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SUMMARY

The numerical solution of the Helmholtz equation presents significant challenges in
computational mathematics and scientific computing, particularly for high-frequency
problems in heterogeneous media. This dissertation addresses these challenges
through the development of high-performance iterative methods, focusing on the
critical balance between numerical efficiency and practical implementation on mod-
ern computing architectures.

The research is motivated by the growing computational demands in seismic ima-
ging and other wave propagation applications, where increasing frequencies and larger
domains necessitate more efficient solution strategies. Traditional approaches often
struggle with the combined challenges of wavenumber-dependent convergence, pollu-
tion errors, and substantial memory requirements, particularly for three-dimensional
problems in heterogeneous media.

This work presents a comprehensive framework for solving large-scale Helmholtz
problems through matrix-free parallel implementations of preconditioned iterative
methods. The framework combines Complex Shifted Laplace Preconditioner (CSLP)
with advanced deflation techniques, implemented in a manner that eliminates the
need for explicit matrix storage while maintaining computational efficiency. A key
innovation is the development of matrix-free implementations for higher-order de-
flation methods combined with the CSLP preconditioner, achieved through carefully
designed re-discretization schemes that preserve the advantages of Galerkin coarsen-
ing.

The methodology progresses from two-dimensional implementations to fully three-
dimensional frameworks, incorporating increasingly sophisticated preconditioning
techniques. A significant achievement is the development of a matrix-free parallel
multilevel deflation preconditioner that exhibits near wavenumber-independent con-
vergence while maintaining excellent parallel scalability. The implementation utilizes
a hybrid MPI+OpenMP parallelization strategy, effectively addressing both computa-
tional and memory challenges in extreme-scale scenarios.

Extensive numerical experiments validate the effectiveness of these methods across
a range of problem types, from academic test cases to industrial-scale applications.
Notably, the framework successfully resolves a challenging seismic model, involving
approximately 3.8 billion degrees of freedom, while achieving 86% parallel efficiency
when scaling to 2304 CPU cores. This demonstration of practical viability for large-
scale heterogeneous problems represents a significant advance in computational
capabilities for seismic imaging applications.

The research makes several fundamental contributions to the field of numerical
analysis and scientific computing. First, it establishes new approaches for matrix-free
implementation of state-of-the-art preconditioners, significantly reducing memory
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requirements while maintaining numerical efficiency. Second, it demonstrates the
achievement of close-to wavenumber-independent convergence through carefully de-
signed deflation strategies in a parallel computing environment. Third, it provides a
comprehensive framework for solving extreme-scale Helmholtz problems that com-
bines numerical robustness with practical applicability.

The methodologies developed in this work contribute to the broader field of sci-
entific computing, demonstrating how careful algorithm design, combined with mod-
ern computing architectures, can address previously intractable problems in wave
propagation modeling.
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De numerieke oplossing van de Helmholtzvergelijking vormt een belangrijke uitda-
ging in de computationele wiskunde en het wetenschappelijk rekenen, vooral voor
hoogfrequente problemen in heterogene media. Dit proefschrift adresseert deze uit-
dagingen door de ontwikkeling van hoogwaardige iteratieve methoden, met focus
op de cruciale balans tussen numerieke efficiëntie en praktische implementatie op
moderne computerarchitecturen.

Het onderzoek wordt gemotiveerd door de groeiende computationele eisen in seis-
mische beeldvorming en andere golfvoortplantingstoepassingen, waar toenemende
frequenties en grotere domeinen efficiëntere oplossingsstrategieën vereisen. Traditio-
nele benaderingen worstelen vaak met de gecombineerde uitdagingen van golfgetal-
afhankelijke convergentie, vervuilingsfouten en substantiële geheugenbehoeften, voor-
al voor driedimensionale problemen in heterogene media.

Dit werk presenteert een uitgebreid raamwerk voor het oplossen van grootschalige
Helmholtzproblemen door matrix-vrije parallelle implementaties van gepreconditio-
neerde iteratieve methoden. Het raamwerk combineert de Complex Shifted Laplace
Preconditioner (CSLP) met geavanceerde deflatietechnieken, geïmplementeerd op een
manier die de noodzaak van expliciete matrixopslag elimineert terwijl de computa-
tionele efficiëntie behouden blijft. Een belangrijke innovatie is de ontwikkeling van
matrix-vrije implementaties voor hogere-orde-deflatiemethoden in combinatie met
de CSLP-preconditioner, bereikt door zorgvuldig ontworpen her-discretisatieschema’s
die de voordelen van Galerkin-coarsening behouden.

De methodologie ontwikkelt zich van tweedimensionale implementaties naar vol-
ledig driedimensionale toepassingen, met steeds geavanceerdere preconditionerings-
technieken. Een belangrijke prestatie is de ontwikkeling van een matrix-vrije parallelle
multilevel-deflatie-preconditioner die bijna golfgetal-onafhankelijke convergentie ver-
toont terwijl de uitstekende parallelle schaalbaarheid behouden blijft. De implemen-
tatie maakt gebruik van een hybride MPI+OpenMP parallellisatiestrategie, die effectief
zowel de computationele als geheugenuitdagingen in zeer grote scenario’s aanpakt.

Uitgebreide numerieke experimenten valideren de effectiviteit van deze methoden
voor verschillende probleemtypes, van academische testcases tot industriële toepas-
singen. Met name lost het raamwerk met succes een uitdagend seismisch model
op met ongeveer 3,8 miljard vrijheidsgraden, waarbij 86% parallelle efficiëntie wordt
bereikt bij schaling naar 2304 CPU-kernen. Deze demonstratie van praktische haal-
baarheid voor grootschalige heterogene problemen vertegenwoordigt een significante
vooruitgang in computationele mogelijkheden voor seismische beeldvormingstoepas-
singen.

Het onderzoek levert verschillende fundamentele bijdragen aan het gebied van nu-
merieke wiskunde en wetenschappelijk rekenen. Ten eerste introduceert het nieuwe
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benaderingen voor matrix-vrije implementatie van geavanceerde preconditioners, wat
de geheugenbehoeften aanzienlijk vermindert terwijl de numerieke efficiëntie behou-
den blijft. Ten tweede demonstreert het het bereiken van bijna golfgetal-onafhankelijke
convergentie door zorgvuldig ontworpen deflatiestrategieën in een parallelle reken-
omgeving. Ten derde biedt het een uitgebreid raamwerk voor het oplossen van zeer
grote Helmholtzproblemen dat numerieke robuustheid combineert met praktische
toepasbaarheid.

De methodologieën ontwikkeld in dit werk dragen bij aan het bredere gebied van
wetenschappelijk rekenen, en demonstreren hoe zorgvuldig algoritme-ontwerp, ge-
combineerd met moderne computerarchitecturen, voorheen onoplosbare problemen
in golfvoortplantingsmodellering kan aanpakken.



1
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2 1. INTRODUCTION

1.1. THE HELMHOLTZ EQUATION
Wave phenomena play a fundamental role in numerous physical processes and tech-
nological applications, from seismic wave propagation to electromagnetic wave trans-
mission. The mathematical description of such phenomena in frequency domain
through the Helmholtz equation, introduced by Hermann von Helmholtz in 1860
[1], has proven instrumental in understanding and modeling wave behavior. Over
the past century, applications of the Helmholtz equation have expanded dramatically,
particularly in geophysical exploration, medical imaging, and telecommunications.
The evolution of solution approaches for the Helmholtz equation closely mirrors the
advancement of computational capabilities. From early analytical solutions limited to
simple geometries, to modern numerical methods capable of handling complex three-
dimensional problems, this progression has continuously enabled new applications
while simultaneously presenting new challenges.

1.1.1. MATHEMATICAL FORMULATION

The Helmholtz equation is a fundamental partial differential equation (PDE) arising
in various fields of physics and engineering. It is typically expressed as:

−∆u −k2u = 0, (1.1)

where ∆=
∑n

j=1Ç
2
x j

denotes the Laplace operator in n variables for n ∈ 1,2,3, u = u(x)

is the unknown scalar field as a function of spatial coordinates x ∈ R
n , and k > 0 is

real parameter called wavenumber, which relates the wave properties as follow

k =
ω

c
=

2π f

c
=

2π

λ
(1.2)

Here, ω represents the angular frequency of the wave, f is the frequency, λ stands
for the wavelength, and c is the phase velocity in the medium. In many applications
involving the modeling of phenomena propagating through heterogeneous media, a
spatially varying velocity c(x) hence a non-constant wavenumber k(x) is implemented
to accurately represent diverse velocity distributions. The Helmholtz equation thus
models wave phenomena under time-harmonic conditions, where all field variables
oscillate sinusoidally with a fixed frequency f .

The non-homogeneous Helmholtz equation commonly appears in practical applic-
ations. This formulation incorporates a source function b(x) on the right-hand side
of Equation (1.1), expressed as

b(x) = δ(x−xs) (1.3)

wherein xs represents the spatial coordinates of the source within the specified
domain. δ (x) is a Dirac delta function and satisfies

∫

δ (x)dx = 1. (1.4)

BOUNDARY CONDITIONS

When solving the Helmholtz equation within a bounded domain Ω ⊂ R
n , it is es-

sential to specify appropriate boundary conditions on the boundary ÇΩ to ensure
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the well-posedness of the problem, as the equation inherently models the indefinite
propagation of waves. The choice of boundary conditions reflects the physical nature
of the problem and the behavior of waves at the domain boundaries. Several types
of boundary conditions are commonly employed in the context of the Helmholtz
equation.

Dirichlet Boundary Conditions The Dirichlet boundary condition prescribes the
value of the solution on the boundary:

u(x) = f (x), x ∈ ÇΩ. (1.5)

where f (x) is a known function defined on the boundary ÇΩ. The homogeneous
Dirichlet boundary condition, that is f (x) = 0, models scenarios where the acoustic
pressure vanishes at the boundary, effectively representing a perfectly absorbing or
pressure-release surface.

Neumann Boundary Conditions The Neumann boundary condition, representing
sound-hard obstacles, specifies the normal derivative of the solution on the boundary:

Çu(x)

Çn
= f (x), x ∈ ÇΩ, (1.6)

where n is the outward unit normal vector to the boundary ÇΩ. The homogeneous
Neumann boundary condition, that is f (x) = 0, models a perfectly reflecting or sound-
hard surface, indicating that there is no net flux of the wave field across the boundary.

Sommerfeld Radiation Boundary Conditions In many applications, the domain
of interest is unbounded, and waves radiate to infinity. The Sommerfeld radiation
condition is imposed to ensure that the solution represents outgoing waves at infinity
and that no incoming waves originate from infinity:

lim
r→∞

r (n−1)/2
(

Çu

Çr
−iku

)

= 0, (1.7)

where r is the radial distance from a fixed point, i is the imaginary unit, and n is the
spatial dimension. This condition mathematically enforces that the solution behaves
asymptotically like an outgoing spherical wave. The Sommerfeld condition ensures
uniqueness of the solution. But it is impractical to implement directly in numerical
computations due to the necessity of modeling an infinite domain. To overcome this,
approximate radiation or absorbing boundary conditions are applied on the artificial
boundary ÇΩ of a truncated computational domain. A commonly used first-order
Sommerfeld boundary condition is

Çu(x)

Çn
−iku(x) = 0, x ∈ ÇΩ. (1.8)

This condition is derived as an approximation of the Sommerfeld condition and
allows outgoing waves to exit the computational domain with minimal reflection. It
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effectively simulates an open domain by absorbing waves at the boundary, thereby
reducing artificial reflections that can contaminate the solution within the domain.

Higher-order absorbing boundary conditions and perfectly matched layers (PML)
are more sophisticated techniques developed to further minimize reflections from the
artificial boundaries in numerical simulations.

Mixed Boundary Conditions In some situations, different types of boundary condi-
tions are applied on different portions of the boundary, leading to mixed boundary
conditions. For example, part of the boundary may be reflective, while another part
is absorbing:

{

u(x) = 0, x ∈ ΓD ,
Çu(x)
Çn

−iku(x) = 0, x ∈ ΓS ,
(1.9)

where ΓD and ΓS are disjoint subsets of ÇΩ corresponding to Dirichlet and Sommerfeld
radiation boundary conditions, respectively. Mixed boundary conditions allow for
greater flexibility in modeling complex physical scenarios, such as wave scattering
by obstacles where different physical properties are present on various parts of the
boundary.

The appropriate selection and implementation of boundary conditions are crucial
for accurately modeling wave phenomena using the Helmholtz equation. Boundary
conditions influence the existence and uniqueness of the solution and affect the
stability and accuracy of numerical methods. In the context of numerical simula-
tions, improper boundary conditions can lead to non-physical solutions, spurious
reflections, and significant errors.

1.1.2. PHYSICAL SIGNIFICANCE

The Helmholtz equation is a cornerstone in the mathematical modeling of time-
harmonic wave phenomena across various fields of physics and engineering. Its
significance stems from its ability to describe the spatial variation of wave fields under
steady-state or oscillatory conditions, where the temporal dependence is sinusoidal.

ACOUSTICS

In acoustics, the Helmholtz equation arises from the linearization of the fundamental
fluid dynamics equations governing sound propagation. Starting with the continuity
equation and the equation of motion for a compressible, inviscid fluid, and assuming
small perturbations around a constant mean state, we obtain the acoustic wave
equation:

1

c2

Ç
2U

Çt 2 −∇2U = 0, (1.10)

where c is the speed of sound in the medium, and U (x, t ) can represent the acoustic
pressure, the density, and, under suitable assumptions, the velocity potential and
the components of the velocity. Assuming time-harmonic solutions of the form
U (x, t ) = u(x)e−iωt , substitution into equation (1.10) yields the Helmholtz equation
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−∆u(x)− ω2

c2 u(x) = 0. This formulation allows for the analysis of steady-state wave
propagation and is fundamental in applications such as architectural acoustics, noise
control engineering, and sonar technology.

ELECTROMAGNETISM

In electromagnetism, Maxwell’s equations describe the behavior of electric and mag-
netic fields. In homogeneous, source-free media, and under the assumption of
time-harmonic fields, Maxwell’s equations reduce to the time-harmonic Maxwell’s
equations

∇×E−iωµH = 0, (1.11)

∇×H+iωϵE−σE = 0. (1.12)

where E and H represents the time-independent electric field and magnetic field,
respectively. The electric permittivity (ϵ), magnetic permeability (µ), and conductivity
(σ) characterize the electromagnetic properties of the propagation medium. In the
context of a homogeneous and isotropic medium, both ϵ and µ maintain positive
constant values, while σ represents a non-negative constant parameter. The con-
ductivity is 0 in a perfect insulator, whereas it assumes positive values in electrically
conducting media.

The system consists of two PDEs with vector-valued functions as their unknown
variables. Eliminating H, one obtains the second-order time-harmonic Maxwell’s equa-
tions governing the electric field, wherein each component satisfies the Helmholtz
equation with k2 =ω2ϵµ+iωσµ:

∆E j +k2E j = 0, for j = 1,2,3. (1.13)

The speed of propagation of electromagnetic waves (e.g. of light) is c = 1p
ϵµ . This

reduction is essential for analyzing electromagnetic wave propagation, including an-
tenna design, waveguide analysis, and optical fiber communications.

ELASTODYNAMICS

In elastodynamics, the propagation of mechanical waves in homogeneous elastic
solids is governed by the Navier equations:

ρ
Ç

2U

Çt 2 = (λ+2µ)∇(∇·U)−µ∇× (∇×U), (1.14)

where U is the displacement vector field, ρ is the density, and λ, µ are Lamé’s
constants characterizing the material’s elastic properties. Assuming time-harmonic
displacements U(x, t ) = u(x)e−iωt , equation (1.14) transforms into:

−(λ+2µ)∇(∇·u)+µ∇× (∇×u)+ω2ρu = 0. (1.15)

By decomposing u into longitudinal and transverse components, each satisfying
a separate Helmholtz equation with different wave speeds, this framework captures
both pressure wave (P-wave) and shear wave (S-wave) in solids, which is critical in
seismology, nondestructive testing, and materials science.
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The ability to model such a wide array of physical phenomena underpins the im-
portance of Helmholtz equation in applied mathematics. It serves as a fundamental
equation for understanding and predicting the behavior of waves in various media
and under different conditions. Moreover, it provides a foundation for advanced nu-
merical methods, which are indispensable tools for solving complex wave propagation
problems in practical engineering applications.

1.1.3. APPLICATIONS

Initially applied primarily in acoustics and electromagnetics, the scope of Helmholtz
equation applications expanded with technological advances in the 20th century. The
development of seismic imaging techniques in 1920s [2] and medical ultrasound
diagnostics in 1940s [3] established the equation’s crucial role in modern imaging
technologies. The advent of computational methods in 1960s enabled a pivotal shift
from analytical to numerical solutions, enabling the treatment of more complex,
realistic problems [4].

ACOUSTIC ENGINEERING AND NOISE CONTROL

In acoustic engineering, the Helmholtz equation is fundamental for analyzing sound
propagation in various environments, which is essential for designing acoustic spaces
and controlling noise.

Solving the Helmholtz equation offers valuable insights into modal characteristics
and resonance phenomena within architectural acoustic environments such as con-
cert halls and performance venues. Through rigorous mathematical analysis of these
solutions, architectural designers can systematically optimize acoustic parameters to
enhance sound clarity, timbral richness, and spatial distribution. Such comprehensive
evaluations enable precise understanding of sound wave propagation and interaction
with structural elements, ultimately facilitating the creation of auditory spaces that
effectively realize the aesthetic and acoustic objectives of musical and theatrical per-
formances. The equation also aids in designing enclosures and barriers that effectively
attenuate sound, contributing to environmental noise control and occupational safety.

FULL WAVEFORM INVERSION IN GEOPHYSICAL EXPLORATION

In geophysics, accurate simulation of seismic waves is crucial for resource exploration
and understanding geological structures.

Full Waveform Inversion (FWI) is a technique that utilizes the complete seismic
data to construct high-resolution subsurface models. Frequency-domain FWI involves
solving the Helmholtz equation across a range of frequencies and iteratively updating
the Earth’s parameter models to minimize the difference between observed and
simulated seismic data [5–7].

Mathematically, FWI aims to find the model parameters (e.g., wave speed c(x)) that
minimize the objective function:

J (m) =
1

2

∑

ω
‖dobs(ω)−dsim(ω;m)‖2, (1.16)
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where dobs is the observed seismic data, dsim is the simulated data obtained by solving
the Helmholtz equation. The model m represents discretized physical properties of
the subsurface. By minimizing the misfit between observed and simulated wave fields,
which involves solving a nonlinear optimization problem, researchers can iteratively
reconstruct subsurface velocity models with unprecedented detail.

MEDICAL IMAGING

In medical diagnostics, modern imaging techniques leverage frequency-domain wave
models to generate detailed anatomical representations with high spatial resolution.

For instance, transcranial ultrasound imaging is used for non-invasive diagnostics
and therapeutic interventions within the brain. By mathematically modeling wave
propagation through heterogeneous biological media, researchers can precisely pre-
dict acoustic field distributions within complex anatomical structures like the human
skull. The Helmholtz equation enables quantitative analysis of wave interactions,
accounting for critical factors such as sound speed variations, wave distortions,
and transmission losses through different tissue interfaces. Advanced computational
techniques for solving the Helmholtz equation allow researchers to generate high-
resolution wave propagation models that can guide non-invasive therapeutic inter-
ventions [8].

Similarly, microwave tomography represents a novel medical imaging approach
for brain stroke detection [9], leveraging the Helmholtz equation to model wave
propagation through biological tissues. By analyzing the complex permittivity vari-
ations between healthy and diseased brain tissues, this technique enables rapid,
non-invasive stroke identification and monitoring.

OPTICAL INSTRUMENTATION

In optics, the Helmholtz equation underpins the analysis of diffraction patterns, which
is fundamental in optical instrumentation and imaging technologies.

The paraxial approximation of the Helmholtz equation yields Gaussian beam solu-
tions that describe laser beam propagation [10]. It is crucial for optical engineers
to predict beam behavior in optical systems and designing laser resonators, cavities,
and diode modes.

Besides the traditional paraxial approximation, the unidirectional Helmholtz equa-
tion (UHE) is particularly significant for modeling sharply focused laser beams, es-
pecially in turbid media that mimic biological tissues [11]. This approach allows
for a more accurate simulation of light behavior in complex, multi-layered scattering
environments, which is crucial for applications such as optical coherence tomography
(OCT), multiphoton microscopy, and confocal microscopy.

The breadth and depth of applications underscore the Helmholtz equation’s central
role in modeling and understanding wave phenomena across multiple disciplines.
Its study not only advances theoretical knowledge but also drives technological in-
novation, contributing to developments in acoustic design, geophysical exploration,
medical diagnostics, and so forth. By providing precise and robust mathematical
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descriptions, the Helmholtz equation facilitates the exploration of complex physical
systems and the development of sophisticated tools and techniques.

1.2. MODEL PROBLEMS
To evaluate the solution methods for the Helmholtz equation, we present a suite of
model problems that capture essential challenges in Helmholtz applications. These
test cases progress from homogeneous problems to heterogeneous configurations,
incorporating varying wavenumbers and material properties in both two and three
dimensions. The selected problems serve to assess convergence behavior and com-
putational efficiency while representing practical scenarios in wave propagation phe-
nomena.

1.2.1. TWO-DIMENSIONAL MODELS

MODEL PROBLEM 1 - CLOSED-OFF PROBLEM

This problem is the so-called 2D closed-off problem. A rectangular homogeneous
domain Ω= [0,1]2 is considered. The source function is specified by

b
(

x, y
)

=
(

5π2 −k2)sin(πx)sin
(

2πy
)

−k2, Ω= [0,1] (1.17)

It is supplied with the following Dirichlet conditions

u = 1, on ÇΩ (1.18)

Thus, we can have the exact solution given by

u(x, y) = sin(πx)sin
(

2πy
)

+1. (1.19)

MODEL PROBLEM 2 - CONSTANT-WAVENUMBER PROBLEM WITH POINT SOURCE

We also consider a problem with a point source, which can be given by

b
(

x, y
)

= δ
(

x −x0, y − y0
)

, Ω= [0,1] (1.20)

In this problem, the point source is imposed at the center (x0, y0) = (0.5,0.5). The
wave propagates outward from the center of the domain. The Dirichlet boundary
conditions (denoted as MP-2a) or the first order Sommerfeld radiation conditions
(denoted as MP-2b) are imposed, respectively.

The analytical solution for MP-2a is given by [12]

u
(

x, y
)

=
4

L

∞
∑

i=1

∞
∑

j=1

sin

(

iπx

L

)

sin

(

iπx0

L

)

sin

(

jπy

L

)

sin

(

jπy0

L

)

i 2π2 + j 2π2

L2 −k2

(1.21)

where k2 6= i 2π2 + j 2π2. L is the side length of the square domain.
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For MP-2b, the analytical solution is

u(~r ) =
i

4
H (1)

0 (k|~r |) (1.22)

where ~r = (x − x0, y − y0), H (1)
0 is a Hankel function. It should be noticed that if ~r =~0,

the Hankel function will be infinite. Therefore, the value of the Hankel function when
|~r | = h/2 will be used in place of the value for ~r =~0 when calculating the analytical
solution.

MODEL PROBLEM 3 - WEDGE PROBLEM

Most physical problems of geophysical seismic imaging describe a heterogeneous
medium. The so-called wedge problem [13] is a typical problem with a simple hetero-
geneity. It mimics three layers with different velocities hence different wavenumbers.
As shown in Figure 1.1, the rectangular domain Ω = [0,600]× [−1000,0] is split into
three layers. Suppose the wave velocity c is constant within each layer but different
from each other. A point source is located at

(

x, y
)

= (300,0).
The problem is given by

{

−∆u(x, y)−k(x, y)2u(x, y) = b(x, y), on Ω= (0,600)× (−1000,0)
b(x, y) = δ(x −300, y) x, y ∈Ω

(1.23)

where k(x, y) = 2π f
c(x,y) , f is the frequency. The wave velocity c(x, y) is shown in Figure

1.1. The first-order Sommerfeld boundary conditions are imposed on all boundaries.
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Figure 1.1: The velocity distribution of the wedge problem
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MODEL PROBLEM 4 - MARMOUSI PROBLEM

For industrial applications, the fourth model problem is the so-called Marmousi
problem [14], a well-known benchmark problem. The geometry of the problem
stems from the section of the Kwanza Basin through North Kungra. It contains 158
horizontal layers in the depth direction, making it highly heterogeneous.

The problem is given by

{

−∆u(x, y)−k(x, y)2u(x, y) = b(x, y), on Ω= (0,9200)× (−3000,0)
b(x, y) = δ(x −6000, y) x, y ∈Ω

(1.24)

where k(x, y) = 2π f
c(x,y) . The wave velocity c(x, y) over the domain is shown in Figure

1.2. The first-order Sommerfeld boundary conditions are imposed on all boundaries.

Figure 1.2: The velocity distribution of the Marmousi problem

1.2.2. THREE-DIMENSIONAL MODELS

3D CLOSED-OFF MODEL PROBLEM

This problem is a constant wavenumber model with a given solution to validate
the solution methods for 3D problems. A cubic homogeneous domain Ω= [0,1]3 is
considered. The source function is specified by

b
(

x, y, z
)

=
(

21π2 −k2)sin(πx)sin
(

2πy
)

sin(4πz)−k2, Ω= [0,1]3 . (1.25)

It is supplied with the following Dirichlet conditions

u(x, y, z) = 1, on ÇΩ. (1.26)

The analytical solution is given by

u(x, y, z) = sin(πx)sin
(

2πy
)

sin(4πz)+1. (1.27)
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3D CONSTANT-WAVENUMBER PROBLEM WITH POINT SOURCE

To establish a baseline for our numerical methods and to verify the accuracy
of our solutions, we consider a 3D problem with constant wavenumber k in a
rectangular homogeneous domain Ω = [0,1]3. A central point source is given by
δ

(

x −0.5, y −0.5, z −0.5
)

, where δ
(

x, y, z
)

is a Dirac delta function which satisfies

∫ ∫ ∫

δ (x) ·δ
(

y
)

·δ (z)d xd yd z = 1. (1.28)

The wave propagates outward from the center of the domain. To simulate an
unbounded domain, we apply first-order Sommerfeld radiation conditions on all
boundaries, which allow outgoing waves to exit the computational domain with
minimal reflections.

For this constant wavenumber problem, a fundamental solution exists [15], provid-
ing a valuable reference for assessing the accuracy of our numerical methods. The
analytical solution is given by:

u
(

x, y, z
)

=
e ik

√

(x−x0)2+(y−y0)2+(z−z0)2

4π
√

(x −x0)2 +
(

y − y0
)2 + (z − z0)2

, (1.29)

where
(

x0, y0, z0
)

is the location of the source.
With this simplified problem, we aim to establish the validity and efficiency of our

methods, particularly our multilevel deflation approach.

3D WEDGE MODEL PROBLEM

This 3D model extends the 2D wedge problem to mimic three layers with different
acoustic-wave velocities in three dimensions. As shown in Figure 1.3, the parallelepi-
pedal domain Ω= [0,600]× [0,600]× [−1000,0] is split into three layers. Suppose the
acoustic-wave velocity c is constant within each layer but different from each other.
A point source is located at

(

x, y, z
)

= (300,300,0).
The problem is given by

{

−∆u(x, y, z)−k(x, y, z)2u(x, y, z) = b(x, y, z), on Ω

b(x, y, z) = δ(x −300, y −300, z) x, y, z ∈Ω
, (1.30)

The wave velocity c(x, y, z) is shown in Figure 1.3. The first-order Sommerfeld bound-
ary conditions are imposed on all boundaries.

3D SEG/EAGE SALT MODEL PROBLEM

The 3D SEG/EAGE salt model [16] is a velocity field model containing salt domes,
which mimics the typical Gulf Coast salt structure. As shown in Figure 1.4, it is
defined in a parallelepipedal physical domain of size 13520m×13520m×4200m. The
acoustic-wave velocity varies from 1500ms−1 to 4482ms−1. The model is considered
challenging due to the inclusion of complex geometries (salt domes) and a realistic
large-size computational domain. A point source is located at

(

x, y, z
)

= (3200,3200,0).
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Figure 1.3: The velocity distribution of the 3D wedge problem.

The problem is given by

{

−∆u(x, y, z)−k(x, y, z)2u(x, y, z) = b(x, y, z), on Ω

b(x, y, z) = δ(x −3200, y −3200, z) x, y, z ∈Ω
, (1.31)

The wave velocity c(x, y, z) is shown in Figure 1.4. The first-order Sommerfeld bound-
ary conditions are imposed on all boundaries.

1.5e+03 4.5e+032000 2500 3000 3500 4000
Velocity (m/s)

Figure 1.4: The velocity distribution of the 3D SEG/EAGE Salt Model.
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GO_3D_OBS MODEL PROBLEM

In a more realistic geophysical context, we consider the GO_3D_OBS model inspired
by the geology of the Nankai Trough [17]. It is a high-resolution 3D subduction-zone
geomodel developed to address the long-standing challenge of detailed reconstruction
of deep crustal targets by seismic methods. It covers a continental margin at a regional
scale, encompassing the wider range of wave speeds found in the crust and upper
mantle. This model serves as a crucial benchmark for evaluating and minimizing
the acquisition footprint in high-resolution imaging processes such as full waveform
inversion, especially in the context of marine environments where controlled-source
seismic surveys typically employ sparse arrays of ocean bottom seismometers (OBSs).

Figure 1.5 illustrates the acoustic velocity profile of the GO_3D_OBS model, which
encompasses a wide range of velocities from a minimum of 1500ms−1 to a maximum
of 8600ms−1. The point source is positioned at (10000m, 10000m, 900m).

1.5e+03 8.6e+033000 4000 5000 6000 7000
Velocity (m/s)

Figure 1.5: The target of the regional GO_3D_OBS model

1.3. NUMERICAL METHODS
The numerical solution of the Helmholtz equation demands a sophisticated transla-
tion from continuous partial differential representation to a discrete computational
framework – a process fundamentally grounded in numerical discretization. Multiple
discretization strategies, including finite difference, finite element, and spectral meth-
ods, can be used according to specific problem characteristics [18]. Having simple
geometries in geophysical seismic imaging applications, this work mainly employs a
second-order finite difference method.

1.3.1. FINITE DIFFERENCE METHOD

Employing the finite difference method, the computational domain is discretized
utilizing vertex-centered structural grids. A geometric visualization of these grid
configurations is depicted in Figure 1.6.
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Ω1,h Ω2,h Ω3,h

Figure 1.6: Uniform finite-difference grid discretizations for 1D, 2D, and 3D domains.

ONE-DIMENSION

To illustrate the concept of numerical discretization, we begin with the following
one-dimensional (1D) example.

−
d 2u(x)

d x2 −k2u(x) = b(x), x ∈Ω= [0,L] (1.32)

We consider the continuous problem defined on a finite domain Ω1,h = [0,L], which
is discretized using a uniform grid comprising n equally spaced nodes. Given the
interval, we obtain the numerical domain with a step size h = L

n−1 :

Ω1,h = {xi |xi = (i −1)h,h =
L

n −1
,1 ≤ i ≤ n,n ∈N\ {0}}. (1.33)

Spatial grid vectors are introduced to approximate the source function b(x) and the
wave function u(x) on Ω1,h .

u(x) ≈ u(xi ) = uh,i , (1.34)

b(x) ≈ b(xi ) = bh,i , (1.35)

x ∈Ω1,h . (1.36)

By approximating the continuous second-order derivatives with central finite differ-
ence approximations, we have:

−
d 2u(x)

d x2 ≈
−uh,i−1 +2uh,i −uh,i+1

h2 , 2 ≤ i ≤ n −1. (1.37)

which can achieve second-order accuracy O(h2) for smooth solutions on uniform
grids. It can be denoted by the so-called stencil notion

1

h2

[

−1 2 −1
]

. (1.38)

For the 1D Helmholtz equation, we have

−uh,i−1 +2uh,i −uh,i+1

h2 −k2uh,i = bh,i , 2 ≤ i ≤ n −1. (1.39)

Thus, the stencil of the discrete Helmholtz operator is

1

h2

[

−1 2−k2h2 −1
]

. (1.40)
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Discretization of the source function For the discretization of a common source
function given by the Dirac function δ (x −xs ), according to its definition (1.3), we
can set the right-hand side (RHS) as

bh,i =
{ 1

h
, xi = xs

0, xi 6= xs
. (1.41)

Discretization of the Boundary Conditions Discretization of the Dirichlet boundary
conditions (1.5) is straightforward:

uh,1 = f (0), uh,n = f (L) (1.42)

For discretization of Sommerfeld boundary conditions, a ghost point located outside
the boundary points can be introduced. For the 1D case of equation (1.8), for
instance, suppose uh,0 is a ghost point on the left of uh,1, the normal derivative can
be approximated by

Çu

Ç~n
− iku ≈

uh,0 −uh,2

2h
− ikuh,1 = 0 (1.43)

The ghost point can be represented by observing that

uh,0 = uh,2 +2hikuh,1. (1.44)

For consistency, we can also include a ghost point for the Dirichlet boundary
condition. For instance, the ghost point uh,0 can be introduced by the following
relationship

uh,1 =
uh,0 +uh,2

2
(1.45)

which can be rewritten as

uh,0 = 2uh,1 −uh,2 = 2 f (0)−uh,2. (1.46)

As a result, the indices in the discretization scheme (1.39) can range from j = 1 to
j = n whenever the boundary nodes are included.

We can assemble the unknown grid values uh,i and bh,i into column vectors of
dimension n. Consequently, we construct the linear system of equations as follows:

[Ahuh]1≤i≤n =
1

h2

[

−1 2−k2h2 −1
]

[uh]1≤i≤n = [bh]1≤i≤n . (1.47)

Thus, we have transformed the continuous ordinary differential Helmholtz equation
into a linear system of equations. Solving the Helmholtz boundary value problem
now reduces to solving the system:

Ahuh = bh , Ah ∈R
n×n , uh ,bh ∈R

n . (1.48)
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TWO-DIMENSIONAL CASE

The discretization for a two-dimensional (2D) problem can be naturally extended. In
the 2D case, the finite domain becomes a square Ω2,h = [0,L]× [0,L]. By employing
a ghost point extrapolation technique derived from the boundary conditions and
implementing a second-order finite difference discretization approach, we have

−uh,(i , j−1) −uh,(i−1, j ) +4uh,(i , j ) −uh,(i+1, j ) −uh,(i , j+1)

h2 −k2uh,(i , j ) = bh,(i , j ), 1 ≤ i , j ≤ n.

(1.49)
in stencil notation

[Ahuh] =
1

h2





0 −1 0
−1 4−k2h2 −1
0 −1 0



 [uh]1≤i , j≤n = [bh] 1≤i , j≤n . (1.50)

In finite difference methods, stencil notation provides a compact representation of
the discretized differential operator at a specific grid point. The stencil depicts the
geometric pattern of neighboring points and their associated coefficients used in the
numerical approximation.

When assembling the global linear system, each row of the matrix corresponds to
the application of this stencil at a specific grid point. For interior points, the stencil
pattern directly maps to the matrix entries: the diagonal element contains the center
value (4−k2h2)/h2, while off-diagonal elements contain the −1/h2 contributions from
neighboring points.

By implementing an x-line lexicographic ordering of the grid nodes, the unknown
grid values uh,(i , j ) and bh,(i , j ) can be assembled into column vectors of dimension n2,
yielding a linear system

Ahuh = bh , Ah ∈R
n2×n2

, uh ,bh ∈R
n2

. (1.51)

THREE-DIMENSIONAL CASE

For three-dimensional cases, the discrete Helmholtz operator has a 3×3×3 stencil

[Ah] =
1

h2









0 0 0
0 −1 0
0 0 0





z−h





0 −1 0
−1 6−k2h2 −1
0 −1 0





z





0 0 0
0 −1 0
0 0 0





z+h



 . (1.52)

For the 3D case in (1.52), the stencil extends to three dimensions. The subscripts
z −h, z, and z +h denote three 3×3 planes corresponding to the z-coordinate below,
at, and above the current point, respectively. The center plane contains the central
coefficient (6−k2h2)/h2 and four −1/h2 coefficients for neighbors in the x-y plane,
while the planes above and below each contribute one −1/h2 coefficient in the z-
direction. This yields a seven-point stencil that, when assembled into matrix form,
creates a sparse matrix with seven non-zero entries per row for interior points.
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GRID RESOLUTION

Note that kh is an important parameter that can indicate how many grid points per
wavelength are used. The grid width h can be determined by the rule of thumb
of including at least Npw (e.g., 10 or 30) grid points per wavelength. One has the
following relationships

kh =
2πh

λ
=

2π

Npw
. (1.53)

For example, if at least 10 grid points per wavelength are required, one has to satisfy
the condition kh ≤ 0.628.

1.3.2. LINEAR SYSTEM PROPERTIES

The coefficient matrix A resulting from the discretization of the Helmholtz equation
has several characteristic properties. The matrix’s nature, whether real or complex,
depends on the boundary conditions used, specifically Dirichlet or Sommerfeld con-
ditions. With homogeneous Dirichlet boundary conditions, the matrix is normal and
self-adjoint. When Sommerfeld boundary conditions are imposed, matrix A becomes
complex symmetric but non-normal and non-Hermitian.

In essence, the coefficient matrix A represents a discretized Laplace operator aug-
mented by a wavenumber-dependent term involving k2. Closed-form eigenvalue
expressions exist for matrices with homogeneous Dirichlet boundary conditions, but
not for those with Sommerfeld conditions. For a 1D problem, we can express the
continuous eigenvalues λi and the discrete eigenvalues λ̂i as follows

λi = i 2π2 −k2, i = 1,2,3, . . . (1.54)

λ̂i =
1

h2 (2−2cos(iπh))−k2, i = 1,2, . . . ,n −2. (1.55)

It should be noted that the corresponding matrix A is constructed by eliminating the
boundary grid points. The corresponding eigenvectors are given by

v̂i ,h =













sin(πi h)
sin(2πi h)

...
sin((n −2)πi h)













, i = 1,2, . . . ,n −2. (1.56)

For a 2D problem with homogeneous Dirichlet boundary conditions and elimination
of the boundary grid points, the eigenvalues of the coefficient matrix are given by

λi , j = i 2π2 + j 2π2 −k2, i , j = 1,2,3, . . . (1.57)

λ̂i , j =
1

h2

(

4−2cos(iπh)−2cos
(

jπh
))

−k2, i , j = 1,2, . . . ,n −2. (1.58)

One can observe that it is imperative to ensure that i 2π2 6= k2 and i 2π2 + j 2π2 6= k2,
as such conditions would indicate resonance and lead to unbounded oscillations in
the absence of dissipation.
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For sufficiently large k2, the matrix becomes highly indefinite. This character-
istic manifests in negative real components of the matrix’s (complex) eigenvalues,
consequently inducing a large condition number for matrix A. Thus, solving the
Helmholtz problems numerically pose complex computational challenges due to
their inherently indefinite and ill-conditioned mathematical nature.

1.3.3. COMPUTATIONAL CHALLENGES

Solving the Helmholtz equation, especially in high-frequency regimes, presents several
computational challenges that can significantly impact the accuracy and efficiency of
numerical methods. These challenges include pollution effects, the indefinite nature
of the resulting linear systems, and the substantial resource requirements associated
with large-scale three-dimensional problems.

One of the primary obstacles is the pollution effect, which is a significant issue
when discretizing the Helmholtz equation at higher frequencies. As the wavenumber
k increases, numerical accuracy deteriorates, necessitating increasingly refined dis-
cretizations. This phenomenon is notably pronounced in both finite difference and
finite element methods, where the relationship between the analytical wavenumber
and its discrete counterpart becomes problematic, which is related to the so-called
numerical dispersion errors. As k increases, solutions exhibit more oscillatory behavi-
ors, leading to phase discrepancies between the numerical solution and the analytical
solution. A critical measure of pollution error is given by the ratio of the mesh size h

to the wavenumber k. Smaller values of h mitigate the pollution error; however, this
also enlarges the corresponding linear system, making computations more intensive
and challenging. Consequently, there are stringent conditions that must be satisfied
for discretization, such as the condition k3h2 ≤ 1, which underscores the necessity
for careful grid refinement to maintain solution accuracy [19, 20].

While the number of grid points needed to retain that accuracy grows along with
the wavenumber, it grows slower than the order of accuracy of the schemes. In
particular, if we let k denote the wavenumber, n the problem size in one-dimension
and p the order of a finite difference or finite element scheme, then

n =C k

(

p+1
p

)

(1.59)

where C is a constant that only depends on the accuracy achieved [21]. Various
discretization methods have been developed to address the accuracy issue. New
higher-order compact finite difference schemes [22–25] or dispersion-minimized dis-
cretization schemes [26–28] have been formulated. Further advancements emerged
through wave-ray-based optimal stencils [29] or wavenumber correction [30]. Recent
developments have evolved to include sophisticated techniques such as combined
discretization on rotated grids [31], yielding efficient wavelength-adaptive 27-point
compact stencils. Dwarka and Vuik [12] have provided deeper insights into the nature
of dispersion error through eigenvalue analysis, leading to novel correction methods.
These developments have significantly reduced the number of grid points required
per wavelength while maintaining solution accuracy.
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Another computational challenge lies in the properties of the linear systems derived
from discretizing the Helmholtz equation. As the resulting linear systems are often
indefinite, traditional iterative solvers, which generally assume positive definiteness,
are not effective [32]. This requires the development of specialized solution techniques
to handle the unique characteristics of these systems, complicating the solution
process further.

Additionally, the scalability of numerical methods becomes a pressing concern
when dealing with large-scale three-dimensional problems. The computational re-
source requirements for high-frequency simulations can be substantial to achieve
the necessary accuracy. The increasing oscillatory nature of the solution as k rises
mandates finer discretizations, which in turn lead to larger linear systems requiring
significant computational power and memory [33]. This escalates challenges related
to both execution time and resource allocation, essential considerations for practical
computational implementations.

The solutions of the Helmholtz equation, particularly in seismic imaging and med-
ical diagnostics, demand unprecedented computational capabilities. The seismic
studies and applications routinely require solutions for problems involving millions
of unknowns, while medical imaging applications need real-time solutions for wave
propagation in heterogeneous media. These practical demands have exposed limita-
tions in existing solution methodologies.

Despite significant advances in both algorithms and computing hardware, several
fundamental challenges persist. The inherent difficulties in solving high-frequency
wave problems, combined with the massive scale of realistic applications, create a
compelling need for continued research and development of solution methods.

1.4. LINEAR SYSTEM SOLVERS
The discretization of the Helmholtz equation typically results in large, sparse, and
indefinite linear systems that pose significant computational challenges for numerical
solution strategies. Direct numerical methods, such as lower-upper (LU) factorization,
become increasingly impractical as problem dimensions and frequencies increase. For
two-dimensional problems, direct solvers can still be feasible, but three-dimensional
scenarios rapidly expose their computational limitations. In three-dimensional spa-
tial domains, direct numerical solvers exhibit theoretical upper-bound complexities of
O (N 7) for time and O (N 5) for memory requirements, where N represents the discretiz-
ation points along each dimension of a cubic grid of size N 3. While [34] demonstrate
reduced practical complexities of O (N 6) and O (N 4) for their implementation, these
asymptotic scalings nonetheless quantify an growing computational burden with in-
creasing dimensionality. Consequently, even state-of-the-art direct solvers remain
impractical for high-resolution and high-frequency numerical simulations.

Traditional iterative methods, such as standard stationary methods like Jacobi or
Gauss-Seidel, demonstrate poor convergence characteristics when applied to the in-
definite linear systems arising from Helmholtz equation discretization. The spectral
properties of these matrices, particularly their indefinite nature and close-to-zero ei-
genvalues, dramatically inhibit convergence. Consequently, basic iterative techniques
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often fail to provide reliable solutions or may even diverge completely [32].
These computational constraints necessitate more sophisticated solution strategies

that can efficiently handle the complex spectral properties of Helmholtz discretiz-
ations. Krylov subspace methods emerge as a promising approach, offering a sys-
tematic framework for developing iterative solvers that can potentially overcome the
limitations of traditional techniques.

In the subsequent sections of this chapter, we omit the subscript “ h ” from matrices
and vectors for convenience unless it is involved in multigrid concepts.

1.4.1. KRYLOV SUBSPACE METHODS

For a large, sparse system matrix A, the Krylov subspace methods are generated on
a collection of iterants in the subspace

K k (A;r0) := span
{

r0, Ar0, . . . , Ak−1r0

}

(1.60)

where K k is a k-dimensional Krylov space with respect to matrix A and initial residual
r0. The concept of Krylov subspace methods can be summarized as follows. Starting
from an initial solution u0, the solution u is approximated at each iteration by uk ,
which satisfies

uk ∈ u0 +K k (A,r0), k > 1. (1.61)

Suppose the Krylov subspace K k is spanned by the basis v1,v2, . . . ,vk , where

Vk = [v1,v2, . . . ,vk ] ∈C
n×k . (1.62)

With residual rk = b − Auk , an expression for the residual at the k-th step is given
by

rk = r0 − AVk yk (1.63)

where yk ∈C
k and uk = u0 +Vk yk . In Krylov subspace methods, the key steps involve

creating an orthonormal basis for Vk and generating the vector yk . This can be
accomplished using either Arnoldi or Lanczos methods for basis construction, and
employing a residual projection or norm minimization method for vector construction.

Some representative Krylov methods, such as the Conjugate Gradient method (CG)
[35], Conjugate Gradient Normal Residual method (CGNR) [36], Minimal Residual
method (MINRES) [37], Biconjugate Gradient method (BICG) [38], Biconjugate Gradi-
ent Stabilized method (Bi-CGSTAB) [39], Generalized Conjugate Residual method
(GCR) [40], Generalized Minimal RESidual method (GMRES) [41], GMRES Recursive
method (GMRESR) [42], Induced Dimension Reduction method (IDR(s)) [43], and
others, have been developed so far. Among these, the CG method is a basic one,
which minimizes the error ‖u−uk‖ in the A-norm and uses the Lanczos method.
This method only needs three vectors in memory during iterations. However, this
algorithm is chiefly designed for the symmetric and positive definite system matrix.
In contrast, GMRES, Bi-CGSTAB, and IDR(s) can be used for non-singular problems
that are indefinite and non-symmetric as well, which make them suitable choices for
the Helmholtz equation.
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GMRES

The GMRES method is an iterative method for nonsymmetric matrices, which min-
imizes the residual norm over the Krylov subspace. In this method, Arnoldi’s method
is used for computing an orthonormal basis of the Krylov subspace. The GMRES
algorithm is shown in Algorithm 1.

Algorithm 1 GMRES for system Au = b.

1: u0 is an initial guess
2: Compute r0 = b− Au0, β= ‖r0‖2 and v1 = r0/β
3: for j = 1,2, ...,k or until convergence do

4: w = Av j

5: for i := 1,2, ..., j do

6: hi , j = (w,vi )
7: w := w−hi , j vi

8: end for

9: h j+1, j := ‖w‖2

10: v j+1 = w/h j+1, j

11: end for

12: Store Vk = [v1, ...,vk ]; H̄k =
{

hi , j

}

, 1 ≤ i ≤ j +1, 1 ≤ j ≤ k

13: Compute minimizer yk over ‖βe1 − H̄k y‖2, e1 = (1,0, · · · ,0)⊺

14: Update approximated solution uk = u0 +Vk yk

The GMRES algorithm can terminate early if the residual vector becomes zero at
iteration step j , which indicates that an exact solution has been found. A theorem
provides insight into the algorithm’s convergence.

Theorem 1.4.1 (Convergence of GMRES). Let Pk be the space of all polynomials

of degree less than k and A has the spectrum σ = {λ1, . . . ,λN }. Suppose that A is

diagonalizable so that A = XΛX −1 and let

εk = min
p∈Pk ,p(0)=1

max
λi∈σ

∣

∣p (λi )
∣

∣ (1.64)

Then the residual norm of the k-th iterate satisfies

‖rk‖2 ≤ εk K (X )‖r0‖2. (1.65)

If all eigenvalues are enclosed by a circle centered at C > 0, C ∈ R and having radius

R <C (so the circle does not enclose the origin), then

εk ≤
(

R

C

)k

. (1.66)

Pursuing certain optimality properties with the long recurrences, the GMRES al-
gorithm becomes computationally impractical for a large number of iterations. To
mitigate memory and computational constraints, we can limit iterations to m, form
an approximate solution, and use this as the starting vector for subsequent GMRES
applications. This restarted GMRES is denoted by the GMRES(m) procedure.
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BI-CGSTAB

For non-symmetric matrices, the Bi-CGSTAB algorithm provides an iterative method
based on constructing two biorthogonal bases for Krylov subspaces K (A,r0) and
L(A∗, r̃0), where A∗ is the conjugate transpose of A and r̃0 is the initial residual of the
associated dual system. The algorithm includes a technique where the dual system
vectors r̃k can be constructed using specific polynomial relations, eliminating the
need for direct multiplication by A∗. The Bi-CGSTAB method addresses convergence
issues in earlier algorithms like CGS by introducing a stabilizing polynomial Pk (A).

The Bi-CGSTAB algorithm is shown in Algorithm 2. An advantage of the Bi-CGSTAB
method is that it uses short recurrences. The algorithm suffers from semi-optimality,
requiring more matrix-vector products and lacking global error minimization. Round-
ing errors may significantly impact performance, and small modifications can intro-
duce numerical instabilities. Thus, it is always necessary to compare the norm of the
updated residual to the exact residual ‖b− Auk‖.

Algorithm 2 Bi-CGSTAB Algorithm for system Au = b

1: u0 is an initial guess, r0 = b− Au0

2: r̂0 be an arbitrary vector such that (r̂0, r0) 6= 0
3: ρ0 =α=ω0 = 1
4: v0 = p0 = 0

5: for k = 1,2, . . . ,max_iter do

6: ρk = (r̂0, rk−1)
7: if ρk = 0 then

8: break

9: end if

10: β= (ρk /ρk−1) · (α/ωk−1)
11: pk = rk−1 +β(pk−1 −ωk−1vk−1)
12: vk = Apk

13: α= ρk /(r̂0, vk )
14: s = rk−1 −αvk

15: t = As

16: ωk = (t, s)/(t, t)
17: uk = uk−1 +αpk +ωk s

18: if uk is accurate enough then quit;
19: rk = s−ωk t

20: end for

21: return uk

IDR(S)

The IDR(s) method is an efficient alternative to Bi-CGSTAB for Helmholtz problems
[44]. IDR(s) is a memory-efficient method to solve large non-symmetric systems of
linear equations. In IDR(s), s pre-defined vectors are used to enhance the conver-
gence. [43] showed that IDR(1) has similar computational complexity and memory
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requirements as Bi-CGSTAB. With higher values of s, IDR(s) shows performance close
to GMRES but with more storage requirements compared to Bi-CGSTAB. For example,
we need to store 17 vectors for IDR(4), while Bi-CGSTAB needs storing 7 vectors.
Van Gijzen and Sonneveld [45] further imposed a bi-orthogonalization condition on
the iteration vectors and obtained a more robust variant of the IDR(s) algorithm.

1.4.2. PRECONDITIONED KRYLOV METHODS

As we mentioned, iterative methods for solving large-scale linear systems, particularly
the Helmholtz equation, often suffer from slow convergence and numerical instabil-
ity. Preconditioning emerges as a critical technique to address these fundamental
challenges, transforming the original linear system into an equivalent problem with
more favorable computational properties. The primary objective of preconditioning
is to modify the spectral characteristics of the coefficient matrix to accelerate the con-
vergence of Krylov subspace methods while maintaining the original solution [36].
For non-normal problems solved using GMRES, while eigenvalues typically play the
dominant role [46], both the eigenvectors of the preconditioned matrix and the initial
residual also affect convergence rates [47].

The essential strategy of preconditioning involves introducing an invertible matrix
M that approximates the original system matrix A in a way that makes the transformed
system more amenable to iterative solution. Mathematically, this can be implemented
through two primary approaches: left preconditioning:

M−1 Au = M−1b, (1.67)

or right preconditioning:
AM−1x = b, x = Mu (1.68)

While theoretically equivalent, these approaches can exhibit subtle differences in
practical implementation, particularly regarding residual computation and stopping
criteria.

For Krylov subspace methods, preconditioning can be applied to several prominent
iterative algorithms.

LEFT-PRECONDITIONED GMRES

The straightforward application of GMRES to the linear system (1.67) yields the
preconditioned version of GMRES in Algorithm 3.

The algorithm computes and tracks preconditioned residuals M−1(b−Au j ), making
unpreconditioned residuals inaccessible without explicit calculation. This may com-
plicate implementing stopping criteria based on actual, rather than preconditioned,
residuals.

RIGHT-PRECONDITIONED GMRES

The right preconditioned GMRES algorithm is based on solving the system (1.68).
The new variable can be handled without explicit invocation. After computing the
initial residual r0 = b− AM−1x0 = b− Au0, subsequent Krylov subspace vectors can
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Algorithm 3 Left-Preconditioned GMRES for system Au = b

1: Choose initial guess u0

2: Compute r0 = M−1(b− Au0); β= ‖r0‖; v1 = r0/β
3: for j = 1,2, . . . ,k or until convergence do

4: w = M−1 Av j

5: for i = 1,2, . . . , j do

6: hi , j = (w,vi )
7: w := w−hi , j vi

8: end for

9: h j+1, j := ‖w‖
10: v j+1 = w/h j+1, j

11: end for

12: Store Vk = [v1, . . . ,vk ]; H̄k = {hi , j }, 1 ≤ i ≤ j +1, 1 ≤ j ≤ k

13: Compute minimizer yk of ‖βe1 − H̄k y‖; Update uk = u0 +Vk yk

be generated without referencing x-variables. Thus, unlike the left-preconditioned
version, this right-preconditioned GMRES requires the preconditioning operation
only at the end of the outer loop, as shown in Algorithm 4. The residual norm is now
relative to the initial system, distinguishing this approach from left-preconditioned
GMRES.

Algorithm 4 Right-Preconditioned GMRES for system Au = b

1: Choose initial guess u0

2: Compute r0 = b− Au0; β= ‖r0‖; v1 = r0/β
3: for j = 1,2, . . . ,k or until convergence do

4: w = AM−1v j

5: for i = 1,2, . . . , j do

6: hi , j = (w,vi )
7: w := w−hi , j vi

8: end for

9: h j+1, j := ‖w‖
10: v j+1 = w/h j+1, j

11: end for

12: Store Vk = [v1, . . . ,vk ]; H̄k = {hi , j }, 1 ≤ i ≤ j +1, 1 ≤ j ≤ k

13: Compute minimizer yk of ‖βe1 − H̄k y‖; Update uk = u0 +M−1Vk yk

FLEXIBLE GMRES

The preconditioner M−1 discussed above is assumed fixed. However, in many prac-
tical scenarios, the preconditioning operation may vary, potentially being the result
of another iterative process. Flexible iterations accommodate these preconditioner
variations, allowing the preconditioner to change from step to step.

For the GMRES algorithm, this means instead of using a constant M−1, we now allow
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a changing preconditioner M−1
j

. The key modification is in computing preconditioned
vectors:

z j = M−1
j v j (1.69)

The approximate solution is then computed as xk = x0 +Zk yk , where Zk = [z1, . . . ,zk ].
These are the modifications transforming the right preconditioned GMRES algorithm
into flexible GMRES (FGMRES), as described in Algorithm 5.

Algorithm 5 Flexible GMRES

1: Compute r0 = b− Au0, β= ‖r0‖2, and v1 = r0/β
2: for j = 1, . . . ,k do

3: Compute z j := M−1
j

v j

4: Compute w := Az j

5: for i = 1, . . . , j do

6: hi , j := (w,vi )
7: w := w−hi , j vi

8: end for

9: Compute h j+1, j = ‖w‖2 and v j+1 = w/h j+1, j

10: end for

11: Define Zk := [z1, . . . , zk ], H̄k = {hi , j }1≤i≤ j+1;1≤ j≤m

12: Compute minimizer yk of ‖βe1 − H̄k y‖; Update uk = u0 +Zk yk

The flexible variant requires additional memory to store the set of vectors {z j } j=1,··· ,k ,
effectively doubling the storage needed compared to GMRES.

The effectiveness of preconditioned Krylov methods critically depends on the design
of the preconditioning matrix M . Ideal preconditioners should satisfy two primary
requirements: (i) the linear system M x = b should be efficiently solvable, typically
with computational complexity significantly lower than the original system, and (ii)
the preconditioner should effectively cluster the eigenvalues of the transformed matrix
to accelerate convergence. This delicate balance requires sophisticated mathematical
analysis and problem-specific insights.

While the specific construction of preconditioners is explored in subsequent sec-
tions, it is crucial to understand that preconditioning represents a transformative
approach to iterative linear system solution. By strategically manipulating the spec-
tral properties of the coefficient matrix, preconditioned Krylov methods can overcome
many of the convergence limitations inherent in standard iterative techniques, making
them particularly powerful for challenging problems like the discretized Helmholtz
equation.

1.4.3. MULTIGRID METHODS

Multigrid methods originate from the idea of achieving better convergence by solving
the given problem with a hierarchy of discretizations and using relaxation techniques.
The principle of divide and conquer is the foundation of multigrid techniques. The
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iteration error is decomposed into components in the spatial frequency domain and
each component is sequentially treated on its most appropriate scale of discretization.

A multigrid method involves several components that need a careful design to
achieve its excellent convergence. To demonstrate the multigrid method’s framework,
we use 2D scenarios as an example.

The first ingredient of multigrid methods is the smoothing property of basic iterative
methods. For example, the Gauss-Seidel and SOR(ω) methods can serve as efficient
smoothers for elliptic problems. As coarser grids are involved, going back and forth
between different hierarchies of grids is required. Specifically, the inter-grid transfer
operations include restriction and prolongation operators. Besides, the construction
of the coarse-grid operator also needs careful attention.

SMOOTHERS

When analyzing and processing the iteration error, we can divide the iteration error
into high and low frequency modes. By applying several steps of basic iterative
methods (BIMs), the high frequency components will decay rapidly while the low
frequency component does not. Classical iteration methods such as the Gauss-Seidel
or damped Jacobi iterations can be used as smoothers.

RESTRICTION

The inter-grid operations will be presented in a simple case of two meshes, i.e. fine
and coarse grids. Two sets of uniform mesh with size h and H = 2h are used to
discretize a square computational domain Ω2.

The restriction operator is usually a rectangular matrix that can carry out the
transfer of grid vectors from the fine mesh to the coarse one. Let us denoted it as I H

h
(One can read the subscripts from bottom to top)

I H
h : uh ∈R

nh → uH = I H
h uh ∈R

nH (1.70)

The injection operator has a stencil given by

I H
h =





0 0 0
0 1 0
0 0 0





H

h

(1.71)

Alternatively, one can also take a weighted average of the fine grid nodes. The
so-called full weighting restriction operator has a stencil given by

I H
h =

1

16





1 2 1
2 4 2
1 2 1





H

h

(1.72)

If a lexicographic ordering is used, the assembled restriction operator will be a
a full-row-rank nH ×nh matrix. Higher-dimensional stencils will be presented as
needed.
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INTERPOLATION/PROLONGATION

The interpolation operator I h
H

transfers grid vectors from the coarse to the fine grid,
i.e.,

I h
H : uH ∈R

nH → uh = I h
H uH ∈R

nh (1.73)

In the bilinear interpolation operator stencil is given by

I h
H =

1

4





1 2 1
2 4 2
1 2 1





h

H

(1.74)

Using a lexicographic ordering of the grid nodes as before, the interpolation operator
can be assembled into a rectangular nh ×nH matrix with full column rank. The
bilinear interpolation and the full weighting restriction are related by the following
variational condition

I h
H = 4

(

I H
h

)⊺
(1.75)

COARSE-GRID OPERATOR

The coarse grid matrix AH can be built from the fine grid matrix Ah in two ways.
The first way is to obtain AH by rediscretizing on the coarse mesh in the same
way that the matrix Ah is obtained on the fine mesh. It is known as discretization
coarse-grid operator (DCG). The second way is Galerkin Coarsening. The matrix AH

in the Galerkin approach is constructed algebraically using the relation

AH = I H
h Ah I h

H . (1.76)

The Galerkin coarse-grid operator GCG is more general in its range of applicability,
but it has an associated expense in terms of growing stencils (except in the case of
finite-volume methods with the lowest order restriction and prolongation). Its sparsity
may change for complex domains. For this reason, it often pays to check out if DCG
can be satisfactorily applied in a given situation.

TWO GRID CYCLES

Suppose the iteration matrix corresponding to the (damped Jacobi, Gauss-Seidel or
other) smoother is Sh , and this matrix is applied υ times, so that we have

ek+υ = (Sh)υ ek ,where Sh = Inh×nh
− (Mh)−1 Ah (1.77)

where e denotes the error vector. This iteration can be written equivalently for the
iterant uk+υ. Thus, we now have all ingredients to define an iterative two-grid method.
Algorithm 6 is a classical two-grid method. The resulting algorithm described in Step
2 up to Step 6 in Algorithm 6 is called the coarse grid correction (CGC) iteration. It
can be written as a stationary iterative scheme with iteration matrix BCGC given by

ek+1 = BCGC ek ,where BCGC = Inh×nh
− I h

H (AH )−1 I H
h Ah (1.78)
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Then the iteration matrix of two grid method (TGM) is given by

ek+1 = BTGM ek ,where BTGM (υ1,υ2) = (Sh)υ2 BCGC (Sh)υ1 (1.79)

The coarse grid correction can be regarded as a special case of the two-grid operator
without smoother, i.e. υ1 = υ2 = 0. Note that the preconditioner associated with this
iteration is I h

H (AH )−1 I H
h

. If we use the Galerkin approach to construct the coarse grid
matrix, the coarse grid correction operator will be a projector which is orthogonal
with respect to the Ah-inner product.

Algorithm 6 A Two-Grid Cycle

1: procedure TWO-GRID CYCLE(ui
h

,bh , Ah , Mh , I H
h

, I h
H

)

2: u1/3
h

= S
υ1
h

ui
h
+ (Mh)−1bh . υ1 pre-smoothing sweeps

3: rh = bh − Ah u1/3
h

. Residual computation

4: rH = I H
h

rh . Restriction of the residual to GH

5: eH = (AH )−1rH . Exact determination of the error on GH

6: eh = I h
H

eH . Prolongation of the error to Gh

7: u2/3
h

= u1/3
h

+eh . Correction of the last solution iterate

8: ui+1
h

= S
υ2
h

u2/3
h

+ (Mh)−1bh . υ2 post-smoothing sweeps
9: end procedure

Since it may still be too expensive to solve the coarse-grid problem exactly, the
two-grid methods are seldom use in practice.

V-CYCLES AND W-CYCLES

The idea to apply the two-grid idea to AH recursively until the coarse-grid problem
can be solved with insignificant computational costs gives rise to a genuine multigrid
method such as W-cycle and V-cycle described in Algorithm 7.

For solving linear symmetric positive definite (SPD) systems obtained from the
discretization of partial differential equations, multigrid methods are usually regarded
as one of the most efficient algorithms due to the grid-size-independent convergence
and a complexity of O (N log N ). However, for the Helmholtz equation, standard
multigrid methods may not maintain a complexity of O (N log N ) and even fail to
converge. This challenge arises from the oscillatory nature of the solution and the
difficulty in smoothing high-frequency error components. The problem becomes
particularly pronounced when dealing with wavenumbers k that are large relative to
the mesh resolution.

To address these limitations, researchers have developed specialized multigrid-based
preconditioning techniques tailored to the Helmholtz equation, such as the Complex
Shifted Laplacian Preconditioner (CSLP).
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Algorithm 7 V-cycle: uh =V -cycle(Ah ,u0
h

,bh ,h, H0)

1: procedure V-CYCLE(Ah ,u0
h

,bh ,h, H0)
2: Pre-smoothing: uh = smoothυ1 (Ah ,u0

h
,bh)

3: Residual computation: rh = bh − Ahuh

4: Coarse: H = 2h, rH = I H
h

rh

5: if H = H0 then

6: Solve: eH = (AH )−1rH

7: else

8: Recursion: eH =V -cycle(AH ,u0
H ,rH , H , H0)

9: end if

10: Prolongation: eh = I h
H

eH

11: Correction: uh := uh +eh

12: Post-smoothing: uh = smoothυ2 (Ah ,uh ,bh)
13: return uh

14: end procedure

1.5. PRECONDITIONING FOR THE HELMHOLTZ PROBLEM
The inherent indefiniteness of the operator presents significant challenges in achiev-
ing rapid convergence for Krylov subspace solvers applied to discretized Helmholtz
equations. Preconditioning has consequently emerged as a fundamental approach to
mitigate these computational difficulties. Preconditioning for the Helmholtz problem
is crucial because unpreconditioned Krylov-based iterative methods become compu-
tationally inefficient, requiring over 1,000 iterations for a 2D problem and more than
10,000 iterations for a similar 3D problem [48]. Various preconditioning techniques
have been developed and refined specifically to address the computational challenges
associated with the Helmholtz equation.

Initial approaches focused on incomplete factorization techniques, such as incom-
plete Cholesky (IC) and incomplete LU (ILU) factorizations, which exposed significant
fill-in problems that compromised matrix sparsity, particularly at high wavenumbers
[49]. Gander and Nataf [50] have proposed an alternative approach utilizing an
analytical ILU factorization method. However, the Analytical Incomplete LU (AILU)
preconditioner exhibits a significant limitation in its numerical performance, as its
effectiveness is restricted to constant wavenumber problems, with a tendency to
diverge for non-constant wavenumber scenarios.

A pivotal advancement emerged with the development of operator-focused precon-
ditioners. Bayliss et al. [51] initially proposed using the discretized Laplace operator
as a preconditioner by setting the wavenumber to zero. Laird and Giles [52] improved
this method by introducing a positive real shift to the operator. These precondition-
ers work well for medium wavenumbers, but numerical results indicate a significant
increase in iterations for large wavenumbers. In 2004, Erlangga et al. [53] proposed
an incorporation of a complex shift to the Laplace preconditioner for the Helmholtz
problem, namely the Complex Shifted Laplace Preconditioner (CSLP), which has
been widely used for solving Helmholtz problems. The CSLP preconditioner is a not-
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able focus of this dissertation, distinguished by its effectiveness and straightforward
implementation.

1.5.1. COMPLEX SHIFTED LAPLACE PRECONDITIONER (CSLP)
Recall that the Helmholtz operator A can be expressed through the discrete Laplacian
operator ∆ and the n ×n identity matrix I as

A =−∆−k2I , A ∈C
n×n . (1.80)

The CSLP Preconditioner is defined by

M =−∆−
(

β1 + iβ2
)

k2I , M ∈C
n×n , β1,β2 ∈ [0,1] (1.81)

where i denotes the imaginary unit, and β1 and β2 are real numbers, which implies
M is complex. The discretization of the CSLP operator typically employs identical
boundary conditions as those specified in the original problem. The development
of CSLP represents a significant advancement in preconditioning technique for the
Helmholtz equation solvers. The CSLP-preconditioned Krylov solver shows linear
iteration growth with increasing wavenumber.

Moreover, the emergence of the complex shift has facilitated a computationally
feasible solution. The complex shift introduces damping and transforms the sys-
tem into a configuration that is more conducive to approximate inversion through
multigrid method [54]. Subsequently, ILU factorization [55] and algebraic multigrid
techniques [56, 57] have been successfully utilized to invert the CSLP preconditioner.
The polynomial fixed-point iteration method is also employed to resolve shifted sys-
tems, demonstrating robust convergence characteristics even when the magnitude of
the shift is relatively minimal [58].

SPECTRAL PROPERTIES OF A PRECONDITIONED MATRIX

We will examine the spectral properties of the CSLP preconditioned matrix using a
2D Helmholtz problem with Dirichlet boundary conditions as an illustrative example.

Figure 1.7 presents the spectrum of the preconditioned matrices M−1 A for (β1,β2) =
(0,0) (Laplacian preconditioner), (β1,β2) = (−1,0) (Laird preconditioner), (β1,β2) =
(0,1), (β1,β2) = (1,1), (β1,β2) = (1,0.5) and (β1,β2) = (1,0.3). For the Laplacian precon-
ditioner, as shown in Figure 1.7a, the eigenvalues are real, but there exist isolated
values with large magnitude. For the Laird preconditioner, Figure 1.7b exhibits real
eigenvalues bounded by -1 and 1. Once a complex shift is embedded, the spectrum
of the preconditioned matrices becomes a curve in the complex plane. Whereas
the real part of the preconditioner is zero (i.e. (β1,β2) = (0,1)), the eigenvalues have
both positive and negative real parts. If both the real and imaginary parts of the
preconditioner are non-zero, the real parts of the eigenvalues vary between 0 and
1. The difference between Figures 1.7d to 1.7f is that the smaller β2 is, the fewer
eigenvalues are near the origin.
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(a) (β1,β2) = (0,0) (b) (β1,β2) = (−1,0)

(c) (β1,β2) = (0,1) (d) (β1,β2) = (1,1)

(e) (β1,β2) = (1,0.5) (f) (β1,β2) = (1,0.3)

Figure 1.7: Two-dimensional spectrum of CSLP preconditioned matrix M−1 A with
k = 40, (kh = 0.625) for different values of (β1,β2).
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OPTIMAL SHIFT

Several shift parameter values for β1 and β2 have been explored, constrained to the
interval [0,1]. For β1 = 1 and β2 ∈ (0,1], the eigenvalues of the preconditioned matrix
cluster tightly in a circular pattern that improves the convergence of Krylov subspace
methods [53].

van Gijzen et al. [59] have analyzed the optimal complex shift parameter for the
shifted-Laplace preconditioner in combination with GMRES under the assumption
of exact preconditioning operations, which offers valuable guidance for shift para-
meter selection for Krylov methods and approximate preconditioners. To achieve
wavenumber-independent convergence, the change of the shift must remain O (k)
and the preconditioner must be inverted exactly [60]; otherwise, the small eigenval-
ues of the preconditioned matrix will approach zero as the wavenumber increases.

Precisely inverting the preconditioner is often computationally expensive, so a single
multigrid iteration is commonly used to obtain an approximate inverse. However, as
the complex shift approaches zero, the multigrid method becomes inefficient, and
the computational complexity of preconditioner approximation increases significantly.
It has been demonstrated that employing multigrid techniques to approximate the
preconditioner efficiently necessitates maintaining a relatively large complex shift,
specifically O (k2) [61]. Thus, choosing an appropriate complex shift is crucial for
computational efficiency.

As an illustration of the issue at hand, we consider a 2D model problem with
wavenumber k = 40. The problem is resolved on a grid of 10 grid points per
wavelength (kh = 0.625). The linear system is preconditioned by the CLSP, where
β1 = 1 and β2 varies from 0 to 1. The preconditioners are approximated by using a
V-cycle. For the V-cycle multigrid method, 1 step Damped Jacobi method is used as
both pre- and post- smoother. The full weight restriction and the bilinear interpola-
tion described above are adopted. As for the coarse-grid operator, we use Galerkin
coarsening. Figure 1.8 shows the number of GMRES iterations to reach a tolerance of
10−7 with respect to the preconditioned residual. In essence, the selection of shifts ex-
hibits sensitivity, and multigrid approximation demonstrates improved efficiency with
increased imaginary shift values. However, this leads to slower global convergence
due to the preconditioner becoming a less accurate approximation of the original
matrix.

NEED OF PROJECTION

Although the CSLP demonstrates significant acceleration, its effectiveness diminishes
for the Helmholtz problem at higher wavenumbers, as the small eigenvalues in the
spectrum of the preconditioned matrix tend toward zero rather than maintaining
their desired clustering around the point (1,0) in the complex plane.

Figure 1.9 demonstrates the underlying phenomenon. As the value of k increases,
the smaller eigenvalues exhibit a progressive migration toward the origin. In the 2D
case, when k reaches 80, the eigenvalue clustering near the origin becomes notably
pronounced. This clustering effect intensifies substantially as k approaches larger
values. Thus, the small eigenvalues require careful consideration. Deflation is a
technique frequently employed to eliminate specific portions of the spectrum and
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Figure 1.8: The number of GMRES iterations varies with the complex shift β2 for
k = 40. The preconditioners are approximately inverted by a multigrid V-cycle.
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Figure 1.9: Two-dimensional spectrum of CSLP preconditioned matrix M−1
(1,0.5) A for

different values of the wavenumber with kh = 0.625.
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prevent undesirable eigenvalues from participating in the Krylov subspace iterations.

1.5.2. DEFLATION

The convergence rates of Krylov subspace methods for solving the Helmholtz equation
are often significantly hindered by the presence of small or near-zero eigenvalues in
the coefficient matrix. Deflation techniques have emerged as a powerful strategy to
mitigate the adverse effects of these troublesome eigenvalues by altering the spectrum
of the matrix in a favorable way.

Initially proposed independently by Nicolaides [62] and Dostál [63] as a means to
accelerate the standard conjugate gradient method for SPD systems, the deflation
method has been further investigated by Mansfield [64], Kolotilina [65], Vuik et al.

[66] and Saad et al. [67]. In iterative systems, eigenvalue deflation can be achieved
through two primary approaches: employing a projection preconditioner P to modify
the spectrum [68], or enhancing the Krylov subspace by incorporating approximate
eigenvectors associated with eigenvalues that impede convergence [69]. Given the
computational expense of eigenvector construction, the projection preconditioner
method is usually preferred for eliminating the effects of unwanted eigenvalues on
the Krylov subspace [70].

The deflation method for addressing the Helmholtz problem was initially introduced
by Erlangga and Nabben [71]. Subsequent research [72–74] led to the development
of more computationally efficient variants of this approach. In a recent development,
Dwarka and Vuik [75] introduced higher-order approximation schemes to construct
deflation vectors. Due to the alignment of the near-zero eigenvalues of the fine-
grid and coarse-grid operators, this advanced two-level deflation method exhibits
convergence that is nearly independent of the wavenumber. The authors further
extend the two-level deflation method to a multilevel deflation method [76]. By
using higher-order deflation vectors, they show that up to the level where the coarse-
grid linear systems remain indefinite, the near-zero eigenvalues of these coarse-grid
operators remain aligned with the near-zero eigenvalues of the fine-grid operator.
Combining this with the well-known CSLP preconditioner, they obtain a scalable
solver for highly indefinite linear systems.

DEFLATION AS PRECONDITIONER

Consider the general linear system

Ãu = b̃, Ã ∈R
n×n (1.82)

where Ã is a symmetric coefficient matrix. In the context of preconditioning tech-
niques for the Helmholtz problem, the operator Ã may represent either the Helmholtz
operator Ah or the coefficient matrix Ah preconditioned by CSLP, denoted as M−1

h
Ah .

The projection preconditioner P ∈C
n×n can be defined as

P = In×n − ÃQ, where Q = Z E−1Z T , E = Z T ÃZ (1.83)

Ã ∈C
n×n , Z ∈R

n×m , m < n (1.84)



1.5. PRECONDITIONING FOR THE HELMHOLTZ PROBLEM

1

35

where Z is introduced as a deflation matrix, which is supposed to be full-rank. Its m

columns function as the deflation vectors. E ∈C
m×m is called the Galerkin or coarse

matrix and Q ∈C
n×n is a correction matrix.

CHOICE OF THE DEFLATION VECTORS

The choice of the deflation vectors will directly determine the character of the deflation
preconditioner. Originally, a good choice of the deflation vectors is the eigenvectors
of the coefficient matrix Ã. Suppose the spectrum of Ã is given by

Φ(Ã) = {λi } , where 1 ≤ i ≤ n, λ1 ≤λ2 ≤ ·· · ≤λn (1.85)

and the corresponding eigenvector of λi is υi . If we take the deflation matrix
Z = [υ1 υ2 . . . υr ] (r < n), then the eigenvalues of the deflated operator become

Φ(P Ã) = {0 . . . 0 λr+1 . . . λn} (1.86)

In this way, the small eigenvalues are simply shifted to 0 by incorporating the
deflation operator P . However, we usually do not know the eigenvectors of the matrix
and it is expensive to compute them. Thus, we should consider approximating the
eigenvectors corresponding to the unfavorable eigenvalues.

Another concern about the deflation vectors is the sparsity of the deflation matrix. A
dense deflation matrix will lead to a dense coarse matrix. If we need to project a large
number of eigenvalues, it is usually costly to store all the vectors and compute the
inversion of a dense coarse matrix. Thus, it is preferable to choose sparse deflation
vectors so as to obtain a sparse but full-rank deflation matrix.

The establishment of a comprehensive theoretical framework for optimal deflation
vector determination remains an open challenge across diverse applications. The
selection of appropriate deflation vectors is largely context-dependent, influenced
by both problem-specific requirements and available data. The scientific literature
presents several methodological approaches for deflation vector determination, en-
compassing approximated eigenvectors [66, 77, 78], solution and recycling techniques
[79, 80], subdomain-based methods [81], and multigrid deflation vectors [71, 82]. Each
approach offers distinct advantages for specific applications.

Originating from the observation that the multigrid inter-grid operators highlight
the small frequencies and reserve them on the coarser level, multigrid inter-grid
operators usually serve as deflation matrices in Helmholtz problem preconditioning.
This approach allows the projection preconditioner to function similarly to coarse-grid
correction in standard multigrid methods.

VARIANTS FOR THE HELMHOLTZ PROBLEM

Different variants of the deflation preconditioner can be derived using either the CSLP
preconditioned Helmholtz operator or its unpreconditioned form. These variants are
distinguished by how the operator E is constructed.

First, Erlangga and Nabben [71] proposed to deflate the CSLP-preconditioned Helm-
holtz operator, as the eigenvalues of M−1

h,(β1,β2) Ah begin to shift to the origin as the
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wavenumber increases. These small eigenvalues can be projected to zero by the
preconditioner given by

P̃h = Ih − ÃhQ̃h , Q̃h = I h
2h Ã−1

2h I 2h
h , Ã2h = I 2h

h Ãh I h
2h (1.87)

where Ãh = M−1
h,(β1,β2) Ah . I 2h

h
and I h

2h
are the restriction and interpolation operators

defined in Equations (1.70) and (1.73), respectively. One can notice that the coarse
operator Ã2h needs to be inverted. Since the idea of deflation is to project the
small eigenvalues to zero, the exact inversion of Ã2h is necessary. However, this
exact inversion becomes computationally impractical for large problems, especially
given that the deflation preconditioner is sensitive to coarse-grid approximations.
In the absence of an accurate approximation, the projection step can introduce
numerous new eigenvalues close to zero, leading to adverse effects. To address this
limitation, Erlangga and Nabben [83] extended the method to handle systems with
nonsymmetric matrices. Instead of projecting the small eigenvalues to zero, they
deflated the smallest eigenvalues to match the maximum eigenvalue. Erlangga and
Nabben [83] demonstrated that the modified projection method was less sensitive to
approximations of the coarse-grid system, allowing for the utilization of multilevel
projected Krylov subspace iterations. Therefore, one can choose to deflate toward
the largest eigenvalues of the preconditioned matrix by adding a term. The so-called
Two-Level Krylov method (TLKM) preconditioner [74] reads as

P̃h,γ = P̃h +γQ̃h =
(

Ih − ÃhQ̃h

)

+γQ̃h (1.88)

where γ is a constant, typically set to 1 as the CSLP preconditioner results in eigenval-
ues of the preconditioned matrix being bounded by 1 in modulus. The preconditioned
linear system to be solved is

P̃h,γ Ãhuh = P̃h,γb̃h (1.89)

where b̃h = M−1
h,(β1,β2)bh . Compared to the original Helmholtz system, the TLKM

preconditioner is equivalent to

Ph,T LK M = P̃h,γM−1
h,(β1,β2) (1.90)

One can observe that TLKM needs an application of M−1
h,(β1,β2) on the fine grid for

every coarse grid iteration. This makes it too expensive to use.
Alternatively, one can deflate the Helmholtz operator, that is Ãh = Ah in Equa-

tion (1.87). The preconditioner becomes

Ph = Ih − AhQh , Qh = I h
2h A−1

2h I 2h
h , A2h = I 2h

h Ah I h
2h (1.91)

Ph,γ = Ph +γQh = (Ih − AhQh)+γQh (1.92)

Combined with the standard preconditioner CSLP, a robust two-level preconditioned
method, Adapted Deflation Variant 1 (A-DEF1) [74] reads as

Ph,A−DEF 1 = M−1
h,(β1,β2)Ph,γ+Qh (1.93)
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The preconditioned linear system to be solved becomes

Ph,A−DEF 1 Ahuh = Ph,A−DEF 1bh . (1.94)

Note that Ph,A−DEF 1 Ah is nonsingular, so Equation (1.94) has a unique solution.
The groundbreaking research conducted by Dwarka and Vuik [75] demonstrates that

misalignment between near-kernel eigenmodes of fine-grid and coarse-grid operators
causes near-zero eigenvalues in deflation preconditioners. This misalignment stems
from inadequate interpolation of grid functions at high wavenumbers. They have
developed a novel method to quantify these effects through projection error analysis
and proposed to employ a higher-order approximation scheme for deflation vector
construction, instead of using the restriction and interpolation operators defined in
Equations (1.70) and (1.73). The implementation of Equations (1.91) and (1.92) with a
higher-order deflation vector will be referred to as Adapted Preconditioned Deflation
(APD), and APD(ε) with the projection error minimizer ε. The interpolation and
restriction operators for a one-dimensional grid function are as follows

[

I h
2hu2h

]

i
=







1
8

(

u2h
(i−1)/2 +6u2h

(i+1)/2 +u2h
(i+3)/2

)

if i is odd
1
2

(

u2h
i /2 +u2h

(i+2)/2

)

if i is even
(1.95)

for i = 2, · · · ,n −1 and

[

I 2h
h uh

]

i
=

1

8

(

uh
2i−3 +4uh

2i−2 +6uh
2i−1 +4uh

2i +uh
2i+1

)

(1.96)

for i = 2, · · · , n−1
2 . Given it achieved wavenumber-independent convergence at large

wavenumbers, APD will serve as the basis of this dissertation.

1.5.3. DOMAIN DECOMPOSITION METHODS (DDM)
A promising branch is the use of Domain Decomposition Methods (DDM) as precon-
ditioning techniques [84].

The domain decomposition method was primarily developed to solve PDEs in
complicated domains. The method evolved from the early Schwarz methods, which
were initially conceived as an iterative algorithm for solving the Poisson equation
defined over a union of two regular geometries. Subsequently, researchers developed
a class of Schwarz methods that implemented more effective transmission conditions
at subdomain interfaces compared to traditional Dirichlet conditions. A significant
advancement in this field occurred when Lions [85] introduced Robin interface con-
ditions as an alternative to the conventional Dirichlet interface conditions. These
advanced approaches became known as Optimized Schwarz Methods (OSM). Several
interface conditions such as absorbing boundary conditions and optimized interface
conditions were derived [86].

The indefiniteness of the Helmholtz operator will become an obstacle when applying
the Schwarz method to the Helmholtz problem. The domain decomposition method
for solving the Helmholtz problem was first studied in [87]. There are two strategies
to avoid the indefiniteness of the Helmholtz operator. One is domain decomposition
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with sufficiently small subdomains to make the minimal eigenvalues larger than k2,
such as [88, 89]. But this strategy will lead to too many subdomains.

Another strategy involves regularization of subdomain problems with optimized
interface boundary conditions. The optimized Schwarz methods for the Helmholtz
equation based on a good approximation of transmission boundary conditions has
led to many variants [90–97], such as absorbing transmission conditions or perfectly
matched layers for fast convergence and high-order transmission conditions. Several
state-of-art algorithms, including the source transfer method [98, 99], the method
based on single layer potentials [100], and the method of polarized traces [101, 102],
can all be formulated in the context of the optimized Schwarz methods.

In addition to carefully designed transmission conditions, problem-specific coarse
spaces constitute a fundamental component of the DDM strategy. Notable develop-
ments include the DtN and GenEO spectral coarse spaces [103], which utilize selected
modes from local eigenvalue problems specifically tailored to the Helmholtz equation.

DDM has been widely used to develop efficient preconditioners and parallel solution
methods for Helmholtz problems. While this method lies beyond the scope of the
present dissertation, we refer the reader to [104–106] and references therein for
comprehensive surveys.

1.6. PARALLEL COMPUTING
The numerical solution of the Helmholtz equation at high frequencies presents sig-
nificant computational challenges that often exceed the capabilities of sequential
computing. As the wavenumber increases, the required spatial resolution grows
quadratically in two dimensions and cubically in three dimensions, leading to linear
systems with billions of unknowns. Furthermore, the iterative solvers discussed in
previous sections, although theoretically efficient, demand substantial computational
resources, even with sophisticated preconditioners like the CSLP or deflation tech-
niques. These computational demands necessitate the adoption of parallel computing
strategies to achieve practical solution times for real-world applications. Parallel com-
puting offers a promising solution by distributing both the computational workload
and memory requirements across multiple processing units, enabling the solution of
previously intractable problems. However, high-performance iterative methods must
be designed to exploit parallelism effectively. For example, preconditioning tech-
niques, such as the multigrid-based CSLP and deflation methods, must be adapted
for parallel execution to maintain convergence rates without introducing prohibitive
overhead. This section presents an overview of parallel computing concepts, archi-
tectures, and methodologies essential in developing and analyzing high-performance
iterative methods for the Helmholtz equation.

1.6.1. TAXONOMY OF PARALLEL COMPUTING PARADIGMS

The foundation of parallel computing lies in different paradigms that determine
how computational tasks are organized and executed. Flynn’s taxonomy provides a
systematic classification of these paradigms based on instruction and data streams
[107].
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SINGLE INSTRUCTION MULTIPLE DATA (SIMD)

In the SIMD model, multiple processing units execute the same instruction sim-
ultaneously on different data elements. This model is effective for problems with
a high degree of data parallelism, such as vector and matrix operations prevalent
in numerical simulations. Modern processors, including Graphics Processing Units
(GPUs), utilize SIMD architectures to accelerate computations by exploiting data-level
parallelism.

MULTIPLE INSTRUCTION MULTIPLE DATA (MIMD)

The MIMD model allows each processor to execute different instructions on different
data independently. This flexibility accommodates a wide range of applications with
varying computational patterns. MIMD architectures are the most common in general-
purpose parallel computers, including multi-core CPUs and distributed computing
systems.

Two additional categories exist: SISD (Single Instruction Single Data) and MISD
(Multiple Instruction Single Data). SISD represents traditional non-parallel processing
in single-processor computers, while MISD exists theoretically but has no practical
applications.

1.6.2. PARALLEL ARCHITECTURES

Parallel computing architectures define how processors are interconnected and how
they access memory. The main architectures are shared memory, distributed memory,
and hierarchical (hybrid) systems.

Shared memory architectures provide all processors direct access to a common
memory space, facilitating rapid data sharing but potentially suffering from memory
contention and cache coherency issues. The Uniform Memory Access (UMA) model,
where all processors have equal access time to all memory locations, simplifies
programming but may face scalability limitations.

Distributed memory architectures, in contrast, assign each processor its own local
memory, requiring explicit communication through message passing. While this ap-
proach eliminates memory contention issues and offers better scalability, it introduces
communication overhead and requires careful data distribution strategies.

Modern supercomputers often employ hierarchical (hybrid) architectures, combin-
ing aspects of both shared and distributed memory systems. These systems typically
consist of multiple compute nodes connected via high-speed networks, with each
node containing multiple cores sharing local memory. Programming such systems ef-
fectively often requires hybrid programming models that utilize both shared memory
and message passing paradigms.

1.6.3. PARALLELISM

Parallel programming begins with identifying an algorithm’s inherent parallelism.
Different forms of parallelism induce different parallelization methods.

At the finest granularity, multiple functional units within modern processors enable
instruction-level parallelism, executing multiple operations simultaneously when data
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dependencies permit. Pipelining further enhances throughput by overlapping different
stages of instruction execution, crucial for maintaining processor efficiency.

Vector processing extends this concept to data-level parallelism, performing the
same operation on multiple data elements simultaneously. Modern processors sup-
port this through SIMD instructions, while GPUs take this approach to extreme scales
with thousands of parallel execution units. These capabilities are particularly relevant
for the regular, structured computations common in finite difference methods for the
Helmholtz equation.

Multiprocessing enables parallel execution through both threads and processes,
allowing programs to utilize multiple cores or processors simultaneously. While dis-
tributed computing extends this parallelism across multiple machines, it requires
careful management of communication and data distribution. In scientific comput-
ing, data parallelism is particularly important, as it allows multiple processors to
independently process different portions of large datasets. This approach, commonly
known as SPMD (Single Program Multiple Data), typically involves running identical
code across processors with separate instruction pointers, distinguishing it from
SIMD parallelism. SPMD represents the primary parallelization strategy in scientific
computing on MIMD architectures.

1.6.4. PROGRAMMING MODELS AND SOFTWARE FRAMEWORKS

The implementation of parallel algorithms relies on various programming models and
software frameworks, each designed for specific architectural paradigms.

MESSAGE PASSING INTERFACE (MPI)

MPI is a standardized, language-independent communication protocol used to pro-
gram parallel computers [108]. It provides a rich set of functions for point-to-point
and collective communication, enabling processes running on distributed memory
systems to exchange data efficiently. MPI is widely used in scientific computing due
to its portability and scalability.

OPEN MULTI-PROCESSING (OPENMP)

OpenMP is an application programming interface that supports shared memory mul-
tiprocessing programming in C, C++, and Fortran [109]. It uses compiler directives to
parallelize code, allowing developers to introduce parallelism incrementally. OpenMP
is particularly effective for loop-level parallelism and is easy to implement on shared
memory systems.

Hybrid MPI+OpenMP programming combines both models to exploit multiple
levels of parallelism. This approach has become increasingly important for modern
hierarchical computing systems, allowing for efficient utilization of both inter-node
and intra-node parallelism [110].

In addition, for hardware accelerators, particularly Graphics Processing Units (GPUs),
CUDA and OpenCL provide programming models that exploit massive parallelism for
suitable computational kernels. However, effective GPU implementation requires
careful attention to memory access patterns and data transfer optimization.
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1.6.5. PARALLEL SCALABILITY AND PERFORMANCE

Understanding the scalability of parallel algorithms is crucial for evaluating their
effectiveness and predicting performance at scale. The theoretical foundations of
parallel scalability are captured by two fundamental laws. Amdahl’s Law provides
a theoretical upper bound on the speedup achievable through parallelization when
dealing with a fixed problem size [111]. It emphasizes the limiting effect of sequential
portions of an algorithm, expressing the maximum achievable speedup S(Np ) with
Np processors as:

S(Np ) =
1

(1−α)/Np +α
(1.97)

where α ∈ [0,1] represents the fraction of the program that cannot be parallelized.
This law highlights the importance of minimizing sequential bottlenecks in parallel
programs.

Gustafson-Barsis’ Law offers an alternative perspective by considering scenarios
where the problem size scales with the available computational resources [112]. It
suggests that by increasing the workload proportionally with the number of processors,
linear speedup is achievable:

S(Np ) = Np −α(Np −1) (1.98)

This law better reflects many practical applications where larger computational re-
sources typically enable solving larger problems.

In practice, for initial performance evaluation and system comparison, the parallel
performance can be characterized through two primary scaling metrics. Strong scaling

measures how the solution time varies with the number of processors for a fixed total
problem size. This metric is particularly relevant when rapid solution of a specific
problem is required. Weak scaling, conversely, measures performance when the
problem size increases proportionally with the number of processors, maintaining a
constant workload per processor.

Parallel efficiency is defined as the ratio of speedup to the number of processors:

E(Np ) =
S(Np )

Np
(1.99)

It provides a normalized measure of how effectively additional computational re-
sources are utilized. High efficiency (close to 1) indicates good resource utilization,
while lower values suggest diminishing returns from parallelization.

The roofline model provides a valuable analytical framework for understanding the
performance limits of algorithms on modern computing architectures [113]. This
model characterizes computational performance through the relationship between
arithmetic intensity (Ia), which is defined as the number of operations per byte of
memory traffic, and attainable performance, typically measured in FLOPS (floating
point operations per second). Mathematically, the model expresses the attainable
performance P as:

P = min
(

βIa ,π
)

(1.100)
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where π represents the peak computational performance of the system, Ia denotes
the arithmetic intensity of the algorithm, and β represents the system’s memory band-
width limit (byte per second). The resulting performance bound forms a distinctive
roofline-shaped curve when plotted on a log-log scale. The ridge point, where the
diagonal and horizontal lines intersect, marks the saturation of peak performance.
This point represents the minimum arithmetic intensity (Ia =π/β) required to achieve
peak performance. A kernel or application with arithmetic intensity Ia is considered
memory-bound when Ia < π/β, limited by memory bandwidth. Conversely, when
Ia > π/β, the computation is compute-bound, limited by peak computational per-
formance.

1.6.6. CHALLENGES IN PARALLEL COMPUTING

While parallel computing offers significant performance benefits, it introduces chal-
lenges that must be addressed to achieve efficient computations.

Communication overhead represents a fundamental challenge, particularly in dis-
tributed memory systems. For iterative solvers applied to the Helmholtz equation,
frequent boundary data exchange between subdomains can become a significant per-
formance bottleneck. The communication-to-computation ratio often increases with
the number of processors, potentially limiting scalability.

Load balancing presents another crucial challenge, especially for heterogeneous
computing environments or problems with varying computational intensity across
the domain.

Memory hierarchy management becomes increasingly complex in parallel systems.
The presence of multiple cache levels, non-uniform memory access (NUMA) effects,
and the need to maintain cache coherency can significantly impact performance. For
large-scale problems, the memory access pattern can become as important as the
computational complexity in determining overall performance.

Synchronization requirements and algorithmic dependencies can limit the achievable
parallelism. In iterative methods for the Helmholtz equation, global operations such
as inner products and norm calculations require synchronization across all processors,
potentially creating bottlenecks.

Software complexity and maintainability present practical challenges in parallel
implementation. The development of parallel numerical algorithms requires careful
consideration of data structures, communication patterns, and synchronization mech-
anisms. The resulting code must remain maintainable and adaptable while achieving
high performance across different parallel architectures.

Besides, factors such as memory bandwidth limitations and network latency can
limit the scalability of parallel applications. One must consider these limitations to
ensure that performance gains are realized as the number of processors increases.

These challenges underscore the importance of careful algorithm design and im-
plementation in parallel scientific computing. Success in addressing these challenges
often requires a combination of mathematical insight, algorithmic innovation, and
detailed understanding of hardware characteristics.

Given these challenges, this dissertation contributes to developments of high-
performance iterative solvers for solving the Helmholtz equation.



1.7. RESEARCH OBJECTIVES AND CONTRIBUTIONS

1

43

PARALLEL SOLVERS FOR THE HELMHOLTZ EQUATION

Efforts are underway to develop parallel scalable Helmholtz solvers. While domain
decomposition methods offer a natural framework for parallel implementation [114,
115], various parallel programming paradigms have been explored, from MPI-based
implementations for distributed memory systems to GPU-accelerated solutions. Riy-
anti et al. [116] presented a parallel multigrid-based CSLP preconditioner using MPI,
demonstrating its effectiveness on heterogeneous problems with scalability up to
25 processors. Knibbe et al. [44] further introduced GPUs to accelerate Bi-CGSTAB
as well as IDR(s) preconditioned by CSLP. Gordon and Gordon [117, 118] applied
the block-parallel CARP-CG algorithm to the Helmholtz equation, achieving substan-
tial reductions in residuals and showcasing applicability in both homogeneous and
heterogeneous media. Calandra et al. [119, 120] proposed a geometric two-grid
preconditioner for Helmholtz problems, which exhibits strong scaling in massively
parallel setups. Ortega et al. [121] developed a parallel solution for the 3D Helm-
holtz equation, leveraging CUDA for computationally intensive operations and MPI
for inter-processor communication. Recently, Bao and Feng [122] provided an MPI-
based parallel algorithm for solving Helmholtz equations using sixth-order hybrid
compact finite-difference schemes.

While the combination of advanced preconditioning strategies and parallel com-
puting frameworks has led to significant advancements in computational efficiency
and robustness, further research is necessary to investigate the integration of parallel
CSLP and deflation techniques to further enhance the performance of Helmholtz
solvers in practical applications.

1.7. RESEARCH OBJECTIVES AND CONTRIBUTIONS
The development of efficient solution methods for the Helmholtz equation represents
a critical challenge at the intersection of computational mathematics and practical
applications, which require higher frequencies, larger domains, and faster solutions.
This dissertation addresses the growing gap between computational requirements of
modern applications and the capabilities of current solution methods.

Our research focuses on developing high-performance iterative methods that can
effectively utilize modern computing architectures while maintaining numerical effi-
ciency. This work is driven by several critical requirements in contemporary scientific
computing. The increasing complexity of industrial applications demands solution
methods that can scale to higher frequencies and handle larger problems with suffi-
cient computational efficiency. Furthermore, modern computing systems necessitate
algorithms that can scale effectively across numerous processors while efficiently
managing memory resources.

Current solution strategies often fall short in meeting these requirements simul-
taneously. While direct solvers provide robust solutions, their memory requirements
become prohibitive for large-scale problems. The development of efficient iterative
solvers, particularly those leveraging modern high-performance computing architec-
tures, represents a critical research direction. Present advances in preconditioning
techniques, including CSLP [53, 54] and deflation methods [72], particularly APD using
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high-order deflation vectors [75, 76], suggest promising pathways for improvement.
However, their implementation, which explicitly store system matrices, face similar
memory constraints despite their computational advantages. These limitations have
motivated the exploration of matrix-free approaches, significantly reducing memory
requirements while maintaining computational efficiency. It has been observed that
the finite difference discretization allows all operators encountered in previous sec-
tions, including the Helmholtz operator, CSLP operator, inter-grid transfer operat-
ors, and coarse-grid operators, to be expressed through compact stencil notation.
This stencil-based representation naturally facilitates matrix-free implementation, as
all matrix-vector operations can be performed through direct stencil computations
without storing explicit matrices. Moreover, the effective implementation of APD in
parallel computing environments, especially for large-scale heterogeneous problems,
remains an active area of research. The challenge is further compounded by the
need to implement these methods in a matrix-free manner while maintaining their
numerical properties and parallel efficiency.

Matrix-free methods for solving Helmholtz equations are important. The solution of
Helmholtz problems requires exceptionally large linear systems due to wavenumber-
dependent convergence and pollution error. Traditional matrix-based approaches
face significant memory limitations when addressing industrial-scale problems, par-
ticularly for heterogeneous cases. Actually, as for heterogeneous Helmholtz problems,
matrix-freeness is not trivial due to the variable diagonal elements. To our knowledge,
many preconditioners, including the multigrid-based CSLP, are analyzed based on the
Galerkin coarsening approach with explicit construction of the matrices. Moreover,
the matrix-free implementation of the deflation methods presents additional com-
plexity due to the requirements of Galerkin coarsening operations. For example, [123]
required explicit matrix assembly and storage, restricting their implementation to
grid sizes of 2501×751 using two computational cores. In contrast, our framework
successfully processes larger problems (grid size 2945×961) on a single core. Similarly,
the approach by [120], designed for massively parallel computing, also constructs ex-
plicit matrix and stores in CSR format. Furthermore, the high-order deflation method
proposed by [75] achieves wavenumber-independent convergence through explicit
matrix-based Galerkin coarsening.

This dissertation aims to develop robust, scalable parallel numerical methods for
large-scale Helmholtz problems, focusing on three primary objectives: (i) imple-
menting matrix-free parallel preconditioned Krylov methods and multigrid methods
that eliminate the need for explicit matrix storage while maintaining computational
efficiency, (ii) achieving wavenumber-independent convergence in parallel comput-
ing environments by leveraging the advanced preconditioning techniques including
CSLP and APD through matrix-free operations, and (iii) developing a scalable parallel
computing framework optimized for modern hierarchical architectures.

Our work makes several significant contributions to numerical methods and sci-
entific computing. The first is a comprehensive matrix-free parallel implementa-
tion framework for the multigrid-based preconditioner, demonstrating exceptional
efficiency in both two and three-dimensional settings. The second contribution
introduces novel parallel higher-order deflation-based preconditioning techniques,
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featuring efficient matrix-free implementations and a Galerkin-based coarse-grid re-
discretization scheme that achieves wavenumber-independent convergence.The third
advancement is a scalable multilevel deflation preconditioning method, complemen-
ted by a hybrid MPI+OpenMP parallelization framework that addresses extreme-scale
computational challenges.

1.8. DISSERTATION OUTLINE
This dissertation develops and analyzes advanced numerical methods for the Helm-
holtz equation through seven chapters.

This chapter establishes the mathematical foundation, computational challenges,
and current state-of-the-art in numerical methods and parallel computing approaches.

Chapter 2 presents our matrix-free parallel CSLP-preconditioned Krylov methods for
two-dimensional problems, providing detailed performance analysis through achieved
bandwidth, dot-product benchmarks and profiling. Chapter 3 extends this framework
to three-dimensional heterogeneous problems, incorporating comprehensive parallel
scalability analysis and performance optimization studies.

Chapter 4 introduces a novel parallel two-level deflation preconditioning method,
presenting their matrix-free implementation and wavenumber-independent conver-
gence. Chapter 5 advances this concept to multiple levels, exploring various con-
figurations of multilevel deflation preconditioning for heterogeneous time-harmonic
wave problems. Chapter 6 culminates in a robust parallel solver for extreme-scale
three-dimensional Helmholtz problems, demonstrating its effectiveness on complex
geological models.

Chapter 7 concludes by summarizing this dissertation and suggesting future re-
search directions.

This progression demonstrates a comprehensive approach to developing and im-
plementing high-performance iterative methods for the Helmholtz equation, em-
phasizing practical applicability and computational efficiency in large-scale parallel
computing environments.
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MATRIX-FREE PARALLEL

CSLP-PRECONDITIONED

ITERATIVE SOLVERS IN TWO

DIMENSIONS

A matrix-free parallel iterative solver for the Helmholtz equation related to applications

in seismic problems and its parallel performance is studied. We apply Krylov subspace

methods, GMRES, Bi-CGSTAB and IDR(s), to solve the linear system obtained from a

second-order finite difference discretization. The CSLP is employed to improve the con-

vergence of Krylov solvers. The preconditioner is approximately inverted by multigrid

iterations. For parallel computing, the global domain is partitioned blockwise. The

standard MPI library is employed for data communication. The matrix-vector multi-

plication and preconditioning operator are implemented in a matrix-free way instead

of constructing large, memory-consuming coefficient matrices. Numerical experiments

of model problems show that the matrix-free parallel solution method has satisfactory

parallel performance.

Parts of this chapter have been published in Scientific Computing in Electrical Engineering, Springer
Nature Switzerland, 2024, pp. 61-68 [124].
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This chapter focuses on the parallelization of Krylov methods, such as Gener-
alized minimal residual method (GMRES), preconditioned by the multigrid-based
Complex Shifted Laplace Preconditioner (CSLP) for Helmholtz equation. The CSLP
preconditioner represents an early and widely adopted method where the number
of iterations scales linearly within a certain range of the wavenumber. This parallel
solution method is different from the earlier variants as given in [116, 123]. Kononov
et al. [123] mainly parallelized the sequential program based on the data-parallel
concept. Their idea was to decompose the matrix and the vector components. It
results in a row-wise domain decomposition. In contrast, this work mainly starts
with a block-wise domain decomposition and implements it in a matrix-free way.
The former is a parallel computation based on data and blocks of the sequential
program, while here it is parallelism based on domain decomposition. This idea is
more flexible and allows us to implement large-scale parallel computing more flexibly.
It is the basis for scalable parallel computing. Preliminary numerical experiments
on model problems show that the matrix-free parallel solution method exhibits good
parallel performance. Its weak scaling performance allows larger problems to be
solved in similar time by increasing tasks proportionally, enabling higher resolution
to minimize Helmholtz pollution errors.

The rest of this chapter is organized as follows. Section 2.1 describes the math-
ematical model that we will discuss. All numerical methods we use are described in
Section 2.2, and Section 2.3 will illustrate the parallel implementation. The numerical
performance is explored in Section 2.4, where we also evaluate our method extended
to different iterative solvers. Section 2.5 contains the conclusion.

2.1. MATHEMATICAL MODEL
In this chapter, We will consider the 2D Helmholtz equation on a rectangular domain
Ω with boundary Γ = ÇΩ supplied with Dirichlet boundary conditions (1.5) or first-
order Sommerfeld boundary conditions (1.8).

In this chapter, we examine four 2D model problems of increasing complexity. The
first is a two-dimensional homogeneous problem with Dirichlet boundary conditions
and a known analytical solution, serving as a baseline validation case. The second
problem introduces a point source at the domain center, considered with both Di-
richlet (MP-2a) and Sommerfeld radiation (MP-2b) boundary conditions. To evaluate
performance on heterogeneous media, we consider two problems from geophysical
applications: the wedge problem, featuring three distinct velocity layers, and the
Marmousi problem, a complex benchmark with 158 horizontal layers that represents
realistic geological structures. Each problem is formulated as a Helmholtz equation
with appropriate boundary conditions and source terms.

2.2. NUMERICAL METHODS
Following the finite difference discretization framework introduced in Chapter 1, we
employ a second-order scheme on uniform grids, resulting in a sparse, indefinite
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linear system
Ah uh = (−∆h −k2Ih)uh = bh (2.1)

where the discrete Helmholtz operator and boundary conditions can be represented
through compact stencil notation.

To solve the resulting large-scale linear systems, we employ preconditioned Krylov
subspace methods, including full GMRES, GMRES(m), Bi-CGSTAB, and IDR(s). These
iterative methods are accelerated using the CSLP preconditioner,

Mh =−∆h −
(

β1 +β2i
)

k2Ih (2.2)

where β1 = 1 and β2 = 0.5. The CSLP preconditioner itself is efficiently approximated
using the standard geometric multigrid method. A multigrid method involves several
components that need a careful design to achieve excellent convergence. In this
chapter, a damped Jacobi smoother with relaxation ω= 0.8 is used. The so-called full
weighting restriction operator and the bilinear interpolation operator are employed
for the inter-grid transfer operations. The coarse-grid operator M2h is constructed by
re-discretizing on the coarse mesh in the same way as the operator Mh is obtained
on the fine mesh. The classical multigrid V-cycle is performed. Instead of solving the
coarsest-grid problem directly, we will solve it by full GMRES.

2.3. PARALLEL IMPLEMENTATION
To implement parallel computing, the standard MPI library is employed for data
communications among the processors. Therefore, the design of MPI topology will
be the basis. Further, the domain partition and the data structure within the pro-
cessors will determine the implementation of the matrix-vector multiplication and dot
product. Unless noted otherwise, we are mainly concerned with a regular rectangular
computational domain in this section.

2.3.1. MPI TOPOLOGY

During the MPI setup, the first step is to determine the total number of processors
(denotes as np) and the number of processors in each direction. In two-dimensional
cases, the number of processors in the x- and y- direction is denoted as npx0 and
npy0 respectively.

To tell different processors whether their corresponding subdomains contain phys-
ical boundaries or interface boundaries, we define npx and npy to describe the
position in the x- and y- directions for every processor, as shown by Figure 2.1. For
example, npx is in the range of [0,npx0−1]. When npx is equal to 0, the process
needs to deal with the left physical boundary. When npx equals npx0−1, the process
needs to handle the right-hand physical boundary. It is similar in the y- direction.

When acquiring np processors and creating a parallel computing environment using
MPI, each processor will own its ID rank (0 to np −1). We assign each subdomain
to each processor according to the x-line lexicographic order. Besides, we also
need to decide the ID rank of adjacent processors (physically in the computational
domain) for data transfer. For example, in Figure 2.1, for a processor with ID = 7,
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npx = 3 and npy = 1 correspondingly, the ID of the adjacent processor in the north
is Y P = (npy +1)×npx0+npx = 11. If the boundary condition in the x- direction is
not periodic, then the ID of the adjacent processor in the east is X P = NU LL. If it is
a periodic boundary condition, then X P = npy ×npx0+ ((npx +1)−npx0) = 4. This
way, each processor knows with which processor it should synchronize the interface
boundary data.

Figure 2.1: MPI setup for npx0 × npy0 = 4×3

2.3.2. DOMAIN PARTITION AND DATA STRUCTURE

Based on the MPI setup, we can partition the computational domain blockwise and
allocate the variables to the corresponding processor. In domain partitioning, we
choose to carry out the partition between two grid points, i.e. along the red dotted
line shown in Figure 2.2. Therefore, the boundary points of adjacent subdomains are
adjacent grid points in the global grids. Several (denoted by l ap) layers of overlapping
grid points are introduced outward at each interface boundary to represent the
adjacent grid points, that is the red grid points of the subdomain on the right of
Figure 2.2. In our method, the grid unknowns are stored as an array based on the
grid ordering (i , j ) instead of a column vector based on x-line lexicographic ordering.
Alternatively, the partition can be carried out along the grid points, the boundary
points of adjacent subdomains are the same grid points in the global grids. In
contrast, the former is more economical and avoids the operations of averaging, but
it may bring inconvenience to the implementation of the multigrid method.

For example in Figure 2.2, we divide the number of grid points as evenly as possible
along x- and y- directions. The number of grid points in x- and y- directions within
each subdomain is denoted as nx and ny respectively. The grid-ordering arrays
u(i , j ) are assigned to 3× 3 different processors. To store and use the data from
adjacent processors, the arrays are extended based on the subdomain grid structure.
For second-order finite-difference discretization, the variable l ap only needs to be 1.
Then, the indices range of the array u becomes (1− l ap : nx + l ap,1− l ap : ny + l ap).
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Within a certain subdomain, the operations and array updates are limited to the
range (1 : nx,1 : ny). The data u(i , j ) for i = 1 and nx, as well as j = 1 and ny are
sent to adjacent processors. The data received from adjacent processors are stored
in the corresponding extended grid points, which are called during the operations of
interface grid points.

In addition, the global index number of the first grid point in a subdomain is
recorded as parameters, for example, i _o f f set and j _o f f set in Figure 2.2. This is
mainly used when collecting global variables and implementing a multigrid method
based on the global grid.

Figure 2.2: Two-dimensional domain partition for np = 3×3 and the data structure

2.3.3. MATRIX-FREE MATRIX-VECTOR MULTIPLICATION

Consider a two-dimensional problem discretized using the second-order central finite
difference method, resulting in N unknowns. The resulting system is solved by the
CSLP-preconditioned Krylov subspace method with the matrices assembled. Apart
from the variables vectors, we need extra memory to store the sparse matrix Ah

with 5N non-zero elements, Mh with 5N non-zero elements, M2h with 9N
4 , inter-

grid transfer operator Z with 9N
4 , etc. To minimize memory limitations and solve

real-world large-scale problems, we implement the preconditioned Krylov subspace
methods in a matrix-free way instead of constructing the coefficient matrices explicitly.

In our method, instead of constructing the coefficient matrices explicitly, we imple-
ment the matrix-vector multiplication in a matrix-free way. Note that the Helmholtz
operator as well as the CSLP has a similar stencil which only needs the data of the
four adjacent grid points in the current iteration step.

Considering any grid point (i , j ) (1 ≤ i ≤ nx, 1 ≤ j ≤ ny), define ap, aw , ae, as and
an as the multipliers of u(i , j ), u(i−1, j ), u(i+1, j ), u(i , j−1) and u(i , j+1), respectively.
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When physical boundary conditions are encountered, it is only necessary to set the
multiplier corresponding to meaningless grid points to zero. For example, if u(i , j )
is a left boundary grid point, aw is zero. For Dirichlet boundary conditions, we can
simply set ap = 1, aw = ae = as = an = 0.

The Helmholtz operator can be implemented according to Equation (1.50). We
have

ap =
4−k2h2

h2 aw = ae = as = an =−
1

h2 (2.3)

For the CSLP operator, according to Equation (2.2), we will have

ap =
4−

(

β1 +β2i
)

k2h2

h2 aw = ae = as = an =−
1

h2 (2.4)

Thus, computing v = Ahu or y = Mh x can be conducted in a matrix-free way by
Algorithm 8.

Algorithm 8 Matrix-free vh = Ah uh.

1: Input array uh;
2: Initialize the coefficient based on the stencil:
3: ap = 4−k2h2, aw = ae = as = an =−1 ;
4: Internal grid points (i = 2 · · ·nx −1, j = 2 · · ·ny −1):
5: vh(i , j ) = ap ·uh(i , j )+aw ·uh(i−1, j )+ae ·uh(i+1, j )+as·uh(i , j−1)+an·uh(i , j+1);
6: Boundary grid points (i = 1,nx, j = 1,ny):
7: adjust ap, aw , ae, as and an and compute vh(i , j );
8: Return vh/h2.

2.3.4. PARALLEL MULTIGRID ITERATION BASED ON GLOBAL GRID

In this section, we will consider the parallel implementation of the multigrid iteration
based on the original global grid.

First, we customize a data type called grid. This type includes three extended
grid variables u, r hs and r es representing unknowns, right-hand sides and residuals
respectively, as well as nx_g lobal , nx, i _o f f set and other grid parameters mentioned
above. Then, according to the relationship between the fine grid and coarse grid, the
parameters of the coarse grid are determined by the grid parameters of the fine one.
For example, point (ic , jc ) in the coarse grid corresponds to point (2ic −1,2 jc −1) in
the fine grid. The restriction, as well as interpolation of the grid variables, can be
implemented according to the stencils based on the index correspondence between
the coarse and fine grid. Finally, the coarse grid problem can be solved by GMRES
similarly. These operations are all implemented in a matrix-free way.

For a V-cycle, after reaching a manually predefined the coarsest grid size, for
example each domain must contain at least 2×2 grid points, the coarsen operation
will stop and employ a full GMRES solver to solver the coarse problem parallelly. In
the following, the predefined coarsest grid size is denoted by nxcoar sest ×nycoar sest .
Alternatively, the solver can be set to switch from a parallel to a sequential mode
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after reaching a certain multigrid coarse level. It will be a future research direction.
This work only focuses on parallelism.

2.4. NUMERICAL EXPERIMENTS
The program is developed in Fortran 90 and compiled using GNU Fortran 8.5.0 with
the compiler options -O3 for optimization purposes. Open MPI library (version 4.1.1)
is employed for message passing. The Numerical experiments were conducted on
a Linux cluster. Computational node “nw-node7” utilizes an Intel Core i7-10700
CPU with 8 physical cores (16 logical threads via hyperthreading), 2.9 GHz base
frequency (4.8 GHz turbo), and 16 MB shared L3 cache. Node “nw-node11” employs
an Intel Xeon Gold 6152 processor featuring 22 physical cores (44 logical threads with
hyperthreading), 2.1 GHz base frequency (3.7 GHz turbo), and 30.25 MB L3 cache.
Unless otherwise specified, the latter will be the default computing platform for this
chapter.

In the numerical experiments, unless mentioned, the following convergence cri-
terion of the preconditioned GMRES algorithm is used.

∥

∥M−1bh −M−1
h

Ah uk
h

∥

∥

2
∥

∥M−1
h

bh

∥

∥

2

≤ 10−6 (2.5)

The number of iterations required is denoted by #Iter. The stopping criterion for the
coarse grid preconditioner solver is 10−8. In order to illustrate the accuracy of the
numerical approximation and compare the difference between sequential and parallel
results, we denote

Abs. err. =
∥

∥

∥uexact −uk
h

∥

∥

∥

∞
(2.6)

where uk is the numerical solution after k iterations. uexact is the analytical solution.
This section will mainly illustrate the numerical performance of our solver for

the model problems on different computational nodes. The speedup and parallel
efficiency are used to estimate the parallel performance so far. The WallClockTime
for the preconditioned GMRES solver to reach the stopping criterion is denoted as
tw . The speedup Sp is defined by

Sp =
ts

tp
(2.7)

where ts and tp are the WallClockTime for sequential and parallel computation,
respectively. The parallel efficiency Ep is given by

EP =
Sp

np
×100% =

ts

tp ·np
×100% (2.8)

where np is the number of processors.

2.4.1. CLOSED-OFF PROBLEM

Figure 2.3 shows the intuitive numerical approximation for the closed-off problem at
k = 100, kh = 0.625. It can be seen that the results obtained by parallel computing
are consistent with the sequential results.
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Figure 2.3: Numerical solutions for the closed-off problem at k = 100, kh = 0.625

PARALLEL EFFICIENCY

Maintaining kh = 0.625, we solve the closed-off problem for various wavenumbers
until reaching convergence. Table 2.1 reveals diminished parallel efficiency when the
subdomain grid sizes are reduced, primarily attributable to the substantial commu-
nication overhead incurred during processing. It can be roughly estimated from the
table that the grid size of each subdomain must be at least 20×20 to ensure that
the parallel efficiency is not less than 70%. Besides, when k is 320 and the number
of iterative steps is as large as 1115, the parallel efficiency of our method is still
up to 80%. One can also observe that the number of required iterations exhibits a
significant increase as wavenumber k increases.

WEAK SCALABILITY

As shown in Table 2.2, we test the numerical performance of parallel CSLP precondi-
tioned GMRES for different grid sizes as k = 100 is fixed. The speedups indicate that
the parallel efficiencies are more than 80% for different test cases. Furthermore, as
highlighted in Table 2.2, the wall-clock time (tw ) remains relatively constant when
the number of processors and grid size increase proportionally, demonstrating the
weak scalability characteristics of our parallel algorithm.

PROFILING

To further demonstrate the performance of our parallel Krylov solver preconditioned
by multigrid-based CSLP, we conducted comprehensive profiling using gprof to
identify computational bottlenecks and resource utilization patterns.

The profiling results for sequentially computed and parallel computing with 9
processors are shown in Tables 2.3 and 2.4, respectively. We can find that the dot-
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Table 2.1: Parallel performance of CSLP preconditioned GMRES for closed-off problem
with different wavenumber k on nw-node11. kh = 0.625, CSLP approximated by V-
cycle, nxcoar sest ×nycoar sest = 9×9

k nx np #Iter tw (s) Abs. err. Sp Ep

40 65
1 66 0.08 2.250E-05 1.00 -
4 66 0.04 2.250E-05 2.17 54.24

60 97
1 135 0.47 1.711E-05 1.00 -
9 135 0.11 1.593E-05 4.23 47.00

80 129
1 224 1.84 1.899E-04 1.00 -
4 224 0.56 1.630E-04 3.27 81.81

16 224 0.30 1.795E-04 6.14 38.41

120 193
1 532 22.57 6.306E-04 1.00 -
4 531 6.05 6.767E-04 3.73 93.21
9 531 2.99 6.747E-04 7.56 84.01

160 257
1 789 90.85 4.176E-03 1.00 -
4 790 21.77 4.159E-03 4.17 104.31

16 790 7.37 4.159E-03 12.32 77.03

180 289
1 855 132.17 7.552E-04 1.00 -
4 855 32.15 7.540E-04 4.11 102.79
9 855 16.21 7.539E-04 8.15 90.58

240 385

1 983 310.33 1.249E-03 1.00 -
4 983 78.25 1.249E-03 3.97 99.14
9 983 35.37 1.249E-03 8.77 97.48

16 983 24.70 1.249E-03 12.56 78.52

320 513
1 1115 723.18 4.329E-03 1.00 -
4 1115 181.64 4.329E-03 3.98 99.54

16 1115 52.40 4.329E-03 13.80 86.26
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Table 2.2: Numerical performance of parallel CSLP preconditioned GMRES on nw-
node11 for different grid sizes for k = 100. CSLP approximated by V-cycle, nxcoar sest ×
nycoar sest = 9×9.

grid size kh np #Iter Abs. err. tw (s) Sp

161×161 0.625
1 343 3.14351E-03 6.81 1.00
4 344 2.93436E-03 1.89 3.59

321×321 0.3125
1 308 6.56389E-03 25.11 1.00
4 308 6.56555E-03 6.20 4.05

481×481 0.2083
1 377 6.23648E-05 82.07 1.00
4 378 5.45449E-05 21.10 3.89
9 377 7.71755E-05 9.52 8.62

641×641 0.15625

1 328 8.12076E-04 113.06 1.00
4 328 8.12861E-04 29.76 3.80
9 328 8.12081E-04 14.04 8.05

16 328 8.11990E-04 8.76 12.91

products as well as the vector operations axpy in the Arnodi iteration of GMRES
take up most of the time. In the case of parallel computing with 9 processors, the
percentage does not change significantly, and the communication functions do not
stand out as the main time-consuming function.

Table 2.3: Part of flat profile results for solving the closed-off problem with k = 128,
nx ×ny = 513×513, np = 1

% cumulative self
time1 seconds2 seconds3 calls4 Procedure5

42.77 174.01 174.01 485 Arnoldi_
42.27 345.99 171.98 117855 dot_prod_

5.65 368.96 22.97 12561 cslp_op_
2.66 379.79 10.83 5844 damp_jacobi_smoother_
1.75 386.89 7.10 5844 diagcslp_op_
1.39 392.54 5.65 487 helmholtz2d_
0.75 395.60 3.06 487 V_cycle

1 The percentage of the total running time of the program used by
this function.

2 A running sum of the number of seconds accounted for by this
function and those listed above it.

3 The number of seconds accounted for by this function alone.
4 The number of times this function was invoked.
5 The name of the function.
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Table 2.4: Part of flat profile results for solving the closed-off problem with k = 128,
nx ×ny = 513×513, np = 9

% cumulative self
time seconds seconds calls Procedure

44.94 293.64 293.64 4365 Arnoldi_
43.98 581.05 287.41 1060695 dot_prod_

3.3 602.64 21.59 113067 cslp_op_
2.43 618.52 15.88 52596 damp_jacobi_smoother_
0.95 624.74 6.22 52596 diagcslp_op_
0.79 629.93 5.19 4383 helmholtz2d_
0.73 639.84 4.79 4383 V_cycle

DOT-PRODUCT BENCHMARK

According to the profiling, the dot-product operation constitutes the most compu-
tationally intensive component. To evaluate computational performance, in this
section, we focus on analyzing the bandwidth achieved by our parallel implementa-
tion of dot-product operation. The achieved bandwidth is calculated by dividing the
total memory accessed by the execution time.

In our numerical framework, variables from a two-dimensional physical domain,
denoted as u(nx,ny) and v(nx,ny), are represented as two-dimensional arrays, and
their dot-product is subsequently computed. Additionally, we examine three altern-
ative implementations of the dot-product operation. The investigation encompasses
four distinct methodologies for implementing the dot-product calculation as shown
in Algorithms 9 to 12.

The first two implementations explore loop-level optimizations, where Algorithm 9
maintains the 2D array structure while leveraging loop unrolling to reduce loop over-
head and improve instruction-level parallelism. Algorithm 10 takes this optimization
further by treating the arrays as continuous memory blocks, potentially improving
cache utilization through better memory access patterns. Algorithm 11 represents a
more abstract approach that relies on built-in array operations. Algorithm 12 strikes a
balance between optimization and code clarity by combining a simple loop structure
with optimized intrinsic functions, making it particularly effective when the compiler
can efficiently optimize the built-in dot-product function.

Analysis of the dot product benchmark on nw-node7 shows contrasting perform-
ance patterns. As shown in Tables 2.5 and 2.6, for small arrays, the implementation
achieves good speedup and scalable bandwidth, as the data fits within the CPU cache,
which offers significantly higher bandwidth than main memory. However, with large
arrays that exceed cache capacity, performance deteriorates because the processor of
nw-node7 has limited memory architecture with a maximum bandwidth of 36 GBs−1.
In these cases, adding cores provides no speedup since they must share this fixed
bandwidth limit.

Performance evaluations of the dot-product benchmark conducted on nw-node11

are presented in Table 2.7. The analysis demonstrates that even with large-scale
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Algorithm 9 Dot-product: Loop-based 2D arrays

Require: 2D Arrays u(nx,ny), v(nx,ny)
1: for j = 1 to ny do

2: for i = 1 to nx step 4 do

3: d p0 ← d p0+u(i , j )× v(i , j )
4: d p1 ← d p1+u(i +1, j )× v(i +1, j )
5: d p2 ← d p2+u(i +2, j )× v(i +2, j )
6: d p3 ← d p3+u(i +3, j )× v(i +3, j )
7: end for

8: end for

9: dot_pr od_local ← d p0+d p1+d p2+d p3
10: MPI_Allreduce(dot_pr od_local , dot_pr od_g lobal , ..., MPI_SUM, ...)

Algorithm 10 Dot-product: Loop-based 1D arrays

Require: 2D Arrays u(nx,ny), v(nx,ny)
1: for i = 1 to nx ×ny step 4 do

2: d p0 ← d p0+u(i )× v(i )
3: d p1 ← d p1+u(i +1)× v(i +1)
4: d p2 ← d p2+u(i +2)× v(i +2)
5: d p3 ← d p3+u(i +3)× v(i +3)
6: end for

7: dot_pr od_local ← d p0+d p1+d p2+d p3
8: MPI_Allreduce(dot_pr od_local , dot_pr od_g lobal , ..., MPI_SUM, ...)

Algorithm 11 Dot-product: Original 2D array-based

Require: 2D Arrays u(nx,ny), v(nx,ny)
1: dot_pr od_local ← sum(u(1:nx,1:ny)× v(1:nx,1:ny))
2: MPI_Allreduce(dot_pr od_local , dot_pr od_g lobal , ..., MPI_SUM, ...)

Algorithm 12 Dot-product: Loop intrinsic dot-product function

Require: 2D Arrays u(nx,ny), v(nx,ny)
1: for j = 1 to ny do

2: dot_pr od_local ← dot_pr od_local +dot_product(u(1:nx, j ), v(1:nx, j ))
3: end for

4: MPI_Allreduce(dot_pr od_local , dot_pr od_g lobal , ..., MPI_SUM, ...)
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Table 2.5: Dot-product performance test on nw-node7 using two 512×512 arrays,
repeated 2000 times, accessing 0.84 GB of memory total.

np tw (s) Sp
Achieved band-

width (GBs−1)
Loop-based 2D

1 0.029 1.00 28.73
2 0.028 1.04 29.81
4 0.014 2.04 58.75
8 0.008 3.86 110.99

Loop-based 1D
1 0.029 1.00 28.65
2 0.028 1.04 29.86
4 0.014 2.07 59.16
8 0.008 3.91 112.03

Original array-based
1 0.045 1.00 18.86
2 0.023 1.95 36.86
4 0.012 3.85 72.56
8 0.006 7.18 135.41

Loop intrinsic dot_product
1 0.042 1.00 19.83
2 0.023 1.86 36.80
4 0.011 3.70 73.48
8 0.006 6.95 137.87

Table 2.6: Dot-product performance test on nw-node7 using two 10000×10000 arrays,
repeated 30 times, accessing 48.0 GB of memory total.

np tw (s) Sp
Achieved band-

width (GBs−1)
Loop-based 2D

1 2.598 1.00 18.48
2 2.042 1.27 23.51
4 1.579 1.65 30.40
8 1.423 1.83 33.74

Loop-based 1D
1 2.595 1.00 18.50
2 2.037 1.27 23.57
4 1.577 1.65 30.44
8 1.422 1.83 33.77

Original array-based
1 2.980 1.00 16.11
2 1.914 1.56 25.08
4 1.535 1.94 31.28
8 1.371 2.17 35.02

Loop intrinsic dot_product
1 2.971 1.00 16.16
2 1.913 1.55 25.09
4 1.535 1.94 31.27
8 1.370 2.17 35.03
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arrays of dimensions 10000×10000, the implementation maintains scalable bandwidth
efficiency. The results suggest that the processing units on nw-node11 exhibit superior
peak bandwidth capabilities compared to those on nw-node7. Through the dot-
product benchmark analysis, we have confirmed that our implementation is indeed
memory-bounded. Consequently, Algorithm 12 will be adopted as the standard
version for implementation in our solver frameworks.

Table 2.7: Dot-product performance test on ne-node11 using two 10000×10000 arrays,
repeated 30 times, accessing 48.0 GB of memory total.

np tw (s) Sp
Achieved band-

width (GBs−1)
Loop-based 2D

1 4.401 1.00 10.91
2 2.318 1.90 20.71
4 1.181 3.73 40.65
8 0.630 6.99 76.20

Loop-based 1D
1 4.408 1.00 10.89
2 2.320 1.90 20.69
4 1.177 3.75 40.80
8 0.629 7.01 76.36

Original array-based
1 4.633 1.00 10.36
2 2.403 1.93 19.98
4 1.224 3.79 39.23
8 0.645 7.18 74.42

Loop intrinsic dot_product
1 4.698 1.00 10.22
2 2.427 1.94 19.78
4 1.240 3.79 38.72
8 0.650 7.23 73.87

2.4.2. CONSTANT-WAVENUMBER PROBLEM WITH POINT SOURCE

Figure 2.4 shows a qualitative comparison between the analytical solution and numer-
ical approximation of MP-2a and MP-2b in Section 1.2.1 for k = 50. Our solver provides
a reasonable approximation of the exact solution, independent of parallel partition-
ing. Nevertheless, minor discrepancies in wave amplitudes are observed, primarily
attributable to discretization errors arising from the finite-difference representation
of the Dirac delta function.
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Figure 2.4: Solutions for MP-2 at k = 50, kh = 0.625
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COMPARISON OF BOUNDARY CONDITIONS

To illustrate the pollution effect, we analyze the numerical approximation of MP-2a
with wavenumber k = 100, as illustrated in Figure 2.5. The results in Figure 2.5a
demonstrate that a resolution of 10 grid points per wavelength proves insufficient
to produce an accurate solution. However, when the resolution is increased to 50
grid points per wavelength, as shown in Figs. 2.5b, both phase and amplitude of the
numerical solution exhibit satisfactory accuracy. These findings confirm that for a
given wavenumber, the pollution effect can be minimized by increasing the spatial
resolution of the computational grid.

As for MP-2b in Figure 2.6, maintaining 10 grid points per wavelength is sufficient
to effectively control both phase and amplitude discrepancies when k = 100. This
behavior can be attributed to the attenuation effects inherent in the Sommerfeld
boundary conditions, which reduce the severity of the pollution effect by preventing
boundary reflections, thereby relaxing resolution requirements.
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Figure 2.5: Solutions for MP-2a at k = 100

Figure 2.7 demonstrates that the CSLP-preconditioned GMRES algorithm exhibits
superior convergence rates for MP-2b compared to MP-2a. This enhanced perform-
ance can be attributed to the distinct spectral properties of the preconditioned matrix
M−1

h
Ah , as illustrated in Figure 2.8. The application of Sommerfeld boundary condi-

tions results in eigenvalues tending to cluster more around the point (1, 0), whereas
the Dirichlet boundary conditions yield a significant number of eigenvalues near zero.
This spectral distribution pattern explains the relatively poor convergence behavior
exhibited by MP-2a during intermediate iterations, as demonstrated in Figure 2.7a.
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Figure 2.6: Solutions for MP-2b at k = 100, kh = 0.625
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k = 100.
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COMPARISON OF DIFFERENT KRYLOV METHODS

According to 2.4.1, memory and bandwidth requirements are an important factor
affecting the parallel efficiency. The Arnoldi process in GMRES requires many dot
product operations, requiring global communication in parallel computing. To restrict
work and memory requirements, one may think of the GMRES(m) procedure, or
other Krylov methods that use short recurrences. In fact, the matrix-free parallel
implementation together with CSLP are not limited to the GMRES algorithm. All the
ingredients can be directly generalized to GMRES(m) or other Krylov methods like
Bi-CGSTAB and IDR(s).

To show the dominant operations of different methods, first we compare the profil-
ing results of full GMRES, GMRES(m), Bi-CGSTAB, IDR(s) in the case of sequentially
computed, as shown in Tables 2.8 to 2.11. The numerical solution employs GMRES(m)
with a restart parameter of m = 50. For the IDR(s) algorithm, s = 4 is chosen because
it is a good compromise between performance and storage [45]. It can be seen that
in GMRES and GMRES(m), the Arnoldi process as well as the dot product accounts
for the largest proportion of the running time. The second is the related operations
of approximating the inverse of CSLP by the multigrid method, such as the smoother,
which take up most of the time in Bi-CGSTAB and IDR(4). The dot product opera-
tions no longer play a significant role in Bi-CGSTAB and IDR(4). The proportion of
matrix-vector multiplication becomes obvious instead.

Table 2.8: GMRES: part of flat profile results for MP-2b, k = 100, nx ×ny = 161×161,
np = 1

% cumulative self
time seconds seconds calls Procedure

38.53 2.25 2.25 147 _prearnoldi
36.82 4.40 2.15 10878 _dot_prod

6.51 4.78 0.38 1490 _damp_jacobi_smoother
3.08 4.96 0.18 1776 _cslp_op_bc
2.74 5.12 0.16 149 _finestgrid_define

2.4 5.26 0.14 149 _v_cycle
2.23 5.39 0.13 745 _prolongation_en_correct
1.71 5.49 0.10 1 _pre_fullgmres
1.54 5.58 0.09 149 _helmholtz2d_bc

1.2 5.65 0.07 10348050 _cslp2d_stencils
1.03 5.71 0.06 149 _mg_fullgmres

Numerical experiments show that, for small wavenumber, there is little difference
between Bi-CGSTAB, IDR(s), GMRES(m) and GMRES, since CSLP is a good precon-
ditioner. To compare the parallel performance of these Krylov methods, we will
consider MP-2b with k = 400 and kh = 0.625. Results are presented in Table 2.12,
where “#Matvec” denotes the number of matrix-vector multiplications. Among the
methods examined, GMRES demonstrated the highest computational cost. Never-
theless, GMRES exhibited superior parallel efficiency compared to other methods.
Analysis of performance profiles indicates that increasing the ratio of matrix-vector
multiplications to dot products does not inherently enhance parallel efficiency within
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Table 2.9: GMRES(m): part of flat profile results for MP-2b, k = 100, nx×ny = 161×161,
np = 1

% cumulative self
time seconds seconds calls Procedure

25.74 1.05 1.05 200 _prearnoldi
24.76 2.06 1.01 5100 _dot_prod
15.69 2.70 0.64 2050 _damp_jacobi_smoother

4.66 2.89 0.19 2457 _cslp_op_bc
4.66 3.08 0.19 1025 _prolongation_en_correct
4.17 3.25 0.17 205 _finestgrid_define
3.92 3.41 0.16 205 _v_cycle
2.45 3.51 0.10 14237250 _cslp2d_stencils
2.45 3.61 0.10 1 _pre_restartgmres
1.96 3.69 0.08 205 _multigrid_based_cslp
1.72 3.76 0.07 210 _norm

Table 2.10: Bi-CGSTAB: part of flat profile results for MP-2b, k = 100, nx ×ny =
161×161, np = 1

% cumulative self
time seconds seconds calls Procedure

25 0.48 0.48 1730 _damp_jacobi_smoother
10.42 0.68 0.20 173 _v_cycle

9.9 0.87 0.19 1 _cidrs
6.77 1.00 0.13 865 _prolongation_en_correct
6.25 1.12 0.12 173 _finestgrid_define
5.73 1.23 0.11 2070 _cslp_op_bc
5.47 1.34 0.11 12014850 _cslp2d_stencils
4.69 1.43 0.09 175 _cmatvec
4.17 1.51 0.08 865 _coarsegrid_create
3.39 1.57 0.07 175 _helmholtz2d_bc

2.6 1.62 0.05 865 _restriction

Table 2.11: IDR(4): part of flat profile results for MP-2b, k = 100, nx ×ny = 161×161,
np = 1

% cumulative self
time seconds seconds calls Procedure

16.43 0.34 0.34 1630 _damp_jacobi_smoother
15.46 0.66 0.32 1 _cidrs

9.66 0.86 0.20 163 _v_cycle
7.73 1.02 0.16 815 _prolongation_en_correct
6.76 1.16 0.14 164 _cp_dot
5.31 1.27 0.11 165 _cmatvec
5.07 1.38 0.11 11320350 _cslp2d_stencils
4.83 1.48 0.10 1951 _cslp_op_bc
4.83 1.58 0.10 815 _restriction
4.83 1.68 0.10 163 _finestgrid_define
4.59 1.77 0.10 165 _helmholtz2d_bc
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this framework. IDR(4) and Bi-CGSTAB showed similar execution times, with IDR(4)
demonstrating slightly superior parallel performance.

To explore the scalability, considering MP-2b with k = 200, we increase the num-
ber of processors correspondingly while refining the grid. For each method, the
time consumed remains almost constant in Table 2.13. The results further demon-
strate that our proposed matrix-free parallel solution method exhibits weak scalability,
irrespective of the chosen Krylov subspace method.

Table 2.12: Parallel performance of different parallel CSLP-preconditioned Krylov
methods for MP-2b k = 400 and kh = 0.625.

np #Matvec tw (s) Sp Ep

GMRES
1 563 305.50 - -
4 563 83.15 3.67 91.85
9 563 39.01 7.83 87.02

16 563 23.96 12.75 79.69
GMRES(m)

1 650 74.82 - -
4 650 19.95 3.75 93.74
9 650 9.86 7.59 84.30

16 650 6.36 11.77 73.55
Bi-CGSTAB

1 632 39.73 - -
4 629 10.81 3.68 91.90
9 628 5.80 6.85 76.11

16 631 3.76 10.57 66.07
IDR(4)

1 624 43.83 - -
4 602 11.56 3.79 94.76
9 602 6.12 7.16 79.56

16 587 3.96 11.06 69.14

2.4.3. WEDGE MODEL PROBLEM

In this section, the two-dimensional wedge problem described in Section 1.2.1 is
used to evaluate the performance of our parallel solution method for a simple
heterogeneous medium.

Figure 2.9 shows the typical wave diffraction pattern of the wedge problem at
f = 80Hz. One can observe that the wavefront is significantly curved at the slow-to-
fast interface. The wave is mainly reflected in that transition region.

Table 2.14 gives the required number of matrix-vector multiplications (denoted by
#Matvec), CPU-time and relative speedup of different CSLP-preconditioned Krylov
methods for the wedge problem. The source frequency is f = 80Hz with grid size
769×1281, which indicates kh ≤ 0.26 and guarantees more than 20 grid points per
wavelength.

According to the results, among the different Krylov methods, GMRES has the least
number of matrix-vector multiplications and the best parallel efficiency, but requires
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Table 2.13: Parallel performance of different Krylov methods for MP-2b with k = 200
while refining the grid.

Grid size np #Matvec tw (s)
GMRES

321×321 4 285 5.27
481×481 9 310 6.79
641×641 16 283 6.80

GMRES(m)
321×321 4 350 2.47
481×481 9 350 2.76
641×641 16 350 3.31

Bi-CGSTAB
321×321 4 336 1.41
481×481 9 342 1.61
641×641 16 302 1.77

IDR(4)
321×321 4 321 1.52
481×481 9 321 1.73
641×641 16 289 1.9

the most CPU time. The time required for GMRES(m) is about 20% of the time for
GMRES, while the time required for Bi-CGSTAB and IDR(4) is only 11% of the time
for GMRES. This confirms that it is not suitable to use full GMRES if the number of
iterations is large. For this case, the number of matrix-vector multiplications of IDR(4)
is close to that of GMRES. And IDR(4) is the least time-consuming. Our matrix-free
parallel CSLP-preconditioned method is still suitable for the common Krylov solvers
for heterogeneous Helmholtz problems. Table 2.15 illustrates that it still leads to a
satisfactory scalability if we increase the number of processors correspondingly while
refining the grid.
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Figure 2.9: An example of the wave diffraction pattern of the wedge problem at
f = 80Hz

2.4.4. MARMOUSI MODEL PROBLEM

In this section, the so-called Marmousi model problem in Section 1.2.1 is considered
for the industrial applications that usually involve a highly heterogeneous medium.
Compared to the wedge-shaped velocity distribution, the Marmousi velocity distribu-
tion includes both discontinuous and much more complex velocity variations.

A typical wave diffraction pattern of the Marmousi problem at f = 40Hz is shown
Figure 2.10. Despite the rather complex velocity distribution, it is still possible to
find an explanation for the wave diffraction pattern. We can observe that the wave
propagates mainly in channels formed by a “fast” medium embedded in a “slow”
medium.

Table 2.16 presents the required number of matrix-vector multiplications (denoted
by #Matvec), CPU-time and relative speedup of different CSLP-preconditioned Krylov
methods for the Marmousi problem. The source frequency is f = 40Hz with a grid
size of 2945×961, which indicates kh ≤ 0.54 and guarantees more than 10 grid points
per wavelength.

One can find that for such a setup of the Marmousi problem, a huge number
of iterations are required to reduce the relative residual to 10−6. Likewise, GMRES
has the least number of matrix-vector multiplications but requires the most CPU
time. The parallel efficiency is also reduced to 50%. IDR(4) and Bi-CGSTAB have
similar performances. In contrast to Table 2.12, IDR(4) and Bi-CGSTAB exhibit higher
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Table 2.14: MP-3: parallel performance of different parallel CSLP-preconditioned
Krylov methods, f = 80Hz, grid size 769×1281. One iteration of the multigrid V-cycle
is used to approximate the inverse of the preconditioner.

np #Matvec tw (s) Sp Ep

GMRES
1 613 989.74 - -
2 613 475.92 2.08 103.98
8 613 126.99 7.79 97.42

18 613 78.50 12.61 70.04
GMRES(m)

1 700 205.86 - -
2 700 103.60 1.99 99.35
8 700 29.16 7.06 88.25

18 700 18.43 11.17 62.06
Bi-CGSTAB

1 722 111.31 - -
2 713 56.12 1.98 99.17
8 739 19.31 5.76 72.05

18 745 12.91 8.62 47.91
IDR(4)

1 600 102.60 - -
2 604 52.89 1.94 96.99
8 640 19.14 5.36 67.00

18 638 12.15 8.44 46.91

Table 2.15: MP-3: CPU time consumed by different parallel CSLP-preconditioned
Krylov methods while refining the grid, f = 40Hz. One iteration of the multigrid
V-cycle is used to approximate the inverse of the preconditioner. The number of
matrix-vector multiplications is in parentheses. It should be noted that GMRES(m)
with m = 50 converges in 7 iterations.

Grid size np GMRES GMRES(m) Bi-CGSTAB IDR(4)
385 × 641 2 25.34 (278) 11.99 (350) 6.20 (321) 6.10 (282)

769 × 1281 8 31.92 (283) 14.95 (350) 7.98 (301) 7.41 (251)
1153 × 1921 18 68.14 (282) 27.12 (350) 14.51 (312) 13.48 (239)
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parallel efficiency than GMRES. The results illustrate that the matrix-free parallel
CSLP-preconditioned method also works for the highly heterogeneous Helmholtz
problems.

The data presented in Table Table 2.17 fails to exhibit satisfactory weak scalability,
primarily attributed to the substantial computational requirements of large grid sizes
approaching the bandwidth limitations of the compute node, consequently leading
to diminished parallel efficiency.

Figure 2.10: An example of the wave diffraction pattern of the Marmousi problem at
40Hz

Table 2.16: MP-4: parallel performance of different parallel CSLP-preconditioned
Krylov methods, f = 40Hz, grid size 2945×961. One iteration of the multigrid V-cycle
is used to approximate the inverse of the preconditioner.

np #Matvec tw (s) Sp Ep

GMRES
1 2872 61705.58 - -
3 2872 21892.21 2.82 93.95

12 2872 10309.02 5.99 49.88
GMRES(m)

1 3350 2958.46 - -
3 3350 907.40 3.26 108.68

12 3350 374.10 7.91 65.90
Bi-CGSTAB

1 4124 2431.94 - -
3 4435 712.34 3.41 113.80

12 4513 279.09 8.71 72.61
IDR(4)

1 4438 2881.58 - -
3 4688 854.72 3.37 112.38

12 4484 334.59 8.61 71.77
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Table 2.17: MP-4: CPU time consumed by different parallel CSLP-preconditioned
Krylov methods while refining the grid, f = 20Hz. One iteration of the multigrid
V-cycle is used to approximate the inverse of the preconditioner. The number of
matrix-vector multiplications is in parentheses.

Grid size np GMRES GMRES(m) Bi-CGSTAB IDR(4)
1473 × 481 3 543.50 (1106) 76.84 (1200) 45.04 (1090) 44.34 (973)
2945 × 961 12 1160.57 (1019) 135.91 (1200) 73.65 (1117) 77.86 (1054)

2.5. CONCLUSIONS
This chapter presents a systematic investigation of matrix-free parallel solution meth-
ods for the two-dimensional Helmholtz equation using preconditioned Krylov sub-
space methods with CSLP. It is closely related to our research objectives (i). Our
numerical experiments validate the accuracy of the numerical solution through com-
parison with the analytical solution and demonstrate its robust performance across
various model problems. Performance analysis reveals the memory-bound nature of
computations, with the dot-product operations and multigrid-based preconditioner
comprising the primary computational cost.

A key achievement is the weak scalability of our matrix parallel framework, maintain-
ing consistent iteration counts as problem size increases, while enabling improved
accuracy through grid refinement for medium wavenumbers. This property estab-
lishes the possible utility for pollution-free simulations. Furthermore, the flexibility of
the framework in accommodating various Krylov methods enhances its adaptability
to different problem characteristics and computational requirements.

The robust parallel performance observed across diverse model problems, ranging
from homogeneous to heterogeneous media, validates the effectiveness of our matrix-
free approach. This success in handling varying degrees of problem complexity
suggests promising potential for broader applications. The insights gained regarding
performance characteristics and scalability will be valuable for research in subsequent
Chapters. Our current implementation solves 2D problems effectively; the extension
to 3D heterogeneous high-frequency Helmholtz equations will be discussed in the
next chapter.
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The matrix-free parallel preconditioned Krylov subspace method is extended to the 3D

heterogeneous Helmholtz equation. The CSLP is employed and approximately inverted

using one parallel 3D multigrid cycle. For parallel computing, the global domain is

partitioned blockwise. The matrix-vector multiplication and preconditioning operator

are implemented in a matrix-free way instead of constructing large, memory-consuming

coefficient matrices. Numerical experiments of 3D model problems demonstrate the

robustness and outstanding strong scaling of our matrix-free parallel solution method.

Moreover, the weak parallel scalability indicates our approach is suitable for realistic

3D heterogeneous Helmholtz problems with minimized pollution error.

Parts of this chapter have been published in Electronic Transactions on Numerical Analysis 59, 270–294
(2023) [125].

73



3

74 3. MATRIX-FREE PARALLEL CSLP IN 3D

Building upon the two-dimensional framework presented in Chapter 2, this chapter
is interested in parallelizing Krylov subspace methods, such as GMRES, Bi-CGSTAB,
and IDR(s), preconditioned by the multigrid-based CSLP for the 3D Helmholtz equa-
tion. Our contribution is the development and validation of a matrix-free parallel
framework of CSLP-preconditioned Krylov subspace methods in the context of solving
large-scale 3D Helmholtz problems with minimized pollution error. To the best of our
knowledge, this has not been previously reported in the literature. The earlier variants
proposed by Kononov and Riyanti et al. [116, 123] mainly parallelized the sequential
program based on the data-parallel concept. It results in a row-wise domain partition
and a 3D multigrid method with 2D semi-coarsening. In contrast, this chapter starts
with a block-wise domain partition and implements a standard 3D multigrid method
in a matrix-free way. Our method contributes to a robust and scalable parallel CSLP-
preconditioned solver for realistic 3D applications. Numerical experiments on typical
3D model problems show that the matrix-free parallel solution method can effectively
save memory for storing global sparse matrices and show good parallel performance.

The rest of this chapter is organized as follows. Section 3.1 describes the mathemat-
ical model and discretization technique that we will discuss. The numerical methods
are briefly described in Section 3.2. Section 3.3 describes the parallel implementation.
The numerical performance is explored in Section 3.4. Finally, Section 3.5 contains
our conclusions.

3.1. MATHEMATICAL MODELS
The mathematical foundation remains the heterogeneous Helmholtz equation in the
frequency domain, now defined on a three-dimensional parallelepipedal domain

−∆u
(

x, y, z
)

−k
(

x, y, z
)2

u
(

x, y, z
)

= b
(

x, y, z
)

, (3.1)

which is complemented by appropriate boundary conditions as detailed in Chapter 1.
To validate and evaluate our three-dimensional solver, we consider a progression

of model problems with increasing complexity. The analytical closed-off problem
with constant coefficients serves as a verification benchmark, followed by the wedge
problem that introduces simple heterogeneity through distinct velocity layers. The
culminating test case is the industry-standard SEG/EAGE salt model, which incor-
porates realistic geological features including complex salt dome structures within a
large-scale computational domain. These model problems present distinct computa-
tional challenges: while the 3D closed-off problem enables direct accuracy assessment
through comparison with analytical solutions, the 3D wedge and 3D SEG/EAGE salt
models introduce the practical difficulties of heterogeneous media and complex geo-
metries encountered in geophysical applications.

The discretization follows the second-order finite difference scheme on vertex-
centered grids, maintaining at least ten grid points per wavelength to ensure solution
accuracy. For detailed mathematical formulations and discretization schemes, we
refer to the comprehensive treatment provided in Chapter 1. The resulting discrete
systems retain the characteristics of being indefinite (and complex-valued), but with
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significantly larger dimensions compared to the 2D counterparts, thereby motivating
our focus on efficient parallel solution strategies.

3.2. NUMERICAL METHOD
Building upon the foundation established in Chapter 1 and the 2D implementation
discussed in Chapter 2, we employ preconditioned Krylov subspace methods to solve
the discretized 3D Helmholtz problem. Our framework primarily utilizes GMRES,
Bi-CGSTAB, and IDR(s) methods.

For preconditioning, we continue to employ the CSLP, with parameters β1 = 1
and β2 = 0.5 except where specified otherwise. The preconditioner is approximately
inverted using a geometric multigrid method.

3.2.1. 3D MULTIGRID FOR THE PRECONDITIONER SOLVE

This section presents an overview of the key components comprising a 3D geometric
multigrid method, which represents an extension of the two-dimensional framework
discussed in Chapter 1.

SMOOTHERS

In this framework, we will mainly use the damped Jacobi smoother as it is easy
to parallelize and has been shown effective in previous work [49].The impact of
varying the relaxation parameter for the damped Jacobi smoother and using different
smoothers on the convergence properties have already been extensively investigated
by [49, 126]. It has been shown that, based on an actual situation, the use of
smoothers and the choice of relaxation parameters can be flexible within a certain
range. We will fix the relaxation parameter at ω= 0.8, as this value was found to work
well for our test problems.

RESTRICTION

Figure 3.1 shows part of a 3D fine grid with a coarse grid obtained by standard
coarsening. Two sets of uniform grids with size h and H = 2h are used to discretize
a regular computational domain Ω= (0,1)× (0,1)× (0,1).

The 3D full-weighting restriction operator has a stencil given by
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. (3.2)

Let bH = I H
h

r h , where bH is the right-hand side of the coarse grid, and r h is the
residual of the fine grid. The restriction can be implemented in a matrix-free way as
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: coarse grid point

Figure 3.1: Vertex-centered 3D standard coarsening.

follows.
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(3.3)

where (i1, i2, i3) ∈Ω
H .

INTERPOLATION

The interpolation operator I h
H

transfers grid vectors from the coarse to the fine grid.
The 3D trilinear interpolation operator stencil can be written as
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Let uh = I h
H

uH , where uH is the solution of the coarse grid, and uh is the correction
for the fine grid. As shown in Figure 3.2, the interpolation can be implemented as
follows.
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Figure 3.2: The allocation map of interpolation operator.
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where (i1, i2, i3) ∈Ω
H .

COARSE-GRID OPERATOR

With a parallel implementation in mind, we keep using the re-discretization ap-
proach to obtain the coarse-grid operator. Boundary conditions of the preconditioner
operator are set identically to the corresponding model problems.

3.2.2. MATRIX-FREE METHOD

We can implement the Krylov subspace methods in a matrix-free way instead of
constructing the coefficient matrices explicitly. The matrix-vector multiplication can
be replaced by stencil computations. Likewise, the preconditioning matrix M and
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its stencil can be obtained analytically by its definition in Equation (1.81). One
does not need to construct M explicitly since the result of M x can be calculated
by its corresponding stencil. Besides, the matrix-free restriction and prolongation
operators in the multigrid method can be implemented according to Equation (3.3)
and Equation (3.5), respectively.

3.3. PARALLEL IMPLEMENTATION
A parallel Fortran 90 code is developed to solve the 3D heterogeneous Helmholtz
problems. The MPI standard is employed for data communications among the
processes. Therefore, the design of an MPI topology will be the basis. In addition,
the domain partition and the data structure within the processes will determine the
implementation of the matrix-vector multiplication and dot product. Finally, the
parallelization of the Krylov subspace methods and the multigrid cycle are carried
out.

3.3.1. PARALLEL SETUP

For the MPI setup, the first step is to determine the total number of processes
(denoted by np) and the number of processes in each direction. In 3D cases, the
number of processes in the x-, y- and z- direction is denoted as npx0, npy0and npz0
respectively. As shown in Figure 3.3, the entire computational domain is partitioned
into 3×4×5 blocks. Each block is seen as an MPI process, each of which is assigned
to a CPU core. Due to the star-type computation stencil, the communication between
processes exists only between the adjacent blocks in each coordinate direction. After
acquiring np processes and creating a parallel computing environment using MPI,
each process will own its MPI rank (0 to np −1). We assign each subdomain to each
process according to the x-line lexicographic order. Indicating to different processes
whether their corresponding subdomains contain physical boundaries or interface
boundaries, we define npx, npy , and npz to describe the position in the x-, y- and
z- directions for every process. For example, npx is in the range of [0,npx0− 1].
When npx is equal to 0, the process needs to deal with the left physical boundary.
When npx equals npx0−1, the process needs to handle the right physical boundary.

In domain partitioning, we choose to partition the domain between two grid points
(i.e., along the red dotted line shown in Figure 3.5). Therefore, the boundary points
of adjacent subdomains are adjacent grid points in the global grids. Note that the
Helmholtz operator and the CSLP have a similar stencil that only needs the data from
the adjacent grid points. Thus, for each block, we introduce one layer of overlapping
grid points outward at each interface boundary to represent the adjacent grid points
(i.e., the blue grid in Figure 3.4).

In the program, the grid unknowns are stored as an array based on the grid ordering
(i1, i2, i3) instead of a column vector based on x-line lexicographic ordering. We store
the number of grid points in each dimension within each subdomain as nx, ny , and
nz respectively. To store and use the data from adjacent processors, the local arrays
are extended based on the subdomain grid structure as shown in Figure 3.4. Thus,
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the index range of the array u becomes (1− l ap : nx + l ap,1− l ap : ny + l ap,1− l ap :
nz+l ap). For second-order finite-difference discretization, the number of overlapping
grid points l ap is 1. Within a certain subdomain, the operations and array updates
are limited to the range (1 : nx,1 : ny,1 : nz). The data u(i1, i2, i3) for i1 = 1 or nx,
i2 = 1 or ny and i3 = 1 or nz are sent to adjacent processors. The data received from
adjacent processors are stored in the corresponding extended grid points, which are
called during the operations concerning interface grid points.

3.3.2. PARALLEL MULTIGRID METHOD BASED ON GLOBAL GRID

We will consider the parallel implementation of the multigrid iteration based on the
original global grid, as shown in Figure 3.5, where an arbitrary grid size is chosen for
demonstration purposes.

According to the relationship between the fine grid and the coarse grid, the para-
meters of the coarse grid are determined by the grid parameters of the fine one. For
example, point (i1c , i2c , i3c ) in the coarse grid corresponds to point (2i1c − 1,2i2c −
1,2i3c − 1) in the fine grid. The restriction, as well as interpolation of the grid
variables, can be implemented according to the stencils based on the index corres-
pondence between the coarse and fine grid. The grid-based matrix-free multigrid
preconditioner starts at the finest grid, and recursively performs a two-grid cycle
until the bottom level is reached, where a certain number of pre-defined grid points
are left in each of the directions (denoted as the stopping criterion for coarsening,
i.e. nxcoarsest ×nycoarsest ×nzcoarsest). The coarsest-grid problem is solved by parallel
GMRES. On the one hand, direct solvers are not easy to parallelize and an exact
solution for the coarse grid problem is not necessary for our preconditioner. On the
other hand, we developed this work for massively parallel computing of large-scale
practical problems. Agglomerating to one process and using a direct solver is not an
economical option, as the all-gather communication would be expensive and the rest
of the processes are idle. Thus, our idea is to stop coarsening at a certain level, on
which the communication load is still much less than the computational load and we
can solve the coarse-grid problem in parallel with fairly good efficiency. In this way,
we can take advantage of the parallelism available in the system and achieve better
overall performance. This allows for more accurate solutions at coarser levels, which
can then be used to inform the solutions at finer levels. This is particularly important
for practical applications where we need to balance both performance and accuracy.
However, the optimal selection of the coarsest grid size depends on both the num-
ber of iterations and processes. Due to our limitations in computing resources and
machine time, we set the stopping criterion for coarsening as 17×17×17 to ensure
that each process has at least 1-2 coarsest grid points. It should be noted that if
the computational domain is not a cube, this setting means that coarsening will stop
when the number of grid points in a certain direction is less than 17. This setup
allows a relatively practical lower bound for reference. The related topic of optimal
coarsest grid size will be further investigated in our future work.
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3.4. NUMERICAL EXPERIMENTS
The numerical experiments are primarily conducted on the Linux supercomputer
DelftBlue [127]. DelftBlue runs on the Red Hat Enterprise Linux 8 operating system.
Each compute node is equipped with two Intel Xeon E5-6248R processors with 24
cores at 3.0 GHz, 192 GB of RAM, a memory bandwidth of 132 GBs−1 per socket, and
a 100 Gbits−1 InfiniBand card. In our experiments, the solver is developed in Fortran
90. On DelftBlue, the code is compiled using GNU Fortran 8.5.0 with the compiler
options -O3 for optimization purposes. Open MPI library (version 4.1.1) is employed
for message passing. HDF5 1.10.7 is used for massively parallel I/O.

For the iterative methods we used in this section, the number of matrix-vector
multiplications (denote as #Matvec), which only includes matrix-vector products with
the system matrix Ah , will be the main amount of work. Unless mentioned, the
following convergence criterion of the preconditioned GMRES algorithm is used.

∥

∥M−1
h

bh −M−1
h

Ah uk
h

∥

∥

2
∥

∥M−1
h

bh

∥

∥

2

≤ 10−6. (3.6)

The convergence criterion for the preconditioned Bi-CGSTAB and IDR(s) is
∥

∥bh − Ah uk
h

∥

∥

2

‖bh‖2
≤ 10−6. (3.7)

The different stopping criteria for GMRES, Bi-CGSTAB, and IDR(4) are chosen in
relation to the left and right preconditioning strategies discussed in Section 1.4.2. It
is intended to illustrate the flexibility of our framework in handling various solvers,
and preconditioning techniques.

For the coarsest-grid problem solver, according to our initial experiments, the
tolerance should be 3 orders of magnitude smaller than that for the outer iteration.
This work employs full GMRES to reduce the relative residual to 10−11, ensuring an
accurate approximation for M−1

H . Since it is only performed on the coarsest grid, it
will not lead to a high computational cost.

The wall-clock time for the preconditioned Krylov solver to reach the stopping
criterion is denoted as tw . The speedup Sp is defined by

Sp =
tr

tp
, (3.8)

where tr and tp are the wall-clock times for reference and parallel computations,
respectively. The parallel efficiency Ep is given by

Ep =
Sp

np/npr
=

npr · tr

np · tp
, (3.9)

where npr and np is the number of processors for reference and parallel computa-
tions, respectively. It should be noted that when performing computations within a
single compute node, the reference time is the wall-clock time of sequential compu-
tation. When performing distributed computing across multiple compute nodes, the
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reference time will be the wall-clock time of computation on a single fully-utilized
node.

In this section, we first validate the numerical accuracy and algorithmic flexibility
of our parallel framework for three test problems. To evaluate the performance of
our solver, we then focus on weak scaling, which examines the solver’s performance
when the problem size and the number of processing elements increase proportionally.
This allows us to assess our parallel solver’s ability to solve large-scale heterogeneous
Helmholtz problems with minimized pollution error. We next extensively investigate
the strong scaling of our parallel solution method, examining the speedup and
parallel efficiency as the number of processing elements increases while the problem
size remains constant. Additional performance analysis for each part of the parallel
framework can be found at the end of the section.

3.4.1. VALIDATION

We validate the numerical results by comparing numerical results from both serial
and parallel computations with analytical solutions, as well as by observing the wave
propagation patterns of model problems with non-constant wavenumber. Additionally,
we conducted a preliminary exploration of the flexibility of various Krylov-based
iterative methods and multigrid cycle types in the parallel framework.

SEQUENTIAL AND PARALLEL COMPUTING

For the accuracy validation, our parallel solver is used to solve the so-called 3D closed-
off problem which has an analytical solution. According to the analytical solution
given by Equation (1.27), we can estimate the magnitude of the error between the
numerical and analytical solutions. Figure 3.6 shows the logarithmic error log10(|u −
uanaly|) of numerical results obtained by CSLP-preconditioned IDR(4). The left panel
is the result obtained by sequential computing, and the right panel is the result
obtained by parallel computing. Within the error tolerance, the numerical results
agree well with the analytical solution, and the parallel computing setup does not
introduce additional errors. It should be noted that the small but visible differences
arise due to the accumulation of the rounding error. For example, the dot product
[a1 a2 a3 a4] · [b1 b2 b3 b4]′ calculated by (a1b1 + a2b2 + a3b3 + a4b4) and (a1b1 +
a3b3)+ (a2b2 + a4b4) may yield small differences, especially for massively parallel
computing. Additionally, regarding the matrix, blockwise domain partitioning actually
performs some elementary row and column transformations on the matrix compared
to sequential computing, leading to further differences in the results. But extensive
numerical experiments indicate that these differences are within an acceptable error
range and will not significantly affect the convergence and accuracy.

MODEL PROBLEMS WITH NON-CONSTANT WAVENUMBER

The so-called wedge problem is a typical model with non-constant wavenumbers.
Figure 3.7 shows a reasonable wave diffraction pattern of the wedge problem at
f = 40Hz and 80Hz, which are obtained by parallel CSLP-preconditioned IDR(4)
solver. Note that the wavefront is significantly curved at the slow-to-fast interface.
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Figure 3.6: The logarithmic error log10(|u −uanaly|) of numerical results obtained by
CSLP-preconditioned IDR(4) with np = 1 (left) and np = 3×3×3 (right) for 3D Closed-
off problem grid size 65×65×65, k = 40.

The wave is mainly reflected in that transition region. It illustrates that the parallel
framework also works for the case of non-constant wavenumbers.

Figure 3.7: Real part of numerical solutions for 3D wedge Problem with grid size
193×321×193 at f = 40Hz (left), and 385×641×385 at 80Hz (right).

For practical application, we further consider the 3D SEG/EAGE Salt model including
complex geometries (salt domes) and a real large-size computational domain. To allow
multi-level geometric coarsening, we utilize a domain with grid size 641×641×193,
as it has a high degree of divisibility by powers of two in each dimension. In this
case, with the coarsest-grid criterion given by 17× 17× 17, the coarsest grid will
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have dimension 41×41×13. A point source is located at (x1, x2, x3) = (3200,3200,0).
Figure 3.8 gives a reasonable wave diffraction pattern of this model at f = 5Hz. It is
obtained by our parallel CSLP-preconditioned IDR(4) solver.

Figure 3.8: Real part of the solutions for 3D SEG/EAGE Salt Model with grid size
641×641×193, at f = 5Hz.

KRYLOV METHODS

Various Krylov-based iterative methods can be implemented in our parallel framework;
see Table 3.1. For the 3D closed-off problem with Dirichlet boundary conditions,
GMRES requires the least number of iterations, and IDR(4) is closer to GMRES than
Bi-CGSTAB. These relative relationships can be expected in the theoretical analysis of
these algorithms. One can find that the count of matrix-vector products is constant
with respect to the number of processors for GMRES, while it is not for Bi-CGSTAB
and IDR(4). It is because GMRES is a very robust and stable algorithm, whereas
Bi-CGSTAB and IDR(s) are sensitive to the accumulation of rounding errors and the
re-ordering of the linear system. Additionally, IDR(s) uses random vectors to initialize,
and therefore, one cannot obtain a totally constant number of iterations if the seed
is not manually chosen. As Bi-CGSTAB requires a much larger number of matrix-
vector multiplications, the parallel performance of GMRES and IDR(4) will be mainly
considered.

MULTIGRID CYCLE TYPES

V-cycles follow a simple down-up pattern through grid levels (coarsening followed by
refinement), while F-cycles enhance this approach by performing additional coarse-
grid corrections during the refinement phase. F-cycles offer better convergence
properties than V-cycles at a moderate increase in computational cost, making them
an effective intermediate option between V-cycles and the more expensive W-cycles.
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Table 3.1: The convergence behavior of different iterative methods for 3D Closed-off
problem, grid size 65×65×65, k = 40.

np
#Matvec

GMRES Bi-CGSTAB IDR(4)
1 145 359 192

2×1×1 145 359 211
1×2×3 145 403 192
3×3×3 145 407 201

Our parallel framework can solve the CSLP preconditioner not only using one multi-
grid V-cycle but also F-cycle. Let us take the 3D wedge problem as an example. We
found that if β2 =−0.5, even for small frequency f = 10Hz with grid size 73×193×73,
the convergence result cannot be obtained by using the F-cycle, but it is possible
by using the V-cycle. However, the Krylov solvers using one multigrid F-cycle should
converge faster than those using one V-cycle theoretically. Thus, the effect of the
complex shift β2 in CSLP on convergence is studied. As shown in Figure 3.9, when
the grid is 193×321×193 and f = 40Hz, if a larger complex shift (−1 ≤ β2 <−0.5) is
used, Krylov solvers can obtain convergence results by using the F-cycle. Figure 3.9
confirms the introduction in Section 1.5.1, namely, the choice of the complex shift
parameter in the preconditioner indeed has a significant impact on the performance
of multigrid methods including F-cycle as well as V-cycle. For the small complex
shift, moving from a V-cycle to an F-cycle may not improve the convergence. One
potential explanation could be the damped Jacobi smoother used in the multigrid
method in principle diverges for Helmholtz-type of problems. Therefore, using more
smoothing steps, as in the F-cycle, may exacerbate the problems and lead to slower
convergence compared to V-cycle. There is also evidence of this in [128, §9].

When the complex shift is −1, as shown in Figure 3.10, it can be seen that the
convergence of Krylov solvers using the F-cycle is faster than that using the V-cycle.
For example, with np = 8, utilizing the F-cycle yields a wall-clock time of 336.60s
for GMRES and 101.03s for IDR(4), while implementing the V-cycle results in a
wall-clock time of 796.31s for GMRES and 149.16s for IDR(4). In general, the F-cycle
involves more computation than the V-cycle due to the additional levels of coarsening
and interpolation, but the improved convergence can still make it a viable option in
certain cases. It should be noted that IDR(4) exhibits convergence similar to GMRES in
Figure 3.10 due to the use of right preconditioning for IDR(4) and left preconditioning
for GMRES. This observation underscores the importance of preconditioning strategy
selection in iterative solvers.

3.4.2. WEAK SCALING

The first parallel property that we are interested in is the weak scalability of our
parallel solver. In the experiments, we increase the problem size and the number of
processors proportionally to maintain the same grid size for each processor.

The weak scaling results for the 3D closed-off problem are presented in Table 3.2.
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Figure 3.9: Convergence behavior of the parallel CSLP-preconditioned Krylov solvers,
GMRES (left) and IDR(s) (right). One multigrid F-cycle is used for preconditioner
solving. 3D wedge Problem with grid size 193× 321× 193 at f = 40Hz is solved.
Different complex shifts of CSLP (β2) are compared.
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Figure 3.10: Convergence behavior of the parallel CSLP-preconditioned Krylov solver
using one multigrid V- or F-cycle for preconditioning. The complex shift of CSLP is
β2 =−1.0. 3D wedge Problem with grid size 193×321×193 at f = 40Hz is solved.
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One can find that parallel GMRES does not show satisfying parallel scalability and
consumes more CPU time than IDR(4), especially for large grid sizes. It is because
GMRES needs long recurrences and more dot-product operations, hence more global
communications. As the problem size increases, the sequential computation load
which concerns the process of calculating the Givens rotation matrix in GMRES
becomes the bottleneck.

For IDR(4), when the number of processors and grid size increase proportionally,
that is, maintaining the same grid size for each processor, the wall-clock time remains
relatively stable, indicating that our parallel framework can effectively handle large-
scale Helmholtz problems with minimized pollution error. Since GMRES does not
demonstrate weak scalability for problems requiring a large number of iterations, we
will primarily use IDR(4) to solve the following increasingly complex model problems.

Table 3.2: Weak scaling analysis of parallel CSLP-preconditioned GMRES and IDR(4)
for 3D Closed-off problem, k = 40.

grid GMRES IDR(4)
size np #Matvec tw (s) #Matvec tw (s)

129×129×129 8 146 30.19 199 21.03
193×193×193 27 137 80.10 187 26.93
257×257×257 64 143 97.20 190 25.22

3.4.3. STRONG SCALING

In this section, we perform numerical experiments on a fixed problem size while
varying the number of processors. The speedup and parallel efficiency are then
calculated to assess the strong scaling of our parallel solver.

3D CLOSED-OFF PROBLEM

We initiate our analysis by comparing the strong scaling performance of our parallel
framework with a PETSc [129, 130] implementation, specifically employing PETSc
version 3.19.0 with complex support and optimized mode enabled. The application
is compiled and tested in the same environment as our program. We use the CSLP-
preconditioned GMRES algorithm to solve the 3D closed-off problem with a grid size
of 129×129×129 and wavenumber k = 40. In the PETSc implementation, matrices are
explicitly constructed, including the matrix defining the linear system and the matrix
employed for constructing the preconditioner (CSLP). The CSLP is implemented in
a so-called Shell preconditioner of PETSc, where CSLP is inverted approximately by
a default preconditioned GMRES solver. Both methods exhibit similar convergence
properties. The number of iterations required for the PETSc implementation is 155
for sequential computing and that of our implementation is 146. Table 3.3 presents
the average wall-clock time for each outer GMRES iteration and the corresponding
strong scaling. Our implementation demonstrates less time consumption and better
parallel performance.
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Table 3.3: Comparisons with PETSc implementation for one GMRES iteration. Parallel
CSLP-preconditioned GMRES is used to solve the 3D Closed-off problem with grid
size 129×129×129, k = 40.

PETSc Present
np tw (s) Sp Ep tw (s) Sp Ep

1 30.698 - - 1.310 - -
4 8.802 3.49 0.87 0.334 3.92 0.97
8 5.280 5.81 0.73 0.205 6.37 0.80

16 2.759 11.13 0.69 0.117 11.20 0.70

3D WEDGE PROBLEM

For the 3D wedge problem, the performance of the parallel CSLP-preconditioned
IDR(4) on one compute node and multiple compute nodes are shown in Table 3.4
and Table 3.5, respectively. The results show that the parallel framework exhibits good
performance for non-constant wavenumbers and is scalable across multiple compute
nodes as well as within a single node. With the growing number of processors, we can
observe a moderate decrease in parallel efficiency. This is mainly due to increased
communication, which leads to a decrease in the ratio of computation/communica-
tion.

Table 3.4: Performance of the parallel CSLP-preconditioned IDR(4) for the 3D wedge
problem with grid size 193×321×193 at f = 40Hz.

npx ×npy ×npz #Matvec tw (s) Sp Ep

1 × 1 × 1 395 1033.11
1 × 2 × 1 421 557.63 1.85 0.93
2 × 2 × 2 377 152.88 6.76 0.84

Table 3.5: Performance of the parallel CSLP-preconditioned IDR(4) for the 3D wedge
problem with grid size 385×641×385 at f = 80Hz.

npx ×npy ×npz Nodes #Matvec tw (s) Sp Ep

4×4×3 1 835 1313.82
4×6×4 2 821 952.94 1.38 0.69
6×8×4 4 825 418.74 3.14 0.78
6×8×6 6 832 298.33 4.40 0.73

3D SEG/EAGE SALT MODEL

We are interested in the scalability properties of our parallel framework in realistic
applications. Hence, we solve this model problem at a fixed frequency on a growing
number of compute nodes. Table 3.6 collects the number of matrix-vector multiplica-
tions and wall-clock time versus the number of compute nodes. The fact that we can
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solve a linear system with approximately 79.3 million unknowns within hundreds of
seconds shows the capability of solving a realistic 3D high-frequency problem with
limited memory and time consumption. One can also find the nice property that the
number of matrix-vector multiplications keeps independent of the number of com-
pute nodes. Taking the wall-clock time on a single computing node as a reference, we
can observe fairly good scaled parallel efficiency (around 0.8) for such a large-scale
complex model.

Table 3.6: Performance of the parallel CSLP-preconditioned IDR(4) on DelftBlue for
3D SEG/EAGE Salt Model with grid size 641×641×193 at f = 5Hz.

npx ×npy ×npz Nodes #Matvec tw (s) Sp Ep

6×4×2 1 413 897.25
6×8×2 2 423 510.56 1.76 0.88
6×8×4 4 423 298.86 3.00 0.75
9×8×4 6 404 203.31 4.41 0.74

Without loss of generality, we also tried to obtain the parallel performance of
our method on a different platform as a complement to this study. In addition
to DelftBlue (which includes 48 cores per compute node), we used a commercial
supercomputer named Magic Cube 31 (which includes 32 cores per compute node)
to perform this numerical experiment. Magic Cube 3 is a supercomputer managed by
Shanghai Supercomputer Center. It runs on CentOS Linux release 7.5. Each compute
node is equipped with two Intel Xeon Gold 6142 processors with 16 cores at 2.6 GHz,
and 12×16G DDR4 2666 MHz ECC REG memory. The cluster is equipped with an
Intel Omni-Path high-speed network with a transmission bandwidth of 100 GBs−1 for
interconnectivity between compute nodes and storage systems. On Magic Cube 3,
Intel Fortran 17.0.4 and Intel MPI 17.4.239 will be used instead.

As shown in Table 3.7, we can still achieve satisfactory parallel performance. A
moderate decrease in terms of the scaled parallel efficiency should be due to the
different bandwidths of the platforms. These results indicate that our parallel frame-
work can be used on different computational platforms. This adaptability is crucial
for realistic applications.

Table 3.7: Performance of the parallel CSLP-preconditioned IDR(4) on Magic Cube 3
for 3D SEG/EAGE Salt Model with grid size 641×641×193 at f = 5Hz.

npx ×npy ×npz Nodes #Matvec tw (s) Sp Ep

4 × 4 × 2 1 405 505.14
4 × 4 × 4 2 418 287.60 1.76 0.88
8 × 8 × 2 4 390 155.64 3.25 0.81

In summary, our parallel solver exhibits good weak and strong scaling for a variety
of test problems, including large-scale, complex, and realistic applications. The results

1Magic Cube 3: https://www.ssc.net.cn/en/resource-hardware.html

https://www.ssc.net.cn/en/resource-hardware.html
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demonstrate the solver’s potential for solving challenging 3D large-scale heterogen-
eous Helmholtz problems with limited memory and time consumption.

3.4.4. POP PERFORMANCE ANALYSIS

With traditional performance metrics such as speed-up and efficiency, it is difficult
to understand the actual execution behavior of a parallel program and identify the
cause of poor performance and where it occurs. In order to explore the bottleneck
of our parallel framework and which part can be improved, this section will consider
the performance assessment of our code, using the methodology of the Performance
Optimisation and Productivity (POP) provided by the EU HPC Centre of Excellence
(CoE)2. The POP methodology can help us build a quantitative picture of application
behavior by a set of POP performance metrics, including parallel efficiency (PE),
load balance (LB), communication efficiency (CommE), serialization efficiency (SerE),
transfer efficiency (TE) and so on. The metrics are computed as efficiencies ranging
from 0 to 1, where higher values are more desirable. In general, efficiencies 0.8 are
considered acceptable, while lower values signal performance concerns that warrant
further investigation. We use the following open-source tools: Score-P [131] for
profiling and tracing, Scalasca [132] for extended analyses, and CUBE [133] for
presentation.

Table 3.8 summarizes the performance assessment of the parallel CSLP-preconditioned
IDR(4) on different numbers of compute nodes of DelftBlue for the 3D wedge model
problem with grid size 385×641×385 at 80Hz. The parallel efficiency drops from
0.83 to 0.5 when the number of processes reaches 288. We find that among the
two factors contributing to parallel efficiency, a high load balance is maintained,
but communication efficiency decreases. Among the two aspects of communication
efficiency, excellent transfer efficiency is maintained, while the most significant inef-
ficiency is serialization, which concerns processes waiting at communication points
due to temporal imbalance.

To determine which part contributes to the poor serialization efficiency, we further
study the performance of the precondition, matrix-vector multiplication, and dot-
product operations, as shown in Tables 3.9, 3.10, and 3.11, respectively. It can be
seen that parallel matrix-vector multiplication can maintain fairly good efficiency. The
precondition component, exhibiting similar behavior to the whole framework in Table
3.8, can be considered as the main factor that affects the overall efficiency. The results
in Table 3.11 reveal that the dot product operation is one of the main reasons for
the low serialization efficiency. Thus, we can conclude that the preconditioning step
becomes the bottleneck because it uses full GMRES to solve coarse grid problems,
which involve numerous inner product operations. Further efficiency optimization in
this direction can be implemented in future work.

2POP CoE: https://www.pop-coe.eu

https://www.pop-coe.eu
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Table 3.8: Execution efficiency of the parallel CSLP-preconditioned IDR(4) on different
numbers of compute nodes of DelftBlue for 3D wedge model problem with grid size
385×641×385 at 80Hz

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE)1 0.83 0.78 0.32

Load Balance (LB) 2 0.91 0.82 0.78
Communication Efficiency (CommE)3 0.92 0.96 0.41

Serialisation Efficiency (SerE) 4 0.92 0.96 0.42
Transfer Efficiency (TE) 5 0.99 1.00 0.97

1 Parallel efficiency is the ratio of mean computation time
to total runtime of all processes. PE = Load Balance ×
Communication Efficiency.

2 Load balance is the mean/maximum ratio of computation
time outside of MPI

3 Communication efficiency is the maximum across all pro-
cesses of the ratio between useful computation time and
total runtime. CommE = Serialisation Efficiency × Transfer
Efficiency.

4 Serialisation efficiency is estimated from idle time within
communications where no data is transferred.

5 Transfer efficiency relates to essential time spent in data
transfers.

Table 3.9: Execution efficiency of the precondition part of parallel IDR(4) on different
numbers of compute nodes of DelftBlue

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE) 0.80 0.79 0.25

Load Balance (LB) 0.90 0.86 0.79
Communication Efficiency (CommE) 0.89 0.92 0.31

Serialisation Efficiency (SerE) 0.90 0.92 0.32
Transfer Efficiency (TE) 0.99 0.99 0.97
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Table 3.10: Execution efficiency of the matrix-vector multiplications of parallel IDR(4)
on different numbers of compute nodes of DelftBlue

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE) 0.70 0.62 0.55

Load Balance (LB) 0.90 0.77 0.82
Communication Efficiency (CommE) 0.77 0.81 0.67

Serialisation Efficiency (SerE) 0.78 0.82 0.67
Transfer Efficiency (TE) 0.99 0.99 0.99

Table 3.11: Execution efficiency of dot-product operations of parallel IDR(4) on
different numbers of compute nodes of DelftBlue

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE) 0.53 0.21 0.18

Load Balance (LB) 0.70 0.55 0.65
Communication Efficiency (CommE) 0.75 0.38 0.28

Serialisation Efficiency (SerE) 0.76 0.38 0.29
Transfer Efficiency (TE) 1.00 0.99 1.00

3.5. CONCLUSIONS
We have presented a comprehensive investigation of a matrix-free parallel framework
for solving large-scale 3D Helmholtz problems in heterogeneous media in accord-
ance with our objectives. The framework, built upon CSLP-preconditioned Krylov
subspace methods, demonstrates significant advantages in both computational effi-
ciency and practical applicability. Through extensive numerical experiments, we have
validated the accuracy of the numerical approximations, while establishing its robust
performance across various test cases of increasing complexity. Additionally, a POP
performance analysis has been provided to address the bottleneck of this framework.

In conjunction with Chapter 2, our implementation makes several key contributions
to the field of numerical methods for wave problems. First, the matrix-free paral-
lelization of the CSLP preconditioner provides an effective alternative to traditional
matrix-based approaches, achieving good convergence properties while maintaining
modest memory requirements. Second, the framework’s demonstrated weak and
strong scaling properties establish its viability for large-scale applications, particularly
important for minimizing pollution errors through refined grid resolution. Third,
the flexibility in accommodating various Krylov subspace methods and multigrid
techniques makes it a versatile tool for different problem characteristics.

The performance analysis reveals that our framework achieves substantial parallel
efficiency on large-scale architectures, making it particularly suitable for practical
applications in geophysics and other fields requiring the solution of heterogeneous
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Helmholtz problems. The successful application to the SEG/EAGE salt model, a
benchmark problem of significant complexity, demonstrates the capability of this
framework to handle realistic scenarios encountered in industrial applications.

The subsequent chapters will focus on the investigation of advanced precondi-
tioning techniques, specifically the APD method, to enhance convergence properties
for high-frequency regimes, and the exploration of optimization strategies to further
improve parallel efficiency.



4
MATRIX-FREE PARALLEL

TWO-LEVEL DEFLATION IN TWO

DIMENSIONS

A matrix-free parallel two-level deflation method combined with CSLP for 2D het-

erogeneous Helmholtz problems is proposed. Motivated by the limitations imposed

by excessive computational time and memory constraints when employing a sequen-

tial solver with assembled matrices, we parallelize the two-level deflation method

without constructing any matrices. Our approach utilizes preconditioned Krylov sub-

space methods and approximates the CSLP preconditioner with a parallel geometric

multigrid V-cycle. For the two-level deflation, standard inter-grid deflation vectors

and further high-order deflation vectors are considered. As another main contribution,

the matrix-free Galerkin coarsening approach and a novel re-discretization scheme as

well as high-order finite-difference schemes on the coarse grid are studied to obtain

wavenumber-independent convergence. The optimal settings for an efficient coarse-

grid problem solver are investigated. Numerical experiments of model problems show

that the wavenumber independence has been obtained for medium wavenumbers. The

matrix-free parallel framework shows satisfactory weak and strong parallel scalability.

Parts of this chapter have been published in Journal of Computational Physics 514, 113264 (2024)
[134].
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Based on the parallel framework of the CSLP-preconditioned Krylov subspace meth-
ods built in the previous chapters, we propose a matrix-free parallel implementation of
the two-level-deflation preconditioner for the two-dimensional Helmholtz problems.
Besides matrix-free parallelization of each component of the deflation technique, as
one of our main contributions, we extensively studied and compared several matrix-
free implementations of coarse-grid operators. To compare the scalability of our
matrix-free parallel solver with the benchmark results in [75], which used an exact
solver on the coarse-grid system, we first solve the coarse-grid system close to ma-
chine precision using a default tolerance of 10−12. This allows us to study the impact
of the coarse-grid operators on the convergence of the two-level deflation precondi-
tioner while minimizing the potential influence of an inexact coarse-system solver.
Upon establishing the convergence behavior, we then focus on finding an efficient
and practical setting for the coarse-system solver to optimize the performance of the
proposed method. We show that the coarse-grid re-discretization schemes derived
from the Galerkin coarsening approach yield convergence properties that are nearly
independent of the wavenumber. Furthermore, we investigate the weak and strong
scaling properties of the present parallel solution method in a massively parallel
setting.

It is important to note that the present chapter focuses on the Helmholtz equation
discretized on regular 2D finite difference grids in quadrilateral domains. The ex-
tension of the method to more complex geometries and unstructured grids requires
further investigation. However, the 2D method presented in this chapter serves as a
foundation and proof of concept for the proposed parallel matrix-free implementation
of the two-level deflation preconditioner. In principle, the key ideas and techniques
can be generalized to 3D problems, although such extensions are non-trivial and
require significant additional work.

The chapter is organized as follows. The mathematical models and numerical
methods are presented in Section 4.1. Section 4.2 introduces the parallel framework
and matrix-free operators in detail. The experimental results will be discussed in
Section 4.3, and the conclusions follow in Section 4.4.

4.1. MATHEMATICAL MODELS AND NUMERICAL METHODS
This chapter extends our investigation to incorporating deflation techniques within
the preconditioned Krylov framework for the two-dimensional Helmholtz equation
on a rectangular domain Ω.

−∆u
(

x, y
)

−k
(

x, y
)2

u
(

x, y
)

= b
(

x, y
)

. (4.1)

The mathematical formulation builds upon previous chapters, where we consider
the Helmholtz equation with both Dirichlet and first-order Sommerfeld radiation
boundary conditions in heterogeneous media.

Our numerical experiments encompass three model problems of increasing com-
plexity: a constant-wavenumber case for validation, the wedge problem introducing
simple layered heterogeneity, and the industry-standard Marmousi problem that rep-
resent realistic geological structures. These problems are discretized using second-
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order finite differences on vertex-centered grids, maintaining at least ten grid points
per wavelength to ensure solution accuracy.

The solution methodology combines the matrix-free parallel CSLP, previously dis-
cussed in Chapter 2, with a two-level deflation strategy. The CSLP parameters are
set to β1 = 1 and β2 = 0.5, with the preconditioner approximately inverted using a
geometric multigrid method. The two-level deflation reads as

Ph = M−1
h,(β1,β2) (Ih − AhQh)+γQh , where Qh = I h

2h A−1
2h I 2h

h , A2h = I 2h
h Ah I h

2h (4.2)

Throughout our numerical experiments, we set γ= 1 unless otherwise specified. The
deflation matrix I h

2h
can be constructed using either bilinear interpolation, resulting

in the A-DEF1 variant, or through the higher-order interpolation scheme introduced
by [75], leading to the APD variant. Although this work establishes a comprehensive
two-level deflation framework applicable to both variants, particular emphasis is
placed on the matrix-free parallel implementation and performance analysis of the
APD formulation.

Since we aim for a wavenumber-independent convergence, we use the deflation
preconditioner to enhance the convergence of GMRES-type methods. Besides the full
GMRES method, the GCR method will also be considered as it inherently allows for
variable preconditioning.

4.2. MATRIX-FREE PARALLEL IMPLEMENTATION
We will employ the Matrix-Free Parallel framework from Chapter 2. The parallel
implementation is based on the MPI Cartesian topology, which partitions the com-
putational domain blockwise. The parallel multigrid iteration is implemented on the
global grid, with coarse grid parameters determined by the corresponding fine grid
parameters using the index correspondence between coarse and fine grids. As shown
in Figure 4.1, point (i , j ) in the coarse grid corresponds to point (2i − 1,2 j − 1) in
the fine grid. The coarsening process stops when a predefined coarsest grid size is
reached, and the coarsest grid problem is solved in parallel using GMRES. The coarsest
grid size is chosen to ensure that each subdomain contains a sufficient number of
grid points for efficient parallel computation. For the matrix-free implementation,
in addition to the Helmholtz and CSLP operators described in Chapter 2, particular
attention must be paid to the higher-order deflation vectors and coarse-grid operators
in two-level deflation.

4.2.1. HIGHER-ORDER DEFLATION VECTORS

Restriction and interpolation operations are performed using stencils, such as Equa-
tions (1.72) and (1.74), based on the index correspondence between coarse and fine
grids, enabling a matrix-free implementation. For two-dimensional cases, as shown
in Figure 4.1, the higher-order interpolation can be implemented as follows.
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: fine grid points ∈Ω
h

: coarse grid points ∈Ω
2h

(i , j ) ∈Ω
2h

Figure 4.1: The allocation map of interpolation operator
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(4.3)

where (ic , jc ) ∈Ω
2h . The higher-order interpolation can then be represented by the

following stencil notation

[I h
2h] =

1

64













1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1













h

2h

(4.4)
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The higher-order restriction can be implemented in a matrix-free way as follows.

I 2h
h uh

2ic−1,2 jc−1 =
1

64

[

uh
2ic−3,2 jc+1 +4uh

2ic−2,2 jc+1 +6uh
2ic−1,2 jc+1 +4uh

2ic ,2 jc+1 +uh
2ic+1,2 jc+1

+4uh
2ic−3,2 jc

+16uh
2ic−2,2 jc

+24uh
2ic−1,2 jc

+16uh
2ic ,2 jc

+4uh
2ic+1,2 jc

+6uh
2ic−3,2 jc−1 +24uh

2ic−2,2 jc−1 +36uh
2ic−1,2 jc−1 +24uh

2ic ,2 jc−1 +6uh
2ic+1,2 jc−1

+4uh
2ic−3,2 jc−2 +16uh

2ic−2,2 jc−2 +24uh
2ic−1,2 jc−2 +16uh

2ic ,2 jc−2 +4uh
2ic+1,2 jc−2

+ uh
2ic−3,2 jc−3 +4uh

2ic−2,2 jc−3 +6uh
2ic−1,2 jc−3 +4uh

2ic ,2 jc−3 +uh
2ic+1,2 jc−3

]

(4.5)

where (ic , jc ) ∈ Ω
2h . The higher-order restriction can then be represented by the

following stencil notation

[I 2h
h ] =

1

64













1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1













2h

h

(4.6)

4.2.2. MATRIX-FREE COARSE-GRID OPERATOR

The deflation operator can be applied in a matrix-free manner by leveraging the
matrix-free application of its individual components, namely the inter-grid transfer
operators and the CSLP preconditioner. The main matrix-vector multiplication of
the coarse-grid problem, y = A2h x, where x and y denote arbitrary vectors on the
coarse grid, is a key operation in the deflation process. Generally, the coarse-grid
operator A2h can be built by Galerkin coarsening. However, in this way, one needs to
construct the matrices and perform matrix-matrix multiplications, which do not fit
our matrix-free framework.

In this section, we discuss various possibilities for implementing the coarse-grid
operator in a matrix-free way. As one of the main contributions of this chapter, we
propose a novel finite-difference scheme called “Re-discretized scheme from Galerkin
coarsening (ReD-Glk)” for the re-discretization of the coarse-grid problem. The ReD-
Glk method approximates the results of the Galerkin coarsening approach while
overcoming its limitations within the matrix-free framework. We also discuss other
approaches, including the straightforward matrix-free Galerkin coarsening operator
(str-Glk), the re-discretization approach employing the standard explicit second-order
and fourth-order schemes, and a fourth-order compact finite-difference scheme.

RE-DISCRETIZED SCHEME FROM GALERKIN COARSENING (RED-GLK)

Combining the idea of the Galerkin coarsening and re-discretization approach, we
propose to use the stencils from the results of the Galerkin coarsening operator as
the finite-difference scheme to perform re-discretization on the coarse grid. In terms
of the interior grid points, since the inter-grid operations and the Helmholtz operator
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can be represented by the so-called stencil notations, it is possible to express the
result of I 2h

h
Ah I h

2h
by using a stencil notation.

Remark 4.2.1 (Stencil Operations). Let Vh
∼=C

N 2
, Vth

∼=C
N 2

1 , and Vsh
∼=C

N 2
2 be function

spaces on grids with spacing h, th, and sh, respectively, where t = 2k , k ∈Z, s = 2n , n ∈
N0.

Assume A : Vh →Vth is a linear operator represented by a stencil,

[A] =
{

ap

}

p∈NA
(4.7)

so that

(Au)(i) =
∑

p∈NA

apu(i+p), (4.8)

where NA ⊂ Z
2 is finite, centre-symmetric, with a−p = ap. Define the width of the

stencil w A = maxp∈NA
‖p‖∞.

Similarly, let B : Vsh →Vh be given by

[B ] =
{

bq

}

q∈NB
, (4.9)

where NB ⊂Z
2 is also center-symmetric, with bq = b−q. The width wB = maxq∈NB

‖q‖∞.

For the composite operator C = AB : Vsh → Vth , the stencil [C ] =
{

cr

}

r∈NC
can be

obtained by doing a convolution between [A] and [B ], i.e.,

cr = ([A]∗ [B ])
∣

∣

stride s =
∑

r∈NC

ap bs r−p. (4.10)

where s is the stride of convolution. The width wC of the composite stencil satisfies

wC =
⌊

w A+wB

s

⌋

, where
⌊

·
⌋

is the floor operation.

For A being the Helmholtz operator, we have NA = {(0,0), (±1,0), (0,±1)}. For B

being the restriction operator in Equation (4.6), NB = [−2,2]2 ∩Z
2. Then, stride s = 2,

and NC = [−1,1]2 ∩Z
2.

We define a diagonal matrix, denoted by K (k2
i , j

)h , characterized by spatially varying
wavenumbers as its constituent elements. Recall that the discrete Helmholtz operator
Ah can be obtained by subtracting K (k2

i , j
)h from the Laplacian operator −∆h , i.e.

Ah =−∆h −K

(

k2
i , j

)

h
(4.11)

Laplace Operator If we only consider the internal grid points, using the higher-order
deflation vectors I 2h

h
and I h

2h
, we have

[I 2h
h ]∗ [−∆h]∗ [I h

2h] =

1

64


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
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∗
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0 −1 0
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∗
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h

2h
(4.12)
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⇒ [−∆2h] =
1

(2h)2 ·
1

256




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





−3 −44 −98 −44 −3
−44 −112 56 −112 −44
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−3 −44 −98 −44 −3













2h

(4.13)

Taylor series expansion analysis shows that the finite difference scheme based on
the stencil Equation (4.13) is a second-order approximation of 2D Laplacian, that is,

−∆2hu2h = 4

[

−
Ç

2u

Çx2 −
Ç

2u

Çy2 −
(

13

48

Ç
4u

Çx4 +
1

2

Ç
4u

Çx2Çy2 +
13

48

Ç
4u

Çy4

)

(2h)2
]

+O (h4) (4.14)

Note that the higher-order deflation vectors enlarge the size of the stencil but maintain
the accuracy of finite-difference discretization.

Constant Wavenumber For the diagonal wavenumber matrix, a similar derivation
can be made

[I 2h
h ]∗ [K (k2

i , j )h]∗ [I h
2h] =

1
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h

2h
(4.15)

where (i , j ) ∈Ω
h . Note that, for non-constant wavenumber, the result will be a 5×5

stencil, of which each element contains the wavenumber on up to 25 fine grid points.
This is complicated to implement and leads to extra work.

In order to obtain a simple stencil, suppose the wavenumber is a constant k, we
will have

[K (k2)2h] =
k2

642













1 28 70 28 1
28 784 1960 784 28
70 1960 4900 1960 70
28 784 1960 784 28
1 28 70 28 1













2h

(4.16)

Non-Constant Wavenumber The stencil of the wavenumber operator needs to be
slightly modified for non-constant wavenumber cases. For each node of the stencil,
the wavenumber on the corresponding coarse grid point is used. Then the stencil of
the coarse-grid operator from Galerkin coarsening is obtained by

[A2h] = [−∆2h]− [K (k2
ic , jc

)2h] (4.17)

Since the computational stencil is extended to 5× 5, it is important to note a
drawback of using a wider stencil. The memory access pattern for wider stencils
becomes less efficient compared to 3× 3 stencils, and additional communication
and computation overhead will be required. While the wider stencils result in some
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performance decreases, our approach leverages the benefits of the matrix framework
and scalable outer iterations to compensate for these potential drawbacks. The close-
to wavenumber independent convergence presented in our work demonstrates that
the overall performance is not significantly affected by the use of wider stencils, and
the potential improvements in convergence outweigh the additional overhead.

Boundary Conditions Since they are 5×5 stencils, two grid points on the boundary
should be considered. We can make use of the ghost grid point. Specifically, we can
calculate the value of a ghost point using the method described in Equation (1.44) for
Sommerfeld radiation boundary conditions and Equation (1.46) for Dirichlet boundary
conditions.

Then, the aforementioned 5×5 stencils will be applicable on the second grid point
of the boundary. It should be noted that one can set the wavenumber of the ghost
point to zero without making any approximation, which is needed by Equation (4.16).
The first point of the boundary can be discretized using the second-order method.
However, this simplification on the boundary may result in an extra number of
iterations although it may keep the wavenumber-independent convergence, which
will be reflected in the numerical results in the next section.

RE-DISCRETIZATION USING STANDARD FINITE-DIFFERENCE SCHEMES (RED)

An alternative is to obtain the operator A2h by re-discretizing the Helmholtz operator
on the coarse grid. Although it leads to the consequence that Ph is no longer a
projection, this will not break the convergence in practical application. The natural
way to re-discretize is to use the same discretization method as on the fine grid, that
is, use the second-order finite difference scheme to discretize the Laplace operator,
and then subtract the diagonal matrix of wavenumbers. In this way, we will get the
same computational stencil as Equation (1.50) (denoted as ReD-O2).

In addition, inspired by high-order deflation vectors [75], one can consider discret-
izing the Laplace operator using a fourth-order finite difference scheme (ReD-O4) for
the internal grid points (xi , y j ), i.e.,

−ui−2, j +16ui−1, j −30ui , j +16ui+1, j −ui+2, j

12h2 =
Ç

2u

Çx2

(

xi , y j

)

+O (h4) (4.18)

where ui , j denotes the value of function u(x, y) on the grid point (xi , y j ) (and similar
for y-derivative). The complexity of the computational stencils obtained by using the
re-discretization approach will be less than that of stencils from Galerkin coarsening.
For example, if a fourth-order finite difference scheme is used, the stencil for the
coarse-grid operator becomes

[A2h] =
1

12 · (2h)2













0 0 1 0 0
0 0 −16 0 0
1 −16 60−k2

2h
(ic , jc )(2h)2 −16 1

0 0 −16 0 0
0 0 1 0 0













2h

(4.19)
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where (ic , jc ) ∈Ω
2h .

As for the boundary, since the stencil is extended to 5× 5, more boundary grid
points need to be considered. In this chapter, the stencils for the boundary grid
points will be changed to that of the second-order re-discretization method.

Additional experiments show that a higher-order re-discretization scheme for the
boundaries will not make any improvement in the convergence compared to the
second-order method.

Instead of using the explicit central finite-difference schemes, which do not fully
use the entire template and the wavenumber information of adjacent grid points, one
may think of a compact finite-difference approximation of the Helmholtz operator
that has the following 3×3 stencil at grid point (ic , jc ):

[A2h] =
1

(2h)2





ac as ac

as a0 as

ac as ac



−





bc bs bc

bs b0 bs

bc bs bc



k2 (4.20)

where the coefficients a and b are non-zeros.
The fourth-order finite difference scheme introduced by Singer and Turkel [22] has

a similar form as Equation (4.20). From [22], we have

a0 =
10

3
, as =−

2

3
, ac =−

1

6
(4.21)

b0 =
2

3
+

γ

36
, bs =

1

12
−

γ

72
, bc =

γ

144
(4.22)

with γ an arbitrary constant. Here we will use γ = 1. We denote this approach as
ReD-cmpO4.

As for the boundary, we can use the fourth-order approximations of the Sommerfeld
radiation boundary condition given by Erlangga and Turkel [135]. For instance,
suppose u0, j is a ghost point on the left of u1, j , it can be approximated by

u0, j = 2ikh

(

1−
k2h2

6

)

u1, j +u2, j (4.23)

The relationship between numerical dispersion and order of accuracy plays a
crucial role in the performance of solvers for the Helmholtz equation. Turkel et

al. [23] proposed a sixth-order compact scheme for a non-constant wavenumber
and showed the connection between the order of accuracy and numerical dispersion.
Therefore, higher-order accuracy is advantageous in terms of efficiency, as it allows for
maintaining accuracy with fewer grid points for larger wave numbers. Chen et al. [27]
investigated minimal dispersion when using the CSLP preconditioner and found that,
for certain step sizes and large wavenumbers, a second-order scheme with minimal
numerical dispersion may compete with a sixth-order scheme in terms of accuracy.
Stolk [29] demonstrated that matching the phase slowness errors between the fine
and coarse grid discretization is essential for efficient multigrid convergence. A careful
design of the discretization scheme (4.20) and exploring the impact of matching phase
slowness errors between fine and coarse grids on the overall convergence of our
method could provide valuable insights and potentially lead to further improvements
in performance. This avenue of research merits exploration in future studies.



4

104 4. PARALLEL TWO-LEVEL DEFLATION

STRAIGHTFORWARD GALERKIN COARSENING OPERATOR (STR-GLK)

The Galerkin coarsening operation can be computed in a matrix-free manner by per-
forming the interpolation, fine-grid Helmholtz operation, and restriction sequentially,
as shown in Equation (4.24).

Interpolation: vi 1 = I h
2h vi (4.24a)

Fine-grid operator: vi 2 = Ah vi 1 (4.24b)

Restriction: v̂i = I 2h
h vi 2 (4.24c)

This approach is essentially equivalent to the matrix-based Galerkin coarsening
method presented in [75], but it is implemented here in a matrix-free framework.
However, it should be noted that this method requires the application of the fine-grid
Helmholtz operator Ah at every Krylov iteration on the coarse level, which can be
computationally expensive.

4.3. EXPERIMENTAL RESULTS
The numerical experiments are conducted on the Linux supercomputer DelftBlue
[127]. In the numerical experiments, the convergence test is based on the l2-norm
of the residual. Unless mentioned otherwise, the preconditioned relative residual is
reduced to 10−6 by the deflated GMRES algorithm. Since it is a two-level method,
it may still be expensive to solve the coarse-grid problem directly. The (CSLP-
preconditioned) GMRES is employed for approximating the inverse of the coarse-grid
operator. The (preconditioned) relative residuals on the coarse level are reduced to
a certain tolerance. It is important to note that GMRES has the disadvantage of
increasing the cost of each iteration as the algorithm proceeds. This can be a concern
when a large number of iterations is required, as observed in some of our numerical
experiments. We have explored the use of alternative solvers, such as Bi-CGSTAB,
for the coarse-grid system. However, our experiments have shown that Bi-CGSTAB
often requires significantly more iterations than GMRES to converge and may even
diverge for model problems with large wavenumbers. Thus, a full GMRES solver is
employed for the inner iterations to ensure stability and to enable a fair comparison
with the exact coarse-grid solver. Moreover, to study the convergence properties
of the deflation-preconditioned Krylov-subspace method for solving the Helmholtz
problems, we aimed to obtain the approximation of A−1

2h
in the deflation process as

accurately as possible. Therefore, we set the tolerance for the coarse-grid solver to
10−12. Furthermore, we will explore the optimal tolerance for the coarse-grid solver
in our study.

The inverse of the CSLP preconditioner is approximated by a multigrid V-cycle.
According to [124], the stopping criterion for the coarsest grid preconditioner solver
should be 2-3 orders of magnitude smaller than the stopping criterion for the outer
iteration. Thus, a distinct full-GMRES is used to reduce the relative residuals to 10−8

on the predefined coarsest level of the V-cycle.
This section will mainly illustrate the numerical performance of our solver for the

model problems on DelftBlue. The number of iterations (denoted as #iter) will be the
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main metric to estimate the convergence. The speedup and parallel efficiency are
used to study the parallel performance. The wall-clock time for the preconditioned
Krylov solver to reach the stopping criterion is denoted as tw . The speedup Sp in
Equation (3.8) and the parallel efficiency Ep in Equation (3.9) serve as key performance
metrics.

4.3.1. COMPLEXITY AND SPECTRAL ANALYSIS OF THE COARSE-GRID

OPERATORS

Recalling from the previous section, there are the following possible coarse-grid
operators in matrix-free:

• str-Glk: Straightforward Galerkin coarsening approach

• ReD-O2: Re-discretization using the second-order finite-difference scheme

• ReD-O4: Re-discretization using the fourth-order finite-difference scheme

• ReD-cmpO4: Re-discretization using a scheme derived from the fourth-order
compact finite difference of the Helmholtz equation

• ReD-Glk: Re-discretization using a scheme derived from the Galerkin coarsening
approach (A ghost point is included for the second boundary grid point and
ReD-O2 is only for the first boundary grid point)

To give a preliminary comparison of the above methods for obtaining coarse-
grid operators, we conduct a rough complexity analysis to quantify the FLOPs for
performing the coarse-grid operator y = A2h x by different methods.

Remark 4.3.1 (FLOPs of sparse matrix-vector multiplication). Given x ∈R
p and sparse

A ∈ R
p×p , the number of non-zero elements (nnz) of each row is q, then the upper

bound of total FLOPs for Ax is 2pq

Suppose the number of fine grid points is N and that of the coarse grid is M , if the
matrices are constructed explicitly, we will have Ah ∈R

N×N , A2h ∈R
M×M , I 2h

h
∈R

M×N

and I h
2h

∈ R
N×M . In Table 4.1, we list the nnz of the relevant matrices and the

approximate FLOPs of A2h x for different methods. Since 4M ≈ N , the total FLOPs
of the straightforward Galerkin coarsening operator is around 162M . To verify the
results of the complexity analysis, we also test the elapsed CPU time for performing
the coarse-grid operators derived from the Galerkin coarsening approach. We observe
that the ratios between the elapsed CPU time are fairly consistent with the estimated
FLOPs. From the complexity analysis of the coarse-grid operator, without considering
the overall convergence characteristics, the re-discretization approach seems to be
preferable in the frame of matrix-free implementation.

To better understand the behavior of the proposed re-discretization approaches, we
have performed a numerical spectral analysis for the coarse-grid operators obtained
by different re-discretization approaches as well as the fine-grid operator. For problem
MP-1a with wavenumber k = 50 and kh = 0.625, we numerically solve for the eigen-
values of the coarse-grid operators in ascending order and find the index jmi n , where
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Table 4.1: Upper bound on the number of non-zero elements of each relevant matrix
and the approximate FLOPs as well as the elapsed CPU time for performing the
coarse-grid operator 100 times. The coarse grid size is 7681×7681.

Methods str-Glk ReD-O2 ReD-O4 ReD-cmpO4 ReD-Glk
Operators I 2h

h
Ah I h

2h
A2h A2h A2h A2h

Max. nnz per row 25 5 9 5 9 9 25
FLOPs 50M +10N +18N 10M 18M 18M 50M

CPU time 587.95 29.49 42.30 43.62 187.37

the magnitude of eigenvalues |λ jmi n (A)| is the smallest. As shown in Table 4.2, one
can compare the index of the near-zero eigenvalues of the coarse-grid operators with
the fine-grid operator to investigate their alignment. The results demonstrate that
the proposed coarsening approaches effectively align the near-singular eigenmodes of
the fine-grid and coarse-grid operators. This alignment is crucial for preventing the
reappearance of near-zero eigenvalues and ensuring the effectiveness of the two-level
deflation preconditioner.

Table 4.2: The index of the near-zero eigenvalues for the fine- and coarse-grid
operators. MP-1a with wavenumber k = 50 and kh = 0.625.

Ah A2h

Methods FD-O2 str-Glk ReD-O2 ReD-O4 ReD-cmpO4 ReD-Glk
jmin 186, 187 186, 187 206, 207 188, 189 184, 185 186, 187

4.3.2. SCALABLE CONVERGENCE

As we introduced, in the context of solving the Helmholtz problem using iterative
solvers, the number of iterations required increases significantly as the wavenumber
increases. A recent study by Dwarka and Vuik [75] has shown promising results
in achieving convergence properties that are independent of the wavenumber using
high-order deflation preconditioning methods. In their work, the Galerkin coarsening
approach is employed to derive the coarse-grid operator. In this subsection, we
further explore various scenarios utilizing the re-discretization method for the coarse-
grid operator to investigate which approach can achieve wavenumber-independent
convergence. By examining different cases and comparing the outcomes, we aim to
provide insights into the effectiveness of these methods.

LOW-ORDER DEFLATION

To observe the possible impact on the convergence behavior of using the re-discretization
approach, we first compare the convergence behavior of low-order deflation using
the straightforward Galerkin coarsening and second-order re-discretization (ReD-O2)
approaches. As mentioned, regardless of the computational cost, we can obtain the
coarse-grid operator as eq. (4.24) in the frame of the Galerkin coarsening approach.
Tables 4.3 and 4.4 present the number of outer iterations and wall-clock time for
solving MP-1a using A-DEF1 preconditioned GMRES with varying kh, comparing
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straightforward Galerkin coarsening and ReD-O2 approaches. One can find the num-
ber of outer iterations is consistent with the results in [72] when the straightforward
Galerkin coarsening approach is used. In parentheses is the approximate number of
iterations required to solve the coarse-grid problem (CGP) once by (preconditioned)
GMRES. The coarse-grid problem, inheriting properties from the original Helmholtz
problem, suffers from slow convergence without preconditioning. Applying the CSLP
preconditioner to the coarse-grid solver accelerates convergence at the coarse level,
as evidenced by a reduction in inner iterations, while maintaining the same number
of outer iterations. The wall-clock time reflects that for large wavenumber problems,
one can save significant computational cost by employing the CSLP preconditioner to
solve the coarse-grid system. The idea of applying a recursive strategy, where another
two-level deflation is employed on the coarse level, is highly promising and aligns
with our ongoing research. The scope of this chapter is limited to the development
and benchmarking of the parallel matrix-free two-level deflation approach, which
provides a solid foundation for our work on multilevel extensions.

Table 4.3: The number of iterations and wall-clock time tw required to solve MP-
1a using low-order A-DEF1 preconditioned GMRES for different k and kh. The
coarse-grid problem (CGP) obtained by the str-Glk approach is solved by full-GMRES
(GMRES) and CSLP preconditioned GMRES (CSLP-GMRES). In parentheses is the
number of iterations required to solve the coarse grid problem once.

(GMRES) (CSLP-GMRES)
Grid size k kh #iter (coarse) tw (s) #iter (coarse) tw (s)
33 × 33 20 0.625 8 (55) 0.03 8 (54) 0.14
65 × 65 40 0.625 16 (257) 1.14 16 (247) 2.09
129 × 129 80 0.625 39 (1058) 187.07 44 (903) 191.16

65 × 65 20 0.3125 6 (131) 0.14 6 (74) 0.24
129 × 129 40 0.3125 9 (527) 11.61 9 (256) 3.54
257 × 257 80 0.3125 18 (2217) 1285.90 19 (918) 325.04

Table 4.4: The number of iterations and wall-clock time tw required to solve MP-1a
using low-order A-DEF1 preconditioned GMRES for different k and kh. The coarse-
grid problem (CGP) obtained by ReD-O2 approach is solved by full-GMRES (GMRES)
and CSLP preconditioned GMRES (CSLP-GMRES). In parentheses is the number of
iterations required to solve the coarse grid problem once.

(GMRES) (CSLP-GMRES)
Grid size k kh #iter (coarse) tw (s) #iter (coarse) tw (s)
33 × 33 20 0.625 21 (82) 0.06 21 (61) 0.33
65 × 65 40 0.625 40 (328) 4.64 41 (251) 5.33
129 × 129 80 0.625 97 (1609) 1343.97 97 (1125) 767.11

65 × 65 20 0.3125 17 (123) 0.32 17 (59) 0.41
129 × 129 40 0.3125 20 (660) 31.37 20 (209) 5.53
257 × 257 80 0.3125 25 (2645) 2037.38 29 (840) 327.73
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Table 4.5: The number of iterations and wall-clock time tw required to solve the
2D wedge problem using low-order A-DEF1 preconditioned GMRES for different
frequencies f and grid size. The coarse-grid problem (CGP) obtained by str-Glk or
ReD-O2 approach is solved by CSLP preconditioned GMRES. In parentheses is the
number of iterations required to solve the coarse grid problem once.

str-Glk ReD-O2
Grid size f kh #iter (coarse) tw (s) #iter (coarse) tw (s)
73 × 121 10 0.35 8 (112) 2.91 24 (104) 5.93
145 × 241 20 0.35 9 (278) 19.15 31 (242) 43.88
289 × 481 40 0.35 12 (629) 348.25 34 (547) 642.49
577 × 961 80 0.35 19 (1448) 13079.7 41 (1220) 15674.43

145 × 241 10 0.175 7 (108) 4.57 25 (107) 12.28
289 × 481 20 0.175 7 (257) 54.35 31 (245) 162.96
577 × 961 40 0.175 8 (568) 829.33 33 (533) 2307.76

As for the second-order re-discretization approach, Table 4.4 shows that the second-
order re-discretized A2h leads to an increase in the outer iterations. Table 4.5
confirms that our matrix-free two-level deflation methods also work for the case
with a non-constant wavenumber and exhibit similar convergence behavior to the
constant-wavenumber case.

A noteworthy observation from our results is the relationship between kh and
the number of outer iterations when the wavenumber is fixed. The straightforward
Galerkin coarsening approach (str-Glk), which is essentially equivalent to the matrix-
based method, aligns with the established trend of fewer iterations for smaller kh

values, as corroborated by Sheikh et al. [72]. When the second-order re-discretization
approach (ReD-O2) is employed, it consistently applies to the constant wavenumber
problem, as shown in Table 4.4. However, for the wedge problem with frequency
f = 10, 20, 40Hz in Table 4.5, a smaller kh does not lead to fewer outer iterations.
Here we mainly aim to demonstrate the applicability of our matrix-free method to
lower-order deflation and the convergence behavior versus the wavenumber, exploring
the effects of kh through theoretical analysis and broader numerical experiments to
reach a strong conclusion can be a direction for future research.

HIGHER-ORDER DEFLATION

To get scalable convergence with respect to the wavenumber, this section considers
using the higher-order deflation vectors, i.e. APD.

Table 4.6 shows the number of iterations required to solve the constant wavenumber
problem (MP-1b) using APD-preconditioned GMRES. We found that when the str-Glk
approach is used for the coarse grid problem, the number of iterations required
shows the wavenumber independence for the case with the wavenumber up to 103.

When the coarse-grid operator is obtained by the ReD-O2, it requires more outer
iterations, which increase significantly with the increase of the wavenumber.

Obtaining the coarse-grid operator by ReD-O4 results in a slightly lower number
of outer iterations compared to ReD-O2. Nevertheless, it remains dependent on the
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wavenumber
As ReD-cmpO4 has the same order of accuracy as ReD-O4, little difference in

the number of outer iterations is observed. The compact scheme (ReD-cmpO4)
offers advantages over the standard scheme (ReD-O4) in terms of memory access and
computational efficiency due to its compact stencil. The compact scheme significantly
reduces the number of iterations required to solve the coarse grid problem, which is
a notable benefit considering that the inner solver accounts for a significant portion
of the computational cost.

As for using ReD-Glk, we can obtain close to wavenumber independence. The
number of outer iterations for using ReD-Glk is slightly more than that of str-Glk.
This is due to the simplified treatment for the discretization of the boundary con-
ditions mentioned in Section 4.2.2 as the operation on the internal grid points will
be consistent with the Galerkin coarsening approach for the constant-wavenumber
model.

Table 4.6: The number of iterations required to solve MP-1b using APD-preconditioned
GMRES for different k and kh. The coarse-grid operator is obtained by str-Glk, ReD-
O2, ReD-O4, ReD-cmpO4 and ReD-Glk, respectively. The coarse-grid problem is
solved by CSLP preconditioned GMRES. In parentheses is the number of iterations
required to solve the coarse grid problem once.

Grid size k kh str-Glk ReD-O2 ReD-O4 ReD-cmpO4 ReD-Glk
65 × 65 40 0.625 7 (126) 20 (98) 17 (106) 19 (91) 9 (128)
129 × 129 80 0.625 7 (236) 30 (305) 18 (298) 20 (185) 9 (251)
257 × 257 160 0.625 7 (495) 87 (731) 19 (650) 23 (362) 9 (585)
513 × 513 320 0.625 7 (1030) 319 (1539) 23 (1330) 28 (690) 10(1276)
1025×1025 640 0.625 8 (2089) 1099 (3193) 34 (2662) 44 (1328) 11 (2590)
2049×2049 1280 0.625 9 (4230) 3417 (6750) 79 (5315) 109 (2660) 13 (5266)

129 × 129 40 0.3125 5 (142) 18 (76) 18 (81) 18 (76) 7 (144)
257 × 257 80 0.3125 5 (228) 19 (205) 18 (212) 18 (188) 7 (231)
513 × 513 160 0.3125 5 (411) 21 (438) 18 (458) 19 (395) 7 (432)
1025 × 1025 320 0.3125 5 (809) 28 (885) 20 (909) 20 (775) 6 (859)
2049 × 2049 640 0.3125 5 (1630) 53 (1722) 23 (1763) 24 (1506) 6 (1690)

Table 4.7: The number of iterations required to solve the 2D wedge problem using
APD-preconditioned GMRES for different frequencies f and grid size. The coarse-
grid operator is obtained by str-Glk, ReD-O2, ReD-O4, ReD-cmpO4 and ReD-Glk,
respectively. The coarse-grid problem is solved by CSLP preconditioned GMRES. In
parentheses is the number of iterations required to solve the coarse grid problem
once.

Grid size f kh str-Glk ReD-O2 ReD-O4 ReD-cmpO4 ReD-Glk
73 × 121 10 0.349 7 (145) 22 (104) 22 (108) 22 (99) 9 (138)
145 × 241 20 0.349 6 (301) 28 (244) 27 (243) 28 (228) 9 (303)
289 × 481 40 0.349 6 (580) 31 (535) 29 (519) 30 (491) 9 (585)
577 × 961 80 0.349 6 (1206) 37 (1200) 30 (1175) 31 (1069) 9 (1255)
1153 × 1921 160 0.349 6 (2799) 58 (2826) 34 (2721) 35 (2353) 8 (3032)

For the non-constant wavenumber problem, the results for solving the so-called
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wedge problem and the heterogeneous Marmousi problem are given in Table 4.7 and
Table 4.8, respectively. The convergence behaviors exhibited by using different coarse-
grid operators are consistent with solving the constant wavenumber problem. For
heterogeneous model problems, one can find that ReD-cmpO4 and ReD-O4 exhibit
comparable performance. Thus, we will only present the results for ReD-O4 in the
subsequent numerical experiments. It is worth mentioning that the stencil eq. (4.16)
in ReD-Glk is obtained based on the constant wavenumber assumption. By applying
the stencil to the coarse-grid problem, where heterogeneity from the original problem
is preserved through restriction, the near-zero eigenvalues of the coarse-grid operator
maintain their positions with small shift. Consequently, this approach demonstrates
wavenumber independence even when addressing non-constant wavenumber prob-
lems. This is consistent with the work of Dwarka and Vuik [75].

In terms of time consumption, see the wall-clock time required to solve the Marm-
ousi problem in Table 4.8, we found that ReD-Glk stands out as the most efficient
choice among the re-discretization approaches and is comparable to that of the str-Glk
method. Considering the superior complexity of the ReD-Glk method in terms of per-
forming the coarse-grid operator one time, it will be cheaper than the str-Glk method
when generalized to the potential multilevel deflation method. Thus, we consider
ReD-Glk as the optimal coarse-grid re-discretization scheme. In subsequent numerical
experiments, unless otherwise specified, ReD-Glk will be the default method.

Table 4.8: The number of iterations and wall-clock time required to solve the 2D
Marmousi problem using APD-preconditioned GMRES for different frequencies f

and grid size (kh = 0.5236) with 12 processors. The coarse-grid operator is obtained
by str-Glk, ReD-O2, ReD-O4, ReD-cmpO4 and ReD-Glk, respectively. The coarse-grid
problem is solved by CSLP preconditioned GMRES. In parentheses is the number of
iterations required to solve the coarse grid problem once.

Grid size 737×241 1473×481 2945×961
f (Hz) 10 20 40

str-Glk
#iter 7 7 7

(coarse) (775) (1858) (5380)
tw (s) 120.67 1039.96 27496.67

ReD-O2
#iter 38 71 >2001

(coarse) (748) (1988) (>5700)
tw (s) 615.54 9606.14 >432000

ReD-O4
#iter 30 34 50

(coarse) (762) (1947) (5484)
tw (s) 402.79 4386.57 173650.06

ReD-cmpO4
#iter 32 37 60

(coarse) (762) (1947) (5484)
tw (s) 316.53 5128.28 175379.27

ReD-Glk
#iter 10 10 11

(coarse) (802) (1923) (5592)
tw (s) 164.79 1376.40 46008.03

1 “>" indicates it does not converge to the specified tolerance
within the allowed maximum wall-clock time.
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4.3.3. EFFICIENT COARSE-GRID SOLVER

It appears that using the ReD-Glk format for coarse-grid re-discretization leads to near
wavenumber-independent convergence. Despite this, a large number of iterations is
still needed for the coarse-grid problem, especially for large wavenumbers. This is
partially due to the fact that we are currently employing a two-level deflation method.
Furthermore, as mentioned earlier, a strict tolerance is used for the convergence test
of the coarse-grid solver. Consequently, this section explores the range of possible
values for the tolerance of the coarse-grid solver.

Using higher-order deflation vectors and ReD-Glk for re-discretization of the coarse-
grid system, the present APD-preconditioned GMRES is utilized to solve the linear
system (Ahuh = bh), reducing the preconditioned relative residual to 10−6. The
stopping criteria for the coarse-grid iterative solver (A2h v2 = v1) ranged from 10−1

to 10−13. Table 4.9 shows that, for various model problems, the number of outer
iterations required remains constant for all convergence criteria smaller than 10−2 on
the coarse level, which is in line with the results in [82].

Table 4.9: The number of APD-preconditioned GMRES iterations required to solve
corresponding model problems when using different stopping criteria for the coarse-
grid iterative solver

Model Problems 10−1 10−3 10−5 10−7 10−9 10−11

MP-1b, k = 320, 513×513 14 10 10 10 10 10
MP-1b, k = 320, 1025×1025 11 7 6 6 6 6
Wedge, f = 40Hz, 289×481 12 9 9 9 9 9

Marmousi, f = 20Hz, 1473×481 13 10 10 10 10 10

For example, in the scenario of the Marmousi problem ( f = 20Hz, grid size 1473×
481), Figure 4.2 displays the change in iterations required to solve a single coarse-grid
problem with the CSLP-preconditioned GMRES solver, for various tolerances, along
with the total wall-clock time and the relative residual of the final solution. Note
that the number of iterations for the CSLP-preconditioned GMRES solver to solve a
single coarse-grid problem increases linearly as the size of the tolerance decreases.
The wall-clock time elapsed increases even faster as the tolerance becomes more
stringent. Once the tolerance exceeds 10−5, the relative residual of the final solution
increases, while it remains constant for the tolerance less than 10−6. This pattern
holds for larger grid sizes.

The findings suggest that, when the present APD-preconditioned GMRES is used,
maintaining the tolerance of the coarse-grid solver at the same order of magnitude as
that of the outer iterations enables a consistent number of outer iterations and con-
stant relative residual of the final solution while minimizing the total wall-clock time.
It is worth noting that for the GMRES algorithm, we employ left preconditioning and
use the preconditioned relative residual as the criterion for convergence. Additional
numerical experiments have been conducted to investigate the use of right precondi-
tioning with GMRES, using the unpreconditioned relative residual as the convergence
criterion. The results also demonstrate a consistent number of outer iterations across
various tolerances for the coarse-grid solver, with only one more iteration compared
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Figure 4.2: Tolerance of the coarse-grid solver for Marmousi problem with f = 20Hz
and grid size 1473×481. The present APD-preconditioned GMRES is employed for
outer iteration.

to the results shown in Table 4.9, which strictly reduces the final relative residual to
below 10−6. Nevertheless, we can reach the same conclusion regarding the impact of
the coarse-grid solver tolerance on the outer iterations and the relative residual of the
solution. We attribute this to that the standard GMRES algorithm for outer iteration
expects a constant preconditioner. However, if the tolerance of the coarse-grid solver
increases beyond a certain threshold, it leads to variable preconditioning.

The results presented in Figure 4.2 indicate that solving the coarse-grid problem
for the Marmousi model with grid size 1473×481 and frequency f = 20Hz requires
over 1000 GMRES iterations to achieve a relative residual of 10−6.

To investigate the possibility of using a larger tolerance for the coarse-grid solver
and further reduce the solution time, we will proceed with the outer iteration using
the GCR algorithm, which allows for a variable preconditioner. While making this
transition, all other aspects of the deflation method remain unchanged, except for
the use of the GCR algorithm with right preconditioning.

For the Marmousi model with grid size 1473×481 and frequency f = 20Hz, the
number of outer GCR iterations remains constant at 11, when varying the tolerances
of the coarse-grid solver from 10−2 to 10−12. If the tolerance of the coarse-grid solver
is set to 10−1, it requires 12 outer iterations. The impact of the coarse-grid solver
tolerance on the number of iterations required to solve the coarse-grid problem, the
total wall-clock time, and the relative residual of the final solution is illustrated in
Figure 4.3. The variation in the number of iterations for solving the coarse-grid
problem and the total wall-clock time is similar to that shown in Figure 4.2. Similarly,
when the tolerance of the coarse-grid solver is smaller than the tolerance of the
outer iterations, the residual of the solution remains unchanged. However, when
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Figure 4.3: Tolerance of the coarse-grid solver for Marmousi problem with f = 20Hz
and grid size 1473×481. The present APD-preconditioned GCR is employed for outer
iteration.

the tolerance of the coarse-grid solver exceeds the tolerance of the outer iterations,
the residual of the solution remains within the tolerance instead of increasing, as
observed in the standard GMRES method. The same behavior is observed in the case
of the non-constant wavenumber model problems. Thus, using the GCR algorithm
as the outer iteration method allows us to set the tolerance of the coarse-grid solver
to a relatively large value 10−1, while still maintaining the desired accuracy of the
final solution. For this MP-1b model problem, if the APD-preconditioned GMRES
is employed and the tolerance for the coarse-grid solver is set to 10−6, the total
wall-clock time is 145.41s. If the APD-preconditioned GCR is used and the tolerance
for the coarse-grid solver is set to 10−1, although one extra outer iteration is required,
the total wall-clock time is 9.48s. The total computation time is reduced by around
95% of the time required when using a tolerance of 10−6 for the coarse-grid solver.

Table 4.10 presents the number of iterations and wall-clock time required to solve
the 2D Marmousi problem using the APD-preconditioned GCR method with dif-
ferent coarse-grid operators. The coarse-grid problem is solved using the CSLP-
preconditioned GMRES method with a tolerance of 10−1. In comparison to Table 4.8,
there is a notable decrease in the number of iterations required for the coarse-grid
problem and the total computation time when using a tolerance of 10−1. The pro-
posed ReD-Glk remains the top choice among the re-discretization approaches and
now requires a wall-clock time similar to the str-Glk method.

Additional numerical experiments have provided further evidence that, regardless of
whether the standard GMRES algorithm is employed with left or right preconditioning
as the outer iteration algorithm, if the tolerance of the coarse-grid solver is set larger
than that of the outer iterations, the residual of the final solution will increase.
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Table 4.10: The number of iterations and wall-clock time required to solve the 2D
Marmousi problem using APD-preconditioned GCR for different frequencies f and
grid size (kh = 0.5236) with 12 processors. The coarse-grid problem is solved by CSLP
preconditioned GMRES with a tolerance 10−1. The coarse-grid operator is obtained
by str-Glk, ReD-O2, ReD-O4 and ReD-Glk, respectively. In parentheses is the number
of iterations required to solve the coarse grid problem once.

Grid size 737×241 1473×481 2945×961
f (Hz) 10 20 40

str-Glk
#iter 8 9 9

(coarse) (78) (205) (627)
tw (s) 2.47 14.00 282.82

ReD-O2
#iter 40 71 233

(coarse) (34) (171) (373)
tw (s) 10.52 98.45 5359.75

ReD-O4
#iter 33 35 41

(coarse) (27) (70) (162)
tw (s) 5.68 28.47 356.37

ReD-Glk
#iter 11 12 12

(coarse) (63) (116) (489)
tw (s) 3.25 14.62 255.38

However, when utilizing the APD-preconditioned Flexible GMRES algorithm, which
also allows for variable preconditioning, similar to the APD-preconditioned GCR
approach, even with a relatively larger tolerance for the coarse-grid solver, the accuracy
of the final solution can still be maintained within the specified tolerance range.

In summary, while solving the coarse-grid problem exactly is expected to provide
the best convergence in the deflation method [136], the modified projection method
employed in this study, as proposed by Erlangga and Nabben [83], is less sensitive to
approximations of the coarse-grid system. Within a certain range of tolerances, the
outer iterations do not change significantly. However, using a less strict tolerance of
10−1 does result in 2-3 extra outer iterations. Despite this, the computational savings
achieved by solving the coarse-grid system with a looser tolerance outweigh the cost
of the additional outer iterations. In the subsequent parallel performance study of the
parallel preconditioned GMRES and GCR, we will set the tolerance for the coarse-grid
problem solver to 10−6 and 10−1, respectively.

To further reduce the number of iterations required to solve the coarse-grid prob-
lem, different complex shift values (β2) for the CSLP preconditioner are investigated.
Figure 4.4 illustrates the impact of the complex shift of the CSLP preconditioner for
solving the coarse-grid system. The results demonstrate that a shift larger than 0.5
is satisfactory, with a larger shift generally leading to a decrease in the number of
iterations required to solve the coarse-grid system. This is because one multigrid
V-cycle is employed to approximate the CSLP preconditioner. This observation aligns
with the analysis presented in [54]. It provides a valuable insight that a shift of 1.0 for
the CSLP preconditioner will save some iterations for solving the coarse-grid problem
when we use the proposed matrix-free parallel two-level deflation method to solve
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more complex problems with larger wavenumber.
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Figure 4.4: Effect of the complex shift β2. Marmousi problem with f = 40Hz and grid
size 2945×961. The present APD-preconditioned GCR is employed for outer iteration.

4.3.4. PARALLEL PERFORMANCE

In this section, we conduct a comprehensive evaluation of the parallel performance
of our solver, focusing on weak scaling and strong scaling. Weak scaling refers
to the solver’s performance when the problem size and the number of processing
elements increase proportionally. This allows us to assess our parallel solver’s ability
to solve large-scale heterogeneous Helmholtz problems with minimized pollution
error by using smaller step size h. On the other hand, strong scaling measures
the capability of our parallel solution method to solve a fixed problem size more
quickly by adding more resources. Through these scaling assessments, we aim
to understand the effectiveness of our solver in handling various problem sizes and
resource allocations, providing crucial insights into its optimal operational parameters
and potential scalability limits.

WEAK SCALING

Figure 4.5 shows the results for the weak scalability test solving the MP-1b model
problem with k = 160 from 1, 4, 16, up to 64 processes. The problem size was refined
from 1025× 1025, 2049× 2049, 4097× 4097, up to 8193× 8193, ensuring that each
process handled a grid size of approximately 1024×1024. One can find that, for the
same problem and with the same number of processes, the APD-preconditioned GCR
method with a coarse-grid solver tolerance of 10−1 exhibits a significantly reduced
computational time compared to the APD-preconditioned GMRES method with a
coarse-grid solver tolerance of 10−6.
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In Figure 4.5, it appears that as the grid size and the processes increase propor-
tionally, the required wall-clock time does not remain perfectly constant but tends to
increase slightly. This behavior may be attributed to the additional communication
time required for larger problems and more processes. Additionally, the limited band-
width also contributes to some increase in the wall-clock time as the problem size
grows larger. The same trend holds for model problems with non-constant wavenum-
bers, as shown in Table 4.11. The present weak scalability meets our requirements
for minimizing pollution error by grid refinement within a certain range.
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Figure 4.5: Weak scaling for MP-1b with k = 160 and a grid size of 1024×1024 per
process.

Table 4.11: Weak scaling for model problems with non-constant wavenumber. The
present APD-preconditioned GMRES/GCR is employed for outer iteration.

GMRES GCR
grid size np #iter tw (s) #iter tw (s)

Wedge, f = 40Hz
577 × 961 6 9 (251) 53.41 10 (46) 4.86

1153 × 1921 24 10 (259) 68.59 10 (43) 5.75

Marmousi, f = 10Hz
737 × 241 3 10 (414) 103.92 11 (63) 10.55

1473 × 481 12 9 (378) 111.20 10 (58) 12.08
2945 × 961 48 9 (383) 156.45 10 (58) 17.72

STRONG SCALING

We are also interested in the strong scalability properties of the present parallel
deflation method for the Helmholtz problems. First of all, numerical experiments
show that the number of external iterations required is found to be independent of
the number of processes, which is a favorable property of our solution method.
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We consider the MP-1b problem with a wavenumber of k = 100 and k = 200 on a
growing number of processes and grid size. Figure 4.6 presents the wall-clock time
versus the number of processes. The numerical experiment conducted on close to
48 processes exhibits a moderate decrease in terms of parallel efficiency. This can be
partly attributed to the increased amount of communication, resulting in a significant
decrease in the computation/communication ratio. If we increase the grid size, an
improvement in parallel efficiency can be observed. This is because the number of
ghost-grid layers used for communication remains constant, the amount of data to be
communicated doubles when the number of grid points doubles in each direction. In
contrast, the total number of grid points increases fourfold, resulting in a larger ratio
of computational and communication time. For larger problems, a slight decrease in
parallel efficiency when approaching 48 processes can be explained by the limited
memory access bandwidth of a single compute node.

Furthermore, we also observe that the computational time increases nearly propor-
tionally to the grid size, approximately by a factor of 4-5. However, the additional
computational time required for data communication becomes increasingly evid-
ent. From Figure 4.6, one can find that similar strong scalability holds for a larger
wavenumber.
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Figure 4.6: Strong scaling of APD-preconditioned GCR for MP-1b with various grid
sizes.

The strong scalability property of the present solver on multiple compute nodes is
also investigated. Figure 4.7 illustrates the time required to solve the wedge model
problem with a frequency of f = 40Hz on at most 6 compute nodes (a total of 384
processes). For a grid size of 2305×3841, the numerical experiment performed on
more than 96 processes exhibits a decrease in parallel efficiency. However, as the
grid size increases to 4609× 7681 and 9217× 15361, which consequently increases
the computation/communication ratio, the parallel efficiency significantly improves,
with speedup even surpassing the ideal case, i.e., superlinear speedup. When parallel
computing tasks can fully utilize the caches on multiple compute nodes, data access
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speeds are faster, thus enhancing computational efficiency. For solving the wedge
problem with a higher frequency of f = 100Hz, as depicted in Figure 4.7, we observe
similar patterns to f = 40Hz. Despite the constant number of outer iterations, the
number of iterations required to solve the coarse-grid problem increases from around
45 to around 110. Consequently, the computation time also increases by a factor of
2-3. In terms of parallel efficiency, we observe similar behavior.
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Figure 4.7: Strong scaling of APD-preconditioned GCR for wedge problem with f =
40Hz and f = 100Hz.

4.4. CONCLUSIONS
A matrix-free parallel two-level deflation preconditioner for solving two-dimensional
Helmholtz problems in both homogeneous and heterogeneous media is proposed in
this chapter.

By leveraging the matrix-free parallel framework and geometric multigrid-based
CSLP built in previous chapters, we provide a matrix-free parallelization method for
the general two-level deflation preconditioner for the Helmholtz equation discretized
with finite differences. Numerical experiments demonstrate that, compared with the
Galerkin coarsening approach, the method of using re-discretization to obtain the
coarse-grid operator of deflation will slow down convergence to some extent.

To enhance the convergence properties, the higher-order approximation scheme
proposed by Dwarka and Vuik [75] is employed to construct the deflation vectors. The
study presents higher-order deflation vectors in two dimensions and their matrix-free
parallel implementation. Various methods for implementing matrix-free coarse-grid
operators are proposed and compared. The numerical experiments demonstrate the
effectiveness of the proposed coarse-grid re-discretization scheme based on the Galer-
kin coarsening approach, which achieves wavenumber-independent convergence for
both constant and non-constant wave number model problems in accordance with
objectives (i) and (ii) in Section 1.7.

Furthermore, we have studied in detail the tolerance setting of the coarse grid solver
when the deflation preconditioned GMRES type methods are employed to solve the



4.4. CONCLUSIONS

4

119

Helmholtz problems. An optimal tolerance for the coarse grid solver can effectively
reduce the solution time.

Finally, the performance of the present parallel GCR solver preconditioned by
higher-order deflation is studied, including both weak and strong scalability. Using
a matrix-free approach to reduce memory requirements and weak scalability allows
us to minimize pollution errors by refining the grid. Strong scalability allows us to
solve high-frequency heterogeneous Helmholtz problems faster and more effectively
in parallel. The presented two-level preconditioner serves as a benchmark for the
development of a matrix-free parallel multilevel deflation method in the next Chapter
to achieve objective (iii).





5
MATRIX-FREE PARALLEL SCALABLE

MULTILEVEL DEFLATION

PRECONDITIONING

This chapter presents an integration and extension of our previous developments, com-

bining the matrix-free parallel framework with an advanced multilevel extension of

the two-level deflation method. Higher-order deflation vectors and re-discretization

schemes derived from the Galerkin coarsening approach are employed for a matrix-free

parallel implementation. We suggest a robust and efficient configuration of the matrix-

free multilevel deflation method, which yields a close to wavenumber-independent

convergence and good time efficiency. Numerical experiments demonstrate the effect-

iveness of our approach for increasingly complex model problems. The matrix-free

implementation of the preconditioned Krylov subspace methods reduces memory con-

sumption, and the parallel framework exhibits satisfactory parallel performance and

weak parallel scalability. This work represents a significant step towards develop-

ing efficient, scalable, and parallel multilevel deflation preconditioning methods for

large-scale real-world applications in wave propagation.

Parts of this chapter have been published in Journal of Scientific Computing 102, 47 (2025) [137].
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Although conventional multigrid methods using standard smoothing and coarse
grid corrections fail for the Helmholtz equation, their high efficiency in solving
positive definite problems has motivated research into developing robust multilevel
approaches for this equation [76, 138–140]. In this chapter, we explore methods
to extend the wavenumber-independent convergence from the two-level to a mul-
tilevel setting based on the work in previous chapters. While previous works have
established the theoretical foundations for multilevel deflation methods [72, 73, 76,
82], this chapter’s focus is on a parallel scalable implementation of multilevel higher-
order deflation for practical large-scale applications. We aim to perform comprehens-
ive numerical experiments to validate the theoretical predictions and demonstrate
the method’s effectiveness in large-scale scenarios, where parallel implementation
challenges often exceed idealized theoretical assumptions. This chapter presents sig-
nificant innovations in solving large-scale Helmholtz problems. We develop novel
re-discretization schemes for multilevel hierarchies, ensuring effective approximation
of Galerkin coarsening operators across all levels while maintaining the matrix-free
parallel framework. Through comprehensive numerical experiments, we establish
appropriate parameters for robust convergence across different problem scales. Fur-
thermore, we introduce an optimal tolerance for coarse-level iterations, a previously
unexplored but essential component for achieving wavenumber-independent conver-
gence in practical multilevel deflation methods. These innovations culminate in a
highly efficient parallel framework that demonstrates both wavenumber-independent
convergence and excellent scaling properties in massively parallel environments, as
validated by extensive numerical experiments.

The mathematical model and discretization schemes employed in this chapter are
the same as those those presented in Chapter 4. We consider the two-dimensional
Helmholtz equation with both Dirichlet and Sommerfeld radiation boundary condi-
tions in heterogeneous media.

This chapter is organized as follows. We present the matrix-free parallel variant
of the multilevel deflated Krylov method in Section 5.1. Section 5.2 presents an
optimally tuned configuration of the matrix-free parallel multilevel deflation method.
Finally, we present numerical results to evaluate parallel performance in Section 5.3.
Section 5.4 contains our conclusions.

5.1. MULTILEVEL DEFLATION
When using the two-level higher-order deflation method in practical large-scale ap-
plications, solving the coarse-grid system remains expensive, whether solved exactly
[76], or approximately by CSLP-preconditioned Krylov methods [134]. In accordance
with the multigrid method, as the coarse grid system has similar properties as the
original Helmholtz operator, one can obtain a multilevel framework by applying the
two-level cycle recursively, as shown in Algorithm 13. The flexible subspace Krylov
method FGMRES preconditioned by two-level deflation is applied recursively on sub-
sequent coarse-grid systems E . Compared to the multilevel deflation proposed in
[76], a few remarks are noted here.

First, Algorithm 13 does not include the process of determining the corresponding
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Algorithm 13 Recursive two-level deflated FGMRES: TLADP-FGMRES(A, b)

1: Determine the current level l and dimension m of the Krylov subspace
2: Initialize u0, compute r0 = b − Au0, β= ||r0||, v1 = r0/β;
3: Define H̄m ∈C

(m+1)×m and initialize to zero
4: for j = 1,2, ...,m or until convergence do

5: v̂ j = Z T v j . Restriction
6: if l +1 == lmax then . Predefined coarsest level lmax

7: ṽ ≈ E−1v̂ . Approximated by CSLP-FGMRES
8: else

9: l = l +1
10: ṽ =TLADP-FGMRES(E, v̂) . Apply two-level deflation recursively
11: end if

12: t = Z ṽ . Interpolation
13: s = At

14: r̃ = v j − s

15: r ≈ M−1r̃ . CSLP, by multigrid method or Krylov iterations
16: x j = r + t

17: w = Ax j

18: for i := 1,2, ..., j do

19: hi , j = (w, vi )
20: w = w −hi , j vi

21: end for

22: h j+1, j := ||w ||2, v j+1 = w/h j+1, j

23: end for

24: Xm = [x1, ..., xm], H̄m =
{

hi , j

}

1≤i≤ j+1,1≤ j≤m

25: um = u0 +Xm ym where ym = arg miny

∣

∣

∣

∣βe1 − H̄m y
∣

∣

∣

∣

26: Return um
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coarser-grid system E and CSLP preconditioner M on the current level l . This will
be elaborated on in the next subsection.

Second, for efficient parallelization, we employ a GMRES method to solve the
coarsest grid problem approximately rather than a direct solver. This method is
preconditioned by CSLP, which is defined according to the coarsest grid operator. We
will numerically investigate the necessary accuracy (or the number of iterations) for
solving the coarsest grid problem in the next section.

Third, the multilevel deflation method requires approximating the inverse of CSLP
on each level. In [76], this is accomplished using several Krylov subspace iterations
(e.g., Bi-CGSTAB) on all levels. The authors set the maximum number of iterations to

Ci t (N l )
1
4 , where Ci t is a constant and N l denotes the problem size on level l . This

strategy allows the benefits of using a small shift, resulting in a preconditioner similar
to the original Helmholtz operator that retains the ability to shift indefiniteness at
certain levels. However, the maximum number of iterations is positively correlated
with the grid size on each level, indicating that larger grid sizes require more iterations.
Considering the large-scale applications, utilizing Krylov subspace iterations on the
first level (finest grid) or the second level may become computationally intensive.
Therefore, we propose employing a multigrid cycle to approximate CSLP on the first
or second level. Several Krylov subspace iterations can then be applied on the coarser
levels. However, in the case of multigrid-based CSLP, ensuring a sufficiently large
complex shift is essential. In addition to setting the maximum number of iterations,
a relative tolerance as stopping criteria for the iterations is also established in this
chapter. This allows iterations to cease once the maximum number of iterations or
the tolerance is reached.

Fourth, as shown in Algorithm 13, the number of deflated FGMRES iterations is
specified by m. The cycle type of the multilevel deflation technique is determined by
the number of iterations of the deflated FGMRES on each coarse level, except for the
finest level. If only one iteration is allowed on the coarser levels, a V-cycle is obtained,
which is similar to the V-cycle structure of multigrid when γ = 1. Correspondingly,
two iterations on the coarser levels will result in a W-cycle. According to the multigrid
method, the W-cycle may offer faster convergence than V-cycle but at the expense
of computational efficiency. For increasingly complex model problems, striking a
balance between optimal convergence and computational efficiency in the selection
of m, hence determining the necessary accuracy (or the number of iterations) for the
coarser levels, will be a focal point of this study.

Fifth, in Algorithm 13, all involved matrix-vector multiplications (lines 5, 7, 10,
12, 13, 15, 17) are expressed to denote the outcome of these operations. In our
implementation, we compute and return the result of matrix-vector multiplication
based on input variables through a linear combination. No explicit construction of
any matrices takes place in our approach.

5.1.1. MATRIX-FREE PARALLEL IMPLEMENTATION

Matrix-free implementations offer a compelling alternative to standard sparse matrix
data formats in large-scale computational scenarios. Besides the reduced memory
consumption, matrix-free methods exhibit performance advantages and can poten-
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tially outperform matrix-vector multiplications with stored matrices [141]. These
improvements enable the solution of larger-scale Helmholtz problems previously con-
strained by memory limitations, while also enhancing the applicability of modern
data-driven methods [142].

PERFORMANCE ANALYSIS USING ROOFLINE MODEL

This section presents a performance analysis of matrix-vector multiplication opera-
tions v = Au comparing our matrix-free implementation with traditional CSR matrix-
based approaches. The analysis focuses specifically on the Helmholtz operator with
variable wavenumber, using a five-point stencil discretization. We consider the
matrix-vector multiplication as it constitutes the primary computational kernel in
preconditioned Krylov subspace methods, typically accounting for the majority of
computational time. Our analysis employs the roofline model [113], a performance
model that bounds computational kernel performance based on peak computational
performance and memory bandwidth limitations. As matrix-vector multiplication is
typically memory-bound, we focus on arithmetic intensity (I ), defined as the ratio of
floating-point operations (FLOPs) to memory accesses:

I =
Total FLOPs

Total Bytes Accessed
. (5.1)

Matrix-Free Implementation The matrix-free implementation directly applies the
five-point stencil operation for the discrete Laplacian operator combined with the
wavenumber term. For variable wavenumber k, the implementation of matrix-vector
multiplication can be expressed in the following computational kernel (in Fortran):

! Pre - computed stencil coefficients

ap = -4.d0/h**2

as = aw = ae = an = 1.d0/h**2

do j = 1, ny

do i = 1, nx

v(i,j) = as * u(i,j -1) & ! South neighbor

+ aw * u(i-1,j) & ! West neighbor

+ (ap - k(i,j)**2) * u(i,j) & ! Center point

+ ae * u(i+1,j) & ! East neighbor

+ an * u(i,j+1) ! North neighbor

end do

end do

In analyzing the memory access patterns, we consider the memory access per grid
point operation. The implementation requires reading of five vector elements (center
and four neighbors), each consuming 8 bytes in double precision. Additionally, we
need to access one wavenumber value (8 bytes) and write one result value (8 bytes).
Therefore, the total memory access per point is bounded by 56 bytes.

The computational intensity involves five multiplications for the stencil coefficients,
four additions for combining the stencil components, and two additional operations
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(one square operation and one subtraction) for the wavenumber term. This results
in 11 floating-point operations per grid point.

Consequently, the arithmetic intensity for the matrix-free implementation is:

IMF ≥
11

56
≈ 0.1964 FLOPs/byte (5.2)

CSR Matrix-Based Implementation The compressed sparse row (CSR) format rep-
resents the sparse matrix A using three arrays: values (A%value), column indices
(A%col_indices), and row pointers (A%row_ptr) [36]. The CSR format implementa-
tion is structured as follows:

do i = 1, A%nrow

v(i) = 0.d0

do j = A% row_ptr (i), A% row_ptr (i+1) -1

v(i) = v(i) + A% values (j) * u(A% col_indices (j))

end do

end do

The memory access pattern for CSR implementation is more complex. For each
non-zero element, we must read the matrix value (8 bytes), the column index (4
bytes), and access the corresponding vector element (8 bytes, assuming the vector is
too large to fit into the cache). Additional memory operations include accessing row
pointers (4 bytes per row) and reading/writing the result vector (16 bytes per row).
For our five-point stencil case, with five nonzero elements per row, the total memory
access is bounded by 120 bytes per row.

The computation for each non-zero element requires one multiplication and one
addition, resulting in 10 total FLOPs per row. Thus, the arithmetic intensity for the
CSR implementation is:

IC SR ≥
10

120
≈ 0.0833 FLOPs/byte (5.3)

Based on this theoretical analysis, we expect the matrix-free implementation to
outperform the CSR matrix-based implementation by approximately a factor of 2.35.

Numerical Validation To validate our theoretical analysis, we conducted extensive
performance measurements comparing both implementations. For each grid size,
we performed 100 consecutive matrix-vector multiplications to obtain statistically
stable performance measurements. The performance metrics are reported in billions
of floating-point operations per second (GFLOPs/s), calculated using the theoretical
operation count for each implementation.

Table 5.1 presents the experimental results, which strongly support our theoretical
analysis. The matrix-free implementation consistently achieves superior performance,
with the advantage becoming more pronounced as the problem size increases. For
larger problem sizes (N > 106), we observe performance improvements approaching a
factor of 3, exceeding our theoretical prediction of 2.35. This enhanced performance
can be attributed to memory hierarchy effects. The matrix-free implementation



5.1. MULTILEVEL DEFLATION

5

127

Table 5.1: Performance comparison of matrix-free and CSR matrix-based implement-
ations for matrix-vector multiplications.

Problem size Matrix-free CSR-Matrix Performance
N (GFLOPs/s) (GFLOPs/s) Ratio

289 4.5918 2.5298 1.82
1,089 5.1946 2.8848 1.80
4,225 6.1535 2.8094 2.19

16,641 5.0961 2.8327 1.80
66,049 6.1740 2.6128 2.36

263,169 6.1361 2.8208 2.18
1,050,625 6.2861 2.3977 2.62
4,198,401 5.9456 1.9992 2.97

16,785,409 5.5556 1.9200 2.89
67,125,249 5.4626 1.8979 2.88

268,468,225 5.4626 1.8958 2.88

exhibits superior cache utilization, particularly for large-scale problems where the
memory access patterns of the CSR format become increasingly inefficient.

The characteristics of these implementations have significant implications for paral-
lel computing performance. The matrix-free implementation’s regular memory access
patterns facilitate better parallel efficiency through predictable memory access and
reduced NUMA (Non-Uniform Memory Access) effects. Furthermore, in distributed
memory systems, the matrix-free approach minimizes communication overhead, re-
quiring only ghost point exchanges along subdomain boundaries. These parallel
computing advantages, combined with the superior cache utilization observed in
our sequential tests, suggest even more pronounced performance benefits in parallel
computing environments, particularly for large-scale problems on distributed memory
systems.

OPERATORS IN MULTILEVEL DEFLATION

This section details the matrix-free implementation of operators in the multilevel
deflation method. Matrix-free matrix-vector multiplication is implemented using
stencil notation. The computational stencils for both the finest-level and second-level
operators (Helmholtz and CSLP preconditioner) and grid-transfer operators (higher-
order interpolation and restriction) are detailed in [134]. To enable true multilevel
deflation, we extend the matrix-free implementation to coarser levels. We denote the
Helmholtz operators as A2l−1h and the CSLP operators as M2l−1h , where l is the level
number (l = 1 represents the finest grid). Starting from the second-level grid, we
want to find the computational stencils for A4h so that it is a good approximation
to the Galerkin coarsening operator Z T A2h Z . Following [134], we decompose the
Helmholtz operator into Laplace and wavenumber operators (assuming a constant
wavenumber). By applying Galerkin coarsening operations to their stencils, we obtain
the following stencils of the Laplace and wavenumber operators for interior points
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on the third-level coarse grid:
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1
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Using these stencils, the Helmholtz operator and CSLP operator on the third level
can be obtained according to their definitions.

Continuing this process iteratively, we can obtain stencils for the Helmholtz operator
on coarser levels. It should be noted that starting from the third level, the size of
the computation stencils will remain at 7×7. Specific stencils for the fourth to sixth
levels can be found in Appendix A.

BOUNDARY

Introducing an accurate boundary scheme for the aforementioned 7×7 computational
stencils remains an open problem. In this chapter, we present a simple yet effective
approach, involving the introduction of a ghost point outside the physical boundaries,
as depicted in Equations (1.44) and (1.46). We apply standard second-order finite-
difference discretization to points on the physical boundary. For points near the
boundary, we set additional grid points beyond the ghost point to zero. It is important
to note that the wavenumbers of the ghost points are also required. For Dirichlet
boundary conditions, we determine the wavenumbers of the ghost points similar to
Equation (1.46). In other cases, the wavenumbers of the ghost points are uniformly
set to zero. This zero-padding approach is motivated by the observation that the
coefficients outside the 3×3 kernel become small, and thus, the influence of these
points on the overall solution is expected to be minimal. By setting these points
to zero, we aim to simplify the computation while maintaining the accuracy of the
solution.
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To develop a parallel scalable iterative solver, the matrix-free multilevel deflated
Krylov subspace methods are implemented within the parallel framework presented
in previous chapters.

5.2. CONFIGURATION
Before presenting the performance analysis of the matrix-free multilevel deflation
method, we systematically tune the essential components of the algorithm to achieve
an optimal balance between computational efficiency and numerical robustness. This
section establishes the precise configuration that ensures wavenumber-independent
convergence while minimizing computational overhead for complex numerical ap-
plications. The outer FGMRES iterations start with a zero initial guess and terminate
when the relative residual in Euclidean norm reaches 10−6. Note that all presented
results in this section are obtained from sequential computations. In our notation,
Ln represents the n-th level in the multigrid hierarchy, where L1 corresponds to the
finest level.

5.2.1. TOLERANCE FOR SOLVING THE COARSEST PROBLEM

In this subsection, we explore the tolerance considerations for solving the coarsest
problem. For better comparison and fewer other influencing factors, we perform
a V-cycle three-level deflation approach to solve the constant wavenumber model
problem with Sommerfeld radiation boundary conditions. The finest level represents
the first level, and the third level corresponds to the coarsest problem, which will be
addressed using GMRES preconditioned with CSLP. To ensure an accurate inverse of
CSLP on each level, we employ Bi-CGSTAB iterations, reducing the relative residual
to 10−8, assuming that the optimal tolerance is unknown. Since the Krylov subspace
method instead of the multigrid method is employed to solve the CSLP here, a small
complex shift can be used. Here we will use β2 = 0.1. The model problem with
wavenumber k = 200 is solved with two kinds of resolution, that is kh = 0.3125 and
0.625, respectively. As analyzed in [76], the third level will remain indefinite for
kh = 0.3125, while it becomes negative definite for kh = 0.625.

Table 5.2 illustrates the impact of varying tolerances for solving the coarsest problem
on the convergence behavior. Specifically, it presents the number of outer iterations
required to reduce the relative residual to 10−6 and the corresponding number of
iterations needed to solve the coarsest problem once.

Table 5.2: The impact of varying tolerances for solving the coarsest problem on the
number of outer iterations. In parentheses is the number of iterations required to
solve the corresponding coarsest problem once.

kh 100 10−1 10−2 10−4 10−6 10−8

0.3125 12 (1) 5 (8) 5 (17) 5 (31) 5 (44) 5 (58)
0.625 16 (1) 31 (32) 33 (67) 33 (133) 33 (203) 33 (256)

From Table 5.2, we observe varying accuracy requirements for solving the coarsest
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grid problem corresponding to different values of kh. In the case of kh = 0.3125, a
relative tolerance of 10−1 is necessary for maintaining the convergence of the outer
iterations. Conversely, for kh = 0.625, a single iteration of the coarsest grid solver is
sufficient. A strict tolerance in solving the coarsest grid even leads to more outer
iterations.

We attribute this phenomenon to the nature of the coarsest grid system, whether it
is indefinite or negative definite. According to [76], the third level remains indefinite
for kh = 0.3125, while it becomes negative definite for 0.625. If the coarsest grid
system is indefinite, the relative tolerance of the iterative solver should be ensured
at 10−1 or smaller. On the contrary, if the coarsest grid system is negative definite,
one iteration is adequate. However, it leads to more outer iterations compared to the
former case.

To further validate this conclusion, we note the following numerical observations
(not presented in tables or figures): using the model problem with Dirichlet boundary
conditions at kh = 0.625, a tolerance of 100 results in outer iterations of 27, while
10−1 leads to 32. This brief numerical observation supports our finding that only one
iteration suffices when the system becomes negative definite on the coarsest grid. It
should be noted that, for the sake of uniformity, if a tolerance of 100 appears in this
chapter, it means that only one iteration is performed.

5.2.2. TOLERANCE FOR SOLVING CSLP
In this section, we explore the accuracy requirements for the approximate inverse
of CSLP on each grid level. Consistent with the solver settings from the previous
subsection, we perform one iteration on the coarsest level for kh = 0.625 and set the
tolerance for the coarsest grid solver to 10−1 for kh = 0.3125. We vary the tolerance
for the Bi-CGSTAB solver used in the approximate CSLP solution. The results are
presented in Table 5.3 and Table 5.4, where “Ln Bi-CGSTAB” denotes the number
of Bi-CGSTAB iterations needed to achieve the corresponding tolerance on the n-th
level. The phrases “Outer FGMRES” and “Coarsest FGMRES” denote the number of
FGMRES iterations required for the outer solvers and the coarsest problem solver,
respectively.

Table 5.3: Tolerance study for CSLP approximation for kh = 0.625.

10−1 10−2 10−4 10−6 10−8

Outer FGMRES 18 16 16 16 16
Coarsest FGMRES 1 1 1 1 1

L1 Bi-CGSTAB 69 171 408 666 780
L2 Bi-CGSTAB 15 39 84 119 177
L3 Bi-CGSTAB 29 89 174 370 544

From Table 5.3 and Table 5.4, it is observed that whether the coarsest grid system
remains indefinite or becomes negative definite, setting a tolerance stricter than
10−2 for the approximate inverse of CSLP does not necessarily result in a further
reduction in the number of outer iterations. For cases with tolerances of 10−1 and
10−2, while the number of outer iterations is reduced by 1−2 with a tolerance of
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Table 5.4: Tolerance study for CSLP approximation for kh = 0.3125.

10−1 10−2 10−4 10−6 10−8

Outer FGMRES 6 5 5 5 5
Coarsest FGMRES 8 8 8 8 8

L1 Bi-CGSTAB 22 338 1149 1771 2344
L2 Bi-CGSTAB 10 44 131 251 300
L3 Bi-CGSTAB 34 48 114 198 272

10−2, achieving this tolerance requires several times more iterations, particularly on
the first and second levels, where computations are expensive. We choose to set the
tolerance for solving the CSLP to 10−1, striking a balance between achieving sufficient
accuracy in the solution and minimizing the overall computational cost. Given that
the scaling behavior of CSLP is well-established in the literature [49, 53], we limit our
analysis to a single configuration and wavenumber, as this adequately demonstrates
the effectiveness of our chosen tolerance.

For a tolerance on the order of 10−1, where the required number of iterations is not
substantial, we choose to use the more stable GMRES solver for better approximations
to the inverse of CSLP. Furthermore, according to [76], while setting the tolerance at

10−1, we limit the maximum number of iterations to 6(N l )
1
4 , where N l denotes the

size of the problem on level l . This allows the iterations to cease once the maximum
number of iterations or the tolerance level is reached.

5.2.3. ON WAVENUMBER INDEPENDENT CONVERGENCE

To achieve a robust multilevel deflation method, we expand our investigation of con-
vergence to deeper levels, larger wavenumbers, and more complex model problems.

FOR CONSTANT WAVENUMBER PROBLEM

We employ the V-cycle multilevel deflation method with coarsening to different levels
to solve the constant wavenumber model problem with increasing wavenumber k.
As mentioned, GMRES instead of Bi-CGSTAB is used to solve the CSLP with complex
shift β2 = 0.1. The relative tolerance for solving CSLP is set to 10−1. For the
coarsest problem, one iteration is performed if it is negative definite; otherwise,
CSLP-preconditioned GMRES iterations are employed to reduce the relative residual
to 10−1. The tolerance for the outer FGMRES iterations is 10−6. We consider the
scenario with kh = 0.3125, indicating that from the fourth level onward, the linear
system becomes negative definite.

From Table 5.5, we observe that for the multilevel deflation method, if the coarsest
grid system remains indefinite, it exhibits convergence behavior that is close to
wavenumber independent, corresponding to the three-level deflation method in the
table. However, if the coarsest grid system becomes negative definite, as shown by the
four-level deflation method in the table, convergence results can still be achieved, but
the number of outer iterations starts to increase with the wavenumber. We also find
that continuing to deeper levels, as demonstrated by the five-level deflation method
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Table 5.5: The number of outer iterations required for the constant wavenumber
model problems with increasing wavenumber k by the multilevel deflation combined
with CSLP with complex shift β2 = 0.1

k
Multilevel Deflation

Three-level Four-level Five-level
100 6 9 8
200 6 13 12
400 7 20 20
800 7 37 37

in the table, does not lead to an increase in the number of outer iterations compared
to the four-level deflation. While theoretically we could continue to deeper levels
until the coarsest problem becomes small enough for direct solving, this approach
is less favorable in massively parallel computing environments due to the increased
communication costs and potential load imbalance.

Table 5.6: The number of outer iterations required for the constant wavenumber
model problems with increasing wavenumber k by the multilevel deflation combined
with CSLP with complex shift β2 = k−1

k
Multilevel Deflation

Three-level Four-level Five-level
100 6 6 6
200 6 7 7
400 6 8 8
800 7 9 9

As mentioned above, the Krylov subspace iterations for the CSLP allow the benefits
of using a small shift, resulting in a preconditioner similar to the original Helmholtz
operator that retains the ability to shift indefiniteness at certain levels. Similar to [76],
one can use the inverse of the wavenumber k as the shift (β2 = k−1). As observed in
Section 5.2.2, having a tolerance of 10−1 to approximate the inverse of CSLP leads to
an increase in the number of outer iterations. For a small complex shift, the residual
cannot be reduced to 10−1 within the maximum number of iterations given. Using
the more stable GMRES often provides a relatively accurate approximation compared
to the Bi-CGSTAB method. This is one of the reasons why GMRES is employed for
approximating the inverse of CSLP on the coarse grid levels in this study.

As shown in Table 5.6, with complex shift β2 = k−1, the close-to wavenumber
independent convergence is obtained even for the multilevel deflation methods where
the coarsest grid problems become negative definite. Hereafter, we denote this
configuration, which is mainly a parallel matrix-free implementation of the V-cycle
multilevel deflation method proposed in [76], as MADP-v1 (Matrix-free multilevel
Adapted Deflation Preconditioning).
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FOR NON-CONSTANT WAVENUMBER PROBLEM

In this section, we apply MADP-v1 to non-constant wavenumber problems. Note that
for the model problems described in Section 1.2.1, due to the use of a computational
domain based on actual physical dimensions rather than being scaled to a unit length,
we use a complex shift β2 = (kdim)−1

max, where kdim is the so-called dimensionless
wavenumber, defined as

kdim =

√

(

2π f

c

)2

Lx Ly ,

with Lx and Ly denoting the lengths of the computational domain in the x and y

directions, respectively.
In Table 5.7, we give the results for the wedge problem with kh = 0.349, indicating

that the linear systems become negative definite from the fourth-level coarse grid
onward. We find that the latter case requires more outer iterations and significantly
more CPU time. Upon further observation of the solving process, it is observed that
coarsening to negative definite levels requires a higher number of GMRES iterations
to approximate the CSLP compared to the scenario of coarsening to indefinite levels.
In cases where the coarsening remains on indefinite levels, the tolerance of 10−1

is achieved within the maximum number of iterations. However, in cases where
the coarsening goes to negative definite levels, the number of iterations reaches
the maximum specified value without achieving the same tolerance. For example,
consider the wedge problem with a grid size of 1153× 1921 and f = 160Hz. On
the first and second levels, the four-level deflation requires 232 and 164 GMRES
iterations to approximate the CSLP per outer iteration, respectively, whereas the
three-level deflation only requires 73 and 49 GMRES iterations.

Table 5.8 reports the number of iterations required and the time elapsed for the
Marmousi problem with kh = 0.54. In this scenario, the linear systems become
negative definite from the third-level grid onward. Despite being coarsened to deeper
negative definite levels, the number of outer iterations remains constant and the
computational time is comparable. However, one can find that, for such a highly
heterogeneous model problem, the number of outer iterations starts increasing with
the frequency. This is consistent with the results in [76].

Table 5.7: Number of iterations required and time elapsed for the wedge problem with
kh = 0.349 for the largest wavenumber k. In parentheses are the number of iterations
to solve the coarsest grid system. L1 and L2 represent the number of GMRES iterations
required to approximate the inverse of CSLP on the first and second level, respectively.

Three-level MADP-v1 Four-level MADP-v1

f (Hz) Grid size
Outer #iter #iter for CSLP CPU Outer #iter #iter for CSLP CPU

(Coarsest) L1 L2 time (s) (Coarsest) L1 L2 time (s)
20 145×241 7 (2) 20 51 3.78 8 (1) 48 59 7.00
40 289×481 7 (3) 25 59 20.14 9 (1) 116 83 103.31
80 577×961 8 (4) 38 61 195.14 11 (1) 164 116 907.00

160 1153×1921 8 (4) 73 49 1060.50 13 (1) 232 164 5101.73
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Table 5.8: Number of iterations required and time elapsed for the Marmousi problem
with kh = 0.54 for the largest wavenumber k.

Three-level MADP-v1 Five-level MADP-v1

f (Hz) Grid size
Outer #iter for CSLP CPU Outer #iter for CSLP CPU

#iter L1 L2 time (s) #iter L1 L2 time (s)
10 737×241 12 124 88 133.91 12 124 88 165.43
20 1473×481 16 175 124 1560.03 16 175 124 1743.97
40 2945×961 23 247 175 21557.94 23 247 175 21233.10

In summary, the variant MADP-v1, based on the configuration proposed in [76],
utilizes a V-cycle type and allows the combination of CSLP with a smaller com-
plex shift β2 = (kdim)−1

max. For constant wavenumber problems, MADP-v1 achieves
near wavenumber-independent convergence. However, for non-constant wavenum-
ber model problems, as the wavenumber increases, the number of outer iterations
will increase gradually, and the cost of using Krylov subspace methods to solve CSLP
will become more noticeable.

For practical applications, where the wavenumber is usually non-constant within
the domain, and also for better scalability, the coarsening in this multilevel deflation
method should not be limited only to indefinite levels. Therefore, we will pay
more attention to the common occurrence of coarsening to negative definite levels.
The case of coarsening to indefinite levels will serve as a reference for the case of
coarsening to negative definite levels. We aim to achieve at least similar convergence
and computational efficiency in the case of coarsening to negative definite levels.

ON THE TOLERANCE FOR COARSE LEVELS

Sheikh et al. [72] stated that using n2, n3, and n4 iterations on the second, third,
and fourth levels, respectively, can accelerate convergence, and their results indicate
that larger n2 leads to better convergence for larger wavenumber. Additionally,
Dwarka and Vuik [76] demonstrates that employing a W-cycle instead of a V-cycle for
constructing the multilevel hierarchy results in a reduced number of iterations across
reported frequencies. In this chapter, we attribute this to the accuracy of solving on
the second, third, and fourth levels.

In contrast to the previous configuration of a single iteration on each coarser level,
we introduced distinct tolerances for iterations on the second, third, and fourth levels,
exploring their impact on outer iterations and CPU time. The numerical experiments
utilized the Marmousi model problem with a grid size of 1473×961 and frequencies of
10Hz and 20Hz, corresponding to kh = 0.27 and 0.54, respectively. As we mentioned,
for kh = 0.27, the linear systems of the second and third levels remain indefinite,
while that of the fourth level becomes negative definite. For kh = 0.54, the third and
fourth levels become negative definite.

It is evident in Figures 5.1 and 5.2 that the number of outer iterations is correlated
with the accuracy of solving the second-level grid system. Overall, a higher number of
outer iterations usually corresponds to increased CPU time. However, we also observe
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Figure 5.1: Outer iterations and CPU time vary from different tolerances on the second
(L2), third (L3), and fourth (L4) levels. Five-level deflation for Marmousi problem,
grid size 1473×481, f = 10Hz
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Figure 5.2: Outer iterations and CPU time vary from different tolerances on the second
(L2), third (L3), and fourth (L4) levels. Five-level deflation for Marmousi problem,
grid size 1473×481, f = 20Hz
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that the minimum CPU time does not necessarily align with the minimum number
of outer iterations, as depicted in Figure 5.2. This suggests that sacrificing a few extra
outer iterations may result in computational time savings. A balance between the
number of outer iterations and computational time needs to be identified.

For kh = 0.27, it is best to set a tolerance of 10−1 for the second and third levels
and perform one iteration for coarser levels. Conversely, for the case of kh = 0.54,
the recommended tolerances for the second and third levels are 2×10−1 and 5×10−1,
respectively. From extensive numerical experiments across various grid sizes and
multilevel deflation methods, it is observed that the optimal setting of the tolerance
for solving the second, third, and fourth-level grid systems, corresponding to the
minimum CPU time and the fewest outer iterations, may vary. However, on a
comprehensive scale, a robust and acceptable configuration is to set a tolerance for
solving the second-level grid system to 10−1, while performing only one iteration on
the other coarser grid levels. Let us denote this configuration as MADP-v2.

We applied the MADP-v2 to solve the wedge and Marmousi problems, respectively.
The results are presented in Tables 5.9 and 5.10. Compared to the corresponding
results in Tables 5.7 and 5.8, MADP-v2 results in reduced computation time and
a lower number of iterations across all reported frequencies, showcasing a closer-
to-wavenumber-independent behavior. In addition to reduced outer iterations, we
also observe that, when setting the tolerance to 10−1 for the second-level coarse
grid system, the number of iterations required to solve CSLP on the first-level grid is
significantly reduced. Comparing Table 5.9 with Table 5.7 (three-level deflation), in the
case of coarsening to negative definite levels, MADP-v2 achieves similar convergence
and computational efficiency.

Table 5.9: Number of outer FGMRES-iterations for the wedge problem with kh = 0.349
for the largest wavenumber k. In parentheses are the number of iterations to solve
the second-level grid system.

Four-level MADP-v2

f (Hz) Grid size
Outer #iter #iter for CSLP CPU

(L2 #iter) L1 L2 time (s)
20 145×241 6 (2) 6 59 4.69
40 289×481 6 (2) 8 83 19.26
80 577×961 7 (2) 7 116 148.05

160 1153×1921 7 (3) 15 164 1113.86

5.2.4. COMBINED WITH MULTIGRID-BASED CSLP
Further observation reveals that, in cases where coarsening reaches negative definite
levels, a significant portion of the computational time is still dedicated to approxim-
ating the inverse of CSLP on the first and second levels. Moreover, these iterations on

the second level typically reach the specified maximum number of iterations 6(N l )
1
4

rather than achieving a tolerance of 10−1. The use of GMRES iterations for solving
CSLP on the first and second levels consumes a substantial amount of time, since
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Table 5.10: Number of outer FGMRES-iterations for the Marmousi problem with
kh = 0.54 for the largest wavenumber k. In parentheses are the number of iterations
to solve the second-level grid system.

Three-level MADP-v2 Five-level MADP-v2

f (Hz) Grid size
Outer #iter #iter for CSLP CPU Outer #iter #iter for CSLP CPU

(L2 #iter) L1 L2 time (s) (L2 #iter) L1 L2 time (s)
10 737×241 8 (3) 23 88 58.01 8 (3) 23 88 48.29
20 1473×481 9 (3) 25 124 422.33 9 (3) 20 124 364.21
40 2945×961 10 (3) 39 175 5267.53 10 (3) 39 175 4106.46

the scale of the first- and second-level grid systems is large.
Instead of employing the GMRES or Bi-CGSTAB methods, we can utilize the multi-

grid method to approximate the inverse of CSLP on the first and second levels. On
coarser levels, GMRES iterations are still used to approximate the inverse of CSLP.
However, as known, the multigrid method requires that the complex shift should not
be too small. Consequently, we cannot use β2 = (kdim)−1

max as the complex shift for
CSLP. Therefore, in the multilevel deflation methods combined with the multigrid-
based CSLP, a complex shift of β2 = 0.5 will be consistently utilized. (Additional
numerical experiments have demonstrated that β2 = 0.5 is a superior choice among
other smaller complex shifts.)

Except for the choice of the complex shift for CSLP and the method used to solve
CSLP on the first- and second-level coarse grid systems, the remaining settings are
mostly inherited from MADP-v2. Specifically, a tolerance of 10−1 is set for solving
the second-level grid system, and only one iteration is performed on other coarser
levels. This modified configuration is denoted as MADP-v3. As it combines with
multigrid-based CSLP on the first and second levels, this variant can be considered
as an extension of the two-level deflation method proposed in [134].

The number of iterations and computation time required for solving the wedge and
Marmousi problems using MADP-v3 are presented in Tables 5.11 and 5.12, respectively.
We observe that compared to MADP-v2 (as shown in Tables 5.9 and 5.10), while the
number of outer iterations has increased, it exhibits nearly wavenumber-independent
convergence, with computation time three times faster. Moreover, compared to the
two-level deflation method proposed in [134], the current multilevel deflation method
ensures a similar number of outer iterations while significantly reducing computation
time.

Similarly to the last section, the optimal tolerance setting is studied for the second,
third and fourth levels, as shown in Figures 5.3 and 5.4. From the figures, it can
be observed that performing only one iteration on the fourth level (L4) or setting a
tolerance of 0.5 has little impact on the outer iterations but introduces additional
computational costs. For this reason, we can keep one iteration on the fourth level.
In comparison to performing only one iteration on the third level (L3), setting a
smaller tolerance on L3 helps slow down the increase in the number of outer itera-
tions but leads to more computational costs. From the perspective of computation
time, performing only one iteration on L3 remains the optimal choice. With the
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Table 5.11: Number of outer FGMRES-iterations for the wedge problem with kh =
0.349 for the largest wavenumber k. In parentheses are the number of iterations to
solve the second-level grid system.

Four-level MADP-v3 Five-level MADP-v3

f (Hz) Grid size
Outer #iter CPU Outer #iter CPU
(L2 #iter) time (s) (L2 #iter) time (s)

20 145×241 10 (6) 1.73 10 (6) 1.83
40 289×481 10 (10) 8.08 10 (10) 8.87
80 577×961 10 (17) 48.05 10 (18) 64.54

160 1153×1921 11 (34) 356.76 11 (34) 367.53
320 2305×3841 11 (66) 3458.14 11 (64) 3065.03

Table 5.12: Number of outer FGMRES-iterations for the Marmousi problem with
kh = 0.54 for the largest wavenumber k. In parentheses are the number of iterations
to solve the second-level grid system.

Two-level Deflation [134] Three-level MADP-v3 Five-level MADP-v3

f (Hz) Grid size
Outer CPU Outer #iter CPU Outer #iter CPU
#iter time (s) (L2 #iter) time (s) (L2 #iter) time (s)

10 737×241 11 23.15 11 (17) 16.53 11 (13) 18.57
20 1473×481 11 224.21 11 (30) 110.79 11 (24) 108.03
40 2945×961 12 4354.83 13 (69) 1220.61 13 (50) 1084.42

incorporation of multigrid-based CSLP, the number of outer iterations increases as
the tolerance of the second level (L2) increases, while the computation time shows a
trend of decreasing first and then increasing. If one wants to minimize the compu-
tation time, choosing the tolerance of the second level as 0.3 while still performing
only one iteration on other coarser levels can be the optimal option. Let us denote
this configuration as MADP.

Tables 5.13 and 5.14 present the number of iterations required and computa-
tion time to solve the wedge and Marmousi problems using MADP. Compared with
Tables 5.11 and 5.12, it can be seen that although a few extra outer iterations are
consumed, reduced computation time is obtained.

Therefore, we regard the variant MADP, which can balance both convergence
and computational efficiency, as an optimal configuration of the present matrix-free
multilevel deflation method. This variant employs a tolerance of 0.3 for solving the
second-level grid system and performs only one iteration on other coarser levels. A
multigrid V-cycle is used to solve the CSLP on the first- and second-level grid systems.
On coarser levels, several GMRES iterations approximate the inverse of CSLP with a
tolerance of 10−1. In the subsequent sections, we will use this variant for numerical
experiments.
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Figure 5.3: Outer iterations and CPU time vary from different tolerances on the second
(L2), third (L3), and fourth (L4) levels. Five-level deflation combined with multigrid-
based CSLP on first and second levels. Marmousi problem, grid size 1473× 481,
f = 10Hz
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Figure 5.4: Outer iterations and CPU time vary from different tolerances (tol) on
the second (L2), third (L3), and fourth (L4) levels. Five-level deflation combined
with multigrid-based CSLP on first and second levels. Marmousi problem, grid size
1473×481, f = 20Hz



5

140 5. ROBUST MULTILEVEL DEFLATION

Table 5.13: Number of outer FGMRES-iterations for the wedge problem with kh =
0.349 for the largest wavenumber k. In parentheses are the number of iterations to
solve the second-level grid system.

Four-level MADP Five-level MADP

f (Hz) Grid size
Outer #iter CPU Outer #iter CPU
(L2 #iter) time (s) (L2 #iter) time (s)

20 145×241 11 (4) 1.51 11 (4) 1.55
40 289×481 12 (6) 6.34 12 (6) 6.42
80 577×961 13 (10) 39.62 13 (10) 42.21

160 1153×1921 15 (17) 410.27 14 (18) 400.64
320 2305×3841 16 (33) 2748.70 16 (32) 2762.84

Table 5.14: Number of outer FGMRES-iterations for the Marmousi problem with
kh = 0.54 for the largest wavenumber k. In parentheses are the number of iterations
to solve the second-level grid system.

Three-level MADP Five-level MADP

f (Hz) Grid size
Outer #iter CPU Outer #iter CPU
(L2 #iter) time (s) (L2 #iter) time (s)

10 737×241 14 (10) 12.42 13 (7) 12.67
20 1473×481 16 (19) 93.08 15 (15) 84.06
40 2945×961 19 (43) 929.62 18 (29) 816.38

5.2.5. COMPLEXITY ANALYSIS

We next analyze the complexity of the present multilevel deflation method in relation
to the problem size or to the frequency, equivalently. In this numerical experiment,
the wedge model problem is solved using five-level MADP. The grid resolution, i.e. kh,
is kept fixed to a specific value, while the frequency is growing from 10Hz to 160Hz
for kh = 0.349 or even 640Hz for kh = 0.1745, respectively. The case of f = 640Hz
leads to a linear system with approximately 142 million unknowns. The number of
outer iterations and the number of iterations on the second level are reported in
Table 5.15. Similarly to the results in Table 5.13, the number of outer iterations is
rather moderate and is found to grow slightly with respect to frequency.

Figure 5.5 shows the evolution of computational time versus problem size for
kh = 0.349 and kh = 0.1745. As the grid size increases, the computational time of the
present matrix-free multilevel deflation method shows a similar trend to the matrix-
based version proposed by [76]. However, with single-core sequential computing,
the present method can handle grid sizes much larger than those achievable in
[76]. If N represents the total number of unknowns, it has been observed that the
computational time follows a behavior of O (N ) for small grid sizes and asymptotically
approaches O (N 1.4). This is comparable to the geometric two-grid preconditioner in
[120]. The reason for this behavior is that, as the frequency increases, the number
of iterations required on the second level almost increases linearly with frequency, as
shown in Table 5.15.

One can think about continuing a similar approach, setting a tolerance of 10−1
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Table 5.15: Number of outer FGMRES-iterations for the wedge problem with kh =
0.1745. In parentheses are the number of iterations to solve the second-level grid
system.

Grid size #unknowns f (Hz)
Outer #iter

CPU time (s)
(L2 #iter)

145× 241 34945 10 10 (2) 1.13
289× 481 139009 20 11 (3) 4.14
577× 961 554497 40 12 (4) 21.64

1153× 1921 2214913 80 12 (7) 127.47
2305× 3841 8853505 160 13 (13) 1003.71
4609× 7681 35401729 320 14 (27) 7678.83

9217× 15361 141582337 640 17 (47) 53481.69
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Figure 5.5: Evolution of computational time versus problem size. wedge model
problem. The data in orange is extracted from [75].
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on the third level, ensuring that the number of iterations on the second level is
independent of the wavenumber, and so forth. This is feasible but only limited
to indefinite levels. Setting tolerance on negative definite levels, i.e., performing
more than one iteration, may lead to a significant increase in outer iterations and
computational time, consistent with the conclusion in Section 5.2.1. For instance,
considering the wedge model problem with kh = 0.1745, where the fourth-level grid
system remains indefinite, turning negative definite onwards the fifth level. We can
extend MADP-v3 by setting a tolerance of 10−1 for iterations on the third and fourth
levels instead of performing one iteration. Table 5.16 provides the required number of
outer iterations and the number of iterations on the second, third, and fourth levels.
We can observe that the number of outer iterations and iterations on the second
and third levels are almost independent of the wavenumber, while the number of
iterations on the fourth level gradually increases with the wavenumber. However, as
shown in Figure 5.6, the computation time required is more than MADP. Together
with the case of kh = 0.087 in the figure, it can be observed that there are subtle
differences in the growth trend compared to that of MADP, possibly approaching
O (N 1.3). While it is beneficial to set a tolerance for coarser levels for problems with
smaller kh, whether the present multilevel deflation method can be closer to O (N )
remains an open problem that requires further study. To complement this study, it
would be interesting to perform the same complexity analysis for more levels and
three-dimensional cases. These are left to a future line of research. Additionally, in
the numerical experiments on current two-dimensional problems, it does not lead to
a significant reduction in computation time. Therefore, we consider MADP to still be
the optimal choice.

Table 5.16: Number of outer iterations and the number of iterations on the second,
third, and fourth levels when a tolerance of 10−1 is set on these levels. Wedge problem
with kh = 0.1745.

Grid size f (Hz) Outer #iter L2 #iter L3 #iter L4 #iter
289× 481 20 10 3 2 16
577× 961 40 10 3 2 20

1153× 1921 80 10 3 2 30
2305× 3841 160 10 3 2 46
4609× 7681 320 9 3 2 75

5.3. PARALLEL PERFORMANCE
In this section, we aim to present both weak scalability and strong scalability. Through
this analysis, our goal is to offer insight into the suitability of the present multilevel
deflation method for practical large-scale applications in the context of heterogeneous
time-harmonic wave problems.

The parallel six-level MADP preconditioned FGMRES is used as the default ap-
proach in this section to solve model problems. All numerical experiments are
carried out on the Linux supercomputer DelftBlue [127].
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Figure 5.6: Evolution of computational time versus problem size. Wedge model
problem.

5.3.1. WEAK SCALABILITY

To assess the weak scalability of the proposed matrix-free parallel multilevel deflation
preconditioning method, we keep the wavenumber or frequency unchanged and solve
the model problems across varying problem sizes but maintain a fixed workload per
processor. The computational times for different problem sizes and the corresponding
number of processors are summarized in Tables 5.17 and 5.18. As the grid undergoes
refinement while maintaining a constant wavenumber, the parameter kh gradually
decreases. In the context of deflation preconditioning, it has been documented that
a smaller kh leads to a reduction in the number of outer iterations [72]. As kh

continues to diminish, the number of outer iterations tends to stabilize. Additionally,
the advantages of one or two less iterations may be counteracted by the overhead of
data communication. Consequently, we observe that the computational time initially
decreases due to the reduced number of outer iterations, and then remains almost
constant, even as the grid size expands to tens of millions with over a thousand
parallel computing cores.

This behavior is highly commendable, as it allows for the efficient resolution of large
linear systems within a reasonable computational timeframe on a parallel distributed
memory machine. It is important to emphasize that the advantages of the suggested
approach should be considered in the context of minimizing pollution error by grid
refinement for real-world application of Helmholtz problems.

5.3.2. STRONG SCALABILITY

We are also interested in the strong scalability properties of the present parallel
multilevel deflation preconditioning method for the Helmholtz problems. In this
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Table 5.17: Weak scaling for the model problem with constant wavenumber.

Grid size #unknowns np #iter CPU time (s)
k = 400

641×641 410881 1 16 49.68
1281×1281 1640961 4 13 21.63
2561×2651 6558721 16 12 16.13
5121×5121 26224641 64 11 21.66

k = 1600
2561×2561 6558721 16 20 168.26
5121×5121 26224641 64 14 100.84

10241×10241 104878081 256 13 79.69
20481×20481 419471361 1024 13 93.62

Table 5.18: Weak scaling for the wedge model problem with f = 320Hz.

Grid size #unknowns np #iter CPU time (s)
2305×3841 8853505 48 16 69.75
4609×7681 35401729 192 14 53.20

9217×15361 141582337 768 14 67.03

section, we perform numerical experiments on the nonconstant-wavenumber model
problems with fixed problem sizes while varying the number of processors. First of
all, the numerical experiments show that the number of iterations required is found
to be independent of the number of processors used for parallel computing, which
is a favorable property of our multilevel deflation method.
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Figure 5.7: Strong scaling of the parallel multilevel APD-FGMRES for the non-constant
wavenumber model problems with various grid sizes and frequencies.

Figure 5.7 plots the computational time versus the number of processors. The
figures show a decrease in parallel efficiency as the number of processors increases,
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particularly for the Marmousi model. The analysis suggests that maintaining a
minimum of around one million unknowns per processor ensures a parallel efficiency
of 60% or higher. If there are fewer than 50 thousand unknowns per processor, the
ratio of computation load to data communication may significantly decrease, leading
to poor parallel efficiency. However, increasing the grid size for the same model
problem can result in improved parallel efficiency. This is because, while the number
of ghost-grid layers used for communication remains constant, the amount of data
to be communicated doubles when the number of grid points doubles in each
direction. Meanwhile, the total number of grid points increases fourfold, resulting
in a larger ratio of computation load to data communication and better parallel
efficiency. Overall, as demonstrated in solving the wedge problem with a grid size of
9217×15361 and a frequency of f = 640Hz, the current matrix-free multilevel deflation
approach can effectively solve complex Helmholtz problems with grid sizes up to tens
of millions. It demonstrates strong parallel scalability, maintaining efficiency across
more than a thousand processors.

5.4. CONCLUSIONS
In this chapter, we present an advanced matrix-free parallel scalable multilevel de-
flation preconditioning method for solving the Helmholtz equation in heterogeneous
time-harmonic wave problems, benchmarked on large-scale real-world models. Build-
ing on recent advancements in higher-order deflation preconditioning, our approach
extends these techniques to a parallel implementation. The incorporation of the
deflation technique with CSLP, along with higher-order deflation vectors and re-
discretization schemes derived from the Galerkin coarsening approach, forms a com-
prehensive setup for matrix-free parallel implementation. The proposed re-discretized
finite-difference schemes at each coarse level contribute to a convergence behavior
similar to that of the matrix-based deflation method.

We have explored different configurations of the multilevel deflation method, con-
ducting research and comparing various variants. We note that the performance of
different cycle types of the present multilevel deflation method is impacted by whether
the coarsest-level system is negative definite. We suggest that for the multilevel de-
flation method coarsening to negative definite levels, ensuring a certain accuracy in
iterations on the second-level grid is crucial to maintain a consistent number of outer
iterations. Based on the complexities revealed during our study, we propose a robust
and efficient variant, MADP. This variant employs the following settings: a tolerance
of 0.3 for solving the second-level grid system, with only one iteration performed on
other coarser levels; a multigrid V-cycle to solve CSLP on the first- and second-level
grid systems; several GMRES iterations to approximate the inverse of CSLP on coarser
levels, using a tolerance of 10−1. It addresses the challenges posed by negative definite
coarsest-level systems and does not lead to worse complexities.

Our numerical experiments illustrate the effectiveness of the matrix-free parallel
multilevel deflation preconditioner, demonstrating convergence properties that are
nearly independent of the wavenumber. The reduction in memory consumption
achieved through matrix-free implementation, along with satisfactory weak and strong
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parallel scalability, emphasizes the practical applicability of our approach for large-
scale real-world applications in wave propagation, meeting our objectives.



6
ROBUST PARALLEL MULTILEVEL

DEFLATION SOLVER: A TOOL FOR

3D FULL-WAVEFORM INVERSION

A robust and scalable parallel solver is presented for large-scale 3D Helmholtz prob-

lems arising in seismic wave modeling. We introduce an advanced multilevel defla-

tion method with a matrix-free implementation that employs re-discretized schemes

to approximate the Galerkin coarsening operator, achieving close-to wavenumber-

independent convergence. The solver implements a hybrid MPI+OpenMP paralleliza-

tion framework that optimizes both computational efficiency and memory utilization,

enabling the solution of unprecedented problem sizes. Our comprehensive validation

encompasses constant wavenumber problems, the SEG/EAGE Salt model, and the chal-

lenging GO_3D_OBS subduction zone model. The method demonstrates excellent paral-

lel scalability up to thousands of CPU cores while maintaining consistent convergence

rates across varying frequencies and problem sizes. Proper selection of components

within the deflation preconditioner framework significantly enhances convergence be-

havior, particularly for complex geological structures. Notable achievements include

successful resolution of the GO_3D_OBS model with approximately 3.8 billion degrees

of freedom at 5 Hz, demonstrating excellent parallel scalability. The solver’s robust per-

formance across diverse geological settings, coupled with its excellent scaling properties,

establishes it as a powerful forward modeling engine for practical applications such as

full-waveform inversion (FWI).

Parts of this chapter have been submitted to GEOPHYSICS (2024).
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So far, we have developed a series of increasingly sophisticated preconditioning
techniques in the matrix-free framework [124, 125]. Initially, we implemented a
parallel two-level deflation preconditioning [134] that demonstrated wavenumber-
independent convergence and excellent parallel scalability. Building upon this founda-
tion, we proposed a robust matrix-free parallel scalable multilevel deflation algorithm
[137] that further enhanced computational efficiency. However, the application of
high-order deflation algorithms to large-scale realistic three-dimensional heterogen-
eous problems remained largely unexplored.

In this chapter, we present a significant extension of our previous work [134, 137] on
matrix-free parallel multilevel deflation preconditioning for 2D time-harmonic wave
problems to address large-scale 3D scenarios, particularly as a forward engine for prac-
tical applications like FWI. This chapter presents three significant contributions. First,
we extend our parallel multilevel deflation preconditioning from 2D to 3D settings,
with particular emphasis on developing re-discretization schemes for coarse levels
in 3D that effectively approximate the Galerkin coarsening operator. This extension
maintains the method’s wavenumber-independent convergence. Second, we imple-
ment a hybrid MPI/OpenMP parallelization strategy that significantly enhances the
capability of our solution method. This hybrid approach not only mitigates memory
constraints but also efficiently utilizes CPUs within compute nodes, enabling better
computational resource utilization. Third, through optimization of solver compon-
ents, we demonstrate the capability to efficiently solve the GO_3D_OBS model with
up to 3.8 billion degrees of freedom - to our knowledge, the first time this realistic
crustal model has been solved at such scale - which can serve as a benchmark
for extreme-scale wave propagation problems. The effectiveness of our approach is
demonstrated through extensive numerical experiments, showing excellent scalability
up to thousands of computing cores.

6.1. PROBLEM DESCRIPTION
The 3D Helmholtz equation defined over a parallelepipedal domain with first-order
Sommerfeld radiation boundary conditions is our primary mathematical model.

−∆u(x, y, z)−k(x, y, z)2u(x, y, z) = b(x, y, z), ∈Ω⊂R
3, (6.1)

While the governing equations maintain their fundamental structure in the trans-
ition to three dimensions, the increased computational complexity and memory
requirements necessitate careful consideration of implementation strategies. Our
numerical investigation encompasses three model problems of increasing complexity.

First, the 3D constant-wavenumber problem with point source in a unit cube
domain, as introduced in Section 1.2.2, provides a valuable verification tool through
its analytical solution.

Second, the industry-standard SEG/EAGE Salt model in Section 1.2.2 presents a
realistic heterogeneous scenario to demonstrate the effectiveness and scalability of
our extended 3D matrix-free parallel multilevel deflation preconditioning method.
We consider a computational domain with dimensions of 12.8km×12.8km×3.84km,
utilizing grid sizes 641× 641× 193 and 1281× 1281× 385. The latter yields around
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632 million degrees of freedom, representing a computationally challenging problem
that is well-suited for assessing the efficacy of our parallel implementation. The
simulations span frequencies from 5Hz to 15Hz.

Finally, we consider the GO_3D_OBS model in Section 1.2.2 to evaluate the per-
formance of our parallel multilevel deflation approach in a realistic extreme-scale
geophysical context. For our numerical experiments, we select a target region within
the GO_3D_OBS model with dimensions of 20km× 100km× 29.6km. To discretize
this target, we employ a grid interval of 50m and 25m for simulations of frequency
3Hz and 5Hz, respectively. The latter results in a finite-difference grid of dimen-
sions 801×4001×1185, yielding approximately 3.8 billion degrees of freedom. The
GO_3D_OBS model is particularly noteworthy for its significantly larger domain com-
pared to conventional benchmark models like the SEG/EAGE Salt model. By employ-
ing this model, we aim to demonstrate the applicability and efficiency of our method
in scenarios that closely resemble contemporary geophysical exploration challenges.
This approach allows us to assess not only the computational performance of our
algorithm but also its potential impact on practical seismic imaging applications.

6.2. NUMERICAL METHODS
Our method builds upon the multilevel deflation preconditioned Krylov subspace
method and its MADP-v3 variant proposed in [137]. The algorithm employs flexible
GMRES(5) (FGMRES(5)) with a tolerance of 10−1 on the second-level grid system,
while performing single FGMRES iteration on coarser levels. The CSLP is solved using
a multigrid V-cycle on the first- and second-level grid systems, with several GMRES
iterations (tolerance 10−1) approximating the inverse of CSLP on coarser levels. The
primary modification from [137] is the adoption of restarted FGMRES(5) instead of
full FGMRES for both outer iterations and coarse-grid solutions.This adaptation is
motivated by memory constraints, as full FGMRES requires substantial memory that
becomes a limiting factor for the large-scale three-dimensional problems addressed in
this work. Furthermore, this study will briefly investigate the impact of the parameter
γ in Equation (4.2), which shifts the deflated eigenvalues from the origin to the value
γ.

6.2.1. MATRIX-FREE PARALLEL IMPLEMENTATION

The parallel implementation employs a hybrid strategy where the three-dimensional
domain is first partitioned among MPI processes, followed by thread-level paral-
lelization within each subdomain. In Chapter 3, we have described the details
of the parallelization of geometric multigrid methods based on blockwise domain
partitioning, which is based on standard MPI (Message Passing Interface). To fur-
ther enhance computational efficiency, we have augmented the implementation with
OpenMP directives for shared-memory parallelization of all computational kernels
related to matrix-vector products, restriction, and interpolation operations. Specific-
ally, the matrix-vector multiplication kernels are optimized using collapse clauses for
nested loops. Thread-private variables ensure safe concurrent execution of stencil
computations, while workshare constructs are utilized for vectorized operations.
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Matrix-free implementations offer a compelling alternative to standard sparse mat-
rix data formats in large-scale computational scenarios. Besides the reduced memory
consumption, matrix-free methods exhibit performance advantages and can poten-
tially outperform matrix-vector multiplications with stored matrices [141, 142]. These
improvements enable the solution of larger-scale Helmholtz problems previously
constrained by memory limitations. We observe that for matrices admitting a seven-
point stencil representation, matrix-vector multiplications can be efficiently computed
through the direct combination of stencil coefficients with their corresponding grid
values, thereby circumventing the necessity of explicit matrix storage. While the
stencil formulations for the Helmholtz and CSLP operators on the finest grid have
been established in the preceding section, we shall now extend our discussion to
encompass the stencil representations of the deflation vectors and the corresponding
operators on coarser grid levels.

HIGHER-ORDER INTERPOLATION OPERATOR

To facilitate the transfer of operators between grid levels, we employ a higher-order
interpolation operator Z3D. We construct Z3D using a tensor product of one-
dimensional interpolation weights derived from a Bézier polynomial scheme [75].
The one-dimensional interpolation weights are given by

w =
1

8
[1, 4, 6, 4, 1] (6.2)

The three-dimensional operator Z3D is then formed by the outer product of these
weights. It results in a 5×5×5 stencil where each element is computed by the product
of binomial coefficients as follow

Z3D (i , j ,k) =
1

83

(

4

i −1

)(

4

j −1

)(

4

k −1

)

(6.3)

For illustrative purposes, a slice of the stencil of Z3D is presented as follow

[Z3D (:, :,3)] =
1

83 ×













6 24 36 24 6
24 96 144 96 24
36 144 216 144 36
24 96 144 96 24
6 24 36 24 6













(6.4)

HELMHOLTZ AND CSLP OPERATOR ON COARSE LEVELS

We denote the Helmholtz operators as A2l−1h and the CSLP operators as M2l−1h , where
l is the level number (l = 1 represents the finest grid). The coarse-grid operators are
theoretically obtained by the Galerkin coarsening procedure. To avoid explicitly
constructing the matrices and performing matrix-matrix multiplications, we aim to
find computational stencils for A2h so that it is a good approximation to the Galerkin
coarsening operator Z>

3D Ah Z3D .
In practical computational implementations, especially for large-scale problems, the

storage and multiplication of full sparse matrices can be computationally expensive
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and memory-intensive. To address this issue, we employ a matrix-free approach for
the implementation of the Helmholtz and CSLP operators on coarse levels, which
relies on the use of precomputed stencils rather than explicitly storing the full operator
matrices.

Similar to [134], we split the Helmholtz operator into the Laplace operator and the
wavenumber term. The core idea is to extract the local stencils of the coarse-grid
operators through small-scale matrix-matrix multiplications performed in advance.
It should be noted that this computation is confined to the pre-processing stage.
The actual solver operates independently, using only the precomputed stencil data.
Specifically, we compute

[∆2h] = Rowc

(

Z̃>
3D ∆̃h Z̃3D

)

(6.5)

where ∆̃h ∈R
173×173

is constructed from the Laplacian stencil [∆h], and Z̃3D ∈R
173×93

is constructed from the interpolation stencil [Z3D ]. The Rowc (·) denotes the extraction
of the row corresponding to the central grid point after the Galerkin projection. This
row contains all non-zero entries that define the stencil for the operator ∆2h . The
process is recursively applied to obtain stencils for ∆4h ,∆8h ,∆16h , · · ·. It is noted that
from the third level onward, the size of the stencils remains fixed at 7×7×7 [76].

As for the wavenumber operator, a key step is to first assume that the wavenumber
is locally constant k. Then, the same procedure is applied to the wavenumber

operators K (k2)h ,K (k2)2h , · · · to obtain the stencils
[

K (k2
i , j ,k )2h

]

,
[

K (k2
i , j ,k )4h

]

, · · ·,
respectively.

Specific stencils for the second to fifth levels can be found in Appendix B.

6.3. NUMERICAL RESULTS
This section presents a systematic evaluation of our matrix-free parallel multilevel
deflation method, demonstrating its effectiveness across increasingly challenging scen-
arios for 3D Helmholtz problems. Our evaluation strategy progresses through three
carefully selected test cases, each addressing specific aspects of the method’s cap-
abilities. We begin with constant wavenumber problems, where analytical solutions
enable rigorous validation of numerical accuracy and convergence properties. The
investigation then advances to the more challenging SEG/EAGE Salt model, featur-
ing heterogeneous velocity structures that allow comprehensive assessment of both
convergence behavior and parallel performance in realistic settings. Finally, we
demonstrate the method’s capability to tackle extreme-scale problems through the
GO_3D_OBS model, successfully solving systems with unprecedented size of 3.8 bil-
lion degrees of freedom. Throughout these experiments, we systematically evaluate
three key aspects: solution accuracy, convergence characteristics, and parallel scalabil-
ity. Special attention is given to the optimization strategies of the multilevel deflation
method for extreme-scale applications, revealing how carefully designed algorithmic
adjustments enable efficient solution of these large-scale problems.

All numerical experiments are carried out on the Linux supercomputer DelftBlue
[143], which operates on the Red Hat Enterprise Linux 8 operating system. Each
compute node is furnished with two Intel Xeon E5-6448Y CPUs featuring 32 cores
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at 2.1 GHz, 250 GB of RAM, a memory bandwidth of 132 GBs−1 per socket, and a
100 Gbits−1 InfiniBand card. The present solver is developed in Fortran 90 and is
compiled using GNU Fortran 8.5.0 with the compiler options -O3 for optimization
purposes. The Open MPI library (v4.1.1) is used for data communication. For the outer
FGMRES iterations, a zero initial guess is selected and it is regarded as convergent
when the L2-norm of the residual normalized by the L2-norm of the right-hand side
vector satisfies the following relation

||bh − Ahuh ||2
||bh ||2

≤ 10−6. (6.6)

6.3.1. CONSTANT WAVENUMBER PROBLEM WITH POINT SOURCE

To validate our numerical approach, we first examine the constant wavenumber
problem as a fundamental benchmark case. This provides a well-defined reference
point for assessing solution accuracy against analytical solutions. We solve this
problem for three wavenumbers: k = 80 on 1293 and 2573 grids, using 23 cores;
k = 160 on 2573 and 5133 grids, using 43 cores; k = 320 on 5133 and 10252 grids,
using 83 cores. Figure 6.1 compares the analytical and numerical wavefields at plane
x = 0.5. The numerical approximation shows good agreement with the analytical
solution, demonstrating the basic validity of our approach.

-1.0e+00 1.0e+00-0.5 0 0.5
 

(a) Real part of the analytical solution at
plane x = 0.5

-1.0e+00 1.0e+00-0.5 0 0.5
 

(b) Real part of the numerical approximation
at plane x = 0.5

Figure 6.1: The constant wavenumber model problem with wavenumber k = 160

To provide a more quantitative comparison, we define the relative L2-error between
analytical solution and numerical approximation as

er r. =
||uanal . −unum.||2

||uanal .||2
. (6.7)
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It should be noted that we exclude from the summation the source grid point itself
to avoid bias introduced by the point source implementation. Table 6.1 presents the
error comparison across various wavenumbers and grid resolutions. Figure 6.2 also
visualizes the amplitude in a line across the source along the x-profile.

Table 6.1: Comparison of errors between analytical solution and numerical approx-
imation for constant wavenumber problems

Grid size k kh er r.
129×129×129 80 0.625 0.293
257×257×257 80 0.3125 0.098

257×257×257 160 0.625 0.555
513×513×513 160 0.3125 0.152

513×513×513 320 0.625 1.017
1025×1025×1025 320 0.3125 0.277
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Figure 6.2: Comparison between analytical solution and numerical approximation
along a x profile cross cutting the source position.

The numerical results demonstrate that using 10 grid points per wavelength (kh =
0.625) yields good agreement with the analytical solution in the near-source region
(see Figure 6.2). However, the accuracy deteriorates with increasing distance from the
source due to accumulated numerical dispersion effects. This effect becomes more
pronounced with larger wavenumber k = 320. This error can be mitigated by using
higher-order, low-dispersion finite difference schemes [23, 27, 29, 31], eigenvalue-
based deflation [12], or by increasing the grid resolution. As shown in Figure 6.2,
increasing the grid size to 513×513×513 (20 grid points per wavelength) significantly
improves the alignment between numerical approximations and analytical solutions.
This result underscores the potential of our scalable parallel solver to minimize
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pollution error through finer grid resolution, leveraging high-performance computing
resources, as we have demonstrated in [125, 134]. Since the current research prioritizes
the efficiency of our matrix-free parallel deflation method for large-scale problems,
extending the framework to a higher-order, low-dispersion finite difference scheme
remains a topic for future study.

Understanding the relative performance of the deflation methods in 3D settings
is crucial for practical applications. Thus, we present a comparative analysis of
three related matrix-free parallel preconditioners, including the CSLP [125], Two-
Level Deflation (TL-ADP) [134], and Three-Level Deflation (3L-ADP), to show their
effectiveness across scenarios with different grid sizes. Table 6.2 presents the number
of outer iterations for various grid sizes and wavenumbers. To compare the two-level
deflation and multilevel deflation which exhibit similar outer iterations, we also report
the CPU time required for the sequential computing.

Table 6.2: Comparison of preconditioners for constant wavenumber problems

CSLP(V)+GMRES TL-ADP+FGMRES 3L-ADP+FGMRES
grid size k #iter CPU time (s) #iter CPU time (s) #iter CPU time (s)

129×129×129 40 85 76 12 140 12 225
257×257×257 80 172 1775 12 1659 12 1954
513×513×513 160 343 62716 12 28441 12 24681

Analysis of the results presented in Table 6.2 reveals several significant findings
regarding convergence behavior and computational efficiency. First, both the higher-
order deflation methods significantly outperform the CSLP in terms of the number
of iterations required for convergence. This improvement is consistent across all
grid sizes and wavenumbers tested. The deflation methods (TL-ADP and 3L-ADP)
achieve close-to wavenumber-independent convergence, which is in alignment with
our results and theory [75, 76, 134]. The number of iterations remains constant at
12 for all grid sizes and wavenumbers, while the CSLP method shows a substantial
increase in iterations as the problem size grows. This wavenumber-independent
behavior is a crucial advantage for large-scale problems with high wavenumbers.

Regarding CPU time efficiency, a different pattern emerges. For smaller grid sizes
(129×129×129), the CSLP method initially shows lower CPU times compared to the
deflation methods. This is likely due to the additional costs within a single iteration
associated with the deflation techniques. However, as the grid size increases to
513×513×513, both deflation methods demonstrate superior performance in terms
of CPU time. Notably, for the grid size 513×513×513, the two-level method achieves
a speedup of approximately 2.2 compared to CSLP, while the multilevel (three-level)
method further improves performance with a speedup of 2.5. This suggests that the
multilevel approach becomes more efficient as the problem size increases, which
is consistent with the results in [76]. The improved performance of the multilevel
method for larger problems is particularly promising for tackling even more extensive
3D simulations.

These findings demonstrate the efficacy of deflation-based preconditioners in attain-
ing wavenumber-independent convergence for problems with constant wavenumber.
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The multilevel deflation approach, in particular, shows great promise for large-scale
problems, as it maintains the low iteration count while improving CPU time efficiency
for the largest grid size tested.

6.3.2. 3D SEG/EAGE SALT MODEL PROBLEM

To further evaluate the effectiveness of our multilevel deflation approach, we conduc-
ted experiments solving the 3D SEG/EAGE Salt model problem, which presents a more
challenging, heterogeneous scenario compared to the constant wavenumber problem
discussed earlier. Figure 6.3 presents the wavefields computed in the SEG/EAGE salt
model at 15Hz. One can observe that wave propagation patterns align with complex
velocity structures. The SEG/EAGE salt model results show strong reflections at the
salt body boundaries, with wave fronts curving at these interfaces.

Figure 6.3: The wavefields computed in the SEG/EAGE salt model at 15Hz

WAVENUMBER-INDEPENDENT CONVERGENCE

Table 6.3 compares the sequential computing time for two-level, three-level, and
four-level deflation on a grid size of 641×641×193 at f = 5Hz.

Table 6.3: Comparison of deflation levels for the SEG/EAGE Salt model problem with
a grid size of 641×641×193, f = 5Hz

Deflation #iter CPU time (s)
Two-level 16 20877

Three-level 17 19768
Four-level 17 14660

The results in Table 6.3 demonstrate that multilevel deflation outperforms two-level
deflation for this large-scale heterogeneous problem. While the number of iterations
remains relatively constant across all deflation levels, there is a significant reduction
in CPU time as we increase the number of levels. The four-level deflation method, in
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particular, shows a substantial improvement, reducing the CPU time by approximately
30% compared to the two-level approach.

We examined the performance of the four-level deflation method across different
frequencies. Table 6.4 presents the number of outer FGMRES iterations required to
solve the SEG/EAGE Salt model problem with increasing frequencies and correspond-
ing grid sizes.

Table 6.4: Four-level deflation performance for SEG/EAGE Salt model at various
frequencies

Grid size f (Hz) #iter
641×641×193 5 17
641×641×193 7.5 17

1281×1281×385 10 18
1281×1281×385 15 16

The results in Table 6.4 provide strong evidence for the wavenumber-independent
convergence of our multilevel deflation method. As the frequency increases from 5Hz
to 15Hz, the number of iterations remains remarkably stable, ranging from 16 to 18.
This consistency in iteration count further validates the effectiveness of our approach
with respect to the wavenumber-independent convergence [75, 76].

It is worth noting that the grid size 1281×1281×385 represents a substantial increase
in the total number of unknowns. Despite this growth in problem size, the multilevel
deflation method maintains its efficiency, demonstrating its scalability and robustness.

These results for the SEG/EAGE Salt model complement our findings for constant
wavenumber problems. They provide compelling evidence that the multilevel defla-
tion approach is not only effective for simpler, homogeneous problems but also excels
in handling complex, large-scale heterogeneous scenarios.

PARALLEL PERFORMANCE

After establishing the effectiveness of our multilevel deflation approach, we now turn
our attention to its parallel performance. We focus on strong scalability, examining
how the method performs as we increase the number of cores while keeping the
problem size constant. To increase the scalability to even larger problems, in this
work, we extend our parallel framework from the pure MPI parallelization to a hybrid
MPI + OpenMP parallelization that significantly mitigates the limitations due to
available memory per CPU on the computing nodes.

MPI Only Parallelization We consider the 3D SEG/EAGE Salt model problem with a
grid size of 641×641×193 at a fixed frequency of 5Hz. We evaluate the performance of
two-level, three-level, and four-level deflation methods as we increase the number of
cores (MPI ranks). Across all levels of parallelization, the number of outer iterations
remains consistent with sequential results in Table 6.3 for each method, demonstrating
the numerical robustness of our approach under parallel decomposition.
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Figure 6.4: Strong scaling of two-level, three-level, and four-level deflation methods
for SEG/EAGE Salt model, 641×641×193, f = 5Hz

Figure 6.4 presents the computational time versus the number of MPI ranks used.
These results provide compelling evidence that the multilevel method not only scales
better but also requires less absolute CPU time across all core counts, demonstrat-
ing its superiority in a distributed computing environment. Our matrix-free paral-
lel framework exhibits near-perfect scaling for the higher-order multilevel deflation
methods at reasonable core counts. As the number of cores increases, we observe
a moderate decrease in scaled parallel efficiency. This decline can be attributed
to the inter-compute-node communications and a decrease in the computation-to-
communication ratio [125, 134].

We also tested the scaling behavior for a larger grid size of 1281×1281×385 and
f = 10Hz. As evident from Figure 6.5, our method exhibits excellent scaling for over
1000 cores with this larger problem size. It underscores the potential of our parallel
implementation to address computationally intensive wave propagation simulations
in a real-world, large-scale application.

Hybrid MPI and OpenMP Parallelization Although our pure MPI implementation
exhibits excellent scalability, it encounters memory constraints, especially when ad-
dressing problems of substantial size. As previously noted, each compute node has
a finite amount of memory (theoretically 256 GB). For exceptionally large problems,
this can lead to memory exhaustion, limiting the size of problems that can be tackled
effectively.

A common strategy to address this issue is to distribute fewer MPI ranks (cores)
per compute node, allowing more memory to be assigned to each core within a
node. However, this approach can be inefficient if we leave some CPUs within a
compute node idle. To optimize resource utilization, we have implemented a hybrid
MPI+OpenMP approach, using OpenMP directives to parallelize the nested loops in
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Figure 6.5: Strong scaling of the four-level deflation method for SEG/EAGE Salt model
with increasing grid sizes and frequencies

our matrix-free matrix-vector multiplication routines.
To determine the optimal configuration for this hybrid approach, we conducted

tests on a single compute node with 64 CPUs, exploring various combinations of MPI
ranks and OpenMP threads. Table 6.5 presents the results of these tests, compar-
ing the performance of different MPI+OpenMP configurations against the pure MPI
implementation.

Table 6.5: Performance comparison of MPI-only vs. Hybrid MPI+OpenMP implement-
ations on a 64-CPU compute node

MPI only MPI+OpenMP

MPI ranks CPU time (s) Threads CPU time (s)
1 14660.09 64 1073.25
2 7381.27 32 647.19
4 3701.84 16 496.95
8 1902.68 8 415.08

16 1059.68 4 374.40
32 712.67 2 362.51
64 367.56 1 360.97

The results in Table 6.5 confirm the general observation that MPI typically provides
better parallel scaling than OpenMP due to forced data locality. In our specific
implementation, where OpenMP parallelization is limited to the matrix-free matrix-
vector multiplication routines, we find that a configuration of 32 MPI ranks with 2
threads per rank achieves performance comparable to that of 64 MPI ranks. This
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configuration allows for 8 GB of memory per core, effectively doubling the available
memory per core without significant performance degradation. An alternative but
still effective choice is 16 MPI ranks with 4 threads per rank, which allows for 16 GB of
memory per core. The constant CPU time across these configurations demonstrates
that the performance of our implementation remains stable regardless of whether 2
or 4 threads are used per MPI rank.

We conducted strong scaling tests of the hybrid MPI+OpenMP approach solving the
3D SEG/EAGE Salt model problem with a grid size of 1281×1281×385 and f = 10Hz.
Based on our previous findings, we employed a configuration of 32 MPI ranks with 2
threads per rank, which balances performance and memory utilization effectively.
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Figure 6.6: Strong scaling of pure MPI implementation and hybrid MPI+OpenMP
implementation with 2 threads per rank. Four-level deflation method is used to solve
the SEG/EAGE Salt model with a grid size of 1281×1281×385 and f = 10Hz

Figure 6.6 illustrates the strong scaling results of both our pure MPI implementation
and the hybrid MPI+OpenMP implementation. The results demonstrate the superior
performance of our hybrid implementation. With 2 threads per rank, the CPU time
is consistently about half of that required by the pure MPI implementation with the
same number of MPI ranks. This performance gain is particularly noteworthy as
it comes without sacrificing scalability; in fact, the hybrid implementation exhibits
near-perfect scaling up to 2048 CPUs. This impressive scalability can be attributed to
efficient load balancing between MPI processes and OpenMP threads.

This hybrid MPI+OpenMP implementation enhances our ability to tackle larger
problem sizes. By reducing the number of MPI ranks and utilizing OpenMP threads,
we can effectively double the available memory per MPI process without sacrificing
computational efficiency. This capability is crucial for simulating wave propagation
in very large or highly detailed geological models, where memory constraints often
pose significant challenges.
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6.3.3. GO_3D_OBS MODEL PROBLEM

Having demonstrated the effectiveness of our multilevel deflation method for the
SEG/EAGE Salt model, we now turn to the more challenging GO_3D_OBS model,
which presents a significantly more complex velocity structure representative of a
subduction zone environment. This model serves as an excellent test case for eval-
uating our method’s capability to handle realistic crustal-scale wave propagation
problems while also revealing important computational challenges that need to be
addressed.

Figure 6.7 shows the wavefields computed in the GO_3D_OBS model at 3Hz. The
wavefields reveal intricate wave propagation patterns through the subduction zone
structure. The ability of our method to capture these complex wave behaviors
in heterogeneous media further showcases its applicability to realistic geophysical
scenarios.

Performance tests with a five-level deflation method on a 401×2001×593 grid at
3Hz demonstrates promising yet challenging results. Figure 6.8 illustrates the strong
scaling results of our hybrid MPI+OpenMP implementation with 2 threads per rank.
While parallel efficiency remains satisfactory up to moderate core counts, we observe
a notable decrease at 576 MPI ranks, attributable to the reduced grid size per MPI
rank and increased data communication overhead.

Figure 6.7: The wavefields computed in GO_3D_OBS model at 3Hz

Comparative analysis reveals that solving the GO_3D_OBS model requires signific-
antly more computational effort than the SEG/EAGE Salt model, despite the latter
having a larger grid size (1281× 1281× 385 at 10Hz). The GO_3D_OBS model re-
quires 29 outer iterations for convergence. More critically, we observe that iterations
on the second level consistently reach the predefined maximum limit (100) rather
than achieving the desired tolerance of 10−1. This convergence challenge for the
coarse-level problems becomes even more pronounced when scaling to the grid size
801× 4001× 1185. For instance, it requires over 300 iterations to reach the toler-
ance of 10−1 on the second level, which is computationally prohibitive for practical
applications.

These observations suggest that the complexity of the GO_3D_OBS model leads to
a larger cluster of near-zero eigenvalues in the resulting linear system, a challenge
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Figure 6.8: Strong scaling of hybrid MPI+OpenMP implementation with 2 threads per
rank. Five-level deflation method is used to solve the GO_3D_OBS model with a grid
size of 401×2001×593 at 3Hz

that becomes increasingly pronounced with larger grid sizes in three dimensions [72,
73, 76]. The flexible configuration of our multilevel deflation method enables the
adjustment of specific components to effectively handle such extreme-scale problems
while maintaining reasonable convergence rates.

We suggest two complementary strategies that leverage the flexibility of our mul-
tilevel deflation method. These strategies are specifically designed to handle the
larger cluster of near-zero eigenvalues characteristic of complex heterogeneous prob-
lems at extreme scales. The first strategy involves implementing a more accurate
approximation of the multigrid-based CSLP, particularly on the first and second levels
where convergence issues are most pronounced. As investigated in [125], employing
either two V-cycles or an F-cycle to approximate the CSLP can significantly accelerate
convergence.

The second strategy focuses on optimizing the deflation preconditioner through
a proper choice of the parameter γ in the deflation preconditioner defined as (4.2).
The term γQ performs a spectral transformation whereby zero eigenvalues in the
spectrum of PADP A|γ=0 are mapped to γ in the spectrum of PADP A|γ6=0 [73, 82]. By
selecting an appropriate value for γ, we can maintain reasonable convergence rates
while significantly reducing the number of iterations required on the second level,
thereby decreasing the overall computational time. This adjustment is particularly
effective for the GO_3D_OBS model, where the second-level iterations were previously
reaching the maximum limit without achieving the desired tolerance.

We have investigated the impact of the γ parameter on solver performance using
a grid size of 401×2001×593 at 3Hz with 576 MPI ranks and 2 threads per rank. As
shown in Table 6.6, the choice of γ significantly influences both convergence behavior
and computational efficiency. With γ= 1.5, we achieve optimal performance, reducing
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the number of outer iterations from 29 to 25 and decreasing the average second-level
iterations from 97 to 73, resulting in a substantial reduction in CPU time.

Table 6.6: Impact of γ parameter on solver performance for the GO_3D_OBS model
(401× 2001× 593 grid points, 3Hz). Results show the number of outer FGMRES
iterations (#iter), average iterations per outer iteration on second level (L2 #iter), and
total CPU time.

γ #iter L2 #iter CPU time (s)
1.0 29 97 5114.29
1.5 25 73 3124.98
2.0 27 74 3401.24
2.5 28 85 3831.82
3.0 29 92 4312.34

Table 6.7: Five-level deflation performance for the GO_3D_OBS model at various
frequencies, using 576 MPI ranks with 2 threads per rank

Grid size f (Hz) γ #iter CPU time (s)
401×2001×593 2.5 1.5 23 2589
401×2001×593 3.0 1.5 25 3124

801×4001×1185 4.0 3.0 29 22098
801×4001×1185 5.0 3.0 34 22006

Building upon these established optimizing strategies, we proceed to demonstrate
the capability of our method to resolve the GO_3D_OBS model at an unprecedented
scale. Table 6.7 presents the number of outer FGMRES iterations required to solve the
GO_3D_OBS model with increasing frequencies and corresponding grid sizes. Using
two V-cycles for approximating CSLP and γ= 3, our method successfully handles the
challenging case with grid size 801×4001×1185 at 5Hz, representing approximately
3.8 billion degrees of freedom. The solution converges within 34 outer iterations,
though second-level iterations do not reach a 10−1 tolerance within 100 iterations,
demonstrating the effectiveness of our parameter tuning strategy in maintaining
reasonable convergence rates even at extreme scales.

The parallel performance results further validate the practical viability of our ap-
proach. Using 576 MPI ranks with 2 threads per rank, the solution time is 22006
seconds, while doubling the computational resources to 1152 MPI ranks reduces this
to 12607 seconds. This translates to an impressive 87% parallel efficiency when scal-
ing from 1152 to 2304 CPU cores, confirming the method’s strong scaling capabilities
for extreme-scale problems.

With at least 12 grid points per wavelength and a convergence tolerance of 10−6,
the resulting solution serves as a benchmark for high-resolution 3D seismic modeling
in complex geological settings. Figure 6.9 illustrates the solution quality through
multiple perspectives: the velocity profile reveals the complex structural features of
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the subduction zone, while the wavefield cross-sections at different depths (7.5km,
12.5km, and 19.5km) demonstrate the method’s ability to capture wave propaga-
tion through varying geological features, from the accretionary wedge through the
subduction megathrust to the Moho discontinuity.
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Figure 6.9: Solution for the GO_3D_OBS model (401×2001×593 grid points, 3Hz).
From top to bottom: P-wave velocity distribution at x = 10km, showing key geological
features; Computed wavefield at x = 10km; Wavefield profiles along three horizontal
lines crossing the source position at different depths: accretionary wedge (z = 7.5km),
subduction megathrust (z = 12.5km), and Moho discontinuity (z = 19.5km). Solid
lines in the velocity profile indicate profile locations.
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These comprehensive numerical results establish that our multilevel deflation
method, enhanced by proper parameter selection and efficient parallel implementa-
tion, successfully addresses the challenges posed by extreme-scale Helmholtz prob-
lems in realistic geological settings. The combination of robust convergence proper-
ties, excellent parallel scalability, and high solution accuracy positions our method as
a practical tool for large-scale seismic modeling applications.

6.4. CONCLUSIONS
In this chapter, we have presented a robust and scalable parallel solver for large-scale
three-dimensional Helmholtz problems based on a high-order multilevel deflation
method. The key innovations of our approach include a matrix-free implementation
utilizing re-discretized schemes for the Galerkin coarsening operator, and a hybrid
MPI+OpenMP parallelization framework that effectively addresses both computational
and memory challenges in extreme-scale scenarios. Through these developments
and demonstrated results, we have successfully realized all objectives outlined in
Section 1.7.

Our comprehensive numerical experiments, progressing from constant wavenumber
problems to the complex SEG/EAGE Salt and GO_3D_OBS models, demonstrate
several significant achievements. First, the solver exhibits close-to wavenumber-
independent convergence across varying frequencies and problem sizes, a critical
property for seismic applications. Second, by selecting an appropriate shift term
for the deflation preconditioner, we successfully addressed the challenges posed by
enlarged clusters of near-zero eigenvalues characteristic of complex heterogeneous
problems. Third, our hybrid parallelization approach achieves excellent scalability
while optimizing memory utilization, as evidenced by the 86% parallel efficiency
when scaling from 1152 to 2304 CPU cores in solving the GO_3D_OBS model with
approximately 3.8 billion degrees of freedom.

The successful resolution of the GO_3D_OBS subduction zone model, representing
a state-of-the-art problem at unprecedented scale in seismic modeling, validates our
method’s practical viability. Our solver’s combination of robust convergence proper-
ties, excellent parallel scalability, and ability to handle realistic geological complexity
positions it as a powerful forward modeling engine for FWI and other seismic imaging
applications.

Building upon these achievements, several promising directions emerge for fu-
ture research. The development of more sophisticated coarse-grid re-discretization
strategies may lead to improved convergence rates and computational efficiency. The
framework established in this work could be extended to handle even larger-scale
problems through GPU acceleration. Furthermore, theoretical investigation of the
shift-term parameter selection could provide rigorous foundations for parameter op-
timization, enhancing the solver’s robustness across diverse geological settings.
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7.1. CONCLUSIONS
This dissertation has addressed fundamental challenges in solving large-scale Helm-
holtz problems through the development of high-performance iterative methods. Our
research has focused on creating efficient solution strategies that combine robust
numerical properties with practical applicability for modern computing architectures.
The work has resulted in significant advances in matrix-free implementations, paral-
lel computing frameworks, and preconditioning techniques for time-harmonic wave
problems described by the Helmholtz equation.

The investigation began with the development of a matrix-free parallel framework
for CSLP-preconditioned Krylov subspace methods, initially demonstrated in two
dimensions and subsequently extended to three-dimensional problems. This frame-
work established the foundation for efficient memory utilization and parallel efficiency
while maintaining computational accuracy and convergence properties. The success-
ful implementation for both homogeneous and heterogeneous media demonstrated
the versatility and practical utility of the framework.

Building upon this foundation, we introduced novel approaches to two-level de-
flation preconditioning, incorporating higher-order deflation vectors and innovative
matrix-free implementations of coarse-grid operators. A significant accomplishment
was the formulation of novel re-discretization methods founded on Galerkin coarsen-
ing principles, coupled with a thorough investigation of coarse-grid solution precision
requirements. This advancement enabled convergence independent of wavenumber
while maintaining both matrix-free computational advantages and computational
efficiency. The extension to multilevel deflation, whose components have been sys-
tematically optimized through extensive numerical experiments to achieve close-to
wavenumber-independent convergence, significantly augments the capability of this
method in addressing large-scale computational problems.

This research finally resulted in a robust parallel multilevel deflation solver, im-
plemented through a hybrid MPI+OpenMP framework. This solver successfully ad-
dressed the computational challenges of three-dimensional heterogeneous Helmholtz
problems, demonstrating excellent parallel scalability and memory efficiency. The
successful application to the GO_3D_OBS subduction zone model, with approxim-
ately 3.8 billion degrees of freedom, validates the practical viability of this approach
for extreme-scale problems.

Several key theoretical and practical contributions emerge from this work. First,
the development of matrix-free implementations for CSLP and deflation precondi-
tioning has addressed the real large-scale problems efficiently by reduced memory
requirements. Second, the achievement of near-wavenumber-independent conver-
gence through carefully designed parallel deflation strategies represents a substantial
advancement in solving high-frequency wave problems. Third, the hybrid parallel-
ization framework has demonstrated exceptional scalability, achieving 86% parallel
efficiency on thousands of CPU cores. This research has particular significance for ap-
plications like seismic imaging, where the ability to handle large-scale heterogeneous
problems efficiently is crucial. Through these achievements, we have successfully
realized all objectives outlined in Section 1.7.

Through a combination of mathematical rigor, algorithmic innovation, and careful
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parallel implementation, this research achieves efficient, scalable solutions to large-
scale Helmholtz problems, enhancing the scope of reliable and fast forward modeling
in wave propagation. The results point toward a future in which deeper integration of
preconditioning techniques and high-performance computing can push the limits of
solving the high-frequency Helmholtz problems. The methods outlined here provide
a strong platform for any subsequent work in academic or industrial environments
where high-performance wave modeling are paramount. The methodologies and
frameworks developed in this dissertation contribute to the broader field of scientific
computing, demonstrating how careful algorithm design, combined with modern
computing architectures, can address previously intractable problems. As computa-
tional demands continue to grow, these approaches provide a possible direction for
future developments in high-performance computational methods for problems with
similar challenges.

7.2. OUTLOOK
The research presented in this dissertation opens several promising avenues for future
investigation, spanning theoretical developments, computational enhancements, and
extended applications. From a numerical methodology perspective, the extension to
high-order finite difference schemes with minimized dispersion represents a natural
evolution of our approach. Such developments would further enhance the capability
to handle high-frequency wave propagation while maintaining the advantages of our
matrix-free parallel framework.

A crucial area for theoretical advancement lies in the development of improved re-
discretization schemes for the coarse-grid operator in higher-order deflation methods.
The challenge is to design compact stencils that preserve the alignment of the near-
zero eigenvalues with the fine-grid operator while enabling better parallel efficiency.
This mathematical investigation would strengthen the theoretical foundations of our
approach while yielding practical performance benefits.

The optimization of our computational framework presents another significant re-
search direction. The incorporation of GPU acceleration into our hybrid parallelization
strategy could substantially enhance computational performance. This advancement
would require careful algorithm adaptation to leverage the unique characteristics of
GPU architectures while preserving the numerical properties of our methods.

A theoretical investigation into the optimal selection of shift parameters for defla-
tion preconditioning merits particular attention. Establishing rigorous mathematical
foundations for parameter choice would enhance the robustness of our methods
across diverse problem settings. This analysis could lead to adaptive parameter
selection strategies that automatically optimize performance based on problem char-
acteristics.

Furthermore, the investigation of advanced domain decomposition strategies and
enhanced multilevel deflation methods could enable a more efficient solution for
extreme-scale systems.

Last but not least, the extension of our methodology to broader applications in
wave propagation presents compelling opportunities. The framework developed here
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could be adapted to address elastic wave equations, Maxwell equations, and frequency-
domain seismic imaging in the context of FWI, potentially revolutionizing approaches
to these challenging problems.

These future research directions collectively aim to advance both the theoretical
understanding and practical applicability of high-performance iterative methods for
wave propagation problems. The combination of mathematical rigor, algorithmic
innovation, and careful parallel implementation, and practical applicability will re-
main central to these developments, continuing the trajectory established in this
dissertation.
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A
2D RE-DISCRETIZATION SCHEMES

FOR COARSE LEVELS

The 2D stencils of the Laplace and wavenumber operators for interior points on the
fourth-, fifth- and sixth-level coarse grid introduced in Section 5.1.1 are as follows:

A8h = 1
4096 ·

1
1024 ·

1
1024 ·

1
h2 ·























−10395 −887166 −7871637 −15491748 −7871637 −887166 −10395
−887166 −39105612 −215169378 −348459432 −215169378 −39105612 −887166

−7871637 −215169378 −265120059 413761124 −265120059 −215169378 −7871637
−15491748 −348459432 413761124 2809129936 413761124 −348459432 −15491748
−7871637 −215169378 −265120059 413761124 −265120059 −215169378 −7871637
−887166 −39105612 −215169378 −348459432 −215169378 −39105612 −887166
−10395 −887166 −7871637 −15491748 −7871637 −887166 −10395























,

K8h = 1
4096 ·

1
4096 ·

1
1024 ·k2·























27225 3939210 40768695 83544780 40768695 3939210 27225
3939210 569967876 5898859542 12088170168 5898859542 569967876 3939210

40768695 5898859542 61050008889 125106029556 61050008889 5898859542 40768695
83544780 12088170168 125106029556 256372094224 125106029556 12088170168 83544780
40768695 5898859542 61050008889 125106029556 61050008889 5898859542 40768695

3939210 569967876 5898859542 12088170168 5898859542 569967876 3939210
27225 3939210 40768695 83544780 40768695 3939210 27225























,

A16h = 1
4096 ·

1
1024 ·

1
1024 ·

1
1024 ·

1
h2 ·























−13491387 −1011388446 −8590720245 −16705596516 −8590720245 −1011388446 −13491387
−1011388446 −41427399756 −220811304386 −353095695272 −220811304386 −41427399756 −1011388446
−8590720245 −220811304386 −262703195227 427978620452 −262703195227 −220811304386 −8590720245

−16705596516 −353095695272 427978620452 2827174335440 427978620452 −353095695272 −16705596516
−8590720245 −220811304386 −262703195227 427978620452 −262703195227 −220811304386 −8590720245
−1011388446 −41427399756 −220811304386 −353095695272 −220811304386 −41427399756 −1011388446

−13491387 −1011388446 −8590720245 −16705596516 −8590720245 −1011388446 −13491387























,
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2 A. 2D RE-DISCRETIZATION SCHEMES FOR COARSE LEVELS

K16h = 1
4096 ·

1
4096 ·

1
1024 ·

1
1024 ·k2·























158684409 19907719338 199630340247 405976871820 199630340247 19907719338 158684409
19907719338 2497518765316 25044582577654 50931743533240 25044582577654 2497518765316 19907719338

199630340247 25044582577654 251141703197401 510732601675060 251141703197401 25044582577654 199630340247
405976871820 50931743533240 510732601675060 1038647851363600 510732601675060 50931743533240 405976871820
199630340247 25044582577654 251141703197401 510732601675060 251141703197401 25044582577654 199630340247

19907719338 2497518765316 25044582577654 50931743533240 25044582577654 2497518765316 19907719338
158684409 19907719338 199630340247 405976871820 199630340247 19907719338 158684409























,

A32h = 1
4096 ·

1
1024 ·

1
1024 ·

1
1024 ·

1
1024 ·

1
h2 ·























−14618265915 −1063059274398 −8934400311925 −17322732417892 −8934400311925 −1063059274398 −14618265915
−1063059274398 −42774103061580 −226217899925314 −360608941958056 −226217899925314 −42774103061580 −1063059274398
−8934400311925 −226217899925314 −266795319274715 439293870677284 −266795319274715 −226217899925314 −8934400311925

−17322732417892 −360608941958056 439293870677284 2882610253296592 439293870677284 −360608941958056 −17322732417892
−8934400311925 −226217899925314 −266795319274715 439293870677284 −266795319274715 −226217899925314 −8934400311925
−1063059274398 −42774103061580 −226217899925314 −360608941958056 −226217899925314 −42774103061580 −1063059274398

−14618265915 −1063059274398 −8934400311925 −17322732417892 −8934400311925 −1063059274398 −14618265915























,

K32h = 1
4096 ·

1
4096 ·

1
1024 ·

1
1024 ·

1
1024 ·k2·























706549519225 85722084590890 852977249303575 1731387418334860 852977249303575 85722084590890 706549519225
85722084590890 10400227566028036 103487421517331808 210060490730926272 103487421517331824 10400227566028036 85722084590890

852977249303575 103487421517331840 1029751161146567936 2090206046973178368 1029751161146568192 103487421517331792 852977249303575
1731387418334860 210060490730926208 2090206046973178624 4242735025361522688 2090206046973178624 210060490730926208 1731387418334860

852977249303575 103487421517331840 1029751161146568064 2090206046973178624 1029751161146567936 103487421517331792 852977249303575
85722084590890 10400227566028036 103487421517331808 210060490730926208 103487421517331808 10400227566028036 85722084590890

706549519225 85722084590890 852977249303575 1731387418334860 852977249303575 85722084590890 706549519225























.



B
3D RE-DISCRETIZATION SCHEME

FOR COARSE LEVELS

As introduced in Section 6.2.1, we present the computational stencils correspond-
ing to the discretized Laplace operators ∆2l−1h and associated wavenumber terms
K (k2

i , j ,k )2l−1h for interior nodes within the corresponding coarse-grid (l -th) level in
3D scenarios.

Suppose the presented stencils are 7×7×7 arrays centered around the grid point
(i , j ,k) = (0,0,0). Let ai , j ,k denote the stencil coefficient at position (i , j ,k) relative to
the central point. As the stencil exhibits radial symmetry, we can define

ai , j ,k = f (r ), r =
√

i 2 + j 2 +k2, i , j ,k =−3,−2, · · · ,3.

where f (r ) is a function mapping the distance r to the corresponding coefficient
value. The distances r will take on discrete values consistent with the stencil grid
spacing. Table B.1 and B.2 present the coefficients corresponding to each discrete
value of r .

3
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4 B. 3D RE-DISCRETIZATION SCHEME FOR COARSE LEVELS

Table B.1: Computational stencils for the discretized Laplace operators ∆2l−1h

r 2
∆2h (h−2)? ∆4h (h−2) ∆8h (h−2) ∆16h (h−2) ∆32h (h−2)

0 1.5701293945E+0 2.0810596962E+0 3.7899080641E+0 7.4089777374E+0 1.4734333085E+1
1 2.6916503906E-1 5.0871183397E-1 9.8862184825E-1 1.9621172110E+0 3.9166032206E+0
2 -3.5888671875E-2 1.6178222490E-2 6.2374914024E-2 1.3819040572E-1 2.8291157951E-1
3 -7.1777343750E-2 -9.8258635233E-2 -1.7454480404E-1 -3.3852933590E-1 -6.7184014760E-1
4 -9.7198486328E-2 -1.3917780761E-1 -2.5384774652E-1 -4.9578511425E-1 -9.8565558173E-1
5 -4.4006347656E-2 -8.4633644903E-2 -1.6446169783E-1 -3.2622637693E-1 -6.5107007270E-1
6 -1.9653320313E-2 -4.8904286290E-2 -1.0006117458E-1 -2.0095027797E-1 -4.0227853400E-1
8 -3.0975341797E-3 -1.4371655416E-2 -3.2364034736E-2 -6.6438746697E-2 -1.3371917032E-1
9* -ğ -5.5457470007E-3 -1.3522009341E-2 -2.8220807272E-2 -5.7025303896E-2
9 -1.3122558594E-3 -7.5410612626E-3 -1.7706937597E-2 -3.6712135717E-2 -7.4070560816E-2
10 - -2.6786775561E-3 -6.8790650430E-3 -1.4534058718E-2 -2.9457773736E-2
11 - -1.2932208192E-3 -3.4937743183E-3 -7.4699173828E-3 -1.5184488379E-2
12 -6.8664550781E-5 -9.2338607647E-4 -2.4876297845E-3 -5.3237002139E-3 -1.0824901025E-2
13 - -2.4811155163E-4 -7.7852953697E-4 -1.7196473811E-3 -3.5232869013E-3
14 - -1.1955149239E-4 -3.9313800738E-4 -8.7782070955E-4 -1.8032962903E-3
17 - -1.0964577086E-5 -4.3354500566E-5 -1.0079189293E-4 -2.0909404149E-4
18 - -1.4024553820E-6 -9.2153822173E-6 -2.3193307852E-5 -4.8995829836E-5
19 - -6.6982465796E-7 -4.5883901079E-6 -1.1661643338E-5 -2.4694663026E-5
22 - -5.9197191149E-8 -4.8044680234E-7 -1.2685731350E-6 -2.7114431323E-6
27 - -2.6193447411E-10 -4.5701442630E-9 -1.3819593422E-8 -3.0492200157E-8

? All ∆ values are scaled by h−2.
* Coefficients specifically for axis-aligned positions (±3,0,0), (0,±3,0), (0,0,±3).
ğ Not applicable for the 5×5×5-stencil A2h .

Table B.2: Computational stencils for the wavenumber terms K (k2
i , j ,k )2l−1h

r 2
K (k2

i , j ,k )2h
?

K (k2
i , j ,k )4h K (k2

i , j ,k )8h K (k2
i , j ,k )16h K (k2

i , j ,k )32h

0 1.3084411621E+0 7.7105929767E+0 5.7646951751E+1 4.5365194446E+2 3.6144249807E+3
1 5.2337646484E-1 3.6428073344E+0 2.8130913668E+1 2.2307352540E+2 1.7806657512E+3
2 2.0935058593E-1 1.7210148837E+0 1.3727496073E+1 1.0969157818E+2 8.7725448291E+2
3 8.3740234375E-2 8.1307957250E-1 6.6988278685E+0 5.3938459540E+1 4.3218410151E+2
4 1.8692016601E-2 3.0682290392E-1 2.7181045758E+0 2.2245542085E+1 1.7895246359E+2
5 7.4768066406E-3 1.4495600119E-1 1.3263973695E+0 1.0938763864E+1 8.8161885974E+1
6 2.9907226562E-3 6.8483291222E-2 6.4726353708E-1 5.3789003851E+0 4.3433423505E+1
8 2.6702880859E-4 1.2209215899E-2 1.2816102605E-1 1.0908454128E+0 8.8600494952E+0
9* -ğ 9.5286616124E-4 1.8785593324E-2 1.7731919155E-1 1.4749848620E+0
9 1.0681152343E-4 5.7681453763E-3 6.2540804848E-2 5.3639962283E-1 4.3649506558E+0
10 - 4.5017391676E-4 9.1671092391E-3 8.7192874764E-2 7.2665916194E-1
11 - 2.1268102864E-4 4.4734222844E-3 4.2875209068E-2 3.5799251315E-1
12 3.8146972656E-6 4.8583385068E-4 6.0429053190E-3 5.3491333688E-2 4.3866664633E-1
13 - 3.7916819565E-5 8.8575727984E-4 8.6951275889E-3 7.3027432091E-2
14 - 1.7913494957E-5 4.3223727904E-4 4.2756408050E-3 3.5977354051E-2
17 - 1.5088007785E-6 4.1764236309E-5 4.2637936213E-4 3.6156342854E-3
18 - 1.1775409802E-7 6.1217203306E-6 6.9308852471E-5 6.0191603226E-4
19 - 5.5631971918E-8 2.9873146956E-6 3.4081128166E-5 2.9653714476E-4
22 - 4.6857167035E-9 2.8864450829E-7 3.3986694277E-6 2.9801242915E-5
27 - 1.4551915228E-11 1.9949042417E-9 2.7090790279E-8 2.4563161237E-7

? All K (k2
i , j ,k ) values are scaled by the corresponding k2

i , j ,k on the current grid.
* Coefficients specifically for axis-aligned positions (±3,0,0), (0,±3,0), (0,0,±3).
ğ Not applicable for the 5×5×5-stencil K (k2

i , j ,k )2h .
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