
An Exceptional Type-Checker
Advancing Type-Checker Reliability with the Correct-by-Construction Approach for a Toy Language with

Checked Exceptions

Mariusz Kicior1

Supervisor(s): Jesper Cockx1, Sára Juhošová1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Mariusz Kicior
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Sára Juhošová, Thomas Durieux

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
The Correct-by-Construction (CbC) programming
paradigm has gained increasing attention, particu-
larly with the rise of dependently typed languages.
The CbC approach is often characterized as a rigid,
rule-based construction process making it suitable
for critical infrastructure like type-checkers, which
are prone to bugs as they become more com-
plex. However, the specific advantages and disad-
vantages of using the CbC approach for develop-
ing type-checkers in comparison to traditional pro-
gramming languages remain unclear. Therefore,
we investigate the development of a type-checker
for a toy programming language extended with
checked exceptions using the dependently typed
programming language Agda. The results show
that the CbC approach, combined with dependently
typed languages, is highly effective for the very
precise task of type-checker development. De-
spite the steep learning curve associated with these
languages, this method offers notable benefits in
ensuring the correctness and reliability of type-
checkers. We conclude that this approach is a vi-
able strategy for similar projects in the future.

1 Introduction
Type-checkers serve as critical tools for programmers, espe-
cially in the early stages of software development. They al-
low for the explicit specification and verification of program’s
types [7]. This not only helps in reducing straightforward er-
rors but also plays a key role in maintaining code quality [1].
However, as the complexity of these tools increases, they be-
come more prone to bugs. This can lead to the rejection of
correct programs or the acceptance of incorrect ones.

Several studies on JVM compilers for widely used lan-
guages like Java, Kotlin, and Groovy highlighted the fre-
quency of typing-related bugs. For instance, Chalios et al.
identified 156 such bugs [2], followed by another study un-
covering over 300 [3]. Remarkably, despite Chalios noting
that the Scala repository labels “Typer” (type-checker related)
issues as the most common bug type1, it has remained un-
changed. Furthermore, another study found additional 50
typing bugs in the Kotlin compiler [17]. Therefore, there is
a need for mechanisms that can reduce the risk of such er-
rors and further strengthen the programmer’s confidence in
the type-checker’s accuracy.

These bugs may result from the traditional post-hoc ver-
ification programming approach, where a program is im-
plemented first and verified later. One possible solution to
address the mentioned issues in a type-checker implemen-
tation is the Correct-by-Construction (CbC) programming
paradigm [13]. The CbC facilitates the integration of specifi-
cation and program construction from the starting point of the
process [16]. This methodology ensures that each develop-
ment step adheres to a pre-defined specification, significantly
minimizing the probability of errors as the program evolves.

1https://github.com/scala/bug/labels?sort=count-desc

One way of applying the CbC approach is by using de-
pendently typed languages [13]. Such languages allow types
to be parameterized by values. This means that the types
can express richer properties of data, including invariants di-
rectly embedded in the type system. By embedding these con-
straints into the type system, dependently typed languages en-
able programmers to write specifications alongside the code
that its type-checker can verify, which naturally leads to CbC
software. Such software cannot compile unless it meets the
specifications expressed in its types.

Using dependently typed languages to construct type-
checkers is not a novelty. It has already been demonstrated
by Pollack in 1995 [15] and has been recently revisited by
Wadler et al. [18] using Agda. The latter work provides a
comprehensive guide for building a type-checker, and this pa-
per follows the methodology outlined in their book.

However, it remains unclear what the specific advantages
and disadvantages are when using dependently typed lan-
guages compared to traditional programming languages. This
study explores these differences, focusing on the practical im-
plications of adopting dependently typed languages for type
checking. To address this knowledge gap, we implement and
analyze a type-checker for a toy programming language based
on the simply typed lambda calculus (STLC) with the exten-
sion of checked exceptions. It highlights the challenges that
arose during the process and discusses the benefits.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the necessary background knowledge to un-
derstand the research carried out in this project. Section 3
details the methodology and rationale behind the implemen-
tation of our type-checker, toy language, and typing rules.
Section 4 elaborates on the actual implementation of the type-
checker, its usage, and the insights gained from its devel-
opment. Section 5 addresses responsible research concerns.
Section 6 analyzes in detail the advantages and disadvantages
of the CbC approach we encountered. Section 7 concludes
the study and suggests directions for future work.

2 Background
This section provides the essential background information
needed to understand our research in the following sections,
and it explains why each term is relevant.

2.1 Simply Typed Lambda Calculus
Given our research goal to test the CbC approach in type-
checker development, we choose to develop a type-checker
for a simplified programming language based on the STLC,
first introduced by Church [4]. It offers a concise but pow-
erful framework for defining and manipulating functions. At
its core are lambda terms, representing functions, and types,
categorizing these functions based on their input and output
types. Its simplicity makes it a perfect candidate for our type-
checker implementation, offering a strong basis for the devel-
opment of more advanced languages in the future.

2.2 Type Systems
The type system is the central element of the type-checker
we are constructing. According to Pierce [14], “a type sys-
tem is a tractable syntactic method for proving the absence of

1

certain program behaviors by classifying phrases according
to the kinds of values they compute.” This method allows for
the detection of errors at compile time. It ensures that pro-
grams comply with specified constraints and prevent runtime
errors (such as running wrong programs, which could lead to
program crashes).

To understand type systems, it is essential to become fa-
miliar with the common notation used in their description.
The notation used to describe type systems is expressed as
Γ ⊢ e : τ . Here, Γ represents a context of variable typings,
specifying the types of variables in a scope, the expression
e refers to the program expression that is being typed, and τ
denotes its type. The typing judgment Γ ⊢ e : τ states that,
given the assumptions specified in the context Γ, the expres-
sion e is of type τ . Also, the notation Γ, x : τ represents an
extension of the context Γ with a new variable x bound to
type τ .

Type systems have a crucial function in ensuring accuracy,
security, and reliability in programming languages. They of-
fer a framework for defining and enforcing rules on the ma-
nipulation of values. Furthermore, a type system guarantees
that operations are executed on compatible types. Our type
system is designed to handle a language similar to the STLC
but with the addition of checked exceptions. This extension
allows the type system to track not only the types of values
but also the potential exceptions that functions might raise.

However, to build a type system for a language with
checked exceptions, it is essential to extend our type system
to account for effects. Effects model program behaviors that
go beyond pure computation, such as exceptions, input/output
operations, mutable state, and other side effects that interact
with the external environment [10]. It is important to note that
these effects are not types themselves but are tracked along-
side types to ensure accurate modeling of program behavior.

2.3 Bidirectional Type Inference
Despite selecting a minimalistic toy language for our project,
we choose to use a popular bidirectional type inference algo-
rithm. This approach is known for its scalability compared
to the Hindley-Milner algorithm and its widespread adop-
tion in modern programming languages [6]. The algorithm
is divided into two distinct phases: checking and synthe-
sis. During the checking phase, the type-checker ensures that
an expression corresponds to a given type. In the synthesis
phase, it infers the type of an expression based on its context.
This two-phase approach offers several advantages, including
more predictability compared to other constraint-based infer-
ence algorithms (e.g., Hindley-Milner algorithm) and reduced
reliance on explicit type annotations compared to languages
without inference. It increases the overall usability of the type
system, which is one of the reasons type inference is becom-
ing standard even in statically typed languages like Scala [6].

2.4 Correct-by-Construction Programming
Traditionally, software is verified after its development, if it
is verified at all. The CbC programming technique, which
was popularized by Dijkstra [8], proposes an alternative
paradigm. The CbC approach advocates for the early integra-
tion of specification in program construction. This method-

ology ensures that each development step aligns closely with
predefined specifications, thereby reducing the likelihood of
errors as the program evolves.

In the context of type-checkers, where correctness is of the
highest importance, this approach becomes particularly rel-
evant. By following the CbC approach, we should be able
to greatly improve the reliability and trustworthiness of our
type-checker. By doing so, we can ensure that the type-
checker adheres rigorously to its typing rules throughout its
development.

2.5 Agda
Agda is a total, dependently typed programming language. It
is also used as a proof assistant and is characterized by its
expressiveness and verification capabilities. It shares some
similarities with Haskell in its functional programming ap-
proach, e.g., immutable data structures and treating functions
as first-class citizens.

However, the distinctive feature of Agda is its support for
dependent types, which allows datatypes types to be depen-
dent on their values. This allows for embedding complex
properties within type definitions. For example, a list of in-
tegers is not necessarily just typed as a list. It can also en-
code properties such as list length or order directly in its type,
something that is not possible in Haskell.

1 raise : Term
2 raise = TRaise "Error: Division by zero."
3

4 declType : Type
5 declType = unit

Figure 1: Declaration of an exemplary expression and its type.

To illustrate the capabilities of dependent types in Agda,
consider an example of testing a type-checker against a term
using simplified syntax for clarity (see Figure 1). The raise
variable represents a term that raises an exception for a “Di-
vision by zero” error, and its expected type unit is assigned
to declType.

1 proof : checkType (Γ raise declType) ≡
↪→ TyTRaise

2 proof = refl

Figure 2: Proof of type-checker correctness.

In order to guarantee the correctness of a type-checker us-
ing Agda’s dependent types we embed and verify the prop-
erties directly within the type definitions in Figure 2. The
proof function demonstrates how to validate that our type-
checker correctly identifies the type of the raise term. The
proof type specifies that the evaluation of the raise term by
the checkType function within a given context should yield a
result that matches TyTRaise. This TyTRaise represents the
expected typing rule that our type-checker should return. The
use of refl (reflexivity) in the value of proof asserts that both

2

sides of the equation are identical, providing a formal verifi-
cation that the type-checker behaves as intended. (The syntax
in this example is simplified and the actual functionality of
our type-checker will be explained below.)

3 Methodology
In this section, we detail the methodology used to develop our
bidirectional type-checker for a toy language with the exten-
sion of checked exceptions.

3.1 Toy Language
We design a toy language based on the STLC with exten-
sions for checked exceptions. Since our goal is to create a
type-checker and not a compiler, we focus on the language’s
syntax and typing rules, rather than its dynamic semantics.
The language includes the following terms: variables, lambda
abstractions, applications, if-then-else statements, raising ex-
ceptions, catching exceptions, and declaring exceptions. The
language also supports natural numbers, boolean values, and
lambda expressions (functions).

3.2 Typing Rules
The typing rules for our type-checker are presented in Figure
3. These rules define how terms in our toy language are typed.
The notation has been updated from the common typing judg-
ment notation previously introduced. We have extended it by
introducing Ξ, which denotes the list of declared exceptions,
and annotations ϕ, representing information about potential
exceptions that terms may raise. Each rule is designed to
derive the type of a term based on the types of its subterms
and other contextual information, ensuring type safety even
in the presence of exceptions. An arbitrary typing judgment
Ξ ◀ Γ ⊢ t : τ | ϕ should be read as follows: Ξ lists the
declared exceptions, Γ provides the context, t is the term be-
ing evaluated with type τ , and ϕ identifies the exact set of
exceptions that t could raise.

T-Var
This rule determines the type of a variable within a given con-
text. If x is a variable in the context Γ, then the term TVar x
has the type Γ(x), under the set of declared exceptions Ξ and
with no possible annotations represented by ∅.

T-Lam
This rule deals with lambda abstractions. If, under the ex-
tended context (Γ, x : τ1) and exceptions Ξ, the term t has
type τ2 with annotations ϕ, then the lambda term TLam x t is
typed as τ1[ϕ] ⇒ τ2 with annotation ∅; all the annotations are
being ‘redirected’ to the lambda.

T-App
This rule handles function application. If t1 is a function of
type τ1[ϕ1] ⇒ τ2 with annotation ϕ2, and t2 is of type τ1 with
annotation ϕ3, then the application of t1 to t2 results in a type
τ2 with annotations ϕ1 ∪ ϕ2 ∪ ϕ3.

T-Decl
This rule manages the declaration of exceptions. If the term
t under the extended list of exceptions ({e} ∪ Ξ) has type τ
with annotation ϕ, declaring the exception e for t maintains
the type τ with the same annotation ϕ.

[T-Var]
Ξ ◀ Γ ⊢ TVar x : Γ(x) | ∅

Ξ ◀ (Γ, x : τ1) ⊢ t : τ2 | ϕ
[T-Lam]

Ξ ◀ Γ ⊢ TLam x t : τ1[ϕ] ⇒ τ2 | ∅

Ξ ◀ Γ ⊢ t1 : τ1[ϕ1] ⇒ τ2 | ϕ2

Ξ ◀ Γ ⊢ t2 : τ1 | ϕ3 [T-App]
Ξ ◀ Γ ⊢ TApp t1 t2 : τ2 | ϕ1 ∪ ϕ2 ∪ ϕ3

{e} ∪ Ξ ◀ Γ ⊢ t : τ | ϕ
[T-Decl]

Ξ ◀ Γ ⊢ TDecl e t : τ | ϕ

e ∈ Ξ [T-Raise]
Ξ ◀ Γ ⊢ TRaise e : τ | {e}

Ξ ◀ Γ ⊢ t1 : τ | ϕ1

Ξ ◀ Γ ⊢ t2 : τ | ϕ2 [T-Catch]
Ξ ◀ Γ ⊢ TCatch e t1 t2 : τ | (ϕ1 − {e}) ∪ ϕ2

Ξ ◀ Γ ⊢ t1 : bool | ϕ1

Ξ ◀ Γ ⊢ t2 : τ | ϕ2

Ξ ◀ Γ ⊢ t3 : τ | ϕ3 [T-If]
Ξ ◀ Γ ⊢ TIfThenElse t1 t2 t3 : τ | ϕ1 ∪ ϕ2 ∪ ϕ3

Ξ ◀ Γ ⊢ u : τ | ϕ
[T-Ann]

Ξ ◀ Γ ⊢ (u ↓ τ) : τ | ϕ

Figure 3: Type rules

T-Raise
This rule addresses the raising of exceptions. If e is an excep-
tion within the declared set Ξ, then the term TRaise e is typed
as τ with annotated by a singleton set {e}.

T-Catch
This rule covers exception handling. If t1 could raise excep-
tion e and is typed as τ with annotation ϕ1, and t2 has type τ
with a different annotation ϕ2, then the term TCatch e t1 t2 is
typed as τ with annotations (ϕ1 −{e})∪ϕ2, which basically
means TCatch catches a single exception and removes it from
the annotations.

T-If
This rule applies to conditional expressions. If the condition
t1 is typed as boolean with annotation ϕ1, and both branches
t2 and t3 have type τ with annotations ϕ2 and ϕ3 respectively,
then the term TIfThenElse t1 t2 t3 results in type τ with an-
notations ϕ1 ∪ ϕ2 ∪ ϕ3.

3

T-Ann
This rule is necessary for our type system implementation to
explicitly type annotated lambda terms. This approach splits
type checking into checking and inference, simplifying im-
plementation but limiting type inference for lambda terms
without annotations. Following the PLFA approach [18], the
T-Ann rule allows explicit term annotations.

3.3 Type-checker Design
Our approach focuses on producing a sound, instead of a
complete, algorithm. This means, when the type-checker
checks a correctly typed expression it returns proof of that.
Whereas when it encounters a type error, it throws an infor-
mative message, rather than a proof of incorrectness. We
chose to focus on soundness because it already reveals the
main advantages and challenges of our approach, and in a
compiler, detailed error message is more useful than proof of
incorrectness.

We begin with a basic implementation that includes only
the fundamental types of the STLC: variables, abstractions,
and applications. These terms are paired with base types for
natural numbers, boolean values, and function types. To make
our implementation capable of handling more real-world pro-
grams, we extend it by adding explicit type annotations and
if-then-else terms. Following this, we further extend our type
system to support checked exceptions. This extension re-
quires incorporating effects into our type-checker, as excep-
tions cannot be treated as types without violating the principle
that each term has a single type in the STLC [18].

To manage the addition of effects, we adopt the approach
outlined by Mogi [11] and further elaborated by Daan [9].
This approach separates values and computations, assigning
distinct types to each. In practical terms, this means that ef-
fects can only occur in the context of function types, not in
other values (e.g., a variable cannot raise an exception).

We introduce new terms to handle exceptions: declare ex-
ception, raise exception, and catch exception, and we update
the existing type rules to integrate these new terms in the same
fashion as in our typing rules. We achieve it by creating two
new ‘contexts’, one for all declared exceptions (the user has
to declare an exception before using it) and another for the an-
notations. The annotations are used to track which exceptions
a term might raise.

4 Type-checker Implementation
In this section, we explain our type-checker implementation,
the choices we make, and compare some aspects with how
they could be implemented in Python, serving as an arbitrary
(not dependently typed) programming language. This com-
parison showcases the challenges we face and how they could
be handled in an unverified context.

4.1 Context Implementation
A type system requires a context to store information about
variables, functioning similarly to a dictionary-like data struc-
ture. However, Agda’s standard library lacks an implementa-
tion for that. Thus, we introduce our own Context type alias

(see Figure 4). It is indexed by Scope, which in our imple-
mentation is a list of all names introduced in the given con-
text. This way, we enforce and track the relation between
variable names and their corresponding types within a type
system.

1 Context : (v : Set) → (α : Scope) → Set
2 Context v α = All (λ _ → v) α

Figure 4: Definition of the Context type alias in Agda, indexed by
Scope, which tracks variable names and their corresponding types.

We also add functionality for extending the context using
the operator _,_:_, which adds a new name to the scope and
assigns it a type (see Figure 5). Additionally, we implement
a function lookupVar that allows for looking up a variable in
the context and returns its type. This function requires proof
of membership, ensuring that we never attempt to look up a
variable that is not in the context.

1 Context : (v : Set) → (α : Scope) → Set
2 Context v α = All (λ _ → v) α
3

4 _,_:_ : Context v α → (x : name) → v →
↪→ Context v (x :: α)

5 _,_:_ ctx _ v = v :: ctx
6

7 lookupVar : (Γ : Context v α) (x : name) (
↪→ proof : x ∈ α) → v

8 lookupVar (v :: _) x here = v
9 lookupVar (_ :: ctx) x (there proof) =

↪→ lookupVar ctx x proof

Figure 5: Functions for extending the context and looking up vari-
able types in Agda.

Figure 6 presents an alternative implementation of context
management in Python found in an open-source repository,2
where it is implemented as a simple dictionary.

1 class Context(dict):
2 def forkwith(self, variable, ttype) ->

↪→ Context:
3 context_response = self.get(variable)
4 if context_response is not None and

↪→ context_response != ttype:
5 raise ContextCorruption()
6 new_context = deepcopy(self)
7 new_context[variable] = ttype
8 return new_context

Figure 6: Context management in Python.

4.2 Annotation Implementation
The type-checker also requires a set-like datastructure. We
choose to create a new datatype, Ann, to provide more ex-

2https://github.com/magniff/types101

4

pressiveness and functionality similar to set operations, such
as union and difference. This approach is more compatible
with the specifications of our typing rules in comparison to
using a simple list of strings. The Ann datatype consists of
two constructors: ∅, representing the empty set, and _+++_,
which adds a string annotation to an existing set (see Figure
7). This structure enables us to rigorously and type-safely
define operations such as union and membership.

1 data Ann : Set where
2 ∅ : Ann
3 _+++_ : Ann → String → Ann

Figure 7: Definition of the Ann datatype in Agda.

As our typing rules suggest, we need a union operation. It
is implemented as the _∪_≡_ datatype, which ensures that the
union of two annotation sets is correctly defined and produces
a new set (see Figure 8). The empty and append constructors
of this datatype provide the union rules: empty states that the
union of any set with the empty set is the set itself, while
append handles the addition of a new annotation to the union
of two sets.

1 data _∪_≡_ : Ann → Ann → Ann → Set where
2 empty : ∀ {ϕ} → ϕ ∪ ∅ ≡ ϕ
3 append : ∀ {ϕ1 ϕ2 ϕ3 v} → ϕ1 ∪ ϕ2 ≡ ϕ3 →

↪→ ϕ1 ∪ (ϕ2 +++ v) ≡ (ϕ3 +++ v)

Figure 8: Definition of the ∪ ≡ datatype in Agda, specifying the
rules for the union operation of annotation sets with empty and
append constructors.

The un function performs the union of two annotation sets
and returns the resulting set along with proof that the union
operation is performed correctly (see Figure 9). This function
uses pattern matching and recursion to traverse and combine
the annotation sets.

1 un : (ϕ1 ϕ2 : Ann) → ϕ3 ∈ Ann , ϕ1 ∪ ϕ2 ≡ ϕ3

2 un ϕ1 ∅ = ϕ1 , empty
3 un ϕ1 (ϕ2 +++ x) with un ϕ1 ϕ2

4 ... | ϕ3 , ϕ3-proof = (ϕ3 +++ x) , append ϕ3-
↪→ proof

Figure 9: Implementation of the un function in Agda.

Membership in an annotation set is defined by the ∈
datatype, which includes the constructors here and there (see
Figure 10). The here constructor indicates that an annotation
is present in the set, while there allows us to traverse the set
to check for the presence of an annotation. We also introduce
the ∈? function, which serves as a membership proof gener-
ator (see Figure 10). This function automatically determines
if an annotation is present in the set, eliminating the need for
a user-written proof. Similarly, we implemented a function
for computing the difference between annotation sets.

1 data _∈_ : String → Ann → Set where
2 here : ∀ {v ϕ} → v ∈ (ϕ +++ v)
3 there : ∀ {v w ϕ} → v ∈ ϕ → v ∈ (ϕ +++ w)
4

5 _∈?_ : (x : String) (set : Ann) → Dec (x ∈
↪→ set)

6 x ∈? ∅ = no (λ ())
7 x ∈? (a +++ ϕ) with x ≡ a
8 ... | yes refl = yes here
9 ... | no x ̸≡a with x ∈? ϕ

10 ... | yes p = yes (there p)
11 ... | no n = no (λ { here → contradiction

↪→ refl x ̸≡a ; there p’ → n p })

Figure 10: Definitions for checking membership in an annotation set
in Agda.

In contrast, Python provides built-in support for set opera-
tions, which could greatly simplify the implementation. Fig-
ure 11 shows a simple example of managing annotations us-
ing Python’s set data structure. Here, we create an annotation
set, add elements to it, and perform a union operation with
another set within a newly created object Ann.

1 class Ann:
2 def __init__(self):
3 self.annotations = set()
4 def add_annotation(self, annotation: str):
5 self.annotations.add(annotation)
6 def union(self, other: Ann) -> Ann:
7 result = Ann()
8 result.annotations = self.annotations.

↪→ union(other.annotations)
9 return result

10 def __contains__(self, annotation: str) ->
↪→ bool:

11 return annotation in self.annotations

Figure 11: Hypothetical annotation management in Python.

4.3 Typing Rules in Agda
Next, we focus on translating the typing rules to Agda,
specifically those concerning exceptions, as these are the
main focus of our work. We create a new datatype for these
rules with the following signature: data _◀_⊢_:_|_ (Ξ :
↪→ List String) (Γ : Context Type α) : Term α →
↪→ Type → Ann → Set. This aligns precisely with the
extended notation of typing judgments presented above.
Each typing rule is basically a constructor of this datatype.
We begin with the explanation of a lambda typing rule.

1 TyTLam
2 : Ξ ◀ (Γ, x : a) ⊢ u : b | ϕ1

3 --
4 → Ξ ◀ Γ ⊢ TLam x u : a [ϕ1]⇒ b | ∅

Figure 12: Typing rule for lambda terms.

5

The TyTLam constructor (see Figure 12) adheres to the be-
havior specified in the original typing rule. It captures all ex-
ceptions that may be thrown within its body and assigns them
as lambda annotations. This allows the lambda to ‘consume’
these exceptions. In other words, the lambda type a[ϕ1]⇒ b
encapsulates all the annotations raised within its body. These
annotations are managed by the lambda until the lambda term
is applied using the TyTApp constructor.

1 TyTApp
2 : Ξ ◀ Γ ⊢ u : a [ϕ1]⇒ b | ϕ2

3 → Ξ ◀ Γ ⊢ v : a | ϕ3

4 → ϕ1 ∪ ϕ2 ≡ ϕ4

5 → ϕ3 ∪ ϕ4 ≡ ϕ5

6 --
7 → Ξ ◀ Γ ⊢ TApp u v : b | ϕ5

Figure 13: Typing rule for application.

The TyTApp constructor (see Figure 13) handles the appli-
cation of functions. It takes a term of lambda type, ensures
its argument is of type a, and performs the sum operation us-
ing the _∪_≡_ datatype declared for the Ann datatype. This
operation ‘activates’ the annotations carried by the lambda
expression by adding them to the annotation set again, which
means the annotated exceptions can be raised by the applica-
tion term. Now, that we know how these lambda annotations
can return to the program, we move on to catching them.

1 TyTCatch
2 : Ξ ◀ Γ ⊢ u : a | ϕ1

3 → Ξ ◀ Γ ⊢ v : a | ϕ2

4 → e ∈ Ξ
5 → e ∈a ϕ1

6 → ¬(e ∈a ϕ2)
7 → ϕ1 − e ≡ ϕ3

8 → ϕ3 ∪ ϕ2 ≡ ϕ4

9 --
10 → Ξ ◀ Γ ⊢ TCatch e u v : a | ϕ4

Figure 14: Typing rule for exception handling.

The TyTCatch constructor (see Figure 14) introduces two
branches. The first branch is annotated by a set of exceptions
ϕ1 containing an exception e, and the second branch specifi-
cally does not contain this exception. The final annotation of
this rule consists of the union of the two sets ϕ1 and ϕ2 with
the exception e removed. This ensures that the annotation is
not reintroduced into the program.

4.4 Bidirectional Type Inference Algorithm
Once we translate terms, types, and typing rules to Agda, we
can implement the type inference algorithm. The Evaluator
monad serves as a wrapper that helps us build a sound algo-
rithm. It is defined generically to either return a type a if the
computation succeeds or a String representing an error via
the EvalError function. This setup allows our type inference
algorithm to handle errors gracefully. An Evaluator compu-
tation results in either a successful outcome of type a, which

in our case is a typing judgment _◀_⊢_:_|_, or a string de-
scribing the error.

With this foundation, we can proceed to define the type in-
ference algorithm. For brevity, we will not explain each type
checking rule but will describe the general approach. The
type inference procedure comprises two mutually recursive
functions: inference and synthesis. These functions are trans-
lated to inferType and checkType, respectively, whose sig-
natures are shown in Figure 15.

1 inferType : ∀ (Ξ : List String) (Γ : Context
↪→ Type α) u → Evaluator (Σ[t ∈ Type]
↪→ Σ[ϕ ∈ Ann] Ξ ◀ Γ ⊢ u : t | ϕ)

2 checkType : ∀ (Ξ : List String) (Γ : Context
↪→ Type α) u (ty : Type) → Evaluator (Σ[
↪→ ϕ ∈ Ann] Ξ ◀ Γ ⊢ u : ty | ϕ)

Figure 15: Signatures of inferType and checkType functions.

inferType
The inferType function attempts to infer the type of a term
u within a given context Γ and environment Ξ, resulting in
an Evaluator computation that produces a type t and anno-
tations ϕ. The checkType function, on the other hand, checks
whether a term u conforms to a specified type ty within the
same context and environment, resulting in an Evaluator
computation that produces the annotations ϕ.

1 inferType Ξ Γ (TApp lam arg) = do
2 -- Infer types for the head and argument of

↪→ the application.
3 (a [ϕ1]⇒ b , (ϕ2 , tr1)) ← inferType Ξ Γ

↪→ lam
4 where _ → evalError "Application head

↪→ should have a function type!"
5 (ϕ3 , tr2) ← checkType Ξ Γ arg a
6 -- Sum the annotations of the head and

↪→ argument.
7 let (ϕ4 , ϕ4-proof) = un ϕ1 ϕ2

8 (ϕ5 , ϕ5-proof) = un ϕ3 ϕ4

9 return (b , (ϕ5 , TyTApp tr1 tr2 ϕ4-proof ϕ5

↪→ -proof))

Figure 16: Implementation of the inferType function for applica-
tion.

The structure of inferType involves matching on the term
u and handling various cases. For instance, variable terms re-
turn their type from the context, while lambda terms require
explicit type annotations. For applications, as illustrated in
Figure 16, inferType infers the types of both the function
(lam) and its argument (arg), combines their annotations, and
returns the result type. Specifically, the function’s type and
annotation are inferred first, ensuring it has a function type,
and then the argument’s type is checked against this inferred
type. The annotations are summed to maintain consistency.
Annotated terms are checked against their provided types, en-
suring the overall consistency of the inferred types.

6

checkType
The checkType function is responsible for ensuring that a
term u matches a specified type ty. It handles various con-
structs by recursively invoking checkType and inferType as
needed. For example, when handling an exception, as shown
in Figure 17, checkType first verifies if the exception e is
declared within the context Ξ using Agda’s standard library
membership proof generator _∈?_ for a String in a list. If
an exception is not declared, it raises an error. Otherwise, it
checks the types of both the exception term and the handler
term against the specified type ty. It then calculates the sub-
traction and sum of annotations to ensure consistency. The
function ensures that the exception term is annotated correctly
and that the handler term does not carry the exception anno-
tation, thereby maintaining type correctness in the presence
of exceptions.

1 checkType Ξ Γ (TCatch e exceptionTerm
↪→ handleTerm) ty with e ∈? Ξ

2 ... | no _ = evalError "Catching a not
↪→ declared exception!"

3 ... | yes (e∈Ξ) = do
4 -- Check types for the exception term and

↪→ the exception handler.
5 (ϕ1 , tr1) ← checkType Ξ Γ exceptionTerm

↪→ ty
6 (ϕ2 , tr2) ← checkType Ξ Γ handleTerm ty
7 -- Calculate the subtraction.
8 let (ϕ3 , ϕ3-proof) = removeAnn ϕ1 e
9 -- Calculate the sum of terms.

10 let (ϕ4 , ϕ4-proof) = un ϕ3 ϕ2

11 (yes , e∈ϕ1) ← e ∈? ϕ1

12 where _ → evalError "Exception term
↪→ should be annotated!"

13 (no , e/∈ϕ2) ← e ∈? ϕ2

14 where _ → evalError "Exception handler
↪→ should not be annotated with the
↪→ exception!"

15 return (ϕ4 , TyTCatch tr1 tr2 e∈Ξ e∈ϕ1 e/∈ϕ2

↪→ ϕ3-proof ϕ4-proof)

Figure 17: Implementation of the checkType function for exception
handling.

5 Responsible Research
The research presented in this paper involves logic and math-
ematical methods, and so avoids ethical concerns typically
linked to data-driven studies, such as violations of privacy or
misuse of data. The reported conclusions are directly derived
from internally developed code, eliminating the use of any ex-
ternal data, unless specified otherwise. In order to address the
reproducibility issues, the complete codebase is made avail-
able to the public.3

The theoretical framework presented in this study should
provide readers with the necessary understanding to compre-
hend the code stored in the repository. Additionally, it of-
fers an explanation of bidirectional type inference and a basic

3https://github.com/kmariuszk/cbc-type-checker

understanding of Agda. For further details on the Agda lan-
guage, the “Programming Language Foundations in Agda”
book [18] is recommended.

6 Discussion
The CbC approach has been a subject of multiple studies in
formal methods in prior research [5]. However, despite its
potential, the CbC paradigm has not been widely adopted,
mainly due to the significant resources and complexity in-
volved in deploying it at scale. In Section 4, our objective was
to demonstrate these problems by presenting Python code al-
ternatives that were far more concise and easier to understand
in comparison to the same code in Agda. Nevertheless, our
project showcases that it is indeed feasible to implement an
effective type-checker using this technique. Designing a new
programming language is inherently a deliberate task, and the
creation of typing rules is an unavoidable part of it.

Once the typing rules are formulated, they can be con-
verted to Agda. Its support for Unicode allowed us to use
mathematical syntax directly in our implementation, which
reduced the cognitive load during the translation of rules into
code and when reasoning about it. Additionally, Agda’s stan-
dard library facilitates the automatic generation of certain
constraints. For instance, we utilized list membership proof
generation for exception-specific rules. By pattern-matching
our code we could verify whether an exception was part of
the context of the declared exceptions as presented in Figure
17.

However, the development process was not without chal-
lenges. Since we wanted to benefit from Agda’s standard
library’s functionality we needed to limit our exceptions to
be only Strings. This simplification was necessary to con-
tinue using the functionality from the Setoid library. Other-
wise, we would need to provide the Annotation module with
an equality property which turned out to be impractical and
problematic given our expertise in Agda. The need for pro-
viding this equality property is a challenge common to both
dependently typed and regular languages. However, the mul-
tiple layers of abstraction over a simple equality concept be-
came difficult to navigate, worsened by the lack of tutorial
resources on working with setoids.

Additionally, we had to implement set and map-like data
structures ourselves as described in Section 4. Initially, our
set implementation faced issues where, despite Agda’s code
compiling, it did not function properly. This was because
Agda’s unification algorithm could not determine whether
the union of lists of strings we proved to be equal was in-
deed equal. This issue presents the challenge of working with
Agda, requiring a deeper understanding and careful handling
of type equivalence.

Furthermore, although Agda allows for proof of code cor-
rectness, it requires very precise typing rules, which them-
selves may be flawed. As a simple example, Agda will not
automatically identify contradictory rules such as one pre-
sented in Figure 18. Even though the given example is trivial,
it showcases that the responsibility for defining accurate typ-
ing rules lies entirely with the developer. Consequently, the
CbC approach is only as reliable as the rules you define and

7

Agda will not assist in identifying flaws in those rules.

1 TyTRaise
2 : e ∈ Ξ
3 → e /∈ Ξ
4 ----------------------------
5 → Ξ ◀ Γ ⊢ TRaise e : a | ϕ

Figure 18: Example of a contradictory typing rule translated to
Agda, demonstrating a flaw that Agda cannot automatically detect.

Employing the CbC approach to implement type-checkers
turned out to be a valid approach. While it does impose more
challenges from the developing perspective, the correctness
of the produced program and the ease of transitioning be-
tween the theoretical definition of a language and its repre-
sentation in Agda using these languages make it a viable ap-
proach. After a programmer invests significant effort into en-
suring their code adheres to the given set of rules, they can be
confident that it will work as intended once compiled.

7 Conclusion and Future Work
Based on the findings presented in this paper, we conclude
that the CbC approach, combined with Agda, is suitable for
developing type-checkers. One of the main benefits of us-
ing Agda in this context is its strict enforcement of typing
rules. Once these rules are established, they cannot be vio-
lated, which guarantees consistency and reliability of the im-
plementation. This approach eliminates false positive results,
meaning no ill-typed program will be accepted by our type-
checker. However, this strictness also presents a challenge,
particularly in the complexity of writing proofs. There are
numerous potential extensions to our type-checker that could
further explore and validate the CbC approach.

One of the most significant extensions would be to develop
a program that is not only sound but also complete. We sug-
gest following the methodology presented in Philip Wadler’s
book [18], which includes implementing proofs of incorrect-
ness for wrongly typed expressions. Even though we choose
to develop a sound algorithm that generates meaningful er-
ror warnings, extending this to a complete algorithm could
uncover even more insights.

In addition, the CbC approach could be augmented with a
comprehensive test suite. This could be achieved by trans-
lating our Agda code to Haskell using Agda2Hs4 tool. Once
translated to Haskell, the QuickCheck library5 could be used
to perform property-based testing. This will improve the re-
liability of the program and ensure that the typing rules are
correct. Such a test suite could be built by following work
of Pałka et al. [12], who demonstrated the possibilities of
QuickCheck in identifying bugs through random testing.

Additionally, it is important to highlight that the typing
rules used in the type-checker development did not produce
any bugs during manual testing. However, we have not for-
mally proven their soundness and preservation. These proofs

4https://github.com/agda/agda2hs
5https://hackage.haskell.org/package/QuickCheck

are a necessary addition to the developing process to ensure
that the set of typing rules itself is both correct and sound.

In summary, although our current implementation show-
cases the possibility and benefits of using the CbC technique
for developing type-checkers, there is still room for additional
research and improvement. Future studies should focus on
extending the type-checker to reach completeness and inte-
grating a testing framework. This would expand our under-
standing of the applicability of the CbC methodology in type-
checker development.

Acknowledgments
I would like to thank my peers who worked on the same re-
search project for their support throughout. I am grateful to
Professor Jesper Cockx and my supervisor Sára Juhošová for
their guidance. I appreciate the assistance of Cas van der Rest
in developing the typing rules for exceptions.

References
[1] Patrick Amey. Correctness by construction: Better can

also be cheaper. CROSSTALK, The Journal of Defense
Software Engineering, 15, 2002.

[2] Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-
Petros Drosos, Charalambos Mitropoulos, Dimitris
Mitropoulos, and Diomidis Spinellis. Well-typed pro-
grams can go wrong: a study of typing-related bugs in
jvm compilers. Proc. ACM Program. Lang., 5(OOP-
SLA), 2021.

[3] Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis
Spinellis, Arthur Gervais, Benjamin Livshits, and Dim-
itris Mitropoulos. Finding typing compiler bugs. page
183–198, 2022.

[4] Alonzo Church. A formulation of the simple theory of
types. Journal of Symbolic Logic, 5(2):56–68, 1940.

[5] Edmund M. Clarke and Jeannette M. Wing. Formal
methods: state of the art and future directions. ACM
Comput. Surv., 28(4):626–643, 1996.

[6] Jana Dunfield and Neelakantan R. Krishnaswami. Com-
plete and easy bidirectional typechecking for higher-
rank polymorphism. 2020.

[7] Zheng Gao, Christian Bird, and Earl T. Barr. To type or
not to type: Quantifying detectable bugs in javascript.
pages 758–769, 2017.

[8] Derrick Kourie and Bruce Watson. The Correctness-by-
Construction Approach to Programming. 2012.

[9] Daan Leijen. Type directed compilation of row-typed
algebraic effects. page 486–499, 2017.

[10] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. page 47–57, 1988.

[11] Eugenio Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, 1991. Se-
lections from 1989 IEEE Symposium on Logic in Com-
puter Science.

8

[12] Michał H. Pałka, Koen Claessen, Alejandro Russo, and
John Hughes. Testing an optimising compiler by gen-
erating random lambda terms. In Proceedings of the
6th International Workshop on Automation of Software
Test, AST ’11, page 91–97, New York, NY, USA, 2011.
Association for Computing Machinery.

[13] Alberto Pardo, Emmanuel Gunther, Miguel Pagano, and
Marcos Viera. An internalist approach to correct-by-
construction compilers. In Proceedings of the 20th In-
ternational Symposium on Principles and Practice of
Declarative Programming, PPDP ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[14] Benjamin C. Pierce. Types and Programming Lan-
guages. The MIT Press, 1st edition, 2002.

[15] Robert Pollack. A verified typechecker. pages 365–380,
1995.

[16] T. Runge, T. Bordis, A. Potanin, T. Thüm, and I. Schae-
fer. Flexible correct-by-construction programming.
2022.

[17] Daniil Stepanov, Marat Akhin, and Mikhail Belyaev.
Type-centric kotlin compiler fuzzing: Preserving test
program correctness by preserving types. 2020.

[18] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Pro-
gramming Language Foundations in Agda. 2022.

9

	Introduction
	Background
	Simply Typed Lambda Calculus
	Type Systems
	Bidirectional Type Inference
	Correct-by-Construction Programming
	Agda

	Methodology
	Toy Language
	Typing Rules
	T-Var
	T-Lam
	T-App
	T-Decl
	T-Raise
	T-Catch
	T-If
	T-Ann

	Type-checker Design

	Type-checker Implementation
	Context Implementation
	Annotation Implementation
	Typing Rules in Agda
	Bidirectional Type Inference Algorithm

	Responsible Research
	Discussion
	Conclusion and Future Work

