<]
TUDelft

Delft University of Technology

Reinforcement Learning for Optimized EV Charging Through Power Setpoint Tracking

Yilmaz, Yunus Emre; Orfanoudakis, Stavros; Vergara, Pedro P.

DOI
10.1109/ISGTEUROPEG62998.2024.10863457

Publication date
2024

Document Version
Final published version

Published in
IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024

Citation (APA)

Yilmaz, Y. E., Orfanoudakis, S., & Vergara, P. P. (2024). Reinforcement Learning for Optimized EV
Charging Through Power Setpoint Tracking. In N. Holjevac, T. Baskarad, M. Zidar, & I. Kuzle (Eds.), IEEE
PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024 (IEEE PES Innovative Smart Grid
Technologies Europe, ISGT EUROPE 2024). IEEE.
https://doi.org/10.1109/ISGTEUROPE62998.2024.10863457

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/ISGTEUROPE62998.2024.10863457
https://doi.org/10.1109/ISGTEUROPE62998.2024.10863457

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



2024 1EEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE) | 979-8-3503-9042-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISGTEUROPE62998.2024.10863457

Reinforcement Learning for Optimized EV
Charging Through Power Setpoint Tracking

Yunus Emre Yilmaz!, Stavros Orfanoudakis', Pedro P. Vf:rgara1
Intelligent Electrical Power Grids, Delft University of Technology, The Netherlands
emails: yemreyilmaz8 @ gmail.com,{S.Orfanoudakis, P.P.VergaraBarrios } @tudelft.nl

Abstract—Decarbonizing the transportation sector involves
adopting electric vehicles (EVs); a shift that introduces signif-
icant challenges in energy distribution management and raises
concerns about grid stability. Charge Point Operators (CPOs)
are important in this transition as they control the EV charging
process by balancing the needs of EV users and the grid. This
study presents a smart-charging model from the perspective of
CPOs for handling EVs located in a commercial parking lot to
minimize the Power Setpoint Tracking (PST) error. To solve this
sequential decision-making problem, a Markov Decision Process
(MDP) model is designed and solved using Deep Deterministic
Policy Gradient (DDPG), a Deep Reinforcement Learning (DRL)
algorithm. The proposed model can effectively manage the un-
certainties associated with EV arrivals and fluctuating charging
demands by structuring the action and state space to incorporate
power constraints. The experimental evaluation using realistic EV
behavior data shows that the proposed approach significantly
outperforms uncontrolled charging, reducing PST error while
effectively managing multiple EV chargers and EVs with varying
battery capacities and power limitations.

Index Terms—EV optimization, power setpoint tracking, deep
reinforcement learning (DRL), charge point operators, DDPG.

I. INTRODUCTION

As environmental concerns increase, the electric vehicle
(EV) market is experiencing rapid growth, with EVs rising
from under 5% of global sales in 2020 to 14% in 2022
[1]. This increase in EV adoption presents both challenges
and opportunities for power grids, especially those reliant on
renewable energy sources (RES). Technologies such as smart
charging and Vehicle-to-Grid (V2G) [2] are vital, improving
grid stability and providing economic advantages to EV users
and Charge Point Operators (CPOs) [3]. However, the EV
charging problem contains various uncertainties, including the
timing of EV arrivals and fluctuating electricity prices, neces-
sitating the implementation of fast and accurate optimization
techniques for scheduling the charging of EVs in real time [4].

Various studies have shown that optimizing the charging
schedule of EVs can yield promising results in terms of prof-
itability and grid stability. For instance, a Mixed Integer Linear
Programming (MILP) based approach at a public charging
station incorporating a battery energy storage system (BESS)
and forecasts from PV generation and EV arrival times resulted
in an 82.8% increase in daily profits [5]. Similarly, another
MILP formulation was applied to a community microgrid
featuring PV and a BESS; the optimization resulted in a 33.4%
reduction in operational costs by optimizing EV charging and
discharging schedules [6]. However, mathematical optimiza-
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tion often struggles to handle complex larger-scale problems
with uncertainties, especially in real-time settings.

Reinforcement Learning (RL) can handle uncertainties in
sequential decision-making problems by repeatedly interacting
with the problem’s environment and adjusting to real-time
state conditions [7]. In [8], a Deep Reinforcement Learning
(DRL) algorithm was utilized to maximize EV owner profits
by exploiting V2G capabilities at a residential EV charger.
However, the use of discrete charging levels limited the repre-
sentation of the EV charging problem. Similarly, [9] enhanced
profit optimization for EV aggregators using a combination of
Deep Deterministic Policy Gradient (DDPG) and prioritized
experience replay, which excelled across many residential
EV chargers. [10] proposed a recurrent DDPG approach that
scaled efficiently without retraining the RL model, showing
great scalability potential. In contrast, [11] focused on achiev-
ing targeted load schedules using a fitted Q-learning approach,
optimizing charging stations in a centralized manner.

This paper introduces a Power Setpoint Tracking (PST)
approach, solved using RL, to address the need for smart
charging in large-scale infrastructures while ensuring real-
time computation. In detail, PST is a dynamic smart charg-
ing method that empowers EV aggregators and CPOs to
manage energy distribution in a controlled manner, unlike
uncontrolled charging. For example, PST allows CPOs to
effectively coordinate their EV fleets to meet power demands
specified by market contracts or agreements with Distribution
System Operators (DSOs). To evaluate the effectiveness of this
approach, we conducted experiments using real-world data on
EV behavior and specifications, providing insights into the
practicality and performance of the system.

II. POWER SETPOINT TRACKING

PST is a charging approach usually adopted by CPOs to
match the contracted energy with consumption by scheduling
EV charging (Fig. 1). Initially, CPOs purchase energy in the
day-ahead market to supply their chargers and allocate it to
EVs the following day. Based on this contracted energy, CPOs
set power limits for specific times of the next day and schedule
EV charging accordingly. It is crucial that this scheduling
accurately matches the power setpoints to avoid the need for
costly additional energy purchases in the intraday and balanc-
ing markets or risking unsatisfied customers with uncharged
EVs. This paper focuses on how energy is distributed once a
power setpoint is determined rather than on energy trading.
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Fig. 1. Usual operations of CPOs controlling public and private parking lots.

A. EV2Gym Simulation Environment

Developing and evaluating different charging strategies for
the formulated PST problem requires a realistic digital simu-
lation environment. For the purposes of this paper, a realistic
V2G simulator named EV2Gym [12] was utilized to run
the simulations. EV2Gym is a flexible simulator that tests
algorithms in EV smart charging and V2G scenarios. EV2Gym
is a Gym environment [13]; therefore, it accelerates the de-
velopment of RL algorithms while it is offering customizable
settings for chargers, transformers, and EV specifications to fit
various scenarios. The simulator utilizes open-source data, in-
tegrates custom data such as electricity prices or EV behavior,
and supports saving replays to compare different algorithms
or against optimal solutions.

B. Mathematical Model

A mathematical model of the PST problem is formulated
using a Mixed Integer Nonlinear Programming (MINLP) for-
mulation. The simulation consists of 7" discrete time steps t.
Additionally, ¢ represents each charging station for EVs to
connect and is part of the set of charging stations C. The
set of charging stations C' are connected to a transformer to
introduce transformer power limits (P", ﬁtr) to the simulation.
Furthermore, there is a set of EVs indicated by H, where each
EV j € H. Lastly, the binary variable u is introduced to show
if an EV is connected to a charging station ¢ at time step ¢.

The objective function is the total squared difference be-
tween P and P{® in (1), where P; is the contracted power
and P the actually consumed power (3) used at timestep
t. The Pf" are determined for each step with a 5% surplus
from the total charging demand of a day and distributed to the
simulation’s steps by utilizing electricity prices as negative
weights. Furthermore, the algorithm controls the charging
current Iic"; vVt € T and ¢ € C. At each time step ¢t and charging
station ¢, power is determined by the product of the controlling
current [ f}}, voltage V, phases ¢, charging efficiency 7, and a
binary variable wu; , which indicates if an EV is connected, as
described in (2). The total charging power P/ at each step
is the sum of the power from all stations as shown in (3),
complying with the transformer’s power limits in (4) and each

station’s current constraints (5). Moreover, the State of Charge
(SoC) within each EV changes based on charging power and
time interval At according to (6). Each EV’s energy level at
arrival in (9) and connection status at any time are also detailed
and known in (10), ensuring compliance with respective EV
model constraints on battery capacity and charging power,
while 7 € H, as outlined in (7) and in (8).

. set tot) 2

min » (P — F*) (1)
i,t tGT
Subject to:
Ph=TI8%-V o n-uiy ViVt 2)
Pet=> P& Vi vt (3)
ieC 4

PY<P*<P, Wt )
I <18 <T it 5)
Eiji=FEiji—1+ P8 At Vi,Vj,vt (6)
E;;<Eij+<E;; ViVjVt (7)

h . .
P <Pt <P Vi VGV (8)
B = E™ Vi, Vit =t ©)

ui,t S {O, 1} Vz,Vt (10)

III. SOLVING THE PST PROBLEM WITH DDPG

The uncertainties in EVs’ arrival, departure times, and SoC
at arrival make DRL a suitable alternative for solving this
problem in real-time settings. DRL excel at fast, adaptive
decision-making in uncertain environments, with the DDPG
algorithm [14] being particularly effective for handling the
continuous state and action spaces which are common in EV
charging problems. To apply DDPG, the problem should first
be formulated as a finite Markov Decision Process (MDP),
characterized by (S, A, P, R, ~) [15]. The agent, as the
decision maker, interacts with the environment by taking
actions (a), shifting its state from s; to s;y1, and earning
rewards based on a reward function (r;). Hence, MDP has a
state space S, an action space .A, a state transition function
P(s¢4+1]8t,at), a reward R, and discount factor () determin-
ing the significance of immediate and future rewards.

A. State Space and Action Space

Designing the state and action space is crucial in achieving
the desirable performance in RL. The state vector s comprises
three variables and an additional three for each controlled EV
charger i. The EV charger variables default to zero when
no EV is connected, maintaining a consistent state vector
size of |3 4+ 3C| at each time step ¢, where C' represents
the total number of chargers. The fixed variables include the
normalized time step t/T', the contracted power setpoint P},
and the previous total power usage P;®;. The EV charger state
variables represent the normalized EV arrival and departure
times /T, 1% /T, and the SoC; for each connected EV.
Note that the departure time is being communicated only after
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Fig. 2. Diagram of proposed DDPG-based approach for EV charging.
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an EV connects to the charger. Normalizing time in the state
vector simplifies the state space and improves time perception
consistency, thereby enhancing the DDPG agent’s learning
efficiency. The state vector is formed as:

garr yder .
o, =, S50C; ] € S,i € C

— [t set tot
St = [T7Pt aPt717

Actions within the environment are taken according to the
constraints listed from Equations (2) to (10). The charging of
EVs is regulated through the charging current If*; Actions
assume continuous values between 0 and 1, with O indicating
no charging and 1 representing full power charging, resulting
in an action vector a; € [0, 1] for each charger. Thus, the action
vector for the environment corresponds to the total number of
chargers, C, forming the action vector:

a; = [0, l]c € A

B. Reward Function

The reward function calculates the squared difference be-
tween the power setpoints and total charging power at each
step. Additionally, it incorporates a parameter named charge
power potential PF** for assisting the learning process con-
sidering the charging needs of EVs as shown in (11). This
is represented by I 5 . which captures the potential charging
capacity based on the number of connected EVs, their SoCs,
and the power capabilities of the EVs and charging station <.

PP =31V -\/¢-n ViVt (1)
i€C
Therefore, the reward function is designed to minimize the
gap between actual power usage and the lower of the power
setpoints or the charge power potential:

Ry = —(min(PFy, P*)) — P*)°. (12)

C. DDPG Algorithm

The DDPG algorithm was selected to solve the aforemen-
tioned MDP as it can efficiently handle continuous action
and state spaces. In the rest of this section, our DDPG-based
approach will be thoroughly explained as illustrated in Fig. 2.
Furthermore, Alg. 1 outlines the training process of the RL
agent. The DDPG algorithm starts by initializing the actor
network /1¢(s) and the critic network @, (s, a), parameterized
by 6 and . The actor maps states .S to actions A, while the

Algorithm 1 DDPG Algorithm Training Process

1: Init. actor pg, critic network @, and replay buffer R

2: Init. target networks Q' and p’ with 6’ < 6, ¢’ < ¢

3: for episode = 1,...,U/ do

4. Receive initial observation state s;

5 Initialize a random OU noise N

6: fort=1,...,T do

7: Select and execute action a; = ug(s¢) + Ny, observe
reward 7; and new state S;y

8 Store transition (s, at, 74, S¢41) in R

9: Sample a minibatch M from R and find y; (13)
10: Update critic by minimizing L, (14)

11: Update actor policy using policy gradient Vgu (15)
12: Update the actor and critic networks 19 and Q,

13: Update the target networks /i and Q,

14:  end for

15: end for

critic assesses the policy by estimating the ()-value of state-
action pairs. Additionally, a replay buffer R is set up to store
past transitions (s, at, 7, St+1). In the exploration phase, at
each time step ¢, the agent selects an action (ug(s;)) using the
actor-network, by incorporating an Ornstein—Uhlenbeck (OU)
action noise (N}) to increase exploration while learning. The
state (s;), the executed action (a;), its resulting state (s;y1)
and the achieved reward (r;) are then stored in R. After the
replay buffer stores a predetermined amount of transitions, the
algorithm samples a mini-batch of transitions (M) to update
both the actor and critic networks. The target )-value for these
updates is calculated with (13).

Yo = 75 + YR (Sb+15 Ho(5p4+1)) (13)

The algorithm then updates the critic network by minimizing
the loss between its predicted Q-values, Q,(sp, as), and the

target QQ-values Q,(sp+1, ty(sp+1)) by (14).

1
Ly =+ Xb}yb — Qu(s0,@))? (14)
Subsequently, the actor policy is updated using the sampled
policy gradient, aimed at actions that maximize the critic’s
predicted Q-values in (15).

1
Vou = i Z VaQyp (80, 1o(55))Vape(ss) (15)
b

After updating the actor policy, the weights for both the
main and target networks of the actor and critic are updated.
The learning rates for the gradient ascent process of the
actor-network are applied by 0 < 6 + a*Vyu. Following
that, the gradient descent process of the critic network is
applied as ¢ < ¢ — aQVg,L(go). Lastly, the weights of the
target networks pj and pr are updated towards the main
networks using a soft update 7 by 6/ « 76 + (1 — 7)¢’
and ¢’ + 7o + (1 — 7)¢’. Main and target actor and critic
networks undergo soft updates periodically to ensure that the
policy improves steadily until the training concludes.
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TABLE I
PST EVALUATION METRIC DEFINITIONS

Metric Symbol  Equation

ZteT(Ptset - tht)z
ter |PEEt — PioY| - At
1 Z SoCly
18] * £<keg SoC7}
Dter max((P{°" — P£¢"),0)

Squared Tracking Error (kW?2)  €'"
Energy Tracking Error (kWh) €t
User Satisfaction (%) eusT

Power Tracker Surplus (kW) esur

IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
DDPG-based PST approach. In our case studies, a CPO
manages the charging of EVs in a workplace parking lot with
10 EV chargers by applying the PST strategy, to minimize
PST errors. The CPO purchases energy from the day-ahead
market in advance, planning its use for charging sessions from
6 am to 6 pm, reflecting typical office hours. Each 15-minute
interval is assigned a specific power setpoint, considering the
wholesale market contracting intervals. The case study was
modelled with the EV2Gym [12] simulator and was used to
train and evaluate the RL agent.

EV arrival patterns, duration of stay, and charging needs
specific to a workplace are obtained from ElaadNL [16].
Additionally, historic day-ahead electricity prices are retrieved
from entso-e [17]. Combined with total EV registration in
the Netherlands by 2023 data from RVO [18], these offer a
practical foundation for solving the PST problem in workplace
settings. Additionally, power setpoints are determined with a
5% flexibility margin, which means that the CPO purchases
5% more energy in the day-ahead market than the total
charging demand for the next day.

Furthermore, the following evaluation metrics highlighted
in Table I are considered. The squared tracking error ",
aligns with the DDPG’s reward function and the objective
function of the mathematical formulation. Secondly, the energy
tracking error |¢!”| indicates PST error during a day’s charging
sessions in kWh. User satisfaction €¢"“*" measures the SoC
increase against the desired SoC target of 80%, reflecting
user experience. Lastly, power tracker surplus €°“" indicates
the extent of charging power that exceeds determined power
setpoints in kW unit.

A. Training and Testing Settings

To train the agent, 1,200,000 time steps of 15 minutes are
completed, equating to 25,000 episodes, i.e., 25,000 days of
12 hours each. The RL agent’s learning is evaluated by the
convergence and maximization of the mean reward and its
performance considering the evaluation metrics in Table I in
contrast to Optimal and CAFAP algorithms.

In our study, we employed a replay buffer R with a size
of 1,000,000 transitions and a minibatch size M of 64. The
discount factor v was set at 0.99, with a soft update 7 value
of 0.0005 and a learning rate o of 0.001. For exploration,
we used action noise N with a standard deviation 0.2. The
actor networks (ug, py) were configured with sizes of two

0
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Fig. 3. Mean episode rewards from 10 training sessions.
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fully connected layers with 128 nodes; similarly, both the main
and target critic networks (Q, Q:o) were configured with 64
nodes, respectively. In Fig. 3, the convergence of mean rewards
of an episode can be observed, obtained from 10 training
sessions using the selected hyperparameter set. The agent
converges after the 5000'" episode. However, the training
continued until the 25000 episode to ensure convergence.

B. Performance Evaluation of DDPG

To evaluate the performance of the DDPG algorithm, the
trained model was tested with randomly generated 100 scenar-
ios and was compared with two baseline approaches. The first
benchmark is the optimal solution, derived from the mathemat-
ical formulation of the PST minimization problem, assuming
complete knowledge at the start of the day—an impractical
scenario due to uncertainties like EV arrival times and SoC.
The second benchmark is a common charging strategy, charge
as fast as possible (CAFAP), where EVs charge at maximum
capacity upon connection without any charging control.

In Fig. 4, the charging operation for one replay can be
observed. The CAFAP algorithm charged EVs as fast as
possible upon their arrival, resulting in PST errors, which
can be translated to potential risks for imbalances. Conversely,
the DDPG algorithm scheduled charging times to better align
with power setpoints, optimizing charging and minimizing
associated costs and risks. Consecutively, the Optimal algo-
rithm charged EVs while minimizing the PST error to an
experimental minimum, however, such precision is impractical
in real-world settings due to uncertainties.

Overall, the DDPG algorithm had better performance than
the CAFAP algorithm as it exceeded the power setpoints by
78% less as shown in Table II. This indicates that the DDPG
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TABLE 11
AVERAGE PERFORMANCE IN 100 EPISODES

Algorithm €™ (kW?) |et™| (KW h) ST (%) eSUT (kW)
CAFAP 11862.3 £4278.1  147.68 £25.38 99.80 £0.20  283.77 £ 49.30
DDPG 4972.0 + 1753.9 97.62 £+ 18.65 88.61 £3.00 61.73 £ 27.42
Optimal 189.5 + 129.0 13.16 + 5.06 98.52 +£0.70  0.00025 £ 0.0005
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Fig. 5. Distribution of energy tracking error throughout 100 evaluated replays
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Fig. 6. Distributions of user satisfaction throughout 100 evaluated replays

algorithm can ensure better adherence to predetermined power
levels, which is particularly important when the demand for
charging exceeds the power capacity in alternative scenarios.
Fig. 5 represents the averages and standard deviations of the
compared algorithms. Energy tracking error was analyzed for
three algorithms. The DDPG algorithm notably outperformed
CAFAP, with energy tracking errors averaging about 50 kWh
less per replay. However, the Optimal algorithm excelled
further, achieving the best performance in minimizing the
energy tracking error as expected due to its status.

In detail, the user satisfaction evaluated in Fig. 6, shows
that both the CAFAP and Optimal algorithms nearly fully
charged EV batteries to the desired SoC level. This is an
expected result due to CAFAP’s fast charging strategy and the
Optimal algorithm’s benchmark status. In contrast, the DDPG
algorithm did not perform as well as the other benchmarks,
achieving an average user satisfaction rate of 88.6% across
100 episodes. This indicates that while DDPG effectively
reduces the energy tracking error, it does so at the expense of
user satisfaction. This result shows that although the DDPG
algorithm compromises user satisfaction, it maintains a rel-
atively high baseline, reflecting a strategic balance between
minimizing PST error and optimizing EV user satisfaction.
Remarkably, achieving 88.6% average user satisfaction while
reducing energy tracking error by 34% compared to CAFAP
represents a significant achievement for the DDPG algorithm.

V. CONCLUSION

This study introduced a DDPG-based approach for EV
smart charging at a workplace parking lot to minimize PST
error by meeting predetermined power setpoints. The proposed

approach was compared against two benchmark algorithms,
CAFAP and Optimal derived from a MINLP formulation of the
PST minimization problem. As a result, the DDPG algorithm
managed to decrease the PST error by 34%, while keeping
EV user satisfaction at 88.6%. Furthermore, it achieved a 78%
reduction in exceeding power setpoints compared to CAFAP,
highlighting the DDPG’s promises for further research to op-
erate in EV charging scenarios with restricted power capacity.
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