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Abstract
In this paperwe discuss an imagingmethodwhen the object has known support and its spatial Fourier
transform is only knownon a certain k-space undersampled pattern. The simple conjugate gradient
least squares algorithm applied to the corresponding truncated Fourier transform equation produces
reconstructions that are basically of a similar quality as reconstructions obtained by solving a standard
compressed sensing problem inwhich support information is not taken into account. Connections
with previous one-dimensional approaches are highlighted and the performance of themethod for
two- and three-dimensional simulated andmeasured incomplete spectral data sets is illustrated.
Possible extensions of themethod are also briefly discussed.

1. Introduction

Inmany application areas, ranging from geophysics tomagnetic resonance imaging (MRI), one is confronted
with the problemof reconstructing an object, a function, or an image from incomplete Fourier spectral data (see,
e.g. [1–3]). This is an ill-posed problem in general and very difficult or impossible to solvewithout any additional
information (support or sparsity information, for example). However, by taking a priori information about the
object into account, itmay be possible to successfully reconstruct the object of interest based on incomplete
Fourier data. In compressed sensing (CS), for example, we take into account that the object or image has a sparse
representation in some basis and accurate reconstructions are possible provided that the undersampling
artefacts are incoherent [4]. As an illustration, inMRI the prototype CS problem consists ofminimising the
objective function

x S d Fx x( ) ( ) ( )   l= - + YF , 1kcs 2
2

1

whereΨ is a sparsifying transform,F the (unitary) discrete Fourier transform (DFT)matrix,d the data vector,
andSk a diagonalmatrix with ones and zeros on the diagonal representing incoherent k-spacemeasurements,
where a diagonal entry equal to one corresponds to a point in k-space for which data is available. Often, an
additional total variation functional is added to the above objective function as well and the bases that are used
for the sparsifying transformΨ are typically global bases (wavelets, noiselets, etc.) defined over the completefield
of view (FoV).WithCS, no information about the support of the object is required to successfully image the
object of interest. However, optimisation algorithms thatminimise objective functions that consist of a least-
squares objective function describing datafidelity and anℓ1 objective function that enforces sparsity are
generallymore complex than algorithms thatminimise least-squares objective functions. In addition, inCS a
regularisation parameter needs to be determined to balance the data fidelity and sparsifying objective functions
in the total objective function.

In this paper, we consider the problemof reconstructing a bounded object from incomplete spectral data in
case the support of the object is known.Ourmotivation comes frommagnetic resonance imaging (MRI)where,
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at least in principle, the support of the object or body part of interest can be determined before an actual clinical
scan takes place. During the so-called pre-scan, for example, an image is produced based on not-fully-sampled
k-space data. From this image, the FoV is determined and this scan can also be used to estimate the support of the
object and its locationwithin the FoV. In general, this approximate support is not exact, of course, but for single
body parts (a head, an arm, or a leg, for example) the support can be determined in a fairly straightforward
manner using binarymaps. Determining approximate supports in casemultiple (possibly disjoint) objects or
body parts are present within the FoVmay bemore challenging, but the overall idea remains the same. In this
paper, we essentially follow this approach and determine the approximate support of an object (an apple) based
on incomplete data that was obtainedwith a low-fieldMR scanner [5, 6].We show that image quality improves
when this (approximate) support information is included in the reconstruction algorithm. Further examples in
which different undersampling patterns are used, are presented as well to demonstrate that directly including
support information in the reconstruction algorithm generally improves image quality.

Having support information available, our objective is to reconstruct the image on the FoV from incomplete
spectral data. In this case, we can still use CS techniques, of course. In [7], for example, a CS technique is
introduced that takes partially known support information into account, while in [8] and [9] the CS problem is
formulated as an optimisation problem that aims at finding the solution to the data equationwhich has the
smallest number of components outside of the support.

In this paper, however, we propose amuch simpler reconstruction algorithm in case support information is
known. Specifically, we build upon thework presented in [2] and propose an image reconstruction algorithm,
which is essentially the conjugate-gradient least-squares (CGLS) algorithm applied to the normal equation that
corresponds to a space- and frequency-restricted Fourier transform equation. In [2], this approach has been
proposed for one-dimensional space- and band-limited Fourier transformproblems, while herewe generalise
this approach to two- and three-dimensional imaging problems. In particular, we consider two- and three-
dimensional (random) undersampling patterns in the spectral domain that are typically used inMRI to speed up
data acquisition and study the performance of themethod.We stress that for the two- and three-dimensional
spatial support functions and spectral domain undersampling patterns considered here, we have to resort to
numericalmethods, since no analytical results concerning the eigenfunctions and singular functions of the
corresponding truncated Fourier operators are available (as in Slepian-Pollak theory [3, 10]). Finally, we also
compare our reconstructions to reconstructions obtained via CS techniques and possible extensions of the
method (parallel imaging and total variation regularisation) are briefly discussed aswell.

2. Basic equations

Starting point of our analysis is the discrete Fourier transform equation

d Fx ( )= , 2

where x is a discrete (vectorised) image function defined on the FoV,F is the unitary discrete Fourier transform
(DFT) in one, two, or three dimensions, andd is a vector containing Fourier transformdata. InMRI, for
example, (2) follows fromdiscretising the signal representation [11]
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where g(τ)=Gx(τ)ix+Gy(τ)iy+Gz(τ)iz is the gradient vector due to the application of the gradient coils of the
MR scanner.

We assume that the support of an object locatedwithin the FoV is known and introduce its indicator or
supportmatrix as a diagonalmatrixSx, where a diagonal element is equal to the indicator function of the object
applied to the pixel (2D) or voxel (3D) that corresponds to this diagonal element. The supportmatrixSx is
obviously idempotent, that is, it satisfies S S=x x

2 and the image vector x satisfies x=Sxx. Furthermore, when
spectral data is only available within a subdomain of Fourier space, we introduce a supportmatrixSk for this
subdomain in k-space as well, where the diagonal elements ofSk indicate for which points in k-space spectral
data is available. The supportmatrixSk is idempotent and available k-space data is given by the vectorSkd.

Having introduced the supportmatricesSx andSk, we can now formulate our reconstruction problem,
which consists of retrieving the image vector x=Sxx from the equation

S FS x S d AS x S d ( )= =or , 5k x k x k

2
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wherewe have introduced the space- and band-limited discrete Fourier transform asA= SkFSx. As pointed out
in e.g. [2], in a continuous setting such a reconstruction problem can be formulated in terms of an integral
equation of the second kind for the image function restricted to its support. A similar approach can be followed
in the general discrete case considered here. In particular, we start with the full DFTof the image andwrite

Fx FS x S FS x I S FS x S d I S FS x( ) ( ) ( )= = + - = + - . 6x k x k x k k x

Applying the inverse Fourier transformF−1= FH to this equation, we get

x F S d F I S FS x( ) ( )= + - 7H
k

H
k x

and by restricting this equation to the object domain bymultiplying the above equation on the left by the support
matrixSx, we arrive at the equation

I K S x h( ) ( )- = , 8x

whereh=SxF
HSkd andK= SxF

H(I− Sk)FSx. Note that (8) can be interpreted as a preconditioned version of
(6)with approximate inverseP=SxF

HSk=SxF
−1Sk. Equation (8) is the discrete counterpart of the integral

equation presented in [2] for one-dimensional problems. If this equation is solved using theNeumann series
startingwith a vanishing initial guess one arrives at the Papoulis-Gerchberg algorithmor alternating orthogonal
projectionmethod [1].

However, as pointed out in [2] for the one-dimensional continuous case, the one-dimensional continuous
counterpart of (8) can also bewritten as a normal equation involving the truncated Fourier transformoperator.
This approach can be extended to the general case considered here aswell. Specifically, given the definition of the
space- and band-limitedDFTmatrix A, it is easily verified that

I K S A A( ) ( )- = 9x
H

and sinceh=SxF
HSkd=AHd, we canwrite (8) as

A Ax A d ( )= , 10H H

showing that solving (8) is equivalent to solving the normal equation (10). As is well known, any solution that
minimises the least-squares objective function

x S d Ax( ) ( ) = -F 11k 2
2

satisfies the normal equation (10) as well.
From Slepian-Pollak theory [10]we know that in the one-dimensional continuous case, the left and right

singular functions of the Fourier transform that is band- and space-limited to the intervals [–k0, k0] and [–a0, a0]
in k-and x-space, respectively, have these intervals as their support.Moreover, the left and right singular
functions are complete on L2[–k0, k0] and L

2[–a0, a0], respectively, and all singular values of the truncated
Fourier transformbelong to the interval [0, 1]with clustering occurring around zero and one. Some of these
one-dimensional spectral results have been extended to higher dimensions [3] (in two dimensions to functions
with circular support in ordinary and k-space, for example), but no such theory exists for the truncated two- or
three-dimensional discrete Fourier transforms considered herewith general x- or k-space indicator functions.

Therefore, let usfirst consider computing the singular value decomposition (SVD) ofmatrix A given by
A=UΣVH, where the columnsui ofU and the columns vi ofV are the left and right singular vectors ofmatrix A,
respectively, andΣ is a diagonalmatrix with the nonnegative singular valuesσi ofA on its diagonal arranged in
decreasing order.With the SVDofmatrixA at our disposal, let v v v{ }= ¼ span , , ,k k1 2 be the space spanned by
thefirst k right singular vectors that correspond to the first k largest singular valuesσ1� σ2� ...� σk> 0.We
can then take the kth truncated SVD solution

x xx ( ) ( )= Î Fargmin 12k k

as an approximate solution to (10). Caremust be exercisedwhen selecting k, however, since a poorly chosen k
may lead to an overly smooth reconstruction or the approximate solution xk is heavily affected by noise that is
present in the data.

For reconstruction problems encountered in practice, however, computing the SVDofmatrix A comes at
prohibitively high computational costs. Computingmatrix-vector products withmatrix A, on the other hand,
can be carried out at ‘FFT speed’ andwe therefore resort to iterativemethods that solve the reconstruction
problem. Specifically, instead of the approximate solutions of (12), we take

x xx ( ) ( )= Î Fargmin , 13k k

as approximate solutions, where A d A A A d A A A d{ ( ) ( ) }= - span , ,...,k
H H H H k H1 is the kth Krylov subspace

generated byAHA and vectorAHd. TheCGLS algorithm [12] that starts with a vanishing initial guess produces
approximations xk that satisfy (13) andwe therefore use this algorithm to solve the reconstruction problem. The
reason for taking the xk of (13) as approximate solutions comes from the observation that the first Krylov
subspace vector (right-hand side vector)

3
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predominantly contains contributions from right singular vectors that correspond to the largest singular values.
Furthermore,matrix A hasmany zero singular values and since inCGLS the largest singular values are typically
approximated first, we expect that xkmainly contains information about the right singular vectors that
correspond to thefirst k singular values. In fact, in case of noisy data, the regularising effects of CGLSmay be
used to obtain stable reconstructions by terminating the iterative process after a certain number of iterations
(semiconvergence, see e.g. [13]). For completeness, wemention that the approximations xk of (13)may also be
generated by the LSQR algorithm [12].

Finally, we note that if we add a sparsifying regulariser to the objective function of (11), we end upwith the
prototype objective function of CS (1). If the image has a sparse representation in some basis and the imaging
artefacts are incoherent thenCSmay accurately reconstruct the imagewithout any support information.
However, when this information is available thenCS techniquesmay not be necessary and solving the normal
equation (10)withCGLS and a vanishing initial guessmay already give satisfactory reconstruction results. In the
following sectionwe present reconstruction results for k-space undersampling patterns typically used inMRI,
which illustrate that solving the normal equationwithCGLS indeedmay be sufficient in these cases and noCS
techniques are necessary.

3. Image Reconstruction

To illustrate the performance of theCGLS imaging algorithm in case support information is known,we consider
reconstruction problems for noise-free and noisy 2D and 3Ddata sets. In our 2D experiments we use a Shepp-
Logan phantomwith 64× 64 pixels [14] as themodel solution and a brain image from theKirby 21 dataset [15]
with 256 pixels in each spatial direction. These phantoms and their supports are shown infigure 1. The support
of the 2DShepp-Logan phantom consists of 1988 out of a total of 4096 pixels (≈49%), and the support of the 2D
brain image has a size of 23 892 out of a total of 65 536 pixels (≈36%).

For themodel solutions shown infigure 1, we consider six different undersampling patternswith Fourier or
k-space support functions illustrated infigure 2. Thefirst support function (figure 2(a)) is a square
undersampling pattern that leaves out the edges of k-space. The second support function (Figure 2(b)) is a
pattern of random lines with all center lines being sampled, while the third pattern (figure 2(c)) consists of
completely random lines (so not all center lines are sampled). An undersampling pattern consisting of random
points (figure 2(d)) is also considered, alongwith a radial pattern and a spiral pattern (figures 2(e) and (f),
respectively). In all cases, the undersampling factor is approximately equal to two.Wenote that inMRI, some of
these patterns aremore difficult to implement in practice than others due to hardware limitations. Additionally,
we remark that in practice, when using a radial or spiral pattern, the sampled points do not necessarily fall on a
Cartesian grid. Tomake the application of an inverse Fourier transform to k-space possible, an iterative process
called gridding [16, 17]may be used to transform themeasured data into aCartesian format. In this paper,
however, we do not take these limitations into consideration and simply assume that we have access to
undersampled k-space data inCartesian format.

Figure 3 shows the reconstruction results for the Shepp-Logan phantomand the six different undersampling
patterns offigure 2. Specifically, themodel solution is shown in the left column,while the reconstructions
obtained by simply applying an inverse FFT (IFFT) to incomplete spectral data are shown in the second column.
The reconstructions that are obtained usingCGLS startingwith a vanishing initial guess are shown in the fourth
columnoffigure 3. These results were obtained after 1000CGLS iterations orwhen the normalized residual

Figure 1.Model solutions (a) and (c) and their support (b) and (d) shown inwhite.
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dropped below a tolerance of 10−10.We observe that for all cases, CGLSwith known support information yields
images of improved quality compared to images obtained by simply applying an IFFT. This is also reflected in
the peak signal-to-noise ratio (PSNR) values presented in table 1.

For the brain image, the reconstruction results are shown infigure 4 and detailed views of the
reconstructions within the domain indicated by thewhite square infigure 1(c) are shown infigure 5. Comparing
the reconstruction results obtainedwith an IFFTwith the reconstructions obtainedwithCGLS, we again observe
that including support information significantly improves the quality of the reconstructions. To quantify this
statement, we compute the PSNR values of the various reconstructions shown infigure 4 and the results are
presented in table 2.We observe that for all undersampling patterns the PSNR values of the reconstructions
obtainedwithCGLS and support information included are higher than the PSNR values of the reconstructions
obtainedwith an IFFTwithout support information.Wenote that theCGLS algorithmperforms particularly
well for a randompoints undersampling pattern (The normof the error of the reconstruction result is in the
order of 10−8 for the brain image). Unfortunately, such a sampling pattern is very difficult or impossible to
realise during practicalMR scans. Furthermore, in the case of a spiral or radial undersampling pattern, our
algorithmusing support information significantly increases the PSNRof the reconstruction.

Figure 2.Tested undersampling patterns.White represents k-space points that are taken into account during reconstruction, black
points are not used during reconstruction. The exact undersampling patterns that are used for the brain image experiment with
256 × 256 k-space points are shown. For the 64 × 64 Shepp-Logan case, the undersampling patterns look similar.

Table 1.PSNRs of the Shepp-Logan reconstructions obtained using an
IFFT, CS, and theCGLS algorithmwith support information included for
the six undersampling patterns offigure 2.

Undersampling pattern

PSNR

(IFFT)
PSNR

(CS)
PSNR

(CGLS)

(a) Square 21.40 26.46 38.49

(b)Random lines (full
center)

19.97 34.56 30.52

(c)Random lines 18.05 24.25 22.16

(d)Randompoints 17.21 24.13 72.31

(e)Radial 20.71 47.61 39.82

(f) Spiral 19.85 51.51 45.12

5
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3.1. Compressed sensing
The image reconstruction problemmay also be solvedwithCS techniques, of course. No support information is
required in this case, but CS imaging algorithms are generallymore complex than theCGLS approach
considered in this paper.

As an illustration, let us consider theCS problem that consists offinding the image function x thatminimises
the objective function

x S d Fx x( ) ( ) ( )   l= - + YF , 15kcs 2
2

1

for the undersampling patterns offigure 2.Here,Ψ is theDaubechies wavelet operator [18] andλ is a
regularisation parameter, which is determined in a heuristicmanner through numerical experimentation. No

Figure 3.Reconstructed Shepp-Logan images: (a) square, (b) random lines (with center), (c) random lines, (d) randompoints,
(e) radial, (f) spiral undersampling pattern. First column:model solution, second column: IFFT reconstruction, third column: CS
reconstruction, fourth column: CGLS reconstructionwith support information.

6

J. Phys. Commun. 5 (2021) 055006 MLde Leeuwden Bouter et al



support information is included and theminimisation problem is solved using the alternating directionmethod
ofmultipliers (ADMM). For all experiments, we used 100ADMMiterations andwithin eachADMMiteration,
we used 10 iterations of theConjugate Gradient (CG) algorithm to solve thefirstminimisation problem. The
error tolerances of ADMMandCGwere both set to 10−6. The reconstruction results for the Shepp-Logan
phantomand theKirbymodel are shown in the third columnoffigures 3–5. The PSNR values of the
correspondingCS reconstructions are presented in tables 1 and 2.

From figure 3 and table 1we observe that for the Shepp-Logan phantom, CGLSwith support information
included generally produces reconstructions of a similar quality as the reconstructions obtainedwithCS. In
most cases, the PSNR values of theCS reconstructions are (somewhat) larger, except for the square and random

Figure 4.Reconstructed brain images: (a) square, (b) random lines (with center), (c) random lines, (d) randompoints, (e) radial,
(f) spiral undersampling pattern. First column:model solution, second column: IFFT reconstruction, third column: CS
reconstruction, fourth column: CGLS reconstructionwith support information.

7

J. Phys. Commun. 5 (2021) 055006 MLde Leeuwden Bouter et al



points undersampling patterns. In these cases, CGLS outperformsCS and, asmentioned above, especially the
CGLS reconstruction for a randompoints undersampling pattern is of very high quality.

From figure 4 and 5 and table 2we observe that for theKirby data set, CGLS in general again produces
reconstructions of a similar quality as the reconstructions obtainedwithCS, except that here the PSNRs of all
CGLS reconstructions are larger than the PSNRs of the correspondingCS reconstructions. A randompoints
undersampling pattern, in particular, produces aCGLS reconstruction that is clearly superior to theCS
reconstruction.Moreover, for a random lines undersampling pattern, CGLS produces a reconstruction that is
significantly better than the reconstruction obtainedwithCS aswell with a PSNR that is almost twice as large as
the PSNRof theCS reconstruction.

Figure 5.Patch of each of the reconstructed brain images: (a) square, (b) random lines (with center), (c) random lines, (d) random
points, (e) radial, (f) spiral undersampling pattern. First column:model solution, second column: IFFT reconstruction, third column:
CS reconstruction, fourth column: CGLS reconstructionwith support information.

8
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3.2. Noisymeasurements
Todemonstrate the performance of theCGLS reconstructionmethod in case of noisy data, we again consider
reconstructing the Shepp-Logan andKirby phantoms from their corresponding incomplete k-space data, but
now the data is contaminated by noise with an SNRof 50. For both phantoms, we restrict ourselves to a spiral
undersampling pattern, since the effects of noise are similar for the other undersampling patterns and noisy data
is also considered in section 3.3, wherewe apply the proposedCGLS algorithm tomeasured data.

Infigure 6, themodel solutions (first column), the reconstructions obtainedwith an inverse FFT (second
column), and the reconstructions obtainedwith theCGLS algorithmwith support information included (third
column) are shown for the Shepp-Logan phantom (first row), theKirby headmodel (second row), and for the
region indicated by thewhite square infigure 1(c) (third row). These results clearly show that theCGLS

Figure 6.Reconstructed images based on noisy spiral datawith an SNRof 50: (a) Shepp-Logan phantom, (b) brain image, (c) patch of
the same brain image. Left column:Model solution, center column: IFFT reconstruction, right column: CGLS reconstructionwith
support information.

Table 2.PSNRs of the Kirby reconstructions obtained using an IFFT, CS,
and theCGLS algorithmwith support information included for the six
undersampling patterns offigure 2.

Undersampling pattern

PSNR

(IFFT)
PSNR

(CS)
PSNR

(CGLS)

(a) Square 36.37 30.76 38.38

(b)Random lines (full
center)

30.37 33.97 37.73

(c)Random lines 16.54 17.26 32.00

(d)Randompoints 15.61 16.97 209.45

(e)Radial 33.80 35.99 45.25

(f) Spiral 29.80 38.35 47.55
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algorithm,with support information included, achieves Shepp-Logan andKirby headmodel reconstructions
that resemble themodel solutionmuchmore accurately than the reconstruction obtained by simply applying
the inverse Fourier transform to the undersampled data. This is also confirmed by the PSNR values shown in
table 3.

3.3. Reconstructions based on experimental low-fieldMRIdata
In this section, we apply the proposed reconstructionmethod to a 3Ddata set, whichwas acquired using a spin-
echo sequence on the low-fieldMRI scanner described in [6]. The scanning parameters of themeasurement are
reported in table 4. An applewas placed inside the scanner and all imagingwas carried out using a single receive
coil.We note that the signals that were obtained have an SNR that ismuch lower than the SNRof signals
measured in typical commercialMR scanners (in this case, the SNR is about 6).

Applying a 3D inverse Fourier transform to fully sampled k-space data results in a 3D reconstruction of the
apple and some slices of this reconstruction are shown in the left columnoffigure 7. These reconstructions serve
asmodel solutions, sincewe obviously do not have a perfect or high SNRmodel solution available in this case.

Figure 7. Some slices of the reconstructed 3D apple for a stack of random lines undersampling patterns. Left:Model solution, center:
IFFT reconstruction, right: CGLS reconstructionwith support information included.

Table 3.PSNRs of the reconstructions obtained by
applying a simple IFFT to noisy spiral data and using
CGLSwith support information.

PSNR (IFFT) PSNR (CGLS)

Shepp-Logan 19.75 34.82

Brain 29.34 37.82

10
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To illustrate the performance of CGLS, we again consider a k-space undersampling pattern of random lines
with the center of k-space completely sampled. The resulting undersampling factor is equal to two and the
reconstruction results obtained by simply applying an inverse FFT to the incomplete data set and after 100
iterations of theCGLS algorithm are shown in the second and third columnoffigure 7, respectively.We observe
that an image is obtainedwhich visually resembles the original full k-space solution. The PSNR values in table 5
also show that using support information increases the PSNR from24.02 (IFFT reconstruction) to 61.92 (CGLS
reconstruction).

4. Conclusions

In this paper we discussed an imagingmethod that can be applied if the support of an object within a certain FoV
is known and its spatial Fourier transform is only knownon a certain k-space undersampling pattern.We
demonstrated that the CGLS algorithm applied to the corresponding truncated Fourier transform equation
produces reconstructions that are essentially of a similar quality as reconstructions obtained by solving a
standardCS problem inwhich support information is not taken into account. In particular, for the Shepp-Logan
phantomand a range of two-dimensional k-space undersampling patterns, the CGLS algorithmproduces
reconstructions with PSNR values that are generally slightly lower than the PSNR values of the corresponding
CS reconstructions. However, for a realistic headmodel the PSNR values of the CGLS reconstructions are
typically larger than the PSNR values of the CS reconstructions. Specifically, in the case of a randompoints
undersampling pattern, theCGLS reconstructions of the Shepp-Logan phantom and the headmodel have
significantly larger PSNR values than their CS counterparts. For both phantommodels, the PSNR values of the
CGLS reconstructions are also larger than the PSNR values of the reconstructions obtained by simply applying
an IFFT to the available incomplete data sets.

In 3D, an improvement in the reconstructions was also observedwhen support information is taken into
account. TheCGLS algorithmwas applied to ameasured data set obtainedwith a low-fieldMR scanner. For a
random lines undersampling pattern themethodwas able to provide reconstructions with sufficient detail and
PSNRvalues that are significantly larger than the PSNR values of the reconstructions obtained via a standard
IFFT. In conclusion, when support information about the object is available, a straightforward application
of theCGLS algorithm to a truncated Fourier transform equation definitely improves simple IFFT-based
reconstructions and, at least for the undersampling patterns considered here, generally provides reconstructions
with a quality similar to reconstructions obtained via standardCS techniques.

Carrying out a Fourier reconstruction using a reduced number of data points invariably leads to imaging
artefacts. In this paper, we considered basic CGLS andCS reconstruction algorithms to address this problem.
More advancedCS techniques can be used as well, of course, (see [19–30], and [31], for example), but the same
holds true for theCGLS algorithm. For example, in anMR setting, the use ofmultiple receive coils can be
included in the reconstruction process and parallel imaging techniques analogous to SENSE [32] andGRAPPA
[33]may be developed. Furthermore, total variation regularisationmay be included in the reconstruction
process aswell either in an additive ormultiplicativemanner [34]. Specifically, suppose thatwe haveN receive
coils available with coil sensitivitymaps represented by the diagonalmatricesCi, i= 1, 2,K,N. The data

Table 5.PSNRof the 3D apple reconstructions
obtained using a simple inverse Fourier transform and
usingCGLSwith support information included.

PSNR (IFFT) PSNR (Support)

Apple image 24.02 61.92

Table 4. Scanning parameters used in the apple
imaging experiment.

Parameter Value

Repetition time (TR) 3 s

Echo time (TE) 30 ms

Imaging domain/FoV 128 × 128 × 128 mm3

Pulse duration 100 μs

Acquisition bandwidth 10 kHz

Number of averages 1
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collected by the ith coil is given bySkFSxCix= di, i= 1, 2,K,N, and all data can be combined into a single data
equation asAx= dwithA= (IN⊗ SkFSx)C, where IN denotes the identitymatrix of orderN,
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Withmultiplicative total variation regularisation included, the imaging problem is posed as an optimisation
problemwith an objective function given by

x
Ax d
d

x( ) · ( ) ( ) 
 

=
-

F F , 172
2

2
2

TV

where P · P2 is the 2-norm and FTV(x) is amultiplicative total variation objective functional (see [34] for details).
Regularisation can also be included in the usual additivemanner, of course, butmultiplicative regularisation has
the advantage that no effective regularisation parameter needs to be determined and computed. Futureworkwill
focus on the full development of the above image reconstruction technique.
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