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We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially co-
herent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to
be a closed string. These coherence singularities have implications for both interference experiments and correla-
tion of intensity fluctuation measurements performed with such beams. © 2012 Optical Society of America
OCIS codes: 030.1640, 050.1940, 260.1960, 260.2110, 260.6042.

The subject of singular optics [1,2] is the structure of
wave fields in the vicinity of optical vortices and polar-
ization singularities. Most studies deal with monochro-
matic, and hence fully coherent, light. Many wave
fields that are encountered in practice, however, are par-
tially coherent. Examples are the fields generated by mul-
timode lasers and fields that have traveled through a
random medium such as the atmosphere. The statistical
properties of these fields are described by correlation
functions, such as the spectral degree of coherence

[3,4]. A few years ago it was pointed out that these cor-
relation functions can also exhibit singular behavior [5].
Such correlation singularities, or “coherence vortices,”
occur at pairs of points at which the fields are completely
uncorrelated. Coherence vortices have since been found
in optical beams [6], in focused fields [7], and in fields
produced by Mie scattering [8]. These studies are all
limited to scalar fields. Although the concept of a spectral
degree of coherence has been generalized to electro-
magnetic beams [9], the possible existence of electro-

magnetic coherence singularities in practical physical
systems has not yet been examined. In this Letter we
show that these singularities occur quite generally in a
wide class of electromagnetic beams, namely those of
the Gaussian Schell-model type. We describe their evolu-
tion in successive cross sections of these beams, and
their physical implications.
The state of coherence and polarization of a random

beam that propagates along the z-axis is characterized
by the electric cross-spectral density matrix [9]

W�r1; r2;ω� �
�
Wxx�r1; r2;ω� Wxy�r1; r2;ω�
Wyx�r1; r2;ω� Wyy�r1; r2;ω�

�
; (1)

where

Wij�r1; r2;ω� � hE�
i �r1;ω�Ej�r2;ω�i; �i; j � x; y�:

(2)

Here Ei�r;ω� is a Cartesian component of the electric
field at a point r at frequency ω, of a typical realization
of the statistical ensemble representing the beam. The
spectral degree of coherence η�r1; r2;ω� of the field is
defined as

η�r1; r2;ω� �
TrW�r1; r2;ω�

�TrW�r1; r1;ω�TrW�r2; r2;ω��1 ∕2
; (3)

where Tr denotes the trace. A correlation singularity
occurs at pairs of points for which η�r1; r2;ω� � 0. (From
here on the ω-dependence of the various quantities is
suppressed.) The physical meaning of correlation singu-
larities is twofold. First, when the fields at two points r1
and r2 are combined in Young’s experiment, the visibility
of the ensuing interference fringes depends on the value
of η�r1; r2� [9, Section 9.2]. At a singularity, where
η�r1; r2� � 0, the fringe visibility will be zero. Second,
in Hanbury Brown–Twiss experiments, one determines
the correlation of intensity fluctuations at two points
[10]. These correlations depend on the so-called degree

of cross polarization [11]. It is easily seen that correla-
tion singularities coincide with a divergence of the de-
gree of cross polarization. The consequences of this
are discussed by Hassinen et al. [12]. In view of these ef-
fects and because of the practical importance of partially
coherent beams, it is therefore of interest to ask whether
they contain coherence vortices.

According to Eq. (3), coherence vortices occur in a
transverse plane z when both

jWxx�ρ1; ρ2; z�j � jWyy�ρ1; ρ2; z�j; (4)

Arg�Wxx�ρ1; ρ2; z�� − Arg�Wyy�ρ1; ρ2; z�� � π �mod 2π�:
(5)

For fixed ρ1 and z, the points ρ2 that satisfy condition (4)
generally form a line. The same holds true for the solu-
tions of Eq. (5). We therefore expect the simultaneous
solutions, i.e., the coherence vortices, to be isolated
points in the two-dimensional ρ2-plane. Note that when
the fields at the two points that form an electromag-
netic coherence singularity are combined in Young’s
experiment, the local modulations of jExj2 and jEyj2
on the observation screen have equal magnitude and op-
posite sign, resulting in zero visibility of the total spectral
density.

As we will show, such correlation singularities gener-
ically occur in Gaussian Schell-model beams [9], a wide

October 15, 2012 / Vol. 37, No. 20 / OPTICS LETTERS 4179

0146-9592/12/204179-03$15.00/0 © 2012 Optical Society of America



class of partially coherent electromagnetic beams that in-
cludes the lowest-order Gaussian laser mode. For these
beams, the elements of the cross-spectral density matrix
in the source plane z � 0 (see Fig. 1) read

Wij�ρ1; ρ2; z � 0� �
��������������������������
Si�ρ1�Sj�ρ2�

q
μij�ρ2 − ρ1�; (6)

with the spectral densities Si�ρ� � Wii�ρ; ρ� and the
degree of correlation μij�ρ2 − ρ1� both Gaussian func-
tions; i.e.,

Si�ρ� � A2
i exp�−ρ2 ∕2σ2i �; (7)

μij�ρ2 − ρ1� � Bij exp�−�ρ2 − ρ1�2 ∕2δ2ij �: (8)

The parameters Ai, Bij, σi, and δij are independent of po-
sition, but may depend on the frequency ω. In addition,
they have to satisfy certain constraints to ensure that the
field is beamlike [9]. As the beam propagates to a plane
z > 0, and if we take σx � σy � σ, the matrix elements
become ([9], where the one but last minus sign of
Eq. (10) on p. 184 should be a plus sign)

Wij�ρ1; ρ2; z� �
AiAjBij

Δ2
ij�z�

exp
�
−

�ρ1 � ρ2�2
8σ2Δ2

ij�z�

�

× exp
�
−

�ρ2 − ρ1�2
2Ω2

ijΔ2
ij�z�

�
exp

�
ik�ρ22 − ρ21�
2Rij�z�

�
;

(9)
where

Δ2
ij�z� � 1� �z ∕kσΩij�2; (10)

1

Ω2
ij

� 1

4σ2
� 1

δ2ij
; (11)

Rij�z� � �1� �kσΩij ∕z�2�z: (12)

We note that the matrix elements of Eq. (6) are real-
valued and positive. Therefore, according to Eq. (5),
there are no correlation singularities in the source plane.
However, as we will now show, such singularities are cre-
ated on propagation. In a cross section of the beam, we
choose the point ρ1, and calculate for which points ρ2
both Eqs. (4) and (5) are satisfied. An example is shown
in Fig. 2, in which the intersections of the curves, labeled
ρA and ρB, indicate two simultaneous solutions. That
these points are indeed coherence vortices is also evi-
denced by Fig. 3. At the two singular points, all phase

contours coincide. It is seen that η�ρ1; ρA; z� and
η�ρ1; ρB; z� have opposite topological charge, namely
�1 and −1, respectively [1]. That the singularities formed
by the pairs �ρ1; ρA; z� and �ρ1; ρB; z� lie well within the
region of appreciable intensity is shown in Fig. 4, in
which the normalized spectral density of the beam is
plotted, together with the three points ρ1, ρA, and ρB.
It is to be noted that for scalar Gaussian Schell-model
beams [3, Eqs. (5.6)–(91)], such singularities do not exist.

When the cross-sectional plane z is taken close to the
source plane and is then gradually moved away, there
first are no coherence singularities, until the pair
�ρ1; ρA; z� and �ρ1; ρB; z� is created. This observation
explains the opposite topological charge of the two
coherence singularities, because, just as for “ordinary”
phase singularities, topological charge is conserved in
the creation process [13]. When the plane z is taken
further away from the source, the opposite takes place:
the points ρA and ρB move closer together until they
eventually annihilate. This is connected to the fact that
as z → ∞ condition (5) can no longer be satisfied.

The evolution of the pair of singularities �ρ1; ρA; z� and
�ρ1; ρB; z� along the direction of propagation is shown in

z = 0

z

ρρ

Fig. 1. Illustrating the notation. The vector ρ � �x; y� indicates
a transverse position.
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Fig. 2. (Color online) Locus of equal modulus of Wxx and Wyy
(red curve), and the contours of Arg�Wxx� − Arg�Wyy� � π
(mod 2π). Their intersections, ρA and ρB, are correlation singu-
larities. In this example Ax � 1, Ay � 3, λ � 632.8 nm,
σ � 1 mm, δxx � 0.2 mm, δyy � 0.09 mm, z � 1.4 m, and ρ1 �
�2.5; 0� mm.
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Fig. 3. (Color online) Color-coded phase plot of the degree of
coherence η�ρ1; ρ2; z� in the plane z � 1.4 m. The singularities
at ρA and ρB have opposite topological charge.
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Fig. 5. The surface corresponding to Eq. (4) is depicted in
green (“equal amplitude”), whereas the surfaces corre-
sponding to Eq. (5) are depicted in red (“opposite
phase”). It is seen that the singularities, i.e., the intersec-
tion of these surfaces, form a closed “string” or loop in
the direction of the beam, with one half of the string
formed by ρA and the other by ρB, having opposite topo-
logical charge.
It follows from Eqs. (5) and (12) that the location of

correlation singularities depends crucially on the para-
meters δxx and δyy, the transverse coherence length of
the electric field components Ex and Ey, respectively.
Indeed, if we increase δyy from 0.09 (as in all previous
examples) to 0.12 mm, the string of singularities becomes
markedly shorter, as is shown in Fig. 6. For a value near
δyy � 0.13 mm, the string disappears.

In conclusion, we have demonstrated that a new type
of correlation singularities, namely an electromagnetic
coherence vortex, generically occurs in partially coher-
ent beams of the Gaussian Schell-model type. In conse-
cutive cross sections, the singularities form a closed
loop. At the end points of the loop the singularities
are created or annihilated pairwise. The presence of
these singularities has profound consequences for inter-
ference experiments performed with partially coher-
ent beams.
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Fig. 4. (Color online) Normalized spectral density of the beam
in the cross section z � 1.4 m. The points ρ1, ρA, and ρB are
indicated by the three white dots.
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Fig. 5. (Color online) Intersection of a surface of equal ampli-
tude (green) and a surface of opposite phase (red) constitutes a
string of correlation singularities.
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Fig. 6. (Color online) Two strings of correlation singularities
in a partially coherent beam. The larger string (blue) is for
δyy � 0.09 mm, and the shorter string (black) is for the case
δyy � 0.12 mm.

October 15, 2012 / Vol. 37, No. 20 / OPTICS LETTERS 4181


