

Table 4.6 shows the size of the precipitate at the end of tempering, including and excluding soft impingement. It

shows that there is no change in 𝑅𝑙𝑖𝑛𝑒𝑎𝑟 since 𝑅0 has not been reached, soft impingement did not occur. 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐
changes slightly and 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 changes more noticeably due to larger 𝜆 than the other approximations.

𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm)

BN 0.235 0.243 0.352

BN + SI 0.235 0.241 0.328

MN 0.226 - 0.234 0.231 - 0.241 0.312 - 0.345

MN + SI 0.226 - 0.234 0.230 - 0.239 0.298 - 0.322

Table 4.6: Precipitate size results. BN = Boundary nucleation, MN = Matrix nucleation, SI = soft impingement. The results for boundary

nucleation are gained at 𝑡 = 3300 and for matrix nucleation at 𝑡 = 1800 and 𝑡 = 3000.

Figure 4.5 shows the results of the soft impingement model and the exact solution without the soft impingement

effect. Compared to Figure 4.2, we can clearly see the effect of soft impingement on the non-linear concentration

profile. The results do not change for the linear and barely change for the parabolic concentration profile

approximation.

4.4. Application of the Gibbs Thomson effect
For the Gibbs Thomson effect, we assume 𝛾 to be 0.3 𝐽/𝑚2

[2]. Figure 4.6 shows the lattice structure of a TiC

crystal. Since one unit cell contains four Ti atoms, we assume that the atomic volume of a Ti atom is one fourth

of the volume of the unit cell with lattice parameter 𝑎 = 0.433 nm. Table 4.7 shows the size of the precipitate at

the end of tempering including and excluding the Gibbs Thomson effect. From the results, we see that adding

the Gibbs Thomson effect barely reduces the size of the precipitates.

Figure 4.7 shows the change in 𝑐𝑚
𝑅

for all concentration profile approximations over time and Figure 4.8 shows the

change in 𝑐𝑚
𝑅

related to the precipitate size. In the latter, the non-linear concentration profile is shown, since this

approximation gives the largest precipitate size. The linear and parabolic concentration profile approximation

will have the same trend but will reach a higher value for 𝑐𝑚
𝑅

at the end, since the precipitate is smaller. Both

Figure 4.7 and Figure 4.8 show that the Gibbs Thomson effect is present but small. At the start of growth, the

effect is at its largest at a 7 % increase in solute concentration. 𝑐𝑚
𝑅

decrease as the particle grows bigger.
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Figure 4.5: TiC precipitate growth according to the diffusional growth model including soft impingement. The exact solution does not

include the soft impingement effect. The dotted line indicates 𝑅 𝑓 = 0.401 nm.

Figure 4.6: Lattice structure of a TiC crystal.

𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm)

BN + SI 0.235 0.241 0.328

BN + SI + GT 0.235 0.241 0.327

MN + SI 0.226 - 0.234 0.230 - 0.239 0.298 - 0.322

MN + SI + GT 0.226 - 0.233 0.230 - 0.239 0.298 - 0.322

Table 4.7: Precipitate size results. BN = Boundary nucleation, MN = Matrix nucleation, SI = soft impingement, GT = Gibbs Thomson effect.

The results for boundary nucleation are gained at 𝑡 = 3300 and for matrix nucleation at 𝑡 = 1800 and 𝑡 = 3000.

In this case, the Gibbs Thomson slightly decreases the growth rate, but it has a negligible effect on the particle

size for all concentration profile approximations. If it is reasonable to assume that there is no Gibbs Thomson

effect depends mainly on 𝑅, 𝛾 and 𝑇 according to equation (3.2). Especially small particles with a large surface

tension at low temperatures will be affected. In our case, the Gibbs Thomson effect can be neglected.



4.5. Application of the assisted growth models 26

Figure 4.7: Change of 𝑐𝑚
𝑅

over time due to the Gibbs Thomson effect. The dotted line indicates 𝑐𝑚 = 0.00084 𝑤𝑡%.

Figure 4.8: Change of 𝑐𝑚
𝑅

over 𝑅 due to the Gibbs Thomson effect. The dotted line indicates 𝑐𝑚 = 0.00084 𝑤𝑡%.

4.5. Application of the assisted growth models
For the results of the assisted growth models, we will neglect the Gibbs Thomson effect since it does not affect

the results.

4.5.1. Multi dislocation model
With the use of the Multi dislocation model, we replace 𝐷 with 𝐷𝑎𝑝𝑝 according to equation (3.13). To our

knowledge, 𝐷𝑇𝑖
𝑝 is not available. We will use the approximation from equation (3.17). The ratio

𝐷
𝑇𝑖/𝐹𝑒
𝑙

𝐷
𝐹𝑒/𝐹𝑒
𝑙

and

𝐷
𝐹𝑒/𝐹𝑒
𝑝

𝐷
𝐹𝑒/𝐹𝑒
𝑙

are 51700 and 0.3 at 550
◦
C respectively [2]. This gives

𝐷𝑝

𝐷𝑙
= 171300. Since dislocation density data are available

[2], we will use equation (3.16) for 𝑔(𝑡), where b is the Burgers vector. The dislocation density after quenching is

given by 𝜌𝐴𝑠𝑄 = 14.2 × 10
14𝑚−2

and the dislocation density after recovery (𝜌𝑅) is set to 0.025 × 𝜌𝐴𝑠𝑄 . According

to Öhlund et al. [2], the dislocation density is 55% of 𝜌𝑅 after 5 minutes of annealing. Since the first nuclei,

according to the model, start to form after 5 minutes, we assume a linear function for 𝐹(𝑡) from 0.55 to 1. Figure

4.9 shows the evolution of 𝐹(𝑡) from 5 min of annealing to 60 min of annealing. At t = 0, boundary nucleation

starts and the dislocation density will change from 55% to 100% of 𝜌𝑅. The nucleation in the matrix starts at t =

300 - 1500. Since nucleation in the matrix starts later, the dislocation density at the start is lower compared to

boundary nucleation.



4.5. Application of the assisted growth models 27

Figure 4.9: Evolution of F(t) over annealing time.

Table 4.8 shows the size of the precipitate at the end of tempering including and excluding the Multi dislocation

model. All concentration profile approximations show increased particle size when the multi dislocation model

is included. The non-linear concentration profile approximation reaches 𝑅 𝑓 before the end of annealing.

𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm)

BN + SI 0.235 0.241 0.328

BN + SI + MD 0.326 0.335 0.401

MN + SI 0.226 - 0.234 0.230 - 0.239 0.298 - 0.322

MN + SI + MD 0.278 - 0.318 0.286 - 0.326 0.401

Table 4.8: Precipitate size results. BN = Boundary nucleation, MN = Matrix nucleation, SI = soft impingement, MD = Multi dislocation

model. The results for boundary nucleation are gained at 𝑡 = 3300 and for matrix nucleation at 𝑡 = 1800 and 𝑡 = 3000.

Figure 4.10 shows the results of the soft impingement model, including the multi dislocation model. Compared

to Figure 4.5, it shows that the growth rate is faster for all concentration profile approximations. The non-linear

concentration profile approximation even reaches 𝑅 𝑓 before the end of tempering, at 𝑡 = 723𝑠.

Figure 4.10: TiC precipitate growth according to the diffusional growth model including soft impingement and the multi dislocation model.

The dotted line indicates 𝑅 𝑓 = 0.401 nm.

Figure 4.11 shows the change of 𝐷𝑎𝑝𝑝 during particle growth. The decrease in the diffusion coefficient represents

the decrease in dislocation density during annealing. The impact of this model is larger at the beginning of

growth and decreases as the dislocation density decreases.
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Figure 4.11: Evolution of 𝐷𝑎𝑝𝑝 during particle growth. 𝐷𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 0.007 𝑛𝑚2/𝑠.

4.5.2. Single dislocation model
With the single dislocation model we use the overall growth rate according to equation (3.3). For the radius of

the dislocation pipe (𝑟0) we assume the burgers vector. 𝐷𝑇𝑖
𝑝 is approximated the same as in the multi dislocation

model. Table 4.9 shows the size of the precipitate at the end of tempering including and excluding the single

dislocation model. We can see that for all concentration profile approximations, the precipitate reaches 𝑅 𝑓

before the end of tempering. The single dislocation model has a larger assisting growth affect than the multi

dislocation model.

𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm)

BN + SI 0.235 0.241 0.328

BN + SI + SD 0.401 0.401 0.401

MN + SI 0.226 - 0.234 0.230 - 0.239 0.298 - 0.322

MN + SI + SD 0.401 0.401 0.401

Table 4.9: Precipitate size results. BN = Boundary nucleation, MN = Matrix nucleation, SI = soft impingement, SD = Single dislocation

model. The results for boundary nucleation are gained at 𝑡 = 3300 and for matrix nucleation at 𝑡 = 1800 and 𝑡 = 3000.

Figure 4.12 shows the results of the soft impingement model, including the single dislocation model. From

this, the greater assisting effect of this model is more apparent. It also seems that the concentration profile

approximation has little effect on the growth when the single dislocation model is included.

Figure 4.12: TiC precipitate growth according to the diffusional growth model including soft impingement and the single dislocation model.

The dotted line indicates 𝑅 𝑓 = 0.401 nm.
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𝑡𝑙𝑖𝑛𝑒𝑎𝑟 (s) 𝑡𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (s) 𝑡𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (s)

SI + SD 336 411 367

Table 4.10: Time of growth until 𝑅 𝑓 is reached for the different concentration profile approximations. SI = soft impingement, SD = Single

dislocation model.

Table 4.10 shows the time for each concentration profile approximation, using the single dislocation model, to

reach 𝑅 𝑓 . This gives results contradicting our previous results. We would expect the non-linear concentration

profile approximation to have reached 𝑅 𝑓 first due to its largest parabolic growth constant (𝜆). The reason for

this is due to the small radii range in which we are working. The particle size (𝑅 𝑓 = 0.401 nm) is a size similar to

the diameter of the dislocation pipe (2 ∗ 𝑟0 = 0.498 nm). Therefore, according to the model, the growth rate

due to diffusion in the pipe will be dominant in the whole growth stage. The only term in equation (3.4) for

𝑑𝑅
𝑑𝑡 |𝑝𝑖𝑝𝑒 depending on the concentration profile approximation is 𝑐∞ since we use the soft impingement model to

replace 𝑐∞ with 𝑐𝑠 after soft impingement. A higher value for 𝑐𝑠 will yield a higher value for the value for
𝑐𝑠−𝑐𝑚
𝑐𝑝−𝑐𝑚 ,

which in turn yields a higher value for
𝑑𝑅
𝑑𝑡 |𝑝𝑖𝑝𝑒 . From Figure 4.4, which indicates the concentration profile at the

start of soft impingement, it is shown that the linear concentration profile has not started soft impingement and

therefore will use 𝑐∞ in equation (3.4). For the non-linear concentration profile, we use 𝑐𝑠 since soft impingement

has already started and since this is lower than 𝑐∞,
𝑑𝑅
𝑑𝑡 |𝑝𝑖𝑝𝑒 will be smaller than for the linear concentration

profile. So far, this explains the contradiction in the results between the linear and non-linear concentration

profile approximation, but not the parabolic. The reason why the parabolic concentration profile approximation

is still in agreement with previous results is that the growth rate from the lattice (
𝑑𝑅
𝑑𝑡 |𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ) is still much larger

for the non-linear. Note that the total growth rate is the summation of both. The parabolic concentration profile

approximation does indeed have a larger effect of the pipe diffusion, but is not large enough to compensate for

its lack in volume diffusion. Figure 4.13 shows the growth rate from the lattice and the pipe for all concentration

profile approximations for the first 100 seconds. Here, it is more apparent that the non-linear concentration

profile approximation is indeed the one that has the lowest growth rate from the pipe but the largest growth

rate from the lattice.

Figure 4.13: The lattice and pipe growth rate for all concentration profiles approximation from the single dislocation model for the first 100

seconds of growth.

Figure 4.14 shows the effect of different ratios for

𝐷𝑝

𝐷𝑙
on precipitate growth using the non-linear concentration

profile approximation. Growth increases with increasing diffusion coefficient in the pipe. It can also be seen

that, if the diffusion coefficient in the pipe and in the lattice are identical, there is still an assisted growth effect.

This is due to the summation of both growth rates, where the volume of the pipe is also counted when the

volume diffusion is calculated.
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Figure 4.14: Effect of the pipe diffusion coefficient and lattice diffusion coefficient ration (

𝐷𝑝
𝐷𝑙

).

4.5.3. Multi boundary model
The implementation of the multi boundary model is the same as the multi dislocation model, but without the

change of 𝐷𝑎𝑝𝑝 over time. For the diffusion coefficient in the boundary (𝐷𝑏), we assume that it is the same as the

diffusion coefficient in the pipe (𝐷𝑝). The boundary thickness (𝛿) is assumed to be the same as the diameter of

the dislocation pipe, and the average grain size (𝑑0) is assumed to be 20 µm. Table 4.11 shows the the results for

the soft impingement model, including the multi boundary model.

𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm)

BN + SI 0.235 0.241 0.328

BN + SI + MB 0.280 0.288 0.401

Table 4.11: Precipitate size results. BN = Boundary nucleation, MN = Matrix nucleation, SI = soft impingement, MB = Multi boundary

model. The results for boundary nucleation are gained at 𝑡 = 3300.

The results show a similar trend as the volume diffusion model and the multi dislocation model. Figure 4.15

shows the results of the soft impingement model, including the multi boundary model. It can be seen that

the assisted effect is present but small compared to volume diffusion. The non-linear concentration profile

approximation reaches 𝑅 𝑓 in 𝑡 = 2816 seconds.

In this case, 𝐷𝑎𝑝𝑝 is constant at 0.036 𝑛𝑚2/𝑠 while 𝐷𝑙 = 0.007 𝑛𝑚2/𝑠. We can see the effect of this small increase

in the results. The multi dislocation model has a much higher 𝐷𝑎𝑝𝑝 , starting at 𝐷𝑎𝑝𝑝 = 0.16 𝑛𝑚2/𝑠 which causes

the particle to reach larger sizes than for the multi boundary model.
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Figure 4.15: TiC precipitate growth according to the diffusional growth modal including soft impingement and the multi boundary model.

The dotted line indicates 𝑅 𝑓 = 0.401 nm.

4.5.4. Single boundary model
The implementation of the single boundary model is the same as the single dislocation model. We make the

same assumption as for the multi boundary model that the diffusion coefficient in the boundary (𝐷𝑏) is the

same as the diffusion coefficient in the pipe (𝐷𝑝). Like the single dislocation model, we will analyze the effect of

different values for 𝐷𝑏 . The boundary thickness (𝛿) is assumed to be the same as the diameter of the dislocation

pipe, and the average grain size (𝑑0) is assumed to be 20 µm. Both will be analyzed for different values. Table

4.12 shows the particle size at the end of tempering including and excluding the single boundary model. It

shows results similar to those of the single dislocation model, where all concentration profile approximations

have reached the maximum particle size before the end of tempering. Figure 4.16 shows the results of the soft

impingement model, including the single boundary model. Since the growth is rapid, only the first 3 seconds

are shown. The single boundary model seems to be the most assisting effect from the models used.

𝑅𝑙𝑖𝑛𝑒𝑎𝑟 (nm) 𝑅𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (nm) 𝑅𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (nm)

BN + SI 0.235 0.241 0.328

BN + SI + SB 0.401 0.401 0.401

Table 4.12: Precipitate size results. BN = Boundary nucleation, MN = Matrix nucleation, SI = soft impingement, SB = Single boundary

model. The results for boundary nucleation are gained at 𝑡 = 3300.

𝑡𝑙𝑖𝑛𝑒𝑎𝑟 (s) 𝑡𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 (s) 𝑡𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (s)

SI + SB 2.22 2.69 2.89

Table 4.13: Time of growth until 𝑅 𝑓 is reached for the different concentration profile approximations. SI = soft impingement, SB = Single

boundary model.

Table 4.13 shows the time for each concentration profile approximation, using the single boundary model, to

reach 𝑅 𝑓 . Here we have a similar contradiction as before. The non-linear concentration profile seems to take the

longest to reach 𝑅 𝑓 . In this case, the growth rate from the boundary is related to Ω. As seen in Figure 4.4, the

non-linear concentration profile approximation will have the lowest Ω(𝑐𝑠), next is the parabolic concentration

profile approximation and the linear concentration profile approximation has the highest Ω(𝑐𝑠). This explains

the order in which the particles finish the growth stage. Unlike the single dislocation model, the difference

growth rate from the boundary is not compensated in the difference in growth rate form the lattice so that the

non-linear concentration profile approximation will be last. Figure 4.17 shows the change in the lattice and

boundary growth from the single boundary model for the first 3 seconds of growth. We can see that, compared

to the single dislocation model, the growth rate of the boundary is two orders of magnitude larger. In our case,

the growth rate from the boundary dominates over the growth rate from the volume.

Figure 4.18 shows the effect of different ratios for
𝐷𝑏
𝐷𝑙

on the growth of the precipitate using the non-linear
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Figure 4.16: TiC precipitate growth according to the diffusional growth model including soft impingement and the single boundary model.

The dotted line indicates 𝑅 𝑓 = 0.401 nm.

Figure 4.17: The lattice and boundary growth rate for all concentration profiles approximations from the single boundary model for the first

3 seconds of growth.

concentration profile approximation. With decreasing ratios, the growth rate decreases until it is almost similar

to the growth rate excluding the single boundary model. Like the single dislocation model, when the diffusion

coefficient of the solute in the pipe or boundary is equal to the diffusion coefficient in the lattice, there is still an

assisted growth effect, due to the sum of diffusion from the same volume.

Figure 4.19 shows the analysis of different boundary thicknesses ranging from 0.2 to 2 nm. It shows that as the

boundary thickness increases, the growth rate increases. We can conclude that setting the correct boundary

thickness is important for the accuracy of the particle size. In our case, having a boundary thickness of 0.2 nm

reaches 𝑅 𝑓 within 6.9 seconds, while having a thickness of 2 nm reaches 𝑅 𝑓 within 0.74 seconds.

Lastly, Figure 4.20 shows the effect of average grain size. Note that, to show the effect,
𝐷𝑏
𝐷𝑙

= 10 has been chosen.

It seems that grain size only plays a role with a low diffusion coefficient. The grain sizes are 1, 10, 100, 1000 and

∞. Grains of this size are unrealistically small, but it visualizes the region where the grain size has an effect on

the growth rate. Since grains this small are unrealistic, we can assume that the grain size has little to no effect on

the growth of the precipitate using the single boundary model. Especially when
𝐷𝑏
𝐷𝑙

is large. For the model, it is
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Figure 4.18: Effect of the boundary diffusion coefficient and lattice diffusion coefficient ratio (

𝐷𝑏
𝐷𝑙

) on the growth using the single boundary

model.

Figure 4.19: Effect of boundary thickness on the growth using the single boundary model.

reasonable to assume an infinitely large grain. No data of the grain size is needed and this simplifies the model

by removing the middle term in equation (3.8) since 𝛽 is equal to 0 for an infinitely large grain. This gives

𝑑𝑅

𝑑𝑡
|𝑏 = Ω( 𝛿𝐷𝑏

4𝑅2

+ (𝐷𝑏

𝜋𝑡
) 1

2 ) (4.2)



4.6. Application for TiC precipitation in martensitic steel [2] 34

Figure 4.20: Effect of average grain size on the growth using the single boundary model. To show the effect

𝐷𝑏
𝐷𝑙

= 10 has been chosen. The

grain sizes are: 1, 10, 100, 1000 and ∞.

4.6. Application for TiC precipitation in martensitic steel [2]
Here, we compare our results with experimental data and the model used by Öhlund et al.. Two data sets will

be presented. So far, we used 𝑥 = 5nm as the average distance between the center of the initial particle and

the middle between the initial particle and the neighboring particle. From the APT results [2], it shows that

𝑥 = 5 − 7.5nm. Since the maximum particle size depends on x, we will show one set of results for 𝑥 = 5 and

one for 𝑥 = 7.5. The data is presented in terms of the number of Ti atoms in the precipitate instead of particle

size. We will convert the particle size to the number of atoms using the volume of one unit cell and the particle

volume given by 𝑉 = 4/3𝜋𝑅3
. If a particle contains one TiC unit cell, the particle contains 14 Ti atoms. If the

unit cell is fully surrounded, it contains 4 Ti atoms. Any given unit cell will contain 4 to 14 Ti atoms. The results

will be given in this range, where either all unit cells contain 4 or 14 Ti atoms. Also here, the Gibbs Thomson

effect is not included, as it does not change the results.

4.6.1. Experimental data [2]
The APT results and the particle size according to the soft impingement model including and excluding assisted

growth effects are shown in Table 4.14 and 4.15 for the linear, parabolic, and non-linear concentration profile

approximation. Note that for boundary nucleation, the models allow the precipitate to grow for 55 min and for

matrix nucleation for 30 - 50 min.

VD MD SD MB SB APT[2]

Linear: Boundary Nucl. 3 - 9 7 - 25 13 - 47 5 - 16 13 - 47 76 ± 48

Parabolic: Boundary Nucl. 3 - 10 8 - 27 13 - 47 5 - 17 13 - 47 76 ± 48

Non-linear: Boundary Nucl. 7 - 25 13 - 47 13 - 47 13 - 47 13 - 47 76 ± 48

Linear: Matrix Nucl. 2 - 9 4 - 23 13 - 47 35

Parabolic: Matrix Nucl. 2 - 10 5 - 25 13 - 47 35

Non-linear: Matrix Nucl. 5 - 24 13 - 47 13 - 47 35

Table 4.14: Precipitate size in number of Ti atoms for x = 5nm. VD = Volume diffusion, MD = Multi dislocation model, SD = Single

dislocation model, MB = Multi boundary model, SB = Single boundary model.

Figures 4.21 and 4.22 show the particle size for the non-linear concentration profile approximation for 𝑥 = 5nm

and 𝑥 = 7.5nm respectively. The volume diffusion model seems to underestimate the particle size for all

concentration profiles. From this we can conclude that additional effects, such as dislocation or boundary

assisted growth, play an important role in the particle growth. The strength of the assisted growth models is

in the following order: Single boundary model < Single dislocation model < Multi dislocation model < Multi

boundary model. In our case, the assisted growth models are all limited by 𝑅 𝑓 , especially when 𝑥 = 5𝑛𝑚. Due

to this limitation, the results are in reasonable agreement with the APT measurements.
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VD MD SD MB SB APT[2]

Linear: Boundary Nucl. 3 - 9 8 - 27 45 - 157 5 - 16 45 - 157 76 ± 48

Parabolic: Boundary Nucl. 3 - 10 10 - 34 45 - 157 5 - 19 45 - 157 76 ± 48

Non-linear: Boundary Nucl. 9 - 30 44 - 156 45 - 157 26 - 92 45 - 157 76 ± 48

Linear: Matrix Nucl. 2 - 9 4 - 25 45 - 157 35

Parabolic: Matrix Nucl. 3 - 10 5 - 31 45 - 157 35

Non-linear: Matrix Nucl. 6 - 28 25 - 149 45 - 157 35

Table 4.15: Precipitate size in number of Ti atoms for x = 7.5nm. VD = Volume diffusion, MD = Multi dislocation model, SD = Single

dislocation model, MB = Multi boundary model, SB = Single boundary model.

Figure 4.21: TiC Precipitate size for volume diffusion, multi dislocation model, single dislocation model, multi boundary model and the

single boundary model for 𝑥 = 5𝑛𝑚. The dotted line indicates 𝑅 𝑓 = 0.401𝑛𝑚.

Figure 4.22: TiC Precipitate size for volume diffusion, multi dislocation model, single dislocation model, multi boundary model, and the

single boundary model for 𝑥 = 7.5𝑛𝑚. The dotted line indicates 𝑅 𝑓 = 0.602𝑛𝑚.

When we focus solely on volume diffusion, the non-linear concentration profile approximations seems the most

accurate to the APT results. We have seen that at low supersaturation, the non-linear concentration profile

is more accurate when compared to the exact solution. Using the linear or parabolic concentration profile

approximation would underestimate the particle size, which could indicate a large effect of assisted growth by
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either dislocations of the boundary. This work shows that the assisted effect is still present but smaller when

using the non-linear concentration profile approximation. When using one of the assisted growth models, it

is important to have adequate data on the average half distance between particles (𝑥) to prevent the assisted

growth models from overestimating the particle size.

4.6.2. Model comparison [2]
In this part, we will compare our model with the soft impingement model used by Öhlund et al. [2] which is

derived by Offerman et al. [3]. In this model, the parabolic growth constant (𝜆) is given by Zener’s model [8]

which is fitted to their data. This gives

𝜆 = 2.102( 𝑐
∞ − 𝑐𝑚
𝑐𝑝 − 𝑐∞ )0.5871

(4.3)

Which can be rewritten as

𝜆 = 2.102( Ω

1 −Ω
)0.5871

(4.4)

Note that this model does use the linear concentration profile for the calculation of 𝑐𝑠 but not for the growth

rate before soft impingement by measuring the parabolic growth constant with equation 4.4. We can compare

this new approximation for 𝜆 with the concentration profile approximations. This is shown in Figures 4.23

and 4.24. This approach gives a more accurate solution than the linear and parabolic concentration profile

approximation. At high supersaturation, it even gives larger values for 𝜆 than the exact solution and is even

more accurate than the non-linear concentration profile approximation. But the non-linear concentration profile

approximation is the most accurate at low supersaturation. The soft impingement effect is approximated in this

Figure 4.23: A comparison of 𝜆 for the exact solution, the concentration profile approximations and Zener’s model used by Offerman et al.

[3] and Öhlund et al.[2].

model by using the intersection of the concentration profiles of the individual particles. In this model, the linear

concentration profile approximation is used. The diffusion length is calculated using the mass balance, but

without considering the presence of other particles. Using the diffusion length of the initial and neighboring

particle, the intersection of the concentration profiles is calculated. It is assumed that 𝑐𝑠 is located at

𝑐𝑠 = 𝑐𝑖(𝑥, 𝑡) + 𝑐𝑎(𝑥, 𝑡) − 𝑐∞ (4.5)

Where x is the half distance between the center of the initial and neighboring particle. For the linear concentration

profile approximation, this gives

𝑐𝑠 = 𝑐∞ − (𝑐∞ − 𝑐𝑚)2𝑅 + 2𝐿 − 2𝑥

2𝐿
(4.6)
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Figure 4.24: A comparison of 𝜆 for the exact solution, the concentration profile approximations and Zener’s model used by Offerman et al.

[3] and Öhlund et al.[2]. Normalized to 𝜆 of the exact solution.

In this model, soft impingement will start at the same point of the model in this thesis work, where the

concentration profiles initially start to overlap. The growth of particles ends when 𝑐𝑠 = 𝑐𝑚 . It can be seen from

equation (4.6) that particle growth ends when 𝑅 = 𝑥, thus hard impingement occurs. This can overestimate the

final particle size if enough time is given for growth.

VD (nm) MD (nm) SD (nm) MB (nm) SB (nm)

Present work (non-linear) 0.327 0.401 0.401 0.401 0.401

Offerman et al.[3] 0.313 0.554 0.851 0.432 5.000

Table 4.16: Precipitate size (R) in nm for x = 5nm. The results show the particle size for boundary nucleation (𝑡 = 55𝑚𝑖𝑛). VD = Volume

diffusion, MD = Multi dislocation model, SD = Single dislocation model, MB = Multi boundary model, SB = Single boundary model.

VD (nm) MD (nm) SD (nm) MB (nm) SB (nm)

Present work (non-linear) 0.346 0.599 0.602 0.503 0.602

Offerman et al.[3] 0.316 0.611 0.952 0.462 7.500

Table 4.17: Precipitate size (R) in nm for x = 7.5nm. The results show the particle size for boundary nucleation (𝑡 = 55𝑚𝑖𝑛).

Tables 4.16 and 4.17 show the final precipitate size for the present model, using the non-linear concentration

profile approximation, and the model of Offerman et al. [3] for 𝑥 = 5𝑛𝑚 and 𝑥 = 7.5nm respectively. Figures

4.25 and 4.26 show the precipitate size over time using both models for 𝑥 = 5𝑛𝑚 and 𝑥 = 7.5nm respectively.

Two effects can be seen from the results. First, it shows that the present work gives a larger precipitate size for

volume diffusion. This is due to the use of the non-linear concentration profile approximation, which gives a

larger value for 𝜆 at the present supersaturation (Ω = 0.0005) than the approximation by Zener’s model from

equation (4.4) as seen in Figures 4.23 and 4.24. Secondly, when we add assisted growth effects, the present work

gives a smaller precipitate size. This is due to the soft impingement effect which is included using different

approximations in the model. In the present work, the particle cannot grow larger than 𝑅 𝑓 according to the mass

balance. Whereas the model by Offerman et al.[3], the maximum particle size is reached on hard impingement.

This happens when using the single boundary model. The multi and single dislocation model both have a

particle size bigger than 𝑅 𝑓 and the multi boundary model has a particle size bigger than 𝑅 𝑓 when we use

𝑥 = 7.5𝑛𝑚. In conclusion, The present model has a larger growth rate, but its limitation (preventing particles

from growing beyond 𝑅 𝑓 ) results in lower particle sizes when using the assisted growth models.
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Figure 4.25: TiC Precipitate size for volume diffusion, multi dislocation model, single dislocation model, multi boundary model, and the

single boundary model for 𝑥 = 5𝑛𝑚. All solid lines indicate the present model using the non-linear concentration profile. The coloured

dotted lines indicate the model by Offerman et al. [3]. The black dotted line indicates 𝑅 𝑓 = 0.401𝑛𝑚.

Figure 4.26: TiC Precipitate size for volume diffusion, multi dislocation model, single dislocation model, multi boundary model, and the

single boundary model for 𝑥 = 7.5𝑛𝑚. All solid lines indicate the present model using the non-linear concentration profile. The coloured

dotted lines indicate the model by Offerman et al. [3]. The black dotted line indicates 𝑅 𝑓 = 0.401𝑛𝑚.

4.6.3. Limitations of the model
The main limitation of the model is that it can only predict an average particle size for all particles given a certain

average distance between the particles. It can not give a distribution of expected particle sizes and does not

include the effect of coarsening. Coarsening is an thermodynamically driven process, where large particles

grow and smaller particles shrink. Larger particles have a smaller percentage of atoms on the surface compared

to smaller particles, which makes them more stable.

The limitations of the model come from the assumptions we made in Chapter 2.2. First, we assumed that all

particles nucleate at the same size. Secondly, we assumed that the particles are uniformly distributed. Because

of this, the particles will all be the same size at any moment in time. This gives rise to the limitation in particle

size of 𝑅 𝑓 . If the particles are not uniformly distributed, 𝑥 would be different for each particle. Because of this

𝑅 𝑓 is also different for each particle. This then gives a distribution of particle sizes. An average distance 𝑥 has to

be calculated for every single particle. With this addition, the model would have to run for every single particle.

The simulation time would be increased, depending on the amount of particles in the chosen volume element.
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The model does not include the effect of coarsening. This can only be included if the particles have different

sizes. Larger particles could take mass from smaller particles and from the matrix around them. The particles

could then reach sizes larger than 𝑅 𝑓 . The particle size would no longer be limited by the amount of mass

available in the matrix.
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5
Conclusion and Recommendations

This thesis work aimed to model the effect of soft impingement for diffusion controlled growth of spherical

particles with the implementation of the non-linear concentration profile approximation [1] to give accurate

predictions of the particle size at low supersaturation. Additionally, the Gibbs Thomson effect [15] and assisted

growth models like the multi dislocation model [16], the single dislocation model [17], the multi boundary

model [18] and the single boundary model [19] are added.

Different concentration profile approximations are compared with the exact solution of the diffusional growth

problem. The non-linear concentration profile approximation gives the most accurate results for Ω < 0.486,

while the parabolic concentration profile approximation is the most accurate for Ω > 0.486. It is reasonable

to use the non-linear concentration profile approximation for all values of Ω since the difference between the

non-linear and parabolic concentration profile approximation is small for high supersaturation while it is large

at low supersaturation. Also, the non-linear concentration profile approximation has a large diffusion length.

Therefore, soft impingement will start much earlier compared to the linear and parabolic concentration profiles.

The model is applied to TiC precipitation in martensitic steel with Ω = 0.0005. The non-linear concentration

profile approximation gives the largest results for the particle size, then the parabolic concentration profile

approximation and the linear concentration profile approximation give the smallest results, which is in agreement

with the comparison of the three concentration profiles. The results for volume diffusion seem to underestimate

the precipitate size, indicating the necessity to add the effect of dislocation or boundary assisted growth.

Including assisted growth effects into the model gives results that are in reasonable agreement with experimental

data [2] due to the precipitate radius reaching 𝑅 𝑓 before the end of tempering.

Additional effects on the soft impingement model are discussed and give the following results.

• The Gibbs Thomson effect does not seem to influence the results in the case of TiC precipitation in

martensitic steel.

• The single boundary model has the highest growth rate, allowing the precipitate to reach 𝑅 𝑓 in seconds.

The single dislocation model has the second largest growth rate, allowing the precipitate to reach 𝑅 𝑓 in 336

- 441 seconds, depending on the concentration profile approximation for 𝑥 = 5𝑛𝑚. The multi dislocation

model is next, allowing the precipitate to reach 𝑅 𝑓 in 723 seconds for the non-linear concentration profile

approximation and does not reach 𝑅 𝑓 for the linear and parabolic concentration profile approximation due

to the lower parabolic growth rate of those approximations. The multi boundary model has the smallest

growth rate, where the non-linear concentration profile approximation reaches 𝑅 𝑓 in 2816 seconds.

• Using the multi dislocation and multi boundary model model show the same trend as the volume diffusion

model when comparing the three concentration profile approximation. This is because this model only

changes the diffusion coefficient (𝐷) to the apparent diffusion coefficient (𝐷𝑎𝑝𝑝) when dislocations are

present.

• The single dislocation model and the boundary model do not show the same trend when comparing the

different concentration profiles. For the boundary model, this is due to the fact that the growth rate of the

boundary (
𝑑𝑅
𝑑𝑡|𝑏 ) dominates the growth rate from the lattice or matrix (

𝑑𝑅
𝑑𝑡 |𝑙). 𝑑𝑅

𝑑𝑡 |𝑏 mainly depends on the

value of 𝑐𝑠 . 𝑐𝑠 during soft impingement is largest for the linear concentration profile approximation, next

is the parabolic, and last the non-linear. Because of this, the trend is the opposite for the boundary model,

where the linear concentration profile approximation is fastest and the non-linear concentration profile
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approximation is slowest. The single dislocation model has a mixed trend, where the growth rate of the

dislocation (
𝑑𝑅
𝑑𝑡 |𝑑) is not completely dominant over

𝑑𝑅
𝑑𝑡 |𝑙 . Because of this, the linear concentration profile

approximation is fastest, next is the non-linear instead of the parabolic, because of the larger growth rate

in the lattice for the non-linear concentration profile approximation.

• The effect of using different values for the diffusion coefficient in the dislocation pipe (𝐷𝑝) is discussed.

• The effect of using different values for the diffusion coefficient in the boundary (𝐷𝑏), the boundary

thickness (𝛿) and average grain size (𝑑0) is discussed. Larger 𝐷𝑏 and 𝛿 give larger particle sizes. It is

reasonable to assume the average grain to be infinitely large, as it does not significantly change the results.

The present model is compared to the model used by Öhlund et al. [2]. In the case of TiC precipitation with

Ω = 0.0005, the present model with the non-linear concentration profile approximation gives a larger precipitate

size for volume diffusion due to having a larger parabolic growth constant (𝜆) when using the non-linear

concentration profile approximation instead of Zener’s approximation [8]. The present model gives a smaller

precipitate size for the assisted growth models. This is because the precipitates in the model used by Öhlund et

al. can reach a size larger than 𝑅 𝑓 . The comparison indicates the importance of including a maximum precipitate

size according to the mass balance.

The limitations of the model are presented. It can not give an expected particle distribution but only one size

and the effect of coarsening is not included. Based on the limitations, future recommendations for further

improving the soft impingement model are defined as followed.

• The assumption of uniform distribution could be removed. This includes that the model should run for

every single particle in the chosen volume element. 𝑥 can be defined individually for each particle based

on the distances from its neighbouring particles. As a result, this would give a particle size distribution

instead of an average particle size.

• The assumption where all particles nucleate at the same time could be removed. If particles nucleate

at different times, the particles will also reach different sizes giving a particle size distribution. If this

assumption is removed together with the previous one, then 𝑥 needs to be calculated over time. New

particles can nucleate next to existing ones, decreasing the average distance between neighbouring particles.

• The effect of coarsening can be included to allow bigger particles to grow, even when 𝑅 𝑓 is reached, and

smaller ones to shrink.
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A
Appendix

A.1. Calculation for 𝑅 𝑓
To calculate 𝑅 𝑓 we will use a 3D mass balance. Note that we can not use the same mass balance with the

calculation of 𝑅𝑐 (𝑅 𝑓 + 𝐿 = 𝑥), since 𝐿 loses its meaning after soft impingement.

The 3D mass balance ∫ 𝑅 𝑓

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑥

𝑅 𝑓

𝑐𝑚4𝜋𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞4𝜋𝑟2𝑑𝑟 (A.1)

Now we solve for 𝑅 𝑓 ∫ 𝑅 𝑓

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑥

𝑅 𝑓

𝑐𝑚4𝜋𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞4𝜋𝑟2𝑑𝑟 (A.2)∫ 𝑅 𝑓

0

𝑐𝑝𝑟2𝑑𝑟 +
∫ 𝑥

𝑅 𝑓

𝑐𝑚𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞𝑟2𝑑𝑟 (A.3)

1

3

𝑐𝑝𝑅 𝑓
3 + 1

3

𝑐𝑚(𝑥3 − 𝑅 𝑓
3) = 1

3

𝑐∞𝑥3

(A.4)

𝑐𝑝𝑅 𝑓
3 + 𝑐𝑚(𝑥3 − 𝑅 𝑓

3) = 𝑐∞𝑥3

(A.5)

𝑐𝑝𝑅 𝑓
3 + 𝑐𝑚𝑥3 − 𝑐𝑚𝑅 𝑓

3 = 𝑐∞𝑥3

(A.6)

(𝑐𝑝 − 𝑐𝑚)
𝑅 𝑓

3

𝑥3

= 𝑐∞ − 𝑐𝑚 (A.7)

𝑅 𝑓
3

𝑥3

=
𝑐∞ − 𝑐𝑚
𝑐𝑝 − 𝑐𝑚 = Ω (A.8)

𝑅3

𝑓
= 𝑥3Ω (A.9)

𝑅 𝑓 = 𝑥Ω
1

3 (A.10)

An other way to solve for 𝑅 𝑓 is by the use of the following mass balance

4

3

𝜋𝑅 𝑓
3(𝑐𝑝 − 𝑐∞) = 4

3

𝜋(𝑥3 − 𝑅 𝑓
3)(𝑐∞ − 𝑐𝑚) (A.11)

Again, we solve for 𝑅 𝑓 :

4

3

𝜋𝑅 𝑓
3(𝑐𝑝 − 𝑐∞) = 4

3

𝜋(𝑥3 − 𝑅 𝑓
3)(𝑐∞ − 𝑐𝑚) (A.12)

𝑅 𝑓
3(𝑐𝑝 − 𝑐∞) = (𝑥3 − 𝑅 𝑓

3)(𝑐∞ − 𝑐𝑚) (A.13)

𝑅 𝑓
3

(𝑥3 − 𝑅 𝑓
3)

=
(𝑐∞ − 𝑐𝑚)
(𝑐𝑝 − 𝑐∞) (A.14)

𝑅 𝑓
3 = 𝑥3 ∗ (𝑐

∞ − 𝑐𝑚)
(𝑐𝑝 − 𝑐∞) − 𝑅 𝑓

3 ∗ (𝑐
∞ − 𝑐𝑚)

(𝑐𝑝 − 𝑐∞) (A.15)
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𝑅 𝑓
3 + 𝑅 𝑓

3 ∗ (𝑐
∞ − 𝑐𝑚)

(𝑐𝑝 − 𝑐∞) = 𝑥3 ∗ (𝑐
∞ − 𝑐𝑚)

(𝑐𝑝 − 𝑐∞) (A.16)

𝑅 𝑓
3 ∗ (1 + (𝑐∞ − 𝑐𝑚)

(𝑐𝑝 − 𝑐∞) ) = 𝑥3 ∗ (𝑐
∞ − 𝑐𝑚)

(𝑐𝑝 − 𝑐∞) (A.17)

𝑅 𝑓
3 = 𝑥3 ∗

(𝑐∞−𝑐𝑚 )
(𝑐𝑝−𝑐∞)

(𝑐∞−𝑐𝑚 )
(𝑐𝑝−𝑐∞) + 1

(A.18)

We rewrite the last term using (𝑐𝑝 − 𝑐𝑚) = (𝑐𝑝 − 𝑐∞) + (𝑐∞ − 𝑐𝑚).

(𝑐∞−𝑐𝑚 )
(𝑐𝑝−𝑐∞)

(𝑐∞−𝑐𝑚 )
(𝑐𝑝−𝑐∞) + 1

=

(𝑐𝑝−𝑐𝑚 )−(𝑐𝑝−𝑐∞)
(𝑐𝑝−𝑐∞)

(𝑐𝑝−𝑐𝑚 )−(𝑐𝑝−𝑐∞)
(𝑐𝑝−𝑐∞) + 1

=

(𝑐𝑝−𝑐𝑚 )
(𝑐𝑝−𝑐∞) − 1

(𝑐𝑝−𝑐𝑚 )
(𝑐𝑝−𝑐∞)

= 1 − (𝑐𝑝 − 𝑐∞)
(𝑐𝑝 − 𝑐𝑚) =

(𝑐∞ − 𝑐𝑚)
(𝑐𝑝 − 𝑐𝑚) = Ω (A.19)

This gives

𝑅 𝑓
3 = 𝑥3Ω (A.20)

𝑅 𝑓 = 𝑥Ω
1

3 (A.21)

A.2. Calculations for 𝑐𝑠
To get a function for 𝑐𝑠 , we solve the following mass balance∫ 𝑅

0

𝑐𝑝4𝜋𝑟2𝑑𝑟 +
∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)4𝜋𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞
0

4𝜋𝑟2𝑑𝑟 (A.22)∫ 𝑅

0

𝑐𝑝𝑟2𝑑𝑟 +
∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)𝑟2𝑑𝑟 =

∫ 𝑥

0

𝑐∞
0
𝑟2𝑑𝑟 (A.23)

1

3

𝑐𝑝𝑅3 +
∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)𝑟2𝑑𝑟 =
1

3

𝑐∞
0
𝑥3

(A.24)∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)𝑟2𝑑𝑟 =
1

3

𝑐∞
0
𝑥3 − 1

3

𝑐𝑝𝑅3

(A.25)

From here, we replace 𝑐(𝑟, 𝑡) with the function of the concentration profile and solve the integral on the left.

A.2.1. Linear concentration profile
For the linear concentration profile approximation we will use∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)𝑟2𝑑𝑟 =

∫ 𝑥

𝑅

( 𝑐𝑠 − 𝑐
𝑚

𝑥 − 𝑅 (𝑟 − 𝑅) + 𝑐𝑚)𝑟2𝑑𝑟 = (A.26)∫ 𝑥

𝑅

𝑟3
𝑐𝑠 − 𝑐𝑚
𝑥 − 𝑅 − 𝑟2𝑅

𝑐𝑠 − 𝑐𝑚
𝑥 − 𝑅 + 𝑟2𝑐𝑚𝑑𝑟 = (A.27)∫ 𝑥

𝑅

𝑟3
𝑐𝑠 − 𝑐𝑚
𝑥 − 𝑅 𝑑𝑟 −

∫ 𝑥

𝑅

𝑟2𝑅
𝑐𝑠 − 𝑐𝑚
𝑥 − 𝑅 𝑑𝑟 +

∫ 𝑥

𝑅

𝑟2𝑐𝑚𝑑𝑟 = (A.28)

(𝑐𝑠 − 𝑐𝑚)
1

𝑥 − 𝑅

∫ 𝑥

𝑅

𝑟3𝑑𝑟 − (𝑐𝑠 − 𝑐𝑚)
𝑅

𝑥 − 𝑅

∫ 𝑥

𝑅

𝑟2𝑑𝑟 + 𝑐𝑚
∫ 𝑥

𝑅

𝑟2𝑑𝑟 = (A.29)

(𝑐𝑠 − 𝑐𝑚)
1

𝑥 − 𝑅
1

4

(𝑥4 − 𝑅4) − (𝑐𝑠 − 𝑐𝑚)
𝑅

𝑥 − 𝑅
1

3

(𝑥3 − 𝑅3) + 𝑐𝑚 1

3

(𝑥3 − 𝑅3) = (A.30)

(𝑐𝑠 − 𝑐𝑚)(
1

𝑥 − 𝑅
1

4

(𝑥4 − 𝑅4) − 𝑅

𝑥 − 𝑅
1

3

(𝑥3 − 𝑅3)) + 𝑐𝑚 1

3

(𝑥3 − 𝑅3) (A.31)

1

3

(𝑐𝑠 − 𝑐𝑚)𝐴1 + 𝑐𝑚
1

3

(𝑥3 − 𝑅3) (A.32)

with

𝐴1 = 3( 1

𝑥 − 𝑅
1

4

(𝑥4 − 𝑅4) − 𝑅

𝑥 − 𝑅
1

3

(𝑥3 − 𝑅3)) (A.33)
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Now we insert equation (A.32) into equation (A.25).

1

3

(𝑐𝑠 − 𝑐𝑚)𝐴1 + 𝑐𝑚
1

3

(𝑥3 − 𝑅3) = 1

3

𝑐∞
0
𝑥3 − 1

3

𝑐𝑝𝑅3

(A.34)

(𝑐𝑠 − 𝑐𝑚)𝐴1 = 𝑐∞
0
𝑥3 − 𝑐𝑝𝑅3 − 𝑐𝑚(𝑥3 − 𝑅3) (A.35)

(𝑐𝑠 − 𝑐𝑚)𝐴1 = 𝑥3(𝑐∞
0
− 𝑐𝑚) + 𝑅3(𝑐𝑚 − 𝑐𝑝) (A.36)

𝑐𝑠 =
𝑥3(𝑐∞

0
− 𝑐𝑚) + 𝑅3(𝑐𝑚 − 𝑐𝑝)

𝐴1

+ 𝑐𝑚 (A.37)

A.2.2. Parabolic concentration profile
For the linear concentration profile approximation we will use∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)𝑟2𝑑𝑟 =

∫ 𝑥

𝑅

(𝑐𝑚 − 2

𝑐𝑠 − 𝑐𝑚
𝑥 − 𝑅 (𝑟 − 𝑅) + 𝑐𝑠 − 𝑐𝑚

(𝑥 − 𝑅)2 (𝑟 − 𝑅)
2)𝑟2𝑑𝑟 = (A.38)∫ 𝑥

𝑅

𝑐𝑚𝑟2 − (𝑐𝑠 − 𝑐𝑚)(2(
𝑟 − 𝑅
𝑥 − 𝑅 ) − ( 𝑟 − 𝑅

𝑥 − 𝑅 )2)𝑟2𝑑𝑟 = (A.39)∫ 𝑥

𝑅

𝑐𝑚𝑟2 − (𝑐𝑠 − 𝑐𝑚)(2(
𝑟 − 𝑅
𝑥 − 𝑅 ) − ( 𝑟 − 𝑅

𝑥 − 𝑅 )2)𝑟2𝑑𝑟 = (A.40)∫ 𝑥

𝑅

𝑐𝑚𝑟2 − (𝑐𝑠 − 𝑐𝑚)(
2𝑟

𝑥 − 𝑅 − 2𝑅

𝑥 − 𝑅 − ( 𝑟2

(𝑥 − 𝑅)2 − 2𝑟𝑅

(𝑥 − 𝑅)2 + 𝑅2

(𝑥 − 𝑅)2 ))𝑟
2𝑑𝑟 = (A.41)∫ 𝑥

𝑅

𝑐𝑚𝑟2 − (𝑐𝑠 − 𝑐𝑚)(
2

𝑥 − 𝑅 (𝑟 − 𝑅) − 1

(𝑥 − 𝑅)2 (𝑟
2 − 2𝑟𝑅 + 𝑅2))𝑟2𝑑𝑟 = (A.42)∫ 𝑥

𝑅

𝑐𝑚𝑟2 − (𝑐𝑠 − 𝑐𝑚)(
2

𝑥 − 𝑅 (𝑟3 − 𝑟2𝑅) − 1

(𝑥 − 𝑅)2 (𝑟
4 − 2𝑟3𝑅 + 𝑟2𝑅2))𝑑𝑟 = (A.43)

1

3

𝑐𝑚(𝑥3 −𝑅3)+ (𝑐𝑠 − 𝑐𝑚)(
2

𝑥 − 𝑅 (1
4

(𝑥4 −𝑅4)− 1

3

𝑅(𝑥3 −𝑅3))− 1

(𝑥 − 𝑅)2 (
1

5

(𝑥5 −𝑅5)− 1

2

𝑅(𝑥4 −𝑅4)+ 1

3

𝑅2(𝑥3 −𝑅3))) =
(A.44)

1

3

(𝑐𝑠 − 𝑐𝑚)𝐴2 +
1

3

𝑐𝑚(𝑥3 − 𝑅3) (A.45)

with

𝐴2 = 3( 2

𝑥 − 𝑅 (1
4

(𝑥4 − 𝑅4) − 1

3

𝑅(𝑥3 − 𝑅3)) − 1

(𝑥 − 𝑅)2 (
1

5

(𝑥5 − 𝑅5) − 1

2

𝑅(𝑥4 − 𝑅4) + 1

3

𝑅2(𝑥3 − 𝑅3))) (A.46)

Now we insert equation (A.45) into equation (A.25).

1

3

(𝑐𝑠 − 𝑐𝑚)𝐴2 +
1

3

𝑐𝑚(𝑥3 − 𝑅3) = 1

3

𝑐∞
0
𝑥3 − 1

3

𝑐𝑝𝑅3

(A.47)

(𝑐𝑠 − 𝑐𝑚)𝐴2 = 𝑐∞
0
𝑥3 − 𝑐𝑝𝑅3 − 𝑐𝑚(𝑥3 − 𝑅3) (A.48)

(𝑐𝑠 − 𝑐𝑚)𝐴2 = 𝑥3(𝑐∞
0
− 𝑐𝑚) + 𝑅3(𝑐𝑚 − 𝑐𝑝) (A.49)

𝑐𝑠 =
𝑥3(𝑐∞

0
− 𝑐𝑚) + 𝑅3(𝑐𝑚 − 𝑐𝑝)

𝐴2

+ 𝑐𝑚 (A.50)
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A.2.3. Non-linear concentration profile
For the non-linear concentration profile approximation we will use∫ 𝑥

𝑅

𝑐(𝑟, 𝑡)𝑟2𝑑𝑟 =

∫ 𝑥

𝑅

((𝑐𝑚 − 𝑐𝑠)
𝑅

𝑟
(1 − 𝑟 − 𝑅

𝑥 − 𝑅 ) + 𝑐𝑠)𝑟2𝑑𝑟 = (A.51)∫ 𝑥

𝑅

((𝑐𝑚 − 𝑐𝑠)
𝑅

𝑟
(1 − 𝑟 − 𝑅

𝑥 − 𝑅 )𝑟2 + 𝑐𝑠𝑟2)𝑑𝑟 = (A.52)∫ 𝑥

𝑅

((𝑐𝑚 − 𝑐𝑠)(1 − 𝑟 − 𝑅
𝑥 − 𝑅 )𝑅𝑟 + 𝑐𝑠𝑟2)𝑑𝑟 = (A.53)∫ 𝑥

𝑅

(((𝑐𝑚 − 𝑐𝑠)𝑅𝑟 − (𝑐𝑚 − 𝑐𝑠)(
𝑟 − 𝑅
𝑥 − 𝑅 )𝑅𝑟 + 𝑐𝑠𝑟2)𝑑𝑟 = (A.54)∫ 𝑥

𝑅

(𝑐𝑚 − 𝑐𝑠)𝑅𝑟𝑑𝑟 −
∫ 𝑥

𝑅

(𝑐𝑚 − 𝑐𝑠)(
𝑟 − 𝑅
𝑥 − 𝑅 )𝑅𝑟𝑑𝑟 +

∫ 𝑥

𝑅

𝑐𝑠𝑟
2𝑑𝑟 = (A.55)∫ 𝑥

𝑅

(𝑐𝑚 − 𝑐𝑠)𝑅𝑟𝑑𝑟 −
∫ 𝑥

𝑅

((𝑐𝑚 − 𝑐𝑠)(
𝑅𝑟2

𝑥 − 𝑅 ) − (𝑐𝑚 − 𝑐𝑠)(
𝑅2𝑟

𝑥 − 𝑅 ))𝑑𝑟 +
∫ 𝑥

𝑅

𝑐𝑠𝑟
2𝑑𝑟 = (A.56)∫ 𝑥

𝑅

(𝑐𝑚 − 𝑐𝑠)𝑅𝑟𝑑𝑟 −
(𝑐𝑚 − 𝑐𝑠)
𝑥 − 𝑅

∫ 𝑥

𝑅

(𝑅𝑟2 − 𝑅2𝑟))𝑑𝑟 +
∫ 𝑥

𝑅

𝑐𝑠𝑟
2𝑑𝑟 = (A.57)∫ 𝑥

𝑅

(𝑐𝑚 − 𝑐𝑠)𝑅𝑟𝑑𝑟 −
(𝑐𝑚 − 𝑐𝑠)
𝑥 − 𝑅 (

∫ 𝑥

𝑅

𝑅𝑟2𝑑𝑟 −
∫ 𝑥

𝑅

𝑅2𝑟𝑑𝑟) +
∫ 𝑥

𝑅

𝑐𝑠𝑟
2𝑑𝑟 = (A.58)

1

2

(𝑐𝑚 − 𝑐𝑠)(𝑥2 − 𝑅2)𝑅 − (𝑐𝑚 − 𝑐𝑠)
𝑥 − 𝑅 (1

3

(𝑥3 − 𝑅3)𝑅 − 1

2

(𝑥2 − 𝑅2)𝑅2) + 1

3

𝑐𝑠(𝑥3 − 𝑅3) (A.59)

(𝑐𝑚 − 𝑐𝑠)(
1

2

(𝑥2 − 𝑅2)𝑅 − 1

𝑥 − 𝑅 (1
3

(𝑥3 − 𝑅3)𝑅 − 1

2

(𝑥2 − 𝑅2)𝑅2)) + 1

3

𝑐𝑠(𝑥3 − 𝑅3) (A.60)

1

3

(𝑐𝑚 − 𝑐𝑠)𝐴3 +
1

3

𝑐𝑠(𝑥3 − 𝑅3) (A.61)

with

𝐴3 = 3(1
2

(𝑥2 − 𝑅2)𝑅 − 1

𝑥 − 𝑅 (1
3

(𝑥3 − 𝑅3)𝑅 − 1

2

(𝑥2 − 𝑅2)𝑅2)) (A.62)

Now we insert equation (A.61) into equation (A.25).

1

3

(𝑐𝑚 − 𝑐𝑠)𝐴3 +
1

3

𝑐𝑠(𝑥3 − 𝑅3) = 1

3

𝑐∞
0
𝑥3 − 1

3

𝑐𝑝𝑅3

(A.63)

𝑐𝑠(𝑥3 − 𝑅3) − 𝑐𝑠𝐴3 = 𝑐∞
0
𝑥3 − 𝑐𝑝𝑅3 − 𝑐𝑚𝐴3 (A.64)

𝑐𝑠(𝑥3 − 𝑅3 − 𝐴3) = 𝑐∞
0
𝑥3 − 𝑐𝑝𝑅3 − 𝑐𝑚𝐴3 (A.65)

𝑐𝑠 =
𝑐∞

0
𝑥3 − 𝑐𝑝𝑅3 − 𝑐𝑚𝐴3

𝑥3 − 𝑅3 − 𝐴3

(A.66)

A.3. Gibbs Thomson Effect
In this part, the origin of the Gibbs Thomson effect is explained. This will lead to the general form of the

Gibbs-Thomson equation.

For this derivation we will assume a binary mixture of atoms A and B [18]. Let’s first assume no precipitate

(phase 𝛽) is present and only phase 𝛼 is present. The Gibbs free energy for mixing the two elements is given by

𝐺𝛼 = 𝑋𝐴𝐺𝐴 + 𝑋𝐵𝐺𝐵 + Δ𝐺𝑚𝑖𝑥 (A.67)

Where 𝑋𝐴 and 𝑋𝐵 are the fractions 𝐴 and 𝐵, 𝐺𝐴 and 𝐺𝐵 are the Gibbs free energy of a pure system of 𝐴 and 𝐵
respectively and Δ𝐺𝑚𝑖𝑥 is the change in energy due to mixing. Δ𝐺𝑚𝑖𝑥 is given as

Δ𝐺𝑚𝑖𝑥 = Δ𝐻𝑚𝑖𝑥 − 𝑇Δ𝑆𝑚𝑖𝑥 (A.68)
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Where Δ𝐻𝑚𝑖𝑥 and Δ𝑆𝑚𝑖𝑥 or the enthalpy and entropy of mixing. To define Δ𝐻𝑚𝑖𝑥 , we assume a homogeneous

distribution of elements and the enthalpy effects are only approximated with closed neighbor bonds (AA, AB,

BB). Then Δ𝐻𝑚𝑖𝑥 is given as

Δ𝐻𝑚𝑖𝑥 = Ω𝑋𝐴𝑋𝐵 (A.69)

Where Ω is the regular solution parameter given as

Ω = 𝑛𝑎𝑣𝑧(𝜀𝐴𝐵 −
1

2

(𝜀𝐴𝐴 + 𝜀𝐵𝐵)) (A.70)

Where 𝑛𝑎𝑣 is Avogadro’s constant, 𝑧 is the coordination number and 𝜀𝑖 𝑗 is the binding energy between atoms

𝑖 and 𝑗. Here,
1

2
𝑛𝑎𝑣𝑧 is the amount of bonds in the system but is multiplied by two in this equation due to

the probability of A-B bond to occur in a randomly mixed system being equal to 2𝑋𝐴𝑋𝐵. The right term

(𝜀𝐴𝐵− 1

2
(𝜀𝐴𝐴+ 𝜀𝐵𝐵)), is the difference enthalpy due to the creation of an A-B from the reaction:

1

2
𝐴𝐴+ 1

2
𝐵𝐵 → 𝐴𝐵.

To define Δ𝑆𝑚𝑖𝑥 , we assume that the thermal entropy, which is related to the number of ways in which vibrations

can occur in the solid, is negligible compared to the configurations enthalpy, which is related to the number of

ways atoms A and B can be arranged on the lattice. Also all configurations of A and B are equally probable.

Δ𝑆𝑚𝑖𝑥 can be given as

Δ𝑆𝑚𝑖𝑥 = 𝑘 𝑙𝑛(𝜔) (A.71)

Where 𝜔 is the number of ways the atoms can be arranged on the lattice given by the number of possible ways

to arrange A and B atoms ((𝑛𝐴 + 𝑛𝐵)!) reduced by 𝑛𝐴!𝑛𝐵! since all A and all B atoms are the same to each other,

given by

𝜔 =
(𝑛𝐴 + 𝑛𝐵)!
𝑛𝐴!𝑛𝐵!

(A.72)

Where 𝑛𝐴 and 𝑛𝐵 are the amount of atoms A and B. Using Stirling’s mathematical approximation (𝑙𝑛(𝑛!) =
𝑛 𝑙𝑛(𝑛) − 𝑛) and the relations 𝑛𝑖 = 𝑋𝑖𝑛 and 𝑅 = 𝑘𝑛𝑎𝑣 , Δ𝑆𝑚𝑖𝑥 can be rewritten as

Δ𝑆𝑚𝑖𝑥 = −𝑅(𝑋𝐴 𝑙𝑛(𝑋𝐴) + 𝑋𝐵 𝑙𝑛(𝑋𝐵)) (A.73)

𝐺𝛼
can then be written as

𝐺𝛼 = 𝐺𝐴𝑋𝐴 + 𝐺𝐵𝑋𝐵 +Ω𝑋𝐴𝑋𝐵 + 𝑅𝑇(𝑋𝐴 𝑙𝑛(𝑋𝐴) + 𝑋𝐵 𝑙𝑛(𝑋𝐵)) (A.74)

For the derivation of the Gibbs-Thomson equation we use the article by Perez [15]. 𝐺𝛼
can be rewritten using

𝑋𝑖 =
𝑛𝑖

𝑛𝑖+𝑛 𝑗 .

𝐺𝛼 = 𝑛𝐴(𝐺𝐴 + 𝑘𝑇𝑙𝑛( 𝑛𝐴

𝑛𝐴 + 𝑛𝐵
)) + 𝑛𝐵(𝐺𝐵 + 𝑘𝑇𝑙𝑛(

𝑛𝐵

𝑛𝐴 + 𝑛𝐵
)) +Ω( 𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵
) (A.75)

We add another phase (𝛽) of composition 𝐴𝑥𝐵𝑦 where the molar concentration for B is equal to 𝑋𝑝 =
𝑦

𝑥+𝑦 , the

free Gibbs energy is

𝐺𝛽 = 𝑛𝛽𝐺
𝛽
𝑛 (A.76)

Where 𝑛𝛽 is the amount of atoms in the 𝛽 phase and 𝐺
𝛽
𝑛 is the free energy per atom. If both phases are in

equilibrium at the interface, transferring atoms A and B from phase 𝛼 (composition 𝑋𝑚
0
) to 𝛽 (composition 𝑋𝑝)

will not change the total energy of the system. This can be given as

𝑑𝑛(1 − 𝑋𝑝)
𝛿𝐺𝛼

𝛿𝑛𝛼
𝐴

+ 𝑑𝑛𝑋𝑝
𝛿𝐺𝛼

𝛿𝑛𝛼
𝐵

= 𝑑𝑛
𝛿𝐺𝛽

𝛿𝑛
(A.77)

Solving this for a dilute regular solution gives

𝐺
𝛽
𝑛 = (1 − 𝑋𝑝)[𝐺𝛼

𝐴 + 𝑘𝑇𝑙𝑛(1 − 𝑋𝑚
0
)] + 𝑋𝑝[𝐺𝛼

𝐵 +Ω + 𝑘𝑇𝑙𝑛(𝑋𝑚
0
)] (A.78)

Here, the interracial energy is not taking into account. A term for the interfacial energy needs to be added to

A.76 to derive the new equilibrium condition.

𝐺𝛽 = 𝑛𝛽𝐺
𝛽
𝑛 + 𝛾𝑆𝛽 (A.79)

Where 𝛾 is the surface energy and 𝑆𝛽 is the surface area. The 𝛽 phase is assumed to be spherical with radius 𝑟

and atomic volume 𝑣
𝛽
𝑎𝑡 .

4

3

𝜋𝑟3 = 𝑛𝛽𝑣
𝛽
𝑎𝑡 (A.80)
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𝛿𝐺𝛽

𝛿𝑛𝛽
is then given by

𝛿𝐺𝛽

𝛿𝑛𝛽
= 𝐺

𝛽
𝑛 +

2𝛾𝑣
𝛽
𝑎𝑡

𝑟
(A.81)

The new equilibrium condition between phase 𝛼 (composition 𝑋𝑚(𝑟)) and phase 𝛽 (composition 𝑋𝑝
) is then

given by

𝐺
𝛽
𝑛 +

2𝛾𝑣
𝛽
𝑎𝑡

𝑟
= (1 − 𝑋𝑝)[𝐺𝛼

𝐴 + 𝑘𝑇𝑙𝑛(1 − 𝑋𝑚(𝑟))] + 𝑋𝑝[𝐺𝛼
𝐵 +Ω + 𝑘𝑇𝑙𝑛(𝑋𝑚(𝑟))] (A.82)

Now we subtract the equation with (A.82) and without (A.78) the interfacial energy term to get the general form

of the Gibbs-Thomson equation.

2𝛾𝑣
𝛽
𝑎𝑡

𝑟𝑘𝑇
= (1 − 𝑋𝑝)𝑙𝑛(1 − 𝑋𝑚(𝑟)

1 − 𝑋𝑚
0

) + 𝑋𝑝 𝑙𝑛(𝑋
𝑚(𝑟)
𝑋𝑚

0

) (A.83)

or

2𝛾𝑣
𝛽
𝑎𝑡

𝑟𝑘𝑇
= (1 − 𝑐𝑝)𝑙𝑛(

1 − 𝑐𝑚
𝑅

1 − 𝑐𝑚 ) + 𝑐𝑝 𝑙𝑛(
𝑐𝑚
𝑅

𝑐𝑚
) (A.84)

A.4. Single Dislocation Model
In this part, the calculations are given for the single dislocation model (Figure 3.2). Weng et al. [17] proposed a

flux going towards the dislocation due to the stress to be 𝐽𝑣 and the flux inside the dislocation line towards the

particle to be 𝐽𝑑. The diffusion is now described for a cylindrical geometry with different diffusion coefficient

inside and outside the cylinder. Inside the dislocation pipe, diffusion is described as

𝛿𝑐𝑝

𝛿𝑡
= 𝐷𝑝

𝛿2𝑐𝑑

𝛿𝑧2

+ 2

𝐷𝑙

𝑟0
( 𝛿𝑐
𝛿𝑟

)|𝑟=𝑟0 (A.85)

Where, 𝐷𝑝 is the diffusion coefficient inside the dislocation pipe, 𝐷𝑙 is the diffusion coefficient in the lattice, 𝑐𝑝 is

the concentration inside the pipe and 𝐶 is the concentration in the lattice. Outside the dislocation, diffusion is

described as

𝛿𝑐
𝛿𝑡

= 𝐷𝑙
𝛿
𝑟𝛿𝑟

(𝑟 𝛿𝑐
𝛿𝑟

) (A.86)

The boundary conditions are

𝑐(𝑟, 𝑡) = 𝑐∞ , 𝑤ℎ𝑒𝑛 𝑟 > 𝑟0 𝑎𝑛𝑑 𝑡 = 0 (A.87)

𝑐(𝑟, 𝑡) = 𝑐𝑝(𝑧), 𝑤ℎ𝑒𝑛 𝑟 ≤ 𝑟0 𝑎𝑛𝑑 𝑡 > 0 (A.88)

𝑐𝑝(𝑧)|𝑧=𝑅 = 𝑐𝑚 (A.89)

Solving this for a cylindrical coordinate system gives the fluxes 𝐽𝑣 and 𝐽𝑑.

𝐽𝑣 = −𝐷𝑙(
𝛿𝑐
𝛿𝑟

)|𝑟=𝑟0 =
4𝐷𝑙

𝜋2𝑟0
(𝑐𝑝 − 𝑐∞) 𝑓 (𝑡′) (A.90)

𝐽𝑑 = −𝐷𝑝(
𝛿𝑐𝑝

𝛿𝑧
)|𝑧=𝑅 =

√
𝐷𝑝𝐷𝑙 𝑓 (𝑡′)

2

√
2

𝜋𝑟0
(𝑐𝑚 − 𝑐∞) (A.91)

Where

𝑓 (𝑡′) =
∫ ∞

0

𝑒𝑥𝑝(−𝑡′𝑥2)
𝑥(𝐽2

0
(𝑥) + 𝑌2

0
(𝑥))

𝑑𝑥 (A.92)

and

𝑡′ =
𝐷𝑙𝑡

𝑟2

0

(A.93)

Where 𝐽0(𝑥) and 𝑌0(𝑥) are Bessel functions of the first and second kind of the zeroth order. Bessel functions are

the solution to the following differential equation.

𝑥2
𝑑2𝑦

𝑑𝑥2

+ 𝑥 𝑑𝑦
𝑑𝑥

+ (𝑥2 − 𝛼2)𝑦 = 0 (A.94)
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𝛼 is the order the Bessel function and is in this case equal to 0. In the case of positive integers for 𝑥 and 𝛼 = 0,

𝐽0(𝑥) and 𝑌0(𝑥) are the following.

𝐽0(𝑥) =
∞∑
𝑛=0

(−1)𝑛 𝑥2𝑛

2
2𝑛(𝑛!)2 (A.95)

𝑌0(𝑥) =
2

𝜋
((𝑙𝑛(1

2

𝑥) + 𝛾)𝐽0(𝑥) +
∞∑
𝑘=1

𝐻𝑘

( 1

4
(𝑥2))𝑘

(𝑘!)2 ) (A.96)

Where 𝐻𝑘 is a harmonic number.

𝐻𝑘 =

𝑘∑
𝑘1=1

1

𝑘1

(A.97)

And 𝛾 is the Euler-Mascheroni Constant, defined as

𝛾 = lim

𝑘→∞
(𝐻𝑘 − 𝑙𝑛(𝑘)) 𝑜𝑟 𝛾 ≈ 0.5772 (A.98)

Now, the growth rate due to pipe diffusion can be found by the following mass balance.

(𝑐𝑝 − 𝑐𝑚)4𝜋𝑅2
𝑑𝑅

𝑑𝑡
|𝑝 = 2𝜋𝑟0𝐽𝑑 (A.99)

This gives

𝑑𝑅

𝑑𝑡
|𝑝 =

𝑐∞ − 𝑐𝑚
𝑐𝑝 − 𝑐𝑚

√
2𝑟0

𝜋𝑅2

√
𝐷𝑝𝐷𝑙

√
𝑓 (𝑡′) (A.100)

A.5. Boundary Assisted Growth Model
In this part, the calculations are given for the boundary model (Figure 3.3) from Cheng et al. [19]. They

proposed that the precipitate is represented by a sphere located in the middle of a thin disk, which represents

the boundary. It is assumed that the diffusion in the sphere is rapid so that the spherical shape is maintained.

The concentration profile in the boundary is determined by the conversation of mass in the volume element,

illustrated in Figure 3.3.

𝑁𝑟 − 𝑁𝑟+𝑑𝑟 − 𝑑𝑁𝑐 = 𝑑𝑁𝑏 (A.101)

Where

𝑁𝑟 = −𝐷𝑏𝐴𝑐
𝛿𝑐𝑏
𝛿𝑟

(A.102)

And

𝑑𝑁𝑏 = 𝛿𝐴𝑐
𝛿𝑐𝑏
𝛿𝑡

(A.103)

Next, 𝑑𝑁𝑐 is approximated as [23]

𝑑𝑁𝑐 ≈
4𝐷

𝑑0

(𝑐𝑏 − 𝑐∞)𝑑𝐴𝑠 (A.104)

Where 𝐷𝑏 is the diffusion coefficient in the boundary, 𝐴𝑐 is the cross section area, 𝑑𝐴𝑠 is the surface area of the

volume element, 𝑐𝑏 is the concentration profile of the solute inside the boundary, 𝛿 is the boundary thickness

and 𝑑0 is the average grain diameter. 𝐴𝑐 and 𝑑𝐴𝑠 are given by

𝐴𝑐 = 2𝜋𝑟𝛿 (A.105)

𝑑𝐴𝑠 = 2𝜋𝑟𝑑𝑟 (A.106)

Assuming that
𝑑𝑟
𝛿 ≈ 1, the mass balance from equation (A.101) gives

𝐷𝑏(
𝛿2𝑐𝑏

𝛿𝑟2

+ 1

𝑟

𝛿𝑐𝑏
𝛿𝑟

− 4𝐷

𝑑0𝐷𝑏𝛿
(𝑐𝑏 − 𝑐∞)) =

𝛿𝐶𝑏
𝛿𝑡

(A.107)

Solving equation (A.107) with the following boundary conditions

• 𝑐𝑏 = 𝑐∞ when 𝑟 << 𝑅

• 𝑐𝑏 = 𝑐𝑚
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This gives the solute concentration profile in the boundary.

𝑐𝑏 =
𝑐𝑚 − 𝑐∞
𝐾0(𝛽𝑅)

𝐾0(𝛽𝑟) + 𝑐∞ (A.108)

Where

𝛽 =

√
4𝐷

𝐷𝑏𝛿𝑑0

(A.109)

The modified Bessel function (𝐾0(𝑥)) is approximated as

𝐾0(𝑥) ≈
√

𝜋
2𝑥
𝑒−𝑥 (A.110)

According to Cheng et al. [19], this gives an error of less then 10 pct. The mass balance can be rewritten as

−4𝜋𝑅2(𝑐𝑝 − 𝑐𝑚)𝑑𝑎 = (−4𝜋𝑅2𝐷
𝛿𝑐
𝛿𝑟

|𝑟=𝑅 − 2𝜋𝑅𝛿𝐷𝑏
𝛿𝑐𝑏
𝛿𝑟

|𝑟=𝑅)𝑑𝑡 (A.111)

Next, equation (A.108) and (A.111) with previous results by Cheng et al. [19] gives the growth rate.

𝑑𝑅

𝑑𝑡
|𝑡ℎ = Ω(𝐷

𝑅
+ 𝛿𝐷𝑏

4𝑅2

+ 𝛿𝐷𝑏𝛽

2𝑅
+ (𝐷𝑏

𝜋𝑡
) 1

2 ) (A.112)

In this work, Cheng used the invariant size approximation [9]. The invariant size approximation is an

approximation to predict the parabolic growth constant (𝜆) with a given supersaturation (Ω) just like the

concentration profile approximations discussed in this thesis work. We will not go into detail for the invariant

size approximation as it is beyond the scope of this thesis work. When using the invariant size approximation

under the assumption of a steady state, this gives

𝑑𝑅

𝑑𝑡
|𝑙 = Ω(𝐷

𝑅
) (A.113)

Subtracting equation (A.113) from (A.112) gives the growth rate from the boundary

𝑑𝑅

𝑑𝑡
|𝑏 = Ω( 𝛿𝐷𝑏

4𝑅2

+ 𝛿𝐷𝑏𝛽

2𝑅
+ (𝐷𝑏

𝜋𝑡
) 1

2 ) (A.114)
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