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Relation between physical variables and geometric objects

All physical variables are related to geometric objects

Mass M is associated to a volume, V .

Average density ρ̄ = M
V

. ρ = limV→0
M
V

mathematically justified, but physically
questionable.
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Relation between physical variables and geometric objects

All physical variables are related to geometric objects

Velocity F is associated to a curve, C.

The velocity, v, can be measured by recording the position, r, of a particle at two
consecutive time instants, t1 and t2. These positions are related to the velocity by

r(t2)− r(t1) =

∫ t2

t1

dr

dt
dt =

∫ t2

t1

v dt

This relation is exact and then we approximate ‘the’ velocity by

v ≈
r(t2)− r(t1)

t2 − t1

Letting ∆t = t2 − t1 → 0 to have the velocity at a time instant is physically not
meaningful.
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Boundary operator

The most important operator in mimetic methods is the boundary operator ∂

∂ : k-dim −→ (k − 1)-dim

∂
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Orientation and type of orientation

Orientation and sense of orientation

Every geometric object can be oriented in two ways. For instance, in a surface we define
a sense of rotation, either clockwise or counter clockwise

Furthermore, we distinguish between inner-orientation and outer-orientation
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Orientation and type of orientation

∂ and ?∂?

Let ? denote the operator which switches between inner- and outer-orientation

∂

∂

*

*

Then we have the operations:

∂ : k-dim −→ (k − 1)-dim ? ∂? : k-dim −→ (k + 1)-dim
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Oriented dual cell complexes

Double boundary complex

In 3D we have points, curves, surfaces and volumes

Inner Orientation

Outer Orientation

∂ ∂ ∂

*

∂ ∂ ∂

* * * * *
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Matrix representation of boundary operator

Set of points: 
P1

P2

P3

P4



P1 P2

P3 P4

Marc Gerritsma The geometric basis of mimetic spectral approximations 7 / 30



Introduction
Physics & Geometry

Integral values
Some results

Geometry
Orientation

Matrix representation of boundary operator

Set of lines:
∂L1

∂L2

∂L3

∂L4

 =


−1 1 0 0
0 0 −1 1
−1 0 1 0
0 −1 0 1



P1

P2

P3

P4



P1 P2

P3 P4

L3
L4

L2

L1
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Matrix representation of boundary operator

Surface:

∂∂S1 =
[
1 −1 −1 1

]
∂L1

∂L2

∂L3

∂L4



P1 P2

P3 P4

L3
L4

L2

L1

S1
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Topological vs metric-dependent operations

The boundary operator ∂ is topological operator, ? operator is metric-dependent.

Nilpotency of ∂ and ?∂?

Application of the boundary operator twice always yields the empty set: ∂ ◦ ∂ ≡ 0
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Assigning a value to geometric objects

k-chains and k-cochains

A basic k-dimensional object will be called a k-cell, τk. A collection of oriented k-cells
is called a k-chain, ck. The space of all k-chains will be denoted by Ck
The operation which assigns a value to a physical quantity associated with a geometric
object is called a k-cochain, ck:

ck : Ck −→ R ⇐⇒
〈
ck, ck

〉
∈ R
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Assigning a value to geometric objects

k-cochains and integration

ck : Ck −→ R ⇐⇒
〈
ck, ck

〉
∈ R

In the continuous setting in 3D this should be compared to

k = 0 , point : f(P ) ,

k = 1 , curve :

∫
C
a(x, y, z) dx+ b(x, y, z) dy + c(x, y, z) dz ,

k = 2 , surface :

∫
S
P (x, y, z) dydz +Q(x, y, z) dzdx+R(x, y, z) dxdy ,

k = 3 , volume :

∫
V
ρ(x, y, z) dxdydz .

The expression underneath the integral sign is called a differential k-form, a(k).

〈
a(k),Ωk

〉
:=

∫
Ωk

a(k) ∈ R
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Assigning a value to geometric objects

k-cochains and integration

Both integration of differential forms and duality pairing between cochains and chains
is a metric-free operation〈

ck, ck

〉
∈ R ⇐⇒

〈
a(k),Ωk

〉
∈ R

〈
ck, ck

〉
is to be considered as discrete integration.
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Cell complex ⇔ computational grid

Topological mesh

If we glue volumes, surfaces, lines and points together we obtain a so-called cell-complex.

Manifold

Cell complex

0-cells 1-cells 2-cells 3-cells
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The Mother of all equations

The coboundary operator

Duality pairing between chains and cochains allows us to define the adjoint of the
boundary operator δ

〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉
The coboundary operator maps k-cochains into (k + 1)-cochains:

δ : Ck −→ Ck+1

∂ ◦ ∂ ≡ 0 ⇐⇒ δ ◦ δ ≡ 0

Marc Gerritsma The geometric basis of mimetic spectral approximations 11 / 30



Introduction
Physics & Geometry

Integral values
Some results

Assigning values to geometric objects
Mother of all equations
The ugly stepmother

The Mother of all equations

The coboundary operator 〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉

Marc Gerritsma The geometric basis of mimetic spectral approximations 11 / 30



Introduction
Physics & Geometry

Integral values
Some results

Assigning values to geometric objects
Mother of all equations
The ugly stepmother

The Mother of all equations

The coboundary operator 〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉
Let C be an arbitrary curve going from the point A to the point B

k = 0 :

∫
C

gradφd~s =

∫
∂C

φ = φ(B)− φ(A)
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The Mother of all equations

The coboundary operator 〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉
Let S be a surface bounded by ∂S then

k = 1 :

∫
S

curl ~A d~S =

∫
∂S

~A · d~s
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The Mother of all equations

The coboundary operator 〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉
Let V be a volume, bounded by ∂V then∫

V
div ~FdV =

∫
∂V

~F · d~S
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The Mother of all equations

The coboundary operator 〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉
Duality pairing and the boundary operator DEFINE the coboundary operator!
I.e. grad, curl and div are defined through the topological relations and are therefore
coordinate-free and metric-free.

If we choose basis functions for our numerical method, the basis functions should cancel
from the equations. There cannot be an explicit dependence on the basis functions.
The same topological relations hold for low order methods and high order methods.
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The Mother of all equations

The coboundary operator 〈
δck, ck+1

〉
:=
〈
ck, ∂ck+1

〉
At the continuous level, in terms of differential forms, this relation is given by the
generalized Stokes Theorem

∫
Ωk+1

dω(k) :=

∫
∂Ωk+1

ω(k)
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The ’Hodge-?’ operator

The ’Hodge-?’ operator

Remember that ? was the operator which switches between inner- and outer orientation.
We can also write down a formal adjoint of this operation

〈
?ck, cn−k

〉
:=
〈
cn−k, ?ck

〉
The ? operator applied to k-dimensional geometric objects turns them into (n − k)-
dimensional geometric objects with the other type of orientation.
The ? operator applied to k-cochains turns them into (n − k)-cochains acting on ge-
ometric objects of the other orientation.

The ? operator is metric-dependent and can
therefore not be described in purely topological terms
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The ugly stepmother

δ? = ?δ?

Recall that
?∂? : Ck −→ Ck+1

Inner Orientation

Outer Orientation

∂ ∂ ∂

*

∂ ∂ ∂

* * * * *

So the formal adjoint of ?∂? would be

〈
δ?ck, ck−1

〉
:=
〈
?δ ? ck, ck−1

〉
=
〈
ck, ?∂ ? ck−1

〉
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δ? and grad, curl and div

δ? also represents the grad, curl and div

δ? : Ck −→ Ck−1

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

Note that in contrast to δ, δ? is a metric-dependent version of grad, curl and div and
can therefore NOT be the same as the topological grad, curl and div. We will make
this difference explicit by grad∗, curl∗ and div∗.
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

−div∗ gradφ
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented lines is given by

[−grad div∗ + curl∗ curl] ~A
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented surfaces is given by

[curl curl∗ − grad∗ div] ~F
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

−div grad∗ρ
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

On contractible domains the geometric structure given above is called the double DeR-
ham complex
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Metric

Metric

How do we discretize the metric-dependent part?

I Use two staggered grids and explicitly construct the Hodge operator → finite
volume methods

I Use an inner product and use

(
ak, bk

)
Ω

:=

∫
Ω
ak ∧ ?bk

→ finite element methods

In both cases we need a continuous reconstruction, I, from our discrete values associated
with geometric objects to continuous functions, i.e.

I : Ck(Ω) −→ Λk(Ω)
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Metric

Reduction

Let the reduction operator be defined by

R : Λk(Ω) −→ Ck(Ω)

〈(
Ra(k)

)
, τk

〉
:=

∫
τk

a(k)

Rd = δR

Λk
d−−−−−→ Λk+1yR yR

Ck
δ−−−−−→ Ck+1
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Metric

Reconstruction

The reconstruction operator needs to satisfy

I : Ck(Ω) −→ Λkh(Ω) ⊂ Λk(Ω)

dI = Iδ and R ◦ I ≡ I

Ck
δ−−−−−→ Ck+1yI yI

Λk
d−−−−−→ Λk+1

Spectral element basis functions which satisfy these relations are called mimetic spectral
elements
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Metric

Discretization ⇔ projection

We define the projection operator as

π := I ◦ R

The commutation relations ensure that

dπ = dIR = IδR = IRd = πd

Λk
d−−−−−→ Λk+1yπ yπ

Λkh
d−−−−−→ Λk+1

h

NOTE: This only holds for the topological grad, curl and div! NOT for grad∗, curl∗ or
div∗.
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Mimetic spectral elements

Basis functions 1D
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GLL nodal interpolation

l i(x
)

x
-1 -0.5 0 0.5 1

-2

-1
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1
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4

5

x

e i(x
)

GLL edge interpolation

In 1D we only have points and line segments, so we use

nodal Lagrange interpolation : hi(xj) = δij

Edge interpolation :

∫ xj

xj−1

ei(x) = δi,j , ei(x) = −
i−1∑
k=0

dhk(x)
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Comparison with higher order RT-elements

Stokes problem

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

 

 

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

||w
-

w
 ||

L 
L

0
2

h
||u

-u
 ||

H
L

1
||u

-u
 ||

L 
L

1
2

h
h

||
(w

-
w

 )
 || L 

L
1

2
h

d 
h

||p
-p

 ||
L 

L
2

2

h h

h h

2

3 4

1_
2

3_
2

3_
2

2

2

3

3
3

Raviart−Thomas,  N=2
Mimetic Spectral, N=2
Mimetic Spectral, N=3

Marc Gerritsma The geometric basis of mimetic spectral approximations 17 / 30



Introduction
Physics & Geometry

Integral values
Some results

Assigning values to geometric objects
Mother of all equations
The ugly stepmother

Comparison with higher order RT-elements

Stokes problem

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

N=2
N=4
N=6
N=8

N=2
N=4
N=6
N=8

N=2
N=4
N=6
N=8

||u
-u

 ||
H

L
1

h

||w
-

w
 ||

H
 L

0
h

h
||p

-p
 ||

L 
L

2
2

h

h h

no
rm

al
 v

el
oc

ity
 - 

ta
ng

en
tia

l v
el

oc
ity

tangential velocity - pressure

ta
ng

en
tia

l v
or

tic
ity

 - 
no

rm
al

 v
el

oc
ity

tangential vorticity - pressure

2

4

6
8

2

4

6 8

2

4

6
8

Marc Gerritsma The geometric basis of mimetic spectral approximations 17 / 30



Introduction
Physics & Geometry

Integral values
Some results

Assigning values to geometric objects
Mother of all equations
The ugly stepmother

How to avoid grad∗, curl∗ and div∗

Integration by parts

Finite element methods remove the metric-dependent vector operations through inte-
gration by parts

(dak, bk+1) = dak ∧ ?bk+1 = (−1)k+1ak ∧ d ? bk+1 =

ak ∧ ?d∗bk+1 = (ak, d∗bk+1)

Vector operations

In conventional vector operations this reads (without boundary)

(gradφ,~b) = (φ,−div∗~b) , (curl~a,~b) = (~a, curl∗~b) , (div~a, φ) = (~a,−grad∗φ)
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

−div∗ gradφ = f
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Outer Orientation
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The scalar Laplace operator acting on outward oriented points is given by

(−div∗ gradφ, ψ) = (f, ψ)
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Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

(gradφ, gradψ) + b.i. = (f, ψ)
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

div grad∗ρ = f
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Inner Orientation

Outer Orientation

grad
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curl
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div
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curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

~q = grad∗ρ

div~q = f
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

(~q, ~p)− (grad∗ρ, ~p) = 0

(div~q, w) = (f, w)
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

(~q, ~p) + (ρ, div~p) + b.i. = 0

(div~q, w) = (f, w)
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Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The weak formulation (direct or mixed) is determined by the geometry which in turn is
determined by the physics!
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Stokes flow

Resonant Cavity problem (benchmark case)

Eigenvalue problem (borrowed from our neighbors)
Maxwell equations with unit coefficients and zero force functions.

∇×
(
∇× ~E

)
= λ~E on Ω = [0, π]2

All eigenvalues are known integers: λ = 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, . . .
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Resonant Cavity problem (benchmark case)

Results

∆~u = λ~u, div~u = 0, Ω = [0, π]2 Not solvable with standard FEM / SEM,
see [Boffi, Acta Numerica 2010].
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Results

∆~u = λ~u, div~u = 0, Ω = [0, π]2 Not solvable with standard FEM / SEM,
see [Boffi, Acta Numerica 2010].
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Resonant cavity in L-shaped domain

Dirichlet boundary conditions

Neumann boundary conditions
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Stokes problem

Stokes problem

(curl curl∗ − grad∗ div)u+ grad∗ p = f

divu = 0

Since divu = 0, we can remove this term from momentum. Introduce ω = curl∗ u.
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Stokes problem

Stokes problem

ω − curl∗ u = 0

curlω + grad∗ p = f

divu = 0
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Further reading

Further reading:

J. Kreeft, A. Palha, M. Gerritsma, Mimetic Framework on curvilinear quadrilaterals of
arbitrary order http://arxiv.org/abs/1111.4304

J. Kreeft, M. Gerritsma, Mixed mimetic spectral element method for Stokes flow: A
pointwise divergence-free solution http://arxiv.org/abs/1201.4409

J. Kreeft, M. Gerritsma, A priori error estimates for compatible spectral discretization
of the Stokes problem for all admissible boundary conditions
http://arxiv.org/abs/1206.2812

R.R. Hiemstra, R.H.M. Huijsmans, M. Gerritsma, High order gradient, curl and
divergence conforming spaces, with an application to NURBS-based IsoGeometric
Analysis http://arxiv.org/abs/1209.1793

http://mimeticspectral.com
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