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Intercity truck route choices incorporating toll road alternatives using 

enhanced GPS data  

 

This research presents the data collection, specification and estimation of a route 

choice model for intercity truck trips, with a focus on toll road usage. The data was 

obtained from driver-validated and enhanced GPS records. A mixed logit model 

with a path-size factor is specified. It accounts for heterogeneity among drivers 

using distributed coefficients for travel time and its variability. The estimation 

results show wide heterogeneity among drivers based on employment type and 

availability of electronic toll collection tags. Toll value of time and toll value of 

reliability distributions are derived. The model application is demonstrated on 

several trip corridors.  

 

Keywords: intercity freight, truck route choice, GPS tracking 

 

1. Introduction 

Truck traffic accounts for about 9% of the distance driven on highways in the USA. The 

total truck flows have been increasing steadily. They are expected to increase a further 

43% between 2015 and 2045 (BTS 2017). Truck traffic has a substantial effect on traffic 

flow. Therefore, understanding trucks’ route choices is important in order to forecast 

truck traffic and model traffic and freight systems. Specifically, trucks, through higher 

annual distance traveled and higher toll rates, often contribute a significant share of 

revenues in toll roads (Bain and Polakovic 2005). However, forecasts of trucks’ use of 

toll roads have been shown to overestimate actual use (Bain 2009). This may result in 

loss of revenue for the developers.  
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Substantial literature on truck route choices focuses on value of time (VOT), 

namely the trade-off between the cost and travel time (e.g. Wynter 1995, de Jong 2000, 

Kawamura 2000, Bergkvist 2001, Smalkoski and Levinson 2005, Zamparini and 

Reggiani 2007, Ismail et al. 2009, Miao et al. 2011). While these are consistently 

important determinants of trucks' route choices, they are not the only important ones. 

Other factors that have been found to affect truck route choices include measures of the 

travel time reliability (e.g. Jovicic 1998, Small et al. 1999, Kurri et al. 2000, Austroads 

2003, de Jong et al. 2004, Danielis et al. 2005, Fowkes and Whiteing 2006, Toledo et al. 

2013), travel distance (Knorring et al. 2005, Quattrone and Vitetta 2011, Wood 2011, 

Toledo et al. 2013, Hess et al. 2015), road types and characteristics (e.g. Hunt and 

Abraham 2004, Hyodo and Hagino 2010, Arentze et al. 2012, Rowell et al. 2014, Hess et 

al. 2015, Tahlyan et al. 2017), facilities along the road (Feng et al. 2013, Arentze et al. 

2012, Rowell et al. 2014), type of freight service (Austroads 2003).  

Beyond the explanatory variables, several authors addressed the effect of 

similarities among routes due to overlap. Quattrone and Vitteta (2011), Hess et al. (2015) 

and Tahlyan et al. (2017) used Path-size logit (PSL) and C-logit models to capture the 

effect of similarities among overlapping route alternatives, showing improvement in 

model fit over the model that does not include these terms. Hess et al. (2015) developed 

an error components model, in which correlations among routes stem from similarities in 

road types being driven. In their estimation results, this approach yielded better fit to the 

data compared to PSL.  

The need to address the existence of a heterogeneity in route choice preferences 

among truckers has also been noted. To capture this, Kurri et al. (2000), Danielis et al. 

(2005) and Fowkes and Whiteing (2006) estimated different route choice parameters for 

different sub-populations of drivers based on their industry. Feng et al. (2013) and Rowell 
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et al. (2014) estimated latent class models, in which class membership was mostly 

explained by truck size or travel distance. Quattrone and Vitetta (2011) and Kim et al. 

(2017) used fuzzy logic structures, and Kawamura (2000) and Toledo et al. (2013) used 

random coefficient models to estimate distributed VOTs. All found wide heterogeneity 

in preferences. Marcucci and Gatta (2012) compared different methods to capture 

heterogeneity in the context of airport choices. They found that a mixed logit model with 

random coefficients in the utility function outperformed other approaches.     

In terms of data sources, in recent years there has been a shift from using stated 

preferences (SP) data, which has been the prevailing source of data for estimation of truck 

route choice models, to revealed preferences (RP), mostly from large-scale GPS records 

(e.g. Knorring et al. 2005, Quattrone and Vitetta 2011, Wang and Goodchild 2014, Hess 

et al. 2015, Tahlyan et al. 2017). Beyond the better response realism, these data offer 

advantages in terms of accuracy and sample size. However, data derived from GPS 

records often does not include information about the driver and trip circumstances, or 

about alternatives to the chosen route. 

This paper reports on research to collect data and develop a route choice model 

for truck drivers that make intercity trips, with a focus on toll road usage. The developed 

model accounts both for correlations among alternatives due to overlap and for 

heterogeneity in preferences in VOT and towards toll road use among drivers. The data 

used in the study was collected using GPS loggers that were installed in trucks that 

traveled throughout the USA and Canada. These data were verified by the drivers using 

a web interface and combined with drivers’ socio-economic and shipments characteristics 

that were also collected through the interface.   

This work extends the literature on truck route choices in several directions. The 

data collection combines route tracking using GPS with the use of a web interface to 
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solicit additional information on the drivers and their trips. Most previous models only 

used variables related to route attributes, levels of service and costs that can be derived 

from the GPS traces and map databases. The data collection method used in this study, 

supports model specifications that are able to capture systematic differences in 

preferences among driver groups based on their characteristics, such as their years of 

experience and employment type, and additional terms, such as availability of toll tags 

that are derived from the responses on the web interface. The model also accounts for 

unobserved heterogeneity through the specification of distributed individual-specific 

travel time and travel time reliability coefficients. In the context of truck route choices, 

this has been previously done with SP data, but not with GPS traces.  

The use of GPS records collected from trucks undertaking intercity travel over a 

longer period of time provides data on a wide geographic scale. This is in contrast with 

most previous studies that focused on specific regions or corridors. The result is a better 

representation of the non-recurring travel patterns of trucks, unlike those of commuters. 

Furthermore, it increases the variability in the values of the explanatory variables and 

improves the efficiency of the parameter estimates. However, the wide geographic 

coverage makes it difficult to both generate alternative routes and to estimate their 

attributes, which are required for the modeling task. This problem has not received 

adequate attention. Some previous truck routing research using GPS traces focused on 

specific corridors (e.g. Knorring et al. 2005, Wang and Goodchild 2014) and so used 

judgement to pre-define a small number of reasonable routes and extracted their attributes 

from the map database. Quatronne and Vitteta (2011) and Hess et al. (2015) generated 

network-wide routes using the labeling and link-elimination approaches, respectively. 

However, neither used navigation map databases to estimate the values of attributes, 

including those used to generate routes. The former used a coarse national traffic 
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assignment model. The latter estimated travel times based on assumptions on the travel 

speed on various road types. This paper proposes using openly available capabilities of 

commercial navigation map databases for the tasks of generation of routes and estimation 

of their characteristics.     

The remainder of this paper is organized as follows. The next section presents the 

overall route choice modeling methodology. Section 3 presents the data collection and 

processing methodologies and reports descriptive statistics of the resulting dataset. 

Section 4 presents the specification details and estimation results of the truck driver route 

choice model. Next, the application of the model is demonstrated with specific truck trips. 

Finally, the main findings are summarized and discussed together with future research 

directions.  

2. Route choice model  

A mixed logit model with a path-size factor is proposed to predict the route choices of 

truck drivers. In order to make the route choice model applicable to trips that differ from 

the ones that were used to estimate the model, the utility specifications are generic (i.e. 

do not include any parameters that are specific to an alternative). Furthermore, routes in 

the choice set may partially overlap. The similarity in the common segments causes the 

error terms of overlapping routes to be correlated. Following Ben-Akiva and Bierlaire 

(1999) and Ramming (2002), a path-size (PS) variable is used to capture the effects of 

the similarity among routes in the model:    

Γ

C

1

int

nt

a
int

a int ajnt

j

l
PS

L δ∈

∈

 
=  

 
 

  (1) 



6 
 

Where, intPS  is the path-size value for route � and trip � of driver �. intL  is the 

length of the route. al  is the length of link � that belongs to the set of links Γint  that 

comprises route � and trip � of driver �. ajntδ  is an indicator variable, which takes value 1 

if link  � is part of route �, and 0 otherwise.   

It should be noted that several nonlinear PS formulations that were proposed in 

the literature (using a power parameter γ , see e.g., Prato 2009) were also tried. The 

formulation in Equation 1 yielded the best fit. The estimated coefficient of the PS term 

did not change substantially with other formulations. The utility functions are therefore 

given by: 

( ), ln
int int int n PS int int

U V X PSβ β ε= + +
  (2) 

Where 
intU  is the utility of alternative route i of driver � in trip �. 

intV  is the 

systematic part of the utility function. 
intX  and 

nβ  are the explanatory variables and the 

corresponding coefficients, respectively. PSβ  is the coefficient of the path-size term. intε  

is an error term, which is assumed to be independently and identically drawn from the 

Gumbel distribution.  

The probability that driver n chooses route i in trip t is given by: 
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Previous research has shown large heterogeneity in route tastes among truck 

drivers (e.g. Kawamura 2000, Toledo et al. 2013). Ignoring this taste heterogeneity can 

lead to inconsistent estimates of the model coefficients and deteriorate prediction power 

(Ben-Akiva et al. 2008). In order to capture taste heterogeneity, the coefficients of two 
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variables in the model are assumed to be distributed in the drivers’ population: the log of 

travel time and the square of the travel time range. Both are assumed to follow log-normal 

distributions (with a negative sign in the utility function) in order to ensure that they are 

always negative, which indicates that drivers prefer shorter travel times and lower travel 

time variability. The distributions are assumed to be correlated with each other. 

Therefore, their joint distribution is given by: 

2

, 

2
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 (4) 

Where , LnTT nβ  and ,ttRangeSq nβ  are the coefficients of log of travel time and the 

square of the travel time range for individual n, respectively. LnTTβ  and ttRangeSqβ  are the 

corresponding mean parameters of the lognormal distributions. 2

LnTTβσ  and 2

ttRangeSqβσ  are the 

variances of the distributions, and 
LnTT ttRangeSqβ βσ  is their covariance.  

The random coefficients are assumed to vary among drivers but are constant in all 

the observations from the same driver. Thus, they capture inter-participant and assume 

no intra-participant heterogeneity. Although this is the common approach to modeling 

heterogeneity (Hess and Rose 2009), it may also be possible to relax this assumption (e.g. 

Hess and Rose 2009, Becker et al. 2018) using a more complex model structure. 

Estimation of this model may be more difficult and require a simpler utility specification.  

Under these assumptions, the conditional probability of the chosen alternative in 

trip t is given by:   

( ) ( ) intY

n t n n t n

i

P Y | P i |β β=   ∏   (5) 

Where intY  is equal 1 for the chosen alternative, and 0 otherwise.  
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The conditional joint probability of all the observations from the same driver is 

given by: 

( ) ( )1

1

... | |
T

n T n n t n

t

P Y Y P Yβ β
=

= ∏   (6) 

The unconditional joint probability is given by: 

( ) ( ) ( )1 1... ... |

n

n T n T n n nP Y Y P Y Y f d
β

β β β=    (7) 

Where, ( )n
f β  is the joint distribution of the individual-specific parameters, 

given in Equation (4). 

The intergral in equation(7) may be evaluated using simulation:  

( ) ( )1 1

1

1
... ... |

R

n T n T nr

r
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R

β
=

=    (8) 

Where, nrβ  are coefficients drawn in replication r  from the distribution in 

equation (4). R  is the number of replications.  

Finally, the loglikelihood function to be maximized is given by: 

( )( )1ln ...
n T

n

LL P Y Y=   (9) 

3. Data collection and processing 

This section presents the data collection and processing that led to the final dataset that 

was later used in model estimation.  

3.1. Data collection 

The study collected trucks’ GPS data and elicited additional information from the drivers 
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through a web interface. Truck drivers were recruited to participate in the experiment in 

roadside intercepts or by phone calls to lists of drivers in areas of Texas, Indiana, Ontario, 

New Jersey and Massachusetts. The trucks of recruited drivers were equipped with GPS 

loggers that continuously collected data on the location and movement of the trucks and 

transmitted this information through wireless networks to an application server. At the 

server, the GPS traces were matched to road segments on a Geographic Information 

System (GIS) map and stop locations were identified. The resulting routes and stops were 

presented to the drivers on a personal web interface. The drivers were then asked to 

provide additional information about their trips (e.g. schedule for delivery or pickup, 

characteristics of the freight being transferred) and the stops they made (e.g. pick-up, 

delivery and other activities). Figure 1 shows an example of the web interface. A truck’s 

route is shown. One of the stops along the route is highlighted and a question about this 

stop is displayed. At the end of the tracking period, which was up to a month, the drivers 

completed an exit survey soliciting their socio-economic characteristics. The drivers were 

compensated up to $100 for their participation. The compensation rate depended on the 

period of participation (one to four weeks) and on providing the additional information 

requested. Additional details on the data collection methodology and tools are presented 

in Ben-Akiva et al. (2016).   
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Figure 1 Trip, stops and the related questions displayed on the personal webpage 

3.2. Data processing  

In total data from 107 drivers was collected. It covers 2,255 driving days. 12,617 stops 

were detected. These stops were not only for loading and drop-off, but also for rest, 

service, fuel, depots, visit home and so on. These data were processed in preparation for 

the modeling task to generate a database with a choice set of alternative routes for each 

trip, their attributes and the characteristics of the driver and shipment for the trip and 

identify the chosen route. To that end, he following steps were taken: 

(1) Identification of trips: for the analysis, trips were defined as travel between loading 

points as origins and the following drop-off points as destination stops. In cases when 

multiple loading or drop-off stops were identified in a sequence, the trip was defined 

from the last loading stop to the first drop-off stop in the sequence. Trips with 

substantial portions of missing GPS data gap or missing information from the drivers 

about stops were removed. 

(2) Choice set generation: A labeling approach was used to generate a choice set of route 

alternatives. Four available navigation applications were used: Google maps, Bing, 

MapQuest, and INRIX. Labeled routes were generated by running route 
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recommendation queries in these applications with different options that they support: 

routes with or without tolls, preferring or avoiding highways, shortest distance or 

travel times based on free flow or time-dependent conditions. This approach allowed 

generating alternative routes with the level of detail of navigation map databases at a 

wide geographic scale. Using transportation planning models would not yield the same 

level of detail. The use of other generation approaches, such as simulation or link 

elimination, would require accessing and manipulating a navigation map database 

with travel times and other relevant attributes. However, these would be prohibitively 

expensive to obtain. For example, Hess et al. (2015) advocate using navigation maps 

for route generation. They used a link elimination approach. But, they did not have 

access to travel time information and so compromised on assuming average speeds for 

different road classes to calculate travel times. The routes that were accumulated from 

the various queries were evaluated to remove duplicate routes. Alternative routes with 

overlap of over 80% of their length were considered duplicates. A similar overlap 

threshold was recommended by Ramming (2002). It reflects the interest in inter-urban 

travel, for which the network is relatively sparse. Trips for which a single route was 

generated or when none of the generated routes had at least 80% overlap with the GPS 

observed route were discarded. 

(3) Route attributes: For the resulting sets of routes, their attributes were collected from 

various sources: 

(a) Time-dependent travel times and travel time variability for trucks were queried 

from the INRIX database. 

(b) Tolls were calculated from tables of point-to-point tolls by vehicle type on 

major toll roads in North America. These tables were extracted from the 

websites of various road operators. 
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(c) Network attributes such as distances and road classifications were extracted 

from the OpenStreetMap (OSM) GIS database.  

(4) Chosen route: As noted above, the observed GPS routes were matched to a navigation 

map database. The matching accuracy is expected to be high because of the high 

frequency of the GPS records and the inter-urban nature of trips, which means that the 

road network is relatively sparse. Among the routes that were generated, the route that 

had the highest overlap with the matched routes (at least 80% of its length) was 

determined to be the chosen route.  

3.3. Descriptive statistics  

The resulting dataset, which was used for model estimation included a total of 1,021 trips 

made by 99 drivers. 9,902 alternative routes were generated for these trips. On average 

there are 9.7 routes per trip. This is a relatively large number for an inter-urban network. 

Due to their experience, it is plausible that professional truck drivers are knowledgeable 

about a larger number of alternative routes. For shorter truck trips, which are more likely 

to use dense urban networks, Hess et al. (2015), generated an average of 15 routes per 

trip. Frejinger (2007) shows that optimal route choice estimation results are obtained 

when the full universal choice set is included, which is expected to be large. Bovy (2009) 

shows that addition of irrelevant routes to the choice set should not affect the estimation 

results. However, this argument is not supported by empirical results (Prato and Bekhor 

2007, Bliemer and Bovy 2008). 

Descriptive statistics of these routes and drivers are shown in Table 1. The table 

separately shows statistics for the chosen routes and for the full route choice set. A wide 

variability exists in all variables: travel times, distances, types of roads being driven and 

tolls. The reported travel times are the time-dependent expected values from the INRIX 
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database. The travel time range is defined by the difference between the longest and 

shortest expected travel times reported over the day. Thus, it captures the within-day 

variability in travel time and can be viewed as a proxy to the congestion levels and risk 

of delays. As can be expected, the statistics show that on average, the chosen routes are 

shorter than alternative routes in terms of travel times, travel time ranges and travel 

distances. In contrast, chosen routes are more likely to involve tolls compared to other 

routes. While 31% of chosen routes involve tolls, only 24% of all generated routes do. As 

a result, the mean toll for chosen routes is higher than that of the other routes. Another 

difference between chosen and other routes is in their road class composition. Road 

segments that comprise the route are classified in four categories based on the US 

administrative system implemented in OSM. Chosen routes tend to heavily use highways 

(e.g., Interstate, freeways and other divided and grade separated roads), whereas other 

generated routes also use lower class roads, especially primary and secondary ones (e.g., 

US and state roads).  

The sample characteristics are consistent with industry statistics. About two-third 

of the drivers are hired drivers, and the rest are owner-operators. This is comparable with 

estimates by Global Insight (2005) that 30% of heavy truck drivers are owner-operators. 

The vast majority are experienced drivers: 95% have at least 6 years of experience and 

80% have been driving trucks for ten years or more. The median drivers’ age in the sample 

is 50 years. Costello and Suarez (2015) report that the industry’s median is 49 years. 

Finally, 76% of the trucks are equipped with electronic toll collection tags, which make 

using toll roads simpler. The sample may be subject to self-selection. However, the effect 

of self-selection bias is expected to be minor as there is no evident connection between 

volunteering to participate in the survey and route choice behaviors. For a detailed 
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presentation of self-selection bias and techniques to mitigate it see the review in 

Mokhtarian and Cao (2008). 

Table 1 Descriptive statistics of the routes and drivers in the estimation dataset 

Route attributes 

  Minimum Median Mean Maximum Std. dev. 

Number of routes  2 10 9.70 22 14.05 

Travel time (hours) 
Chosen 0.02 2.23 4.05 45.48 5.22 

All 0.02 3.23 5.46 70.27 6.55 

Travel time range 
(hours) 

Chosen 0 0.08 0.14 0.93 0.15 

All 0 0.13 0.17 1.13 0.14 

Distance (km) 
Chosen 0.5 192.3 381.8 4651.6 521.5 

All 0.5 243.1 450.8 6547.0 606.4 

Toll cost (USD) 
Chosen 0.0 0.0 1.9 244.1 12.0 

All 0.0 0.0 1.2 244.1 7.6 

Fraction on major 
interstate roads 

Chosen 0.00 0.00 0.24 1.00 0.43 

All 0.00 0.00 0.12 1.00 0.32 

Fraction on 
highways 

Chosen 0.00 0.84 0.69 1.00 0.34 

All 0.00 0.22 0.35 1.00 0.36 

Fraction on trunk 
roads 

Chosen 0.00 0.00 0.08 1.00 0.18 

All 0.00 0.01 0.09 1.00 0.15 

Fraction on primary 
or secondary roads 

Chosen 0.00 0.02 0.19 1.00 0.20 

All 0.00 0.27 0.47 1.00 0.25 

Fraction on tertiary 
or unclassified roads 

Chosen 0.00 0.01 0.04 0.89 0.10 

All 0.00 0.03 0.09 1.00 0.15 

Driver characteristics 

Employment type fractions 
Hired: 0.65;        Owner-operator: 0.33;        

Unknown: 0.02  

Years of experience fractions  
0-1: 0.01;          1-2: 0.02;          3-5: 0.01; 
6-9: 0.16;          10+: 0.79;         Unknown: 0.01  

Fraction of trucks with toll tags Yes: 0.76;          No: 0.23;          Unknown: 0.01 

4. Model specification and estimation 

Table 2 lists the variables used in the final specification of the model. The independent 

variables that are of interest capture the trade-offs between travel times, costs, distances 

and variability of travel times. The travel cost considered is the direct toll cost. The model 

also captures the effect of the use of a toll road, regardless of the toll cost. The travel time 

variability is captured by the square of the difference between the minimum and the 

maximum travel times that were measured over the day in the time-dependent travel time 
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data. This measures the variability of travel times over the day. A measure of the 

variability of travel time at a time of day period may be more appropriate for the route 

choice model. However, it would require a much richer source of data, which may not be 

readily available in the context of a large geographic area.  

Table 2 Definitions of variables used in the model specification 

Variable Definition 

SPtt  Dummy variable: 1 if route is shortest travel time route, 0 otherwise 

LSnhwy 
Dummy variable: 1 if route has the least distance driven on non-
highway roads, 0 otherwise  

TollRoute Dummy variable: 1 if route involves tolls, 0 otherwise 

tt110% 
Dummy variable: 1 if route is up to 10% longer than shortest travel 
time route, 0 otherwise 

nhwy+30 

Dummy variable: 1 if the non-highway distance on the route is up to 
30 kilometers longer than route with least non-highway distance, 0 
otherwise 

HiredTag 
Dummy variable: 1 if driver is a hired driver for a company and truck 
is equipped with an electronic toll collection tag, 0 otherwise 

HiredNoTag 
Dummy variable: 1 if driver is a hired driver for a company and truck 
is not equipped with an electronic toll collection tag, 0 otherwise 

lnTT Log of travel time (hours) 

ttRangeSq 
Square of the difference between lowest and highest travel times 
within the day (hours) 

Toll Toll amount (2014 USD) 

Dist Length of route (100-kilometers) 

Hired 
Dummy variable: 1 if driver is a hired driver for a company, 0 
otherwise 

Experience10 
Dummy variable: 1 if driver has over 10 years of experience, 0 
otherwise 

Road1 Fraction of route distance that used class 1 roads (highways) 

Road2 Fraction of route distance that used class 2 roads (Trunk roads) 

Road3 
Fraction of route distance that used class 3 roads (primary and 
secondary roads) 

Road4 
Fraction of route distance that used class 4 roads (Tertiary and 
Unclassified roads) 

MajorIS 
Dummy variable: 1 if a third or more of the route is on major 
Interstate roads, 0 otherwise. 

Google 
Dummy variable: 1 if route was recommended by Google, 0 
otherwise. 

Bing Dummy variable: 1 if route was recommended by Bing, 0 otherwise. 

Mapquest 
Dummy variable: 1 if route was recommended by Mapquest, 0 
otherwise. 

Inrix Dummy variable: 1 if route was recommended by Inrix, 0 otherwise. 
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The first four variables listed in the table are labels, identifying specific routes as 

having the best value in some attribute: shortest travel time, the shortest distance, the least 

number of non-highway kilometers and as being a route involving tolls. The next group 

of variables are related to routes that are near-best, that is within a certain distance metric 

from the best routes, with respect to an attribute: routes that are up to 10% and 5% longer 

than the shortest in terms of travel time or distance, respectively, and routes that involve 

up to 30 more non-highway kilometers compared to the route with the least non-highway 

distance. Routes that are included in these categories may be perceived as better based on 

their superior properties in the specific attributes. The tolerance allowed in these near-

best values reflects people’s imperfect knowledge of the values of these attributes, and 

their inherent variability. The thresholds used with these variables were selected, after 

some trial and error, such that they provide the best fit to observed choices.  

Attributes of the routes were also interacted with characteristics of the driver in 

order to capture the different sensitivities of the various groups of drivers. In the final 

model, these characteristics are the type of driver (whether the driver is an owner-operator 

or a hired driver), existence of an electronic toll tag in the truck, and the level of 

experience the driver has (less or over 10 years).  

The routes used in the model were generated using four navigation systems that 

incorporate different route planning capabilities (with and without tolls, avoiding or 

preferring highways and so on). For each route, dummy variables for the system(s) that 

generated it are introduced. These are meant to implicitly capture the underlying criteria 

that the navigation systems use when making their route recommendations.  

The utility functions for the resulting model are given by:  
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Proposed models were estimated using the MLOGIT package (Croissant 2012) in the R 

statistical software. The method of simulated maximum likelihood was used with 10,000 

Halton draws. The model estimation results are presented in   Table 3. To further evaluate 

the effect of the various groups of variables, Table 4 presents estimation results of models 

that omit specific groups of variables from the full model: 

(1) A model that excludes all route dummy variables (labels and maps sources). It only 

retains the variables related to the characteristics of the route alternatives.  

(2) A model that excludes all systematic heterogeneity variables that capture differences 

among driver types and availability of ET toll tags 

(3) A model that excludes random heterogeneity in travel time and travel time 

heterogeneity 

Overall, the estimates are consistent with prior expectations. The signs for the 

coefficients of travel time, toll cost and squared travel time range are all negative. These 

imply that increases in the values of these variables for a specific route alternative reduce 

the utility of that route and the probability that it is chosen. 
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Table 3 Estimation results 

Parameter Estimate t-statistic p-value 

Shortest travel time (���		) 0.316 3.16 0.002 

Least non highway distance (�
���
�) 0.281 2.46 0.014 

Travel time within 10% (�		���%) 0.332 2.26 0.024 

Non highway distance plus 30 (���
����) 0.853 5.03 <0.001 

Toll route – Hired No tag (�	�������������) -1.276 -2.78 0.005 

Log Travel time (�����) -1.860 39.8 <0.001 

Std – log travel time 0.525 14.2 <0.001 

Travel time range squared (�		������ ) -0.703 1.69 0.090 

Std – travel time range squared 2.045 5.99 <0.001 

Covariance –  travel time and range 0.814 2.27 0.023 

Toll per km (�	������!") -0.127 -2.09 0.037 

Toll per km – Hired with tag 

(�	������!"��������) 
0.106 1.71 0.087 

Distance (���#	) -1.160 -35.9 <0.001 

Distance  - Hired (���#	�����) -0.654 -26.2 <0.001 

Distance – Experience 10 (���#	$%&�����'���) 1.021 35.7 <0.001 

Road class 2 (�����() -0.945 -1.80 0.072 

Road class 3 (������) -2.179 -5.68 <0.001 

Road class 4 (�����)) -5.091 -6.46 <0.001 

Major interstate (�"�*��+�) -0.556 -2.67 0.008 

Google (�,�����) 0.564 4.16 <0.001 

Bing (�-���) 1.230 9.56 <0.001 

Mapquest (�.�& /�#	) 0.602 5.84 <0.001 

Inrix (�+���%) 0.449 4.18 <0.001 

Ln (Path Size) (���) -0.474 -2.77 0.006 

Observations: 1,021                                        Adjusted rho square: 0.594                                        
Initial log-likelihood: -2,222.10                     Final log-likelihood: -877.69 
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Table 4 Estimation results for reduced models 

Parameter 
Excluding 

labels 

Excluding 

systematic 

heterogeneity 

Excluding 

random 

heterogeneity 

Shortest travel time (���		) - 0.307 0.328 

Least non highway distance (�
���
�) - 0.259 0.287 

Travel time within 10% (�		���%) - 0.362 0.358 

Non highway distance plus 30 (���
����) - 0.789 0.851 

Toll route – Hired No tag (�	�������������) - - -1.317 

Log Travel time (�����) -2.776 -1.797 -1.808 

Std – log travel time 0.301 0.879 - 

Travel time range squared (�		������ ) -0.551 -0.433 -0.818 

Std – travel time range squared 0.143 3.373 - 

Covariance –  travel time and range 1.971 0.844 - 

Toll per km (�	������!") -0.078 -0.017 -0.076 

Toll per km – Hired with tag 

(�	������!"��������) 
0.061 - 0.063 

Distance (���#	) -1.728 -1.094 -1.726 

Distance  - Hired (���#	�����) -0.745 - -0.995 

Distance – Experience 10 

(���#	$%&�����'���) 
1.202 - 1.475 

Road class 2 (�����() -2.941 -1.067 -0.945 

Road class 3 (������) -4.582 -2.258 -2.178 

Road class 4 (�����)) -8.181 -5.230 -5.072 

Major interstate (�"�*��+�) - -0.596 -0.571 

Google (�,�����) - 0.580 0.564 

Bing (�-���) - 1.219 1.224 

Mapquest (�.�& /�#	) - 0.609 0.604 

Inrix (�+���%) - 0.441 0.449 

Ln (Path Size) (���) -1.294 -0.492 -0.476 

Adjusted rho square                                            0.534 0.590 0.592 

Final log-likelihood -1021.60 -890.51 -884.44 

Parameters significant with p-value<0.05 are in bold 
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The label variables in the model capture the preference of drivers to routes that 

are best or near best with respect to some attribute. The coefficients of these variables are 

mostly positive. Drivers prefer routes that are shorter in terms of travel time and that 

involve as little driving on non-highway roads as possible. For these variables, routes that 

are near-best are also preferred to those that are not. This may be capturing screening 

criteria that drivers use in order to reduce the set of alternative routes that they consider 

in making their final selection. These effects are stronger than the preferences for the best 

routes with the corresponding criteria. They may also reflect the imperfect information 

drivers have on the exact attributes for the various routes and measurement errors. The 

model fit is reduced substantially when these variables are excluded from the model. The 

parameters of several of the other variables become insignificant. 

A toll route dummy variable is significant only when interacted with hired drivers 

with no tags. The coefficient is negative, suggesting avoiding toll routes. This may reflect 

policies or decisions of the companies that do not provide drivers with tag, strongly 

discouraging the use of toll roads. For other driver types, no significant result was found, 

which indicates that, everything else being equal (including the cost), they do not have a 

strong preference for or against toll roads.  

The toll costs are normalized in the model by the distance. As expected, it has a 

negative effect on the utility of the route. The variable was also interacted with indicators 

for hired drivers and for owner-operators, both with and without ETC toll tags. A 

difference was found only for hired drivers who drive trucks that are equipped with ETC 

tags. Compared to the other driver types, they have a significantly lower coefficient for 

the toll cost (in absolute value), which indicates that they are almost indifferent to the toll 

costs.  
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The coefficient of the travel distance is negative, as expected. This variable also 

captures indirect costs that are strongly correlated with it, such as fuel and wear. 

Interactions of this variable with hired driver status and with trucking experience of over 

10 years are also included in the model. The coefficient for hired drivers is negative, 

which means that they are more sensitive to increasing travel distances compared to 

owner-operators. For experienced drivers, the coefficient of this interaction is positive, 

indicating that these drivers are less sensitive to travel distances compared to less 

experienced drivers.  

Variables of the interaction of both toll and distance with driver characteristics re 

used in the model. These capture systematic heterogeneity in preferences. When these are 

eliminated from the model, the model fit, expressed by the adjusted rho square measure 

slightly decreases. The marginal effect of the toll cost variable is substantially smaller. 

The loss of the systematic heterogeneity also increased the random heterogeneity in the 

model, expressed by an increase in the variances of the random heterogeneity parameters 

for travel time and its variability.   

Travel times and the variability of travel times (captured by the travel time range, 

as discussed above) are included in the model with logarithmic and square 

transformations, respectively. These provided the best fit compared to other functional 

forms. The coefficients of these two variables were estimated as random parameters that 

follow a bi-variate log-normal distribution with estimated values: 
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 (11) 

With this distribution the mean, median and standard deviation of the log of travel 

time coefficient are 7.371, 6.422 and 5.133. The corresponding values for the coefficient 



22 
 

of travel time range square are 16.355, 2.019 and 80.363, respectively. The signs to the 

coefficients corresponding to log of travel time and travel time range squared are 

negative, because the two attributes are given negative signs in the utility function. The 

coefficient of travel time range squared has a very large variance. This indicates a high 

degree of heterogeneity among drivers with respect to the preference to avoid routes with 

high time variability. Replacement of the random parameters with fixed ones has a 

marginal effect on the model fit. But, several of the remaining parameters are 

insignificant, including those that capture systematic heterogeneity.  

The estimates suggest significant trade-offs among travel time, travel time 

variability and toll costs. The estimation of random travel time and travel time variability 

coefficients leads to distributions of toll VOT and value of reliability (VOR). The use of 

nonlinear forms also makes their trade-offs dependent on the route travel time and travel 

time variability values. Furthermore, since the toll cost is interacted with driver 

characteristics, toll VOT also depends on the type of driver and ownership of ETC tag. 

The toll VOT reflected in this model is given by (variables and their units are as defined 

in Table 2): 
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The toll VOR is the trade-off between travel time variability and the toll cost. It 

is given by:  

n

n

,2 ttRan

g

geSq n

n

tollPerMile tollPerMileHire

Hi d

dTa

re Ta

g

ttRange Dist
VOR

β

β δβ
=

+
  (13)

 

 

 



23 
 

To illustrate the variability of VOT and VOR, a 5-hour trip at an average speed of 

90 kilometers per hour and a with variability of 0.2 hours is assumed. For this case, the 

estimated VOT and VOR distributions, for hired drivers with ETC tag and all other 

drivers (hired drivers without ETC tag and owner operators) are plotted in Figure 2 and 

Figure 3, respectively.  

 

    

Figure 2 Toll VOT distributions for different driver types 
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Figure 3 Toll VOR distributions for the different driver types 

 

For the scenario described above, the median VOTs and VORs and their 

interquartile ranges (IQR) were calculated. Bliemer and Rose (2013) recommend 

calculation of medians over means when the range of parameters in the denominator of 

VOT includes zero. The calculations are based on the K&R method (Krinsky and Robb 

1986, 1990) that uses simulation of the parameter values. This method was applied by 

Bliemer and Rose (2013) for discrete choice models with random parameters. See Gatta 

at al. (2015) for a review and evaluation of VOT confidence intervals estimation methods.  

For hired drivers with ETC tags, the median toll VOTs is 272 $/Hr. The IQR is 

164 to 469 $/hr. For all other drivers, the median is 46 $/Hr and the IQR is 29 to 78 $/hr. 

Using the same assumptions, the median toll VOR for hired drivers with ETC tags is 174 

$/Hr. The corresponding IQR is 38 to 766 $/hr. For all other drivers, the median toll VOR 

is 30 $/Hr. The IQR is 7 to 129$/hr. The VOTs and VORs for hired drivers with ETC tags 

are high because the coefficients suggest that they are practically indifferent to the toll 

cost. Therefore, the denominators in the VOT and VOR expressions may be very small, 
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which explains their wide IQRs. The standard deviation of the travel time variability 

coefficient is very large. This reflects a high level of heterogeneity among drivers in their 

toll VOR, which suggests against the use of deterministic VOR.  

The path-size variable is designed to capture the effect of overlap among routes. 

Its coefficient is expected to be positive and theoretically equal 1. But, with the relatively 

sparse inter-urban network, attractive routes tend to overlap with other routes in the 

choice set. This is amplified by the use of the navigation applications to generate routes. 

Therefore, preferred routes tend to have high levels of overlap and lower path-size values, 

which explains the negative estimate of the value of the coefficient of this variable. A 

similar result, with a similar interpretation, was reported in Frejinger and Bierlaire (2007). 

Several other methods to capture the effects of overlap among routes have been proposed 

in the literature, each with several alternative correction factors. Most notably, the C-logit 

model (Cascetta et al. 1996), which uses commonality factors instead of path-size 

variables to capture similarities among routes. Starting from a different set of behavioral 

assumptions about the choice process, the quantum utility model (Vitetta 2016) obtains 

an interference term, which is another type of correction factor. A C-logit model was 

estimated. It yielded a slightly worse maximum likelihood of -878.29. The estimated 

commonality factor (CF) coefficient was 1.109 (p-value<0.001). Other parameter values 

did not substantially differ from the path-size logit model results reported in Table 3. This 

result is consistent with earlier studies (e.g. Ramming 2002, Prato 2014) that did not find 

substantial differences in the performance of models with different correction factors.  

5. Model application  

In order to demonstrate the use of the model, it is applied to evaluate the fraction of 

various driver groups that are expected to use a toll road alternative in several specific 
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trips. In each case two alternative routes are considered. It should be noted that the 

application with only two alternatives is useful to illustrate the effects of the various 

variables in the model. However, in an application, routes should be generated using the 

same method that was used in the estimation. The route choice fractions are predicted for 

different driver groups and conditions along several dimensions: Peak and off-peak 

period travel, truckers that are hired drivers or owner-operators and truckers with and 

without ETC tags. The situations evaluated are:  

(1) A hired driver, with a toll tag, driving during the peak period. This is the base case. 

(2) Same as the base case, but with travel during the off-peak period.  

(3) Same as the base case, but the truck is not equipped with an ETC tag. 

(4) Same as the base case, but the driver is an owner-operator. 

(5) Same as the base case, but the driver is an owner-operator and the truck is not equipped 

with an ETC tag. 

Three corridors are used in the analysis. The relevant attributes of the routes in each 

corridor are shown in Table 5:  

(1) San Antonio TX – Dallas TX (Texas corridor): Route A is a non-toll route that uses 

I-35. Route B is a tolled alternative that uses SH-130 toll road to bypasses Austin TX. 

The two alternatives are shown in Figure 4. Route B is longer by distance but offers 

travel times and travel time reliability savings. Both routes almost exclusively use 

highways.  

(2) Toledo OH – Chicago IL: Route A is a non-toll route that uses lower class roads (US-

20 and state road IN-2) for large parts of the trip. Route B uses the tolled highways (I-

80/90 and Chicago Skyway). The two alternatives are shown in Figure 5. The two 
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routes are similar in distance, but the toll road offers lower travel times and better 

travel time reliability. 

(3) Hamilton ON – Peterborough ON (Ontario corridor): This route crosses the 

Toronto metropolitan area. Route A is a non-toll route that uses the highways system 

that crosses the city (ON-403, QEW, ON-427, ON-401 and ON-115). Route B uses a 

toll road to cross the city (ON-407ETR) and connects via regional roads to the 

highway system. The two alternatives, which are roughly equal in distance, are shown 

in Figure 6. Route B uses class 3 roads to connect between the toll road and highway 

system. The travel time on the free route is shorter in the off-peak period, but longer 

in the peak period.  

 

Table 5 attributes of the alternative routes 

 

Attribute 

San Antonio - 

Dallas 
Toledo - Chicago 

Hamilton - 

Peterborough 

Route A Route B Route A Route B Route A Route B 

Distance (Kms) 434 457 391 396 203 204 

Peak travel time 
(Hr) 

4:26 4:20 4:48 3:56 2:42 2:25 

Off-peak travel 
time (Hr) 

4:05 3:58 4:19 3:40 2:03 2:11 

Travel time 
variability (Hr) 

0:21 0:22 0:29 0:16 0:39 0:14 

Toll – Tag ($) 0 22.92 0 70.48 0 99.07 

Toll – no tag ($) 0 25.31 0 72.95 0 149.07 

Road class 1 0.9958 0.9849 0.4167 0.9954 0.8622 0.6995 

Road class 2 0 0 0.0555 0 0.0915 0 

Road class 3 0.0040 0.0149 0.5220 0.0023 0.0457 0.3000 
Road class 4 0.0002 0.0002 0.0058 0.0023 0.0006 0.0005 
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Figure 4 Alternative routes for the San-Antonio TX – Dallas TX trip (Google Maps 

2017) 

 

Figure 5 Alternative routes for the Toledo OH – Chicago IL trip (Google Maps 2017) 
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Figure 6 Alternative routes for the Hamilton ON – Peterborough ON trip (Google Maps 

2017) 

 

Figure 7 presents box plots of the probabilities of choosing route B (the toll route) 

for each drivers’ segments in each of the three corridors. The different values were 

generated by drawing values from the distributions of the random coefficients. The 

expected values of the probabilities are marked with an ‘x’ sign. The plots demonstrate 

the high variability in preferences that is manifested in the random coefficients. With 

respect to the expected values of the probabilities, only the Ontario corridor shows 

differences in the route choice fractions between the peak and the off-peak periods. This 

is largely because it is the only corridor that exhibits large differences in travel time 

savings between the two periods. In all cases, hired drivers with trucks that are equipped 

with ETC tags are the most likely to use the toll routes. Those without ETC tags are the 

least likely to use toll roads. For owner-operators, the presence of ETC tags does not 

substantially affect their probability of choosing the tolled route. Among the corridors, a 

large majority of drivers are predicted to use the tolled route in the Toledo – Chicago 

corridor, which offers large travel times savings, improved reliability and higher-class 

roads. In the other corridors, the tolled route choice probabilities are much lower. In the 

Texas trip this is due to the minimal travel time savings and longer distance. In Ontario, 
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the tolled route also offers smaller travel time savings, and only in the peak period. It also 

makes more use of lower-class roads.       

The toll elasticity of demand captures the effect of changes in the toll cost on the 

probability of choice and market share of an alternative. Figure 8 presents the (negative 

of) toll elasticity of demand for the toll route alternatives in the various segments and 

corridors. The elasticity is in general low, demonstrating low sensitivity of the demand to 

the toll cost. In particular, the price elasticity of the demand for toll roads for hired drivers 

with ETC tags is very low. It is highest for hired drivers in trucks without ETC tags. The 

Ontario trip exhibits a different behavior. There, the demand by owner-operators is 

elastic. This is a result of the high toll cost and relatively short trip in this corridor. This 

combination makes the value of the cost per distance variable high and influential in the 

model.   

    

Figure 7 Probabilities of choosing route B (the toll route) for various driver segments 
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Figure 8 Toll (negative) elasticity of demand   

6. Summary and conclusions 

The research represents an attempt to better understand the route choices that intercity 

truck drivers make. A data collection methodology based on GPS data and user 

verification through a web interface was developed and implemented. The RP data 

collected was used to develop a route choice model that accounts for the attributes of the 

trip (e.g. travel time, travel time range, distance, and classes of the roads used) and the 

characteristics of the truck drivers (e.g. owner operators and hired drivers, trucks with 

and without ETC tags, and trucking experience).  

For various driver types, random coefficients for both travel time and travel time 

variability were used in order to capture the heterogeneity of preferences. Both are 

significant in the model and show large standard deviations of the coefficients. These 

suggest large differences in preferences among drivers. The model captures inter-

participant heterogeneity. The large values estimated suggest that it may be useful to also 

model intra-respondent heterogeneity. Appropriate models and estimation techniques 

were proposed, for example, by Hess and Rose (2009) and Becker et al. (2018).  
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Large differences in toll VOT and toll VOR were also found between owner 

operators and hired drivers with or without ETC tags. Based on the estimation results and 

model application, the willingness to pay for tolls is substantially higher for hired drivers 

with ETC tag compared to the other drivers (i.e., owner operators and hired drivers 

without ETC tag). The underlying reason may relate to that hired drivers with ETC tag 

do not need to pay for tolls out of their pockets. In addition, the equipment of ETC tags 

improves the convenience of using toll facilities and may also imply that the trucking 

companies encourage toll road usage. In contrast, Toll VOT and toll VOR for hired 

drivers without ETC tag and for owner operators are similar. It may be that companies 

that do not provide ETC tags to hired drivers may also not cover the toll cost, so the hired 

drivers show similar behavior as owner-operators that bear the toll costs themselves. 

These results imply that differentiated toll pricing based on driver type and ETC 

equipment can increase the toll road use.  

Another set of variables that were found to affect route choices are the road 

classes. Drivers showed strong preference towards higher class roads, and in particular 

highways (class 1). Routes that extensively use lower-class roads are considered 

substantially inferior. In terms of travel distance, hired drivers were found to be more 

sensitive to the travel distance compared to owner-operators. Experienced drivers put 

much lower weight on the travel distance in choosing their routes compared to less 

experienced drivers.    

The model was applied to predict individuals’ choices of routes in real-world 

corridors under different scenarios. Toll road operators may find the results instructive to 

predict use of tolled and toll-free roads by different population groups. It may also help 

design incentives and personalized tolling policies and marketing efforts to affect these 

choices based on the driver’s characteristics. 
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The model suffers several weaknesses. There may exist a sampling bias as 

participation was encouraged by providing the drivers with monetary incentives, which 

may contribute to a lower estimate of VOT and VOR than the population. A choice set 

generation technique was used to ensure that a variety of route information can be 

obtained. But, the alternatives recommended by navigation engines largely overlap with 

one another.  

Several directions for future research may be suggested. Other model structures 

such as latent class models and error component models may be considered as suggested 

in Marcucci and Gatta (2012). Other approaches for capture the effects of route overlap 

could also be tested. In addition, intra-driver heterogeneity in route choices may be 

investigated. In the current study, this was not possible due to insufficient number of data 

points for individual drivers.  

Most drivers in the sample do not make fixed trips. As a result, there were not 

many opportunities in the data to observe repeated route choices on similar origins and 

destinations. If participants would be tracked over longer periods, these could be 

observed, and support modeling of dynamic behaviors, such as tendency to keep to the 

same route. Furthermore, the estimated model is based on the random utility theory with 

a mixed error structure. Other models that are not based on random utility may also be 

useful in this context. Examples include random regret (Chorus 2010, Prato 2014), fuzzy 

logic (Lotan and Koutsopoulos 1993, Henn 2000, Ridwan 2004) and quantum utility 

model (Vitetta 2014).  
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