

Delft University of Technology

Test Confessions: A Study of Testing Practices for Plug-in Systems

Greiler, MS; van Deursen, A; Storey, MA

DOI
10.1109/ICSE.2012.6227189
Publication date
2012
Document Version
Accepted author manuscript
Published in
International Conference on Software Engineering (ICSE)

Citation (APA)
Greiler, MS., van Deursen, A., & Storey, MA. (2012). Test Confessions: A Study of Testing Practices for
Plug-in Systems. In M. Glinz, G. Murphy, & M. Pezzè (Eds.), International Conference on Software
Engineering (ICSE) (pp. 244-254). IEEE. https://doi.org/10.1109/ICSE.2012.6227189

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE.2012.6227189
https://doi.org/10.1109/ICSE.2012.6227189

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Test Confessions: A Study of Testing
Practices for Plug-in Systems

Michaela Greiler, Arie van Deursen
and Margaret-Anne Storey

Report TUD-SERG-2011-010

SERG

TUD-SERG-2011-010

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2011, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Test Confessions: A Study of
Testing Practices for Plug-In Systems

Michaela Greiler, Arie van Deursen
Delft University of Technology

{m.s.greiler‖arie.vanDeursen}@tudelft.nl

Margaret-Anne Storey
University of Victoria, BC, Canada

mstorey@uvic.ca

Abstract—Testing plug-in-based systems is challenging due
to complex interactions among many different plug-ins, and
variations in version and configuration. The objective of this
paper is to increase our understanding of what testers and
developers think and do when it comes to testing plug-in-
based systems. To that end, we conduct a qualitative (grounded
theory) study, in which we interview 25 senior practitioners
about how they test plug-in applications based on the Eclipse
plug-in architecture. The outcome is an overview of the testing
practices currently used, a set of identified barriers limiting
test adoption, and an explanation of how limited testing is
compensated by self-hosting of projects and by involving the
community. These results are supported by a structured survey
of more than 150 professionals. The study reveals that unit
testing plays a key role, whereas plug-in specific integration
problems are identified and resolved by the community. Based
on our findings, we propose a series of recommendations and
areas for future research.

Keywords-Eclipse; grounded theory; plug-in architectures;
open source software development

I. INTRODUCTION

Plug-in architectures permit the composition of a wide
variety of tailored products by combining, configuring, and
extending a set of plug-ins [4], [14]. Many successful plug-
in architectures are emerging, such as Mozilla’s Add-on
infrastructure1 used in the Firefox browser, Apache’s Maven
build manager,2 the WordPress extension mechanism,3 and
the Eclipse4 plug-in platform.

Testing component-based systems in general [19], [22],
[27], and plug-in-based products in particular, is a daunting
task; the myriad of plug-in combinations, versions, interac-
tions, and configurations gives rise to a combinatorial explo-
sion of possibilities. Yet in practice, the systems assembled
from plug-ins are widely used, achieving levels of reliability
that permit successful adoption. So which test techniques are
used to ensure plug-in-based products have adequate quality
levels? How is the combinatorial explosion tackled? Are
plug-in specific integration testing techniques adopted? For
what reasons are these approaches used?

1https://developer.mozilla.org/en-US/addons
2http://maven.apache.org
3http://wordpress.org/extend/plugins
4http://www.eclipse.org

Answering questions like these calls for an in-depth study
of test practices in a community of people working on plug-
in-based applications. In this paper, we present such a study,
revealing what Eclipse community practitioners think and do
when it comes to testing plug-in based systems.

Eclipse provides a plug-in-based architecture that is
widely used to create a variety of extensible products. It
offers the “Rich Client Platform” to build plug-in-based ap-
plications and a series of well-known development environ-
ments [23]. Eclipse is supported by a global community of
thousands of commercial, open and closed source software
professionals. Besides that, the Eclipse case is interesting as
it benefits from a rich testing culture [6], [10].

We set up our investigation as an explorative study.
Thus, instead of starting out with preset hypotheses on how
testing is or should be done, we aimed to discover how
testing is actually performed, why testing is performed in a
certain way, and what test-related problems the community
is facing. Therefore, we used grounded theory [1], [5] to
conduct and analyze open interviews (lasting 1–2 hours)
with 25 senior practitioners and thought leaders from the
Eclipse community regarding their test practices.

Our results show a strong focus on unit testing, while the
plug-in specific testing challenges and practices are tackled
in an ad-hoc and manual manner. Based on our results, we
identified barriers which hinder integration testing practices
for plug-in systems. Furthermore, we analyzed how the lack
of explicit testing beyond the unit scope is compensated for,
for example through self-hosting of projects and involvement
of the community. We challenged our outcomes through
a separate structured survey, in which 151 professionals
expressed their (dis)agreement with specific outcomes of
our study. Furthermore, we used the findings to propose a
series of recommendations (at the technical as well as the
organizational level) to improve plug-in testing, community
involvement, and the transfer of research results in the area
of integration testing.

The paper is structured as follows. In Section II, we
sketch the challenges involved in plug-in testing. Then, in
Section III, we layout the experimental design and the steps
we conducted as part of our study. In Sections IV–VII we
present the key findings of our study, including the test

1

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 1

practices used, the barriers faced, and the compensation
strategies adopted. In Sections VIII–IX, we reflect on our
findings, addressing implications as well as limitations of our
research. We conclude with a survey of related work (Sec-
tion X), and a summary of our key findings (Section XI).

II. PLUG-IN SYSTEMS: CAPABILITIES AND CHALLENGES

Plug-in-based systems rely on plug-in components to ex-
tend a base system [14], [23], [24]. As argued by Marqaurdt
[14], a base system can be delivered almost “nakedly”, while
most user value is added by plug-ins that are developed
separately, extending the existing applications without the
need for change. In more sophisticated plug-in architectures,
plug-ins can build upon each other, allowing new products
to be assembled in many different ways. In contrast to static
libraries, plug-ins can be loaded at runtime. Further, plug-
ins make use of the inversion of control principle to allow
customization of a larger software system.

This means that plug-in systems can be complex composi-
tions, integrating multiple plug-ins from different developers
into one product, and raising concerns about the compati-
bility of their components [19], [22], [27]. Incompatibility,
be it because of combinations of plug-ins or versions, can
be hard to strive against, and may restrict the benefits plug-
in systems offer. For example, many users of the popular
WordPress blog-software suffer from compatibility issues,
and according to their own statement, “The number one
reason people give us for not upgrading to the latest version
of WordPress is fear that their plugins won’t be compat-
ible.”5 There are many resources on the Internet stating
incompatible plug-in combinations.6 Still, incompatibility of
plug-in combinations is an open issue.7

These same challenges also occur with Eclipse where
combinations of plug-ins or versions can be incompatible.8

For example, while resolving a Mylyn issue and tackling an
integration problem with a specific Bugzilla version, a user
states: “Thanks, but I think we have given up on Eclipse
and Bugzilla integration.”9 On project pages, phrases such
as: “However we can not guarantee compatibility with a
particular plug-in combination as we do not test with all
possible connector combinations”10 commonly appear.

Such problems exist in many plug-in systems, which
sparked our interest and led us conduct a thorough inves-
tigation.

III. EXPERIMENTAL DESIGN

Testing plug-in-based systems raises a number of chal-
lenges related to the interactions between plug-ins, different

5http://wordpress.org/news/2009/10/plugin-compatibility-beta
6For example, plug-ins incompatible with Onswipe http://wordpress.

org/support/topic/plugin-onswipe-list-of-incompatible-plugins-so-far
7http://www.wpmods.com/wordpress-plugin-compability-procedure
8To mention only a few bugs on Bugzilla: 355759, 292783, 196164
9Bug Identifier: 268207

10http://sourceforge.net/apps/mediawiki/qcmylyn

configurations of the plug-ins, and different versions of the
plug-ins used. The overall goal of this paper is to increase
our understanding of what testers and developers think and
do when it comes to testing plug-in-based systems.

A. The Eclipse Plug-In Architecture

As the subject of our study, we selected the Eclipse plug-
in framework11 along with its community of practitioners.
We selected Eclipse for a number of reasons.

First, Eclipse provides a sophisticated plug-in mechanism
based on OSGi12 and to that is enhanced with the Eclipse-
specific extension mechanism. It is used to build a large
variety of different applications,13 ranging from widely
used collections of development environments, to dedicated
products built using the Rich Client Platform (RCP). Many
of these plug-in-based products are large, complex, and
industrial strength.

Second, there is a large community of professionals
involved in the development of applications based on the
Eclipse plug-in framework. As an example, approximately
1,000 developers meet at the annual EclipseCon event alone.

Third, the Eclipse community has a positive attitude
towards testing, as exemplified by the presence of substantial
test suites (see our analysis of the Mylyn and eGit test suites
[10]) and books emphasizing the test-driven development of
plug-ins [6]. Moreover, Eclipse has explicit support for the
testing of plug-ins, through dedicated Plug-in Development
Environment (PDE) tests.

Finally, the Eclipse framework, as well as the many
projects built upon it, are open source. This makes it easy
to inspect code or documentation, as well as to share
findings with other researchers. Since the Eclipse platform
is also used for closed source commercial development, it is
possible to compare open and closed source testing practices.

B. Research Questions

Our investigation of the testing culture for plug-in-based
systems revolves around four research questions. The first
three we incorporated in the initial interview guidelines.
During our interviews, many professionals explained how
they compensate for limited testing, which helped to refine
the interview guidelines and led to the last research question.

RQ1: Which testing practices are prevalent in the testing
of plug-in-based systems? Do these practices differ
from non-plug-in-based systems?

RQ2: Does the plug-in architecture lead to specific test
approaches? How are plug-in specific integration
challenges, such as versioning and configurations,
tested?

RQ3: What are the main challenges experienced when
testing plug-in-based systems?

11http://www.eclipse.org
12http://www.osgi.org
13http://en.wikipedia.org/wiki/List of Eclipse-based software

2

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

2 TUD-SERG-2011-010

RQ4: Are there additional compensation strategies used
to support the testing of plug-ins?

C. Research Method

This section outlines the main steps of our experimental
design. The full details of our setup can be found in the
corresponding technical report [11, Appendix A].

We started with a survey of existing approaches to plug-
in testing. We studied over 200 resources about the testing
of plug-in systems in general, and the Eclipse plug-in
architecture in particular. Information was drawn both from
developer forums and the scientific literature. Most of the
articles found were concerned with technical problems, such
as the set-up of the test environment. They did not, however,
provide an answer to our research questions.

Next, we conducted a series of interviews with Eclipse
experts, each taking 1–2 hours. Interviews were in Ger-
man or English, which we subsequently transcribed. The
questions were based on a guideline, which was refined
after each interview. We followed a grounded theory (GT)
approach, an explorative research method originating from
the social sciences [8], but increasingly popular in software
engineering research [1]. GT is an inductive approach, in
which interviews are analyzed in order to derive a theory.
It aims at discovering new perspectives and insights, rather
than confirming existing ones.

As part of GT, each interview transcript was analyzed
through a process of coding: breaking up the interviews into
smaller coherent units (sentences or paragraphs), and adding
codes (representing key characteristics) to these units. We
organized codes into concepts, which in turn were grouped
into more abstract categories. To develop codes, we applied
memoing: the process of writing down narratives explaining
the ideas of the evolving theory. When interviewees pro-
gressively provided answers similar to earlier ones, a state
of saturation was reached, and we adjusted the interview
guidelines to elaborate other topics.

The final phase of our study aimed at evaluating our
outcomes. To that end, we presented our findings at
EclipseCon,14 the annual Eclipse developer conference. We
presented our findings to a broad audience of approximately
100 practitioners during a 40-minute extended talk, where
we also actively requested and discussed audience feedback.

Furthermore, we set up a survey to challenge our theory,
which was completed by 151 practitioners and EclipseCon
participants. The survey followed the structure of the result-
ing theory: the full questionnaire is available in the technical
report [11].

D. Participant Selection

For the interviews, we carefully selected knowledgeable
professionals who could provide relevant information on

14http://www.eclipsecon.org/2011/sessions/?page=sessions&id=2207

Table I
DOMAINS, PROJECTS, AND COMPANIES INVOLVED IN THE INTERVIEWS

Domain Project and/or Company
IDEs, Eclipse Distribution Yoxos, EclipseSource
SOA Mangrove, SOA, Inria
GUI Testing Tool GUIDancer, Bredex
Version Control Systems Mercurial, InlandSoftware
Modeling xtext, Itemis
Modeling IMP, University of Amsterdam
Persistence layer CDO
Domain Specific Language Spoofax, TU Delft
BPM Solutions GMF, BonitaSoft
GUI Testing Tool Q7, Xored
Coverage Analysis EclEmma
Modeling EMF, Itemis
BPM Solutions RCP product, AndrenaObjects
Scientific data acquisition OpenGDA, Kichacoders
Runtime platform RAP, EclipseSource
Task Management system Mylyn, Tasktop
Embedded Software MicroDoc
RCP product EclipseSource

testing practices. We contacted them by participating in
Eclipse conferences and workshops, through blogging, and
via Twitter. Eventually, this resulted in 25 participants
from 18 different companies, each working on a different
project (identified as P1–P25 in this paper), whose detailed
characteristics are provided in [11, Appendix A]. All have
substantial experience in developing and/or testing Eclipse
plug-ins or RCP products. 12 participants are developers, 11
are project leads, 1 is a tester and 1 is a test manager. The
respective projects are summarized in Table I.15

In the survey phase, we aimed to reach not only the
experts, but the full Eclipse community. To that end, we
set up an online survey and announced it via mailing lists,
Twitter, and our EclipseCon presentation. This resulted in
151 participants filling in the questionnaire. The majority of
the respondents were developers (64%), followed by project
leads or managers. Only 6% were testers or test managers.

E. Presentation of Our Findings

In the subsequent sections, we present the results of our
study, organized in one section per research question. For
each question, we provide relevant “quotes” and codes,
make general observations, and list outcomes of the eval-
uative survey.

In the technical report [11], we provide additional data
supporting our analysis. In particular, we provide the coding
system we developed, comprising 4 top-level categories, 12
subordinate concepts, and 1-10 basic codes per concept,
giving a total of 94 codes. For each code, we give the name
as well as a short one-sentence description. Furthermore, the
technical report provides 15 pages of key quotes illustrating
the codes. Last but not least, we provide the full text of the
survey, as well as response counts and percentages.

15Please note that for reasons of confidentiality not all companies and
projects participating at the interviews are listed.

3

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 3

IV. TESTING PRACTICES

Our first research question seeks to understand which
practices are used for testing plug-in-based systems, and
which software components (i.e., test scope) these address.

A. Open Versus Closed Development Setting

Approximately half of the participant projects are open
source, with the other half being closed source projects
(often for a single customer). The participant companies
that develop open source software typically also work on
closed source projects. The purpose of software development
is purely commercial for all but two projects. Open source
projects count, for example, on selling functional extensions
for the open source product in supplementary products.

Most of our participants are paid to develop open source
software. A few develop open source products in their free
time, but profit personally from the marketing effect, e.g.,
for their own consultancy company.

In the survey, 21% of the respondents indicated that they
develop pure open source, 47% pure closed source, and 32%
indicate that they work on both types of projects.

B. Test Responsibilities

The interviews reveal that it is a common practice to have
no dedicated test team, but that testing is performed by the
developers themselves (P1, P2, P4, P5, P6, P7, P8, P9, P12,
P13, P15, P16, P17, P18, P19). P5 explains: “Tester and
developer, that’s one person. From our view, it does not make
sense to have a dedicated test team, which has no idea about
what the software does and can only write some tests.”

Only a few projects report to have dedicated testers,
either within the development team or in a separate quality
assurance team (P3, P10, P11, P14, P21). P21 explains:
“Automated tests are only developed by developers. Manual
testing is done partly [...] Regression testing is done by
someone from the customer.”

Both practices are used in open and closed source projects.
Respondents to the survey indicate that closed source
projects are more likely to have dedicated teams (41%) than
open source or hybrid projects (24%).

C. Unit Tests

Automated unit tests are very popular, probably because
in the majority of the projects, developers are responsible
for testing. The teams of P1, P4, P7, P13, P16, P20, and
P22 use unit testing as the only automated form of testing;
all other forms are manual. P20 gives the strongest opinion:
“We think that with a high test coverage through unit tests,
integration tests are not necessary.” And P18 says: “At our
company, testing is quite standard. We have different stages.
We have unit testing, and that’s where we put the main effort
– at least 70% of the total expenses.” Also P15 reports: “The
majority of the tests are written with JUnit, and the main
test suites comprise tests that do not depend on Eclipse.”

The majority of the participants share P14’s opinion: “Try
to get to a level that you write unit tests, always, whenever
you can. [...] at max. you use one integration or PDE test
to probe the code. Ultimately, unit tests are our best friends,
and everything else is already difficult.”

Participants are aware that unit testing is not always
applicable. For projects that rely solely on unit testing,
this has visible implications. As P20 confirms: “We try to
encapsulate the logic as much as possible to be able to test
with unit tests. What cannot be encapsulated is not tested.”

D. Beyond Unit Testing

There are many other testing practices used, such as
integration, GUI, and system testing, but many participants
do not describe them as their focus or key practice.

The second most applied techniques are manual and
automated integration testing (P3, P5, P6, P8, P10, P11, P12,
P14, P15, P17, P18, P19, P21). The PDE test framework
is most commonly used for automating integration testing.
Participants indicate that they use integration tests for test-
ing server-side logic, embedded systems, and third-party
systems connected through the network. Integration tests
also include tests indirectly invoking plug-ins throughout the
ecosystem. In Section V, we will see that PDE tests are often
used in place of unit tests.

Successful adoption and active use of automated GUI
testing is limited to four projects. Many participants see
alternative solutions to the “expensive” (P15) automated
GUI testing approaches by keeping the GUI as small as
possible and by decoupling the logic behind a GUI from the
GUI code as much as possible (P13, P16, P17, P20, P23).
As P13 puts it: “We try to make a point of surfacing as little
visible stuff in the UI as possible.” In summary, the degree
of adoption, and especially automation, decreases drastically
for test practices with a broader scope.

The survey, aimed at the broader Eclipse community,
enquires about test effort and the level of automation used
for unit, integration, GUI, and system testing. The answers
suggest a more or less balanced distribution of total effort
per test form, but a decrease in automation level. Thus, as
illustrated in Figure 1, automation drops from 65% for unit,
to 42% for integration, to 35% for GUI, and to only 19%
for system testing. 37% of the respondents indicate they rely
solely on manual testing at the system scope.

What consequences does this have for integration testing?
Do practitioners address plug-in specific characteristics dur-
ing integration? The findings are described in the following
section.

V. PLUG-IN SPECIFIC INTEGRATION TESTING

Our next question (RQ2) relates to the role that the plug-
in nature plays during testing, and to what extent it leads to
specific testing practices.

4

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

4 TUD-SERG-2011-010

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Unit Testing Integration Testing GUI Testing System Testing

fully automated main effort test automation main effort manual only manual testing I don't know

Figure 1. Test automation for each test practice

A. The Role of PDE Tests

PDE tests are designed to test plug-in-based Eclipse
applications. They are JUnit tests using a special test runner
that launches another Eclipse instance in a separate virtual
machine. This facilitates calls to the Eclipse Platform API,
as well as launching plug-ins during the test. Furthermore,
the “headless” execution mode allows tests to start without
user-interface components.

Participants often use PDE tests for unit testing purposes.
According to P1: “The problem begins when a JUnit test
grows into a PDE test, because of the dependencies on the
workbench.” And P21 states: “Our PDE tests do not really
look at the integration of two components. There are often
cases where you actually want to write a unit test, but then
it’s hard to write, because the class uses something from the
workbench.” Others also report that they use integration tests
for testing legacy code, and P14 reports to “use integration
tests to refactor a code passage, or to fix a bug, when
you cannot write a unit test. Then, at least you write an
integration test that roughly covers the case, to not destroy
something big. That, we use a lot.”

We next ask, since Eclipse is a plug-in architecture, are
there plug-in specific aspects to consider for integration
testing?

B. Plug-In Characteristics

In response to the interview questions regarding the
influence plug-in architectures have on testing, participants
come up with a variety of answers. Most of the participants
consider plug-in testing as different from testing standalone
Java applications. Only P8 and P10 report to not see any
influence and that testing of plug-in systems is the same as
testing monolithic Java applications.

The most often recognized difference is the need to have
integration tests (P9, P14, P12, P15, P20). P14 thinks that
integration testing becomes more important in a plug-in-
based set-up because: “We have to test the integration of
our code and the Eclipse code, [...] And then, you test in a
way differently, [...] you have more test requirements, there
are more players in the game.”

Practices differ in the strategies participants use to test
plug-in systems and the extension mechanism. P2 says:

“I am not sure if there is a need to test if extensions
correctly support the extension point, because it is mostly
a registration thing.” Also, P13 does not address the plug-
in aspect directly, but says: “Our test cases make use of
extension points, so we end up testing if extension point
processing is working correctly.” P19 presents the most
advanced technique to testing by stating: “In some cases,
we have extensions just for testing in the test plug-ins.
Either the extensions are just loaded or they implement some
test behavior.” P19’s team also recommends that developers
writing extensions should look at the relevant tests because
those tests demonstrate how to use the API.

P12, P16 and P19 report that the extension mechanism
makes the system less testable. P16 says: “We tried a lot.
We test our functionality by covering the functionality of the
extension point in a test case, i.e., testing against an API.
The small glue code where the registry gets the extension,
that’s not tested, because it is just hard to test that. And
for these untested glue code parts we had the most bugs.”
And P19 says: “Testing is more difficult, especially because
of the separate classloaders. That makes it complicated to
access the internals. Therefore some methods which should
be protected are public to enable testing.”

Participants associate many different aspects, such as
improved modularization capabilities for production and test
code, with plug-in architectures and testing. Surprisingly,
only a few participants mention the extension mechanisms,
and none of the participants mention OSGi services, runtime
binding or combinatorial problems for plug-in interactions.
This finding leads to our follow-up questions for specific
plug-in testing techniques.

C. Testing Cross-Product Integration

To gain a better understanding of the participants’ integra-
tion testing practices, we ask how they test the integration
of their own plug-ins with third-party plug-ins (i.e. cross-
product integration testing), and how they deal with the
corresponding combinatorial problem.

To our surprise, none of the projects report to have
automated tests to ensure product compatibility. Many par-
ticipants report that products “must play nicely with each
other”16 and that there are no explicit tests for different
combinations.

Does this mean that cross-product integration problems do
not occur? The answers to this question split the participants
in two opposing camps. One group believes that these
problems should not happen (P4, P5, P8, P12, P13, P14,
P17), but more than half of the participants report to have
actually experienced such problems (P2, P6, P7, P9, P10,
P11, P15, P16, P18, P19, P20, P24, P25). Some even
pointed us directly to corresponding bug reports.17

16http://eclipse.org/indigo/planning/EclipseSimultaneousRelease.php
17Bug Identifier: 280598 and 213988

5

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 5

0% 10% 20% 30% 40% 50%

yes, we have AUTOMATED tests for this.

yes, but in an ad-hoc manner.

yes, we address that very thoroughly.

yes, this is done by the user community.

Figure 2. Cross-Product Integration Testing

Participants report that cross-product integration testing is
mainly performed manually, or in a bug-driven way (P15,
P16, P18, P19). P18 explains: “We handle problems between
several plug-ins in a bug-driven way. If there is a bug we
write a test, but we do not think ahead which problems
could there be.” And P10 reports: “There are no specific
types of tests for [integrating multiple plug-ins], but it is
covered by the end user tests, and by the GUI tests, which
communicate amongst plug-ins, but the internal coverage is
more random.”

In the open source domain, participants report that the
community reports and tests for problems with plug-in
combinations (P6, P9, P13, P16, P19, P20). As P19 says:
“we have no automated tests for cross-product problems,
but we do manual testing. Then, we install [product 19]
with [several other plug-ins] or with other distributions, like
MyEclipse, to test for interoperability.” And then he adds:
“The user community plays an important role in testing for
interoperability.” User involvement emerged as an important
strategy for dealing with combinatorial complexity, as we
will see in Section VII.

In the survey, 43% of the participants indicate that they
do not test the integration of different products at all. Out of
the 57% who stated that they test cross-product integration,
42% claim to address this in an ad-hoc manner, and only
3% claim to address this issue thoroughly (see Figure 2).

Thus, testing combinations with third-party plug-ins is not
something participants emphasize. This leads us to ask, how
are they ensuring compatibility of their plug-ins with the
many different versions of the Eclipse platform?

D. Testing Platform and Dependency Versions

Only a few participants report testing for different ver-
sions of the Eclipse platform, typically the most currently
supported version. For most of the other participants, P13’s
assessment reflects what is done in practice: “A lot of people
put version ranges in their bundle dependencies, and they
say we can run with 3.3 up to version 4.0 of the platform.
But I am willing to bet that 99% of the people do not test that
their stuff works, they might assert it, but I do not believe
that they test.”

However, in addition to the platform, plug-ins have spe-
cific versions and stipulate the versions of dependencies they
can work with. How is compatibility for version ranges of
plug-in dependencies tested?

0% 10% 20% 30% 40%

yes, we have automated tests for this.

yes, but limited to e.g. two versions.

yes, we address that very thoroughly.

yes, this is done by the user community.

Figure 3. Testing versions of plug-in dependencies.

0% 10% 20% 30% 40% 50%

yes, we have automated tests for this.

yes, but limited to e.g. two versions.

yes, we address that very thoroughly.

yes, this is done by the user community.

Figure 4. Testing Eclipse platform versions.

In reality, many participants report that they test with one
fixed version for each dependency (P8, P9, P11, P13, P14,
P15). The minority of practitioners report that they have two
streams of their systems. One stream for the latest versions
of dependencies, and the other one for the dependency
versions used in the stable release.

Other projects report that they even ship the product
with all dependencies and disable the update mechanisms.
Updating dependencies to newer versions is often reported
as a challenge. Many try to keep up to date, though some
report to update rarely (P9, P11, P14). As P14 puts it: “We
always have one specific version for platform and libraries
that we use. If we update that, that’s a major effort. That we
do only rarely.” And P9 says: “We use a very old version
of the main plug-in we depend on. Sometimes we update,
but there is always the risk that it will break something and
then you have to do extensive [manual] testing.”

Testing version compatibility, as well as combinations of
systems, is more often applied to third-party systems (i.e.
outside the Eclipse ecosystem). For example, P10, P17, and
P19 report to emphasize testing different versions of Eclipse-
external third-party systems during automated testing, but
not for Eclipse plug-ins they rely on or build upon.

Also, the majority of survey respondents indicate that
they do not test version compatibility of either the platform
(55%) or of plug-in dependencies (63%). Out of those testing
different dependency versions, only 33% have automated
tests, 36% indicate to limit it to a set number of versions,
and only 10% test this thoroughly, as illustrated in Figure 3.
Testing platform versions yields similar results: out of the
45% who indicate they test different versions, 29% have
automated tests, 45% limit testing to a set number of
versions, and only 4% indicate to address this thoroughly
(see Figure 4).

VI. BARRIERS FOR ADOPTING PLUG-IN SPECIFIC
INTEGRATION TESTING PRACTICES

In the preceding sections, we looked at adopted testing
practices. In this section, we outline barriers experienced
by participants which limit adoption of plug-in specific test

6

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

6 TUD-SERG-2011-010

practices. The set of barriers reflects what the interviewees
considered most important. To integrate the many different
barriers and to identify relevant factors, the constant com-
parison approach of GT proved particularly useful [8].

Plug-in systems are conglomerates of several different
plug-ins, with different owners. Hence, the responsibility for
integration or system testing is less clear, especially when
system boundaries are crossed. Most projects restrict their
official support for compatibility with third-party plug-ins
and the Eclipse platform itself. As P8 puts it: “We only test
the latest available versions of our dependencies, those that
are together in the release train.”

In plug-in systems, end user requirements are often un-
clear or even unknown, which makes testing a challenge, as
P7 explains: “[Project 7] is not an end-user plug-in. Other
plug-ins build on top of [Project 7], so integration testing
would need to include some other components. It is not the
final, the whole thing.” P7 also thinks that integration testing
has to be done in strong collaboration with the developers
of the end-user plug-in. As an example, he mentions syntax
highlighting functionality: “Only when I know about the
language [...] can I test it and see whether it was successful
or not. I need some third party component.”

Also unclear ownership of plug-ins hinders testing, as P7
explains: “You never know, once you write a good test, it
will be obsolete with the next version of Eclipse.”

While there is a rich body of literature on unit testing [6],
literature on integration and system testing for plug-in-
based systems is scarce. This unavailability of plug-in testing
knowledge makes it hard for beginners and less experienced
developers and testers to test Eclipse-based systems. P4 ex-
plains: “Why [testing] is so difficult? For Web projects, you
find good templates. For Eclipse, you don’t. [...] Especially
for testing plug-ins, we would need some best practices.”

Setting-up a test environment for unit testing requires
minimal effort as standard tooling (e.g., JUnit) exists. For in-
tegration, system, and GUI testing, the situation is different.
Participants, such as P4, report: “The difficulty of integration
testing Eclipse plug-ins starts with the set-up of the build –
that’s difficult.”

Also, long test execution time is often mentioned as a
reason for the negative attitudes towards integration, GUI,
and system testing (P1, P4, P5, P6, P10, P17, P21). P6 says:
“The long execution time is really bad. A big problem.”
And P17 says: “It’s a difference between 10 seconds and 1
minute: with 1 minute you switch to Twitter or Facebook.”

As interviewees report, the limited testability of Eclipse
can be challenging. P6 outlines: “The problem is that the
Eclipse platform is very hard to test, because components
are highly coupled and interfaces are huge, and all is based
on a singleton state. This is very hard to decouple.”

The PDE tooling and test infrastructure can also be a
hurdle. P21 says: “We use the PDE JUnit framework to

write integration tests, although we are not happy with it.
It’s not really suited for that.”

All of these technical hurdles have the effect that test-
ing beyond unit scope is experienced as “annoying” (P6),
“distracting” (P17), and “painful” (P20).

VII. COMPENSATION STRATEGIES

As we saw in the previous sections, participants report
that test automation for system and integration testing is
modest. They also mention that integration testing for plug-
in specific aspects, like cross-feature integration, versioning
and configurations of plug-ins, is often omitted or limited
to a manual and ad-hoc approach. Does this mean it is not
necessary to test those aspects? Addressing this concern is
the topic of research question RQ4, in which we seek to
understand how developers compensate for limited testing.

During the GT study, we identified three main com-
pensation strategies, namely self-hosting of projects, user
involvement, developer involvement, and a prerequisite for
participation – openness.

A. Self-Hosting of Projects

Self-hosting refers to the process whereby the software
developed in a project is used internally on a regular basis.
As P17 describes: “In our company, we have different set-
ups, based on Linux or Windows. This leads already to
a high coverage because we use our own products on a
daily basis. Then you are aware of problems and report that
immediately.” In the survey, a respondent writes: “We use
’self hosting’ as test technique. That is, we use our software
regularly. This provides a level of integration testing, since
common features are regularly exercised.”

This practice is also applied at the code level, which
means that participants report to use the API and provided
extension points in their own projects. This principle, re-
ferred to as “eating your own dog food”, is well-documented
in the Eclipse community [12], and recognized for helping in
managing and testing configurations of plug-ins, including
combinations and different versions.18

B. User Involvement

Participants also report that they involve users to “man-
ually test” their systems, as P9 explains: “The tests that
I perform are very simple manual tests, the real tests are
coming from the users, who are doing all kind of different
things with [project 9].”

P9 is not alone with this practice. Participants openly state
that they rely heavily on the community for test tasks, such
as GUI testing, testing of different Eclipse platform versions,
and system testing, and to cope with combinatorial testing
and testing of plug-in combinations. As P12 says: “Testing
is done by the user-community and they are rigorous about
it. We have more than 10,000 installations per month. If

18http://dev.eclipse.org/newslists/news.eclipse.platform/msg24424.html

7

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 7

there is a bug it gets reported immediately. I do not even
have a chance to test [all possible combinations]. There
are too many operating systems, there are too many Eclipse
versions.”

C. Developer Involvement

The Eclipse plug-in architecture enables developers to
build plug-ins on top of other plug-ins. Because of this,
users of the software are often skilled developers whose
projects also depend on and profit from the quality of the
projects their work extends. Therefore, projects dedicate part
of their time to improve dependent projects. As P11 states:
“Yes, for the GEF part, we find and report bugs, and we
provide patches. In fact, perhaps it is not our own product,
but our product relies on this other product. So it is normal
to improve the other parts that we need.”

Projects also profit from the automated test suites of the
projects they extend. P13 explains: “That is one of the things
I totally rely on, e.g., the Web Tools Platform uses [project
13] heavily, and they have extensive JUnit tests, and so I
am quite sure that when I break something that somebody
downstream will rapidly notice and report the problem.”

In Eclipse, the release train19 is a powerful mechanism.
Projects elected to be on the release train profit from the
packaging phase, in which different bundles of Eclipse,
including specific combinations of products, are created. As
P13 explains: “Some testing is performed downstream, when
packages of multiple plug-ins are produced. Some packages
have plug-ins like Mylyn, [project 13], and a whole ton of
other projects. Then, there are people that test whether the
packages behave reasonably.”. And he reports that “if there
are problems, people definitely report them, so you do find
out about problems.”

D. Openness – A Prerequisite for Participation

The question that remains is how to involve users and
experts. In this study, we could identify one basic but
effective principle, applied consistently by the participants
– openness. Openness is implemented in communications,
release management, and product extensibility.

Open source projects select communication channels that
allow the community to influence software development by
giving feedback, fostering discussions, submitting feature
requests, and even by providing bug fixes. In the closed
source domain, participants report that they open up their
communication channels to allow community participation.
P19 reflects on the impact of user input: “I would say the
majority of the bug reports come from the community. We
have accepted more than 800 patches during the life span
of this project. 1/7 of all bugs that have been resolved have
been resolved through community contributions. That’s quite
a high rate. [...] we take the community feedback definitely
serious.”

19http://wiki.eclipse.org/Indigo/Simultaneous Release Plan

0% 20% 40% 60% 80% 100%

Giving feedback, and foster …

Providing bug reports or feature …

Providing bug fixes

Manual testing (including …

Automated testing (including …

Manual testing (including GUI,
combinatorial testing)

Automated testing (including
community, downstream project)

Providing bug fixes

Providing bug reports or feature
requests

Giving feedback, and foster

Figure 5. User involvement during testing

An important prerequisite to user involvement is access to
the software (i.e. open release management). Many open and
closed source projects adopted a multi-tier release strategy
to benefit from the feedback of the alpha- and beta-testers
that use unstable releases and pre-releases.

In the survey, 64% of respondents report to have an open
issue tracking system, and 38% report to have a publicly-
accessible software repository. 40% of respondents use mail-
ing lists, or newsgroups to inform users, and only 26%
report to have a completely closed development process.
Respondents also express that users are involved in giving
feedback and fostering discussions (82%), in providing bug
reports and feature requests (85%), and even providing bug
fixes (25%) (see Figure 5). 35% of respondents indicate that
users are involved in manual testing, including GUI testing
and combinatorial testing (e.g., different operating systems,
Eclipse versions, or plug-in combinations). 12% report that
users are even involved in automated testing.

VIII. DISCUSSION

This section discusses how the new insights on the testing
of plug-in-based systems can be used to better support the
testing process, and outlines opportunities for future work.

A. Improving Plug-In Testing

Since the community turns out to be vital in the testing
process, a first recommendation is to make this role more
explicit. This can be achieved by organizing dedicated “test
days” (in line with Mozilla), or by rewarding community
members who are the most active testers or issue reporters
(e.g. at annual events). Additional possible improvements
are a centralized place to collect compatibility information,20

and clear instructions on how downstream testers can con-
tribute to the testing process in an ecosystem.

As an example, although downstream projects frequently
execute upstream plug-ins as part of their own testing, at
present, it is hard to tell if these executions are correct.
Distributing plug-ins with a test-modus (e.g. to allow plug-
ins to enable assertions), or to offer additional observability

20E.g., WordPress introduced a crowd-sourced “compatibility checker”
plug-in for their plug-in directory http://wordpress.org/news/2009/10/
plugin-compatibility-beta

8

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

8 TUD-SERG-2011-010

or controllability interfaces, would substantially leverage
these executions. The test-modus could further report cov-
erage information to a centralized server, informing the
upstream plug-in provider about features, combinations, and
configurations actually tested.

We believe that to leverage plug-in specific testing, and
facilitate test automation, plug-in specific tool support is
needed. As an example, by means of dynamic and static
analysis, test executions of plug-in systems can be visualized
in order to provide information to the developer about the
degree of integration between several plug-ins covered by a
specific test suite. In [10], we propose such a technique and
introduce ETSE, the Eclipse Test Suite Exploration tool.

In general, we see a need for the research community to
revisit current test strategies and techniques with respect to
plug-in specific testing needs, in line with Memon et al. for
component-based systems [15].

B. Open Versus Closed Source

Our study covers open and closed source development. In
the 25 interviews, this did not seem to be a differentiating
factor, both reporting similar practices and arguments.

In the survey, we can combine data on the project nature
with specific test practices. One finding is that closed source
projects have less test automation beyond unit scope. A
possible explanation is that closed source projects work more
with dedicated test teams, which rely on manual testing
instead. This is consistent with the fact that closed projects
report more user involvement for manual GUI testing (30%
for closed versus 23% for open source projects).

Another visible difference is that closed source projects
adopt plug-in specific integration testing approaches to
address version or cross-product integration less often. A
possible explanation is that closed source projects often
aim to create full products (RCP applications) that are not
intended for extension by others.

To discuss these differences in detail calls for additional
research, which we defer to future work.

IX. CREDIBILITY AND LIMITATIONS

Assessing the validity of explorative qualitative research
is a challenging task [18], [9]. With that in mind, we discuss
the credibility and limitations of our research findings.

A. Credibility

One of the risks of grounded theory is that the resulting
findings do not fit with the data or the participants [2]. To
mitigate this risk, and to strengthen the credibility of the
study, we performed member checking and put the resulting
theory to the test during a presentation to approximately
100 developers, and during a birds-of-a-feather session at
EclipseCon. Further, we triangulated our findings in the
interviews with an online survey filled in by 151 profession-
als, which helped us to confirm that the main concepts and

codes developed resonate with the majority of the Eclipse
community. Although there was a possibility of bias, we
believe we conducted an open-minded study which led to
findings we did not expect. We closely followed grounded
theory guidelines, including careful coding and memoing,
and revisited both the codes and the analysis iteratively. We
provide rich descriptions to give insights into the research
findings, supported by a 60-page technical report [11] to
increase transparency on the coding process. Threats to
external validity (i.e. questioning whether the outcomes are
valid beyond the specific Eclipse setting) are addressed in
the following section.

B. Beyond Eclipse

Are our findings specific to open source? The compen-
sation strategies identified certainly benefit from the open
nature of Eclipse. However, the strategies themselves are
not restricted to open source and can be applied in other
settings (e.g. with beta-users). Furthermore, more than half
of the 25 interviewees and the 151 survey respondents are
working on closed source projects.

Our findings indicate a trade-off between test effort and
tolerance of the community for failures in the field. In an
open source setting, the community may be more tolerant
and willing to contribute. In a closed source setting, it
may take more organizational effort to build up such a
community, such as with beta testing programs. Note that for
some application domains, there is zero tolerance for failure,
such as with business- or safety-critical systems. Therefore,
we do not expect our findings to generalize to such systems.

Another concern might be the developer-centric focus of
Eclipse. For example, the developer involvement discussed in
Section VII assumes the ability to report and possibly resolve
issues found in the plug-ins used. Note, however, that other
findings, such as the test barriers covered in Section VI, are
independent of whether the applications built are intended
for developers. Furthermore, the Eclipse platform is also
used to create a large variety of products for non-developers.

Clearly, the plug-in-based nature of Eclipse plays an
important role, and is the center of our research. We consider
a plug-in system as a specific form of a dynamic system
with characteristics such as runtime binding, versioning, and
combinability. For systems sharing such characteristics, we
expect to find similar results. Further, most of the outcomes
are independent of the specific plug-in architecture adopted.
An investigation to exactly differentiate between various
groups of dynamic systems is still an open issue as well
as an excellent route for future work.

C. Beyond the People

A limitation of the current study is that it is based on
interviewing and surveying people only. An alternative could
have been to examine code, design documents, issue tracking
system contents, and other repositories [13], [28]. Note,

9

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 9

however, that achieving our results with repository mining
alone would be very hard as many test-related activities
do not leave traces in the repositories. Furthermore, our
emphasis is on understanding why certain activities are
taking place. However, we see repository mining as an
opportunity to further evaluate selected findings of our study,
which we defer to future work.

X. RELATED WORK

A few surveys have been conducted in order to reveal
software testing practices [17], [7]. Our study is substantially
different. While these surveys focus on reporting testing
practices, our study had the additional aim of understanding
why certain practices are used or are not used. In a survey,
researchers can only address a previously defined hypothe-
ses. Our preceding GT study allowed first to emerge a theory
about the testing practices, and to let the structure and the
content of the survey follow from the theory.

As an implication, while other surveys concentrate on pre-
conceived barriers to testing, such as costs, time and lack of
expertise, we could address a much wider range of factors
of an organizational and technical nature, as expressed by
the participants themselves. Further, the GT findings drove
the selection of test practices included in the survey. This
allowed us to concentrate on facts specially relevant for plug-
in systems (reflected in a separate section of the survey), and
in turn to omit questions such as generation of test cases or
defect prevention techniques used in previous studies.

There is substantial research on analyzing different as-
pects of open source software (OSS) development. Mockus
et al. [16] analyze the Apache web server and the Mozilla
browser in order to quantify aspects of OSS development
(e.g. reported by Raymond [21]). Raja and Tretter [20]
mine software defects and artifacts to understand several
variables used to predict the maintenance model, which also
leads them to several hypotheses on the effect of users
participation. West et al. report on the important role of
openness for community participation, and confirm that a
modular software architecture decreases the barrier of get-
ting started and joining an open source project [26]. Krogh
et al. developed an inductive theory on how and why people
join an existing open source software community [25].

Whereas those studies address open source, our findings
apply to open and closed source software development.
Furthermore, the focus of our study lies on software testing,
a topic not covered in the earlier research.

Whereby research on configuration-aware software testing
for highly-configurable systems (i.e. product lines) focuses
on the combinatorial problems during interaction testing by
detecting valid and invalid combinations of configuration
parameters (e.g., by means of a greedy algorithm), our work
reveals broader testing practices and problems during plug-
in testing experienced in practice [3].

XI. CONCLUDING REMARKS

The main findings of our study are:
1) Unit testing plays a key role in the Eclipse community,

with unit test suites comprising thousands of test cases.
System, integration, and acceptance testing, on the
other hand, are adopted and automated less frequently.

2) The plug-in nature has little impact on the testing
approach. The use of extension points, plug-in inter-
actions, plug-in versions, platform versions, and the
possibility of plug-in interactions rarely lead to specific
test approaches.

3) The main barriers to adopting integration testing prac-
tices include unclear accountability and ownership,
lack of infrastructure for setting up tests easily, poor
testability of integrated products, and long execution
time of integration tests.

4) To compensate for the lack of test suites beyond the unit
scope, the community at large is involved, by means of
downstream testing, self-hosting, explicit test requests,
and open communication.

These findings have the following implications:
1) The integration testing approach implicitly assumes

community involvement. This involvement can be
strengthened by making it more explicit, for example
through a reward system or dedicated testing days.

2) Deferring integration testing to deployment calls for an
extension of the plug-in architecture with test infras-
tructure, facilitating (e.g. a dedicated test modus) self-
testing upon installation, runtime assertion checking,
and tracing to support (upstream) debugging.

3) Innovations in integration testing, typically coming
from research, will be ignored unless they address the
barriers we identified.

While our findings and recommendations took place in
the context of the Eclipse platform, we expect that many
of them will generalize to other plug-in architectures. To
facilitate replication of our study in contexts such as the
Mozilla, Android, or JQuery plug-in architectures, we have
provided as much detail as possible on the design and results
of our study in the corresponding technical report [11].

With this study, we made a first step to understand the cur-
rent practices and which barriers exist when testing plug-in-
based systems. In addition, this study should encourage the
research community to facilitate technology and knowledge
transfer from academia to industry and vice versa.

ACKNOWLEDGMENT

We would like to thank all participants of both the
interviews and our surveys for their time and commitment.

10

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

10 TUD-SERG-2011-010

REFERENCES

[1] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using
grounded theory to study the experience of software devel-
opment. Empirical Software Engineering, pages 1–27, 2011.

[2] Antony Bryant and Kathy Charmaz, editors. The SAGE
Handbook of Grounded Theory. SAGE, 2007.

[3] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving
the testing and testability of software product lines. In
Proceedings of the 14th international conference on Soft-
ware product lines: going beyond, SPLC’10, pages 241–255,
Berlin, Heidelberg, 2010. Springer-Verlag.

[4] Robert Chatley, Susan Eisenbach, Jeff Kramer, Jeff Magee,
and Sebastian Uchitel. Predictable dynamic plugin systems.
In 7th International Conference on Fundamental Approaches
to Software Engineering (FASE), pages 129–143. Springer-
Verlag, 2004.

[5] Juliet M. Corbin and Anselm Strauss. Grounded theory
research: Procedures, canons, and evaluative criteria. Quali-
tative Sociology, 13:3–21, 1990.

[6] Erich Gamma and Kent Beck. Contributing to Eclipse:
Principles, Patterns, and Plugins. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2003.

[7] Vahid Garousi and Tan Varma. A replicated survey of
software testing practices in the Canadian province of Alberta:
What has changed from 2004 to 2009? J. Syst. Softw.,
83:2251–2262, November 2010.

[8] Barney Glaser and Anselm Strauss. The discovery of
Grounded Theory: Strategies for Qualitative Research. Aldine
Transaction, 1967.

[9] Nahid Golafshani. Understanding reliability and validity in
qualitative research. The Qualitative Report, 8(4):597–606,
2003.

[10] Michaela Greiler, Hans-Gerhard Gross, and Arie van Deursen.
Understanding plug-in test suites from an extensibility per-
spective. In Proceedings 17th Working Conference on Reverse
Engineering, pages 67–76. IEEE, 2010.

[11] Michaela Greiler, Arie van Deursen, and Margaret-Anne
Storey. What Eclipsers think and do about testing: A
grounded theory. Technical Report SERG-2011-010, Delft
University of Technology, 2011. To appear.

[12] Warren Harrison. Eating your own dog food. IEEE Softw.,
23:5–7, May 2006.

[13] Abram Hindle, Michael W. Godfrey, and Richard C. Holt.
Software process recovery using recovered unified process
views. In Proceedings 26th IEEE International Conference
on Software Maintenance (ICSM 2010), pages 1–10. IEEE
Computer Society, 2010.

[14] Klaus Marquardt. Patterns for plug-ins. In Proceedings
4th European Conference on Pattern Languages of Programs
(EuroPLoP), page 37pp, Bad Irsee, Germany, 1999.

[15] Atif Memon, Adam Porter, and Alan Sussman. Community-
based, collaborative testing and analysis. In Proceedings of
the FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 239–244, New York, NY, USA,
2010. ACM.

[16] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two
case studies of open source software development: Apache
and Mozilla. ACM Trans. Softw. Eng. Methodol., 11:309–
346, July 2002.

[17] S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen. A
preliminary survey on software testing practices in Australia.
In Proceedings of the 2004 Australian Software Engineering
Conference, ASWEC ’04, pages 116–, Washington, DC,
USA, 2004. IEEE Computer Society.

[18] Anthony J. Onwuegbuzie and Nancy L. Leech. Validity and
qualitative research: An oxymoron? Quality & Quantity,
41(2):233–249, May 2007.

[19] Klaus Pohl and Andreas Metzger. Software product line
testing. Commun. ACM, 49:78–81, December 2006.

[20] Uzma Raja and Marietta J. Tretter. Antecedents of open
source software defects: A data mining approach to model
formulation, validation and testing. Inf. Technol. and Man-
agement, 10:235–251, December 2009.

[21] Eric S. Raymond. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[22] J. Rehmand, F. Jabeen, A. Bertolino, and A. Polini. Testing
software components for integration: a survey of issues and
techniques. Software Testing, Verification and Reliability,
17(2):95–133, 2007.

[23] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn,
John Kellerman, and Pat McCarthy. The Java Developer’s
Guide to Eclipse. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005.

[24] Markus Voelter. Pluggable component: A pattern for in-
teractive system configuration. In Paul Dyson and Martine
Devos, editors, Proceedings of the 4th European Conference
on Pattern Languages of Programms (EuroPLoP ’1999),
Irsee, Germany, July 7-11, 1999, pages 291–304. UVK -
Universitaetsverlag Konstanz, 2001.

[25] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani.
Community, joining, and specialization in open source soft-
ware innovation: a case study. Research Policy, 32(7):1217–
1241, 2003.

[26] Joel West and O’mahony Siobhán. The role of participation
architecture in growing sponsored open source communities.
Industry & Innovation, 15(2):145–168, 2008.

[27] E. J. Weyuker. Testing component-based software: A cau-
tionary tale. IEEE Software, 15(5):54–59, 1998.

[28] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and
Serge Demeyer. Studying the co-evolution of production
and test code in open source and industrial developer test
processes through repository mining. Empirical Software
Engineering, 2011.

11

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 11

A. Experimental Design
A.1 Motivation and Goal
Plug-in-based systems rely on plug-in components to extend a base system [6–8]. As argued by Marqaurdt [6], the base system
can be delivered almost “nakedly”, while most user value is added by plug-ins that are developed separately, which can extend
the existing applications without need for change. In more sophisticated plug-in architectures, plug-ins can build upon each
other, allowing new products to be assembled in many different ways.

Testing plug-in-based systems raises a number of challenges, related to the interactions between plug-ins, different configu-
rations of the plug-ins, and different versions of the plug-ins used. The overall goal of this paper is to increase our understanding
of how systems assembled from such plug-ins are to be tested.

A.2 The Eclipse Plug-in Architecture
As the subject of our study we selected the Eclipse plug-in framework1 along with community of practitioners. We selected
Eclipse for a number of reasons.

Firstly, Eclipse provides a sophisticated plug-in mechanism based on OSGi,2 enhanced with the Eclipse-specific extension
mechanism. It is used to build a large variety of different applications3 ranging from widely used collection of development
environments to dedicated products built using the Rich Client Platform (RCP). Many of those plug-in-based products are large
scale, complex, and industry-strength.

Secondly, we choose Eclipse because of the large community of Eclipse professionals involved in development of applica-
tions based on the Eclipse plug-in framework. As an example, approximately 1000 developers meet at the annual EclipseCon
event alone.

The third main reason is the positive attitude of the Eclipse community towards testing, as exemplified by the presence
of substantial test suites (see, e.g., our analysis of the Mylyn and eGit test suites [5]) and books emphasizing test-driven
development of plug-ins [3]. Moreover, Eclipse has explicit support for testing plug-ins, through its Plug-in Development
Environment (PDE) and the corresponding PDE-tests.

Further, the Eclipse framework itself and many project building upon it are open source, making it easy to inspect projects
e.g., access to Bugzilla, the code, but also to share findings with other researchers. Besides open source development, the
Eclipse platform is used for closed source commercial development, making it possible to compare open and closed source
testing approaches.

A.3 Research Questions
Our investigation of the testing culture for plug-in-based systems revolves around four research questions. The first three we
incorporated in the interview guidelines from the beginning on. During our interviews, we observed that many professionals
explain how limited testing is compensated, which led to the last research questions.

RQ1: Which testing practices are prevalent in the testing of plug-in-based systems? Do these practices differ from non-plug-
in-based systems?

RQ2: Does the plug-in architecture lead to specific test approaches? How are plug-in specific integration challenges such as
versioning and configurations tested?

RQ3: What are the main challenges experienced when testing plug-in-based systems?

RQ4: Are there additional compensation strategies used to support the testing of plug-ins?

A.4 Research Method
The experimental design covers three phases, as shown in Figure 1, comprising literature analysis, actual interviews, and an
evaluation phase.

A.4.1 Plug-in Specific Literature Analysis
The literature analysis aims at identifying existing documentation that can help to answer our research questions.

1 http://www.eclipse.org
2 http://www.osgi.org
3 http://en.wikipedia.org/wiki/List_of_Eclipse-based_software

1

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

12 TUD-SERG-2011-010

Emerging Theory

Analysis:
Plug-in
based

Literature

Pilot & Round 1
interviews

Summit
Evaluation

Round 2
interviews

Comparison:
Research-

based
Literature

Evaluation:
EclipseCon,

Survey

Interview Guidelines

Start Interviews and theory development Evaluation
Figure 1. Phases of the Study

We studied over 200 resources about testing of plug-in systems in general and the Eclipse plug-in architecture in particular.
Relevant sources include eclipsepedia,4 eclipse resource articles,5 stackoverflow6 and accepted presentations at the two main
Eclipse conferences between 2003-2011.7 To finalize our literature selection we blogged about our findings and asked for
feedback and potential missing resources.8

Most of the articles are concerned with either the set-up of the test environment, including test execution systems, or the
use of test frameworks facilitating mocking, GUI testing, or set-up of infrastructure (including provisioning of the OSGi
framework). Thus, these articles offer little help in answering our research questions, which is why we decided to engage in
interviewing Eclipse experts instead.

A.4.2 Interviews and Theory Development
In order to truly understand which test techniques Eclipse developers adopt, why they do this, and which impediments
they experience, we adopt an explorative research method: Grounded Theory (GT) [4]. This is a systematic, inductive and
comparative approach to grow a theory iteratively from data, increasingly used in the field of software engineering [1].
In contrast to the hypothetico-deductive method, where the researcher has predefined hypothesis at the beginning of the
investigation, grounded theory is explorative, aimed at discovering new perspectives and insights.

The process per interview is shown in Figure 2. It starts with an open interview of 1–2 hours, usually conducted over Skype,
which we recorded and subsequently transcribed. We preferred to use the mother tongue of the interviewees, in cases it was
either German or English. To structure the interviews, we compose a guideline, which can be adjusted after each interview, as
our insight in the testing processes increases.

To analyze the transcripts we use coding: breaking up the interviews into smaller coherent units (sentences or paragraphs),
and adding codes to these (identifiers representing a key characteristic such as “mocking”, “performance”, or “singleton state”).
Codes can be organized hierarchically into concepts (such as “infrastructure”, or “testing impediments”), which in turn can be
grouped into categories. The process of data analysis consists of a constant comparison of text units, codes, concepts and
categories.

The resulting concepts and categories are connected via memos: narratives explaining, for example, which factors play a role
when a developer indicates his team does not have an explicit integration testing phase. While analyzing each transcript, the
elements of the theory (codes, concepts, memos, etc., and their connections) are revisited, possibly leading to theory refinement.

When we notice that interviewees progressively give answers that are similar to earlier ones, a state of saturation is reached:
we consider the topic sufficiently clear, and adjust the interview guidelines to focus on the testing practices that require further
elaboration.

As shown in Figure 1, we group the interviews into two rounds. The first round is broad in nature helping to get a first
impression of the main testing processes. A first evaluation of these results was conducted through a poster presentation at the

4 http://wiki.eclipse.org
5 http://www.eclipse.org/resources
6 http://stackoverflow.com
7 EclipseCon (USA), and Eclipse Summit (Europe)
8 http://the-eclipse-study.blogspot.com/2010/11/testing-eclipse-rcp-and-plug-in.html

2

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 13

Interview
Guidelines

Theory

Interviewing

Transcribing Coding

Memoing

Theory
Refinement

Saturation
Analysis

Question
Refinement

Figure 2. The interviewing and coding process followed for each interview

Eclipse Summit Europe.9 The second round of interviews is more specialized, focusing on specific testing issues such as the
actual problems experienced for integration testing and the involvement of the user community.

A.4.3 Evaluation
Only after all interviews and the data analysis has been finished, we started a thorough literature study on studies of related
research fields to compare our findings. See Section X for more details on the related work.

The final step in our study was a large-scaled evaluation at the biggest Eclipse event, the EclipseCon,10 with approximately
1000 participants. At this event we firstly presented our findings to a broad audience during a 40 minutes extended talk,
where we also actively requested and discussed audience feedback. To engage in an even more in-depth discussion with the
community we also organized a dedicated discussion session11 (called BOF), in which more than 20 participants discussed
with us their testing experiences and the usefulness and completeness of our theory.

In addition, we prepared a survey to challenge and possibly refuse our theory and to get a broader perspective on our
results, which was completed by 151 practitioners. The structure of the survey followed directly from the resulting theory, and
addresses the “testing practices”, “plug-in integration testing”, “adoption factors”, and “compensation strategies”.12

A.5 Participant Selection
Interview Phase. For the interviews we adopted theoretical sampling to identify suitable participants [2]. Thus, we carefully
selected knowledgeable Eclipse professionals, called Eclipsers sequentially, who could provide relevant information on testing

9 http://www.eclipsecon.org/summiteurope2010/sessions/?page=sessions&id=1956
10 http://www.eclipsecon.org/2011/sessions/?page=sessions&id=2207
11 http://www.eclipsecon.org/2011/sessions/?page=sessions&id=2474
12 The survey is available at http://swerl.tudelft.nl/twiki/pub/MichaelaGreiler/WebHome/Survey_PrintVersion.pdf

3

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

14 TUD-SERG-2011-010

Domain Project and/or Company
IDEs, Eclipse Distribution Yoxos, EclipseSource
SOA Mangrove, SOA, Inria
GUI Testing Tool GUIDancer, Bredex
Version Control Systems Mercurial, InlandSoftware
Modeling xtext, Itemis
Modeling IMP, University of Amsterdam
Persistence layer CDO
Domain Specific Language Spoofax, Delft University

of Technology
BPM Solutions GMF, BonitaSoft
GUI Testing Tool Q7, Xored
Coverage Analysis EclEmma
Modeling EMF, Itemis
BPM Solutions RCP product, AndrenaObjects
Scientific data acquisition OpenGDA, Kichacoders
Runtime platform RAP, EclipseSource
Task Management system Mylyn, Tasktop
Embedded Software MicroDoc
RCP product EclipseSource

Table 1. Domains, projects and/or companies involved in the interviews

P Role CR TS Technology KLOC
P1 developer C 4-7 Eclipse plug-in closed
P2 project lead O 6 Eclipse plug-in 90
P3 tester C 7-8 Eclipse plug-in, 370

RCP product
P4 developer O 3-10 Eclipse plug-in 90
P5 developer C 3-7 OSGi 280
P6 project lead O 6-9 Eclipse plug-in 1700
P7 project lead O 2-5 Eclipse plug-ins 50
P8 project lead O 12 Eclipse plug-in 670
P9 project lead O 3 Eclipse plug-in 90
P10 test C 20-50 Eclipse plug-in closed

manager RCP product
P11 developer O 7-11 Eclipse plug-in 710
P12 project lead O 1-2 Eclipse plug-in 12 & 56
P13 project lead O 5-7 Eclipse plug-in 2000
P14 developer C 5 RCP product 350
P15 project lead O 20 RCP product 850
P16 developer O 7-10 Eclipse plug-in 1500
P17 developer C/O 5-6 Eclipse plug-in 2500
P18 project lead C 4 RCP product 100
P19 developer C/O 6-9 Eclipse plug-in 2500
P20 developer O 7-10 RCP product 1000
P21 developer C 4-10 RCP product 80-100
P22 developer C 3-5 Eclipse 140

distribution
P23 project lead C 5-7 RCP product closed
P24 developer C 8 RCP product 400
P25 project lead C 7-12 RCP product closed

Table 2. Participants involved (P: participants, CR: code repository (closed or open), TS: team size)

4

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 15

practices. We got into contact with them by participating in the Eclipse Testing Day,13 through a blog we maintained about the
study,14 via Twitter,15 and via a poster presentation at the Eclipse Summit Europe.16

Eventually, this resulted in 25 participants (identified as P1–P25 in this paper), whose characteristics are provided in Table 2.
They all have substantial experience in developing and/or testing Eclipse plug-ins or RCP products. A summary of the projects
and application domains the participants worked on is given in Table 1.17

Survey Phase. In the survey phase we aimed at reaching not only the experts, but the full Eclipse community. To that end, we
setup an on line survey, and announced via mailing lists, Twitter, and, most importantly, during a presentation at EclipseCon
2011 attended by over 100 people.

References
[1] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study the experience of software development. Empirical

Software Engineering, pages 1–27, 2011.

[2] Antony Bryant and Kathy Charmaz, editors. The SAGE Handbook of Grounded Theory. SAGE, 2007.

[3] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and Plugins. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 2003.

[4] Barney Glaser and Anselm Strauss. The discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction, 1967.

[5] Michaela Greiler, Hans-Gerhard Gross, and Arie van Deursen. Understanding plug-in test suites from an extensibility perspective. In
Proceedings 17th Working Conference on Reverse Engineering, pages 67–76. IEEE, 2010.

[6] Klaus Marquardt. Patterns for plug-ins. In Proceedings 4th European Conference on Pattern Languages of Programs (EuroPLoP), page
37pp, Bad Irsee, Germany, 1999.

[7] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat McCarthy. The Java Developer’s Guide to Eclipse.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[8] Markus Voelter. Pluggable component: A pattern for interactive system configuration. In Paul Dyson and Martine Devos, editors,
Proceedings of the 4th European Conference on Pattern Languages of Programms (EuroPLoP ’1999), Irsee, Germany, July 7-11, 1999,
pages 291–304. UVK - Universitaetsverlag Konstanz, 2001.

13 http://wiki.eclipse.org/EclipseTestingDay2010
14 http://the-eclipse-study.blogspot.com
15 http://twitter.com/mgreiler
16 http://www.eclipsecon.org/summiteurope2010/sessions/?page=sessions&id=1956
17 Please note that for reasons of confidentiality not all companies and projects interviewed are listed.

5

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

16 TUD-SERG-2011-010

B. Resulting Collection of Codes
As a result of the interview analysis process, a collection of codes emerged. Our coding process was open, allowing codes and
concepts to emerge freely; Through (constant) comparison and grouping, the coding structure as presented here emerged. Here
we summarize the eventual set of codes resulting from this analysis.

We use a simplified presentation into a three-level hierarchy (category, concept, code). With each concept we associate a
question, where each code belonging to the concept can be read as an answer to that question

In principle, the codes (or even concepts) can be grouped in multiple ways, sometimes in additional subgroups. For example,
test execution time is listed as a barrier, but could also be grouped under integration testing. Here we present the dominant
decomposition, putting codes in the most relevant concept only.

B.1 Category 1. Practices

Testing practices that Eclipsers mention or adopt.

Concept 1.1. Supporting Processes

Which processes (such as requirement documentation, issue tracking) are in place to support testing activities? Who tests the
code/system?

1.1.1 Issue tracker Requirements are documented in an issue tracking system such as Bugzilla.
1.1.2 Requirement source It is clear who defines the requirements.
1.1.3 Developer testing Testing is only done by the developers.
1.1.4 Hybrid testing The QA team as well as the developer team are involved in testing.
1.1.5 Tester status Pure testing activities have a lower status than development.

Concept 1.2. Unit Testing

In what way is unit testing used in Eclipse projects?

1.2.1 Key practice: Unit testing Unit testing is the key test practice.
1.2.2 Preference Unit testing is the preferred practice.
1.2.3 Coverage Coverage of the code is measured.
1.2.4 No coverage Coverage of the code is not measured.
1.2.5 Confidence A unit test suite gives confidence when making a change or when refactoring.
1.2.6 Limited confidence Relying too much on automated tests or coverage can be risky.
1.2.7 Unit testability Units are designed to be testable by unit tests.
1.2.8 Unit non-tested Units that cannot be made testable are not subjected to unit testing.
1.2.9 Fast execution Even a substantial unit test suite executes fast.

Concept 1.3. Beyond Unit Testing

How are test practices other than unit testing applied?

1.3.1 Test automation Project aims at obtaining a large degree of test automation.
1.3.2 Hardware integration For embedded systems, integration testing is guided by hardware integration.
1.3.3 Continuous integration Automated build and test servers are used to conduct continuous integration.
1.3.4 Unit vs integration testing The amount of integration testing done depends on the amount of unit testing done.
1.3.5 Fault location During integration testing fault localization is hard.
1.3.6 GUI testing User interface testing tools are used to do automated testing from the GUI.
1.3.7 GUI maintainability Problems with maintainability of GUI test cases are reported.
1.3.8 GUI non-tested No test effort is made to cover the GUI with automatic tests.

6

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 17

B.2 Category 2. Plug-in Specific Integration Testing

Testing practices that are specifically targeting plug-in-based systems.

Concept 2.1. PDE tests

How are tests written using the Eclipse Plug-in Development Environment (PDE) test framework?

2.1.1 Workbench dependencies The PDE runner is used since the test depends on the workbench.
2.1.2 PDE as integration test The PDE-Junit framework is used to write integration tests.
2.1.3 PDE as unit test The PDE-Junit framework is used to write unit tests.
2.1.4 Headless PDE The PDE tests are executed without the UI (i.e. in headless mode).

Concept 2.2. Plug-in characteristic

To what specific test practices does the plug-in nature lead?

2.2.1 No influence The plug-in characteristic has no influence on testing.
2.2.2 Modularization The plug-in mechanism is used for modularizing test suites.
2.2.3 Extension points Test strategies for Eclipse extensions and extension points are adopted.
2.2.4 Registration untested The plug-in and extension point registration mechanisms are untested.
2.2.5 Plug-in testability Eclipse plug-ins can be hard to test if they do not expose their (internal) functionality.
2.2.6 Eco-system integration Plug-ins are exercised in the context of the Eclipse runtime environment.
2.2.7 GUI based Automated GUI testing is used to test GUI based Eclipse applications.
2.2.8 No eclipse integration Tests do not require the Eclipse or OSGi runtime.

Concept 2.3. Cross-feature integration

How is integration with third party plug-ins tested?

2.3.1 Plug-in independence Plug-ins are considered independent, and combinations are not tested.
2.3.2 Play nicely Plug-ins are supposed to work together.

2.3.3 Demand driven
Integration between plug-ins is only tested if there is a specific feature / bug requiring
the execution of multiple plug-ins.

2.3.4 Manual combinations Different combinations are installed and compatibility is manually tested.
2.3.5 No automated cross-tests No automated tests for cross-feature integration exist.
2.3.6 Unpredictable It can not be foreseen which combinations will be incompatible.
2.3.7 Combination issues Actually experienced issues between different plug-ins are reported.

Concept 2.4. Versioning

How is testing against different versions of the platform or third party components conducted?

2.4.1 Build system The software is build using different versions of the platform.

2.4.2 External systems
Testing against different versions of external systems beyond the Eclipse eco-system
is conducted.

2.4.3 No automated versions No automated tests exist to test against different versions.
2.4.4 Manual versions Version compatibility is tested manually.
2.4.5 Limited versions Only a limited set of versions is tested.
2.4.6 Assert compatibility Version ranges include versions that are asserted but not tested to work.
2.4.7 Update rarely Updating versions of dependencies or the platform is done rarely.
2.4.8 Unfeasible It is unfeasible to test for all version combinations.

7

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

18 TUD-SERG-2011-010

B.3 Category 3. Test Barriers

Barriers that hinder adoption of integration test practices.

Concept 3.1. Testing Barriers

Which test barriers reduce the amount of plug-in specific integration testing?

3.1.1 Responsibility Unclear who is or feels responsible for system integration issues.
3.1.2 End user requirements System customization can lead to unclear or unknown end user requirements.
3.1.3 Ownership Lack of ownership or controllability over dependent plug-ins and code.

3.1.4 Plug-in testing knowledge
Lack of technical knowledge needed to successfully perform a plug-in specific test
strategy.

3.1.5 Set-up build system
Too much time, effort and knowledge needed to get the infrastructure ready to use an
integration testing approach.

3.1.6 Execution time Execution time of tests is too long.
3.1.7 Eclipse testability Eclipse is a highly coupled, and hard to test system. See also 2.2.5/Plug-in testability

3.1.8 PDE integration tooling The PDE framework has not been designed for integration testing.

B.4 Category 4. Compensation Strategies

Actions taken in order to compensate for not adopting certain test strategies.

Concept 4.1. Self hosting

How is the project team involved in testing in addition to traditional test activities?

4.1.1 Self-hosting The development team itself is also acting as user.

Concept 4.2. Community involvement

How are users or customers involved in testing activities?

4.2.1 Manual testing Users are involved in conducting manual tests.
4.2.2 Software usage Users are involved in using early versions of the software, e.g., pre-releases.
4.2.3 Operating systems The community participates in testing against different operating systems.

4.2.4 Multiple versions
The community participates in testing against different versions of the workbench or
required plug-ins.

4.2.5 Compatibility The community participates in testing the compatibility between several plug-ins.
4.2.6 GUI community The community is involved in user interface testing.
4.2.7 Filing bug reports Community files bug reports.
4.2.8 Feedback Users try out early versions and give feedback.
4.2.9 Customer involvement Customers are involved in the software engineering process.

Concept 4.3. Developer involvement

How are developers involved in testing activities?

4.3.1 Automated testing Downstream projects are exercising plug-ins used.
4.3.2 Release train Multiple Eclipse plug-ins are released at the same time in the release train.
4.3.3 Ecosystem Projects make an effort to work together to form a coherent ecosystem.
4.3.4 Plug-in symbiosis Projects improve other projects they depend on.
4.3.5 Providing patches The community provides patches for bugs.

8

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 19

Concept 4.4. Openness

How open are the projects and processes used?

4.4.1 Releases The release strategy includes nightly / unstable releases.
4.4.2 Communication Open communication is setup to ensure traceability, visibility and transparency.
4.4.3 Test request The community is explicitly requested to participate in testing.

4.4.4 Opening closed software
Development of closed source projects is opened up to strengthen customer involve-
ment.

9

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

20 TUD-SERG-2011-010

C. Key Quotations
The coding process was based on transcripts we made of the interviews. Here we give, for each of the participants, the most
important quotes together with a selection of the codes we used to tag those quotes. In the paper itself the quotes are organized
by code, i.e., presented when we are discussing a given part of the emerging theory.

Participant P1

1.3.8 GUI non-tested “We don’t do functional testing since 80% of the code is already tested with unit tests”
1.2.5 Confidence “When you design unit tests in a good way, then refactoring is easier.”
1.2.9 Fast execution “The good thing about unit tests is that they are fast, whereby PDE tests are slow.”
3.1.6 Execution time

2.1.3 PDE as unit test “Legacy code can be problematic when unit testing, therefore sometimes PDE unit
tests are misused as mini integration tests.”3.1.7 Eclipse testability

2.1.1 Workbench dependencies “The problem begins when a JUnit test grows into a PDE test, because of the
dependencies on the workbench, or other Eclipse APIs.”2.1.3 PDE as unit test

3.1.7 Eclipse testability

1.3.4 Unit vs integration testing “There are different ideas on how to test, but with most of them I do not agree. I think
basically only unit testing is good.”1.2.2 Preference

Participant P2

2.2.1 No influence
“I am not sure if there is a need to test if extensions correctly support the extension
point, because it is mostly a registration thing.”

4.2.8 Feedback
“It was sort of this open source process, and we expected people that actually use it
to come up with ideas as well and to improve it.”

1.1.2 Requirement source
“Usually you start small, with something you can show, something that is working.
Then, you get feedback from the community, and then you develop further.”

1.3.8 GUI non-tested “We don’t have GUI tests, because we don’t have much user interaction.”

Participant P3

2.2.7 GUI based
“Eclipse wizards are really interesting in terms of test design. You really have to think
about how to structure tests so they can be reused.”

1.1.4 Hybrid testing “We have both. Some people are pure testers, some are pure developers because they
think like developers and have not done testing. It’s listening to the skill-sets of your
people. Knowing and not pushing people to do things that they are not good at.”

1.1.5 Tester status

1.1.4 Hybrid testing
“We have our testers in very close contact with the developers. It’s a way of getting
discussions going.”

4.2.9 Customer involvement

“We work very closely with the customer to do things in an agile way. He can change
things, he can swap out features. We also have a weekly meeting that we call show &
tell. The customer comes to that and he sees how things are going.”

4.2.9 Customer involvement
“Without the continuous involvement of the customer throughout, and without the
customer being there, you probably find many more problems at the end.”

4.2.9 Customer involvement
“I would say we are in a reasonably unique situation in the sense that our customer
is an internal person. So, we can always have a meeting with him.”

1.1.2 Requirement source

“We manage our requirements over many sprints: when we make them, we discuss
them with the whole team. It takes a long time, but it means that everybody on the
team knows how it’s gonna work. Then any problems come up in the meeting and
not after 3 weeks of developing. Then the features are very prominent in everybody’s
minds.”

1.2.5 Confidence
“Another situation where we use unit tests a lot is when we are going back to an older
piece of code that has to be refactored.”

10

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 21

1.2.5 Confidence
“It gives you a certain level of comfort to know that when you make a change and you
break something, that it would be apparent in your test case.”

2.2.2 Modularization
“ The modularization abilities of OSGi are interesting for test design. Then you really
have to think about how to structure tests so they can be reused.”

1.3.1 Test automation

“We make a joint decision whether it should be automated or whether it should be
manually tested. There are a lot of things that come into play when automating a test.
We look at how easy is it will automate, or is it going to be brittle, and weigh that up
against how important that is.”

1.3.3 Continuous integration “One of the traps that a team can fall into is, because the tests are running every
night, they think that the safety net is bigger than it is.”1.2.6 Limited confidence

1.2.4 No coverage

“We do not measure coverage yet. One of the things we are working on is to get a
useful coverage criteria. We measured it in the past, but we did not know what the
numbers really meant for us. So now, we are investigating what these numbers mean
for us.”

1.3.6 GUI testing
“I think it is so incredibly important, to always have that customer perspective.
Anything that will affect the user, we prefer to write as an acceptance test.”

Participant P4

3.1.5 Set-up build system
“the difficulty of integration testing Eclipse plug-ins starts with the set-up of the build
– that’s difficult.”

3.1.4 Plug-in testing knowledge
“We only use unit testing because integration testing is complicated. Most people just
do not do it. Often it’s even not necessary.”

4.4.2 Communication
“The advantage of open communication is that others see it as well and can partici-
pate. Then, solutions to problems can even come from outside of the original team.”

3.1.4 Plug-in testing knowledge

“Why [testing] is so difficult? For Web projects, you find good templates. For Eclipse,
you don’t. There are some approaches, but nothing you could call best practice.
Testing has to be easier. Especially for testing plug-ins, we would need some best
practices. It would be great to have concrete tutorials and concrete solutions. Big
companies, they have their processes and strategies working, but it’s difficult for small
companies.”

Participant P5

1.1.3 Developer testing

“Tester and developer, that’s one person. From our view, it does not make sense to
have a dedicated test team, which has no idea about what the software does and can
only write some tests. The person that writes the code, that one knows what has to be
tested.”

1.1.3 Developer testing

“I think that the developer is better suited for integration testing than the tester
because they know the application better. Otherwise, you have to explain to the tester
again how that works and what the requirements are. That’s double the work.”

1.3.2 Hardware integration

“We have automated integration tests which run on the PC and on the devices. We
have four device setups, running the same software, and the tests are run on each of
the devices.”

1.3.3 Continuous integration “There are tests that run fast, which are executed whenever you commit in SVN
through CruiseControl. Then every two hours, a larger build is run, which also
executed the tests requiring more time. And in the night, the very slow tests run,
which take several hours.”

3.1.6 Execution time

2.2.2 Modularization
“Unit tests run in the same bundle as the code they test; integration tests run in their
own bundle.”

2.2.5 Plug-in testability “Sometimes you have to extend the bundle you want to test with a bit of extra
functionality in order to be able to do proper integration testing.”3.1.7 Eclipse testability

11

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

22 TUD-SERG-2011-010

1.3.6 GUI testing “We specify all GUI tests with eFitnesse.”

3.1.6 Execution time
“Integration testing just takes longer, and therefore, it runs during the night. Then it
does not disturb anybody when all the devices beep and bleep.”

4.2.9 Customer involvement

“The customer plays a important role during the development. We always try to deliver
something - in relatively short intervals - to always get feedback. The customer, for
example, uses Scrum, and we send a snapshot every 2-3 weeks, and the customer then
tests all the new features that have been added in the last sprint. All this is actually
quite extensively tested by the customer.”

1.1.2 Requirement source

“Requirements are defined at the beginning of a project. That’s developed together
with the customer. In principle, the outcome is a functional specification, which is also
used for testing.”

1.3.1 Test automation “At the beginning, most parts have been tested manually. 3-4 years ago, we started
investing a lot of time in automating tests, and we want to automate as much as
possible. The only problem might be to trust the test outcome too much.”

1.2.6 Limited confidence

1.2.3 Coverage
“That’s integrated in the continuous integration process. We have around 60-80%
coverage.”

Participant P6

1.1.2 Requirement source

“The requirements are recorded in Bugzilla, but not in detail. The person developing
a feature enhancement, that one aligns his ideas with the ones of the others as much
as he thinks is useful and necessary. That’s a self-responsible process. We assume that
all committers take responsibility for the overall product.”

4.2.1 Manual testing “We do not test cross-feature integration automatically. There is the possibility that
other plug-ins have side effects with ours, but if you are part of the simultaneous
release, then there is a set of rules that you must obey. One rule states: ‘Play nicely
together’. Surely, that’s only written on paper. We ensure that by having regular
builds in which we put all things together, and then we ask the community to try the
combinations. And usually they do that in the last weeks before the release candidate
goes out. And until now, pre-existent problems became apparent in this phase.”

2.3.2 Play nicely

2.3.7 Combination issues

4.4.1 Releases

3.1.6 Execution time “The long execution time is really bad. A big problem. Turnaround times must be as
short as possible. And that’s a problem with the PDE builds. We run them most of the
time in headless mode, if possible, meaning the tests do not need the UI.”

2.1.4 Headless PDE

3.1.6 Execution time “But if we need the UI, then it is really slow, and then this also means it’s
multithreaded, which makes it even more difficult. On the other hand, we have to test
that too.”

2.1.4 Headless PDE

3.1.6 Execution time “Even with unit tests, it is important that they are fast. You always have to keep an
eye on where you spend the time during a turnaround, and then it is also important to
look at the tests to see where you can speed things up.”

1.2.9 Fast execution

2.1.1 Workbench dependencies “A PDE test is similar to a unit test. Actually, it is a unit test, with the only difference
that it is based on a large web of objects. So, typically the whole workbench is
started.”

2.1.3 PDE as unit test

2.1.2 PDE as integration test “Then, we have tests like start the workbench, create two projects, create a file and
save it. Those are the real integration tests – they need everything. You really cannot
mock that anymore. That does not pay off. These tests run as PDE tests and also in
the continuous integration.”

1.3.3 Continuous integration

1.3.5 Fault location

“A disadvantage of integration testing is that faults are hard to locate, because if
something goes wrong you have executed one million lines. It is more difficult to
understand where the fault occurred than if you execute 10 lines.”

3.1.6 Execution time “We prefer unit tests. Fast running, small tests. Integration tests, or functional tests,
are also nice and important, but we would prefer to test everything without the UI.”1.2.2 Preference

1.3.4 Unit vs integration testing

12

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 23

3.1.7 Eclipse testability “It is not our code that we have problems with. It is the code of the Eclipse platform,
that from JFace and SWT. And that code we do not like to test. We have to do it
anyway. We do not like it, because it is hard to produce small tests, which means you
always have a lot of infrastructure.”

3.1.3 Ownership

1.1.2 Requirement source “We have Bugzilla, and through that we communicate the most. Also with the users
and the committers. People add patches, and suggestions about how this or that can
or should be done.”

4.2.8 Feedback

4.3.5 Providing patches

3.1.7 Eclipse testability

“The problem is that the Eclipse platform is very hard to test, because components
are highly coupled and interfaces are huge, and all is based on a singleton state. This
is very hard to decouple.”

Participant P7

3.1.7 Eclipse testability
“[Project 7] is a plug-in, but it is not an end-user plug-in. It is a half-way plug-in.
Other plug-ins build on top of [Project 7], so integration testing would need to
include some other components. It is not the final, the whole thing.”

3.1.3 Ownership

3.1.2 End user requirements “Integration testing should be done at least in strong collaboration with the
developers of the end-user plug-in. One example is the syntax highlighting. Only
when I know about the language and have the syntax highlighter can I test it and see
whether it was successful or not. I need some third party component.”

3.1.3 Ownership

3.1.3 Ownership
“And you never know, once you write a good test, it will be obsolete with the next
version of Eclipse.”

1.3.7 GUI maintainability “We tried GUI testing for a while but it was too much work.”

4.4.2 Communication
“We can just call each other, but it is better to use the mailing list and let others know
that there are some considerations. And also our users read the mailing list.”

4.4.2 Communication
“We try to communicate via the mailing list because we want to give some visibility
into the activity of the project.”

4.2.5 Compatibility

“We have [major changes that break the API] once in a while. We know most of the
users and we normally investigate their source code to see if a change is going to be a
problem. If it is going to be a real problem, we usually do not do it. We only do small
changes.”

4.4.2 Communication “If there is really an API change, then we mail all the users personally, saying that
something new is coming.”4.2.5 Compatibility

4.2.1 Manual testing “So, what now happens is that [person X] also manages a lot of applications of [our
project], like the Cobol IDE and another IDE, and he just makes a pre-release within
his small group that use the tools, and lets them test it. So, it is really manual testing.”

4.4.1 Releases

1.2.3 Coverage “My part is mainly tested with unit tests. I have 85% coverage, but actually I
measured it only when I wrote the tests. Now, I only maintain it and I do not measure
anymore.”

1.2.1 Key practice: Unit testing

1.2.6 Limited confidence

“It is very easy to get high coverage with unit tests, like you generate mock objects and
you run it. But, the hard thing is: what do you check when the method is finished, i.e.,
you must know about the post-conditions. So, are people actually doing useful testing,
or are they just going through the motions with the unit tests?”

2.4.3 No automated versions “Our project requirements specify that the software has to work with older versions
of the platform, ranging from Eclipse 3.1 to 3.5. We do not have automated tests to
verify the compatibility, but when we release [Project 7], then we test it. So, when we
do manual testing, then we test for different versions of Eclipse.”

4.4.1 Releases

2.4.4 Manual versions

13

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

24 TUD-SERG-2011-010

Participant P8

4.4.2 Communication

“We have a lot of Skype-to-Skype communication, because it is more efficient. For
topics relevant for the bigger community we are often copying the communication
records to the Bugzilla.”

4.2.4 Multiple versions
“We only test the latest available versions of our dependencies, those that are
together in the release train. Those we officially support. That does not mean that
others are not working, but in the worst case everybody has to try it out themselves.”

3.1.1 Responsibility

4.3.2 Release train

2.4.6 Assert compatibility

2.4.5 Limited versions

4.2.4 Multiple versions “Our ranges are most of the time bigger than what we officially support. For the
platform we have a minimum requirement of 3.4, but this does not mean that if
somebody really still runs with 3.4 that we will commit our valuable time to solve
problems. Then, he has to bother himself.”

3.1.1 Responsibility

2.4.6 Assert compatibility

2.4.5 Limited versions

Participant P9

1.1.1 Issue tracker “We have even an open repository, we want it to be easy to participate.”
4.2.4 Multiple versions “To test those versions, we do it manually, but we also have some users that do that

with the unstable versions.”
4.4.1 Releases

2.4.3 No automated versions

2.4.4 Manual versions

4.4.1 Releases “We have 3-tiered releases. So, with unstable releases. And some of the experienced
users use them, and they can also report bugs for those, and if that all works, than we
release them as stable releases.”

4.2.7 Filing bug reports

4.2.2 Software usage

2.4.7 Update rarely

“We use a very old version of the main plug-in we depend on. Sometimes we update,
but there is always the risk that it will break something and then you have to do
extensive [manual] testing.”

4.2.2 Software usage “The tests that I perform are very simple manual tests, the real tests are coming from
the users, that are doing all kind of different things with [Project 9]. We are just
testing if there is no basic regression.”

4.2.1 Manual testing

2.3.5 No automated cross-tests

2.3.1 Plug-in independence “We do not have problems with plug-ins that work in the same domain. We only had
problems with plug-ins that do something else, like Subversion and Mylyn. If you
would have [a similar plug-in], it would make sense to test that. But at this point, we
do not expect a lot of interaction with other plug-ins.”

2.3.3 Demand driven

2.3.7 Combination issues

2.3.6 Unpredictable

3.1.1 Responsibility “The users also use a number of other plug-ins and we got some reports about
problems. The combination of plug-ins does not work. The users filed reports in our
issue tracker, but we do not know if the problems are caused by our plug-in or by the
others.”

2.3.7 Combination issues

4.2.5 Compatibility

Participant P10

2.2.7 GUI based “There are no specific types of tests for [integrating multiple plug-ins], but it is
covered by the end user tests, and by the GUI tests, which communicate amongst
plug-ins, but the internal coverage is more random.”

1.3.6 GUI testing

1.3.1 Test automation

“Two years ago, many manual tests were still being executed, but we already had the
requirement to automate. But when tests had to be executed daily we could not do it
anymore. There are still manual tests, but not a lot. A lot of effort has been put on
automation, because it became an obligation.”

1.3.3 Continuous integration “Having stability in product quality costs time and money. Continuous integration is
needed to reach that. Also, the status of the QA has been increased because of CI,
and we can also see that it helps to meet the development goals.”

1.2.5 Confidence

14

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 25

1.2.3 Coverage
“We are just in the process of setting up coverage measurements. We see it’s becoming
a requirement, but until now management has not explicitly asked for it.”

1.3.7 GUI maintainability

“It happens that during product evolution, suddenly something works differently and
the tests do not work anymore. [There are] synchronization problems, sometimes the
test has not been set-up in a clean way, or timing problems occur. To cope with that
takes a lot of time.”

Participant P11

4.3.5 Providing patches “Yes, for the GEF part, we find and report bugs, and we provide patches. In fact,
perhaps it is not our own product, but our product relies on this other product. So it
is normal to improve the other parts that we need.”

4.3.4 Plug-in symbiosis

4.2.7 Filing bug reports
“The community is involved in development by filing bug reports and feature re-
quests.”

4.2.8 Feedback
“Open source is great because we can provide feedback for each other, and help
others. I think it is good that the community is involved in the development.”

1.3.1 Test automation

“Some tests are difficult to automate - it would be too much effort to write tests or
maintain them. A human person is better and faster to test that. So, our QA team tests
such parts, something we won’t automate. And also new features, in order to have
feedback, not only on functionality but also on usability.”

1.3.3 Continuous integration

“Yes, we are using continuous integration. We are using Hudson. We have several
builds in parallel, for branches, for open source versions, and some commercial
versions.”

1.2.3 Coverage

“I do not know the exact number for the coverage. We have around 80%. We have a
lot of generated code, which we do not exclude. We would have to configure the tool.
But in fact we are using it more to see whether some important parts are not tested
automatically.”

Participant P12

1.3.5 Fault location

“Somewhere it fails. But, most of the time when it fails during integration testing, and
I analyze it and understand the problem, then I write a unit test so that I can find the
problem faster.”

4.2.4 Multiple versions
“It can happen that something breaks because of a new Eclipse Version. Such things
come back from the user community quickly.”

4.2.4 Multiple versions “Testing is done by the user-community and they are rigorous about it. We have more
than 10,000 installations per month. If there is a bug it gets reported immediately. I
do not even have a chance to test [all possible combinations]. There are too many
operating systems, there are too many Eclipse versions.”

4.2.3 Operating systems

2.4.8 Unfeasible

4.4.2 Communication

“We try to keep everything open. There is no one-to-one communication. Everything
goes through the forums at Source Forge, so that we share the ideas and also to better
document them.”

1.1.2 Requirement source “The main amount [of requirements] comes from me, because I know the use case
from another project, and I know how the library has to work so that you can
integrate it in Eclipse, because I have done that already. In addition, there are
requirements, and some very good ideas from the community, and also often very
nice solutions.”

4.3.5 Providing patches

1.3.1 Test automation “Test automation is very important, because you can just start working to fix a bug or
implement a new feature even if you haven’t worked on this piece of code for some
time. It’s a safeguard that nothing gets broken.”

1.2.5 Confidence

15

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

26 TUD-SERG-2011-010

Participant P13

1.2.5 Confidence
“It gives you a certain level of comfort to know that when you make a change and you
break something that this would be apparent in your test case.”

4.3.2 Release train

“Some testing is performed downstream, when packages of multiple plug-ins are
produced. Some packages have plug-ins like Mylyn, [project 13], and a whole ton
of other projects. Then, there are people that test whether the packages behave
reasonably.”

4.3.1 Automated testing

“That is one of the things I totally rely on, e.g., the Web Tools Platform uses [project
13] heavily, and they have extensive JUnit tests, and so I am quite sure that when I
break something, somebody downstream will rapidly notice and report the problem.”

4.2.1 Manual testing
“If there are problems, people definitely report them, so you do find out about prob-
lems.”

2.4.6 Assert compatibility

“A lot of people put version ranges in their bundle dependencies, and they say we can
run with 3.3 up to version 4.0 of the platform. But I am willing to bet that 99% of the
people do not test that their stuff works, they might assert it, but I do not believe that
they test.”

4.4.2 Communication
“Being part of the release train, there is this requirement to have open plans, and to
communicate clearly with your community what changes you plan to make.”

4.4.2 Communication “I try to avoid writing any large planning documents. But, not a single code change
goes into the code base without a corresponding Bugzilla ID.”1.1.1 Issue tracker

2.2.3 Extension points
“Our test cases make use of extension points, so we end up testing if extension point
processing is working correctly.”

1.2.4 No coverage

“We don’t measure coverage, but we should. Some people have measured it in the
past, and tests have been added to improve the test coverage, but this is another one
of those things that has not really happened much in recent years because of a lack of
time.”

1.3.8 GUI non-tested
“We try to make a point of surfacing as little visible stuff in the UI as possible. All our
UI testing is essentially ad hoc and manual.”

Participant P14

1.3.4 Unit vs integration testing “Try to get to a level that you write unit tests, always, whenever you can. And write
your code in such a way that the structure and the classes can be tested with unit
tests. And then, at max. you use one integration or PDE test to probe the code.
Ultimately, unit tests are our best friends, and everything else is already difficult. ”

1.2.7 Unit testability

2.1.3 PDE as unit test

“We use integration tests to refactor a code passage, or to fix a bug, when you cannot
write a unit test. Then, at least you write an integration test that roughly covers the
case, to not destroy something big. That, we use a lot.”

2.2.6 Eco-system integration “We have to test the integration of our code and the Eclipse code, and then you
automatically have the need for PDE tests. And then, you test in a different way,
because you do not have so much interaction between the code you write and the test
code, and you have more test requirements. There are more players in the game.”

2.1.1 Workbench dependencies

1.2.9 Fast execution
“With us it is common practice that everyone runs the unit test suite before committing.
We have around 3000 unit tests, which take 2 minutes to execute.”

3.1.6 Execution time
“Our integration tests are only executed in the nightly build. I guess they take approx-
imately half an hour to execute.”

16

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 27

3.1.7 Eclipse testability “The problem is that code pieces are strongly interwoven with each other. You can’t
just call one piece of code, but you must first, to even be able to call the code, set all
pre-requirements and put the system in the right state, and this often means that you
have to boot and instantiate the whole system. And at a certain point, writing a unit
test does not pay off anymore.”

2.1.1 Workbench dependencies

1.3.7 GUI maintainability
“We had a QF-Test suite, but it became apparent that those are too rigid to use them
further [if software evolves]. That’s why we stopped using them.”

1.3.7 GUI maintainability

“We also have a couple of Fit tests. We had good experiences, although we had
problems with maintainability. In the end, it was too much trouble compared to the
benefits we got.”

1.1.4 Hybrid testing

“Testing is a multi-stage process, because of Scrum. In fact, the development team
manually tests it before calling it done and submitting it. Then, the quality represen-
tative who is on the same team, takes over, manually tests it again, and determines if
it’s ready. If he accepts, then it goes to the “expert users”, where we also sit in and
explain the results of the sprint. If there are complex scenarios they might also test it
again. Finally, it is applied to the production system.”

4.2.9 Customer involvement

“The “expert users”, they are from the customer and use the software in production.
Those are the really expensive people, the people that bring in the money at the
customers. They use the system themselves and in real production.”

2.4.5 Limited versions “We always have one specific version for platform and libraries that we use, if we
update that, that’s a major effort. That we do only rarely.”2.4.7 Update rarely

Participant P15

1.2.1 Key practice: Unit testing “The majority of the tests are written with JUnit, and the main test suites comprise
tests that do not depend on Eclipse.”2.2.8 No eclipse integration

1.3.7 GUI maintainability
“In my experience, automating UI testing is very expensive with no big benefits,
especially [if you have a lot of] change.”

3.1.5 Set-up build system

“There are a few tests that depend on Eclipse, but these are actually currently not run
on a daily basis, i.e., as part of the regular tests. It is a technical problem, just the
ability to run them from the command line, i.e., in the same way as the other tests are
run. This was impossible until Eclipse 3.6.”

4.2.9 Customer involvement “People book time at hatches, to try the software. It is not like they go to test it, but
they use it, so they are users, but they might do things that help uncover a couple of
bugs and issues.”

4.2.2 Software usage

4.2.9 Customer involvement “A lot of the product is used by the scientists in the complex. The developers have
access to the users all the time. So it tends to be: they develop for 4 months, make a
release, make it available to the scientists and then fix it as they go along. They are a
big source of feedback by saying what improvements they like, and which features
they need. So, they give a lot of feedback to the developers.”

4.2.8 Feedback

4.4.1 Releases

1.1.1 Issue tracker

“There is a separate reporting system which the scientists have to submit feature
requests, enhancements and bugs. But some of that is also done directly, face to face
with some developers that are dedicated to help them.”

Participant P16

2.2.3 Extension points “We tried a lot. We test our functionality by covering the functionality of the
extension point in a test case, i.e., testing against an API. The small glue code where
the registry gets the extension, that’s not tested, because it is just hard to test that.
And for these untested glue-code parts we had the most bugs.”

2.2.5 Plug-in testability

2.2.4 Registration untested

17

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

28 TUD-SERG-2011-010

4.3.3 Ecosystem

“I was actually the only one making an effort to integrate our project with the other,
like with EMF. To make sure it works fine. I often started the integration process, but
now this is really driven by the other projects and the community. Our project has
almost nothing to do with it anymore. Also not with the compatibility issues.”

2.3.4 Manual combinations “There are no automated tests for that, because that is quite a complex topic, also
because you never know who you will have problems with. That’s why we test that
manually a lot.”

2.3.5 No automated cross-tests

2.3.6 Unpredictable

2.4.8 Unfeasible

3.1.5 Set-up build system

“We had some PDE tests, but they were not developed by us. They came from the
library and its test suite, which we took over. But the PDE tests included have never
been part of the continuous integration, because it was too much effort to set that up.”

4.4.2 Communication
“There are things we discuss on the mailing lists because we know others want to take
part. Then we make internal discussions public.”

4.4.2 Communication

“If people want to be involved, they are very welcome. Especially before a release, then
we always ask what would be interesting or the most important for the community. This
information serves as input for the planning. Nevertheless, the planning takes place
internally, because we do not want somebody from outside dictating what we have to
work on.”

4.4.1 Releases “We are explicitly paying attention to regularly making new milestones publicly
available. And then, we always write to our community ’Please test our software’,
because we want to get a clean release. That’s why we motivate the people to test
their applications with our milestone.”

4.2.2 Software usage

4.4.3 Test request

4.2.4 Multiple versions “It’s great that people not only work on a stable version, but also use a new version,
so to say bleeding-edge, and report if something breaks. Then, we can fix that in the
next release. Those are typical regressions.”

4.2.2 Software usage

4.2.7 Filing bug reports

4.3.4 Plug-in symbiosis
“I report problems I discover in other Eclipse projects often. And this happens also
the other way around.”

4.2.7 Filing bug reports

“To just mention some numbers: At the moment, we have 262 open bugs and 2700
closed bugs. Many bug reports came from end-users. So, the community has been very
active and most helpful.”

2.2.5 Plug-in testability
“With the use of OSGi, the amount of black box testing increases, because the different
classloaders prevent you from accessing the code. You can’t access it anymore.”

1.1.2 Requirement source

“Half of the requirements are determined by the developers, on behalf of the company
or customers. So, of course the developers make sure that bugs and features important
to the customers are fixed or implemented. The other half of the requirements are
community driven. We have an eye on the highest voting.”

2.4.5 Limited versions “The continuous integration server builds [Project 16] on top of two versions of the
runtime: the latest stable version, and the current version. Though, we always
recommend to keep the stable version, because that’s the environment we know it
works. And then, we have one version, for us, to try out the latest dependencies and
see if everything works fine.”

1.3.3 Continuous integration

2.4.1 Build system

Participant P17

3.1.6 Execution time

“For this product, we don’t have any pure unit tests. We always use PDE tests, which
are a lot more complex, and take quite some time to run, because OSGi has to be
started and bundles have to be loaded, and so on.”

3.1.6 Execution time
“It’s a difference between 10 seconds and 1 minute: With 1 minute you switch to
Twitter or Facebook, and you’re disrupted in your flow.”

3.1.6 Execution time

“When I test my stuff, around 1500 SOAP calls are issued, which takes its time. This
explains the 15 hours we need for testing – it’s not only due to the slow execution, but
also because of the network traffic.”

18

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 29

4.2.3 Operating systems “The community helps to test the system for different operating systems, and
versions. They are very active with that.”4.2.4 Multiple versions

4.1.1 Self-hosting

“In our company, we have different set-ups, based on Linux or Windows. This leads
already to a high coverage because we use our own products on a daily basis. Then
you are aware of problems and report that immediately.”

1.3.8 GUI non-tested “We do not test the GUI. The problem is that all tools are essentially useless.”

3.1.5 Set-up build system
“In addition to the long execution time, it is a hassle to get [the GUI tests] run on the
build sever.”

1.3.8 GUI non-tested

“What I prefer to do is factor out the key logic, which I then cover well with unit tests.
The glue logic between button and controller is untested. You write it once, and then
it does not change anymore.”

4.2.6 GUI community “The community definitely plays a role in GUI testing. I think, there is almost only
the community that comes and says: ’Look there, the button is wrong, and I do not
like that.’ For these tasks, the community is very active.”

4.2.1 Manual testing

2.3.1 Plug-in independence
“No, we don’t test plug-in combinations. With Project17, I don’t see it as relevant,
since there should be no problems. Things are clearly separated.”

1.1.1 Issue tracker “In my current project, all requirements come directly from the customer. A lot of
[team communication] goes via Mylyn task, and we have external Mylyn tasks filed
by our customers.”

1.1.2 Requirement source

4.2.9 Customer involvement

2.4.2 External systems

“When I integrate external systems, I run my single test suite against all versions of
this external system. Using this, I can be sure, for example, that my system works well
with all 18 versions of [the product to integrate]. I need this, because I cannot rely on
them that their systems work the same tomorrow as they do today.”

2.4.2 External systems

“We test our plug-ins, which are connecting external systems, against many, many
versions of the end systems. For the integration of Bugzilla, for example, we support
all Bugzilla versions from the last 3 years. That is around 17 releases and we have the
tests run against each version.”

Participant P18

1.2.1 Key practice: Unit testing
“At our company, testing is quite standard. We have different stages. We have unit
testing, and that’s where we put the main effort - at least 70% of the total expenses.”

1.2.2 Preference “Unit testing, that’s where you find the most bugs.”

2.2.2 Modularization
“I believe OSGi is very helpful for creating clear structures. The test strategy is not
changed, but there are structural changes.”

1.1.3 Developer testing “Every developer is also a tester. That’s also due to test driven development.”

3.1.6 Execution time
“We split the unit tests into fast and slow running tests. Slow running tests consider
e.g., time outs. Fast running tests need for every module one second, at a max.”

1.1.5 Tester status “As software developers, they feel comfortable writing code, but when they have to
write tests, then they do not see that as code. And then, to teach them to develop joy
and discipline to write tests, that I find difficult.”

1.1.3 Developer testing

2.3.3 Demand driven “We handle problems between several plug-ins in a bug-driven way. If there is a bug
we write a test, but we do not think ahead which problems could there be. Also, with
unit tests, most of the bugs are already caught.”

2.3.1 Plug-in independence

1.3.1 Test automation
“We automate everything. That’s our main principle. Tests that are not automated, are
not tests for us.”

1.3.7 GUI maintainability
“We haven’t been 100% satisfied with capture-replay, because too much is captured.
After a capture, we always have a review to remove unnecessary code.”

19

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

30 TUD-SERG-2011-010

Participant P19

4.3.5 Providing patches “It is very important for us that our tests are executable by the contributers. This
means that all the infrastructure, the repositories, like Bugzilla and TRAC, must be
publicly available, so that somebody that writes a patch has the opportunity to run
the same tests we execute internally. So, he can run those and check whether the
patch is okay. We expect for every contribution, that also the according tests are
provided. That’s a prerequisite.”

4.3.4 Plug-in symbiosis

4.4.2 Communication

4.3.5 Providing patches “[Who contributes] varies a lot: end-users, but also our partners, or people that
integrate their systems with ours. That’s always different.”4.3.4 Plug-in symbiosis

4.4.1 Releases “We release every 3 to 6 months, but we also have periodic weekly builds, and an
early access version based on the weekly build, in order to get early user feedback.”

4.2.8 Feedback

4.2.2 Software usage

4.4.1 Releases

“We have quite a similar process for the open source and the closed source tools.
Quite agile. We release every 3-6 months and we try to keep that synchronized between
the open source and the commercial products. Usually, [the open source product] is
released first and then the closed one, which is based on it, follows around 1-2 weeks
later.”

2.2.5 Plug-in testability

“Testing is more difficult, especially because of the separate classloaders. That makes
it complicated to access the internals. Therefore some methods which should be
protected are public to enable testing.”

2.2.3 Extension points
“In some cases, we have extensions just for testing in the test plug-ins. Either the
extensions are just loaded or they implement some test behavior.”

2.2.3 Extension points
“We recommend that if somebody writes an extension, they should look at the relevant
tests, because those tests demonstrate how to use the API.”

4.2.5 Compatibility “we have no automated tests for cross-product problems, but we do manual testing.
Then, we install [product 19] with the SpringSource Tool suite, or with other
products, like the IBM rational team concert, or with other distributions, like
MyEclipse, to test for interoperability. The user community plays an important role in
testing for interoperability.”

2.3.4 Manual combinations

2.3.5 No automated cross-tests

4.2.7 Filing bug reports “I would say the majority of the bug reports come from the community. We have
accepted more than 800 patches during the life span of this project. 1/7 of all bugs
that have been resolved have been resolved through community contributions. That’s
quite a high rate. If there are many votes on a bug, then the bug gets a higher
priority. If there are many comments on a bug, then we know this is a critical bug,
and we take the community feedback serious.”

4.3.5 Providing patches

4.2.8 Feedback

4.2.4 Multiple versions “But the actual testing is really performed by users that run maybe 64 Windows, or
Ubuntu, and they use a different version, or wired syntax-things etc. The feedback of
the user is very valuable for the quality of the system.”

4.2.3 Operating systems

4.2.5 Compatibility

4.4.2 Communication “We attempt to communicate more openly for the commercial products. We have a
public issue tracker. But we do not include all our tasks as we do with the open
source projects. The commercial side is a bit different. This means the majority of
issues are support requests, but partially you see which features we’re working on.
Often a commercial request also causes a change in the [open source parts], and
then we attempt to make that transparent, as much as possible.”

4.4.4 Opening closed software

1.1.1 Issue tracker

20

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 31

4.3.5 Providing patches “People from the outside contribute by providing patches or feature enhancements, in
case some API is missing, or the API is not working as expected. Also, when we find
bugs in the platform, we always try to provide the required patch. If possible.”

4.3.4 Plug-in symbiosis

1.1.3 Developer testing

“We have no dedicated test team. It would be great [to have a separate test team],
because then the developer can better concentrate on the development. On the other
hand, I think it’s important as a developer to feel responsible for the quality, and that
you learn how you can better test your software.”

Participant P20

1.2.7 Unit testability “We try to encapsulate the logic as much as possible to be able to test with unit tests.
What cannot be encapsulated is not tested.”1.2.8 Unit non-tested

3.1.6 Execution time “We have 7000-8000 normal JUnit tests, which run within 2 seconds. Running the
same within the PDE runner takes 1.5–2 minutes. Thinking of the ’red, green,
refactor’ paradigm, all tests must be executed at least 3 times. With PDE this
becomes a problem.”

1.2.9 Fast execution

4.3.3 Ecosystem “We actively try to establish collaborations with other committers to ensure that
plug-ins work together, but there are still things that do not work together.”2.3.7 Combination issues

1.3.4 Unit vs integration testing “We think that with a high test coverage through unit tests, integration tests are not
necessary.”1.2.3 Coverage

1.2.1 Key practice: Unit testing

1.3.4 Unit vs integration testing

“Personally, I would like to see integration testing done in our project. Otherwise,
you do not know whether two parts can work together. But my team members think
differently.”

4.3.1 Automated testing “We are in the special position of being a framework. This means that if a user
downloads a new version and runs his application based on ours, then this is already
like a test.”

4.3.4 Plug-in symbiosis

Participant P21

1.1.4 Hybrid testing
“Automated tests are only created by developers. Manual testing is done partly by
developers. Regression testing is done by someone from the customer.”

2.1.1 Workbench dependencies “Our PDE tests do not really look at the integration of two components. There are
often cases where you actually want to write a unit test, but then it’s hard to write,
because the class uses something from the workbench. Then, it does not work
anymore. So, that’s why those tests are not classic integration tests but, from my point
of view, more unit tests that unfortunately need the platform, and that’s why they are
PDE tests.”

2.1.3 PDE as unit test

3.1.5 Set-up build system

“It is already quite complicated to automate the JUnit stuff to run with the build and
make sure that reporting is working. And then another framework, I honestly did not
want to take the trouble.”

1.2.9 Fast execution
“The normal unit tests run in seconds. We had several thousands, but normally they
are incredibly fast. And that, you could easily execute during development.”

3.1.6 Execution time “Our practice is to use normal unit tests every time we can, because they are much
faster executed. We use PDE tests only if we really need the runtime.”

1.2.9 Fast execution

2.1.1 Workbench dependencies

3.1.6 Execution time

“We have two test suites: one runs with the plain JUnit test runner, and the other runs
with the PDE test runner. The split is important, because we have so many tests and
some involve the UI. During development you can not run the PDE tests, because they
take half an hour to execute.”

21

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

32 TUD-SERG-2011-010

2.1.2 PDE as integration test “We use the PDE JUnit framework to write integration tests, although we are not
happy with it. It’s not really suited for that.”

3.1.8 PDE integration tooling

1.3.7 GUI maintainability
“We put an immense effort into writing UI tests, and in the end often more test code
existed than code to test. I doubt that makes sense.”

1.3.8 GUI non-tested “In the current project, we completely abandoned automatic UI testing.”

Participant P22

2.4.1 Build system “We have several builds to support different Eclipse versions. We set-up different
target platforms to support Eclipse 3.4, 3.5 and 3.6.”1.3.3 Continuous integration

2.4.1 Build system
“Most tests must pass on all supported Eclipse platforms, with some exceptions, like
tests that have to do with the P2 provisioning system.”

3.1.5 Set-up build system “When we set-up the build for Eclipse 3.4 and 3.5, that was clearly a huge effort,
until we knew how to do it. Then, for Eclipse 3.6 the set-up was okay.”3.1.4 Plug-in testing knowledge

3.1.5 Set-up build system

“Running OSGi in different runtime environments is a complex story which makes it
hard to automate tests. I repeatedly hit a wall trying to start OSGI in another runtime
in such a way that I can execute the integration tests.”

3.1.5 Set-up build system
“Setting up integration tests with all requirements can be so complex that I regularly
experience people saying ’that’s not worth the effort’.”

3.1.4 Plug-in testing knowledge

“At the customer site, I am often the expert for Eclipse, and the rest knows little about
it. This is visible in the testing practice, because often they don’t know how to write
tests that have to do with Eclipse code, or how to execute them.”

2.2.8 No eclipse integration “We try to keep away from Eclipse when writing tests. So practice is to have unit
tests, which are the majority of tests. Those are plain Java tests and they run with
JUnit, but do not need Eclipse or the OSGi runtime. I just do not want to start
Eclipse or OSGi when I quickly want to run the tests.”

1.2.1 Key practice: Unit testing

3.1.6 Execution time

2.1.1 Workbench dependencies
“Often plain unit tests are not sufficient. Therefore, we also have test suites that start
the runtime, such as the Eclipse workbench or OSGi.”

1.3.4 Unit vs integration testing “We try to have only few integration tests.”
1.3.4 Unit vs integration testing “We have two test suites: one with JUnit tests and one with PDE tests.”

2.2.3 Extension points
“We have dedicated test extensions. A test checks whether the test extension is loaded
and executed.”

Participant P23

3.1.7 Eclipse testability “OSGi wires bundles at runtime, this means a lot of magic is taking place in the XML
configuration files, and to test those, this is complicated with traditional test
practices.”

3.1.4 Plug-in testing knowledge

3.1.7 Eclipse testability

“We all know that SWT Widgets are hard to mock. And you only find out about
problems at runtime. To overcome that we use JUnit and JMock, and the PDE test
runner.”

1.3.6 GUI testing “We have PDE tests for testing the UI, but we try to have a minimum of logic there.”

1.3.7 GUI maintainability
“Functional tests can become a maintenance nightmare. So, we try to keep them
focused, because it can become too much for a team to maintain.”

Participant P24

1.3.1 Test automation
“There has to be a commitment from the customer to do testing. If the benefits are not
visible to the customer they see it as a waste of time.”

22

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 33

1.2.6 Limited confidence

“We had a problem with some software we developed. When more than 20 users used
the software in parallel it crashed. At the same time, many tests existed for this product
which passed.”

Participant P25

2.4.5 Limited versions
“We have trust that the Eclipse core is well tested. So, we have exactly one version
and we do not use version ranges or variation.”

1.2.1 Key practice: Unit testing “We have a lot of unit tests.”
1.3.1 Test automation “Integration testing is done only manually, because it is too complex to automate.”
1.3.3 Continuous integration “Our unit tests run all the time. We have continuous integration.”

23

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

34 TUD-SERG-2011-010

Index of Codes to Participants
1.1.1

Issue tracker, P9, P13, P15, P17, P19
1.1.2

Requirement source, P2, 3, P5, 6, P12, P16, 17
1.1.3

Developer testing, P5, P18, 19
1.1.4

Hybrid testing, P3, P14, P21
1.1.5

Tester status, P3, P18
1.2.1

Key practice: Unit testing, P7, P15, P18, P20, P22, P25
1.2.2

Preference, P1, P6, P18
1.2.3

Coverage, P5, P7, P10, 11, P20
1.2.4

No coverage, P3, P13
1.2.5

Confidence, P1, P3, P10, P12, 13
1.2.6

Limited confidence, P3, P5, P7, P24
1.2.7

Unit testability, P14, P20
1.2.8

Unit non-tested, P20
1.2.9

Fast execution, P1, P6, P14, P20, 21
1.3.1

Test automation, P3, P5, P10–12, P18, P24, 25
1.3.2

Hardware integration, P5
1.3.3

Continuous integration, P3, P5, 6, P10, 11, P16, P22,
P25

1.3.4
Unit vs integration testing, P1, P6, P14, P20, P22

1.3.5
Fault location, P6, P12

1.3.6
GUI testing, P3, P5, P10, P23

1.3.7
GUI maintainability, P7, P10, P14, 15, P18, P21, P23

1.3.8
GUI non-tested, P1, 2, P13, P17, P21

2.1.1
Workbench dependencies, P1, P6, P14, P21, 22

2.1.2
PDE as integration test, P6, P21

2.1.3
PDE as unit test, P1, P6, P14, P21

2.1.4

Headless PDE, P6
2.2.1

No influence, P2
2.2.2

Modularization, P3, P5, P18
2.2.3

Extension points, P13, P16, P19, P22
2.2.4

Registration untested, P16
2.2.5

Plug-in testability, P5, P16, P19
2.2.6

Eco-system integration, P14
2.2.7

GUI based, P3, P10
2.2.8

No eclipse integration, P15, P22
2.3.1

Plug-in independence, P9, P17, 18
2.3.2

Play nicely, P6
2.3.3

Demand driven, P9, P18
2.3.4

Manual combinations, P16, P19
2.3.5

No automated cross-tests, P9, P16, P19
2.3.6

Unpredictable, P9, P16
2.3.7

Combination issues, P6, P9, P20
2.4.1

Build system, P16, P22
2.4.2

External systems, P17
2.4.3

No automated versions, P7, P9
2.4.4

Manual versions, P7, P9
2.4.5

Limited versions, P8, P14, P16, P25
2.4.6

Assert compatibility, P8, P13
2.4.7

Update rarely, P9, P14
2.4.8

Unfeasible, P12, P16
3.1.1

Responsibility, P8, 9
3.1.2

End user requirements, P7
3.1.3

24 2012/4/25

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 35

Ownership, P6, 7
3.1.4

Plug-in testing knowledge, P4, P22, 23
3.1.5

Set-up build system, P4, P15–17, P21, 22
3.1.6

Execution time, P1, P5, 6, P14, P17, 18, P20–22
3.1.7

Eclipse testability, P1, P5–7, P14, P23
3.1.8

PDE integration tooling, P21
4.1.1

Self-hosting, P17
4.2.1

Manual testing, P6, 7, P9, P13, P17
4.2.2

Software usage, P9, P15, 16, P19
4.2.3

Operating systems, P12, P17, P19
4.2.4

Multiple versions, P8, 9, P12, P16, 17, P19
4.2.5

Compatibility, P7, P9, P19
4.2.6

GUI community, P17
4.2.7

Filing bug reports, P9, P11, P16, P19
4.2.8

Feedback, P2, P6, P11, P15, P19
4.2.9

Customer involvement, P3, P5, P14, 15, P17
4.3.1

Automated testing, P13, P20
4.3.2

Release train, P8, P13
4.3.3

Ecosystem, P16, P20
4.3.4

Plug-in symbiosis, P11, P16, P19, 20
4.3.5

Providing patches, P6, P11, 12, P19
4.4.1

Releases, P6, 7, P9, P15, 16, P19
4.4.2

Communication, P4, P7, 8, P12, 13, P16, P19
4.4.3

Test request, P16
4.4.4

Opening closed software, P19

25

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

36 TUD-SERG-2011-010

D. Survey
The following pages contain the questionnaire as distributed among over 150 Eclipse developers.

26

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 37

Page 1

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

Thank you for participating in this survey. We would be grateful if you could take the time to answer some questions
about your test practices for Eclipse-based applications.

All of your individual responses will be treated as confidential. Anonymised information may be used in academic
papers or other publications.

When filling in this survey, please relate the answers always to the current or most recent Eclipse-based software
project you have been part of.

By participating at this survey you can make a chance to win a ultra-cool mini solar car!

1. My team develops...

2. My team develops...
(Multiple answers allowed.)

3. Do you have a separate test team?

1. Background

*

*

*

...open source software. nmlkj

...closed source software. nmlkj

...open and closed source software. nmlkj

Other (please specify)

nmlkj

RCP applications. gfedc

Eclipse plug-ins. gfedc

OSGi-based, non-Eclipse applications. gfedc

Other Java applications. gfedc

Other (please specify)

gfedc

yes, we have a separate test team. nmlkj

no, we do not have a separate test team. nmlkj

Other (please specify)

nmlkj

Other

Other

Other

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

38 TUD-SERG-2011-010

Page 2

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

When filling in this survey, please relate the answers always to the current or most recent Eclipse-based software
project you have been part of.

Unit Testing: typically comprises a relative small executable like a method, class, or several related classes

Integration Testing: testing with the intent of finding bugs in component (plug-in) interactions

System Testing: tests execute the entire system

2. Test Activities

4. Please estimate the relative effort spent on each test technique.
(The total effort spent should not exceed ~100%.)

*

 90-100% 75-90% 50-25% 25-10% <10% 0%
I don't

know

Unit Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

Integration Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

GUI Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

System Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

5. Please indicate the level of test automation?

(If you do not practice a technique please check "not applicable".)
*

fully

automated

main effort

test

automation

main effort

manual

only manual

testing
I don't know

not

applicable

Unit Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

Integration Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

GUI Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

System Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 39

Page 3

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

Unit Testing: typically comprises a relative small executable like a method, class, or several related classes

Integration Testing: testing with the intent of finding bugs in component (plug-in) interactions

System Testing: tests execute the entire system

8. Have you received any training related to software testing?

(like at University, or company internal trainings etc.)

9. If you had training, please indicate by keywords which training you followed.
For example: company internal course on test-driven development

3. Test Activities

6. How important do you personally think are the following test techniques? *
 unimportant

less

important

quite

important
important

very

important
I don't know

Unit Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

Integration Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

GUI Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

System Testing nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

7. How experienced are you with the following test techniques? *
 not experienced quite experienced experienced very experienced

Unit Testing nmlkj nmlkj nmlkj nmlkj

Integration Testing nmlkj nmlkj nmlkj nmlkj

GUI Testing nmlkj nmlkj nmlkj nmlkj

System Testing nmlkj nmlkj nmlkj nmlkj

*

55

66

yes
nmlkj

no
nmlkj

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

40 TUD-SERG-2011-010

Page 4

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

When filling in this survey, please relate the answers always to the current or most recent Eclipse-based software
project you have been part of.

10. Is cross-feature integration testing performed in your project?

(Cross-feature integration is for example the integration of your plug-in with a third party plug-in like EclEmma or

Mylyn. Multiple answers allowed.)

11. Do you test compatibility of your plug-in with several different Eclipse platform versions?

(Multiple answers allowed.)

12. Do you test compatibility of your plug-in with different versions of plug-ins and libraries you
depend on?

(Multiple answers allowed.)

4. Integration Testing

*

*

*

yes, we have AUTOMATED tests for this. gfedc

yes, we have MANUAL tests for this. gfedc

yes, but in an ad-hoc manner. gfedc

yes, we address that very thoroughly. gfedc

yes, this is done by the user community. gfedc

no, we do not test that. gfedc

yes, we have AUTOMATED tests for this. gfedc

yes, we have MANUAL tests for this. gfedc

yes, but testing is limited (e.g., to the current and the latest version of the platform). gfedc

yes, we address that very thoroughly. gfedc

yes, this is done by the user community. gfedc

no, we do not test that. gfedc

yes, we have AUTOMATED tests for this. gfedc

yes, we have MANUAL tests for this. gfedc

yes, but not for all versions of the version ranges (e.g., done for two versions of each dependency). gfedc

yes, we address that very thoroughly. gfedc

yes, this is done by the user community. gfedc

no, we do not test that. gfedc

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 41

Page 5

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

When filling in this survey, please relate the answers always to the current or most recent Eclipse-based software
project you have been part of.

5. Organizational Problems

13. Please indicate for each test technique you actually have used if you have experienced
the following organizational problems.
(Please leave the entire column of the test practices you have never used blank.)

 Unit Testing Integration Testing System Testing GUI Testing

Lack of time for

this test practice
gfedc gfedc gfedc gfedc

Test technique is

perceived as less

important

gfedc gfedc gfedc gfedc

No recognizable

benefits of this test

practice

gfedc gfedc gfedc gfedc

Unclear who

is/feels responsible

for performing this

test practice

gfedc gfedc gfedc gfedc

Practice too time

consuming
gfedc gfedc gfedc gfedc

Unclear or

unknown design

documents or end

user requirements

gfedc gfedc gfedc gfedc

Restricted

controllability of

foreign plug-ins

gfedc gfedc gfedc gfedc

Unclear who

is/feels responsible

for overall quality

gfedc gfedc gfedc gfedc

Testing less

appreciated than

development

activities

gfedc gfedc gfedc gfedc

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

42 TUD-SERG-2011-010

Page 6

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

15. Are there other organizational or technical problems you experienced we have not mentioned?
Please specify them and also the test practices they apply to.
Example: missing dummy devices for integration testing

6. Technical Problems

14. Please indicate for each test technique you actually have used if you have experienced
the following technical problems.
(Please leave the entire column of the test practices you have never use blank.)

 Unit Testing Integration Testing System Testing GUI Testing

Lack of knowledge

or expertise
gfedc gfedc gfedc gfedc

Difficult to set-up

test execution

environment

gfedc gfedc gfedc gfedc

Hard to test highly

coupled, or legacy

code

gfedc gfedc gfedc gfedc

Hard to test code

tightly coupled to

Eclipse

gfedc gfedc gfedc gfedc

High maintenance

effort
gfedc gfedc gfedc gfedc

Immature tooling or

missing test

infrastructure

gfedc gfedc gfedc gfedc

Long Test

Execution Time
gfedc gfedc gfedc gfedc

55

66

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 43

Page 7

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

When filling in this survey, please relate the answers always to the current or most recent Eclipse-based software
project you have been part of.

16. How open are your software development activities to users?

17. The users of our software...

18. In which activities are the users involved?

(Multiple answers allowed.)

7. User Involvement

We have an open issue tracking system. gfedc

We have a publicly accessible software repository. gfedc

We have mailing lists, and/or newsgroups anyone can join and post. gfedc

We inform users by e.g., blog posts, newsletters, Twitter... gfedc

We are completely closed. gfedc

Other (please specify)

gfedc

...represent an open community, everybody can join. nmlkj

...represent a closed community (e.g., a specific costumer) nmlkj

Other (please specify)

nmlkj

Giving feedback, and foster discussions. gfedc

Providing bug reports or feature requests. gfedc

Providing bug fixes. gfedc

Manual testing. gfedc

Manual GUI testing. gfedc

Manual combinatorial testing (e.g., different OS, Eclipse versions, or plug-in combinations). gfedc

Automated testing. gfedc

Automated testing done by downstream projects. gfedc

Automated system testing done by the community involved in the release train. gfedc

Other (please specify)

gfedc

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

44 TUD-SERG-2011-010

Page 8

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

19. In which country do you live?

20. Project team size

21. Professional role

22. Do you have any remarks or questions? Please feel free to specify them.

23. If you want to be considered for winning a ultra-cool mini solar car, please leave your email.
We will not use your email for advertisement neither will we distribute it to third parties.

8. Background And Prizes

*

*

*

55

66

1-5
nmlkj

6-10
nmlkj

11-20
nmlkj

>20
nmlkj

Developer nmlkj

Solely Tester nmlkj

Project Lead / Manager nmlkj

Test Manager nmlkj

Other (please specify)

nmlkj

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 45

Page 9

Eclipse Testing StudyEclipse Testing StudyEclipse Testing StudyEclipse Testing Study

If you are interested in the results of this study please say so in an email to eclipsestudy@gmail.com.
Then, we send you the report with the results. Or visit http://the-eclipse-study.blogspot.com.
This survey is being carried out by Michaela Greiler and Arie van Deursen on behalf of the Delft University of
Technology.

9. Thank you for participating @ the Eclipse Testing Study

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

46 TUD-SERG-2011-010

E. Survey Responses
The following pages contain the survey responses, as generated by the online questionnaire tool SurveyMonkey.18

18 www.surveymonkey.com

36

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 47

Eclipse Testing Study

1. My team develops...

Response

Percent

Response

Count

...open source software. 21.2% 32

...closed source software. 47.0% 71

...open and closed source software. 31.1% 47

Other (please specify)

0.7% 1

 answered question 151

 skipped question 0

2. My team develops...

(Multiple answers allowed.)

Response

Percent

Response

Count

RCP applications. 51.0% 77

Eclipse plug-ins. 63.6% 96

OSGi-based, non-Eclipse
applications.

15.9% 24

Other Java applications. 41.7% 63

Other (please specify)

9.3% 14

 answered question 151

 skipped question 0

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

48 TUD-SERG-2011-010

3. Do you have a separate test team?

Response

Percent

Response

Count

yes, we have a separate test team. 34.4% 52

no, we do not have a separate

test team.
63.6% 96

Other (please specify)

2.0% 3

 answered question 151

 skipped question 0

4. Please estimate the relative effort spent on each test technique.

(The total effort spent should not exceed ~100%.)

90-

100%
75-90% 50-25% 25-10% <10% 0%

I don't

know

Response

Count

Unit Testing
5.6%
(7)

7.3%
(9)

23.4%
(29)

27.4%

(34)

26.6%
(33)

6.5%
(8)

3.2%
(4)

124

Integration Testing
2.6%
(3)

3.4%
(4)

27.4%
(32)

32.5%

(38)

17.1%
(20)

10.3%
(12)

6.8%
(8)

117

GUI Testing
4.0%
(5)

6.5%
(8)

20.2%
(25)

29.8%

(37)

27.4%
(34)

8.9%
(11)

3.2%
(4)

124

System Testing
4.9%
(6)

5.7%
(7)

20.5%
(25)

19.7%
(24)

24.6%

(30)

13.1%
(16)

11.5%
(14)

122

 answered question 126

 skipped question 25

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 49

5. Please indicate the level of test automation?

(If you do not practice a technique please check "not applicable".)

fully

automated

main effort

test

automation

main

effort

manual

only

manual

testing

I don't

know

not

applicable

Response

Count

Unit Testing 47.6% (60) 17.5% (22)
11.9%
(15)

15.1%
(19)

0.0%
(0)

7.9% (10) 126

Integration Testing 16.1% (19) 25.4% (30)
22.9%
(27)

21.2%
(25)

4.2%
(5)

10.2% (12) 118

GUI Testing 15.8% (19) 19.2% (23)
27.5%
(33)

28.3%

(34)

2.5%
(3)

6.7% (8) 120

System Testing 6.0% (7) 12.8% (15)
22.2%
(26)

36.8%

(43)

9.4%
(11)

12.8% (15) 117

 answered question 126

 skipped question 25

6. How important do you personally think are the following test techniques?

 unimportant
less

important

quite

important
important

very

important

I

don't

know

Response

Count

Unit Testing 0.8% (1) 8.5% (10)
15.3%
(18)

13.6%
(16)

61.9%

(73)

0.0%
(0)

118

Integration Testing 0.0% (0) 2.6% (3)
14.8%
(17)

25.2%
(29)

55.7%

(64)

1.7%
(2)

115

GUI Testing 0.0% (0) 9.6% (11)
16.5%
(19)

33.9%
(39)

40.0%

(46)

0.0%
(0)

115

System Testing 0.0% (0) 7.9% (9)
12.3%
(14)

29.8%
(34)

42.1%

(48)

7.9%
(9)

114

 answered question 118

 skipped question 33

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

50 TUD-SERG-2011-010

7. How experienced are you with the following test techniques?

not

experienced

quite

experienced
experienced

very

experienced

Response

Count

Unit Testing 5.9% (7) 22.9% (27) 33.1% (39) 38.1% (45) 118

Integration Testing 12.9% (15) 37.1% (43) 27.6% (32) 22.4% (26) 116

GUI Testing 22.4% (26) 28.4% (33) 31.9% (37) 17.2% (20) 116

System Testing 26.5% (30) 38.1% (43) 22.1% (25) 13.3% (15) 113

 answered question 118

 skipped question 33

8. Have you received any training related to software testing?

(like at University, or company internal trainings etc.)

Response

Percent

Response

Count

yes 31.4% 37

no 68.6% 81

 answered question 118

 skipped question 33

9. If you had training, please indicate by keywords which training you followed.

For example: company internal course on test-driven development

Response

Count

 34

 answered question 34

 skipped question 117

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 51

10. Is cross-feature integration testing performed in your project?

(Cross-feature integration is for example the integration of your plug-in with a third party plug-in like EclEmma

or Mylyn. Multiple answers allowed.)

Response

Percent

Response

Count

yes, we have AUTOMATED tests
for this.

23.0% 26

yes, we have MANUAL tests for
this.

19.5% 22

yes, but in an ad-hoc manner. 23.9% 27

yes, we address that very
thoroughly.

1.8% 2

yes, this is done by the user
community.

7.1% 8

no, we do not test that. 42.5% 48

 answered question 113

 skipped question 38

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

52 TUD-SERG-2011-010

11. Do you test compatibility of your plug-in with several different Eclipse platform versions?

(Multiple answers allowed.)

Response

Percent

Response

Count

yes, we have AUTOMATED tests
for this.

13.3% 15

yes, we have MANUAL tests for
this.

15.9% 18

yes, but testing is limited (e.g., to
the current and the latest version

of the platform).
20.4% 23

yes, we address that very
thoroughly.

1.8% 2

yes, this is done by the user
community.

5.3% 6

no, we do not test that. 54.9% 62

 answered question 113

 skipped question 38

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 53

12. Do you test compatibility of your plug-in with different versions of plug-ins and libraries you depend on?

(Multiple answers allowed.)

Response

Percent

Response

Count

yes, we have AUTOMATED tests
for this.

12.4% 14

yes, we have MANUAL tests for
this.

14.2% 16

yes, but not for all versions of the
version ranges (e.g., done for two

versions of each dependency).
13.3% 15

yes, we address that very
thoroughly.

3.5% 4

yes, this is done by the user
community.

2.7% 3

no, we do not test that. 62.8% 71

 answered question 113

 skipped question 38

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

54 TUD-SERG-2011-010

13. Please indicate for each test technique you actually have used if you have experienced the following

organizational problems.

(Please leave the entire column of the test practices you have never used blank.)

 Unit Testing
Integration

Testing

System

Testing
GUI Testing

Response

Count

Lack of time for this test practice
55.4% (36) 52.3% (34) 50.8% (33) 55.4% (36) 65

Test technique is perceived as less
important 32.7% (17) 46.2% (24) 32.7% (17) 38.5% (20) 52

No recognizable benefits of this
test practice 25.0% (8) 25.0% (8) 40.6% (13) 34.4% (11) 32

Unclear who is/feels responsible for
performing this test practice 20.0% (9) 51.1% (23) 57.8% (26) 46.7% (21) 45

Practice too time consuming
39.1% (25) 32.8% (21) 40.6% (26) 67.2% (43) 64

Unclear or unknown design
documents or end user

requirements
31.0% (13) 54.8% (23) 61.9% (26) 57.1% (24) 42

Restricted controllability of foreign
plug-ins 28.6% (6) 47.6% (10) 42.9% (9) 28.6% (6) 21

Unclear who is/feels responsible for
overall quality 19.4% (6) 41.9% (13) 58.1% (18) 58.1% (18) 31

Testing less appreciated than
development activities 67.3% (35) 63.5% (33) 55.8% (29) 67.3% (35) 52

 answered question 82

 skipped question 69

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 55

14. Please indicate for each test technique you actually have used if you have experienced the following technical

problems.

(Please leave the entire column of the test practices you have never use blank.)

 Unit Testing
Integration

Testing

System

Testing
GUI Testing

Response

Count

Lack of knowledge or expertise
37.7% (20) 34.0% (18) 50.9% (27) 60.4% (32) 53

Difficult to set-up test execution
environment 24.6% (17) 52.2% (36) 50.7% (35) 60.9% (42) 69

Hard to test highly coupled, or
legacy code 49.1% (26) 52.8% (28) 45.3% (24) 41.5% (22) 53

Hard to test code tightly coupled to
Eclipse 39.5% (17) 53.5% (23) 30.2% (13) 44.2% (19) 43

High maintenance effort
34.8% (23) 43.9% (29) 40.9% (27) 62.1% (41) 66

Immature tooling or missing test
infrastructure 22.8% (13) 57.9% (33) 61.4% (35) 66.7% (38) 57

Long Test Execution Time
23.0% (14) 41.0% (25) 49.2% (30) 50.8% (31) 61

 answered question 85

 skipped question 66

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

56 TUD-SERG-2011-010

15. Are there other organizational or technical problems you experienced we have not mentioned? Please specify

them and also the test practices they apply to.

Example: missing dummy devices for integration testing

Response

Count

 11

 answered question 11

 skipped question 140

16. How open are your software development activities to users?

Response

Percent

Response

Count

We have an open issue tracking

system.
64.0% 57

We have a publicly accessible
software repository.

38.2% 34

We have mailing lists, and/or
newsgroups anyone can join and

post.
40.4% 36

We inform users by e.g., blog
posts, newsletters, Twitter...

36.0% 32

We are completely closed. 27.0% 24

Other (please specify)

4.5% 4

 answered question 89

 skipped question 62

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 57

17. The users of our software...

Response

Percent

Response

Count

...represent an open community,
everybody can join.

43.8% 39

...represent a closed community

(e.g., a specific costumer)
52.8% 47

Other (please specify)

3.4% 3

 answered question 89

 skipped question 62

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

58 TUD-SERG-2011-010

18. In which activities are the users involved?

(Multiple answers allowed.)

Response

Percent

Response

Count

Giving feedback, and foster
discussions.

81.8% 72

Providing bug reports or feature

requests.
85.2% 75

Providing bug fixes. 25.0% 22

Manual testing. 21.6% 19

Manual GUI testing. 27.3% 24

Manual combinatorial testing (e.g.,
different OS, Eclipse versions, or

plug-in combinations).
12.5% 11

Automated testing. 6.8% 6

Automated testing done by
downstream projects.

3.4% 3

Automated system testing done by
the community involved in the

release train.
5.7% 5

Other (please specify)

6.8% 6

 answered question 88

 skipped question 63

19. In which country do you live?

Response

Count

 92

 answered question 92

 skipped question 59

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 59

20. Project team size

Response

Percent

Response

Count

1-5 32.6% 30

6-10 30.4% 28

11-20 19.6% 18

>20 17.4% 16

 answered question 92

 skipped question 59

21. Professional role

Response

Percent

Response

Count

Developer 64.1% 59

Solely Tester 3.3% 3

Project Lead / Manager 22.8% 21

Test Manager 2.2% 2

Other (please specify)

7.6% 7

 answered question 92

 skipped question 59

22. Do you have any remarks or questions? Please feel free to specify them.

Response

Count

 11

 answered question 11

 skipped question 140

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

60 TUD-SERG-2011-010

Page 8, Q19. In which country do you live?

1 Brazil Mar 21, 2011 8:02 AM

2 France Mar 21, 2011 8:42 AM

3 Russia Mar 21, 2011 10:29 AM

4 Canada Mar 21, 2011 10:32 AM

5 USA Mar 21, 2011 10:33 AM

6 US Mar 21, 2011 10:38 AM

7 Poland Mar 21, 2011 10:39 AM

8 Bulgaria Mar 21, 2011 10:48 AM

9 Russia Mar 21, 2011 10:59 AM

10 Usa Mar 21, 2011 11:04 AM

11 Switzerland Mar 21, 2011 11:55 AM

12 Switzerland Mar 21, 2011 11:58 AM

13 India Mar 21, 2011 12:18 PM

14 Germany Mar 21, 2011 12:58 PM

15 italy Mar 21, 2011 1:07 PM

16 Poland Mar 21, 2011 1:10 PM

17 Germany Mar 21, 2011 1:27 PM

18 France Mar 21, 2011 1:47 PM

19 France Mar 21, 2011 5:24 PM

20 France Mar 21, 2011 5:42 PM

21 Germany Mar 22, 2011 12:08 AM

22 France Mar 22, 2011 12:59 AM

23 Sweden Mar 22, 2011 4:00 AM

24 france Mar 22, 2011 5:24 AM

25 Germany Mar 22, 2011 6:19 AM

26 Germany Mar 22, 2011 7:57 AM

27 Swizterland Mar 22, 2011 9:52 AM

28 Bulgaria Mar 22, 2011 4:31 PM

29 germany Mar 22, 2011 7:49 PM

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 61

Page 8, Q19. In which country do you live?

30 USA Mar 22, 2011 9:08 PM

31 us Mar 22, 2011 9:09 PM

32 USA Mar 22, 2011 10:16 PM

33 Brazil Mar 23, 2011 5:50 AM

34 Brasil Mar 23, 2011 5:59 AM

35 Brazil Mar 23, 2011 6:16 AM

36 romania Mar 23, 2011 7:01 AM

37 Brazil Mar 23, 2011 7:04 AM

38 switzerland Mar 23, 2011 7:49 AM

39 Canada Mar 23, 2011 8:15 AM

40 USA Mar 23, 2011 8:41 AM

41 Brazil Mar 23, 2011 9:01 AM

42 Luxembourg Mar 23, 2011 9:12 AM

43 Canada Mar 23, 2011 9:24 AM

44 U.S.A. Mar 23, 2011 9:47 AM

45 Hungary Mar 23, 2011 10:20 AM

46 USA Mar 23, 2011 10:36 AM

47 Brazil Mar 23, 2011 10:44 AM

48 USA Mar 23, 2011 11:10 AM

49 Germany Mar 23, 2011 11:34 AM

50 Canada Mar 23, 2011 12:09 PM

51 United States Mar 23, 2011 12:28 PM

52 Russia Mar 23, 2011 2:29 PM

53 South Korea Mar 23, 2011 2:47 PM

54 BC, Canada Mar 23, 2011 5:02 PM

55 India Mar 23, 2011 9:10 PM

56 Germany Mar 23, 2011 11:44 PM

57 USA Mar 24, 2011 6:53 AM

58 USA Mar 24, 2011 1:17 PM

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

62 TUD-SERG-2011-010

Page 8, Q19. In which country do you live?

59 Canada Mar 24, 2011 4:36 PM

60 USA Mar 24, 2011 5:35 PM

61 rft Mar 25, 2011 5:07 AM

62 United Kingdom Mar 25, 2011 6:10 AM

63 U.S. Mar 25, 2011 11:44 AM

64 CANADA Mar 26, 2011 8:58 AM

65 INDIA Mar 26, 2011 10:30 AM

66 UK Mar 27, 2011 12:13 PM

67 Switzerland Mar 27, 2011 10:17 PM

68 Bulgaria Mar 28, 2011 1:03 AM

69 sweden Mar 28, 2011 2:31 AM

70 Germany Mar 28, 2011 2:34 AM

71 Germany Mar 28, 2011 2:42 AM

72 Germany Mar 28, 2011 2:43 AM

73 Germany Mar 28, 2011 4:16 AM

74 Germany Mar 28, 2011 7:35 AM

75 Germany Mar 28, 2011 9:23 AM

76 USA Mar 29, 2011 9:01 AM

77 United States Mar 30, 2011 9:15 AM

78 Switzerland Mar 30, 2011 6:36 PM

79 Russia Mar 31, 2011 12:10 AM

80 Germany Mar 31, 2011 2:49 AM

81 Verigy Apr 1, 2011 4:44 AM

82 Hungary Apr 3, 2011 12:18 PM

83 Canada Apr 4, 2011 7:00 AM

84 France Apr 4, 2011 7:02 AM

85 Canada Apr 4, 2011 10:13 AM

86 Denmark Apr 4, 2011 12:02 PM

87 India Apr 4, 2011 3:05 PM

SERG Test Confessions: A Study of Testing Practices for Plug-in Systems

TUD-SERG-2011-010 63

Page 8, Q19. In which country do you live?

88 USA Apr 5, 2011 5:20 AM

89 Canada Apr 5, 2011 11:41 AM

90 US Apr 6, 2011 3:39 AM

91 Germany Apr 7, 2011 7:22 AM

92 Canada Apr 7, 2011 1:37 PM

Page 8, Q21. Professional role

1 Trainer Mar 21, 2011 5:24 PM

2 release engineer Mar 22, 2011 5:24 AM

3 CTO Mar 22, 2011 9:52 AM

4 exec Mar 22, 2011 9:09 PM

5 Software Engineering Specialists : help to improve software processes, including
the test part.

Mar 23, 2011 9:12 AM

6 Architect / Consultant / Coach Apr 4, 2011 3:05 PM

7 release engineer Apr 5, 2011 11:41 AM

Test Confessions: A Study of Testing Practices for Plug-in Systems SERG

64 TUD-SERG-2011-010

TUD-SERG-2011-010
ISSN 1872-5392 SERG

