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Abstract—Backward compatibility is a major concern for any
library developer. In this paper, we evaluate how stable a set
of frequently used third-party libraries is in terms of method
removals, implementation change, the ratio of change in old
methods to change in new ones and the percentage of new
methods in each snapshot. We provide a motivating example
of a commercial company which demonstrates several issues
associated with the usage of third-party libraries. To obtain
dependencies from software systems we developed a framework
which extracts dependencies from Maven build files and which
analyzes system and library code. We propose four metrics which
provide different insights in the implementation and interface
stability of a library. The usage frequency of library methods
is utilized as a weight in the final metric and is obtained from
a dataset of more than 2300 snapshots of 140 industrial Java
systems. We finally describe three scenarios and an example of
the application of our metrics.

Index Terms—Third-party Libraries; API Usage; API Stabil-
ity; Software Reuse;

I. INTRODUCTION

Backward compatibility is a major concern for any library
developer. If a new version of a library introduces breaking
changes, then system developers are either forced to update
their system to work with the new version or they must keep
using the old version of the library (for a visual example,
see Figure 1). Library developers, on the other hand, want to
release new versions of their software to include new features,
improve existing ones or fix bugs. Library developers are
constantly faced with a trade-off between keeping backward
compatibility and live with mistakes from the past or start over
and introduce breaking changes, but at the expense of a loss
of backward compatibility. A good library should ideally be
built in such way that the public interface is never broken, but
this may prove to be impossible in practice.

An example of a company that spends great effort to
keep their Application Programming Interface (API) backward
compatible is Microsoft with its Windows SDK, which is
used by all Windows programmers. Today, many old software
systems still run on the latest version of Windows, thanks to
a high degree of backward compatibility. If mistakes in the
design of Windows were made in the past, these cannot be
easily removed and would still be visible today.

S1

time

L1

aug-2010

jan-2009

S2
nov-2010

S3
feb-2011

L2 L3
oct-2010 jan-2011

uses

Fig. 1. An example of the relation between different system and library
versions. In this example, S1 denotes the first version of the system, made in
August 2010. This version uses library L1 with date January 2009. The next
version of the system, S2, still uses library version L1 while there is already
a new library available, released in October 2010. This illustrates a possible
delay in the adaptation of the latest library versions.

Complete API stability may be hard to achieve, and in
practice, different libraries can have different degrees of API
stability. There are several different properties of libraries
which could indicate this stability. For instance, if the number
of parameters of a library method changes, library users have
no choice but to change each place where a call to this method
occurs. When a public method is removed in a next version
of a library, developers are also required to remove all calls to
this method. More subtle are internal implementation changes
while method interfaces are being kept constant, but even those
changes could have an impact on systems using these libraries,
since behavior could change in an undesired way.

The goal of this paper is to introduce a way to measure
interface and implementation stability. To that end we analyze
historical values of metrics, weighted by the times methods,
classes or packages are being used. To collect data on depen-
dencies used in industrial systems we create an infrastructure
to extract third-party library dependencies for Java as defined
in Maven build files. We apply our metrics to the most
frequently used Apache Commons libraries and we give an
example of the application of our metrics to a library, for
instance to determine if a library is in a state of maintenance
or active development.

We start with a motivating example of third-party library
usage in a commercial company, which can be found in Sec-978-1-4673-2312-3/12/$31.00 © 2012 IEEE
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tion II. In Section III, the problem statement and a definition
of library stability are given. In Section IV, we discuss related
work in the field of API usage, migration and evolution. In
Section V, we describe our dataset used to calculate our library
stability metrics. Section VI contains a description of our
data collection and manipulation framework. In Section VII
we describe variables, unit weights and historical weighting
schemes. In Section VIII we present our metrics. Results are
presented in Section IX. Possible scenarios and an example
in which our metrics can be used are described in Section X.
Finally, we discuss our work, threats to validity and future
research directions in Sections XI and XII.

II. MOTIVATING EXAMPLE

To describe the issues regarding dependencies on third-
party libraries in large commercial and open source software
systems, we give an example of a commercial company which
uses several third-party libraries in a custom-developed web
application of considerable size (approximately 4000 Java files
and 200,000 lines of code). This application depends heavily
on several libraries such as the Spring Framework1, Apache
Struts2 and Hibernate.3 For confidentiality reasons, the system
and company name cannot be provided.

When the application was first built in 2004, third-party
library dependencies were managed using Maven.4 Version
numbers of the latest versions which were available at that
time were hard-coded in the configuration files of the project.
These libraries were not updated to more recent version in the
next 7 years, which resulted in a large “maintenance debt”
of lagging versions. For instance, version 1.0 of the Acegi
authentication and security framework (started in late 2003)
was being used while this library was included in the Spring
framework and was renamed “Spring Security” 2.0.0 in 2008.
In the meantime, several breaking changes were introduced
in new versions of the Spring Security framework as well as
critical safety-related bug fixes and improvements.

Due to expected compatibility issues when upgrading the
Acegi library, this update was deferred as long as possible.
In the old setup, user authentication was handled through
the Acegi library which communicated with an LDAP au-
thentication server. To improve authentication and to facilitate
single sign-on, Atlassian Crowd5 was contracted, a web-based
authentication and authorization service. However, the Acegi
framework was not capable of communicating with Atlassian
Crowd and Acegi therefore had to be replaced. Spring Security
was chosen as a natural successor although the library was
rewritten from scratch and several breaking changes were
introduced. The latest version available during the update
process was 3.0.6, which changed significantly from Acegi
1.0.

1http://www.springsource.org
2http://struts.apache.org
3http://www.hibernate.org
4http://maven.apache.org
5http://www.atlassian.com/software/crowd

Since Spring Security 3.0.6 is part of the more general
Spring Framework, the entire Spring Framework had to be
updated too. Considering the large dependence of the applica-
tion on this framework, this would mean that a large part of the
application had to be adapted to work with this new version.
Since the Struts framework was also used and the new version
of the Spring framework could not work with the old version
of Struts, this had to be upgraded as well. Java code had to
be adapted due to the transformation from Acegi to Spring
Security. Also, since the syntax of the expression language
used in Java Server Pages (JSP) was changed between Struts
2.0.9 and 2.2.3.1, all web pages in which dynamic content was
presented using JSP had to be updated with the new syntax.

Eventually, a week was spent to implement the changes and
upgrades. There was a test suite available, both in the form of
unit tests written in Java and automated browser interface tests
created with Selenium6. Developers working on the system
commented that without this test suite the impact of such an
update would be much harder to assess.

This case illustrates several issues with third-party library
dependencies. First, it shows the accumulation of maintenance
debt when deferring updates of libraries. Second, it shows that
there may come a moment in the future in which there is
no choice but to update to a new version in which case a
much larger effort has to be put in than in the case of smaller
incremental updates. Third, it shows a case of a library that
disregards backward compatibility and introduces breaking
changes: the Struts library changed JSP expression language
syntax which would require a large rework effort in systems
using this syntax. Fourth, it also shows that transitive depen-
dencies of included libraries can increase the total amount of
work required to update to a new version of a library, even
if an upgrade of these transitive dependencies was originally
not intended. Finally, it shows the risk of using deprecated
and legacy versions of libraries which can contain security
weaknesses or critical bugs.

III. PROBLEM STATEMENT

The example in the previous section shows that there are
several issues involved with the usage of third-party libraries
in general. Not every library is maintained with the notion of
backward compatibility in mind, while any developer working
with a third-party library immediately notices any change
made to its public interface. The less library developers ensure
continuity and stability of its public interface, the harder up-
grading to the latest version of a library becomes. This poses a
challenge for developers of an API, who have to think carefully
about the public parts of an interface they publish. After
releasing an API it is very difficult to make large-scale changes
to it since other developers count on already released parts, and
changing only even a small part of this interface will require
developers to adjust their implementations. Since requirements
keep changing and systems keep evolving over time, designing
the correct interface that is stable and backward compatible

6http://seleniumhq.org
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enough in subsequent releases but also flexible enough to adapt
to changing requirements can be challenging.

We do not address all of these issues in this paper, but
we do provide a method to measure the stability of a library,
which could cause problems as mentioned above. We therefore
introduce four metrics which provide insight on different
aspects of implementation and interface stability. We consider
an API to be stable if functionality is not removed from a
public interface once it has been added. In the case of a Java
system, this means that methods, classes or packages are not
removed from the interface once they have been added and
method signatures are not changed (adding/removing/changing
parameters or renaming methods). We consider the implemen-
tation of a library to be stable with regard to a certain metric if
metric values in a system are relatively constant through time.

The definition of library stability that we assume in this
paper is the following: library (in)stability is the degree to
which the public interface or implementation of a software
library changes through time in such way that it potentially
requires users of this library to rework their implementations
due to these changes.

IV. RELATED WORK

The problem of changing API interfaces has been recog-
nized by other authors [3], [4], [7] and has been researched
through different approaches than the one suggested in this
paper. For instance, tools have been proposed to detect API
evolution and to suggest refactorings to get up-to-date with the
latest version of an API [7], [12]. Dagenais and Robillard [2],
[3] proposes SemDiff, a tool that recommends replacements
for framework methods that were accessed by a client program
and deleted during the evolution of the framework.

Uddin et al [15] proposes a way to detect changes in the
usage of an API, which differs from our work, in which
we investigate changes over time in libraries themselves. The
starting point of their data collection framework is similar to
ours: they store client evolution patterns which represent a
time series of changes which consists of added and removed
methods calls to the API, with each snapshot having a time
stamp. From this point on, however, Uddin et al take a different
approach and investigate how to represent these client-side
change patterns mathematically and how to infer temporal API
usage patterns over time.

Other work in API usage mining often focuses on the
detection of usage patterns of API methods in systems that call
these methods. It can reveal how an API method is normally
called and what preparing statements have been executed [16],
[17]. Similarly, Thummalapenta [14] presents a framework for
the detection of hotspots and coldspots in API’s which can help
to show relevant code examples in documentation of third-
party libraries.

Furthermore, usage of certain libraries and specific methods
has also been investigated. This research often shows usage
statistics of certain parts of libraries (“hidden” or “public”)
[1], [5], [6], [8]–[11] or collects statistics on the frequencies
of use for methods in the library. In our work we want to

use this type of information to help in the decision to include
a certain library in a software project, or to choose a better
alternative if one is available.

To our knowledge, taking into account the historical evolu-
tion to create metrics for library stability has not been done
before. We believe this is valuable since it is a measure for
the amount of backward compatibility of a third-party library,
a property that could be of great interest to developers using
this library since we expect it to be indicative for the amount
of work required to update to a new version of a library.

V. DATASET

We present our approach in the context of Java systems.
In particular, we assume the use of Maven, as this makes
it possible to detect which library versions are used by a
particular system. Java is appropriate to investigate as a pro-
gramming language since a large number of open source and
proprietary systems have been written in it. We also expect that
Java systems are representative for systems written in other
object-oriented languages. The central artifact repositories
used by Maven facilitate large-scale downloading and analysis
of dependencies.

Furthermore, our research focuses on one particular set
of libraries: the Apache Commons libraries. In earlier work
we have identified this as one of the most commonly used
libraries [13] in Java systems, making it a suitable learning
example. Some descriptive characteristics of the Apache Com-
mons libraries are provided in Table I.

Since we are interested in the implications of stability on the
actual use of a library, we need a set of systems making use of
libraries. To that end, we use a collection of 2487 snapshots
of 140 industrial Maven-based systems of which source code
is available at the Software Improvement Group (SIG)7. The
systems come from the same set we have used in earlier
work [13]. Statistics on the use of the Apache Commons
libraries by our set of subject systems are provided in Table II.
In Table II, library versions that exist but are never included
are omitted.

Library name LOC Classes #Mtds #S Latest
Apache Commons Collections 26323 422 3945 6 dec-‘11
Apache Commons Lang 19475 122 2338 6 jan-‘11
Apache Commons HTTPClient 17171 171 1944 3 aug-‘07
Apache Commons Beanutils 11375 127 1284 5 mar-‘10
Apache Commons IO 8086 100 1053 7 oct-‘11
Apache Commons Codec 4554 64 503 4 nov-‘11
Apache Commons Logging 2680 27 311 3 nov-‘07

TABLE I
DESCRIPTIVE STATISTICS OF THE APACHE COMMONS LIBRARIES.

#MTDS=NR. OF METHODS, #S=NR. OF SNAPSHOTS

VI. ANALYZING MAVEN DEPENDENCIES

To obtain usage frequencies, Maven build files are scanned
for third-party library dependencies. Each Maven project
(pom.xml) file can contain a dependency section with in-
formation on the name and version of used libraries. For an
example of a Maven dependency, see Figure 2. Our dataset
contains multiple snapshots of systems on different points in

7http://www.sig.eu/en
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Library Version Date Times used
Commons Beanutils 1.6.1 18-feb-‘03 253

1.7.0 02-aug-‘04 1776
1.8.0 01-sep-‘08 86
1.8.2 13-nov-‘09 61
1.8.3 28-mar-‘10 67

Commons Codec 1.3 10-jul-‘04 684
1.4 09-aug-‘09 622
1.5 29-mar-‘11 129
1.6 20-nov-‘11 1

Commons Collections 2.1 21-oct-‘02 317
2.1.1 29-may-‘04 98
3.0 25-jan-‘04 124
3.1 23-jun-‘04 609
3.2 14-may-‘06 1863
3.2.1 07-dec-‘11 1375

Commons Httpclient 2.0.2 10-oct-‘04 237
3.0.1 07-may-‘06 245
3.1 18-aug-‘07 1053

Commons IO 1.1 10-oct-‘05 308
1.2 19-mar-‘06 425
1.3.1 13-feb-‘07 59
1.3.2 02-jul-‘07 73
1.4 21-jan-‘08 1076
2.0.1 26-dec-‘10 188
2.1 11-oct-‘11 27

Commons Lang 2.1 12-jun-‘05 1205
2.2 28-jul-‘07 369
2.3 13-feb-‘07 1475
2.4 19-mar-‘08 1922
2.5 07-apr-‘10 783
2.6 16-jan-‘11 371

Commons Logging 1.0.4 10-jun-‘04 1507
1.1 03-jun-‘07 2209
1.1.1 22-nov-‘07 1563

TABLE II
THE USAGE STATISTICS OF THE APACHE COMMONS LIBRARIES

time, each pointing to possibly different versions of third-party
libraries. Each system version and third-party library version
is tagged with a version number and snapshot date.

Maven has a complex system to link the right versions of
libraries to a deliverable, such as a jar file. This is not a trivial
process since projects can contain multiple pom.xml files
which can each point to different versions of the same library.
Maven assures that only one version of a library is included
inside a single deliverable.

<dependencies>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.1</version>

</dependency>
</dependencies>

Fig. 2. An example of a dependency inside a Maven build configuration file.

Dependencies can be analyzed and viewed in an hierarchical
representation using the Maven dependency plugin8 but this
requires a fully compiling project. This in turn requires the
complete set of all pom.xml files that are referenced in a
project. In our dataset, the collection of pom files is often
incomplete and therefore a reconstruction has to be made
which uses approximately the same rules as the resolving
engine of Maven but can handle missing parent poms or
otherwise incomplete references.

8http://maven.apache.org/plugins/maven-dependency-plugin

The Maven build file can contain dependency sections
which contain a groupId, artifactId and version element (see
Figure 2). The groupId, artifactId and version of a dependency
together uniquely identify a certain library, which can obtained
through a public Maven repository9. Specifying dependency
versions was not required in older versions of Maven (before
version 3) and versions of libraries are therefore often missing
in pom files used with older versions of Maven. Also, a version
can be mentioned in a “dependency management” section in a
pom file higher in the directory hierarchy which specifies that
a specific version of a library should be used, if it would ever
be included.

System1-20101231/pom.xml
System1-20110606/pom.xml

System2-20090321/pom.xml

1) Collection of pom.xml files 
from system snapshots

2) Extraction and filtering of third-
party library dependencies

3) Downloading of libraries from 
central Maven repository

4) Extraction of .jar binary, 
source and javadoc files 4a) Completeness check

2a) Analysis of system 
snapshots, dates, dependencies 

and versions

5) Linking system code and 
correct versions of third-party 

library code

6) Running the Software Analysis 
Toolkit on code

7) Calculation of metrics

6a) Running other queries on 
data

Fig. 3. The process of Maven repository mining. Starting with separate
dependency files, the result is a database with all metrics per snapshot
including source code of dependencies.

Pom files are ordered hierarchically, in such way that a
pom file present in a child directory overrules settings from
a pom file present in the parent folder of that directory.
Pom files can specify module dependencies in which only a
selection of poms can be included in a particular build target.
Pom inheritance and module specification are two mechanisms
which work independently of each other.

To reduce the complexity in resolving the right version num-

9http://search.maven.org
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ber for each dependency, we make the following simplifying
assumptions, which resemble the actual dependency resolution
process of Maven as close as possible:
• If no explicit version of a dependency is mentioned, the

version as mentioned in the dependency management
section of a hierarchically higher pom file is used. If
there is no dependency management section present in
any pom file in the snapshot higher in the hierarchy, the
last library version before the release date of the project
snapshot is obtained.

• The parent pom is always assumed to be in the parent
directory of the child pom since it is a convention to put
the parent pom in the parent directory.

• All poms present in a snapshot folder are assumed to be
used inside a project. This is a safe assumption to make
because poms that are present in a snapshot are most
likely to be actually used inside that snapshot.

• When parent poms are missing, all independent child
poms are assumed to be included in the same parent pom.
This assumption is safe to make since inside a Maven
project, a top-level pom usually exists which bundles a
project together.

• When two siblings mention a different version of the
same dependency, the latest version is included. When
other conflicts between versions of the same dependency
arise, the latest version is also chosen. When no version
is available through any of the preceding rules, the
dependency is ignored.

Since the dependencies section in a Maven dependencies file
can contain both publicly available and internal dependencies,
internal dependencies were removed by matching dependency
names with project names. After this, results were manually
checked to remove false positives. This resulted in a list of
third-party library dependencies per snapshot for each system.
Next, binary, source and JavaDoc jars of all collected depen-
dencies were downloaded from the central Maven repository,
if available. After downloading, all jar files were automatically
extracted. For descriptive statistics of collected dependencies,
see Table II.

junit 4.7

junit 4.5Dependency 
mngmt: junit 4.4

junit 4.2

(missing)

overrrules

parent assumed

junit

missing
version

Fig. 4. An example of a system with multiple versions of the same library.
In this paper, the latest version of a library is included in case of a conflict.

For each system snapshot, source code of the system and
source code of all used third-party libraries were combined in a
single folder. The Software Analysis Toolkit (SAT) of the Soft-
ware Improvement Group was used to calculate a wide range

of metrics related to size in lines of code (LOC), complexity by
means of the McCabe value as well as call graph information.
The result of this process is a data file containing metrics
on method-level for each snapshot of systems and third-party
library code that is called from this system. Package, class
and method names are stored separately to make aggregation
of metrics to these levels possible. By comparing versions and
names of third-party library dependencies between snapshots
it is possible to detect additions, removals, upgrades and
downgrades of these libraries.

In the next section we consider different variables to include
in a library stability metric.

VII. METRIC INGREDIENTS

There are several possible metrics and measurement meth-
ods that could be considered for inclusion in a metric of the
stability of library implementation and interface. The criterion
we maintain for a library stability metric is that it should
be representative for the amount of work that is required
when library developers update a certain library to a newer
version. Included metrics should therefore have a rationale that
is consistent with this criterion. Since we want to investigate
the stability of both implementation and interface of a library
we also consider metrics that are an indicator for the amount
of implementation “churn”. We expect that even though these
changes do not become visible at the public interface, there
is still a potential amount of rework effort required due to a
potential change in behavior.

Table III summarizes change characteristics for Commons
Logging and Commons Collections. Commons Collections
has more different snapshots and has more methods that are
removed and deleted in each snapshot than Commons Logging
and Commons Logging is therefore considered to be more
stable.

Library S Unique methods (diff) Total McC. (diff) Total LOC (diff)
Logging 1 263 454 1521

2 301 (+75, -37) 653 (+199) 2818 (+1297)
3 311 (+11, -1) 667 (+14) 2918 (+100)

Collections 1 1504 2580 9969
2 1398 (+0, -106) 2395 (-185) 9482 (-487)
3 3357 (+2218, -259) 5583 (+3188) 18199 (+8717)
4 3821 (+568, -104) 6503 (+920) 20452 (+2253)
5 3945 (+125, -1) 6749 (+246) 21207 (+755)
6 3945 (+0, -0) 6749 (+0) 21207 (+0)

TABLE III
EXAMPLE OF THE DIFFERENCES IN NUMBER OF METHODS, TOTAL

MCCABE AND TOTAL LOC FOR TWO APACHE COMMONS LIBRARIES

A. Candidate Variables

The candidate variables to include are the following:
1) Unit removals: Units (methods, classes or packages in

Java) that are being removed from a public interface require
rework from the developers that call these units. Therefore,
counting the number of removed units per snapshot is a good
indicator for the stability of an API. We detect renamed or
moved units as units that are removed first and added later.
This is acceptable since a unit’s rename or move also requires
rework effort and can therefore be counted as a unit removal.
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2) Unit additions: Units that are added to a library do not
influence the stability of the existing interface directly but
could serve as an indirect indicator of the amount of effort
that is spent on extending the library. Examples of method
additions and removals in two libraries can be found in Table
III.

3) LOC an McCabe changes: Changes in McCabe and
LOC values serve as indirect measure for the amount of work
going on in a library since implementation can change while
an interface stays constant. It is also not possible to make a
distinction between changes that alter external behavior and
changes which do not alter behavior of the library (such as
refactorings) by looking at the McCabe value or the LOC
alone. We nevertheless believe that these metrics provide an
indication of the amount of work performed in a certain library.

4) Parameter changes: In principle, a change in the sig-
nature of an existing API method always requires rework.
Therefore, a separate analysis of signature changes could
be included in our metric. However, signature changes will
usually go hand in hand with method body changes. We will
therefore ignore signature changes for the moment and focus
on size-related measurements instead.

We incorporate these variables in our metrics as can be seen
in Section VIII. First, we discuss how we weight historical
values of the same metric and how we incorporate usage
information in our metrics.

B. Weighting Measurements Historically
Because multiple historic values of the same metric exist,

a method is needed to aggregate multiple measurements in
time to a single value. After calculation of the difference
in each metric between two snapshots we obtain a set of
absolute differences for each unit in a system. To reduce this
set to a single number, we use a historic weighting scheme to
put emphasis on more recent snapshots. For our analysis, we
choose a geometric series to weight each snapshot: a metric
in snapshot s (counting backwards) is weighted with 1/2s−1.
This reflects our belief that changes made more recent in time
weight more heavily than changes made longer ago. This is
illustrated in Figure 5.

time

au
g-2

01
0

ok
t-2

01
0

no
v-2

01
0

am
ou

nt

se
p-2

01
0

de
c-2

01
0

jan
-20

11

feb
-20

11

total # of parameters

total McCabe value

# public methods

weight of value 

Fig. 5. An example of the evolution of the number of parameters, the McCabe
value and the LOC for a unit. Above the X-axis is a weighting scheme that
puts more emphasis on recent values.

C. Weighting Measurements via API Usage

Besides weighting each snapshot differently we also give
weight to each unit in a snapshot, for which we use the
frequency of use as a weight. This means that when a unit
is more frequently used it has more influence in the final
metric. This way, changes in units that are called frequently are
emphasized and have a greater influence on the final metric
of a library than changes in methods that are never called.
Section IX-A shows an overview of these frequencies of use.

We assume that methods are part of the public interface
of a library if they can be called from a system using this
library, regardless of the mechanism used to ensure this. This
means that we ignore the mechanism provided in Java to
make a distinction between public, package-private, private
and protected methods and classes and we use the actual usage
of methods inside a corpus of industrial systems as a weight.
Units that are called frequently will have more influence in
the final metric than units which cannot be called externally,
which receive a weight of 0.

In the next section, we present our metrics which incor-
porate previously discussed variables, usage information of
libraries and our historical weighting scheme.

VIII. METRIC DEFINITIONS

We propose 4 metrics, which are displayed in equations 7
to 10 and are defined as follows:

WRM: The weighted number of removed methods
CEM: The amount of change in existing methods
RCNO: The ratio of change in new to old methods
PNM: The percentage of new methods

The metrics can be explained as follows. The WRM uses
the weighted number of removed methods from an interface as
a value for Rx in equation 6, which is a measure for interface
stability since the removal of units from a public interface
becomes immediately visible for users of a library. The more
times a removed method is being used the more it increases
the WRM.

CEM gives an indication of the amount of change in
existing methods. It can give an impression of the activity
and “volatility” of the development of a library.

RCNO uses the ratio in metric difference between new and
existing units which can be used to determine the amount of
work being performed in new units relative to old ones. This
ratio is smaller than 1 if more work is being performed in old
methods and is greater than 1 if more work has been done in
new methods. It is useful for determining whether a system is
in a state of maintenance or active development. Developers
can only spend a limited amount of time per release on new
features and maintenance and the time spent on one activity
cannot be spent on the other.

PNM calculates the percentage of new methods that have
been added in each snapshot and can provide information on
the expansion rate of an API.
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Uo(s,s+1) = Us ∩ Us+1 (1)
Un(s,s+1) = Us+1 \ Us (2)
Ur(s,s+1) = Us \ Us+1 (3)

hw(s) =
1

2s−1
(4)

∆U(s, s + 1) =
1∑

u∈∆U

wu

∑

u∈∆U

wu|Mu,s+1 −Mu,s| (5)

R =

|S|−1∑

s=1

hwsRx (6)

WRM =
∑

u∈U
wuUr CEM = ∆Uo (7, 8)

RCNO =
∆Un

∆Uo
PNM =

|Un|
|Uo|+ |Un|

(9, 10)

Symbol Explanation
u A specific unit
U The set of all units in a system
s A specific snapshot number (snapshots are ordered

on date, are numbered backwards and the latest
snapshot gets number 1)

S The set of all snapshots of a system
Us All units in snapshot s
Uo (old) All units in s + 1 also in s
Un (new) All units in s + 1 but not in s
Ur (removed) All units in s but not in s + 1
hw(s) The historical weight of a snapshot
Mu,s The value of metric M of unit u at snapshot s
wu The weight of a unit (the total times the unit is

used in our dataset)
R Generic placeholder metric function
Rx A specific metric (WRM, CEM, RCNO or PNM)

to be used in the placeholder function

TABLE IV
EXPLANATION OF USED SYMBOLS IN EQUATIONS 1 TO 10

Equations 1 to 3 are functions which select appropriate
units: Uo (old) is the collection of units that are in snapshot s
and also in snapshot s+1. Similarly, Un (new) is the collection
of units which are new in snapshot s+1 compared to snapshot
s. Ur (removed) is the collection of units that are in s but not
in s + 1. Equation 5 states that the combined delta between
two snapshots of all units in these snapshots is the difference
between a metric value in snapshot s + 1 and s, weighted by
the times each unit is being called. The result is normalized by
the total weight of units in ∆U(s, s+1). ∆Un is the difference
between 0 and the metric value for each new unit while ∆Uo

is the difference between the metric value in s and s + 1.
Equation 5 expresses the absolute weighted difference of each
unit in snapshot s + 1 compared to s for each snapshot.

Eventually, all snapshots are combined in a single metric
formula by summing over the separate metrics and giving less
weight to snapshots further away in time. Ultimately, these
metrics make it possible to aggregate values at the unit level
to a single value at the system level while capturing changes

through time and weighting for frequency of use and recency
of snapshots. For an explanation of symbols used in equations
1 to 10, see Table IV.

IX. APACHE COMMONS FINDINGS

With all metric definitions in place, we can analyze the
metric values for Apache Commons in the context of our
suite of 140 benchmark systems. We start by analyzing which
library methods are used most frequently, followed by a
discussion of the actual metric values.

A. Apache Commons API Usage

In Table V, the most frequently called methods per library
are shown. As can be seen in this table, the most frequently
used method constitutes a large percentage of the total number
of calls to a library. Also, only a small percentage of methods
is actually called from our dataset. Most methods are used only
once or not at all. This is also illustrated in Figure 6, which
gives a visual impression of the spread and concentration of
method calls through each library. We use this information to
determine the weight for each unit (wu) in equation 5 in the
previous section.

Library Method name # Calls %
Commons Logging Log.info 15114 28.54%
Commons Lang StringUtils.isNotEmpty 10033 10.75%
Commons Collections NotPredicate constructor 2461 30.14%
Commons Beanutils DynaBean.get 875 30.71%
Commons IO FileUtils.readFileToString 835 11.55%
Commons Httpclient HttpClient.executeMethod 428 9.23%
Commons Codec Base64.decodeBase64 124 30.77%

TABLE V
THE NUMBER OF TIMES THE MOST FREQUENTLY USED METHOD IS
CALLED AND THE PERCENTAGE OF THE TOTAL NUMBER OF CALLS

Fig. 6. The relative distribution of calls to methods of third-party libraries.
A darker shade of grey means a certain method is called more. Methods
are sorted on method and package name. This figure does not show method
names or the exact number of times each method is called but gives a visual
impression of the spread and relative usage of library methods. In parentheses
is the total number of methods in that library.

B. Metrics

The results for the four metrics are shown in Table VI. An
absolute value and a rank is provided for each metric. The
metric values are dimensionless and range from 0 to infinity;
smaller values indicate greater stability.

Table VI shows that there are 4 systems with a value of
0 for WRM. This indicates that there have been no methods
in those libraries which were used in our dataset and were
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removed from a next snapshot of the library. The WRM can
be seen as an indicator for the absolute number of methods
which will have to be adapted due to method removals from
these libraries.

Library WRM
(Rank)

CEM
(Rank)

RCNO
(Rank)

PNM
(Rank)

Commons Logging 0 (1) 0.0124 (2) 0 (1) 0.2669 (2)
Commons Beanutils 267.25 (3) 1.257 (7) 10.175 (3) 0.4931 (6)
Commons Codec 31 (2) 0.7 (6) 1.8833 (2) 0.5083 (7)
Commons Httpclient 0 (1) 0.1239 (4) 146.84 (4) 0.1937 (1)
Commons IO 0 (1) 0.0484 (3) 273.16 (5) 0.4281 (5)
Commons Lang 0 (1) 0.3456 (5) 481.09 (7) 0.3256 (3)
Commons Collections 1062.0 (4) 0.0077 (1) 339.65 (6) 0.3715 (4)

TABLE VI
VALUES AND RANKS FOR THE FOUR METRICS

Since multiple systems have the same score for WRM,
the value of CEM can provide additional information. Of all
systems with a 0 for WRM, Commons Logging is the system
with the highest score for CEM (0.0124). This means that
the amount of change in existing methods is relatively low
in Commons Logging compared to other systems. Commons
Logging also scores a 0 for RCNO, which can mean three
things: (1) there is no difference in existing methods, (2)
there is no difference in new methods (only empty method
bodies have been created) or (3) all changes occur in methods
which are never called. From this metric, it is not possible to
distinguish between these cases, but further inspection showed
that all metric differences occured in methods which were
never called. Commons Logging scores 0.2669 for PNM,
which is the second place. This indicates that a relatively small
number of new methods are added in each snapshot. Metrics
should not be interpreted as percentages or amounts directly
since snapshots have been weighted differently with the use
of a historical weighting scheme.

X. SCENARIOS

To further interpret the results of our metrics we present
three scenarios and an example of the application of our
metrics.

Consider the following scenarios, in which a software
developer or project manager needs to:

1) decide whether or not to depend on a certain third-party
library to perform a certain function;

2) decide whether or not to create a wrapper around a third-
party library to encapsulate dependencies on this library
to reduce risks;

3) determine if a library is in a state of maintenance or active
development.

We will demonstrate how to apply our metrics and how
these metrics can help in making a decision in these scenarios.

Assume that a developer wants to know if he should include
the Commons Codec library in their software project or if he
should write his own codec methods. There are several trade-
offs to consider when making this choice. Commons Codec is
a library which contains highly specialized functionality and
it is likely to take a large effort to rebuild. It also requires a

large amount of specialized knowledge which the developer
may not have.

On the other hand, if the implementation or interface of
the library is unstable, including this library may become a
risk to the stability of the software itself. Other code may
need to be rewritten to adapt to the new library interface.
When developing the functionality internally, the developer
also has greater control over added features and maintenance
of the code. Table VI shows that Commons Codec scores 31
for metric WRM, which is the second place. This means that
the API of Commons Codec tends to stay relatively stable
regarding the removal of frequently used methods.

Another consideration to make is whether the latest version
of a library already contains required functionality or if it is not
included or completed yet. PNM shows the percentage of new
methods in each snapshot. If required functionality is already
included then it is not necessary to wait for the latest updates
but when a new piece of functionality is required which is
not implemented yet, such as a new video codec, it may be
worth the wait. In the case of Commons Codec, the library
has the highest score (0.5083), which indicates a large degree
of new methods in each snapshot. A similar reasoning can
be followed when looking at metric RCNO, which shows the
ratio of work in new to old methods. Commons Codec has a
score of 1.8, which shows that there is more work going on
in new methods than in old ones. To obtain a more detailed
picture of the evolution of a system, scores and metrics per
snapshot can be obtained, which are shown in Table VII.

s |U | |Un| ∆Un |Uo| ∆Uo |Ur| hws metric values
4 215 - - - - - - -
3 318 107 1.32 211 0.7 4 1/4 0, 0.7, 1.88, 0.33
2 373 80 0 293 0 25 1/2 62, 0, 0, 0.21
1 503 130 0 373 0 0 1 0, 0, 0, 0.25

TABLE VII
DETAILS OF THE METRICS FOR APACHE COMMONS CODEC

Table VII shows that there were 4 methods removed in the
first snapshot, there were 25 methods removed in snapshot 2
and there were 0 methods removed in snapshot 1 (latest). The
percentage of new methods is relatively high in snapshot 3:
33%. In the latest two snapshots, ∆Un is 0. The release notes
of Commons Codec 1.5 (snapshot 2) state that new methods
were added to the public interface, but apparently these are
not yet used in our dataset. Similarly, ∆Uo is 0 for the latest
two snapshots, which means that there has not been change
in methods that are being called in our dataset.

To get even more information, names and metric values for
each method in Un, Uo and Ur for each pair of subsequent
snapshots can be obtained. With this information, identification
of the most frequently used and most changing methods
becomes possible. We do not show this list here but this
information could be included when using our approach in
practice. This way, identification of potential issues in removed
or changed methods methods in third-party libraries becomes
possible.

Our metrics can be used to get a clearer picture of the
historic stability of a library. Although we do not expect
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that a small difference in these metrics has a large effect
on a system which uses this library, an instable library can
pose a problem in the long run, when deferred updates are
accumulated as “technical debt”. Our metrics also provide a
way to test whether the reputation of a library in the open
source community is really deserved, which is for a large part
based on provided functionality but may also be influenced by
the stability of a library in the past and the way the library
deals with breaking changes. We try to catch these aspects
in our metrics. Our metrics can provide more practical help
when a decision needs to be made to create a wrapper around
a library which encapsulates changes in that library.

XI. DISCUSSION

This paper introduced several new concepts and metrics to
measure the stability of the implementation and interface of a
library through time. In this section, we discuss implications
and limitations of our study and we discuss directions for
future work.

A. Used metrics

In this paper we use McCabe as metric value in our
formulas. Instead, different metrics and units can be used.
For example, it could be useful to calculate the number of
methods per class as metric and the usage frequency of each
class as weight. This would provide information on a higher
level of abstraction than McCabe or LOC values per method
and would give an idea about the evolution of the size of each
class through time.

The size of libraries differs significantly and we do not know
how big the effect of system size is. In future work, we plan to
investigate this effect of size and to adjust for this effect. We
expect that a large part of stability is independent of system
size and our metrics can therefore also be used without this
normalization.

It can be difficult to interpet dimensionless and rangeless
numbers directly, which can only be properly done after
comparison or benchmarking. For this reason, these metrics
should be be calculated for a greater set of libraries. In future
work, we plan to calculate our metrics on the complete Maven
repository, containing over 300,000 artifacts with multiple
versions. Such a large collection of metrics enables a more
detailed analysis of distributions and percentiles.

B. Using historical data

We use historical data from software repositories to cal-
culate a metric which gives an impression of the “volatility”
of the interface and implementation of a library. To achieve
this, only historical data is used and a question is to what
extent this can be used to predict future developments. With
this approach, unlikely and unforeseen trend breaks will not be
detected but it gives a good indication of the historical trend
of a library. Assuming that the same development team keeps
working on the code, developer behavior is expected to follow
a similar trend as in the past.

Another issue with our approach is that code of historical
snapshots is required to calculate a metric. This limits the
applicability of our method to open-source libraries or libraries
of which source code is otherwise available. By performing
our method on the most frequently used third-party libraries
we hope to provide practical knowledge and pointers to best
practices of API stability which can be applied to other
libraries as well.

Ideally, more fine-grained data should be used for analysis
such as change sets per commit from a version control system.
This information is not always available, however, and metrics
depending on this information would limit their applicability
to systems with access to their version control systems. Our
metrics do not have this requirement.

C. Estimating rework effort

To properly estimate the amount of rework effort required
after the upgrade of a library, an experiment needs to be
performed in which the impact of changes in our dataset is
investigated. Differences between metric values of units with
connections to third-party units and units without connections
could be compared. This way, an estimate in terms of time
or money could be roughly calculated. This experiment would
also provide a validation of our metrics since we defined the
effect of library instability to be a large amount of required
rework that has to be performed after upgrading that library.
If libraries with high scores for our metrics also cause larger
differences in metric values in units with links to third-party
units than in units without these links, then our metrics have
been validated against a real-world dataset, assuming that the
chosen metric difference is a good indicator for the amount of
expected rework.

D. Transitive calls and dependencies

In this paper, we ignored transitive third-party references
and transitive third-party method calls. When method m1 calls
method m2 which in turn calls a third-party method m3, then
in our current analysis, only m2 would be impacted by a
potential change in m3. In future work, transitive method calls
could be included using a similar weighting scheme as applied
to snapshots: methods that are closer to a third-party method
in the call chain are potentially more influenced by a change
than methods further away.

XII. THREATS TO VALIDITY

A. Internal validity

Our simplified Maven dependency resolution system always
chooses the latest version of a library in case of a conflict.
The real Maven dependency resolution system is somewhat
more complex and contains advanced heuristics as well. It is
therefore possible that we included the wrong library version
in certain snapshots, but we expect that the occurence of this
issue is negligible in our dataset.

Our dependency framework also potentially misses changes
in the number of parameters of methods since this can be con-
fused with an added overloaded method in the next snapshot.
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We did not investigate the number of parameters as metric
value in this paper but future work using this metric value
should investigate this issue further.

B. Construct validity
We chose to use a geometric series as weight for previous

snapshots since this series has the property that the ratio of
subsequent terms is constant and that the sum is finite. An
alternative weighting scheme would change the final outcome
of the metric. We believe that our choice is justifiable, since
snapshots further away in time are deemed less important
than more recent snapshots. More research is needed to
understand alternative metric schemes and their impact on
metric outcomes.

The choice of metric is also of great importance in our
metric. In this paper, we chose to use the difference in McCabe
value. This has the consequence that when the LOC of a unit
changes without adding a decision point (e.g. if, while,
case), no difference is detected. To investigate the differ-
ences, the same metrics should therefore also be calculated
with the LOC as metric. Our equations provide a general
framework in which different metrics and units can be used.
More research has to be performed before these alternatives
can be used in practice.

C. External validity
Our dataset used to obtain frequencies of use is considered

to be representative for a wide range of industrial areas, such as
insurance, banking, logistics and government. However, ana-
lyzed systems were all written in Java and use Maven as build
configuration tool. We estimate that reuse of existing open-
source components is more prevalent in the Java community
than in communities of other programming languages and
therefore a possible bias may exist which overestimates the
frequency of use for third-party library methods. We do not
believe that restricting our dataset to systems which use Maven
as build tool introduces a bias since it only helps to identify
exact dependencies and version numbers. Other build tools,
such as Apache Ant, do not explicitly state version numbers
but still have the possibility to include third-party libraries.

XIII. CONCLUSION

In this paper, we presented four stability metrics which
calculate the stability of the public interface and implementa-
tion of a library based on the weighted number of removed
methods, the change in metric values in existing units, the ratio
between change in new and old methods and the percentage
of new methods per snapshot. We investigated results of our
metrics and showed an example of their application to an open
source library.

The contributions of this paper are the following:
• A case study of the upgrade of third-party libraries in a

commercial software system which shows several issues
associated with the use of these libraries;

• A framework for fact extraction and analysis of third-
party library dependencies in Java projects built with
Maven;

• A proposal for four library stability metrics, incorporating
weighting schemes for recency and for API usage;

• Instantation of the metric framework to the Apache
Commons libraries

Furthermore, we have identified a number of scenarios
explaining how these metrics can be used. In our future work,
we aim at benchmarking the proposed metrics, through an
analysis of the full Maven Central repository.
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