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Abstract An efficient resource model updating framework concept was proposed aiming for the improvement of raw

material quality control and process efficiency in any type of mining operation. The concept integrates sensor data

measured online on the production line into the resource or grade/quality control model and continuously provides locally

more accurate estimates. The concept has been applied in a lignite field with the aim of identifying local impurities in a

coal seam and to improve the prediction of coal quality attributes in neighbouring blocks. A significant improvement was

demonstrated which led to better coal quality management. So far, the proposed concept and the application in coal mining

was limited to a case where online measurements were unambiguously trackable due to a single extraction face being the

point of origin for the material. This contribution presents an extension to the case, where characteristics from blended

material, originating from two or three simultaneously operating extraction faces, are measured. The challenge tackled in

this contribution is the updating of local coal quality estimates in different production benches based on measurements of a

blended material stream. For a practical application of the updating concept, which is based on the Ensemble Kalman

Filter, a simple method for generating prior ensemble members based on block geometries defined in the short-term model

and the variogram, is discussed. This method allows for a fast, semi-automated and rather simple generation of prior

models instead of generating a fully simulated deposit model using conditional simulation in geostatistics. It should foster

operational implementation in an industrial environment. The main purpose of this article is to investigate the applicability

of the developed framework with a simplified prior resource model. In addition to this any model improvements due to the

integration of sensor data obtained by observing a blend of coal from multiple extraction faces is investigated.

Keywords Resource model updating � Online sensor � Ensemble Kalman filter � Multiple excavator � Lignite � Real
application

1 Introduction

One of the main challenges in mining is the control of

product quality, which is impacted by impurities in the

deposit, such as waste intrusions in coal seams. In lignite

operations, these impurities can lead to high ash values

(e.g. more than 15% ash) and cannot be localized com-

pletely by exploration data and captured in the predicted

deposit models.

Utilizing online-sensor techniques for coal quality

characterization in combination with rapid resource model

updating, a faster reaction to the unexpected deviations can
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be implemented during operations, leading to increased

production efficiency. This concept was first proposed as a

closed loop framework by Benndorf et al. (2015). The

developed framework is based on the concept of data

assimilation, in particular to the Ensemble Kalman filter

(EnKF) (Evensen 1994; Evensen and Van Leeuwen 1996;

Evensen 1997a, b; Burgers et al. 1998; Evensen and Van

Leeuwen 2000). It integrates online-sensor data obtained

during the extraction process, e.g. measured on a belt

conveyer, into the resource model, as soon as they are

obtained.

The first investigation (Benndorf 2015) has proven the

approach to work well within a synthetic case study under a

variation of several control parameters (number of exca-

vators, precision of the sensor, update interval, measure-

ment interval, extraction mode/production rate). Wambeke

and Benndorf (2016) extended the framework for practical

application, including the handling of attributes and mea-

surements showing a non-Gaussian distribution, dealing

with localization and inbreeding issues, avoiding the spu-

rious correlations and increasing the computational effi-

ciency. The third investigation (Yüksel et al. 2016)

implemented the framework in a full case study by

adapting implementation details for coal quality attributes

in a continues mining environment. The applicability of the

framework for a full scale lignite production environment

was validated and significant improvements were demon-

strated. These results have been achieved by a test case

where one sensor has been placed on the excavator. This

sensor observes the produced material from that excavator

and the data produced by this sensor is being used for

updating the neighbourhood blocks around the mined

blocks. Thereafter, Yüksel and Benndorf (2016) investi-

gated the performance of the resource model updating

framework with respect to main parameters, which are the

ensemble size, localization and neighbourhood strategies

and the sensor precision.

In many mining operations material quality control

measurements are taken at central locations in the down-

stream process, such as, on a central conveyor belt or from

the trains that are loaded after the coal blending yard. In

this case the measurements represent a blend or a combi-

nation of material originating from multiple extraction

faces. The measurement of one sample cannot be tracked

back to one origin of the material. However, a collection of

multiple measurements over time would allow to solve this

unambiguity. In this contribution the updating framework

is applied while multiple excavators are producing at dif-

ferent benches. This is done in order to understand the

updating performance when feeding the blended coal

observations back to multiple excavator locations from

where the production originates.

A second aspect discussed here is the practical imple-

mentation in an operational environment. The resource

model updating concept is based on EnKF, which requires

ensemble members (or realisations). These can be obtained

by conditional simulation (Benndorf 2013; Pardo-Igúz-

quiza et al. 2013; Srivastava 2013; Tercan and Sohrabian

2013), which can be a time consuming effort requiring

some expert knowledge. For operational implementations,

the process should be rather simple and robust. Therefore,

the aim is to investigate whether realizations of a prior

model can be obtained rather simple without loss of

updating performance.

This study aims to present a new application of the

framework in a full scale lignite production, where the

initial resource model generation is automated based on a

short-term model. This would immediately increase the

production efficiency in a real mining environment, by

simply giving the opportunity to react on the changes of the

resource model with newly gained information. Moreover,

using the real-time updating framework would also

decrease the frequency of material misallocation. Having

an improved resource model helps to have a smaller

amount of actual lignite being incorrectly allocated to the

waste dump. And similarly, a smaller amount of actual

waste send to the stockpile.

In the following paper a real lignite mining case study is

presented in order to compare the updating frameworks’

performance with a prior model based on conditional simu-

lation and a prior model based on a short-term model. The

comparison experiments are performed for different time

intervals and different number of excavators. Results of this

investigation should help the automation process when the

framework is being used in a real mining environment.

2 Updating coal attributes in a resource model
based on online-sensor data

For rapid updating of the resource model, sequentially

observed data have to be integrated with prediction models

in an efficient way. This is done by using sequential data

assimilation methods, namely the EnKF based methods.

Let Z xð Þ be the state of a stochastic process modelling

the spatial distribution, where Z refers the local ash content

at excavation locations x. The developed framework uses

geostatistical simulation technique (e.g. conditional simu-

lation) in order to create the ensemble of realizations, also

called prior ensemble Z0 xð Þe, where e ¼ 1; . . .;N is the

number of realizations. Then the updated resource model

ensembles, Z� xð Þe, is calculated by the following equation:

Z� xð Þe¼ Z0 xð ÞeþKe le � AZ0 xð Þe½ � ð1Þ
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where Z xð Þe and le respectively consist of an ensemble of

realizations and the sensor based measurements; A repre-

sents a forward simulator of the production sequence, so

the term AZ0 xð Þe represents the predicted measurements

based on the prior block model. In Eq. (2), C�e
zz refers to the

updated error covariance of the resource model, where the

overbar denotes the expected values of the ensembles.

C�e
zz ¼ Z xð Þe�Z xð Þe

h i
Z xð Þe�� Z xð Þe
h iT

ð2Þ

The Kalman gain, K, calculates a weighting factor that

indicates the reliability of the measurements, to decide

‘‘how much to change the prior model by a given mea-

surement’’. The covariance matrices represent the whole

ensemble and the Kalman gain Ke is derived from these.

Ke ¼ ATCe
zzAþ Ce

ll

� ��1
ATCe

zz ð3Þ

Two measures are implemented by (Wambeke and

Benndorf 2016) to reduce computational time of Kalman

gain calculations. The first measure is related to the

neighbourhood. The size of the Czz matrix is in the order of

the size of the blocks that are in the defined updating

neighbourhood. The second measure is a Cholesky

decomposition which is implemented to avoid an explicit

computation of the inverse in Eq. (3). This results in sig-

nificant computational speed ups.

Blended measurements and differences in the scale of

support are dealt through the empirical calculation of the

covariances. These covariances (ATCe
zz) mathematically

describe the relations between the blended measurements

and individual source locations.

With the goal of a continuously updatable coal quality

attributes in a resource model, a framework based on the

normal-score ensemble Kalman filter (NS-EnKF) (Zhou

et al. 2011) approach was tailored for large scaled mining

applications. The NS-EnKF is chosen to deal with the non-

gaussianity of the data by applying a normal-score trans-

formation to each variable for all locations and all time

steps, prior to performing the updating step in EnKF.

Figure 1 gives general overview of the operations which

are performed to apply the resource model updating

framework. The concept initially starts with resource

modelling, traditionally by using conditional simulation.

This is the first required data set consisting of ensemble

members to be updated. The second data set consists of the

production data and their related actual sensor measure-

ments. The production data provides the excavated block

information, e.g. names and quantities. The actual online-

sensor measurement values are collected during the lignite

production and they represent the excavated material. The

third data set consists of a collection of actual and pre-

dicted sensor measurements. The predicted measurements

are obtained by applying the production sequence as a

forward predictor to prior resource model realizations.

Once all of the input data are provided, the updated pos-

terior resource model will be obtained. This process will

continue as long as new online-sensor measurement data is

received.

3 A simplified prior model

As mentioned earlier, the first data set required to apply the

resource model updating framework is a collection of the

resource model realizations, also called the prior model.

Traditionally, this is done by sophisticated geostatistical

methods, such as conditional simulation. However, this

requires some expert knowledge and adds an additional

step prior to using the updating framework. Moreover,

generating a new resource model might create disarray

between geology and mine planning departments in the

company, since they already have a resource model created

by their own team. For these reasons, in order to apply the

updating framework in real mining environment, a more

practical and simplified application of the framework is

required. The proposed simplification obtains the required

prior model realizations by adding fluctuations around the

company’s short-term mining plan. This short-term model

is created by the mining engineers, based on applying the

defined block geometries (Fig. 2) on the company’s esti-

mated block model. In this way, each block will have an

estimated ash value. Figure 3 compares both of the prior

model generation processes.

In order to create the quality model based on short-term

model, the following strategy is employed:

(1) Short-term block model values are generally avail-

able for each block and they deliver the prior

estimation of block attributes (E-type estimate).

(2) A conditional simulation is applied to production

blocks that were in the short-term block model. For

this application, the previously calculated block

scaled variogram model is used. Drill hole locations

with zero ash content are used as the reference point

while running the simulations.

(3) After this, simulated data on the production blocks

refer to the uncertainty and they will be added on

prior estimations of block attributes.

(4) The short-term model based on the simulations is

now ready to be imported into the algorithm as the

first main component (prior model).

(5) The updated resource model (posterior model) will

be split in a mean part, which will be written back to

update the short-term block model. The uncertainty

related part will be written back in the ensemble part.
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As long as new measurement data is obtained, these

steps need to be applied recursively. The process can easily

be automated by using a previously calculated variogram

model and some interfaces. In this way, there will be no

requirement for an additional complex process of creating

conditional simulations since they are not part of the daily

work flow. Moreover, there will be no disarray between a

company’s short-term model and the input prior model of

the updating approach; the integration will be smooth.

Additional to that, no expert knowledge will be required

when applying the framework due to the automated pro-

cess, contrary to conditional simulation application. All of

these simplifications on application are very significant

since it is important to benefit from the framework in a real

mining environment.

4 Application in a full scale lignite production
using multiple excavators

This case study aims to discuss two different aspects. First,

it aims to test the performance of the resource model

updating framework while the sensor is observing a blend

of coal resulting from multiple excavators. Second, it aims

to simplify and semi-automate the framework for easier

application in a real mining environment.

4.1 Case description

The case study is performed on a lignite mining operation

in Germany, where the geology of the field is complex,

including multiple split seams with strongly varying seam

geometry and coal quality distribution (Fig. 4). In this case

study, the challenge originates from the complicated

geology that leads to geological uncertainty associated with

the detailed knowledge about the coal deposit. This

uncertainty causes deviations from expected process per-

formance and affects the sustainable supply of lignite to the

customers. The aim is to improve the knowledge over the

coal deposit and increase the process performance by

applying a resource model updating framework.

For the case study, the target area is defined as an

already mined out area of 25 km2, where there are about

3000 drill holes. Mining operations are executed by six

excavators, each working on a different bench. Among

these six excavators, only five of them are continuously

working on a lignite seam. Generally, the maximum

number of excavators that are working at the same time is

Fig. 1 Configuration of the real-time resource model updating framework, modified from (Wambeke and Benndorf 2015)

Fig. 2 Planned block geometries in the production benches
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three. For this reason, the case study will apply cases where

either only one excavator is working, or two excavators are

working or three excavators are working at the same time.

The produced materials are being transported through

conveyor belts. All conveyor belts merge at a central

conveyor belt leading to the coal stock and blending yard,

which is further connected to a train load. Figure 5 presents

the mentioned six benches in black lined blocks, conveyor

belts in blue lines, drill holes as green points and the online

measuring system as an orange point (Fig. 6).

A radiometric sensor measurement (RGI) system is

installed on the central conveyor belt just before the coal

stock and blending yard. This system allows an online

determination of the ash content of the blended mass flow

directly on the conveyor belt, without requiring any sam-

pling or sample processing. For demonstration purposes,

this case study assumes the RGI values to be accurate.

4.2 Data preparation

To apply the resource model updating framework, prepa-

ration of input data is required (Fig. 1). The first data set is

the prior model, which contains a collection of the resource

model realizations. For the case study, two different prior

models are prepared based on different approaches.

Fig. 3 Flow chart of prior model generation

Fig. 4 Complicated geology in the lignite mine

Fig. 5 Production benches, belt system and drill holes on the study

area
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4.2.1 Prior model: based on drill hole data

A prior model based on drill hole data refers to generation of

prior realizations by conditional simulation based on the

given drill hole data. First, the geological model of the

defined coal seam is created on a 25 m 9 25 m 9 1 m

dimensioned block model based on the roof and floor infor-

mation of the lignite seam. Second, a 25 m 9 25 m 9 1 m

dimensioned quality model capturing the wet ash content in

percentages is generated by 25 simulations based on the

provided drill hole data. The simulated ash values are then

merged with the previously defined coal seam. After this, the

block model realizations are ready to be imported into the

algorithm as the first input.

4.2.2 Prior model: based on short-term model

A prior model based on the short-term model refers gen-

eration of prior realizations by adding fluctuations on short-

term mining model of the company. A detailed explanation

of this application is introduced in the previous section.

The updating experiments are performed both for drill hole

based prior model realizations and short-term model based

prior model realizations. This is done in order to compare the

performance of the updating framework while updating dif-

ferently generated prior models. The aim of this performance

comparison is to investigate: ‘‘If the updating framework uses

a non-geostatistical set of simulations as a prior model, would

the updated models still be improved?’’

The second data set consists of the production data and

their related actual sensor measurements. The material

travelling time from each production location (excavator &

bench location) to RGI location is calculated. In order to

determine the location of the received RGI measurement

data, in other words: ‘‘to track back where the measured

material comes from’’, the production data is linked with

the RGI data based on the given timecodes (material travel

delays are taken into account). The second input file for the

algorithm is written to a file containing the following

information: timecode, actual sensor measurement (RGI

data), excavated block1 id, excavated block1 mass, exca-

vated block2 id, excavated block2 mass,…, excavated

blockn id, the excavatedn block mass; where b ¼ 1; . . .; n is

the excavated block number in the given time span.

The third data set consists of a collection of actual and

predicted sensor measurements. An ensemble of predicted

values is obtained by the forward simulator applying the

digging location and the material transport model to each

realization. The third input file for the algorithm is written

to a file containing the following information: the block ID,

central block location (X, Y, Z coordinates), a series of real

measurements and predicted measurements.

4.3 Experimental set-up

The experiments that are performed both with drill hole

based and short term plan based prior model realizations,

fall into two different categories. The first category

involves a different time span based experiments, where

updating of the prior model is performed every 2, 1 h, 30,

15 and 10 min. For these experiments, the related RGI and

production data are linked to each other (for every minute)

and averaged for each indicated time span.

The second category involves experiments that are

based on the number of excavators producing coal at a

given time period. It investigates the capability of the

updating framework when updating multiple benches based

on a blend of material measurements. For these experi-

ments, the data set that is prepared for every 2 h of

updating is taken as the base data and divided into three

different data sets. This division is done based on the

number of excavators that are producing coal at a given

time span such as; 1 excavator, 2 excavators and 3

excavators.

For each criteria introduced above, an experiment is

performed. Each experiment initially updated the prior

model for a four day time period. Based on this resulting

posterior model, forward simulator is used to generate

Fig. 6 Radiometric sensor measurement device, installed on the conveyor belt, measuring blend of coal resulting from multiple excavators, just

before the stock pile
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predicted posterior model values for the future mining

operations (for next two days). These predictions are then

compared with the related RGI data. Chosen time spans are

representative for any time span that might be chosen in the

future.

The updating neighbourhood size is chosen as

900 m 9 900 m 9 10 m in X, Y, Z directions based on the

variogram model range, which was calculated during geo-

logical modelling. A 225, 225, 5 m sized localization is

applied for each mentioned experiment in order to prevent

long range spurious correlations based on a previously per-

formed sensitivity analysis (Yüksel and Benndorf 2016).

5 Results and discussion

5.1 Results

This section presents representative results of the previ-

ously defined experiments. The following graphs provide

representative information where the X-axis refers to the

mentioned time spans, i ¼ 0; 1; 2; . . .; n. Instead of writing

the full date and time information, the authors decided to

use time span codes for simplicity. For example for the

case where the updating is every 2 h; if i = 0 refers on

01.01.2014 at 00:00 o’clock, i = 10 refers 20 h later,

which is 01.01.2014 at 20:00 o’clock. Y-axis refers to the

ash %. The presented graphs consist of the following

information:

(1) Posterior Model Box Plots: Box plot representation

of posterior model simulations which are updated

based on a given criteria (e.g. updating every 2, 1 h,

30, 15 or 10 min; or updating while 1 excavator, 2

excavators or 3 excavators are producing).

(2) Posterior Mean: Represents the mean of the updated

models in the learning period. Essentially, it is the

mean of the posterior model that is updated based on

a given criteria.

(3) Predicted Mean: Represents the mean of the predic-

tions in the prediction period. Basically, it is the

prediction of future mining blocks, based on the

four-day-long-updated model.

(4) Prior Mean: Mean of the prior model that is created

based on either the drill hole data or short-term

model. It is mined through different operation files

based on a given criteria (e.g. updating every 2, 1 h,

30, 15 or 10 min; or updating while 1 excavator, 2

excavators or 3 excavators are producing).

(5) RGI: The averaged RGI data for a given time span.

(6) White area: Represents the learning period, where

posterior models are produced as a result of updating

the prior model, by using the RGI data.

(7) Green area: Represents the prediction period, where

the mining operations are executed on the four-day-

long-updated model.

In these graphs the prior model is updated for four days.

Based on this updated prior model, the posterior model,

further mining operations are performed for the next two

days. The operation file mines through the posterior model

and highlights the area as green.

5.1.1 Using a prior model that is based on conditional

simulation

The achieved improvements are numerically evaluated

using an absolute error measure. The absolute error is

defined as the absolute difference between the measured

value of a quantity and its actual value. In our case,

absolute error refers to the absolute difference between the

measured RGI value l of produced coal at a given time span

and its prior Z0 xð Þ (or posterior Z� xð Þ) value, calculated by

the following equation:

AE ¼ 1

n

Xn
i¼0

li � Z� xð Þi
�� �� ð4Þ

The absolute error values are calculated for each

experiment iteration at a given time span i ¼ 0; . . .; n and

eventually averaged when the update of the block model is

completed for the defined study case.

Table 1 provides the calculated absolute errors for prior

models and predictions that are illustrated in the green area

of the graphs. Additional to that, it indicates the improve-

ment (IMPROV) in percentages when comparing prior’s

and predictions’ absolute errors. Improvements indicate the

decrease of the absolute errors and it can be calculated as;

IMPROV ð%Þ

¼ PriorModelAbsoluteError � PredictedModelAbsoluteError

PriorModelAbsoluteError

ð5Þ

Moreover, Fig. 10 presents the calculated absolute error

for the following two days after updating the prior model

every 2 h for four days. Red dots illustrate the calculated

absolute errors for each time span.

5.1.2 Using a prior model that is based on short-term

model

The achieved improvements are presented using ‘‘absolute

error’’ as previously introduced. Table 2 provides the cal-

culated absolute errors for prior models and predictions.

The improvement percentages (IMPROV) are calculated

by comparing the absolute errors of prior and prediction

models.
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Moreover, Fig. 14 presents the calculated absolute error

for the following two days after updating the prior model

every 2 h for four days. Red dots illustrate the calculated

absolute errors for each time span.

6 Discussion

6.1 Improvements of predictions

Figures 7, 8 and 9 illustrate the improvement of the ash %

predictions in the posterior model, where updating of the

prior model (developed from drill hole data) is applied

based on RGI data for four days. The ensuing posterior

model is mined through based on production data. The

predictions of the posterior model while mining the

neighbourhood blocks are then compared with the actual

ash % (in this case RGI measurements are assumed as

reality) and prior model. Representative graphs are pro-

vided (Fig. 10).

Figure 7 presents the case where the prior model (based

on drill hole data) is being updated for every 2 h for four

days. The following green area represents a period of two

days, where orange points represent the averaged

prediction behaviour of the posterior model which is

updated for four days. In this time period, it can be

observed that posterior model predictions are mostly fol-

lowing the trend of the RGI data (red lines). Moreover,

when comparing the posterior model predictions with the

prior model (blue square points), significant improvements

are observed in the posterior predictions. Based on Table 1,

the averaged absolute error for those predictions is 0.82,

while it is 2.25 for prior model. This indicates a 64%

improvement.

Figure 8 presents the case where the prior model (based

on drill hole data) is being updated every 2 h when only 1

excavator is operating for four days. Similarly, in the green

area, orange points represent the averaged prediction

behaviour. Between the 50th–52nd and the 55th–58th

timecodes, posterior model predictions are remaining

stable due to production of the same mining block at each

time. This stable prediction averages around the reality

(RGI data). Moreover, uncertainty of the predictions (box

plot whiskers) covers the reality (RGI data) better than the

prior model. After the 63rd timecode, posterior model

predictions follow a similar trend as the prior model due to

spatial variability of the lignite seam. Furthermore, since

this experiment focused on a case with only one excavator

Table 1 Calculated absolute errors for predictions—Prior model is based on drill hole data

Time Prior model Predictions originated from posterior model

Absolute error Absolute error IMPROV (%)

2 h 2.25 0.82 64

1 h 2.82 1.03 43

30 min 1.20 1.14 5

15 min 2.59 2.08 20

10 min 2.57 2.39 7

1 Exc 2.22 1.87 16

2 Exc 1.72 0.96 44

3 Exc 1.12 0.92 18

Table 2 Calculated absolute errors for predictions—Prior model is based on short-term model

Time Prior model Predictions originated from posterior model

Absolute error Absolute error IMPROV (%)

2 h 1.09 0.70 36

1 h 0.99 0.84 14

30 min 1.49 1.27 15

15 min 4.37 1.17 73

10 min 4.24 1.59 63

1 Exc 2.10 1.36 35

2 Exc 1.13 0.91 19

3 Exc 1.18 0.89 25
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producing, the application was not limited only for one

bench. As a result, after updating four days in three

benches, using only the times where one excavator is

working, could only improve the future predictions for a

limited time. The authors believe that for this case, the

quality and the lifetime of the predictions can be improved

by extending the learning phase (more than four days).

Figure 9 presents the case where the prior model (based

on drill hole data) is being updated every 2 h when 2

excavators are operating for four days. By using 2 exca-

vators at the same time, already more information becomes

available about the lignite seams that are being worked on

and this leads a longer time of good quality improvements.

This can be seen by comparing Figs. 8 and 9.

Figures 11, 12 and 13 apply the same experiments as

above, however in these figures the prior model is based on

the short-term model. With these experiments similar

results as before were achieved. In Fig. 11, where the

updating of the prior model is every 2 h, predicted ash %

values are almost always aligned with the reality (RGI

data). Figure 12 presented a case with 1 excavator and

Fig. 13 presented a case with 2 excavators. As above, when

looking to those two graphs, better predictions are observed

when using 2 excavators.

For both cases, Figs. 10 and 14 are provided in order to

investigate the behaviour of the absolute error values

obtained from predictions. The absolute error values are

initially very low, but after approximately a day period

Fig. 7 Results based on conditional simulation: updating every 2 h for 4 days. The green area represents the prediction period. The white area

represents the learning period

Fig. 8 Results based on conditional simulation: updating every 2 h for 4 days, 1 excavator producing. The green area represents the prediction

period. The white area represents the learning period
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they indicate an increase over time. When the distance

between the mined block and the neighbourhood blocks

increases, it is expected to see less improvement for the

neighbourhood blocks. This occurs due to the lower spatial

correlation. Moreover, when predicting the neighbourhood

blocks there might be some blocks that are not updated in

the learning period. This causes not only an increase in the

absolute error over the time, but also outliers in the early

Fig. 9 Results based on conditional simulation: updating every 2 h for 4 days, 2 excavators producing. The green area represents the prediction

period. The white area represents the learning period

Fig. 10 Absolute error predictions (for the next 2 days) of after updating every 2 h for 4 days

Fig. 11 Results based on short-term model: updating every 2 h for 4 days. The green area represents the prediction period. The white area

represents the learning period
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phases of the prediction period. For example, see timecode

55 in Fig. 10 or see timecode 51 and 54 in Fig. 14. These

outliers can be observed and the reason that they occur can

be explained as follows: at each individual timestamp there

are different blocks being mined from different benches. If

a block gets mined in the prediction period and it has not

been mined in the learning period or if it has not been in the

neighbourhood of any other mined blocks, it has never

Fig. 12 Results based on short-term model: updating every 2 h for 4 days, 1 excavator producing. The green area represents the prediction

period. The white area represents the learning period

Fig. 13 Results based on short-term model: updating every 2 h for 4 days, 2 excavators producing. The green area represents the prediction

period. The white area represents the learning period

Fig. 14 Absolute error predictions (for the next 2 days) after updating every 2 h for 4 days
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been updated. Thus, it still has the prior model’s value

assigned on it. This results in a prior biased prediction and

an increase of the absolute error.

6.2 Time based experiments

Different time span based experiments are performed (ev-

ery 2, 1 h, 30, 15 and 10 min) for updating the prior model

based on drill hole data. In overall, significant improve-

ments (up to 64%) are obtained while updating the prior

model with measured RGI values and predicting neigh-

bourhood blocks’ qualities (Table 1). A comparison among

the performed experiments between the most frequent

update (every 10 min) and the least frequent update (every

2 h), shows that highest improvements are achieved by the

least frequent updates of this case (every 1 and 2 h

updating cases).

Similar to the above experiments, different time span

based experiments are also performed for updating the

prior model based on the short-term model. All of the

experiments show satisfactory improvements (up to 73%)

(Table 2). In this case, the highest improvements are

achieved by the most frequent updates (every 15 and

30 min).

However, calculating these absolute errors does not

necessarily indicate the best parameters to use. It only

validates the applicability of the method for the given

parameters. It should not be forgotten that the calculated

absolute errors for predictions can vary depending on the

quality of the posterior model that is chosen as the base of

the predictions. For each case this paper has chosen the

posterior models that are obtained after four days of

updating the prior model. Other experiments are also

applied to test this issue and they all recorded significant

but varying amounts of improvements.

6.3 Excavator number based experiments

Experiments based on a different number of working

excavators are performed in order to investigate the capa-

bility of the updating framework. The previous case study

(Yüksel and Benndorf 2016), in which the study area was

limited to one bench and one producing excavator, pro-

duced successful results. The RGI online-sensor was

positioned on the producing excavator, so that the mea-

sured material was the produced material from that exca-

vator. However, in this case study, there are three different

benches and three different producing excavators (one

excavator for each bench). The online RGI sensor is

positioned on one of the conveyor belts just before the

stock yard. Therefore, the RGI sensor measures blended

material produced from different benches. The aim of

performing the mentioned experiments in this section is to

test the performance of the updating algorithm in when the

observations are measured from a blended flow.

By looking at Table 1, a range of 16%–44% improve-

ment is observed when using a varying amount of exca-

vators in the updating experiments with a drill hole based

prior model. This shows that the algorithm can handle a

situation where the blended measurement data is fed into

different benches where the material is originally produced.

By looking at Table 2, a range of 19%–35% improve-

ment is observed when using a varying amount of exca-

vators in the updating experiments with a short-term model

based prior model. The obtained improvements are sig-

nificant considering the benefits of automation while using

a short-term model based prior model. Once again, the

results indicate that the algorithm can handle a situation

where the blended measurement data is fed into different

benches where the material is originally produced.

7 Conclusions

This study provides a full-scale case study on the appli-

cation of an Ensemble Kalman based resource model

updating framework, with the aim of simplifying the

application process.

To offer an easy application of the updating framework

in a real mining environment, a simplified application

method is created. This simplified application method

involves creating the prior realizations based on the com-

pany’s short-term model. Improvement percentages, in

average, were not significantly different when the case

study results are compared with the results obtained from a

case study where the prior realizations are generated with

geostatistical simulations. This paper validates that the

automation of the developed framework during real

applications can be done based on a short-term model

without any additional process being required in order to

prepare the prior model.

Moreover, significant improvements are observed while

using blended material measurement data in order to

update different production locations in different benches.

This provides great flexibility for future applications.

The authors would like to point out that this method can

be applied to any bulk mining operation, without changing

the core method and improvements, if a material tracking

system, grade or quality control model and online-sensors

measurement system are in place.

Future studies will focus on the value of introducing

additional information in the short-term model during the

production phase.
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