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ABSTRACT
Public transport (PT) overcrowding is a notorious problem in urban
transport networks. Its negative effects upon travel experience can
be potentially addressed by disseminating real-time crowding infor-
mation (RTCI) to passengers. However, impacts of RTCI provision
in urban PT networks remain largely unknown. This study aims
to contribute by developing an extended dynamic PT simulation
model that enables a thorough analysis of instantaneous RTCI con-
sequences. In the model, RTCI is generated and disseminated across
the network, and then utilised in passengers’ sequential en-route
choices. A case-study demonstration of the RTCI algorithm on urban
PT network model of Kraków (Poland) shows that instantaneous
RTCI has the potential to improve passengers’ travel experience,
although it is also susceptible to inaccuracy. RTCI provision can yield
total travel utility improvements of 3% in typical PM peak-hour,
with reduced impacts of the worst overcrowding effects (in terms
of denied-boarding and in-vehicle travel disutility in overcrowded
conditions) of 30%.

Highlights:

• Real-time crowding information (RTCI) is an increasingly feasible
solution in public transport.

• We introduce a novel framework for modelling the network
effects of instantaneous RTCI.

• Instantaneous RTCI can result in improved travel experience but
also substantial inaccuracy risk.

• Reduced impacts of the worst overcrowding experience amount
to up to 30%.
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1. Introduction

Crowding in public transport (PT) is nowadays one of the main phenomena affecting pas-
sengers’ travel experience and system performance. Especially in urban and metropolitan
realm, negative impacts of passenger overcrowding are likely to determine the quality of
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PT service in a substantial way. Despite multi-million ‘hard’ investment solutions, the ever-
increasing demand for PT trips routinely outstrips the finite PT system supply, which is
observable during peak-hour periods. For example, an ongoing investment programme
in London, including a new Crossrail line (planned completion in 2021) and upgrades to
the existing Tube network with a total cost of approx. 30–35 bn GBP (ca. 34–40 bn EUR),
will increase rail capacity by ca. 30%. Yet, despite such massive-scale efforts, it is projected
that system overcrowding will quickly bounce back to its pre-investment levels by the
late 2020s, and will become even worse without further infrastructure upgrades (Mayor of
London 2015).

Instead, there is a rising emphasis on ‘soft’ travel demand management solutions that
potentially allow a more effective utilisation of available system capacity: by increasing
bothpassengers’ andoperators’ awareness of current travel conditions, they canhelpmake
more informed choices and alleviate the overcrowding experience. In turn, this calls for
an in-depth understanding and quantification of crowding effects upon passengers’ travel
behaviour, especially in light of innovative ICT solutions. Proper appraisal of overcrowding
impacts is also vital for evaluating the PT schemes designed to alleviate them, as analytical
models that neglect crowding may eventually underestimate potential benefits by even a
margin of 30–60% (Leurent 2009; Tirachini, Hensher, and Rose 2013; van Oort et al. 2015;
Cats, West, and Eliasson 2016). In this study, we present amodelling framework for describ-
ing the effects of an emerging solution, i.e. passenger real-time crowding information (RTCI)
systems. RTCI is a travel demand management measure that can potentially help mitigate
the negative experience of overcrowding in PT networks – albeit this claim is yet to be
quantitatively and empirically underpinned.

1.1. Crowding in public transport systems: impacts andmodelling approaches

PT crowding has been shown to have a substantial impact upon passengers’ travel strate-
gies. Crowding effects are all the more detrimental given that negative PT travel experi-
ences tend to be particularly memorable (Abenoza, Cats, and Susilo 2017), and in certain
circumstances, overcrowding may actually become the main driver of PT travel dissatis-
faction (Börjesson and Rubensson 2019). Essentially, crowding induces an externality cost
which raises the marginal social cost of travelling (Hörcher, Graham, and Anderson 2017),
and though it does not always affect the nominal journey times, it imposes substantial
travel timedisutility (Cats,West, andEliasson2016). This disutility is associatedwithmultiple
aspects such as reduced travel comfort (e.g. inability to travel seated), loss of travel timepro-
ductivity, safety and security concerns, increased stress and anxiety (Kim et al. 2015), as well
as raised perception of travel time unreliability and risk of arriving late at destination (Tira-
chini, Hensher, and Rose 2013). PT users may respond to crowding experience by adjusting
their travel strategies (Tirachini, Hensher, and Rose 2013). These pertain to, among others,
boarding a different train carriage (Peftitsi, Jenelius, and Cats 2020b), shifts in departure
time choice, mode choice and route choice (Tirachini, Hensher, and Rose 2013), potentially
leading to reduced trip frequency or even resignation from travelling altogether (Szarata
2014).

Passenger crowding effects are typically represented in PT assignmentmodels usingone
of the following approaches. The first involves frequency-based PT assignment – mostly
static and macroscopic-level models that represent crowding phenomena in a simplified,
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implicit approach (Drabicki, Kucharski, and Szarata 2017b). Crowding impact is represented
here as an additional path utility impedance, e.g. an in-vehicle travel time multiplier (Cats
and Hartl 2016). As such, crowding penalty aims to reflect the disutility inflected by on-
board discomfort or denied boarding, but eventually, no strict capacity limits are enforced
(Schmöcker et al. 2011). Uniform crowding penalty applied to total passenger flows implies
that no differences in individual crowding experience can be considered. Crowding penalty
is estimated based on average volume-to-capacity ratios without accounting for variability
in individual vehicle loading levels (Cats and Hartl 2016). The second approach involves
an explicit representation of overcrowding effects, utilised in scheduled-based PT assign-
ment models (Drabicki, Kucharski, and Szarata 2017b). These are typically dynamic and
microscopic-level models, able to capture the wide range of PT (over)crowding phenom-
ena alongwith their inherent variability and stochasticity (Hamdouchet al. 2011; Cats,West,
and Eliasson 2016), notably: strict capacity constraints of individual PT vehicles, denial-of-
boarding and queuing phenomena, boarding and seating priority rules, demand-supply
interactions (flow-dependent dwell times) and service reliability (Schmöcker et al. 2011;
Cats, West, and Eliasson 2016; Cats and Jenelius 2018). Furthermore, dynamic simulation-
based assignment models allow us to capture the effects of on-board discomfort upon
travel utility at the individual passenger (agent) level, additionally distinguishing between
standing vs. seating (dis)utility. Recent advancements in dynamic PT assignment (Peftitsi,
Jenelius, and Cats 2020a) aim to reflect the passengers’ considerations of (expected) load at
the individual train carriage level in their travel choices. Consequently, dynamic scheduled-
based PT assignment models are deemed better poised to evaluate the implications of
overcrowding on passengers’ en-route decisions, travel experience and overall system
performance (Cats, West, and Eliasson 2016).

Impact of on-board crowding upon travel (dis)utility is typically represented by means
of an additional in-vehicle travel timemultiplier, the so-called crowding penalty (Tirachini,
Hensher, and Rose 2013; Batarce et al. 2015). Crowding penalty is commonly deemed a
non-decreasing function of volume-to-capacity ratio that becomes relevant for conditions
corresponding to load factors of 50–90% (i.e. ratio between the number of passengers
on-board and the respective vehicle seat capacity) (Wardman and Whelan 2011; Tirachini,
Hensher, and Rose 2013) and rises non-linearly thereafter. As crowding disutility primar-
ily relates to qualitative (descriptive) on-board conditions, there is a common agreement
in the state-of-the-art that crowding penalty shall be expressed as a function of standees’
density (i.e. expressed in terms of [number of passengers per square metre]) rather than
nominal load factors (i.e. expressed as a [%] of seat capacity) (Tirachini, Hensher, and Rose
2013; Batarce, Muñoz, and de Dios Ortúzar 2016).

Crowding travel time valuations are commonly derived from stated-preference (SP)
experiments, where respondents express their preferred trade-offs between crowding lev-
els, journey times and other factors such as monetary fare, trip characteristics, personal
traits, etc. Literature on SP crowding valuations is extensive and findings suggest that max-
imummean crowding penalty values range from 1.4–1.5 to 2.1–2.5 (Rudnicki 1999;Whelan
and Crockett 2009; Kroes et al. 2014; Haywood and Koning 2015; Batarce, Muñoz, and de
Dios Ortúzar 2016; Li, Gao, and Tu 2017). This figure is interpreted as the ratio of disutility
of travel time in overcrowded conditions, relative to disutility of travelling in normal condi-
tions (i.e. without crowding discomfort). Individual sources report estimated values as high
as 3.0–4.2, depending on model formulation (Tirachini, Hensher, and Rose 2013; Tirachini
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et al. 2017). These aremaximum values at the capacity limit, i.e. the so-called crush capacity,
and describe the travel disutility of standing in overcrowded conditions. For seated pas-
sengers, max. crowding penalties are lower and, according to the cited SP estimates, range
from 1.4 to 1.8. SP crowding valuations are however prone to overestimation bias and dis-
crepancies associated with hypothetical choice situations (Yap, Cats, and van Arem 2020).
Bansal et al. (2019) propose a different model formulation that accounts for flexible esti-
matesofunobservedheterogeneity, and report crowdingmultipliers reachingup to2.5–3.6
(seating penalty) and 3.2–5.8 (standing penalty).

Alternatively, crowding valuations can be estimated from revealed-preference (RP) data,
where crowding penalties are derived from passengers’ actual travel behaviour. Data
sources for RP studies range from manual observations of passengers’ travel choices (e.g.
their movements at a station) to advanced evaluation techniques incorporating novel data
collection sources, i.e. fusing automated fare collection (AFC) and automated vehicle loca-
tion (AVL) systems. Crowding penalty values reported by RP studies are notably lower than
those reported by SP experiments, with max. values of 1.55–1.95 at the crush capacity
limit (Tirachini et al. 2016; Hörcher, Graham, and Anderson 2017; Yap, Cats, and van Arem
2020). Though the literature on RP crowding valuations is less extensive than SP experi-
ments, RP valuations are seeminglymore realistic, as they are inferred fromactual (revealed)
behavioural responses to PT overcrowding.

1.2. Real-time crowding information

Meanwhile, another emerging stream in PT assignment concerns modelling the effects of
passenger real-time information (RTI) systems. Novel and disruptive ITS solutions offer a
promising possibility of improving travel experience but also require adequate PT assign-
ment tools, capable of representing the behavioural influence of RTI systems. As observed
by Fonzone (2015) and Fonzone, Schmöcker, and Viti (2016), RTI provision increases the
dynamics of passenger choice strategies, expands the set of travel alternatives, induces
new decision-making objectives and increases the probability of en-route choice shifts. RTI
solutions are widely expected to improve travel conditions as they can help shift the net-
work from user equilibrium towards the optimum state (van Essen et al. 2016). The effects
of RTI on travel times – a widespread solution in PT systems worldwide – were shown in
agent-based PT assignment models (Cats et al. 2011; Fonzone and Schmöcker 2014) to
have a potentially significant impact upon route choice and output travel utility in different
scenarios. Perceptions of travel time value and its variability also play an important role in
passengers’ travel behaviour (Engelson and Fosgerau 2016).

A further possibility that seems increasingly feasible within ITS architecture (Fonzone,
Schmöcker, and Viti 2016; Nuzzolo and Comi 2016) involves providing RTI on network
passenger volumes, in form of real-time crowding information (RTCI). Information on
passenger flows and crowding levels can be nowadays collected from multiple sources,
including APC systems (e.g. overhead passenger counters), AFC systems (e.g. tapping
devices for smart cards/tickets), vehicle weight sensors, video recording data (e.g. CCTV
cameras), mobile and wireless networks (e.g. Bluetooth and WiFi), crowd-sourcing data
(e.g. user feedback in travel app) and other solutions (at proof-of-concept stage) that are
planned for the near future. The RTCI solutions are reckoned to have potential to sup-
port more informed and effective travel choices among passengers (Gentile and Noekel
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2016) and to develop demand management solutions that are more responsive to the
actual use of PT system capacity (Fonzone, Schmöcker, and Viti 2016). RTCI is a novel solu-
tion in early research and implementation stages and little is known about its implications
for network-wide passenger flow distribution and system performance. Practical imple-
mentation of RTCI systems has been hitherto confined to pilot projects and limited-size
applications of providing RTI on train carriages’ occupancy loads in Stockholm (Zhang,
Jenelius, and Kottenhoff 2017), London (Schmitt 2017), Sydney (Susan 2018) and RTI on bus
occupancy levels in Seoul (Seoul Metropolitan Government 2017). These implementations
mostly involve communicating localised (station-level or train-level) crowding information,
distributed to passengers via electronic station and/or on-board displays, with coverage
limited to individual PT lines or line segments. Recent technological advancements already
allow for automated processing of input data to generate crowding information. Conse-
quently, a number of travel apps have recently started providing crowding information on
PT departures, evaluated from historical user feedback on crowding experience – Google
Maps Transit service (Google 2019), Moovit travel app (Moovit Inc 2019). Furthermore, indi-
vidual apps – developed by the Dutch railways (Nederlandse Spoorwegen 2019), Tokyo
railways (East Japan Railway Company 2019) and Singapore buses (Singapore LTA 2019) –
now distribute crowding information based on real-time data on vehicle occupancy loads
as well (e.g. from weight sensors).

From the research perspective, this is a relatively novel domain, and a limited num-
ber of studies have hitherto addressed specific aspects of RTCI systems in PT networks
(a detailed summary of the state-of-the-art is presented in (Table 1)). One of challenges
relates to generating (evaluating) informationon crowding fromexistingdatasets. State-of-
the-practice RTCI solutions, mentioned earlier, provide crowding information either as an
average historical (user-fed) data or as a ‘raw’, instantaneous crowding data. The notion of
anticipatory (congested) travel time information has been already well-studied in the con-
text of car traffic (e.g. Elhenawy, Chen, and Rakha 2014; Vlahogianni, Karlaftis, and Golias
2014; Woodard et al. 2017; Kucharski and Gentile 2019). Recently, research attention has
turned also towards evaluating crowding information in PT networks in form of real-time
prediction frommultiple data sources, as examined by Jenelius (2018), Więcek et al. (2019),
Jenelius (2019), Jenelius (2020) (Table 1). The goal of these analytical frameworks is to pre-
dict the crowding level of a PT vehicle with the highest achievable accuracy rate before
its actual departure from the stop (station). In general, these studies demonstrate rising
feasibility of predicting on-board crowding from the AVL and APC data sources that are
increasingly available in PT networks. Crowding prediction can be projected from histori-
cal data with a moderate degree of accuracy. This can be improved further with real-time
updates, enabling even up to 90% accurate crowding prediction shortly (i.e. a few min-
utes) before bus/train departure. Although these methods are shown to yield satisfactory
results for line segments with regular passenger flows, an important challenge persists
with regards to predicting crowding levels at busy, inner-city and transfer PT stops that are
characterised by greater passenger flow variability. Overall, these studies provide a crucial
methodological contribution towards estimating crowding prediction in practice. Yet, their
findings are not fully transferable, as they are derived from case-study applications and not
validated on a network scale.

Research on the behavioural impacts of RTCI systems is predominantly limited to stated
choice surveys onpassengers’willingness towait in the event that informationon crowding
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Table 1. Summary of state-of-the-art research on the real-time crowding information (RTCI) systems in public transport (PT) networks.

Study Focus and methodology Key findings

A. stated-preference surveys
Kim, Lee, and Oh (2009) Effect of bus occupancy information on users’ choice between boarding a

first or second departure – Seoul (South Korea).
Descriptive information on on-board crowding (crowded, normal, seats
available).

Boarding probability influenced by trip purpose, travel time and sociode-
mographic variables. Increasing with information on seats available, while
decreasing with higher in-vehicle travel time and bus crowdedness level.

Commuting trips involving lower propensity to wait in general, while greater
variability (choice heterogeneity) observable for non-commuting trips.

Kroes et al. (2014) Willingness to choose between taking a crowded bus/train service
immediately, and waiting for the next, less-crowded service – Paris
(France).

Waiting probability ranging from 13%–with the first train being hardly crowded,
up to 75% – with the first train being fully crowded and seats available
on-board the second departure.

In-vehicle crowding represented on a 8-level scale. Propensity to wait influenced mainly by crowding level in the first departure.
Preston, Pritchard, and

Waterson (2017)
Willingness to choose between the first or second regional rail departure

with crowding information – South East England (UK).
Information on seats available on a 3-level scale (0%, 10% and 60%).

Average acceptable waiting time ranging from 14 to 22 [mins], except for
airport-bound travellers (max. 8 [mins]). Waiting probability also found to
be higher for origin (termini) stations, (17–23 [mins]) than for intermediate
stations (8–16 [mins]). Commuters somewhat less willing to wait than
business or leisure travellers.

Significant propensity to wait if possible to get a seated place (for the regional
rail trip). Influential factors: trip purpose, station amenities (facilities) and its
position along the line.

Kattan and Bai (2018) Users’ choices between boarding vs. waiting at the platform with occupancy
information on the nearest arrival of light rail transit (LRT) – Calgary
(Canada).

Propensity to skip the crowded first departure ranging from 45% (commuters) to
65% (non-commuters).

Simplified information on crowding of the first departure only – (yes/no).
(No crowding information available for the second departure.)

Factors influencing the willingness to wait: longer in-vehicle journey time,
users above 25 y/old, perceived information unreliability, frequent LRT usage
(familiarity with the PT network), origin (termini) stations, warm temperatures
(15C and over).B. real-world observations

Zhang, Jenelius, and
Kottenhoff (2017)

Pilot RTCI system implementation: observations of train carriage choice
when boarding at a metro station – Stockholm (Sweden).

RTCI communicated instantaneously from an upstream station, represented
on a 3-level scale for each train carriage (green, orange, red).

Observed limited RTCI impact on users’ behaviour: with max. 4–8% shifts in
boarding flows in crowded conditions. Main impact on passenger load of the
most popular train carriage (reduced by 4% for crowded trains, increased by
4% for uncrowded trains).

Positive reception of RTCI system – ‘traffic-light’ style RTCI clearly understandable
and positively received by most users. Visible preference towards a simplified,
descriptive (3-level) RTCI scale.

(continued).
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Table 1. Continued.

Study Focus and methodology Key findings

C. empirical prediction algorithms
Jenelius (2018); Jenelius (2020) Framework for car-specific metro train crowding prediction, based on real-world

load (APC) data – Stockholm (Sweden).
Crowding prediction solved for a given train run, at a target station, at an
individual train car level. Crowding predictors (input data): historical APC;
real-time APC of previous trains; real-time APC at upstream stations.

Methods considered: stepwise regression, lasso regression, boosted regression
tree ensemble. Crowding evaluated either in 3 comfort levels, or in absolute
number of passengers.

Case study results: baseline accuracy up to ca. 60% – for prediction based on
historical APC only, with twofold tendency to underestimate overcrowded
runs, and to overestimate the least-crowded runs.

Best crowding prediction for combination of all 3 (historical and current-day)
data sources. Achievable baseline accuracy of up to 80%, increasing to
over 90% shortly (2-5 min) before departure.

Stepwise regression found as the most accurate method; similarly – lasso
regression. In contrast, limited accuracy obtained with the boosted tree
ensemble prediction method.

Jenelius (2019) Framework for bus crowding prediction from real-world location (AVL) and load
(APC) data – Stockholm (Sweden).

Crowding prediction solved for a given bus run, at a target stop. Crowding
predictors (input data): historical APC; real-time AVL; real-time APC.

Prediction method: lasso regression. Crowding evaluated either in 3 comfort
levels, or in absolute number of passengers.

Case study results: prediction based on historical APC data only – moderate
accuracy (50–60%). with twofold tendency to underestimate overcrowded
runs – and to overestimate the least-crowded runs.

Best crowding prediction for combination of all 3 data sources. Achievable
accuracy of up to 80% – 90% ca. 2–5min before departure. Good level
of accuracy also possible for crowding evaluated in absolute passenger
volumes, with MAE error in single-digit numbers.

Higher-order, non-linear regression models (e.g. quadratic terms) – no
additional improvement in prediction accuracy.

Więcek et al. (2019) Framework for on-board bus comfort level prediction from real-world passenger
load (APC) data – Kraków (Poland). Comfort level prediction solved for a given
bus run, at a target stop (line segment). Crowding predictors (input data):
historical APC data.

Case study findings: relatively high prediction accuracy. Comfort prediction
error: a difference of max. 1 comfort level only in majority of cases.

Markov chain concept – applicable for evaluating bus crowding on a
categorised comfort scale, in case of bus line segments characterised by
regular passenger flows.

Discrepancy risk and RMSE increasing for the inner-city and transfer stops
with higher variability of passenger arrivals.

Recommendation for future research: application of heterogeneous Markov
chain with transition matrix to improve prediction accuracy.

Bus crowding discretised into 6 comfort levels. Predictionmethod –homogenous
Markov chain concept: bus comfort (crowding) level analysed as a sequence
of discrete random variables. Probability of current state (i.e. bus comfort
level) being solely a function of state attained in the previous time step (i.e.
bus departures).

Predicted comfort level determined primarily by the most recent observation(s),
with diminishing impact of past states.

(continued).
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Table 1. Continued.

Study Focus and methodology Key findings

D. simulationmodels
Nuzzolo et al. (2016) Mesoscopic public transport assignment model, simulating the impact of

predictive RTCI on long-term route (path) choices. Implemented within a
day-to-day learning framework.

Predictive RTCI evaluated as a fixed-point problem solution – iterative
outcome of in-vehicle loads (supply) merging towards choice probabilities
(demand).

Final PT network state evaluated as a result of day-to-day learning process.

Case-study simulation – final results after long-term learning process: significant
departure time choice shifts (15–25%) and peak widening. Lower waiting
time disutility (by 10%) and fail-to-board incidence (by 7%). Total travel utility
improvements of 4% to 7%.

Very limited route choice impact (possibly due to network topology).

Drabicki et al. (2017a) Proof-of-concept algorithm for simulating the impact of RTCI on
instantaneous route (path) choices. Incorporated within the mesoscopic
public transport assignment model.

Instantaneous RTCI communicated on a 4-level descriptive scale.
Limited functionality, improved in this study.

Preliminary toy-network demonstration: RTCI effects affected by: network
saturation (demand) level, choice sensitivity, RTCI response rate.

Possible detrimental impact of instantaneous RTCI upon travel experience
and information accuracy. Influenced by: limited network topology (e.g.
choice limited to 2 bus lines); rising demand sensitivity and penetration rate
(ubiquitous response to RTCI); higher network saturation level (moderate and
high crowding).

Non-transferrable results – further validation needed. Insufficient replication and
analysis of the wide-spectre RTCI effects, especially on a complex PT network.

Noursalehi, Koutsopoulos,
and Zhao (2018, 2019)

Predictive decision support model for generating RTCI on next train
departures fromagiven station andmodelling its impact on instantaneous
departure choice.

Case study results for London Underground: higher waiting acceptance (i.e. greater
deference threshold) leading to lower denial-of-boarding, reduced experience
of train overcrowding – and consequently, improved travel comfort.

Composed of: (1.) demand prediction module (passenger arrivals at stations)
and (2.) on-line simulation model (passengers’ instantaneous departure
choices). Rolling horizon approach with network predictions updated
every 15–30 min.

Good prediction accuracy, with minor underestimation risk mainly for low
deference threshold. Considered only localised predictive RTCI impact (i.e.
crowding information available at a specific station only).

No route choice impact considered (nor day-to-day learning process).
Predictive RTCI communicated on a 3-level descriptive scale (boarding:

guaranteed, likely, unlikely).
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levels of the next PT departures is provisioned (Table 1). The stated willingness to wait with
RTCI is influenced by trip purpose, necessity to arrive on-time at destination, travel time
and sociodemographic variables (Kim, Lee, and Oh 2009), station amenities (facilities) and
its position along the PT line (i.e. termini stations) (Preston, Pritchard, and Waterson 2017),
weather conditions and familiarity with PT service (Kattan and Bai 2018). It is also primar-
ily driven by the possibility to avoid overcrowding in the next train departure (Kroes et al.
2014) or get a seat in exchange for longer waiting time (Preston, Pritchard, and Waterson
2017). Otherwise, an empirical study of Zhang, Jenelius, and Kottenhoff (2017) concerning
the pilot implementation of RTCI on individual train carriage loads at a Stockholm metro
station is probably the only RP investigation in this research field so far. Although crowding
information has a minor impact on boarding volumes of specific train carriages (maximum
changes of 4–8%), the study also observes an overall positive reception of a simplified,
descriptive (3-level) RTCI system.

Finally, only a few recent studies have proposed frameworks for simulating the effects
of crowding information in PT assignment (Table 1). Nuzzolo et al. (2016) develop a meso-
scopic PT simulation approach whose objective is to model the long-term effects of pre-
dictive RTCI in day-to-day assignment process, which is evaluated as a fixed-point problem
solution. However, the model does not reveal the impact of predictive RTCI on within-day
path choice shifts, nor thepotential consequencesofproviding ‘raw’ RTCI, i.e. instantaneous
crowding information without a prediction scheme. In another series of works, Noursalehi,
Koutsopoulos, and Zhao (2018, 2019) propose a predictive decision support platform that
simulates boarding probability with real-time crowding prediction on the next train depar-
tures from the station. However, the effects of RTCIwere assumed tobe limited todeparture
choice, and hence no route choice shifts nor day-to-day impacts are considered.

Moreover, in an earlier work, we proposed a proof-of-concept framework for modelling
the instantaneous effects of RTCI on route choices (Drabicki et al. 2017a). Based on a prelim-
inary experimental setting, it was concluded that RTCI effects can be affected by network
saturation level, demand sensitivity, RTCI response rate and RTCI evaluation algorithm.
These limited findings are extended in the current study with an improved and generically
applicable methodology, a comprehensive set of experiments and an in-depth discussion.

1.3. Research gap and contribution

In this study, we address the gap related to state-of-the-art methods for describing the
effects of real-time crowding information (RTCI) in public transport (PT) networks. While
a number of recent studies has dealt with certain aspects of modelling the impacts of real-
timepassenger information in PT networks, a proper analytical framework of instantaneous
RTCI and its within-day effects is still missing. We argue that RTCI consequences for PT sys-
tems require further research attention. Understanding how RTCI influences passengers’
travel strategies in real-time, how this translates into journey experience, and what is the
magnitude of changes in current system performance, are crucial for adequately devising
and assessing the RTCI. Also, little remains known whether access to RTCI can be beneficial
on a system-wide scale without considering cooperative or anticipatory capabilities.

Yet, to the best of our knowledge, these research questions have not been satisfactorily
answered. Specifically, existing PT assignmentmodels do not allow to represent the instan-
taneous effects of RTCI generation, dissemination and utilisation. Lack of such knowledge
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and adequate analytical tools forms a major research gap that can also hamper practical
RTCI implementation. Thus, an extended travel behaviour model, capable of representing
dynamic changes in passengers’ decisions in response to instantaneous RTCI of PT services
is needed. Such a model shall be implemented within a PT assignment framework that is
able to reproduce the ensuing phenomena in PT system performance.

In this work, we introduce a complete framework for simulating the phenomena aris-
ing in the PT system once passengers have access to instantaneous RTCI of PT services.
The keymethodological contribution lies in extending the dynamic passenger path choice
model to describe the within-day influence of RTCI upon passengers’ travel decisions, and
further ramifications upon service performance and passenger flow distribution. Applica-
tion results, firstly on toy-networks and followed then by simulations on a real-worldmodel
of a city PT network (Kraków, Poland), demonstrate possible changes in passengers’ choice
patterns and consequences for the real-time performance of PT service once passengers
respond to currently available RTCI. These experimental schemes provide an insight into
the potential efficacy of instantaneous RTCI in congested urban networks, indicating some
of its advantages and shortcomings.

Our study focuses on representing the impacts of RTCI systemswhich have not been yet
captured in state-of-the-art assignment models. Within our framework, crowding informa-
tion is directly collected, disseminated and then utilised by PT passengers. This also allows
to analyse the potential consequences of providing RTCI to passengers without consider-
ing prior crowding experience. Understanding this can be relevant especially in the context
of untypical network conditions such as service disruptions or unfamiliarity with the PT
system.

The remainder of this paper is organised as follows. Section 3 describes the methodol-
ogyof this study, introducing thegeneralmodelling framework and requirements, followed
thereafter by a detailedmathematical formulation of the proposed RTCI algorithm. Section
4 presents results – firstly on simple toy networks which demonstrate the overall capabili-
ties of the RTCI algorithm, and secondly from its application to a city-scale public transport
model (Kraków, Poland). Section 4 draws conclusions, in terms of methodological aspects
and implementation findings.We concludebyhighlighting thepractical implications of our
works and indicating directions for further research works.

2. Method

2.1. Modelling requirements

The representation of crowding information effects requires an assignment framework that
models the PT system performance in an explicit, disaggregate way. Such a model needs
to cover the wide spectrum of dynamic interactions between individual PT system compo-
nentswhich are associatedwith the (over)crowding phenomena. Firstly, on the supply side,
how vehicle dwell times at stops increase with passenger flows (boarding and alighting
volumes) and with in-vehicle crowding levels (which are bounded by explicit capacity lim-
its). Secondly, on the demand side, how crowding influences the travel utility perceived by
passengers (i.e. decrease in perceived travel comfort with rising volume-to-capacity ratio),
and in severe cases leads to denied boarding (once capacity constraints become binding).
Finally, the model should capture the mutual demand-supply interdependencies in the PT
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Table 2. Notation.

Symbol Definition

Sets
G(S, E) PT network directed connected graph
S Set of nodes (stops) s
E Set of links (trip segments) e
A Set of actions a
Ia Set of paths i, associated with undertaking action a
L Line, i.e. a set of ordered sequence of stops L = {s1, s2, . . . , sn}, served by a set of runs

(trips, departures) r
Ko,d OD flow, i.e. set of passengers ko,d travelling from origin o to the destination d
Kr,e Passenger load on-board the run (trip) r along the segment e

Variables and constants:
s Node, i.e. stop between consecutive links e− and e+
e Link, i.e. trip segment between consecutive tail stop s− and head stop s+
r Run (trip, departure) belonging to line r ∈ L
a Alternative action at network node s
ak,s Action chosen by passenger k at network node s
i (Downstream) path from network node s to destination d; i = {s, s1, s2, . . . , sn , d}
ko,d Passenger (agent) k belonging to OD flow Ko,d
o Origin node
d Destination node
ta,k Decision time instance of action a choice by passenger k
tr,e Entering time instance of run r at segment e
pa,k Choice probability of action a for passenger k
ui,k (Expected) utility of path i for passenger k
teivt (Expected) in-vehicle travel time of trip segment e
tewt (Expected) wait time at the tail stop s− of trip segment e
tewkt (Expected) walk time to the tail stop s− of trip segment e
nitr (Expected) number of transfers along path i
βe

x (Expected) coefficient of utility component x at trip segment e
z Monetary valuation factor of travel time t
β r,e Recorded RTCI value of run r along trip segment e
β l,e(t) Generated RTCI value of line L along trip segment e, valid at time t

Input parameters:
ηr,e Seat capacity of vehicle run r (along trip segment e)
κ r,e Crush capacity of vehicle run r (along trip segment e)

Outputs (KPIs):
w Passenger welfare, i.e. generalised passenger travel cost in monetary terms
c0 Share of pass. decisions with accurate RTCI
c+ Share of pass. decisions with inaccurate RTCI (crowding overestimation)
c− Share of pass. decisions with inaccurate RTCI (crowding underestimation)

network. This pertains to e.g. how fluctuations in passenger flows and deteriorating service
regularity reinforce each other in overcrowded PT networks (i.e. the well-known bunching
phenomenon).

Another modelling requirement pertains to reproducing the working principles of an
RTCI system in a PT network. These comprise the processes (mechanisms) of generating,
disseminating and utilising the crowding information. The main challenges here relate
to modelling how crowding levels of PT vehicles are recorded in real-time; how crowd-
ing information is generated and updated instantaneously from the information sources
available, i.e. real-time and/or historical crowding data (and possibly – simulated future
prediction); and how crowding information is mapped to (user-tailored) Advanced Travel
Information System framework and then disseminated in real-time across the whole PT
network.
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Finally, the PT simulation framework should reliably reproduce the acquisition and utili-
sation of RTCI on the demand side. This relates to modelling the ubiquitous (system-wide)
reaction of passengers currently travelling in the PT network and their responsiveness to
the RTCI (i.e. penetration rate, choice sensitivity). This task is behaviourally challenging and
requires a detailed consideration of passengers’ decision-making process, where RTCI is
interpreted and traded off against their own expectations of other travel attributes. Impor-
tantly, dynamic and sequential properties of path choiceprocess shouldbe satisfied, as RTCI
can be received both pre-trip or en-route and potentially influence passengers’ choices at
any stageof their journey. SinceRTCI becomes strictly valid for a specific spatiotemporal trip
instance, passengers’ decisions are determined by the currently available crowding advice
and travel paths towards their destination. Each passenger should be represented in a way
that at any journey stage he/she may either follow the current path, or reconsider it and
take a re-routing decision instead. Such shifts in travel patterns can occur instantaneously,
e.g. in response to the latest update on PT network (over)crowding provided by the RTCI.

Consequently, representing these phenomena requires a combination of local formu-
las to calculate choice probabilities in the presence of RTCI, and embedding them within a
network simulation model to evaluate their system-wide impact. At the passenger level,
the aim is to simulate how the newly obtained crowding information – an additional
factor in the decision process – influences the expected utility of travel choices and the
resultant travel decisions. Meanwhile, at the network level, the focus is on estimating pas-
senger flows and travel costs that are an aggregate outcome of all these individual choices.
Representing the complexity of RTCI effects will be only feasible within a PT assignment
model that canproperly analyse all these properties of PT operations andpassengers’ travel
choices.

2.2. PT agent-based simulationmodel platform

The mesoscopic agent-based BusMezzo public transport (PT) simulation model (Toledo
et al. 2010; Cats 2011; Cats et al. 2011) is utilised in this study to model the instantaneous
effects of passengers’ responses to RTCI in PT networks. The BusMezzo model has been
already applied to examine the impacts of RTI on travel times (Cats et al. 2011; Cats and
Jenelius 2014), PT capacity reductions (Cats and Jenelius 2018) and (over)crowding in PT
system (Cats, West, and Eliasson 2016; Drabicki et al. 2017a) on route choices and is capable
of replicating the three principal categories of crowding effects: denied boarding; on-board
discomfort; and irregular vehicle arrivals. Capacity limits are explicitly observed (Cats, West,
and Eliasson 2016; Gavriilidou and Cats 2019), which implies that excessive passenger flows
are strictly denied the boarding beyond the assumed crush capacity limit κ r,e. In-vehicle
travel discomfort is influencedby rising volume-to-capacity ratio, distinguishing travel disu-
tility experienced by standing and seated passengers. (Further elaboration is given in the
Subsection 3.4.) Themodel assumes that passengers prefer to sit, utilising the available seat
capacity ηr,e before standing on-board. Seating priority rules are observed, meaning that
on-board passengers are able to take a seat before boarding passengers, and those trav-
elling further downstream have a priority to sit over passengers alighting earlier. Finally,
the progression of PT vehicles is determined by flow-dependent dwell times at stops. This
implies that fluctuating (and rising) passenger flows may impede service regularity and
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induce a negative feedback phenomena such as e.g. bus bunching (Moreira-Matias et al.
2016).

The model essentially consists of PT supply (transport network and PT lines operating
on this network) and PT demand (passengers travelling between their origins and desti-
nations), along with mutual dynamic interactions between them (Cats, West, and Eliasson
2016; Laskaris et al. 2019) (Table 2).

The PT network is represented by a directed connected graph G(S, E), where S is the set
of nodes – corresponding to stops and E is the set of links representing line (trip) segments
and walking links (access, egress and transfer links). Line segment e of a PT line L connects
its tail stop e− ∈ S with its head stop e+ ∈ S. A PT line L, in turn, is defined as an ordered
sequence of stops L = (s, s1, s2, . . . , sn) or, equivalently, as an ordered sequence of line
segments L = (e, e1, e2, . . . , en−1). While a stop can be served by several lines, a segment is
uniquely assigned to the specific line. Optionally, walking link e stretches between tail stop
e− ∈ S and head stop e+ ∈ S of different PT lines to allow for transfers between stops.

The time-dependent PT service supply is modelled through line runs (departures) r dis-
patched from the first stop and serving consecutive stops of line L. Each run is operated
by a vehicle characterised by limit values of seat capacity ηr,e, and the so-called crush
capacity κ r,e, i.e. maximum number of passengers allowed on-board. Travel time of run r
consists of two components: riding times tr,e along line service segments and dwell times
tr,s at stops. Segment ride times in this study are assumed fixed, while stop dwell times
are flow-dependent, namely passenger boarding and alighting flows and in-vehicle crowd-
ing levels. Consequently, while vehicles are dispatched from the first stop according to the
fixed timetable, departure times from consecutive run segments tr,e are influenced by the
evolving network performance and may differ from the nominal schedule.

The PT passenger demand is represented by an OD matrix at the zone-level through
Ko,d – the number of passengers travelling from the origin stop o to the destination stop d
during a given time period. Passengers ko,d are initiated at an origin stop o according to a
givenpassenger inflowdistribution (weassumea constantpassenger inflow rateduring the
simulation) and assigned to a destination stop d. Each passenger k, whilemaking decisions,
considers taking an action a, i.e. travel choice that involves travelling along the path set Ia .
This path set consists of multiple individual paths, where path i is essentially a sequence
of stops (or equivalently, line segments) connecting his/her current decision-making point
s with his/her destination stop sd , that is i = (s, s1, s2 . . . , sn, sd). The path may consist of
multiple line segments, transfer connections between lines within stops and/or walking
links between stops. The approach in the BusMezzo model is to define path i as a set of
all the alternatives that imply the same chain of stops with equivalent link attributes (Cats,
West, and Eliasson 2016; Cats andWest 2020). Additionally, we relax the default dominancy
and filtering rules, in order to increase the choice set size and include additional paths that
might only become attractive with access to RTCI.

The BusMezzo is an event-based choice model, with passengers’ choices determined
sequentially as they progress through the network. At each decision node s, passenger k
makes a decision involving successive action ak,s out of possible action set A. These deci-
sions are grouped into connection, boarding and alighting decisions. At the origin, each
passenger chooses which of the available stops to walk to (connection decision). Each time
a vehicle arrives at the stop, eachwaiting passenger decideswhether to board it or stay and
wait for another vehicle (boarding decision). Each time before the vehicle arrives at next
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downstream stops, passengers on-board decide whether to alight from it or stay on-board
and ride further (alighting decision). Each passenger who chooses to alight may decide
to walk to another stop or stay and wait at the same stop – (another connection deci-
sion instance).While evaluating the boarding decision, passenger considers all the possible
downstreampaths associatedwith boarding a given PT run and compares themwith paths
available if remaining at this stop. Similarly, while evaluating the alighting decision, passen-
ger considers all the possible downstream paths available at alighting stop and compares
them with paths available if staying in the vehicle.

The resulting origin-destination path is an outcome of the sequence of actions ak,s
undertaken at consecutive decision points s at decision time instances ta,k . Consequently,
paths are not predetermined pre-trip – but rather adaptive, i.e. may evolve as passengers
respond to travel conditions changing en-route. Importantly, the dynamic and sequential
decision-making pattern of the path choice model implies that all of these decisions might
be reconsidered en-route, as traveller may obtain up-to-date travel information on current
or anticipated PT service conditions.

The choice model is based on the utility maximisation principle, i.e. passengers aim to
minimise the perceived travel cost of travel action a (which is equivalent with the aim to
maximise the perceived utility of travel action a), and thus to minimise the travel cost of
remaining path i of their journey. The perceived travel cost includes time components (in-
vehicle time, wait time, walk time) and other aspects (e.g. number of transfers, in-vehicle
crowding discomfort). In this paper, we represent this decision process with a discrete
choice model, namely a multinomial logit model (MNL), but alternative models are also
applicable.

Theutilityua.k of actiona for passenger k is obtained as theutility of path set Ia associated
with that particular action, in case of MNL expressed as follows:

ua,k = ln
∑
i∈Ia

exp(ui,k). (1)

The path utility ui,k is, in turn, sum of systematic part of path utility vi,k plus a random error
term component εk perceived by passenger k:

ui,k = vi,k + εk =
∑
e∈i

βx
e,k · txe + εk . (2)

Systematic path utility component is the sum of expected travel time attributes tex of trip
components x, multipliedby their relative perceived (dis)utility coefficientsβe

x (for the sake
of simplicity, we assumeuniformdisutility coefficient values across thewhole demandpop-
ulation, i.e. βe,k

x = βe
x). Essentially, this comprises total expected travel utility related to

in-vehicle travel time teivt , wait time tevt , walk time tewkt of all trip segments e belonging to
path i, plus the number of transfers nitr along path i:

vi,k =
∑
e∈i

β ivt
e · tivte +

∑
e∈i

βwt
e · twte +

∑
e∈i

βwkt
e · twkte + βtr · ntri . (3)

From Equation (3) one can distinguish perceived journey time (PJT) disutility compo-
nents associated with in-vehicle time (IVT) disutility

∑
e∈i

β ivt
e · tivte , wait time (WT) disutility∑

e∈i
βwt
e · twte , walk time (WKT) disutility

∑
e∈i

βwkt
e · twkte and transfer penalty (TRP) disutility
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βtr · ntri of path i. We assume here perceived disutility coefficients of wait time βe
wt and

walk time βe
wkt equal to double the perceived disutility coefficient rate of uncrowded in-

vehicle travel time, i.e. βe
ivt = −1.0 and βe

wt = βe
wkt = −2.0. Perceived transfer disutility

coefficientβtr is assumed tobeequivalent to extra fiveminutes of theuncrowded in-vehicle
travel time, i.e. every transfer imposes additional disutility equal to the βe

ivt = −1.0 multi-
plied by 5 min. These weights are assumed according to state-of-the-art findings (de Dios
Ortuzar and Willumsen 2011; Gentile and Noekel 2016; Cats, West, and Eliasson 2016; Yap,
Cats, and van Arem 2020). Since all perceived utility coefficients (Equation (3)) are negative,
the resultant path utility is a negative value. Crucially, the βe

ivt rate is itself a dependent
variable of real-time crowding information (RTCI), as explained in the Subsection 2.4. below.

Finally, passenger at a given decision point s makes one of possible decisions ak,s ∈ A
according to the probabilistic MNL formula:

pak,s = exp(uak,s)∑
A′∈� exp(uA′)

(4)

Microscopic decisions of single agents can be aggregated to obtain passenger flows Ko,d in
the network, crucial for estimating on-board crowding conditions. At each decision point,
the number of passengers deciding to board Kbr,s and alight Kar,s at consecutive stops s of
vehicle run r can be determined as an aggregate outcome of multiple agents’ decisions.

Network-wide total travel costs aremeasurable in terms of passengerwelfarew, express-
ing total travel utility of all passengers Ko,d weighted by monetary travel time valuation
factor z:

w = −z ·
∑
k∈Ko,d

ui,k (5)

Passenger welfarew is understood here as the total generalised travel cost under the fixed-
demand assumption (Cats,West, and Eliasson 2016) and, in such form, does not account for
induced and/or suppressed passenger demand.

In the remainder of this section, we describe the new modelling functionalities, intro-
duced in the BusMezzomodel to enable the representation of instantaneous RTCI phenom-
ena and their consequences for PT system performance.

2.3. Simulating real-time crowding information (RTCI)

Representation of the RTCI impact on the supply and demand sides that we incorporate in
our model comprises of three main aspects (Figure 1):

• initially, how the crowding information of PT vehicles is recorded (observed) in real-time
as they propagate through the network;

• subsequently, how the recorded in-vehicle crowding data is used to generate crowding
information disseminated in real-time to passengers;

• finally, how passengers acquire and utilise the real-time crowding information, in order
to update the expected utility of considered path options, whichmay impact their travel
decisions.
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Figure 1. Flowchart of the instantaneous RTCI algorithm, as implemented in the BusMezzo model.

A central variable of the introduced RTCI model is β l,e
RTCI – the in-vehicle passen-

ger crowding rate. This variable can be understood as the value-of-time multiplier due
to increased (over)crowding conditions (Table 3), which is equivalent to negative value
of in-vehicle travel time (dis)utility co-efficient -β l,e

ivt . This is a common crowding vari-
able across the consecutive stages of generating, disseminating and utilising the crowding
information:

1. Recording the RTCI: Firstly, the in-vehicle crowding level βr,e is recorded at each stop-
exit time instance tr,e, i.e. whenever run r enters a line segment e (or, equivalently,
whenever it departs from the tail stop s = e−):

βr,e = f (|Kr,e|, ηr,e, κr,e) (6)

Theβr,e is a function of the vehicle seat capacity ηr,e, total capacity (so-called crush capac-
ity) κ r,e and passenger load |Kr,e| on-board a given run (trip) segment. In this paper, we use
a step-wise RTCI mapping scale, defined in detail further below (Table 3).

2. Generating theRTCI: Subsequently, the recorded crowding levels βr,e are used to gen-
erate crowding information that is to be disseminated to passengers. As stated earlier,
information is generated and available for passengers at the line-segment level β l,e. In
principle, the generated crowding information of line segment β l,e at time t may be a
function of crowding levels for all runs of line r ∈ l that have already traversed the line
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Table 3. The assumed RTCI mapping function – 4-level crowding scale parameterisation. Right column
contains crowding factors that are used to evaluate anticipated and experienced IVT disutility.

Volume-capacity ratio with respect to: RTCI factor

Descriptive interpretationofon-board crowdingconditions: Seat cap. |Kr,e| / ηr,e Crush cap. |Kr,e| / κ r,e β r,e, (β l,e)

Uncrowded conditions (plenty of
seats available), ≤ ∼ 80% seat
capacity ≤ 0.8 ≤ 0.8 1.0

Individual seats available, ≤ 100%
seat capacity ≤ 1.0 1.2

Need to stand, but in comfortable
conditions, ≤ 80% crush capacity > 1.0 1.5*

Overcrowded conditions (excessive
crowding, denial-of-boarding
risk), ≤ 100% crush capacity ≤ 1.0 1.8*

Note: * 1.2 for experienced IVT disutility if passenger is seated

segment e, and thus forwhich the crowdingon segment ewas already recorded, that is:

βl,e(t) = f (βr,e : r ∈ l, tr,e ≤ t) (7)

The specific function to apply may either differ from simple instantaneous updates,
through smoothing themultiple recent runs (Drabicki et al. 2017a), up to fusingwith histori-
cal data or applyingpredictivemodels. In this paper,we assume that generated information
of line β l,e at time t is equal to the recorded information of the latest (most recent) vehicle
run r that has traversed line segment e – i.e. instantaneously updated RTCI:

βl,e(t) = βr,e ; r ∈ l, tr,e ≤ t ∧ tr+1,e > t (8)

The instantaneously generated RTCI β l,e valid at time t is then disseminated across the
whole PT network as a uniform value for all passengers.

3. Utilising the RTCI:Once the generated RTCI of a given network segment e is being dis-
seminated, it is utilised by passenger k who considers travelling along that segment at
decision time instance ta,k . Hereby,weassume that 100%ofpassengers incorporate the
RTCI provisioned in their decision making process. RTCI information becomes utilised
whenever the passenger takes an action a associated with boarding, alighting or mak-
ing a connectiondecision.Oncepathutility calculationprocess is triggered, passengers
may acquire the up-to-date crowding information β l,e valid at time t for the currently
considered segment e of line L. Passengers utilise crowding information by updating
the expected utility of considered path ui,k . Technically, this is achieved through apply-
ing β ivt

l,e (t) = −βl,e(t) as a perceived in-vehicle travel time (IVT) disutility multiplier in
the utility formula (Equation (3)):

vi,k(ta,k) =
∑
e∈i

β ivt
l,e (ta,k) · tivte +

∑
e∈i

βwt
e · twte +

∑
e∈i

βwkt
e · twkte + βtr · ntri (9)
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These three stages constitute the proposed modelling framework of RTCI systems in PT
network, whereby crowding is recorded in vehicles βr,e, disseminated to passengers at the
line-segment level β l,e, andused to update the action (path) utility with a crowding dis-
comfort rate β l,e

ivt(t) (Figure 1). This is done in accordance with state-of-the-practice of
modelling the PT crowding effects, whereby crowding penalty is included as an additional
in-vehicle travel time (IVT) multiplier in passenger path choice model (e.g. Tirachini, Hen-
sher, and Rose 2013; Gentile and Noekel 2016; Yap, Cats, and van Arem 2020). Additionally,
we assume ubiquitous coverage of RTCI (i.e. 100% penetration rate among PT passengers),
but our modelling framework allows to specify a variable RTCI penetration rate. In practice,
the share of passengers who utilise RTCI in their path choices may depend on a variety of
factors, such as the availability of broadcasting (dissemination) means, the technology of
RTCI system and perceived information reliability.

The form and parameterisation of the RTCI-related functions as defined in Equations (6)
– (9) will determine the ultimate impact of the RTCI. For instance, Equation (6) represents
how the actual in-vehicle crowding is translated into crowding information disseminated
to users. Here, we propose a discrete, 4-level crowding information scale (Table 3), with
the baseline value β l,e = 1.0 denoting uncrowded conditions, and step-wise increasing
β l,e value as a function of rising on-board crowding conditions, reaching a maximum
value of β l,e = 1.8 for overcrowded conditions when passenger load is approaching the
vehicle capacity limit. Assumptions regarding the 4-level crowding information scale and
corresponding β l,e values are inferred based on multiple literature sources on crowding
valuations in PT journeys (as summarised previously in the Subsection 1.1.), especially the
works of Rudnicki (1999), Whelan and Crockett (2009), Tirachini, Hensher, and Rose (2013),
Kroes et al. (2014), Hörcher, Graham, and Anderson (2017), Yap, Cats, and van Arem (2020).
Our proposed β l,e values (Table 3) are slightly lower than average, accounting for the fact
that majority of studies contain valuations mostly from SP studies (prone to certain exag-
geration bias, especially at higher overcrowding levels) and rail systems (where crowding
impact is presumably more significant due to longer trip distance/duration) – whereas our
focus is predominantly on urban PT networks.

The βr,e values presented in Table 3 are also used for evaluating the users’ experience
of on-board journey conditions, i.e. IVT disutility (Equation (3)). Importantly, we distinguish
the travel disutility experienced differently by seated vs. standing traveller inside the same
vehicle. Hence, the maximum experienced IVT disutility multiplier is βr,e = 1.2 if passen-
ger is seated, while standing overcrowding conditions may imply a max. βr,e = 1.8 for the
traveller that is standing on-board the same run r along segment e.

The modelling framework formulated above enables us to simulate RTCI and its impact
on passenger path decisions. Integrating RTCI into passenger behaviour model alters
their behaviour which, in turn, yields shifts in passenger flows and, consequently, in the
overall network performance. To assess how RTCI impacts PT network performance, two
alternative measures are hereby proposed.

The first measurement of network-wide system performance relates to passengers’
travel experience, measureable with path utility (Equations (1) – (3)) or travel welfare
(Equation (5)). These can be measured either as a total (global) value (Equation (2)), and/or
through their decomposition into specific trip stages as shown in (Equation (3)).

The secondaspectmeasuring theRTCI systemperformance is the crowding information
accuracy. Crowding information provided to passengers and supporting their decisions
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should be credible and consistent with the actual travel conditions they eventually experi-
ence.Wemeasure the consistency between information on projected crowding conditions
βl,e(ta,k) along segment e of line L – disseminated to the passenger k and utilised by
him/her while making a decision at action time ta,k – against the actual crowding condi-
tions βr,e(tr,e) – observed by passenger once on-board the run r traversing that particular
segment e.

Accuracy is evaluated for each single line segment e traversed by a passenger during
his/her trip, then aggregated for the whole path I, and finally computed as a network-wide
RTCI accuracy rate c0 for all the passengers k ∈ K . Due to the sequential decision-making
process and the recurrently updatedpath utility at eachdecision point,measuring accuracy
of all decisions is complex. Here, we apply certain heuristics and propose to consider RTCI
accuracyonly for decision instancesdirectly precedingpassengers’ boarding (or stayingon-
board) actions.More intuitively, information accuracy experiencedalong the line segment e
is measured only for such decision node s = e−,which is the last possible instance at which
the passenger is able to consider the RTCI of this line segment e (i.e. boarding/alighting
decision involving entering a given line segment e on-board a vehicle run r).

A simple yet sufficient RTCI accuracy metric is the share of accurate passenger deci-
sion instances c0 for which projected crowding information βl,e(ta,k) was in agreement
with observed crowding conditions βr,e(tr,e) (Equation (10)). Complementary values c− and
c+denote then share of inaccurate passenger decision instances where RTCI underesti-
mated or overestimated the observed crowding conditions, respectively:

c+ =
∑
k∈K

∑
e∈k

δ+
e∑

k∈K

∑
e∈k

(δ+
e +δ0e+δ−

e )
, δ+

e =
{

1 ifβl,e(ta,k) > βr,e(tr,e)

0 otherwise

c0 =
∑
k∈K

∑
e∈k

δ0e∑
k∈K

∑
e∈k

(δ+
e +δ0e+δ−

e )
, δ0e =

{
1 ifβl,e(ta,k) = βr,e(tr,e)

0 otherwise

c− =
∑
k∈K

∑
e∈k

δ−
e∑

k∈K

∑
e∈k

(δ+
e +δ0e+δ−

e )
, δ−

e =
{

1 ifβl,e(ta,k) < βr,e(tr,e)

0 otherwise

(10)

The distinction made in Equation (10) allows evaluating the relative impact of an under-
or over-estimation of the actual on-board crowding conditions on the perceived RTCI
accuracy. Arguably, the former (i.e. underestimation risk, denoted as c−) has particularly
negative implications for passengers’ travel experience. In such instances, travel conditions
turn out to be more adverse than anticipated. This might especially undermine the cred-
ibility of RTCI accuracy, and in a broader perspective, call into question the passengers’
eventual trust and therefore reliance on crowding information.

Ultimately, the effectiveness of RTCI system in PT simulation can be measured as
follows:

1. The first criterion is to maximise passenger welfare as defined in Equation (5).
2. The second criterion is to maximise the share of accurate passenger decisions as given

in Equation (10), and especially, to minimise the share of inaccurate decisions due to
crowding underestimation.
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3. Application

3.1. Simulations’ outline

To illustrate how the proposed algorithm models the impact of instantaneous real-time
crowding information (RTCI) we introduce the following experimental simulations. The
experiments are designed to test the validity of the proposed RTCI algorithm and its capa-
bility of representing a chain of reactions likely to emerge with the RTCI system active in PT
networks – specifically:

(1) how crowding information (RTCI) is generated from PT supply data in real-time – and
then instantaneously disseminated to passengers,

(2) whether (and how) passengers’ choice patterns change (either pre-trip and/or en-
route) and whether they shift to alternative, less-crowded paths once they acquire
information about network crowding along their paths,

(3) how passengers’ reactions interplay with variable rates of crowding conditions and
travel times on alternative lines,

(4) whether the RTCI allows to improve passengers’ utility and thus overall system per-
formance and travel welfare (i.e. a combined outcome of both travel times and travel
comfort),

(5) what is the resultant accuracy of RTCI, and whether the dissemination time lag of
instantaneous RTCI leads to negative consequences for passenger utility and system
welfare.

The experimental demonstration involves a set of 2 toy PT networkswith analogous net-
work layout. For each toy-network scenario, we analyse how RTCI influences the results
with respect to the reference (‘no RTCI’) case with identical demand and supply assump-
tions – except for the RTCI availability: in the ‘no RTCI’ case, passengers evaluate choice
utilities without crowding information; whereas in the ‘RTCI’ case, we assume ubiqui-
tous response to crowding information, i.e. 100% of passengers have access to and
utilise the RTCI, and choice utilities are evaluated with the extended path choice model.
Since passengers do not have any prior expectations of (over)crowding emerging down-
stream, toy-network experiments illustrate how they respond to non-anticipatory RTCI
information, representing e.g. sudden network events or travellers unfamiliar with the PT
system.

Since the simulations are stochastic, outputs are reported as an average of 10 repli-
cations with randomised seed (a sufficiently representative sample with acceptably low
variability in results). We simulate a period of two hours, with supply model (PT lines) oper-
ating for the whole period, and demand being generated from the origin(s) during an
intermediate 60-minute period – i.e. starting at the 30th minute and lasting until the 90th

minute. Seat capacity ηr,e is assumed uniformly for all PT vehicles, equal to 60% of the crush
capacity κ r,e.

In Subsection 3.3., we run experiments on a real-size PT network model of the urban
PT system in Kraków, Poland to simulate, quantify, measure and visualise RTCI impact.
Simulation is performed for a typical weekday PM peak hour and depicts impact of RTCI
in practical setting indicating both its benefits and shortcomings.
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Figure 2. Topology of the first toy network. Service headways: L1 and L2 – every 5 min.

3.2. Toy network experiments

3.2.1. Toy network no. 1
Figure 2 presents a simple PT network, comprised of two O-D pairs (A-C and B-C) and two
PT lines (L1 and L2). L1 line is a direct service connecting A and B origin stops with the same
destination stop C, with a total travel time of 30 min. L2 line serves the A-C pair only and
has a longer travel time (35 min) but much higher capacity (well above the demand). Both
lines operate at a service headway of 5 min. L1 line is served by PT vehicles of low capac-
ity of 100 passengers per vehicle, except for an intermediate peak period (ca. 20min long)
when vehicles of higher capacity are used (500 passengers per vehicle). The origin stop A
generates demand of 500 passengers per hour, while the busier origin stop B generates a
higher demand volume of 1,000 passengers per hour.

In the following experiments, we investigate how RTCI provision affects simulation
output – in accordance with the methodology introduced above. Firstly, the number of
passengers |Kr,e| is observed for consecutive runs r of lines L1 and L2 along their line seg-
ments e. Secondly, by comparingon-boardpassenger volumes against vehicle capacity and
applying themapping procedure (Table 3), the recorded in-vehicle crowding levels βr,e are
obtained (Equation (6)). Thirdly, crowding data from consecutive runs is being instanta-
neously translated into RTCI further disseminated to passengers β l,e as stated in Equation
(8). Finally, passengers become aware of the current RTCI β l,e available at time instance t
and utilise this information at every decision stage (Equation (9)).

The followingpoints summarise themain observations fromour experiments on the first
toy-network.

(a) From real-time crowding information (RTCI) to passengers’ choices:

Figure 3 depicts the utilisation phase of RTCI – passenger choices at the origin stop
A that result from RTCI generated in a given time instance. Without availability of RTCI,
passenger choices remain constant throughout simulation time, with less than 25% of ori-
gin A demand taking the L2 route. Their decision is solely based on the expected shorter
travel time of the L1 line that becomes their preferred choice, as crowding conditions along
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Figure 3. Generated RTCI and passenger choices at origin stop A. Dark bars denote the patronage
rate of a longer, but uncrowded line L2. Initially low, it rises substantially once passengers receive RTCI
on overcrowding along L1 line, then falls back again when overcrowding subsides along L1 (due to
increased capacity) and rises back again thereafter. Thick black line denotes RTCI available at stop A
during passengers’ decisions, while dotted grey line denotes actual crowding experienced later.

that route are not considered by them. Figure 3 demonstrates how their decisions are
influenced by availability of RTCI. Passengers are informed about severe in-vehicle crowd-
ing ahead, i.e. along the (B-C) segment, and incorporate this knowledge in the path utility
formula, where the relative disutility of L1 in-vehicle travel time climbs up by a β l,e multipli-
cation factor of 1.5 - 1.8. Consequently, this leads to a significant rise in the L2 line patronage
from 25% up to even 60% – implying that the longer but uncrowded L2 route is now the
preferred choice for origin A demand. In the short intermediate periodwhen larger PT vehi-
cles are in operation, overcrowding on the L1 line subsides and its β l,e factor decreases to
around 1.0, meaning that L1 line becomes the dominant choice again. Afterwards, once
smaller vehicles are back in operation, crowding emerges anew on the L1 (B-C) segment
and more passengers at stop A shift towards L2 line again.

(b) RTCI impact on travel utility:

Investigation of resultant passenger travel disutility (Equation (4)) shows a ca. 20%
reduction in perceived journey time with the introduction of RTCI in the first toy-network
(Figure 4). A vast amount of these are attributable to savings in waiting time disutility (WT)
which result from a significantly lower occurrence of denial-of-boarding at stop B: as the
RTCI on downstream L1 (B-C) crowding is available, passengers at origin A are encouraged
to shift towards the L2 route, and thus L1 runs arriving at stop B have now higher resid-
ual capacity. Additionally, the longer travel time along the L2 route is compensated by the
lower perceived in-vehicle travel time disutility (IVT) experienced by passengers who take
this route from stop A; hence, total IVT disutility also decreases, though by a marginal rate.
Additionally, RTCI contributes to higher probability of travelling in more comfortable (less
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Figure 4. Total travel disutility in the first toy-network (perceived journey time). Introducing RTCI
reduces both travel costs due to waiting time (45%) and in vehicle time (1%).

crowded) conditions: for example, the share of total IVT spent in uncrowded conditions,
equivalent to β l,e = 1.0, rises from 21% to 32% with the RTCI.

(c) Passengers’ reactions to longer travel time in overcrowding conditions:

To enrich the above picture, let us illustrate how passenger choices change with expec-
tations of rising travel time in overcrowded conditions. We now assume various lengths �

of the (B-C) segment of line L1, i.e. by shifting gradually the relative position of stop B, it
ranges from 10% to 90% of the total L1 trip time. Since the capacity of L1 line along the
(B-C) segment is insufficient, especially due to high boarding volumes at stop B, this seg-
ment is especially prone to overcrowding. Hence, the L1 travel utility depends on shifting
length � of the (B-C) segment trip time. It can be seen in Figure 5 that as the position of
stop B is moved upstream towards stop A and travel time � in overcrowded conditions
along the (B-C) increases, the perceived L1 travel disutility becomes higher, leading to a
significant drop in the probability of choosing line L1 at stop A, in comparison to scenario
without RTCI. For� equal to 3min (i.e. 10%of L1 travel time), RTCI provision already induces
an extra 5% shift towards line L2 at stop A, and for themost extreme case of the� equal to
27min (i.e. 90% of L1 travel time) – about additional 35% of passengers at stop A opt for L2
line (Figure 5).

(d) Positive PT network-wide effects:

While Figure 5 depicts localised impact of RTCI upon choice shifts at origin stop A,
we now take a closer look how these can contribute towards the maximisation of total,
network-wide travel utility. Figure 6 shows that decisions of passengers at stop A – who
experience improved IVT utility themselves – have relevant and positive impact for travel
utility of passengers at stop B as well: as fewer passengers select the overcrowded L1 line
at stop A, the denial-of-boarding risk at stop B decreases substantially. In contrast, without
access to RTCI, boarding denial at stop B has up to 60% greater negative impact for travel
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Figure 5. Passenger choices at stop A as a function of rising travel time � in overcrowded conditions
along the L1(B-C) segment. Dark bars denote patronage rate of the longer, yet uncrowded L2 line, which
is positively correlated with �: while chosen by ca. 30% of passengers at stop A if only 10% of L1 trip
time is overcrowded, this figure rises over 60% when 90% of L1 trip time is overcrowded – compared to
a constant L2 probability rate of 25% for the ‘no RTCI’ scenario.

Figure 6. Perceived waiting time (WT) disutility at stop B, distinguishing theWT delay due to denial-of-
boarding. Dark bars show a substantial decrease in denial-of-boarding delay, as more residual capacity
becomes available on the L1 runs - which, in turn, is caused by a lower number of passengers travelling
from stop A with the L1 line due to the rising (anticipated) travel time� in overcrowded conditions.

utility, resulting in an average additional waiting time of max. 6min per each passenger at
stop B (Figure 6).

This simple experiment demonstrates how RTCI information may help alleviate over-
crowding in critical parts of the network and improve network performance in wider
spectrum – an issue especially important in urban PT networks, where network capacity is
often limited due to high passenger volumes already carried from upstream line segments.
Such phenomenon is an example of positive ‘ripple-effects’, i.e. wider network benefits
induced by localised response to the RTCI. Consequently, downstream passengers willing
to board at the latter stops are more likely to experience higher travel discomfort, both
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in overcrowded conditions (greater denial-of-boarding risk) as well as in normal network
crowding (lower chance of getting a seat).

(e) Improved vehicle capacity utilisation vs. positive travel experience:

One of the purported objectives of RTCI system should be to produce a more even utili-
sation of PT capacity, as information on crowding should encourage passenger flow shifts
towards less-crowded paths and reduce loads on themost overcrowded segments. Table 4
presents how resultant changes in travel disutility, measured by perceived journey time
(PJT), correlate with the shifting length of L1 (B-C) segment. Importantly, RTCI provision
at first translates into worse average journey times. This stems from the fact that passen-
gers at stop A indeed reduce their perceived IVT disutility (i.e. no crowding along L2 line),
yet this implies longer journey times (i.e. due to choosing L2 line) and is not compensated
enough by initial gains in denial-of-boarding disutility at stop B. However, as L1 (B-C) seg-
ment length increases, RTCI becomesmore advantageous in terms of both absolute as well
as perceived journey times (max. decreases of ca. 10% and 20% respectively). On-board
journey conditions improve for all passengers (Table 4) with RTCI: notably, for the final case
where (B-C) segment comprises 90%of L1 trip time, share of total perceived IVT in theworst
conditions (β l,e = 1.8) drops from 44% to 37%.

3.2.2. Toy network no. 2
To reveal additional phenomena associated with instantaneous RTCI, we introduce a sec-
ond toy-network with a different topology (Figure 7). It consists now of a single O–D pair
only, served by two parallel lines, L1 and L2 – with equal running times (20min per line
segment, 40min per line in total) but different service frequencies and vehicle capacity.
The L1 line is directly connected to the origin (via stop A1) and to the destination (via stop
C1). It operates every 10minwith low-capacity vehicles (100 pass./veh.). The parallel L2 line
involves an extra 10-minutewalk to access its origin stopA2, has a lower headwayof 30min,
yet operates with high-capacity vehicles (500 pass./veh.). As in the previous network, seat
capacity is assumed equal to 60% of vehicle crush capacity. Additionally, an intermedi-
ate transfer is available, connecting both lines at stops B1 and B2, that involves an extra
5-minute walk. Passenger demand is generated at 1500 pass./hour. When RTCI is not avail-
able, line L1wouldbenaturally thepreferred travel choice, but passengers becomingaware
of downstream overcrowding may migrate towards line L2 – that is, either re-route at the
origin (at stop A1) or transfer en-route (at stop B1).

The followingpoints summarisemainobservations fromexperiments on the second toy-
network:

(f) Origin passenger shifts evolving with RTCI:

Figure8 showsorigin choicepatterns aspassengers receive variableRTCI fromthedown-
stream network. Three characteristic time intervals can be distinguished here. In the first
interval (before the 40th minute), the system has not recorded any passenger loads yet,
and thus passengers do not anticipate any crowding – over 90%of them choose the L1 line,
which leads to overcrowding. Then, in the second interval, overcrowding along the first (A1-
A2) segment becomes visible to passengers entering stop A from the 40th minute onwards
and clearly affects their choices: L2 patronage rate at the origin goes up from 10% to ca.
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Table 4. Mean journey time and on-board comfort experience, i.e. perceived IVT measured for specific crowding levels. While average perceived journey time (PJT)
grows from 47 up to 72min with increasing travel time� in overcrowded conditions, it oscillates between 54 and 56min with RTCI. Though initially RTCI leads to ca.
15% higher mean PJT (i.e. for� equal to 10–30% of total L1 trip time), it results in up to 22% lower PJT when� reaches 70–90% of the L1 trip time.

travel time of the overcrowded B-C segment� [mins]
- share of total L1 trip time [%]

Scenario 3 [mins]: 10% 9 [mins]: 30% 15 [mins]: 50% 21 [mins]: 70% 27 [mins]: 90%

RTCI no yes no yes no Yes no yes no yes

Absolute journey time mean [mins]: 27.1 29.1 33.4 34.0 39.6 38.8 45.9 42.8 52.2 47.3
rel. change vs. ‘no RTCI’: 107.4% 101.8% 98.0% 93.2% 90.6%

Perceived total disutility mean [mins]: 47.1 54.3 53.4 55.5 59.7 56.8 66.0 55.4 72.2 56.3
rel. change vs. ‘no RTCI’: 115.3% 104.0% 95.1% 83.9% 77.9%

Share of perceived IVT disutility β l,e = 1.8 14% 14% 28% 27% 36% 33% 41% 37% 44% 37%
β l,e = 1.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 1%

In crowding conditions: β l,e = 1.2 14% 14% 30% 29% 37% 37% 42% 39% 46% 42%
β l,e = 1.0 72% 72% 42% 43% 27% 30% 17% 24% 11% 19%



TRANSPORTMETRICA A: TRANSPORT SCIENCE 701

Figure 7. Topology of the second toy network. Service headways: L1 –10 min, L2 –30 min.

Figure 8. Origin choices evolving with RTCI. Dark bars denote the patronage rate of the longer but
uncrowded L2 line. Initially low at barely 5% of O-D flows, it increases to ca. 25% as passengers receive
information on overcrowding along the first L1 segment – and reaches a maximum of 60% once RTCI
shows overcrowding on both L1 segments.

27%. In the third interval, once overcrowded L1 runs enter the second segment (A2-A3) of
L1 line, i.e. from the 60th minute onwards, RTCI at the origin indicates now overcrowding
on both L1 line segments, and the share of passengers choosing the L2 rises further up to
almost 50%.

(g) En-route passenger shifts due to RTCI:

Importantly, RTCI affects not only origin choices but also induces shifts en-route, affect-
ing alighting and connecting decisions as hereby illustrated. Bars in Figure 9 represent
choices amongpassengers on-board theL1 runs as theyapproach the intermediate stopB1.
This is the instance when alighting decision is being triggered: the expected utility of stay-
ing on-board L1 line is re-evaluated against alighting at stop B1 and transferring towards
L2 line. As transfers require additional walking and waiting times, without RTCI the transfer
probability is under 10%.However, onceRTCI available topassengers reports overcrowding
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Figure 9. En-route choices among passengers on-board the L1 line along the first segment (A1-A2).
Dark bars denote the probability of transferring from L1 to L2 line, which involves a transfer between B1
and B2 stops and longer overall travel time but allows to avoid L1 overcrowding. Initially low at barely
5% of L1 passengers, it rises up to 20–25% as passengers receive information on overcrowding along
second (A2–A3) segment of L1.

on L1 line along the downstream (A2-A3) segment, the disutility of staying on-board the L1
service becomes higher. Consequently, now ca. 25% of passengers decide to get off at stop
A2 and take the L2 line to reach their destination.

(h) Dissemination time lag of instantaneous RTCI:

Importantly, simulation outputs also underscore a crucial feature associatedwith instan-
taneous RTCI system, i.e. dissemination time lag of crowding information. In Figures 8
and 9 we plot the anticipated crowding conditions β l,e of line L1 segments (based on
RTCI-provided information), against the crowding conditions βr,e actually experienced by
passengers. In certain cases, this leads to discrepancies as visible e.g. for origin passengers
boarding the first bus trip at the 30th minute: since no passenger flows were reported
yet in the PT network, they expect an uncrowded trip (β l,e = 1.0), but as an aggregate
result of multiple such decisions, each of them eventually ends up on-board a fully over-
crowded bus (βr,e = 1.8) departing from stop A1. Similarly, passengers approaching the
stop A2 do not expect downstream crowding according to current RTCI, but since they
fully comply with this information, staying on-board results in overcrowded travel condi-
tions along the next (A2-A3) segment. Only after the 60th minute – i.e. once overcrowding
has been reported along both L1 line segments – will the next approaching passengers
receive the updated RTCI information and thus have the incentive to transfer towards line
L2. This inevitable information lag is an important limitation of instantaneous RTCI system.
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In specific settings, decisions made based on anticipated crowding will not be consistent
with actually experienced crowding, thereby exposing a major deficiency in the RTCI cred-
ibility. This is especially relevant in contexts where demand levels are characterised by
abrupt changes.

(i) Information accuracy:

Finally, investigation of RTCI accuracy as defined in Equation (10) reveals that majority
of travellers in the second toy-network receive crowding information consistent with their
subsequent on-board experience. Globally, crowding information is found to be accurate
(c0) for 80% of cases. Around 12% of passengers’ decisions are based on RTCI which under-
estimates the actual crowding (c−) – which can be deemed especially negative for both the
PT passengers and operators.Majority of these underestimation cases are observed for pas-
sengers that board the L1 services along the (A1–B1) and (B1–C1) segments early-on in the
simulation. No crowdingwas reported yet by theRTCI system, but becauseof universal obe-
dience of the instantaneously generated RTCI – the first L1 bus trips along these segments
are experienced as unexpectedly overcrowded. Conversely, in 8% of the cases, passengers
expected higher crowding conditions than actually experienced (c+) – i.e. overestimation
which has non-adverse consequences for travel utility, but nevertheless negative for RTCI
system credibility. Conversely, crowding overestimation is typically observable in the lat-
ter simulation period, once demand flows along the L1 begin to decrease but upstream
passengers are still being notified of L1 overcrowding. Both overestimation and underes-
timation instances are therefore a direct consequence of the above-mentioned dissemi-
nation time lag of instantaneous RTCI. Clearly, this also underscores the shortcomings of
non-anticipatory RTCI that is utilised by travellers in a non-cooperative manner. While in
majority of instances the access to RTCI seems to be beneficial, the noticeable inaccuracy
risk implies that in certain cases it can become actually counterproductive.

(j) Output travel experience benefits with RTCI:

Similarly to results reported for the first toy-network, introducing RTCI improves aver-
age travel utility by ca. 8%. A major share of these benefits are evidently reflected in the
perceived IVT (Figure 10) – especially, a substantially lower share of passengers travel-
ling in overcrowded conditions: total perceived IVT equivalent to β l,e = 1.8 reduces by
60%. Meanwhile, the relative share of two most ‘comfortable’ perceived IVT categories
(β l,e ≤ 1.2) – reflecting conditions when every passenger can get a seated place – goes up
from 55% to 63%with the RTCI access, and ca. 15% of perceived IVT is now associated with
medium crowding conditions (β l,e = 1.5), which are non-observable at all (0% share) in the
‘no RTCI’ case. These findings show that crowding information access, though it does not
eliminate overcrowding in the PT network, allows to smoothen the on-board comfort travel
experience. The risk of travelling in extreme crowding conditions is significantly mitigated
and passenger loads are distributed more evenly across the L1 and L2 departures.

3.3. Real-size PT network simulation of instantaneous RTCI – case study of Kraków

After analysing the main capabilities of our proposed model on toy-networks, we demon-
strate the effects of instantaneous RTCI algorithm for a real-world PT network. We simulate
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Figure 10. Perceived IVT in the second toy-network, decomposed between four crowding levels. RTCI
not only decreases the overall IVT disutility, but also allows to utilise vehicle capacity more efficiently –
note the substantial reduction in overcrowding experience (equivalent to β l,e = 1.8), coupled by rising
share of travel time spent in more comfortable conditions (β l,e < 1.8).

a simplified model of the core urban PT system of Kraków city, Poland (i.e. the second-
largest city in Poland with ca. 750k inhabitants): the supply model consisting of over 800
stops served by 136 bus, tram and urban rail (SKA) lines (Figure 11), and the demandmodel
representing the typical PM peak-hour pattern (between 3 and 4 pm), with about 65k pas-
senger trips distributed between ca. 10k OD pairs. We apply the same methodology as
in toy-network studies and simulation output is again compared between ‘RTCI’ scenario
(assuming 100% compliancewith crowding information) vs. ‘no RTCI’ scenario. Outputwel-
fare estimations assume monetary time valuations as specified by JASPERS (2015) for the
2019 data, whichweighted across three essential trip categories (business, commuting and
leisure trips), give anaverage rateof ca. 33.1 [PLN/hr], or 7.5 [EUR/hr] (assuminga conversion
rate of 4.4 [PLN/EUR]). PT demand and supply data is assumed based on a recent com-
prehensive travel survey and the Kraków strategic transport model (Szarata 2015), which
served as a reference point for calibrating the Kraków model applied for our simulation
works. The model was validated with respect to main characteristics on the demand (OD
passenger volumes, travel times) and supply sides (PT network, service provision, segment
run times) to ensure its credible representation of the city PT system.

Our simulations on a real-world PT network model show that passengers’ obedience of
instantaneous RTCI can contribute to amore efficient distribution of passenger loads in the
urban PT network. In the RTCI scenario, a visible increase in number of passengers able to
get a seated place - coupled with substantial reduction in passenger volumes exposed to
the worst overcrowding conditions – is traceable along multiple PT network segments in
the PM peak hour (Figure 12). Interestingly, this becomes evident along inner-city, busy PT
routes, which tend to be highly crowded during the PM peak. Such changes are an out-
come of a number of phenomena already revealed in toy network simulations, emerging
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Figure 11. Case-study network – topology of the core urban PT system in Kraków (Poland).

in passengers’ path choices due to acquisition and utilisation of RTCI. Among others, RTCI
encouragespassengers to use less-crowded services, operating in closeproximity or as ade-
quate alternatives to the most popular PT routes. It also increases the visibility of parallel
service corridors, which are of low popularity due to their lower service frequency (requir-
ing extra waiting time) or extra detour from the O-D travel route (requiring extra walking
distance and/or transfers) – hence e.g. the rising patronage rate of the suburban (SKA) train
line. Consequently, provision of RTCI in the PM peak hour allows passengers to utilise the
available system capacity which is under-utilised otherwise if they are unable to foresee
downstream crowding conditions.

The resultant passenger flow shifts translate into better journey experience, reducing
the overall travel disutility (PJT) by ca. 2.5%with RTCI availability (Table 5). This is principally
attributable to lower waiting time (WT) and in-vehicle time (IVT) disutility, while changes in
walking time (WKT) and transfer (TRP) disutility are relatively smaller (yet still favourable).
An important share of PJT savings stems from significantly lower incidence of waiting time
due to denied boarding – a major source of PT overcrowding disutility – whose decline
thanks to RTCI provision reaches about 30% (Table 5).

Moreover, a detailed inspection of perceived IVT (Figure 13) further confirms that access
to RTCI brings network-wide improvement of on-board travel comfort experienced by pas-
sengers. The share of weighted travel time spent in excessive overcrowding conditions
(β l,e = 1.8) decreases by the highestmargin among all the 4 distinguished crowding condi-
tions (on our RTCI scale defined in Table 3) – in aggregate terms, ca. 30% less than without
access to RTCI; share of travel time spent in moderate standing conditions (β l,e = 1.5) is
down by 9%; and ultimately, ca. 4%more weighted travel time is associated with travelling
in seated conditions (β l,e = 1.0 or β l,e = 1.2). Once PJT changes are translated into pro-
jected passengerwelfare benefits, total travel disutility savings, enabled by RTCI availability
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Figure 12. Kraków PM peak results – impact of RTCI on recorded passenger flows in urban PT network.
Shifts in network flows indicate that access to RTCI allows more passengers to get a seated place (left)
and simultaneously avoid excessive overcrowding (right) during their journey.

Table 5. Kraków PM peak results – output travel experience, measured by perceived journey time (PJT)
changes. Access to RTCI improves all the PJT components, though by a limited amount, and total PJT
decreases by ca. 2.3%. Notably, substantial improvements are visible in terms of denial-of-boarding
disutility, which is reduced by 30%.

Scenario

Passenger travel disutility – PM peak no RTCI RTCI
Relative

change� [%]

total weighted [hrs] in-vehicle time (IVT) 22 485 21 966 −2.3%
waiting time (WT) 19 199 18 238 −5.0%
walk time (WKT) 18 138 18 025 −0.1%
transfer penalties (TRP) 8 409 8 311 −1.2%
total (PJT) 68 132 66 540 −2.3%
waiting time – denied boarding (WTdenied) 2 532 1 762 −30.4%

average [mins] absolute journey time (JRT) 35.3 35.1 −0.8%
perceived journey time (PJT) 63.5 62.0 −2.3%

in the Kraków urban PT network, are equivalent to approx. 12 000 EUR (52 800 PLN) per PM
peak hour on a typical weekday. This implies potential savings of approx. 0.2 EUR (0.8 PLN)
per passenger trip, or an equivalent of almost 25% of a single-ticket fare. In annual terms,
such RTCI-induced welfare benefits – during a single PM peak hour only – would amount
to over 3.6m EUR (15.8m PLN).

Finally, accuracy reported in our Kraków case-study indicates that RTCI is fully consis-
tent with passengers’ subsequent observations of on-board crowding only in just about
c0 = 56% of decision instances (Table 6). Importantly, there was a c− = 31% probability
of observing worse on-board conditions than expected (i.e. RTCI underestimation risk),
whereas the opposite case of passengers experiencing a more comfortable trip than
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Figure 13. KrakówPMpeak results – output changes in on-board comfort experience,measuredbyper-
ceived in-vehicle travel time (IVT). Though RTCI reduces overall IVT disutility decreases by just ca. 2.3%, it
contributes to substantially lower experience of theworst overcrowding experience (βr,e = 1.8), which
is down by almost 30%. Meanwhile, probability of comfortable (seated) travel conditions (βr,e ≤ 1.2) is
also higher in the RTCI scenario.

Table 6. Kraków PM peak results – RTCI accuracy is satisfied in only ca. 56% of passengers’ decision
instances. Importantly, in almost 31%of all cases, passengers’ output decisionsweremadebasedonRTCI
which underestimated the actually observed crowding conditions. In about 20% of decision instances,
some seats were still supposed to be available inside the PT vehicle, but ultimately all seats became
occupied once passengers got on-board.

Predicted RTCI βl,e(ta,k)

Share of pass. decision instances c(ak,s) 1.0 1.2 1.5 1.8

Observed RTCI βr,e(tr,e) 1.0 36.4% 2.8% 4.1% 0.3%
1.2 6.1% 1.3% 2.4% 0.2%
1.5 13.5% 3.6% 14.9% 3.2%
1.8 2.6% 0.7% 4.4% 3.5%

expected was about three times less likely (c+ = 13%). This reflects a significant risk for
instantaneous RTCI reliability is related to its inability to anticipate fluctuating demand con-
ditions. Overall, our findings illustrate that despite shortcoming in information accuracy,
RTCI can reduce passengers’ travel times. Notwithstanding, there is a risk that users will not
perceive this information trustworthy in the long run, jeopardising its potential benefits.

4. Discussion

This paper introduces a novel modelling approach for describing the effects of instanta-
neous real-time crowding information (RTCI) systems in public transport (PT) networks.
The principal contribution of this work lies within the proposed methodology – firstly,
an extended passenger path choice model accounting for influence of RTCI upon travel
decisions, and secondly – assignment framework simulating processes both in PT sup-
ply and PT demand system, as a consequence of instantaneous generation, dissemination
and utilisation of RTCI. The RTCI algorithm is implemented within a dynamic, agent-based
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PT assignment model, and can be therefore used to investigate the wider spectrum of
consequences for PT passengers and operators.

The secondary contribution of this study lies in the application of the proposed RTCI
algorithm, which reveals implications of passenger flow shifts potentially emerging once
passengers follow the informationoncurrent crowding conditionsof their PT services. Deci-
sion shifts are likely to occur at any journey stage (either pre-trip or en-route), producing
route choice patterns that are more dynamic and evolve instantaneously. Eventually, the
magnitude of these changes alters the performance of PT systems, and thus a feedback
loop arises between RTCI-based passengers’ travel choices, output passenger flows, PT net-
work conditions, and subsequently generated crowding information. Our results, firstly on
toy-network schemes and then for the PT network of Kraków, demonstrate ramifications
of such phenomena – focusing on the spatiotemporal evolution of network crowding and
passengers’ decisions, network capacity utilisation, accuracy of provided information and
passengers’ resultant travel utility (welfare).

In particular, case-study simulations on the Kraków PT model shed more light onto
potential consequences in urban PT networks. Apparently, ubiquitous (100%) response
to instantaneous RTCI leads to improvements in passengers’ current journey experience
– our results obtained for a typical PM peak hour in Kraków indicate visible yet limited
benefits in perceived travel disutility of 2 - 3% in global terms. Perhaps more importantly,
RTCImitigates theworst overcrowding experience: share of theworst on-board overcrowd-
ing experience (i.e. total passenger-hours corresponding to the highest crowding level
of βr,e = 1.8) decreases by 27%, share of moderate crowding experience (i.e. βr,e = 1.5)
decreasesby9%andwaiting timedue todeniedboarding reducesby30%.When translated
intoprojectedwelfare gains, these figures implymonetary savings equivalent to approx. 3.6
million EUR when calculated annually for the PM peak-hour only.

However, obtained results also underscore risks related to RTCI accuracy, stemming
from the inherent property of instantaneous RTCI: namely, the dissemination time lag of
crowding information, and the impact of information provision and resultant passengers’
responses on the validity of provisioned RTCI, which leads to discrepancy between antici-
pated vs. experienced on-board crowding. This major shortcoming of instantaneous RTCI
system reliability concerns its inability to forecast sufficiently the abrupt fluctuations in
network saturation conditions. Consequently, crowding information turned out to be accu-
rate only for ca. 56% of passenger decision instances during the Kraków PM peak hour,
and for as many as 31% of travel decisions the RTCI system underestimated the actually
observed crowding conditions. In particular, 20% of all travel decision instances involved
the expectation of seats available that turned out to be incorrect once passengers got
on-board the PT vehicle. More insight can help understand the extent to which this dis-
semination time lag can impact the overall PT system effectiveness, and when it might
cause the RTCI system to become actually counterproductive. This also calls for the devel-
opment of anticipatory RTCI techniques that can take inspiration from studies on travel
information provision e.g. in the context of car traffic and help overcome the inaccuracy
issues.

The proposedmodel allows to predict the insofar unreported phenomena of novel RTCI
solutions and illustrate their future performance in PT networks. As such, it can serve as
a useful decision support system tool for researchers, transport engineers and authori-
ties, being applicable for both strategic planning, tactical and real-time operations. Apart
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from simulating the RTCI-induced phenomena and reproducing shifts in PT systemdynam-
ics, it can be directly utilised to measure the effectiveness of instantaneous RTCI under
various conditions, as well as its implications for PT system performance and passengers’
travel experience.Our case-study findings already indicate its certain advantages and short-
comings: positive changes in journey experience that might be however coupled with
substantial inaccuracy risks. This might raise concerns as to whether passengers would
ultimately trust and follow such instantaneously generated crowding information. Impor-
tantly, in simulations we assume a universal (100%) response rate to the RTCI, since our
objective is to illustrate the generic effects of RTCI provision and contrast them with the
‘no RTCI’ network. In reality, not all the passengers will ultimately obey the RTCI, and so the
influence of variable RTCI penetration rates needs to be further explored.

Whilewe hope that our study provides an enriching contribution towards the novel RTCI
solutions, it canbe also seen as a groundwork paving theway for follow-upworks necessary
in this interesting and extensive research field. The methodology presented in this study
focuses specifically on instantaneous RTCI scheme that is generated from a single (most
recent) PT departure but it has been formulated in a universal way and can be directly
extended to implement various feasible RTCI generation strategies, e.g. weighted crowd-
ing information of real-time services and/or historical data, as well as inclusion of crowding
prediction algorithms. While demonstrating the general capabilities of our RTCI algorithm,
application findings presented in this paper are formulated based on specific case-study
conditions. More research is needed to understand the effects of RTCI systems in relation
to different scenario assumptions and derive universal (transferable) conclusions, consid-
ering e.g. network coverage, and variable (over)crowding conditions. Results are specific
to our RTCI penalty function (Table 3), which should be validated in empirical investiga-
tion. For example, perceptions of crowding penalty need not be only a function of absolute
volume-capacity ratios, but can also include probability of getting a seat at a certain jour-
ney stage (e.g. Sumalee, Tan, and Lam 2009). This would then imply a relative decrease in
crowding penalty for longer trips.

Crucially, our framework assumes that passengers do not have any prior expectations
of crowding information and can only follow the currently available RTCI. This can be
deemed representative for RTCI impacts in case of travellers unfamiliar with the PT system
or for unexpected network events, but may also overestimate the potential RTCI bene-
fits. An extended RTCI algorithm should reflect the passengers’ long-term accumulation
of travel experience, acquisition of crowding experience vs. crowding information and
day-to-day adaptation of travel strategies. This can be further reformulated as an equi-
librium seeking process between disseminated crowding information vs. resultant travel
choices, where systemoperatormay learn its dynamics and seek to provide predictive RTCI,
whereas PT users may use their experience to anticipate actual realisation (i.e. travel con-
ditions) from the RTCI. Solution of this iterative problem will help understand how RTCI
provision can contribute to shifting the PT network from non-cooperative user equilibrium
towards double-anticipatory user equilibrium. The latter is expected to result with condi-
tions which are more similar to those obtained under system optimum conditions. Thus,
another interesting and worthwhile research direction concerns the application of RTCI
simulation models to plan such (pro)active control and demand management strategies,
which might improve network performance (and simultaneously e.g. reduce the risk of
information inaccuracy or service unreliability).
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Moreover, other demand-side determinants can also play a relevant role in overall
assessment of the RTCI effects, including the heterogeneity in travel behaviour (with
regards to both reading of RTCI and choice response) or demand elasticity impacts of RTCI.
Additionally, in this studywe focuson the spatial dimensionofRTCI impactupon travel deci-
sions, i.e. how it affects the choice probability of a specific PT route. These considerations
can be extended to temporal effects, i.e. how RTCI may also influence the choice proba-
bility of individual PT departures, either instantaneously and/or in the long-term. Finally,
validation of actual (revealed) passenger behaviour in the future will be an essential step
towards developing proposed model into a reliable, evidence-based analytical tool for the
RTCI systems in PT networks.
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