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Abstract—The recent spate of natural disasters such as earth-
quakes and floods destroyed buildings and caused loss of lives.
Many times, the loss of life is attributed to slow response and
not being able to reach the survivors. In such scenarios, the
staggering number of deaths in the aftermath of a disaster
can be reduced if information about survivors under debris is
available to first responders and rescue workers. Large-scale
destruction of roads and other communication infrastructure
makes it hard to deploy advanced technologies for life detection.
We explore the possibility of using low-cost, low-power, short-
range communication technologies to assist rescue personnel in
locating life under debris. We have designed and prototyped a
thermopile-based sensor and communication device that provides
information about the presence of survivors. The system weighs
under 20 gm and costs US $30 per unit. The device can easily
be fitted on battery-powered toy bugs and robots that can
autonomously maneuver under the debris. We have proposed
three simple algorithms, which together detect humans with
100% to 88% accuracy for 0.5 to 4.5 m range with fewer false
alarms. Our evaluation shows that the detection is robust enough
under several harsh ambient conditions, temperature ranges as
well and partial exposure of the human body.

Index Terms—thermopile, life-detection, infrared, low cost,
debris.

I. INTRODUCTION

Natural disasters such as earthquakes and floods as well as
incidents like nuclear accidents occur leading to large-scale
destruction of infrastructure and loss of several thousands of
lives. Hundreds of people go missing under fully and partially
collapsed buildings. For instance, the recent Morocco earth-
quake left 500 residences and several commercial buildings
razed to the ground. Several remote places were inaccessible,
due to the damages caused to the road infrastructure [1].
Similarly, Libya floods left four major bridges collapsed, and
25% of the city was inaccessible. In Raigad, India, floods
damaged many buildings and hundreds of people were trapped
under debris.

When such natural disasters occur, communication systems,
navigation systems and electrical distribution systems get
affected causing entire townships to plunge into darkness.
Amidst this large-scale confusion and despair, the hope to find
survivors looms large. It is a race against time to rescue hu-
mans buried under building debris. People in the locality, risk
their lives and look for survivors in these unstable structures

using naive methods and existing tools. For search and rescue
missions locating survivors buried under the pile is difficult.
The task of locating survivors continues to be an unsolved
problem even with the advent of modern technology. For
instance, transporting cranes and other equipment is difficult
due to lack of road infrastructure. Furthermore, using such
equipment in these operations is time-consuming. For every
miscalculated search operation, more lives are lost than that
could have been rescued.

In this work, we propose l-Detect (Life Detection platform),
a low-cost, low-power and low infrastructure sensor platform
to detect life under building debris. The design components
of l-Detect are carefully selected so that it is easily available,
affordable, disposable, rapidly producible and easily set up.
Our l-Detect incorporates a low-cost, thermopile sensor setup,
which could be easily deployable and maneuverable under
debris. The device is easily mountable on small robots, toy
cars, miniature bugs, lightweight quadcopters, etc. Further,
on-board processing is enabled to conserve power, without
compromising on performance and detection. The detection
results are communicated using Bluetooth low energy (BLE).
This work aims to cover all the required steps in sensing and
data processing. The robotics and the miniature bugs that can
be controlled remotely (or move autonomously) used to carry
l-Detect as a payload is beyond the purview of this paper.
However, we discuss some aspects briefly without providing
any detailed investigation. The main contributions of this work
are listed below:
1 We design l-Detect platform which is light-weight, low cost

(under US $30) and has a low form-factor. We characterized
and calibrated the thermopile sensor for thermal imaging.
2 We evaluated l-Detect in different scenarios, under in-situ

conditions, under different ambient temperature.
3 A Machine Learning (ML) model is built to detect humans

buried under the debris as well as to classify different human
postures.

II. RELATED WORKS

A myriad of solutions are proposed in the literature to
detect human presence under harsh conditions. For instance,
air-scenting dog units capable of picking up a scent from
humans are reported in [2]. Radar-based techniques have also
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TABLE I: Comparison of the related works

Work Sensor used Algorithm bulky indoor Misdetection level

A pedestrian detection system [3] thermopiles and radars pattern classification, DST yes no high

Human detection using thermopiles [4] 8×1 thermopile thresholding, normalizing no yes moderate

Heat mapping for improved uEYE and web camera, linear interpolation and yes yes high

victim detection [5] laser range finder, thermopiles component analysis

Detection of surviving humans [6] PIR and IR sensor, Cameras neural networks yes no moderate

Snake-like robots to tactile sensor, vision sensor, real time map yes no NA

search victim under debris [7] 12 cameras, 60 small lights construction, MMI

Human detection and geoloca- GPS receiver, PC104 thermal and colour yes no low

lization for rescue missions [8] barometric altitude sensor imagery, geolocation mapping

Human body tracking [9] CCD, thermal camera sensor fusion, SBT no no moderate

Earthquake survivor detection [10], [11] doppler radars EMD analysis, bioradar yes no moderate

l-Detect 8×8 Grid-EYE thermopile local maxima, DCT variance no yes low

found attention in recent years owing to their penetration
capability through obstructing objects. Human bio-signals [12]
are modulated on the radar signal, which is then used to
train the ML model to recognize survivors under the debris.
Frequency of life signal (FMAS) is proposed in [11], where
the radar signal is subjected to SSS-transform, to obtain a
high resolution, high signal-to-noise ratio, and time-frequency
map to detect humans behind the wall. In the microwave
detection system presented in [13], survivors are detected
using reflected microwaves that are modulated by human
movements, including breathing and heartbeat. Apart from
being an expensive technology, a significant limitation of using
microwaves is the effect of the background noise created by
the environment and operators. Wi-Vi, a WiFi-based through-
wall human detection technique is proposed in [14]. Wi-Vi can
detect objects and humans moving behind opaque structural
obstructions. This applies to 0.2 m concrete walls, 0.15 m
hollow walls, and 4 cm solid wooden doors. However, there are
many operational difficulties in a disaster zone. In [15]. the
system can localize a human and corresponding posture with
the assistance of objects surrounding the human. In [16], a
thermal imaging sensor system mounted on a UAV is used for
human detection. Parallel image processing algorithms, filters,
etc., were used to extend the range up to 2 km. The importance
of thermal imagery for face recognition and detection without
being affected by external factors such as illumination is
discussed in [17]. However, this work mainly focuses on the
comparison of several computationally intensive techniques.
Thermopile-based PIR sensors are an excellent choice to iden-
tify pedestrians, but differentiating them from clutter (lamp
posts, cars and many other objects) is a challenge [3]. In [18],
PIR sensors are used for human detection where a trigger
ensures that an image of the human is captured using a low-
cost web camera. An IR sensor mounted on a robotic platform
is used for obstacle detection. Thermopiles are used for people
counting in doorways and pedestrian detection from a mobile
robot using an 8×1 thermopile array sensor [4]. The algorithm

normalises and compares the measured temperature with re-
spect to a threshold to distinguish between a person standing
in front of the sensor and a person passing by. A dynamic
threshold is used to account for the changing skin temperature
of a person, which is affected by ambient temperature. In [19],
the Grid-EYE sensor, which is essentially an infrared array
sensor, is used to detect human presence in a room. The Grid-
EYE’s sensitivity and its appealing features are demonstrated.
Grid-EYE is used for detecting human occupancy and distance
monitoring during the COVID-19 pandemic and was reported
in [20] and [21]. Having established the efficacy of the Grid-
EYE sensor, we also find there are novel robotic solutions to
carry the Grid-EYE sensor. Although such solutions are out of
scope in this work, we surveyed three novel crawler solutions
[7], [22], and [23]. In particular, the development of snake-
like robots [22] that can be employed to search for human
life under different kinds of debris surfaces is interesting and
worth mentioning. A snapshot of the existing solutions and
the proposed system is presented in Table I.

From the literature elaborated above, we arrived at a few
features for our proposed platform. The proposed system needs
to be low-cost, lighter, robust, compact, and energy-efficient.
We believe that it is easy to integrate our low-cost hardware
on existing robot platforms such as Robbie [5]. The goal is
to assist first responders in detecting life with a high success
probability.

III. SENSOR SELECTION

Some of the factors addressed while designing l-Detect are:
1 Sensor requirement: the sensor should be compact, operate

in zero lux conditions and reliably detect life under debris.
2 Processing and computation: data processing algorithms to

detect humans have to be lightweight, and yet work efficiently
on low-power platforms. 3 Usage: the system has to be
designed such that it is easy to operate and to find the trapped
survivors under debris. The thermal sensor selection and
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thermal imaging feature for our l-Detect platform is explained
in the following section.

A. Sensor selection

1) Selecting a suitable sensor: The sensors can be selected
based on the application and several other crucial factors like
cost, energy consumed, form factor, resolution, detection range
and field of view (FoV). Thermal sensors have several of these
features and thermopile’s digital output can be directly used for
processing. There are a variety of thermal sensors available in
the market. Table II lists the different thermal sensors available
in the market that are suitable for human detection.

TABLE II: Comparison of different thermal sensors available
in the market suitable for human detection

Parameter Grid-EYE 4×4 OD6T Fluke Ti10

Cost (USD $) 30 54 900

Resolution (W×H) 8×8 4×4 640×480

Form Factor (mm) 11.6×4.3×8 14×3.75×18 150×270×130

(L×H×W)

Operating -20 to 100◦C 5 to 50◦C -20 to 250 ◦C

Temperature

Weight (gm) 10 10 1200

Range (m) 5 3-3.5 NA

Field of View (◦) 60×60 45×45 23×17

From Table II, Panasonic Grid-EYE costs about 30 USD,
and clearly has an advantage over 4×4 Omron OD6T (54
USD) in terms of cost, resolution and range. Commercial IR
cameras from Fluke are top-of-the-line available in the market.
The Fluke Ti10 IR [24] camera captures thermal images with
a resolution of 400×300 pixels, and is highly sensitive to
temperature variations. The large form factor and high cost
make it a hard choice for our application.

B. Thermal imaging principle

Seebeck described the thermo-electric effect as a voltage
generated proportional to the temperature difference between
two thermo-electrically dissimilar metals, such as copper and
bismuth, and results in a thermocouple [25]. According to the
Stefan-Boltzmann law, the total power radiated by an object
Pobj is given by Equation 1, where Aobj is the surface area, σ
is the Stefan-Boltzmann constant, ϵ is its emissivity and Tobj

is its thermodynamic temperature.

Pobj = AobjϵσT
4
obj . (1)

The net radiation Prad received by the thermopile is equal
to the difference between the power radiated by the object
and the power radiated by the thermopile itself as given by
Equation 2.

Prad = K ′σ(ϵobjT
4
obj − ϵTPT

4
TP ). (2)

The constant K ′ = K sin2 ϕ
2 is dependent on the field-of-

view ϕ of the sensor, K is the Boltzmann constant [26], Tobj

is the temperature of the object and TTP is the temperature
of the thermopile. The voltage generated by the thermopile is
proportional to Prad [4]. This allows temperature measurement
of distant objects when the ambient temperature of the ther-
mopile’s reference junction is known. Because the thermopile
operates on a temperature difference, it becomes selective to
infrared radiation. This concept is the central technology for
our platform.

C. Decimation

Since Fluke Ti10 has a good resolution, we captured thermal
images and decimated them to different pixel resolutions to
evaluate the minimum resolution required to detect life under
debris. The images were taken from distances of 1.5 m to 2 m
from the subject and distributed to 64×64, 16×16, 8×8 and
4×4 pixel resolutions. Fig. 1 shows the decimated images
and a brief comparison with the 8×8 Grid-EYE images. After
analysing and comparing all the decimated images, we found
that a thermal image of 8×8 pixel resolution is sufficient to
detect human presence. Further from Fig. 1d and 1e, it can be
seen that the thermal images from Grid-EYE are comparable
with the Fluke IR images. Hence, we have opted for Grid-EYE
thermal sensors to detect human beings amidst the debris and
rubbles in calamity-struck areas. The idea is also that less pixel
data can help in easy data transmission and also more privacy
awareness.

IV. l-DETECT HARDWARE AND SENSOR
CHARACTERISATION

A. Sensor hardware setup

The l-Detect setup comprises of the following hardware:
nRF52840 chip is programmed to receive the sensed data
from the thermal sensor, process it and transmit it to the
user. nRF52840 is an ultra-low power System on Chip (SoC),
with an Arm Cortex-M4 processor, with 1 MB flash program
memory, and 256 kB RAM on board, to support the sensor
data processing. It also supports Bluetooth Low Energy (BLE),
and a 2.4 GHz wireless system integrating a multiprotocol
2.4 GHz transceiver [27]. We use BLE to send information
about the processed data to the user. The thermal sensor
needs an input voltage of 5 V to operate, whereas the SoC
requires 3.3 V. A power management using LTC3105 DC-
DC Converter is incorporated on our platform. Grid-EYE
is a compact Infra-Red (IR) sensor and is composed of 64
individual thermopile elements arranged in an 8×8 matrix. The
integrated lens in Grid-EYE focuses the infrared in the FoV
onto the sensor elements. This generates voltage differences
between electrodes of individual thermopile elements, which is
converted to temperature information. Grid-EYE’s integrated
ASIC performs the core functions to enable the sensor’s
performance such as pixel readouts, analog amplification, ana-
log to digital conversion, sensitivity correction, correction for
temperature effects, and digital readout [28]. A battery pack
consisting of two 1.65 V AA batteries powers the hardware.
The l-Detect can also be powered by connecting it to the
robotic platform. Fig. 3 shows the l-Detect system powered
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(a) Normal image (b) 64×64 (c) 16×16 (d) 8×8 (e) Grid-EYE 8×8

Fig. 1: Series of thermal images from a subject captured from a distance of 1.5 m - 2 m. The original image is captured on the
Fluke Ti10 IR camera and decimated to 64×64, 16×16, and 8×8 resolutions. The 8×8 Fluke Ti10 image is compared with
the Grid-EYE sensor image

(a) Grid-EYE 8×8 sensor (b) Packaged module

Fig. 2: l-Detect platform

(a) (b) (c)

Fig. 3: (a) and (b) l-Detect mounted on different robotic cars,
(c) Robo car in debris

from the remote controlled car’s battery on which it was
mounted. The microcontroller and the DC-DC converter are
embedded on a single printed circuit board and enclosed in a
module shown in Fig. 2b.

B. Sensor characterization

The Grid-EYE is characterised under different environ-
mental conditions to meet the primary objective of survivor
detection. The colour map of the thermal images is scaled
individually to provide the largest possible contrast. Thus
even a slight spatial temperature variation would help in
contour detection. The colour gradient ranges used are from
black (low temperatures), over red and yellow, to white (high
temperatures). 15 frames of thermal images from the sensor
are considered to do the detection.
Reference junction: The thermopiles rely on the temperature
of a reference junction to interpret the Seebeck voltage accu-
rately. Collocated with this junction is a thermocouple used for
ambient temperature measurement. For reliable measurement,
the thermal time constant and its effect have to be considered.

We found that the first 3 to 4 frames have to be discarded
before using them for the measurement. To verify our claims,
we heated the sensor from behind with a hot air gun and
observed that consistent and reliable readings from all the
pixels were obtained after the 4th frame. The system settled
down to provide the right temperature values as soon as the
back and front sides of the sensor reached an equilibrium.
Pixel energy diffusion: Since the Grid-EYE thermal sensor
has a 60◦ viewing angle, the thermal radiations get diffused
into adjacent pixels and this obfuscates the presence of humans
at a particular spot. However, the pixel diffusion reduces as
the sensor moves closer to the target subject. For instance,
when the head of the person fits completely into one pixel,
the diffusion no more affects the detection possibility.
Skin temperature: While the skin temperature in most cases
is expected to be above the ambient temperature, the measure-
ment sometimes can appear to be lower due to several external
parameters such as distance of the sensor to the object, FoV,
and resolution of the sensor. In the case of human detection,
it measures the skin temperature, which varies relative to
the ambient temperature, although not linearly. Additionally,
different body parts radiate different amounts of heat; the head
and the torso being the most prominent of all. The Grid-EYE
does not measure the core body temperature of objects but
rather measures the surface temperature.
Ambient noise: Noise is a major factor that affects the
detection process. The noise can be external, caused due to
the environment, or internal, caused by the sensor due to the
reference junction. Depending on the objects that are present
in the FoV of the Grid-EYE, it can be difficult to distinguish
a human from a heat source available close to the sensor
because human signature diffuses into the background. To
assess the ambient noise, a point of reference is chosen. In
the case of the Grid-EYE, this reference can be the onboard
temperature sensor, which is located in the proximity of the
reference junction of the thermopile matrix. Eliminating noise
was a challenging part and it was dealt with in the detection
algorithm discussed in the next section.
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Fig. 4: Human detection model in the l-Detect platform

V. l-DETECT SENSING AND DETECTION METHODOLOGY

In this work, our approach is to focus on accurate human
detection under debris. The human body can be partially buried
or obstructed and the postures are restricted to sleeping, sitting,
standing and crouching. The proposed algorithm suggests
the presence of a human by estimating the person’s skin
temperature.

A. Algorithms

We noticed that the detection accuracy is highest if the
body is fully exposed and if the robotic platform carrying the
l-Detect could go closer to the person. We have developed
significantly lightweight algorithms that can categorize as
close to the ground truth as possible. Our l-Detect system
would communicate only in cases when it recognises the
human contour with high probability. We have three sets of
algorithms – smDetect, peakDetect and a classification model.
smDetect uses simple second moments (SM) of the pixel data
over 15-20 frames to cancel out the noise and locate the
pixel where we could find the thermal projection of a person.
By default smDetect results are used for human detection
and in the event when the result is close to the noise floor,
peakDetect is used. In either case, the final step is to apply
the classification algorithm to weed out false positives. Fig. 4
captures all the detection algorithms and methodologies to
detect human life.

1) smDetect: We found empirically that an average of 15
SMs are sufficient to detect human life. To establish the
threshold, the algorithm takes all the 64 pixel values, and
ambient temperature and returns the SM values. Further, we
repeat this operation about 10 - 15 times with a small delay
between the frames to remove the clutter noise emitted from
other warm objects in the surroundings. It is safe to assume
that in the initial 15 frames that were collected, humans were
not present. We declare the presence of humans if the mean
SM is greater than the specified threshold. The working of
the SM algorithm is given in Algorithm 1. The limitation of
this algorithm is its inability to detect human life whenever
the temperature is close to the background temperature. For
example, at a temperature of 32◦ C, both humans and the

background are at the same temperature. We also found the
algorithm has limited efficacy when less than 20% of the body
is exposed under the debris.

Algorithm 1 smDetect Algorithm

1: Input: First 15 frames Fi, i = {1, 2, . . . , 15};
2: Compute second moment for each frame, SMi, ∀i =

1, 2, . . . , 15 frames;
3: Threshold: Th = mean(SMi);
4: Collect new mean SMr, for every set of 15 running

frames;
5: if SMr > 2×Th then
6: send “Found” signal from BLE to the user;
7: else if 2×Th < SMr < 2×Th then
8: “More Processing Required” to the user;
9: else

10: Th = 0.5×Th + 0.5×SMr (update the noise frames)
11: end if
12: GOTO Step 4

2) peakDetect: This algorithm is enabled automatically
when the SM value is close to the detection threshold.
peakDetect works on IDCT-FFT by identifying prominent
peaks that indicate the presence of humans. We found that
21 frames are required to reliably establish human presence.
Algorithm 2 explains peakDetect to identify peaks. In each

Algorithm 2 peakDetect Algorithm

1: Input: 21 frames of Fj , where F = {x1, x2, . . . , x64},
j = {1, 2, . . . , 21};

2: Compute Fm
j = {x1, x2, . . . , x64} - mean(Fj), for 21

frames;
3: Take Yj = abs(FFT (IDCT{Fm

j })), where Yj is an array
of 21 samples;

4: Find peak, P = max{Yj};
5: Count Cj for each frame, Fj , samples in Yj > 0.75P ,

j = {1, 2, . . . , 21};
6: if Cj > 5 then
7: Mark frame Mj = 0;
8: else
9: Mark frame Mj = 1;

10: end if
11: if

∑
j Mj > 11 then

12: send “Found” signal to the user;
13: else
14: GOTO Step 1 for next 21 frames;
15: end if

frame, we subtract the mean pixel value from the individual
pixels.

B. Classification model

To eliminate false negatives from peakDetect we have
further incorporated ML model. A false negative is the case
when the peakDetect gives ‘no life’ even when life is present.
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Such a scenario occurs when the body part exposed is less than
20%. Among the several available multi-class classifiers such
as Naive Bayes, KNN, Decision Tree and SVM, we found that
Support Vector Machine (SVM) provided the best accuracy.
The SVM parameters like kernel selection such as the Radial
Basis Function, ‘C’ and ‘γ’ (evaluated for 2, and 0.0625
respectively), were determined using “grid search” with 5-fold
cross validation [29].

VI. EVALUATION AND RESULTS

To study the efficacy of our algorithms, we conducted
a series of experiments in harsh conditions that l-Detect
would possibly encounter. Since ambient temperatures vary
over the day, we collected extensive data throughout the day.
Furthermore, evaluation was considered for two categories
namely (a) Debris-based experiments and (b) Non-Debris-
based experiments are discussed in subsections VI-B and
VI-C.

A. Controlled experiments

We conducted exhaustive experiments with l-Detect to study
the detection of life at various ambient temperatures under
a controlled environment. The ambient temperature range
considered was 16◦ C – 32◦ C. For each data point, the
behavior of the human skin temperature was studied. From
our experiments, it is observed that when the ambient is
between 22◦ C – 27◦ C, the skin temperature is between
30◦ C – 32◦ C. For higher ambient, we noticed that the skin
temperature reaches a maximum of about 33◦ C. Furthermore,
at temperatures between 16◦ C – 18◦ C, the skin temperature
reduces considerably and is only a few degrees higher than
the ambient, following the thermo-regulation of the body [30].
It is important to note that under debris, the whole body
may not be visible to l-Detect. Before the data collection, the
subjects were in the room for about 15 to 20 minutes to get
adjusted to the room temperature. This is usually the case
when a disaster strikes without prior warning. To mimic the
real world, experiments were conducted with full as well as
partial body parts exposed to l-Detect. Different postures such
as crouching, sitting and standing were considered for data
collection. Evaluations were carried out for all these postures
at different ambient temperatures. The data was collected from
various age groups with different body builds. Furthermore,
data was collected for partially exposed human body parts
like arms without cloth, arms with cloth, head, legs without
cloth, legs with cloth, and torso. The isolation of body parts
was done using a cardboard coffin. The l-Detect sensor system
was placed at different distances between 0.5 m to 4.5 m in
steps of 0.25 m from the subject.

B. Debris based experiments

Real-world scenarios include partially collapsed structures
and debris. Our experiment included the subject’s limb par-
tially buried under the debris. We followed safety guidelines.
The pictorial representation of the same is shown in Fig. 5
where a part of the arm and leg are exposed. The robotic toy

car with l-Detect was driven into the debris and moved around
the subjects at different distances from 0.5 m to 2.25 m in steps
of 0.25 m. For each distance, 50 sets of data were collected
and tested to evaluate the detection probability.

(a) Arm under debris (b) Leg under debris

Fig. 5: Experiments in the debris environment (a) arm under
a pile of debris; (b) leg under a pile of debris

Several false alarms and misdetections were observed in a
debris environment, typically from exposed heated metal rods.
Other false alarms include electronic gadgets, narrow beams
of sunlight (causing concentrated heat spots), etc. as shown in
Fig. 6. Our proposed algorithm was re-trained with these data
to eliminate these false positives.

(a) AC (b) Heater (c) Corridor (d) Tubelight (e) Sunshine

Fig. 6: Cases where thermal images can be interpreted in-
correctly: (a) Air conditioning system; (b) Room heater;
(c) Building’s corridor; (d) Fluorescent lamp; (e) Outdoor view
into trees and bushes. For (a), (b), and (d) due to a human-
like thermal signature, a misdetection was recorded and was
successfully filtered as too warm

C. Non-debris based experiments

Tests were conducted to evaluate the efficacy of l-Detect
under a non-debris environment (outdoors, halls, corridors
and rooms). The experiments included several miscellaneous
objects like furniture, doors, electronic gadgets, etc. The data
was collected with subjects in different postures at different
places with varied distances from l-Detect.

Figures [7–10] depicts the second moment (SM) values
of frames with and without humans in various postures at
varying temperatures. Fig. 7 shows the results when the torso
is exposed. The Y-axis indicates the SM and the X-axis is
the distance between the subject and the l-Detect platform.
The presence of life is most pronounced when the temperature
differential is the highest. Fig. 8 shows the SMs when the head
is exposed. In this scenario, the life is detected by smDetect
for temperatures up to 24◦C, and for higher temperatures
and distances beyond 1.25 m, peakDetect algorithm is used.
Fig. 9 and Fig. 10 provide the SM for sitting and crouching
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Fig. 7: Plot of human detection when only the torso is exposed
across various distances and temperatures
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Fig. 8: Plot of human detection with only head exposed at
various distances and temperatures

posture. Since more than 50% of the body is exposed to l-
Detect the life detection probability is prominent. We also
observed that with the increase in ambient temperature, the SM
value with humans starts decreasing, making it challenging to
differentiate between noise frames and human subject frames.
Table III shows the detection probability achieved from the
trained ML model for different body postures and parts with
varied distances. The inference pattern from the ML model
indicates a near 100% life detection up to the range of
2 m. Beyond 2 m, the detection probability reduces to around
90%. We also observed that the SM does not significantly
vary between 2.0 to 4.0 m. Our experiments show that head
and torso have good detection probability, followed by limb
detection.
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Fig. 9: Plot of human detection in sitting position at various
distances and temperatures
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Fig. 10: Plot of human detection in crouching position at
various distances and temperatures

TABLE III: Detection probability using SVM at ambient
temperature of 25◦C for different postures and distances

Position/
Distance

Sitting Crouching Standing Head Torso Limbs

0.5 m 100 100 100 100 100 100

1.0 m 100 98 100 97 100 100

1.5 m 99 98 100 92 93 95

2.0 m 98 97 100 89 92 93

2.5 m 98 97 100 89 87 88

3.0 m 97 96 100 84 87 88

3.5 m 94 95 100 77 88 88

4.0 m 92 95 100 73 85 87

4.5 m 90 94 100 72 73 72

VII. CONCLUSIONS

Many lives are lost in the aftermath of natural disasters
because of a lack of capability to find survivors trapped under
debris. There is difficulty in transporting equipment due to dis-
ruption in road infrastructure. Rescue workers systematically
clear the debris looking for survivors. Since this is a time-
consuming activity more lives are lost in the meanwhile. In
this work, l-Detect aims to detect and notify the search and
rescue team about the survivors trapped under debris. l-Detect
is a thermopile sensor-based embedded system which is low-
cost (around US $30), lightweight (around 20 gm) with a small
form factor, that can be mounted on any tiny robotic plat-
form. Our embedded platform houses three simple algorithms
including a machine learning inference model to detect life
under debris. We characterize our sensor system for various
scenarios, at different ambient temperatures. The exhaustive
data collection and data evaluation of our system under close
to real-life scenarios in varied ambient temperatures show that
l-Detect can work over a wide range of temperatures between
16◦ C to 30◦ C. l-Detect is robust enough to detect humans
with only partial exposure of human body parts. The detection
probability is between the range of 85% to 100%. In cases
when the ambient temperature is less than 25◦ C, the detection
probability is close to 100% within a range of 1.5 m.
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