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Abstract

In this paper we discuss an imaging method when the object has known support and its spatial Fourier
transform is only known on a certain k-space undersampled pattern. The simple conjugate gradient
least squares algorithm applied to the corresponding truncated Fourier transform equation produces
reconstructions that are basically of a similar quality as reconstructions obtained by solving a standard
compressed sensing problem in which support information is not taken into account. Connections
with previous one-dimensional approaches are highlighted and the performance of the method for
two- and three-dimensional simulated and measured incomplete spectral data sets is illustrated.
Possible extensions of the method are also briefly discussed.

1. Introduction

In many application areas, ranging from geophysics to magnetic resonance imaging (MRI), one is confronted
with the problem of reconstructing an object, a function, or an image from incomplete Fourier spectral data (see,
e.g. [1-3]). Thisis an ill-posed problem in general and very difficult or impossible to solve without any additional
information (support or sparsity information, for example). However, by taking a priori information about the
object into account, it may be possible to successfully reconstruct the object of interest based on incomplete
Fourier data. In compressed sensing (CS), for example, we take into account that the object or image has a sparse
representation in some basis and accurate reconstructions are possible provided that the undersampling
artefacts are incoherent [4]. As an illustration, in MRI the prototype CS problem consists of minimising the
objective function

Es() = [|Sk(d — FX)|3 + A|JEx]], (1)

where W is a sparsifying transform, F the (unitary) discrete Fourier transform (DFT) matrix, d the data vector,
and Sy a diagonal matrix with ones and zeros on the diagonal representing incoherent k-space measurements,
where a diagonal entry equal to one corresponds to a point in k-space for which data is available. Often, an
additional total variation functional is added to the above objective function as well and the bases that are used
for the sparsifying transform W are typically global bases (wavelets, noiselets, etc.) defined over the complete field
of view (FoV). With CS, no information about the support of the object is required to successfully image the
object of interest. However, optimisation algorithms that minimise objective functions that consist of a least-
squares objective function describing data fidelity and an #; objective function that enforces sparsity are
generally more complex than algorithms that minimise least-squares objective functions. In addition, in CS a
regularisation parameter needs to be determined to balance the data fidelity and sparsifying objective functions
in the total objective function.

In this paper, we consider the problem of reconstructing a bounded object from incomplete spectral data in
case the support of the object is known. Our motivation comes from magnetic resonance imaging (MRI) where,
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atleast in principle, the support of the object or body part of interest can be determined before an actual clinical
scan takes place. During the so-called pre-scan, for example, an image is produced based on not-fully-sampled
k-space data. From this image, the FoV is determined and this scan can also be used to estimate the support of the
object and its location within the FoV. In general, this approximate support is not exact, of course, but for single
body parts (a head, an arm, or aleg, for example) the support can be determined in a fairly straightforward
manner using binary maps. Determining approximate supports in case multiple (possibly disjoint) objects or
body parts are present within the FoV may be more challenging, but the overall idea remains the same. In this
paper, we essentially follow this approach and determine the approximate support of an object (an apple) based
on incomplete data that was obtained with alow-field MR scanner [5, 6]. We show that image quality improves
when this (approximate) support information is included in the reconstruction algorithm. Further examples in
which different undersampling patterns are used, are presented as well to demonstrate that directly including
support information in the reconstruction algorithm generally improves image quality.

Having support information available, our objective is to reconstruct the image on the FoV from incomplete
spectral data. In this case, we can still use CS techniques, of course. In [7], for example, a CS technique is
introduced that takes partially known support information into account, while in [8] and [9] the CS problem is
formulated as an optimisation problem that aims at finding the solution to the data equation which has the
smallest number of components outside of the support.

In this paper, however, we propose a much simpler reconstruction algorithm in case support information is
known. Specifically, we build upon the work presented in [2] and propose an image reconstruction algorithm,
which is essentially the conjugate-gradient least-squares (CGLS) algorithm applied to the normal equation that
corresponds to a space- and frequency-restricted Fourier transform equation. In [2], this approach has been
proposed for one-dimensional space- and band-limited Fourier transform problems, while here we generalise
this approach to two- and three-dimensional imaging problems. In particular, we consider two- and three-
dimensional (random) undersampling patterns in the spectral domain that are typically used in MRI to speed up
data acquisition and study the performance of the method. We stress that for the two- and three-dimensional
spatial support functions and spectral domain undersampling patterns considered here, we have to resort to
numerical methods, since no analytical results concerning the eigenfunctions and singular functions of the
corresponding truncated Fourier operators are available (as in Slepian-Pollak theory [3, 10]). Finally, we also
compare our reconstructions to reconstructions obtained via CS techniques and possible extensions of the
method (parallel imaging and total variation regularisation) are briefly discussed as well.

2. Basic equations

Starting point of our analysis is the discrete Fourier transform equation
d = Fx, ©))

where X is a discrete (vectorised) image function defined on the FoV, F is the unitary discrete Fourier transform
(DFT) in one, two, or three dimensions, and d is a vector containing Fourier transform data. In MR, for
example, (2) follows from discretising the signal representation [11]

d(t) = f e~ 27k (1) dr, 3)
reFoV
where x(r) is the image and
_[
ko == [ g dn, @

where g(7) = G(7i, + G()i, + G(7)i, is the gradient vector due to the application of the gradient coils of the
MR scanner.

We assume that the support of an object located within the FoV is known and introduce its indicator or
support matrix as a diagonal matrix S,, where a diagonal element is equal to the indicator function of the object
applied to the pixel (2D) or voxel (3D) that corresponds to this diagonal element. The support matrix S, is
obviously idempotent, that s, it satisfies S2 = S, and the image vector X satisfies X = S,X. Furthermore, when
spectral data is only available within a subdomain of Fourier space, we introduce a support matrix Sy, for this
subdomain in k-space as well, where the diagonal elements of Sy indicate for which points in k-space spectral
data is available. The support matrix S is idempotent and available k-space data is given by the vector S;d.

Having introduced the support matrices S, and Sy, we can now formulate our reconstruction problem,
which consists of retrieving the image vector X = S, X from the equation

SiFSx = Sd or AS,.x = S;d, (5)
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where we have introduced the space- and band-limited discrete Fourier transform as A = S;FS,. As pointed out
ine.g. [2], in a continuous setting such a reconstruction problem can be formulated in terms of an integral
equation of the second kind for the image function restricted to its support. A similar approach can be followed
in the general discrete case considered here. In particular, we start with the full DFT of the image and write

Fx = FSyx = Sy FSix + (I — Sp)FS,x = Sid + (I — Sp)FSix. (6)
Applying the inverse Fourier transform F ' = F™ to this equation, we get
x = FASd + FH(I — S,)FS,x %)

and by restricting this equation to the object domain by multiplying the above equation on the left by the support
matrix S, we arrive at the equation

(I — K)Sux = h, 8)

whereh = S,F”S;dand K = S,F"(l — S\)FS,. Note that (8) can be interpreted as a preconditioned version of
(6) with approximate inverse P = S,FS, = S F'S,. Equation (8) is the discrete counterpart of the integral
equation presented in [2] for one-dimensional problems. If this equation is solved using the Neumann series
starting with a vanishing initial guess one arrives at the Papoulis-Gerchberg algorithm or alternating orthogonal
projection method [1].

However, as pointed out in [2] for the one-dimensional continuous case, the one-dimensional continuous
counterpart of (8) can also be written as a normal equation involving the truncated Fourier transform operator.
This approach can be extended to the general case considered here as well. Specifically, given the definition of the
space- and band-limited DFT matrix A, it is easily verified that

(I — K)S, = APA ©)]
and since h = S F"S,d = APd, we can write (8) as
AHAX = AHd, (10)

showing that solving (8) is equivalent to solving the normal equation (10). As is well known, any solution that
minimises the least-squares objective function

F(x) = [[Skd — Ax[l; (1)

satisfies the normal equation (10) as well.

From Slepian-Pollak theory [10] we know that in the one-dimensional continuous case, the left and right
singular functions of the Fourier transform that is band- and space-limited to the intervals [-ko, ko] and [—aq, ao]
in k-and x-space, respectively, have these intervals as their support. Moreover, the left and right singular
functions are complete on L*[~ko, ko] and L2[—ag, ag], respectively, and all singular values of the truncated
Fourier transform belong to the interval [0, 1] with clustering occurring around zero and one. Some of these
one-dimensional spectral results have been extended to higher dimensions [3] (in two dimensions to functions
with circular support in ordinary and k-space, for example), but no such theory exists for the truncated two- or
three-dimensional discrete Fourier transforms considered here with general x- or k-space indicator functions.

Therefore, let us first consider computing the singular value decomposition (SVD) of matrix A given by
A = UXVH where the columns u; of U and the columns v; of V are the left and right singular vectors of matrix A,
respectively, and X is a diagonal matrix with the nonnegative singular values o; of A on its diagonal arranged in
decreasing order. With the SVD of matrix A at our disposal, let V; = span{vy, v,,...,v;} be the space spanned by
the first k right singular vectors that correspond to the first k largest singular values oy > 0, > ... > 03, > 0. We
can then take the kth truncated SVD solution

Xk = argmin F(x) (12)

x€ Vi

as an approximate solution to (10). Care must be exercised when selecting k, however, since a poorly chosen k
may lead to an overly smooth reconstruction or the approximate solution Xy is heavily affected by noise that is
present in the data.

For reconstruction problems encountered in practice, however, computing the SVD of matrix A comes at
prohibitively high computational costs. Computing matrix-vector products with matrix A, on the other hand,
can be carried out at ‘FFT speed’ and we therefore resort to iterative methods that solve the reconstruction
problem. Specifically, instead of the approximate solutions of (12), we take

X = argminxeKkF(x), (13)

as approximate solutions, where K; = span{Afd, (ATA)AHd,...,(AA)k~1AHd} is the kth Krylov subspace
generated by A”A and vector A”d. The CGLS algorithm [12] that starts with a vanishing initial guess produces
approximations X, that satisfy (13) and we therefore use this algorithm to solve the reconstruction problem. The
reason for taking the X, of (13) as approximate solutions comes from the observation that the first Krylov
subspace vector (right-hand side vector)




10P Publishing

J. Phys. Commun. 5(2021) 055006 M L de Leeuw den Bouter et al

(a) Shepp-Logan (b) Shepp-Logan (c) Brain image (d) Brain support
phantom support function function

Figure 1. Model solutions (a) and (c) and their support (b) and (d) shown in white.

N
Ald = VEUHd = 3 g;(uf’d)v; (14)
i=1
predominantly contains contributions from right singular vectors that correspond to the largest singular values.
Furthermore, matrix A has many zero singular values and since in CGLS the largest singular values are typically
approximated first, we expect that X; mainly contains information about the right singular vectors that
correspond to the first k singular values. In fact, in case of noisy data, the regularising effects of CGLS may be
used to obtain stable reconstructions by terminating the iterative process after a certain number of iterations
(semiconvergence, see e.g. [ 13]). For completeness, we mention that the approximations X, of (13) may also be
generated by the LSQR algorithm [12].

Finally, we note that if we add a sparsifying regulariser to the objective function of (11), we end up with the
prototype objective function of CS (1). If the image has a sparse representation in some basis and the imaging
artefacts are incoherent then CS may accurately reconstruct the image without any support information.
However, when this information is available then CS techniques may not be necessary and solving the normal
equation (10) with CGLS and a vanishing initial guess may already give satisfactory reconstruction results. In the
following section we present reconstruction results for k-space undersampling patterns typically used in MRI,
which illustrate that solving the normal equation with CGLS indeed may be sufficient in these cases and no CS
techniques are necessary.

3.Image Reconstruction

To illustrate the performance of the CGLS imaging algorithm in case support information is known, we consider
reconstruction problems for noise-free and noisy 2D and 3D data sets. In our 2D experiments we use a Shepp-
Logan phantom with 64 x 64 pixels [14] as the model solution and a brain image from the Kirby 21 dataset [15]
with 256 pixels in each spatial direction. These phantoms and their supports are shown in figure 1. The support
of the 2D Shepp-Logan phantom consists of 1988 out of a total of 4096 pixels (=249%), and the support of the 2D
brain image has a size of 23 892 out of a total of 65 536 pixels (=36%).

For the model solutions shown in figure 1, we consider six different undersampling patterns with Fourier or
k-space support functions illustrated in figure 2. The first support function (figure 2(a)) is a square
undersampling pattern that leaves out the edges of k-space. The second support function (Figure 2(b))is a
pattern of random lines with all center lines being sampled, while the third pattern (figure 2(c)) consists of
completely random lines (so not all center lines are sampled). An undersampling pattern consisting of random
points (figure 2(d)) is also considered, along with a radial pattern and a spiral pattern (figures 2(e) and (f),
respectively). In all cases, the undersampling factor is approximately equal to two. We note that in MRI, some of
these patterns are more difficult to implement in practice than others due to hardware limitations. Additionally,
we remark that in practice, when using a radial or spiral pattern, the sampled points do not necessarily fall on a
Cartesian grid. To make the application of an inverse Fourier transform to k-space possible, an iterative process
called gridding [ 16, 17] may be used to transform the measured data into a Cartesian format. In this paper,
however, we do not take these limitations into consideration and simply assume that we have access to
undersampled k-space data in Cartesian format.

Figure 3 shows the reconstruction results for the Shepp-Logan phantom and the six different undersampling
patterns of figure 2. Specifically, the model solution is shown in the left column, while the reconstructions
obtained by simply applying an inverse FFT (IFFT) to incomplete spectral data are shown in the second column.
The reconstructions that are obtained using CGLS starting with a vanishing initial guess are shown in the fourth
column of figure 3. These results were obtained after 1000 CGLS iterations or when the normalized residual

4
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(b) Random lines (¢) Random lines
(full center)

(d) Random points (e) Radial

Figure 2. Tested undersampling patterns. White represents k-space points that are taken into account during reconstruction, black
points are not used during reconstruction. The exact undersampling patterns that are used for the brain image experiment with
256 x 256 k-space points are shown. For the 64 x 64 Shepp-Logan case, the undersampling patterns look similar.

Table 1. PSNRs of the Shepp-Logan reconstructions obtained using an
IFFT, CS, and the CGLS algorithm with support information included for
the six undersampling patterns of figure 2.

PSNR PSNR PSNR
Undersampling pattern (IFFT) (CS) (CGLS)
(a) Square 21.40 26.46 38.49
(b) Random lines (full 19.97 34.56 30.52

center)

(c) Random lines 18.05 24.25 22.16
(d) Random points 17.21 24.13 72.31
(e) Radial 20.71 47.61 39.82
(f) Spiral 19.85 51.51 45.12

dropped below a tolerance of 10~ . We observe that for all cases, CGLS with known support information yields
images of improved quality compared to images obtained by simply applying an IFFT. This is also reflected in
the peak signal-to-noise ratio (PSNR) values presented in table 1.

For the brain image, the reconstruction results are shown in figure 4 and detailed views of the
reconstructions within the domain indicated by the white square in figure 1(c) are shown in figure 5. Comparing
the reconstruction results obtained with an IFFT with the reconstructions obtained with CGLS, we again observe
that including support information significantly improves the quality of the reconstructions. To quantify this
statement, we compute the PSNR values of the various reconstructions shown in figure 4 and the results are
presented in table 2. We observe that for all undersampling patterns the PSNR values of the reconstructions
obtained with CGLS and support information included are higher than the PSNR values of the reconstructions
obtained with an IFFT without support information. We note that the CGLS algorithm performs particularly
well for arandom points undersampling pattern (The norm of the error of the reconstruction result is in the
order of 10~® for the brain image). Unfortunately, such a ssampling pattern is very difficult or impossible to
realise during practical MR scans. Furthermore, in the case of a spiral or radial undersampling pattern, our
algorithm using support information significantly increases the PSNR of the reconstruction.




10P Publishing

J. Phys. Commun. 5(2021) 055006 M L de Leeuw den Bouter et al

Figure 3. Reconstructed Shepp-Logan images: (a) square, (b) random lines (with center), (c) random lines, (d) random points,
(e) radial, (f) spiral undersampling pattern. First column: model solution, second column: IFFT reconstruction, third column: CS
reconstruction, fourth column: CGLS reconstruction with support information.

3.1. Compressed sensing
The image reconstruction problem may also be solved with CS techniques, of course. No support information is
required in this case, but CS imaging algorithms are generally more complex than the CGLS approach
considered in this paper.

Asan illustration, let us consider the CS problem that consists of finding the image function X that minimises
the objective function

Es(x) = [|Sk(d — FX)|3 + A|[Ux]|s, (15)

for the undersampling patterns of figure 2. Here, W is the Daubechies wavelet operator [18] and A isa
regularisation parameter, which is determined in a heuristic manner through numerical experimentation. No

6
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250

Figure 4. Reconstructed brain images: (a) square, (b) random lines (with center), (c) random lines, (d) random points, (e) radial,
(f) spiral undersampling pattern. First column: model solution, second column: IFFT reconstruction, third column: CS
reconstruction, fourth column: CGLS reconstruction with support information.

support information is included and the minimisation problem is solved using the alternating direction method
of multipliers (ADMM). For all experiments, we used 100 ADMM iterations and within each ADMM iteration,
we used 10 iterations of the Conjugate Gradient (CG) algorithm to solve the first minimisation problem. The
error tolerances of ADMM and CG were both set to 10~°. The reconstruction results for the Shepp-Logan
phantom and the Kirby model are shown in the third column of figures 3—5. The PSNR values of the
corresponding CS reconstructions are presented in tables 1 and 2.

From figure 3 and table 1 we observe that for the Shepp-Logan phantom, CGLS with support information
included generally produces reconstructions of a similar quality as the reconstructions obtained with CS. In
most cases, the PSNR values of the CS reconstructions are (somewhat) larger, except for the square and random
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Figure 5. Patch of each of the reconstructed brain images: (a) square, (b) random lines (with center), (c) random lines, (d) random
points, (e) radial, (f) spiral undersampling pattern. First column: model solution, second column: IFFT reconstruction, third column:
CS reconstruction, fourth column: CGLS reconstruction with support information.

points undersampling patterns. In these cases, CGLS outperforms CS and, as mentioned above, especially the
CGLS reconstruction for a random points undersampling pattern is of very high quality.

From figure 4 and 5 and table 2 we observe that for the Kirby data set, CGLS in general again produces
reconstructions of a similar quality as the reconstructions obtained with CS, except that here the PSNRs of all
CGLS reconstructions are larger than the PSNRs of the corresponding CS reconstructions. A random points
undersampling pattern, in particular, produces a CGLS reconstruction that is clearly superior to the CS
reconstruction. Moreover, for arandom lines undersampling pattern, CGLS produces a reconstruction that is
significantly better than the reconstruction obtained with CS as well with a PSNR that is almost twice as large as
the PSNR of the CS reconstruction.
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Model IFFT CGLS

Figure 6. Reconstructed images based on noisy spiral data with an SNR of 50: (a) Shepp-Logan phantom, (b) brain image, (c) patch of
the same brain image. Left column: Model solution, center column: IFFT reconstruction, right column: CGLS reconstruction with
support information.

Table 2. PSNRs of the Kirby reconstructions obtained using an IFFT, CS,
and the CGLS algorithm with support information included for the six
undersampling patterns of figure 2.

PSNR PSNR PSNR
Undersampling pattern (IFFT) (CS) (CGLS)
(a) Square 36.37 30.76 38.38
(b) Random lines (full 30.37 33.97 37.73

center)

(c) Random lines 16.54 17.26 32.00
(d) Random points 15.61 16.97 209.45
(e) Radial 33.80 35.99 45.25
(f) Spiral 29.80 38.35 47.55

3.2. Noisy measurements

To demonstrate the performance of the CGLS reconstruction method in case of noisy data, we again consider
reconstructing the Shepp-Logan and Kirby phantoms from their corresponding incomplete k-space data, but
now the data is contaminated by noise with an SNR of 50. For both phantoms, we restrict ourselves to a spiral
undersampling pattern, since the effects of noise are similar for the other undersampling patterns and noisy data
is also considered in section 3.3, where we apply the proposed CGLS algorithm to measured data.

In figure 6, the model solutions (first column), the reconstructions obtained with an inverse FFT (second
column), and the reconstructions obtained with the CGLS algorithm with support information included (third
column) are shown for the Shepp-Logan phantom (first row), the Kirby head model (second row), and for the
region indicated by the white square in figure 1(c) (third row). These results clearly show that the CGLS
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Model IFFT CGLS

Figure 7. Some slices of the reconstructed 3D apple for a stack of random lines undersampling patterns. Left: Model solution, center:
IFFT reconstruction, right: CGLS reconstruction with support information included.

Table 3. PSNRs of the reconstructions obtained by
applying a simple IFFT to noisy spiral data and using
CGLS with support information.

PSNR (IFFT) PSNR (CGLS)

Shepp-Logan 19.75 34.82
Brain 29.34 37.82

algorithm, with support information included, achieves Shepp-Logan and Kirby head model reconstructions
that resemble the model solution much more accurately than the reconstruction obtained by simply applying
the inverse Fourier transform to the undersampled data. This is also confirmed by the PSNR values shown in
table 3.

3.3. Reconstructions based on experimental low-field MRI data
In this section, we apply the proposed reconstruction method to a 3D data set, which was acquired using a spin-
echo sequence on the low-field MRI scanner described in [6]. The scanning parameters of the measurement are
reported in table 4. An apple was placed inside the scanner and all imaging was carried out using a single receive
coil. We note that the signals that were obtained have an SNR that is much lower than the SNR of signals
measured in typical commercial MR scanners (in this case, the SNR is about 6).

Applyinga 3D inverse Fourier transform to fully sampled k-space data results in a 3D reconstruction of the
apple and some slices of this reconstruction are shown in the left column of figure 7. These reconstructions serve
as model solutions, since we obviously do not have a perfect or high SNR model solution available in this case.

10
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Table 4. Scanning parameters used in the apple

imaging experiment.

Parameter Value

Repetition time (TR) 3s

Echo time (TE) 30 ms

Imaging domain/FoV 128 x 128 x 128 mm’
Pulse duration 100 ps

Acquisition bandwidth 10 kHz

Number of averages 1

Table 5. PSNR of the 3D apple reconstructions
obtained using a simple inverse Fourier transform and
using CGLS with support information included.

PSNR (IFFT) PSNR (Support)

Apple image 24.02 61.92

To illustrate the performance of CGLS, we again consider a k-space undersampling pattern of random lines
with the center of k-space completely sampled. The resulting undersampling factor is equal to two and the
reconstruction results obtained by simply applying an inverse FFT to the incomplete data set and after 100
iterations of the CGLS algorithm are shown in the second and third column of figure 7, respectively. We observe
that an image is obtained which visually resembles the original full k-space solution. The PSNR values in table 5
also show that using support information increases the PSNR from 24.02 (IFFT reconstruction) to 61.92 (CGLS
reconstruction).

4. Conclusions

In this paper we discussed an imaging method that can be applied if the support of an object within a certain FoV
is known and its spatial Fourier transform is only known on a certain k-space undersampling pattern. We
demonstrated that the CGLS algorithm applied to the corresponding truncated Fourier transform equation
produces reconstructions that are essentially of a similar quality as reconstructions obtained by solving a
standard CS problem in which support information is not taken into account. In particular, for the Shepp-Logan
phantom and a range of two-dimensional k-space undersampling patterns, the CGLS algorithm produces
reconstructions with PSNR values that are generally slightly lower than the PSNR values of the corresponding
CS reconstructions. However, for a realistic head model the PSNR values of the CGLS reconstructions are
typicallylarger than the PSNR values of the CS reconstructions. Specifically, in the case of a random points
undersampling pattern, the CGLS reconstructions of the Shepp-Logan phantom and the head model have
significantly larger PSNR values than their CS counterparts. For both phantom models, the PSNR values of the
CGLS reconstructions are also larger than the PSNR values of the reconstructions obtained by simply applying
an IFFT to the available incomplete data sets.

In 3D, an improvement in the reconstructions was also observed when support information is taken into
account. The CGLS algorithm was applied to a measured data set obtained with alow-field MR scanner. For a
random lines undersampling pattern the method was able to provide reconstructions with sufficient detail and
PSNR values that are significantly larger than the PSNR values of the reconstructions obtained via a standard
IFFT. In conclusion, when support information about the object is available, a straightforward application
of the CGLS algorithm to a truncated Fourier transform equation definitely improves simple IFFT-based
reconstructions and, at least for the undersampling patterns considered here, generally provides reconstructions
with a quality similar to reconstructions obtained via standard CS techniques.

Carrying out a Fourier reconstruction using a reduced number of data points invariably leads to imaging
artefacts. In this paper, we considered basic CGLS and CS reconstruction algorithms to address this problem.
More advanced CS techniques can be used as well, of course, (see [19-30], and [31], for example), but the same
holds true for the CGLS algorithm. For example, in an MR setting, the use of multiple receive coils can be
included in the reconstruction process and parallel imaging techniques analogous to SENSE [32] and GRAPPA
[33] may be developed. Furthermore, total variation regularisation may be included in the reconstruction
process as well either in an additive or multiplicative manner [34]. Specifically, suppose that we have N receive
coils available with coil sensitivity maps represented by the diagonal matrices C;,i = 1, 2,...,N. The data
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collected by the ith coil is given by S;FS,Cx = d;,i = 1, 2,...,N, and all data can be combined into a single data
equation as AX = d with A = (Iy ® SiFS,)C, where |y denotes the identity matrix of order N,

C d
C= 92 and d= d,2 (16)
CN dN
With multiplicative total variation regularisation included, the imaging problem is posed as an optimisation
problem with an objective function given by
Ax — d|f3
Foo = b gy, (17)
1dl>

where || - ||, is the 2-norm and F" V() is a multiplicative total variation objective functional (see [34] for details).
Regularisation can also be included in the usual additive manner, of course, but multiplicative regularisation has
the advantage that no effective regularisation parameter needs to be determined and computed. Future work will
focus on the full development of the above image reconstruction technique.
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