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A B S T R A C T

A generalised non-dimensional multi-parametric model for involute spur gear design is
presented, considering manufacturability and geometrical compatibility, where the latter
considers various modes of interference and accounts for the combined effects of the module,
pressure angle, tooth addendum, dedendum, cutter tip radius, and the numbers of teeth of a pair
of mating gears. The effect of the same parameters together with tooth thickness on the
manufacturability of the individual gear teeth is also modelled in terms of pointing and
undercutting. The full range of parameter values, including non-standard ones, is considered.
The resulting combined model serves to provide a complete analytical overview of the multi-
parametric design space and is suitable for the fast assessment of existing designs, for implicit or
explicit (direct) gear design, for extracting design guidelines, and for design optimisation. The
model can be used to identify and explore highly promising under-used subspaces of the
parametric design space, which are currently of significant interest to i.e. the automotive and
aerospace industries.

1. Introduction

1.1. General framing of the problem

In almost all kinds of industrial applications for motion and power transmission such as automotive, aerospace, robotics,
machinery etc., gears - and involute gears in particular- are indispensable and mission critical elements of the design. Gear design
itself is a complex process that, in spite of much accumulated knowledge and supporting standards, computational models [1–7] and
software [8–12], still critically depends on the experience of the designer, especially if time constraints prohibit an exhaustive
iterative multi-parametric search. In fact, the possible independent design parameters that must be studied even in the case of a
‘simple’ spur gear configuration comprise i.e. module, addendum, profile shift, tooth thickness, dedendum, cutter tip radius,
pressure angle, face width etc, thus already numbering 8 parameters. The study is further complicated by the possibility to adjust
each parameter for each gear separately. More crucially, it is important to consider the choice of these parameters in the early stage
of the design, and in full consideration of the couplings (and constraints) that govern their feasible choices. The part of the design
space that is not excluded because of aforementioned constraints can then be subject to parameter selection and possibly a design
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optimisation study. Already, in the automotive and aerospace industry every major company is developing and exploring its own
class of non-standard designs and continuous improvements are being sought to achieve higher compactness, higher strength and
load carrying capacity, improved dynamics with reduced noise and vibration signatures, in particular with regard to performance
under partial or reversing loads, whining, rattling etc.

Several but limited studies and supporting models exist for this kind of design space exploration: Dedicated studies exist i.e. for
the influence of module [7,13], addendum [14–22], profile modification [23–29] tooth thickness [30–36], dedendum [37–42],
cutter tip radius [43–46], pressure angle [47–54], etc, but without considering the simultaneous manipulation of other design
parameters as well, typically assigning standard values to the latter. Additionally, many researchers have investigated the influences
of each design parameter for different applications such as contact analysis [55–63], stress [64–71], vibration [72–78], dynamics
[79–88], cracking [89–93], lubrication [94–101], etc, but with similar limitations to their scope of the design space. Furthermore,
the knowledge present in industrial publications/ technical reports is on the other hand very specific to given machine applications
and not easily generalizable or verifiable.

Hereunder we provide some selective examples of the aforementioned limitations in scope, which, while justified or necessary in
the context of the respective studies, mean that the possibility to generalise the results without additional modelling is likewise
limited:

1.1.1. Dedicated parametric studies

• Module: E.g., with regard to the influence of the module, Nonaka et al [13] studied the strength of spur gear teeth with small
modules of the order of 0.1 to 1.0 mm by using a specially designed gear test rig. The failure mode of gear teeth was observed for
both tempered and soft nitrided gears. A sign of uneven contact along face width was found only for very small gears of modules
0.1 and 0.2 mm, which was very unlikely for such high precision in alignments of gear axes. Influences of the choice of pressure
angle or tooth proportions were not considered, limiting the scope of the study.

• Addendum: With regard to the effect of addendum, e.g. Li [15] investigated its influence on the tooth surface contact strength and
the bending strength of spur gears. Finite element analysis, the method of mathematical programming and teeth contact model
were utilized to lead the contact analyses of the loaded teeth, calculation of stress and deformation of spur gears with not the same
contact ratios and addendums. Load-sharing rate, root bending stress, contact stress, mesh stiffness and also the transmission
error of the spur gears were analysed. It was detected that the number of contact teeth can be increased with increasing the
amount of addendum, in addition, the contact & root bending stresses can be reduced with this kind of increasing. The effects of
cutter tip radius (hence fillet radius), pressure angle etc parameters were not accounted for in this study.

• Profile modification: E.g. Lin et al [28] investigated the influence of parabolic and linear profile modification on low contact ratio
of spur gears tooth with regard to the dynamic response. The influence of the modification zone’s length and the whole

Nomenclature

Gear description & indices

α0 pressure angle
a12 nominal centre distance
αc operating pressure angle
α "0 pressure angle at tip of tooth
b tooth width
c c( )c ci cutter tip radius coefficient (of gear i)
c c( )f fi dedendum coefficient (of gear i)
c c( )k ki addendum coefficient (of gear i)
c c( )s si tooth thickness coefficient (of gear i)
c c( )m mi profile shift coefficient (of gear i)
c c( )sg sgi thickness coefficients at the base circles (of gear i)
rs form circle radius
t ́ trochoid tip thickness of the generating rack tooth

(sharp tooth)
m module
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θi angular position (of gear i)

dθi angular velocity (of gear i)
r r( )b bi base circle radius (of gear i)
r r( )o oi radius of pitch circle (of gear i)
r r( )g gi involute base radius (of gear i)
r r( )k ki outside radius
r r( )f fi inside radius (of gear i)
ε contact ratio
tb base pitch (ref. to involute)
tR circular pitch
* (as subscript) ref. to non-dimensional gear
i ref. to gear no. i
x addendum modification coefficient
Ni number of teeth (of gear i)
Ai point on profile of gear i

OO
⎯ →⎯⎯⎯

i j vector from the centre of gear i to the centre of
gear j
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⎯ →⎯⎯⎯
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ξ1 unitary vector of A A
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ξ2 unitary vector of O K
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1 2
Ki single ref. point at the corner of gear no. i
φsi angle corresponding to the tooth pitch thickness of
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ϑ Poisson's ratio
ρi radii of curvature at the point of contact of gear i
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modification were calculated at different speeds and loads for obtaining the optimum amount of profile modification with regard
to the minimum dynamic loading. A novel design charts were presented that have been included the non-dimension maximum
dynamic load curves. The charts were applied at several loads using various profile modification. Minimisation of the dynamic
loads can be defined from the charts taking ino the account the optimum amount of profile modification. Several design
parameters having an influence on the tooth stiffness function, including pressure angle, addendum and root fillet were not in the
scope of this study.

• Tooth thickness: E.g. Hsu and Su [30] proposed a novel approach by using a modified adjustable tooth thickness hob to decrease
the tooth flank twisting of a crowning gear with the same centre distance. The topologies of the tooth surface, static transmission
error and contact ellipses were also investigated in this work using adjustable tooth thickness of the modified hob. For
demonstration and verification of the competence of the proposed gear hobbing method (considering the longitudinal crowning),
there examples were studied. While the methodology proposed is readily generalizable, it is e.g. not clear how well the results
would hold if different tooth proportions and corresponding contact ratios would be used.

• Cutter tip radius: E.g. Spitas et al [43] proposed non-dimensional multi-parametric analytical model to determine corner contact
and penetration at the root of the gear tooth to find the influence of the design parameters (i.e. number of teeth, cutter tip radius,
dedendum, addendum and contact ratio) on the possibility of the interference. Based on this approach, novel design guidelines for
nonstandard compact tooth (short dedendum, large root fillet) were presented.

Spitas and Spitas [45] applied finite element method to investigate the bending strength for two kinds of fillet, the circular fillet
and the trochoidal fillet. The results showed that for the number of these higher than seventeen, the bending strength of both fillets
are equivalent circular fillet can be used instead of trochoidal fillet. However, in both aforementioned studies the results can be
expected to vary significantly if larger values for the pressure angle were used.

• Pressure angle: E.g. Lin [53] presented an analytical model for meshing of planar gears considering the typical geometry of the
gear tooth profile. The angular displacement of gears was presented as a function of pressure angle. Different pressure angle
functions could produce different gear tooth geometries. Although the new methodology can be used for any kind of gear mesh,
nevertheless the possible variation of other tooth geometrical characteristics, such as addendum, was not in the scope of this
study.

1.1.2. Application-driven parametric studies

• Contact analysis: E.g. Medvedev et al [55] presented an analytical modelling for contact analysis of multi-pair gear. The parabolic
function of transmission errors was applied for contact pressure. The precise transmitted torque and force of each contact pair
and the contact pressure of the multi pair contact were determined by means of a new algorithm. The algorithm can be used for
any kinds of gears and an example of spiral bevel gear has been applied for demonstration.

• Generation, contact and stress analysis: E.g. Litvin et al [70] represented computerised improvements in generation, design,
stress analysis and simulation of gear meshing. A modified algorithm of tooth contact analysis and a new parabolic function of
transmission errors designed for noise simulation. The proposed developments have been demonstrated for the design and
simulation of three kinds of gear drives (spiral bevel gear, face-gear, modified helical gear). While the approach is very general, it
does not readily afford the correlation of specific design parameters to behaviours without a dedicated study.

• Vibration: E.g. Farshidianfar and Saghafi [75] applied Melnikov analysis to investigate the chaotic performance of a gear system.
The dynamic model of the gear system included the time varying mesh stiffness, backlash, static transmission error and external
excitation. The initial values of the control parameter for the occurrence of divergence and chaos were predicted by the proposed
analysis. Moreover, for verification of the analytical approach, the numerical bifurcation analysis and numerical simulation of the
system were applied. As typical in such studies, the focus was not on parametric analysis that could produce direct design insights
without further study.

• Dynamics: E.g. Faggioni et al [83] developed a Random-Simplex optimization algorithm to find the optimum amount of profile
modifications for vibration redaction of a gear system using a nonlinear dynamic model. The good results were achieved by using
high contact ratio gear properties and the proposed optimisation methodology. The scope of this study did not cover variations in
the pressure angle.

• Cracking: With regard to tooth root cracking, e.g. Pandya and Parey [92] studied the influence of the gear design parameters (such
as: root fillet radius, pressure angle, backup ratio) and the effect of the crack path on time varying gear mesh stiffness. A
cumulative reduction index has been proposed for investigating the crack propagation in a tooth root using 2D finite element
analysis. The percent change in the time-varying mesh stiffness has been determined by using variable crack intersection angle
approach and a model of total potential energy. However, the influence of addendum (or whole depth) was not in the scope of this
study.

• Lubrication: E.g. Larsson [100] analysed the transient non-Newtonian elastohydrodynamic lubrication of an involute spur gear.
Taking into the account the influence of fluid transition, the film thickness of the lubricant and the pressure were calculated. In
addition, considering the influence of shear strength restriction, it has been assumed that the model of the fluid was a non-
Newtonian model and the film lubrication was isothermal. The results indicated that the influence of fluid transition was
prominent at the transitions of the load. Once the load was increased (almost doubled), the minimum amount of film thickness
was enlarged for a while because of the squeeze effect. At several points of contact, the stresses of subsurface and the factor of
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friction were evaluated. In this study, two types of oil (poly-α-olefin & paraffinic mineral) were used as lubricant. Effects of
pressure angle and addendum were not considered.

Although all above mentioned examples of studies contribute significantly to the knowledge base that is relevant to gear design,
each of them (justifiably) deals with interrelated design parameters in the separate contexts of their own focal areas- particularly the
module, pressure angle and addendum seem to always be treated as decoupled design choices and there is little information about
synergies (or conflicts) in the choice of these parameters. As such, they do not offer a comprehensive model that can account for
interactions between these parameters. I.e. changing the module and the pressure angle of one gear at the same time may have
synergistic or conflicting effects, when meshing with another gear, possibly leading to improved strength or interference; pressure
angle and addendum choices can result in strength improvement, but also undercutting; the cutter tip radius choice for one gear may
cause interference with the addendum choice for the mating gear [43,44] etc. These types of couplings, which either affect
manufacturability (e.g. undercutting) or geometrical compatibility (e.g. interference), have not so far been addressed
comprehensively in the literature in a coupled sense.

In the presence of such overwhelming complexity, the predominant answer has been standardisation of gear design parameters
and combinations thereof [8–12]. Traditional gear design is generally based on standardised cutting tools, which makes the design of
gears simple and available for any application. The drawback is that standard gear designs are known to have less than optimum
performance in a range of applications, such as very high power density, high power-to-weight ratios, metal-to-plastic replacement,
low-cost, compact, and low-vibration powertrains, which need to be designed with non-standard parameters. This becomes
especially relevant as new production methods rely much less on standardised tooling, especially if non-generating processes are
employed, i.e. broaching, injection moulding, sintering etc.

This paper aims to enable the multi-parametric design of gears in consideration of the major identified couplings between design
parameters that limit or otherwise constrain the design space. Explicitly, the occurrence of undercutting and interference will be
related to the combined values of the gear cutter pressure angle, module, number of teeth, cutter tip radius, dedendum, addendum,
tooth thickness of each of two gears in a pair. The order of complexity is reduced my means of non-dimensionalisation with respect
to the module, as well as the analytical coupling of some of these apparently independent parameters. The resulting model is both
complete and computationally lightweight, to allow its use during the conceptual design and corresponding exploration of the design
space.

As this work is focused on geometrical compatibility, the implications of parameter choices on stresses, load-carrying capacity,
stiffness, dynamics etc are not considered herein. These will be the object of a subsequent study.

1.2. Manufacturability and geometrical compatibility as two considerations of gear design

1.2.1. Manufacturability (tip pointing, undercutting)
The first thing to be addressed in design is the matter of feasibility of a particular gear geometry choice: Can it be manufactured

as intended? Except in the case of direct gear design [97–100], where gear geometry is directly and explicitly defined, typical design
procedures define the gear geometry implicitly, based on basic gear rack parameters. In this sense, it can be that the gear produced
by the manufacturing process deviates from the expected form due to the occurrence of secondary cutting action by the rack cutter,
which manifests as either tip pointing or undercutting.

1. Tip pointing, which is essentially the elimination of the tooth top land and potentially the reduction of the tooth whole depth, can
result from the use of a large pressure angle, and/ or addendum, or large positive profile shifting [2].

2. Undercutting is the condition where additional material is removed from the root of the tooth, potentially also removing part of
the lower involute profile. It can result from the use of small numbers of teeth, small pressure angles, and/ or small cutter tip radii
[2].

Tip pointing concerns the involute geometry exclusively and is as such very straightforward to calculate [1,36,102]. On the other
hand, undercutting prediction concerns both the involute flank and the non-involute root segments and as such requires a more
involved calculation. A number of analytical models for undercutting have been proposed, of which the more accurate ones include
the effect of tip rounding, which introduces an additional parameter that in effect removes material from the cutter tip and lessens
the propensity to undercut.

With regard to tip pointing in particular:

• Litvin [1] studied the occurrence of tooth tip pointing taking into the account that at the tooth top land and the two surfaces of the
tooth will intersect. In order to solve this problem, a numerical program was presented. Different conditions were presented to
avoid tooth pointing for modified involute gears, Novikov–Wildhaber helical gears and face-gear drives.

• Townsend [2] presented a calculation to determine the minimum tooth thickness that will produce tip pointing. Both long and
short addendum scenarios were considered.

• Kapelevich [102] showed that tooth tip pointing in an asymmetric gear could be generated using positive profile shift for a
number of teeth less than 17, resulting in the increase of load carrying capacity.

• Marita [6] investigated the effect of positive profile shift modification on tooth tip pointing. With increasing the positive shift,
teeth became more pointed. This phenomenon was termed ‘Peaking’.
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• Rackov et al [103] applied a generalised particle swarm optimisation algorithm for high contact ratio gears. It was found that with
increasing the amount of addendum tip pointing could occur. To avoid this, all the constraints and equations were checked and
the optimum amount of profile shift modification and addendum were calculated with the proposed optimisation methodology.

• Arikan [104] studied the determination of the addendum modification coefficient for spur gears operating at non-standard centre
distances considering the avoidance of tooth tip pointing and undercutting. The performance a gear was optimised with regard to
the addendum modification coefficient, taking into the account the amount of dedendum, centre distance, clearance, backlash,
gear ratio, contact stresses and root stresses.

• Bair [105] investigated a three-dimensional geometric pointed tooth of an elliptical gear crowned along the major axis. The gear
drive was designed to avoid edge contact while there was an axial misalignment. The rack cutter was used for developing an
analytical model of the gear drive. Moreover, a numerical program was computed for generation gear tooth without pointed teeth.

In the traditional theory of involute meshing, there is a minimum number of teeth to avoid undercutting of the root by the
generating rack/ tool, i.e. for many 20-degree involute pinions this minimum number is 17. However, such rules of thumb are of
little use when dealing with non-standard designs, in which case more detailed models are appropriate:

• Litvin [1] defined the limit condition for tooth undercutting that the tooth has been generated by means of rack-cutter taking into
the account the meshing between involute part of the gear and the straight line of the rack cutter.

• Townsend [2] and Spotts [4] showed that for each pressure angle there is critical number of teeth that undercutting happens when
the addendum coefficient equals 1.0 and the profile shift coefficient is zero. I.e. for spur gears with pressure angles of 14½°, 20°
and 25° the tooth root undercut occurs with a number of teeth lower than 32, 17 and 12, respectively.

• The undercutting conditions for symmetric spur gears which have been designed directly are not subject to the restrictions of the
generating rack and its profile shift coefficient [36,102].

• Alipiev et al [106] proposed a generalised approach to describe tooth undercutting. In this study, three kinds of conditions were
defined for undercutting of spur gear tooth. The first one which was the traditional undercutting boundary condition called
“undercutting-type I”. The second and the third were described as “undercutting-type IIa” and “undercutting-type IIb”. Based on
this study, type IIa and type IIb undercuts were made by the tip rounding of the rack cutter, whereas the type I was made by the
straight line of the rack cutter profile. Moreover, the conditions for preventing undercutting of all the three typed were presented
considering the amount of fillet radius of the rack cutter

• He et al [107] presented a theoretical study and numerical simulation for undercutting occurrence. Minimum number of the
involute gear teeth without undercutting was found in two different approaches as the traditional boundary condition and cutter
tip radius limitation. The results indicated that the minimum number of teeth without undercutting considering traditional
restriction is less than the cutter tip radius limitation.

• Brauer [108] presented the analytical relations for a straight conical involute gear tooth surface and its offset surface to avoid
undercutting occurrence. In this study, Merritt’s [5] formulation for undercutting restriction was applied for the modelling. A
developed expression for undercutting check was presented considering the amount of addendum modification.

• While the starting point of each of these models is the same, namely the geometrical simulation of gear-to-rack contact, the
mathematical formulations present discrepancies in their predictions, as will be seen in Section 3.2.

Based on these models for the different undercutting conditions we calculate the minimum number of teeth to prevent
undercutting as shown in Table 1.

In this work we perform an independent investigation of the conditions that lead to tip pointing and undercutting, in the course
of which we explain also the discrepancies observed between the existing models.

1.2.2. Geometrical compatibility (interference)
Even if a gear is manufacturable, as per Section 1.1.1, it is not guaranteed that two gears configured in a pair and made to mesh

will do so without geometrical interference. For this reason, there are guidelines in the standards, which steer parameter selection to
subspaces in the design space where it is known a-priori that interference does not occur [101,102,106–111]. However, interference

Table 1
Comparison of undercutting equations for minimum number of teeth.

Researcher(s) Minimum number of teeth to avoid undercutting

Litvin [1], Kapelevich [102], Alipiev (type I) [106] N≥ ck cm
α

2( − )

sin2
0

Townsend [2], Spotts [4] N≥ ck
α

2

sin2
0

He [107] N≥ ck cc
α

2( + )

sin2
0

Alipiev (type II) [106] N≥ cc
αsin 0

Merritt [5], Brauer [108] N≥ ck cm cc α

α

2( − − (1 − sin 0))

sin2
0
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becomes a concern when non-standard tooth forms with reduced radial clearance are employed, such as large-fillet short-dedendum
gears [38]. These tooth forms have shorter involute working flanks and excess material at the root, which can lead to non-conjugate
corner contact and penetration at the tooth root. Existing models for interference are unable to predict this, or rely on calculation-
intensive simulations, which make them impractical for design.

As with undercutting, simple analytical models exist and are widely used to predict interference [1,3]. However, these models
have been proven recently to underestimate interference risk, and corner contact and penetration in particular, when small numbers
of teeth are concerned, especially if compact low-dedendum gears produced with large cutter tip radii are concerned [38,39].
Interference for non-standard gears happens because of the penetration of the tip of the gear number 2 at the tooth root of the gear
number 1. The new interference model has to cover the area of penetrating that occurs at the corner-to-root contact region.
Furthermore, interference due to module/pressure angle compatibility, tooth width compatibility (backlash), and radial clearance
compatibility are non-trivial factors that must be considered in non-standard gear design [112]. Thus in the case of non-standard
and compact gear geometry, these new computational models have to be implemented in the context of multi-parametric design.

Based on these considerations, interference modelling can be categorised in four parts as:

1. Pitch compatibility: Normally the use of the same module and pressure angle for both gears in a mating pair, as dictated by all
standards, is sufficient to guarantee pitch compatibility. In general, however, these may be assigned different values for each gear,
as long as base pitch compatibility is maintained [112].

2. Thickness-wise interference: Negative backlash, i.e. due to errors in tooth thickness or centre distance, also leads to interference.
It can be detected by observing only the conjugate parts of the profiles. Nonetheless, if the leading profiles are positioned in a
compatible meshing position, seizure will manifest as corner penetration at the coast sides [49,112].

3. Radial interference: The concern here is that the radial clearance can be so small that the top land of one gear will contact the root
of the mating gear [112].

4. Corner contact and penetration: While standards provide sufficient clearances to avoid interference for any selectable
combination of the gear design parameters, this may not be the case in many non-standard and compact gear design
configurations [38]. In those cases, it is possible that the corner of the tip of one gear tooth will contact and tend to penetrate the
root of the mating gear tooth, causing interference.

Pitch compatibility, often taken for granted with standard mating gear pairs, is no longer guaranteed if module and pressure
angle are free to vary between the gears. This is given special consideration in the present study, together with basic models for
thickness-wise (backlash) and radial interference.

Furthermore, the well-known analytical solution which has been suggested by Litvin [1] is valid for studying interference
occurring along the line of action only, which is a false premise in most non-standard and compact gear design configurations [38],
where corner contact and penetration is a concern. In particular, the necessary and sufficient condition for non-interference at the
root of the reference gear (gear 1) proposed by Litvin [1] and elaborated by the authors as follows [43]:

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

π α N c N π α N π α π αc ≤ c tan
4

+
α
2

sec − 1
2

+ − 1
4

cos − 1
2

sin tan
4

+
α
2

tano k o o oc f
ο

2 2

2

2
2 2 2

2
ο

(1)

In fact, Eq. (1) only predicts a tangent to the exact interference limit curve and is generally not valid, except at sufficiently high
values of cc and cf of gear 1 (Fig. 4). In this paper Eq. (1) still provides a useful limit-tangent to the exact interference limit curves,
which are calculated by the corner contact-and-penetration model [43]. In this work we perform a synthesis of appropriate models
for the four different types of interference, providing a comprehensive set of accurate multi-parametric mathematical conditions for
the geometrical compatibility of gear pairs.

1.3. Standards and computational resources for implicit and explicit/ direct gear design

For the design of gear geometry, a number of established design solutions have been codified in standards for implicit gear design
such as GOST 13,755 [113], ISO 53[114], NF E 23-011[115], ISO TR 4467 [116], JIS B 1702 [117], DIN 867 [118], AGMA 201.02
[119], DIN 3972 [120]. These standards have been implemented in dedicated gear design software such as KISSSoft [8], HyGEARS
[9], Gear Design Pro [10].

Applicable standards also exist for explicit/ direct gear design, i.e. ANSI/AGMA1006-A97 [121], as well as dedicated books [102]
and software, i.e. Gear Tooth Root Fillet Optimization Software [122].

Given that the above sources are fundamentally implementations of the models discussed under Section 1.1, they are also subject
to the same critical considerations.

Where applicable throughout the paper, a few selected standard solutions and de facto industry solutions (‘best practices’) are
shown in context in the enlarged design space, allowing a quick assessment as to how close they are to naturally emerging design
limits (which are often associated with local optima).

1.4. Current study

In this paper, we start by introducing a non-dimensionalisation methodology (Section 2) to produce an elegant generalised
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representation and reduce the order of the multi-parametric problem (Sections 5.1–5.3). The basic principles are introduced to
frame a comprehensive manufacturability (tip pointing, undercutting) and geometrical compatibility (interference) model for the
parametric design of profile-generated involute gears (Sections 3.1–3.4 and 4.1–4.5 respectively). The synthesised model
simultaneously considers all applicable geometric and kinematical conditions and constraints to qualify each point in the design
space (hence each combination of geometrical gear design parameters) in terms of manufacturability and geometrical compatibility.

The design parameters considered include the module, pressure angle, tooth thickness, addendum, dedendum, cutter tip radius,
and number of teeth of each gear. While in principle the module and pressure angle may be varied between gears subject to specific
constraints on pitch compatibility [113], in this study for simplicity the convention of choosing a common module and pressure
angle for both gears in a mating pair is maintained. This reduces the considered design parameters from 14 to 12, all of which are in
principle independent in the context of non-standard design. An extensive multi-parametric study is conducted over Sections 6.1.1–
6.1.6, discussing the most notable effects of different choices for the considered design parameters.

To demonstrate the capabilities of the model, this paper proposes two geometric metrics that function as indirect performance
indicators, which are relevant to gear design: a) Compactness (associated with strength and stiffness) and b) Contact ratio
(associated with dynamics and peak-to-peak dynamical transmission error). These are discussed in Section 6.2. However useful, the
proposed metrics are by no means exhaustive – they serve only to demonstrate the utility and additional insights obtainable by the
developed multi-parametric model. For each performance indicator, given the multi-parametric nature of the problem, it is possible
to dictate a-priori or restrict the range of certain parameters, thus limiting the search area for design space exploration (and the
number of associated strength or dynamical simulations), or even suggest a global optimum at the boundary of the constrained
design space.

Finally, design guidelines are extracted and multi-dimensional maps of the design space are given in terms of the aforementioned
design parameters. Benchmarks against standards as well as known non-standard ‘best industry practices’ reveal significant
potential in the less explored parts of the design space, especially with regard to a multitude of low-clearance, compact gear designs.

2. Non-dimensional modelling of spur gears

A non-dimensionalisation scheme is applied, which permits the simultaneous modelling of entire families of gears and lends
wider generality to the results of the numerical solutions of this study.

As in previous studies [38–40,43–45,49,54,60,77,79,109,110,112,123], all geometrical features are non-dimensionalised in
terms of the module. Hence any given feature f can be related to its non-dimensional correspondent f* by the formula:

f mf= * (2)

This is consistent with the stat-of-the-art use of non-dimensional coefficients, such as for addendum, dedendum, etc.

0 2⁄

0

0

0

Fig. 1. Pointed tooth model as per Buckingham [3].
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Fig. 2. Illustration of tip pointing area design according to the condition of Eq. (11) (ck=1, cs=0.5).
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3. Manufacturability modelling

3.1. Tip pointing

Tip pointing is the condition where the top land of the teeth disappears, leaving both sides of the working tooth profiles (drive
and coast) to intersect.

The shape of the tooth becomes more peaked or pointed and the tooth flank becomes more curved as the pressure angle increases
(Fig. 1). Therefore, the top land becomes smaller and eventually results in pointed or peaked tip. Gear standards [113–121]
recommended that the tip thickness should be greater than equal to 0.2 times the module for the hardened gears and this may be
increased to 0.25 m in exceptional cases. The limitation of peaked or pointed tooth makes a boundary to the maximum amount of
pressure angle. In turn, the maximum achievable outside diameters of such gears are a function of tooth thickness. For any given
number of teeth, the tooth thickness can be increased such that the tip will become pointed at the outside diameter [2]. However, the
resulting teeth do not have the correct whole depth because the involute curves cross over below the expected outside diameter (this
phenomenon is termed ‘peaking’ [6]). The amount that the outside diameter of a gear is to be modified is usually a function of the
tooth thickness desired.

The maximum amount that the tooth thickness of a gear can be increased to just achieve a pointed tooth can be found already in
Dudley’s Gear Handbook [2], reproduced here using an adapted notation:

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

c
N inv invα

α
=

cos − −

2tank
max

r
r

π−1
0 2

0

b
k

(3)

Where ck
max is the maximum addendum coefficient at which a tooth having full working depth will come to a point,α0 is standard

pressure angle of the rack cutter and cos r
r

−1 b
k
is pressure angle at tooth tip. To avoid pointed teeth and undercut root, it is needed to

shorten the amount of addendum and working depth, however Eq. (3) cannot give us the condition of the avoidance of pointed tooth.
Buckingham [3] introduced a condition to avoid pointed tooth that the arc tooth thickness at outside radius (rk) will be less than

zero. With this regard, Fig. 1 is presented to formulate this condition [3].
Referring to Fig. 1, T0 is the tooth thickness at the pitch radius (r0),invαk and invα0 are the involute function of αk (pressure angle at

rk) and α0 (pressure angle at r0), respectively.
From Fig. 1, it can be obvious that:

α
r
r

cos = b

o
0

(4)

α
r
r

cos =k
b

k (5)

And

r r α= cosb o 0 (6)

r r mc= +k o k (7)

From Eqs. (4) and (5), we have:

Fig. 3. Geometry of gear cutting at the tooth fillet [44].

A. Amani et al. Mechanism and Machine Theory 109 (2017) 250–277

258



r
r

m α

m mc
=

cos

+
b

k

N

N
k

2 0

2 (8)

The arc tooth thickness at the outside radius (rk) can be presented as:

invα T r invα= ( /2 ) +k o0 0 (9)

Which can be rewritten as:

⎛
⎝⎜

⎞
⎠⎟invα

πc
N

invα= +k
s

0
(10)

With substituting Eq. (8) into Eq. (5) and then Eq. (10), the condition of avoiding tooth pointing can be presented as:

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟inv

α

c
πc
N

invαcos
cos

+
< +

N

N
k

s−1 2 0

2
0

(11)

Illustration of Eq. (11) is presented in Fig. 2. The grey area corresponds to tooth pointing, which is undesirable for gear design.

3.2. Undercutting

Conditions of non-undercutting by a rack-cutter may be determined by using the general approach presented based on simple
geometric considerations has been introduced by Litvin [1]. The geometry of gear cutting at the tooth fillet (gear not shown, only
rack cutter tooth shown for clarity) has been further elaborated by the authors [44] and is shown in Fig. 2. According to this model
the condition for non-undercutting is as follows:

α γ− ≥00 (12)

It follows from Fig. 3 that:

γ
r c

= tan
( − )

c
α

o u t

−1 tan

,

t
0

(13)

Further substituting some details of Fig. 2 in Eq. (13) yields:

α
c c α

α r c c α
− tan

tan(45°+ ) − cos

tan [( − )tan(45°+ ) + cos ]
≥0f

α
c

o u f
α

c
0

−1 2 0

0 , 2 0

0

0
(14)

According to research by He et al [107], if the rack addendum extends inside the point of tangency of base circle and pressure line
(Point C′ in Fig. 3), gear undercutting consequentially occurs. Therefore, the addendum of the rack must be under the theoretical
contact point. The cutter centerline is tangent with the gears’ reference circle. The requirement without undercutting for standard
involute spur gears as follows:

GP α csin ≥ t0 (15)

By substituting some details of Fig. 3 in Eq. (15) we obtain:

Fig. 4. Comparison of undercutting phenomena for different theories.
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⎛
⎝⎜

⎞
⎠⎟r α c

α
c α( sin − )tan 45°+

2
+ cos ≥0o u f c,

2
0

0
0

(16)

On the other hand, according to Merritt [5], Brauer [108] and Alipiev et al [106] (undercutting of type I) undercutting occurs
(approximately) if the path of contact extends past the interference point. Therefore, a transverse plane of the tooth is not undercut
if:

GP C P≥ ′ (17)

And with same details of Fig. 3 in Eq. (17), leading again to Eq. (16).
The predictions from the three undercutting models derived in Eqs. (14), (16), (17) above are plotted and compared in Fig. 4.

According to Fig. 4 the undercutting condition that has been introduced by Litvin [1], Merritt [5], Brauer [108] and Alipiev et al
[106] has same results for undercutting and non-undercutting parts of spur gears.

It is apparent that Litvin’s condition, as per Eq. (12), and Merritt’s condition, as per Eq. (17), produce identical predictions for
interference, which are more conservative than the predictions based on He’s condition (Eq. (15)), where the combined influence of
the dedendum coefficient and the rack cutter tip radius coefficient has been considered.

3.3. Tooth thickness analysis

Fig. 5 describes the case of maximum cutter tip radius maxcc[43–45,123], where it can be observed that the tip thickness tú of a
sharp tooth of the non-dimensional rack cutter relates to the pitch thickness π c(1− )s , the dedendum and the pressure angle according
to the formula:

t π c c ά = (1− )−2 tanu s f 0 (18)

c δ tmax tan = 1
2

́c u (19)

c
t

δ
max =

́
2tanc

u
(20)

Where, due to the symmetry of the fillet around the δ-axis:

Fig. 5. Calculation of the tooth thickness for a given dedendum.
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δ π α= 1
4

− 1
2 0 (21)

To calculate the tangent of δ we apply on Eq. (21) a trigonometric identity, which yields the expression:

δ α αtan = sec − tan0 0 (22)

Therefore by combining Eqs. (18), (19), (20) and (22) we obtain:

⎡
⎣⎢

⎤
⎦⎥c π c c α α αmax = 1

2
(1− ) − tan (sec − tan )c s f 0 0 0

−1

(23)

Notice that application of a larger radius than that calculated from Eq. (23) would result in an undercut cutter tooth, having a
smaller whole depth and cf value than intended.

3.4. Form radius analysis

By exploiting the symmetry of the rack cutter tooth as shown in Fig. 3 the following relationship is deduced:

β π α
=

4
+

2
0

(24)

Also:

β
c
x

c c x αtan = − = cosc
f t 0 (25)

And therefore:

c c c
α

− =
cos

tan( + )f t c π α
0

4 2
0

(26)

Having defined point C′as the intersection of the line of action GP and the ξ-axis offset byct, it is possible to calculate the form
radius as:

⎛
⎝⎜

⎞
⎠⎟r

c
α

r c=
tan

+ ( − )s u
t

o u t,
0

2

,
2

(27)

Fig. 6. Pitch compatibility: (a) pinion-rack, (b) pinion-wheel [54,112].
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4. Geometrical compatibility (interference) modelling

4.1. Pitch compatibility

In this study, we use the conditions for pitch compatibility developed by Spitas [54,112]. In Fig. 6 terms of rg1, rg2, N1, N2 are base
radius of gear 1, base radius of gear 2, number of teeth of gear 1 and number of teeth of gear 2, respectively.

From the properties of the involute, we can have:

AB t AΓ t= , =g g1 2 (28)

Therefore for pitch compatibility the necessary condition ca be defined as:

t t=g g1 2 (29)

By applying the properties of the involute curve:

AB t= g (30)

From Fig. 6, It can be proved that:

AΓ t α= cosR 0 (31)

Then the necessary condition for pitch compatibility can be written as:

t t α= cosg R 0 (32)

The following conclusion can be derive from Eq. (32):
Gears of the same base pitch tg can be generated by two different racks defined by tR, α0 and t ′R , α ′0 , if and only if:

t α t αcos = ′cos ′R R0 0 (33)

4.2. Thickness-wise interference: Seizure

The pair of involute gears illustrated in Fig. 5. The general condition for sufficient tooth backlash is derived [54]:

Fig. 7. Corner contact and penetration model [43].
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α α
N N

π
c c( − tan )

+
≤1− −c c sg sg

1 2
1 2 (34)

Where αc is the operating pressure angle, csg1 and csg2 are the coefficients of tooth thickness at the base circles for gear 1 and 2,
respectively.

4.3. Radial interference

One of the main constraints for fillet optimisation is a minimum radial clearance. Radial clearance results from the difference
between addendum and dedendum of two mating gears, with standard radial clearance coefficients varying from 0.2 to 0.35. For
avoidance of the tooth tip/root interference, the minimum amount of clearances must be greater than zero. This may necessitate the

Fig. 8. Detection of interference and non-interference are for different combination of the design parameters including addendum coefficient of gear 2 (ck2).
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tooth root with increased clearances even with some reduction of tooth bending stress [54,124]. There should be a minimum amount
of allowable radial clearance that the conjugate gears can operate without the risk of seizure. The following relationships must be
true for assuring radial clearance:

r r a+ ≤k f1 2 12 (35)

r r a+ ≤k f2 1 12 (36)

That rf1 and rf 2are the inside radii of gear 1, 2, rk1 and rk2 are the outside radii of gear 1, 2, and a12 is the centre distance of the gear
pair.

Furthermore, Eq. (36) can be reworked into the following form, considering that nominally a r r= +o o12 1 2

c c− +1 ≥ 1f k1 2 (48)

and introducing the notation:

c c c= − +1f eqv f k1 1 2 (46)

Eq. (48) takes the form:

c ≥1f eqv1 (49)

A similar condition can be formulated from Eq. (35) for gear 2. The significance of cf eqv1 will be revisited in Section 4.5.

4.4. Corner contact and penetration

A detailed study of interference resulting from corner contact and penetration can be found in Spitas [43] (Fig. 7). Here we
summarise the main considerations and adapt the model to the present study.

Consider two parametric curves t r⃗ ( )1 1 , t r⃗ ( )2 2 defining correspondingly two mating tooth flanks. During a mesh cycle, these flanks
will engage in conjugate action around the pitch point, and will each rotate according to a known law of the form:

i dθ dθ− =012 2 1 (37)

For two meshing gears at the pitch point, the following condition must be true:

θ θ= =02 1 (38)

Considering Eq. (37), Eq. (38) in the case of constant transmission ratio integrates over time for the leading side to:

i θ θ− =012 2 1 (39)

And for the coast side to:

i θ φ θ φ( − ) − ( − )=0s s12 2 2 1 1 (40)

Where φs is:

φ c π
N

= 2
s s (41)

That φs represents the angle to the tooth pitch thickness of each gear.
The tip of each tooth may (or not) penetrate the other near the vicinity of its root which depends on each tooth shape. Such

corner penetration is shown in Fig. 7. The location of the corner point K2 is easily found as:

t t r⃗ = ⃗ ( )ref ref2− 2 2− (42)

Considering the vector descriptions for the curvet2 and the line O K2 2, in mathematical terms this translates to the requirement
that two real numbers r1 and ξ2 exist such that the following conditions are simultaneously true:

OO t r OO ξ O K t r O O ξ t r
⎯ →⎯⎯⎯

+ ⃗( ) =
⎯ →⎯⎯⎯

+
⎯ →⎯⎯⎯⎯ ⃗ ( ) =

⎯ →⎯⎯⎯⎯
+ ⃗ ( )ref1 1 1 2 2 2 2 1 1 1 2 2 2 2− (43)

r T∈1 1 (44)

ξ0≤ ≤12 (45)

Where O is the centre of any arbitrary reference coordinate system.
Equivalent discreet models suitable for working with numerical point cloud representations of the tooth surfaces can be found in

Spitas [43]. The can be used alternatively to Eqs. (43)–(45).

4.5. Addendum and dedendum analysis

By means of the corner contact and penetration method from Section 4.4, interference and non-interference design space for
different combinations of the design parameters are presented in Fig. 8. The design parameters are included as the number of teeth
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for gear 1 and 2, cutter tip radius coefficient of gear 1, dedendum coefficient of gear 1 and addendum coefficient of gear 2.
According to the results of Fig. 8, there is a relation between dedendum coefficient of gear 1 (cf1) and addendum coefficient of

gear 2 (ck2).
The relation is introduced as follows, same as in Eq. (46):

c c c= − +1f eqv f k1 1 2

Introducing this equivalent metric for cf , which notably takes into account the mating gear as well, each family of curves is
reduced to a single curve (coincident with each thick black line in Fig. 8).

5. Parametric couplings and synthesis of generalised model

5.1. Parametric couplings

We notice the following important couplings between gear design parameters:

• Normally, it is considered that the pressure angle of two mating involute gears has to be the same, in order to allow them to mesh.
However, it follows from basic geometry that any involute will fulfil the necessary tangency conditions when mating with any
other involute, so the actual concern is pitch compatibility: base pitch compatibility in particular. In fact, gears with different
pressure angles may still mesh properly if they have the same base pitch, which can be obtained by a proper selection of the
individual (non-standard) gear modules. In this sense, base pitch compatibility imposes a strong coupling between the pressure
angle and module.

• Although in principle the addenda and dedenda of a pair of gears (4 parameters in total) may be selected arbitrarily, the predicted
interference behaviour can be expected to depend on two distinct combinations involving the addendum of one gear and the
dedendum of the other gear, as demonstrated in Section 4.4. Clearly, increasing the amount of addendum of one gear will
necessitate and increase in the dedendum of the mating gear.

• Tooth thickness and pressure angle are related with regard to tip pointing. With increasing the pressure angle it will be necessary
to increase tooth width in order to avoid tip pointing. Addendum and dedendum (hence whole depth) are likewise coupled with
tooth thickness and pressure angle in the same context, with shorter teeth being less prone to tip pointing even for large pressure
angles and small tooth widths. This is shown in Section 3.1.

• Dedendum, cutter tip radius and pressure angle can be expected to have a combined effect on the occurrence of undercutting, as
shown in Section 3.2.

• Thickness-wise interference between two gears can be expected to depend on tooth thickness, the operating pressure angle, and
the numbers of teeth of both gears, all coupled as shown in Section 4.2.

• Considering radial interference at the root of one gear mating with another gear, it has been shown in Section 4.3 to depend on the
relation between dedendum of the reference gear, the addendum of the mating gear, and the numbers of teeth of both gears. The
same consideration is valid for radial interference at the root of the mating gear.

• Addendum, cutter tip radius, pressure angle and tooth thickness are in principle properties of the rack cutter (and cutting layout).
As shown in Section 3.3, not every combination is viable: i.e. a large cutter tip radius must be accommodated by correspondingly
large thickness and/ or large pressure angle and/ or small addendum. While each one of these 4 parameters is in principle
independent, the limits on each one are strongly coupled.

Thus hereinafter we shall consider the above couplings and the corresponding developed models to describe and support the
relevant design choices.

Fig. 9. Tooth profile geometry with different pressure angle.
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5.2. Design parameters

Hereunder some of the considered parameters are discussed, summarising the main considerations typically at play in the
context of gear design. This section, together with Section 5.1, serves to support the condensed synthetic overview produced in
Section 5.3.

5.2.1. Pressure angle (α0)
Pressure angle is the slope of the gear tooth at the pitch point. If the pressure angle were 0°, the tooth is parallel to the axis of the

gear- and is really a spur-gear tooth. Generally, gears can be manufactured with different type of pressure angles of 14.5°, 20° and
25° in industrial applications.

Increasing the bending strength can be done by applying high pressure angles bigger than 22.5, although the gear engineers are
in favour of 20° pressure angle gears [2]. To obtain the higher contact ratios, gears with low pressure angles (smaller than 15°) were
in used, nevertheless low pressure angle are not common because of undercutting tooth root and lack the load-carrying capacity.

Gears generated with non-standard pressure angle have been demonstrated to achieve higher bending strength [54]. In fact, the
same working flank can be cut by infinite combinations of pressure angles and modules [47–54], but with varying implication on the
produced root shape and strength. Practical limitations to using high pressure angle values arise from unwanted tooth tipping
(Fig. 9) and corresponding addendum reduction, as well as increased radial force and bearing load components.

Fig. 9 shows the geometry of on tooth of a spur gear with different pressure angle. With different value of the pressure angle, a
different part of the same involute will be produced (e.g. if applying profile shift), or possibly an entirely new involute. Increasing the
pressure angle tends to increase the tooth root thickness, strength and consequently the load carrying capacity.

5.2.2. Module (m)
Geometrically speaking the module is just a scale factor for a gear. For instance, all geometrical features of a spur gear with

m=2 mm are two times bigger than the corresponding features of a m=1 mm gear, provided that the number of teeth, nominal
pressure angle and the whole depth, fillet radius, backlash and profile shifting coefficients are the same. All linearly affected
magnitudes (i.e. root stress including stress concentration, sliding velocity etc.) increase either proportional (sliding velocity) or
inversely proportional to it (root stress), while others (i.e. contact stress) follow a non-linear relationship. Regarding the efficiency of
a gear pair it is mainly dominated by the sliding velocities of the gears in mesh along their path of contact, therefore the bigger the
module the higher the losses for a given angular velocity and transmission ratio.

5.2.3. Cutter tip radius (cc)
The root fillet of a tooth in normally generated by the cutter tip trajectory. The root carries the maximum bending stress of the

tooth, and therefore the value of the cutter tip radius has a significant effect on tooth bending strength. Increasing the cutter tip
radius results in larger generated root fillet therefore reducing stress concentration and the value of the maximum root stress.

At the same time, a larger cutter tip radius tends to reduce the involute part of the tooth, thereby increasing the risk of
interference with mating gears and limiting the values that may be applied practically.

Other considerations are:

• Small or zero radius has been known to cause localised tool wear, causing in turn poor surface quality and dimensional inaccuracy
of the manufactured gear

• For a given whole depth, there is a practical limitation on the maximum radius that is obtainable; the larger radii will be
incompatible with the designated whole depth for the 20° gear system, or the cutter teeth will be undercut, i.e. they cannot be
realised unless the whole depth is reduced

.

Table 2
Dependency of the design parameters.

Design parameters (one per gear) Dependency Explanation

α0 α α α= =01 02 0 Pitch compatibility

or same base pitch
ck , α0, cs, N Eq. (11) Avoidance of tip pointing

cf ,cc, α0, N Eq. (14) Avoidance of undercutting

cf ,cc, α0,cs Eq. (23) Cutter shape coupling/limitation

cs, αC , N Eq. (34) Avoidance of thickness-wise interference (backlash)

c c,f k (cfeqv) Eq. (49) Avoidance of radial interference

c c,f k (cfeqv), cc, α0, N Eqs. (43)–(45) Avoidance of corner contact and penetration
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5.2.4. Addendum (ck)
With increasing the addendum, the number of simultaneously meshing teeth and the contact ratio can be increased, which can

result in decreasing the operating transmission error and noise; long addendum gears are typically used to obtain transverse contact
ratio of two or above (which is particularly useful in e.g. automotive spur gears). Contact ratio-induced load sharing and resulting
gear tooth strength can also be regulated by judicious choice of addendum.

Other considerations include:

• The whole depth required to accommodate a long addendum is bigger, resulting in lower attainable stiffness per tooth.

• Long addendum pinion with short addendum gear pairs are in some cases utilised to strengthen the pinion and adjusting the tip
sliding velocities [2]

5.2.5. Dedendum (cf )
Addendum and dedendum together define the tooth whole depth and are such closely coupled with regard to geometrical

compatibility and interference. The following considerations apply:

• Increasing the tooth whole depth to achieve higher contact ratio can reduce the load carrying capacity of individual teeth

• On the other hand, for high contact ratio spur gears (above two), where one expects the load-sharing between mating teeth to
compensate for this reduction, a small pitch error or other error could neutralise this effect, making high contact ratio designs
applicable only under precise accuracy (and cost) conditions

• With increasing dedendum coefficient the leverage of the applied load increases therefore leading to higher fillet stress values

5.2.6. Profile shifting
Profile shifting simultaneously affects the apparent addendum, dedendum, tooth thickness and pressure angle. As such, it can be

modelled equivalently by means of these other parameters.

5.2.7. Tooth thickness (cs)
Tooth thickness has a direct effect on the tooth root cross-section and corresponding bending stresses and strength, with higher

thickness giving better results. However, the geometrical compatibility of mating gears imposes limits on the thickness of mating
teeth, or interference will occur. Backlash can be controlled for a given centre distance by controlling the thickness of the mating gear
teeth. Other applicable design considerations are that:

• Pinion tooth thicknesses are often increased at the expense of the mating gear to strengthen the pinion [2].

• The determination of tooth thickness depends on the amount of desired backlash and the desired addendum, for a minimum size
of tooth top land [2]. The choice of tooth thickness can be used to mitigate tooth pointing.

5.2.8. Number of teeth (N )
The numbers of teeth of two mating gears combined dictate their transmission ratio and basic kinematics. Almost all other

characteristics of the gear pair, including contact ratio, load sharing, strength etc are implicitly affected by this choice. The number of
teeth of a gear together with its module dictate the gear size.

5.3. Generalised model

Base on the explanation in Section 5.1, it can be concluded that the dependent design parameters can be reduced to independent
design degree of freedoms only.

Fig. 10. Influence of pressure angle on manufacturing feasibility with given amount of tooth thickness.
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The design parameters that we discuss in this work are as: the number of teeth for gear 1 and 2, pressure angle, cutter tip radius,
dedendum, addendum, tooth thickness.

With different formulations as explained in pervious sections, some of the design parameters are coupled and can be found from
other formulations to be independent. Table 2 shows that how to use different formulas to reduce the design DOFs.

Fig. 11. Feasibility of a gear design according to Eq. (23) (relation between cf , cc, cs and α0).,.
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6. Results and discussion

6.1. Multi-parametric gear design maps and limit curves

Considering a pair of mating gears 1 and 2, in this section the relations between the design parameters such as the number of
teeth for gear 1 and 2, pressure angle, cutter tip radius, dedendum, addendum, tooth thickness with regard to manufacturing
feasibility (tip pointing/ non-pointing and undercutting/non-undercutting) and geometrical compatibility (interference/ non-

Fig. 11. (continued)
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interference) are discussed. The corresponding design subspaces and limit curves are identified.

6.1.1. Influence of pressure angle on manufacturability
Fig. 10 shows the manufacturing feasibility design space, according to Eq. (23), for different values of the pressure angle (10°,

14.5°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 60°) while the value of tooth thickness coefficient is given (c =0. 5s ). With increasing the
pressure angle, the possibility of using larger cf will be increased and simultaneously the possibility of using larger cutter tip radius
will be decreased.

Fig. 11 reports the result of a more general study, according to Eq. (23), showing the complete relation between cf , cc, cs and α0
(10°, 14.5°, 20°, 25°, 30°, 35°).

In the left column, the diagonal lines present the amount of cutter tip radius coefficient (cc) and the grey subspace corresponds to
manufacturing non-feasibility. With smaller pressure angle, the feasible subspace will be bigger.

In the right column, a 3D plot is given of the relation between cf , cc, cs for given amount of pressure angle. The subspace above the
surface corresponds to non-feasible parameter combinations. With increasing the pressure angle, the feasible design space will be
decreased.

6.1.2. Tooth thickness limitation (cutter tooth undercutting)
Eq. (23) presents the maximum value of cc, with changing the amount of cf while the value of cs is given. In Eq. (23), different

values for tooth thickness (cs=0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70) present some limitations for different
combinations of cc and cf . Fig. 12 presents the feasible design space for different c c−c f combinations with regard to the limitation of
tooth thickness. It is obvious that the tolerance area for different values of cc, cf will be decreased with increasing th value of tooth
thickness,

6.1.3. Interference limits in the design space
Fig. 13 presents the limits to the design space imposed by interference for different combinations of the design parameters

including N1, N2 (5, 10, 20, 40, 80), cc, cf , α0 (10°, 14.5°, 20°, 25°, 30°, 35°. With regard to feasibility, Eq. (23) has been applied to find
the maximum possible amount of tooth thickness coefficient. For calculating the interference subspace and corresponding limit
curve the algorithm of corner contact and penetration method (Section 4.4) has been implemented. Above the tooth thickness
limitation line lies non-feasible design space. The non-interference subspace is bounded from the left by the family of curves
depending on the pressure angle and the number of teeth of the mating gear.

With increasing pressure angle and the number of teeth for gear 2, the design subspace corresponding to manufacturing
feasibility and non-interference will be smaller. Hence larger gears with bigger pressure angle are more at risk of manufacturing and
interference problems.

6.1.4. Undercutting limitation
Using Eq. (14) for different numbers of teeth for gear 1 (N1=5, 10, 20, 40, 80) allows to design a gear without undercut as shown

in Fig. 14, where the negative values for cc are obviously not feasible. With increasing the number of gear teeth and the value of cf ,
the safety of the design against undercutting will be increased. Increasing the pressure angle also enlarges the design subspace that is
free from undercutting.

6.1.5. From radius limitation
Fig. 15 shows the form radius for a 20-tooth pinion for an exhaustive array of dedendum and cutter tip radius combinations for

undercut and non-undercut root tooth as calculated by Eqs. (44) and (45). Extreme combinations of dedendum and cutter tip radii
that are impossible to attain have been filtered out by use of Eq. (14) and therefore no corresponding values exist at the far end of the

Fig. 12. The limitation of cc-cf combination for different values of tooth thickness coefficient.
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chart, which is shown in Fig. 16.
It is easy to identify a region of dedendum and cutter tip radius combinations (Fig. 16), where the form radius is minimised and

therefore the involute potion of the teeth is maximised. From Fig. 16 two different trends can be identified:

a) The form radius will be increased with combinations of large dedendum and small cutter tip radius (risk of undercutting will be
increased)

b) The form radius can be increased also with combinations of small dedendum and large cutter tip radius (risk of interference will
be increased)

As this is the region that produces the shallowest teeth with the stronger fillets, it is expected that this is the region where the

Fig. 13. The design subspace corresponding to manufacturability and non-interference for different combinations of the design parameters including N1, N2, cc1, cf1,

and α0.
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optimal designs are to be sought.
It is also important to note that the iso-rs curves are linear throughout the definition field; this means that any increase of cutter

tip radius must be made at the expense of increasing the dedendum coefficient by an analogous amount. The ratio of this analogy is
easily determined from Eq. (26) as:

c αΔ
Δc

=
cos

tan(45 + )
f

α
c

0
0

2
0

(47)

For the 20° gears studied here, this means that Δc /Δc =0. 658f c .

6.1.6. Addendum limitation
From Section 4.5 it can be concluded that instead of cf1, we can use cf equivalent1 as defined in Eq. (28), thereby incorporating the

Fig. 14. Undercutting and non-undercutting design subspaces for different combinations of N1, cc, cf ,α0. The grey subspace corresponds to non-feasible designs.
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effect of the addendum in this new metric, which is always positive, since the addendum of the mating gear may not be larger than
the dedendum of the reference gear. Fig. 17 presents the interference limit curve calculations in consideration of N1, N2, cc1, cf1 and ck2.

These results show that the risk of interference will be increased with using smaller value of cf eqv1 , which can be the result of
increasing the addendum of the mating gear, and/ or bigger value of cc.

The results show that the interference limit is not dependent on the number of teeth of gear 1 or the contact ratio, but only on the
number of teeth of gear 2. Thus any combination of N1, i12, where N i N=1 12 2 is constant, produces an identical interference limit curve.
This insight and in additional cf equivalent1 allow reducing by two the dimensions of the parametric space, without loss of generality.

Considering the dedendum coefficient fixed, another relevant observation is that the contact ratio of will be increased with
decreasing the amount of equivalent dedendum coefficient, which is practically equivalent to increasing the addendum coefficient of
the mating gear and is not affected by the dedendum or the cutter tip radius of the reference gear, as shown in Fig. 18. The overall
contact ratio will depend of course on the addenda (or equivalent dedenda) of both gears.

6.2. Compact and high contact ratio tooth forms

In Section 6.1 a large family of combinable plots has been presented, from which the manufacturability and compatibility design
subspaces can be delimited.

Compact tooth form can be designed with minimising the total volume of gear tooth. Besides reducing the module, this can be
done by reducing the number of teeth and minimising the clearance between gear teeth [126–131]. Higher pressure angles, which

Fig. 15. Form radius limitation for (a) non-undercut and (b) undercut root tooth (N=20).
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are conductive to higher load carrying capacity and small modules and addenda, which are conductive to high scoring/ scuffing
resistance, can also be chosen.

Likewise, while only pressure angle and the addenda of both gears affect the contact ratio, their feasible values when attempting
to increase the contact ratio are affected by many other design parameters (including the limitation of form radius). The produced
design spaces allows a fast assessment of these limits and corresponding attainable values.

Given that the design space, considering both gears in a pair, contains multiple parameters and the design goals vary from one
application to another, from the provided analytical mapping of the design space limits the optimal (or Pareto-optimal) solutions can
be found on a case by case basis. Fig. 19 offers a qualitative summary of several of the plots presented in Section 6.1 and can serve as
a starting point and design guideline.

As the relations between the design parameters reduced to the independent design DOFs, selecting the design parameters can be
easy and fast to find compact and/ or high contact ratio tooth forms.

Already, in high performance gear applications in the automotive and aerospace sectors the industry has moved away from the
standard tooth proportions and many gear designs currently being developed or in use fall in the regions of the design space denoted
by the thick arrows (left and top left part of the feasible design space). This is still largely based on trial-and-error. To the best
knowledge of the authors, Fig. 19 is the first representation to explain why such designs are optimal in the cf-cc space, in terms of
compactness and contact ratio (both of which are a function of cfeqv) allowing a better-informed design space exploration and design
optimisation.

6.3. Implications of the choice of pressure angle

According to the results of Section 6.1.2, the pressure angle plays an important role regarding not only gear performance, but
also the size/extent of the design subspace that is consistent with manufacturability and compatibility. Larger pressure angles are

Fig. 17. Reducing the five-parametric design space for interference limit curves to the three-parametric design space cf eqv1 , cc1, N2 after elimination of parameters N1,

i12 and ck2.

Fig. 18. The relation between equivalent dedendum coefficient (cfeqv) and gear contact ratio.
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only feasible within limited design subspaces.
This means that for the large pressure angles that are used for special applications such as high capacity load carrying in heavy

industry, the presented mapping can be used to precisely navigate the narrow design space in order to reach feasible designs.

7. Conclusion

This paper presented a number of original and reworked mathematical models that are relevant to assessing the manufactur-
ability and geometrical compatibility of gears, considering the multi-dimensional design space involving simultaneously the pressure
angle, module, addendum, dedendum, cutter tip radius, thickness, and number of teeth of both gears in a pair. These models were
synthesised into one comprehensive meta-model that supports fast assessment of gear design feasibility.

Various modes of interference were considered as well as the manufacturability of the individual gear teeth in terms of pointing
and undercutting. Differences between different available models (e.g. with regard to undercutting were identified and discussed).
Furthermore, models for pitch compatibility and corner contact and penetration were presented that provide new possibilities for
non-standard and compact tooth form designs.

The resulting combined model serves to provide a complete analytical overview of the multi-parametric design space and is
suitable for the fast assessment of existing designs, for implicit or explicit (direct) gear design, for extracting design guidelines, and
for design optimisation. The model can be used to identify and explore highly promising under-used subspaces of the parametric
design space, which are currently of significant interest to i.e. the automotive and aerospace industries.
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