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Abstract 

The Indian Ocean Tsunami has once again revived the discussion in the tsunami modelling 

community if the non-linear shallow water equations are a valid model for the propagation of 

tsunamis. It is suggested that the mechanism of frequency dispersion which is absent in 

these equations might be important in the correct modelling of large scale tsunamis.  

 

In this master Thesis a non-hydrostatic numerical model based upon the scheme proposed by 

Stelling and Zijlema (2003) is constructed and it is investigated if it can be an effective and 

efficient way to include the effect of frequency dispersion in the modelling of tsunamis in their 

propagation and run-up. 

 

The non-hydrostatic algorithm is incorporated into the existing explicit shallow water solver of 

XBeach. In this way the model is extended to allow for shorter wave propagation. The main 

reason for doing this was to show that the employed non-hydrostatic scheme can be easily 

incorporated as a simple add-on. The depth averaged formulation of the XBeach model 

prevented an easy extension towards multiple layers but, for a single layer, the addition of 

the non-hydrostatic pressures was indeed straightforward. No large modifications to the 

existing code where required. 

 

The numerical model is based on the application of mehrstellen verfahren for the pressure 

gradients in the vertical. This makes it possible to exactly set the surface pressure to zero 

which is important for the correct modelling of surface waves. The advective terms have been 

included in a momentum conservative way based on Stelling and Duinmeijer (2002). This 

allows for the correct modelling of braking waves. 

The resulting 2DV model is validated with analytical solutions available for: (i) an oscillating 

basin (ii) the propagation of a solitary waves (iii) the run-up of long waves on a beach and 

(iv) the dambreak solution. Furthermore the model is verified using experimental data by 

Synolakis (1987) on the run-up of solitary waves on a plane beach. In all cases it is concluded 

that the results are satisfactory.  

The 2DV model is subsequently expanded into a 3D model which is validated with a 3D 

version of the oscillating basin and verified with the Berkhoff shoal which includes shoaling, 

refraction and diffraction of waves. A surprising result is that the model using only a single 

layer is able to satisfactorily reproduce the measurements. 

 

The numerical model is applied to two tsunami benchmark tests conducted by Briggs (1995). 

The first test consists of the run-up of solitary waves on a vertical wall while the second deals 
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with the run-up of solitary waves on a conical island. From the first test it is concluded that 

the model can correctly model these types of waves using only a single layer. Furthermore, 

when compared to hydrostatic solutions, the model is a dramatic improvement. The over 

steepening, typical of the non-linear shallow water equations, does not occur. 

From the results of the second test it is concluded that the model can accurately predict the 

inundation heights. However, very fine grids where needed due to the excessive numerical 

diffusion introduced by the upwind approximations. 

 

It can be concluded that the non-hydrostatic model by Stelling and Zijlema can indeed be an 

attractive way to include frequency dispersion into large scale tsunami propagation models. It 

is anticipated that the non-hydrostatic terms add about fifty percent to the duration of a 

simulation.  



 

 v 

Preface and acknowledgements 

This thesis concludes the Master of Science program at the faculty of Civil engineering and 

Geosciences at Delft University of Technology, Netherlands. It was carried out over a period 

of roughly a year at the section for environmental fluid mechanics. 

 

Working on this master thesis has been very satisfying and, at times, very frustrating. There 

have been weeks in which little progress was made and weeks in which everything seemed to 

fall into place. Here I want to thank those who helped me through the rough times with their 

advise, be it totally wrong, and their support. Thank you Johan, Dirk, Mirza, Martijn and 

Carolina. I would also like to thank my family, who have always supported me, Sijbrand for 

the fruitful discussion we had, and the various student assistants and other graduates whom 

I had the pleasure working with.  

 

Finally I would like to thank the members of my graduating committee and the staff of fluid 

mechanics for all the support you provided me. I’m afraid you haven’t seen the last of me 

yet. 

 

Delft, November 2008 

 

Pieter Bart Smit  



 

vi 



 

 vii 

Table of contents 

ABSTRACT ......................................................................................................................................... III 

PREFACE AND ACKNOWLEDGEMENTS..................................................................................... V 

TABLE OF CONTENTS ................................................................................................................... VII 

SECTION I: INTRODUCTION ........................................................................................................... 1 

1. INTRODUCTION.............................................................................................................................. 1 

1.1. Objective............................................................................................................................... 2 

1.2. Readers guide ....................................................................................................................... 3 

2. TSUNAMIS ..................................................................................................................................... 4 

2.1. Introduction .......................................................................................................................... 4 

2.2. Initially generated waves...................................................................................................... 7 

2.3. Wave propagation............................................................................................................... 10 

2.4. Leading wave ...................................................................................................................... 16 

3. DISPERSION OF LARGE SCALE TSUNAMIS ..................................................................................... 19 

3.1. Oceanic propagation .......................................................................................................... 19 

3.2. Coastal waters .................................................................................................................... 24 

3.3. Discussion........................................................................................................................... 28 

SECTION II: 2DV NUMERICAL MODEL ...................................................................................... 31 

4. MODEL DESCRIPTION................................................................................................................... 33 

4.1. Governing equations........................................................................................................... 33 

4.2. Grid schematization............................................................................................................ 37 

4.3. Space discretisation............................................................................................................ 41 

4.4. Time discretisations............................................................................................................ 51 

4.5. Determining the non-hydrostatic pressure ......................................................................... 55 

4.6. Higher order spatial approximations ................................................................................. 57 

4.7. Flooding and drying ........................................................................................................... 61 

4.8. Boundary conditions........................................................................................................... 66 

5. VALIDATION AND VERIFICATION ................................................................................................. 69 

5.1. Linear dispersion relation .................................................................................................. 69 

5.2. Solitary wave in channel..................................................................................................... 75 

5.3. Long waves on a beach....................................................................................................... 80 

5.4. Dam break .......................................................................................................................... 82 

5.5. Run up of solitary waves..................................................................................................... 87 

5.6. Discussion........................................................................................................................... 91 

 



 

viii 

SECTION III: 3D NUMERICAL MODEL ....................................................................................... 93 

6. MODEL DESCRIPTION................................................................................................................... 95 

6.1. Grid..................................................................................................................................... 95 

6.2. Discretised equations ......................................................................................................... 97 

6.3. Non-hydrostatic pressure.................................................................................................. 100 

6.4. Flooding and drying ......................................................................................................... 103 

7. VALIDATION AND VERIFICATION ............................................................................................... 106 

7.1. Oscillating basin............................................................................................................... 106 

7.2. Wave deformation by an elliptic shoal on sloped bottom ................................................. 114 

7.3. Discussion......................................................................................................................... 119 

SECTION IV: APPLICATION TO TSUNAMI BENCHMARK EXPERIMENTS .................... 123 

8. RUN UP ON A VERTICAL WALL ................................................................................................... 125 

8.1. Experimental setup ........................................................................................................... 125 

8.2. Numerical model setup ..................................................................................................... 127 

8.3. Results............................................................................................................................... 128 

8.4. Discussion......................................................................................................................... 134 

9. RUN-UP OF SOLITARY WAVES ON A CONICAL ISLAND................................................................ 137 

9.1. Experimental setup ........................................................................................................... 138 

9.2. Numerical Setup ............................................................................................................... 140 

9.3. Results............................................................................................................................... 141 

9.4. Comparison ...................................................................................................................... 149 

9.5. Discussion......................................................................................................................... 150 

SECTION V: CONCLUSIONS AND RECOMMENDATIONS.................................................... 153 

10. CONCLUSIONS AND RECOMMENDATIONS .............................................................................. 155 

10.1. Conclusions .................................................................................................................. 155 

10.2. Recommendations ......................................................................................................... 158 

REFERENCES ................................................................................................................................... 159 

LIST OF MAIN SYMBOLS.............................................................................................................. 161 

APPENDICES .................................................................................................................................... 163 

A. NUMERICAL DISPERSION RELATION....................................................................................... 165 

A.1. Linearized equations......................................................................................................... 165 

A.2. Single layer system ........................................................................................................... 166 

A.3. Two computational layers................................................................................................. 167 

B. XBEACH.............................................................................................................................. 168 

C. STRONGLY IMPLICIT PROCEDURE........................................................................................... 169 

D. TSUNAMI RUN UP................................................................................................................... 170 

D.1. Run up on a vertical wall.................................................................................................. 170 



 

 ix 

D.2. Run up of solitary waves on a Conical island................................................................... 179 

 





 

1 

Section I: Introduction 



Section I: Introduction 

2 



Introduction 

1 

1. Introduction 

The December 2004 tsunami in the Indian Ocean has raised public awareness about the 

dangers this natural phenomenon holds. The enormous damage, loss of life and the human 

catastrophe in the aftermath of the disaster proved once again the necessity of 

understanding this phenomenon.  

 

Due to the often complicated bathymetry and the non-linear nature of the mathematical 

equations involved a principle tool in prediction of tsunami risks are numerical models. Most 

modern models used to model tsunamis are based upon the depth averaged non-linear 

shallow water equations (NSWE). In these models vertical accelerations are neglected and 

the underlying equations are valid for shallow water waves where the wavelengths involved 

are much larger than the depth. However, the Indian Ocean tsunami revived an old 

discussion in the tsunami community if the NSWE are sufficiently descriptive of the physics 

involved to characterize the coastal impact of tsunamis. There is some concern that 

frequency dispersion, which is absent in the NSWE, might be important. 

 

Frequency dispersion causes waves of different wavelength to travel with different speeds. 

Generally speaking longer waves will travel with a higher velocity than shorter waves. Besides 

the wavelength the propagation velocity is also dependent on the depth. Large scale 

tsunamis usually have wavelengths which are much larger than the water depth. In this case 

the influence of frequency dispersion becomes physically small and the wave velocity is 

essentially only dependent on the local water depth. When frequency dispersion is neglected 

altogether all waves, irrespective of their wavelength, will travel with the same velocity. 

 

One of the first to claim that frequency dispersion might be of importance for the Indian 

Ocean tsunami was Kulikov (2005). He performed an analysis of satellite altimetry data and 

his conclusion was that the propagation of the tsunami in the south-western direction was 

dispersive. Numerical studies performed by Horrillo et al. (2006) and by Grilli et al. (2007) 

seem to confirm this. They report inundation height differences of up to twenty percent when 

comparing models based on the NSWE with models which incorporate dispersive behaviour. 

Previously Sato (1996), in his study of the 1993 Okushiri Island tsunami found that local 

tsunami enhancement could be explained by a series of dispersive waves which ride on the 

main tsunami front. Together with reports by Ortiz et al. (2001), Imamura et al. (1988,1990) 

and Lui et al. (1995) among others this has revived the discussion in the tsunami community 

about the validity of the non dispersive  NSWE under large scale tsunamis. 
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The traditional alternative for the NSWE when considering wave propagation are the 

Boussinesq models which are based on an  a priori assumption of the vertical distribution of 

the horizontal velocity. These models are formulated in a depth averaged way and they are 

quite efficient for mildly dispersive waves. However, the strongest point of the Boussinesq 

equations is also their weakness. Wave problems can be efficiently tackled but other non-

hydrostatic phenomena can not be modelled. 

 

Besides the Boussinesq models there are also the non-hydrostatic models based on the 

incompressible Navier-Stokes equations. These models are able to correctly model dispersive 

waves but have always suffered from the need of a high resolution in the vertical. 

Traditionally in the order of ten layers are needed to achieve similar results to the depth 

averaged Boussinesq models. 

 

However, in Stelling and Zijlema (2003) an interesting alternative is presented which is based 

on the Navier Stokes equations but is tailored towards wave propagation studies. They are 

able to include dispersive effects similar to a first order Boussinesq model using a depth 

averaged approach. Furthermore using two layers much shorter waves can also be correctly 

modelled.  

The main advantage with regard to the Boussinesq models is its simplicity. It is conceptually 

closer to the physics as it is a direct numerical implementation of the Navier Stokes 

equations. It also allows for a single model to handle wave propagation and other non-

hydrostatic effects. Finally, it should be very easy to integrate into an existing explicit shallow 

water solver. 

 

Most of the applications of this model thus far have been focused on relatively short waves. It 

would be very interesting to see if this model can efficiently be applied to the problem of 

tsunami propagation and run-up and form a viable alternative to the Boussinesq equations in 

these situations. If this is the case it could then be used to further investigate the importance 

of dispersion under large scale tsunamis.  

1.1. Objective  

The objective of this study is to construct a non-hydrostatic numerical model based upon the 

scheme proposed by Stelling and Zijlema (2003) and investigate if it can be an effective and 

efficient way to include the effect of frequency dispersion in the modelling of tsunamis in their 

propagation and run-up. 
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Secondly it is the intention to show that the employed non-hydrostatic scheme can be easily 

integrated into an existing explicit shallow water solver in the form of an add-on. For this 

purpose the algorithm is added to the XBeach model. 

1.2. Readers guide 

In order to fulfil the objective first a study into the importance of dispersion under large scale 

tsunamis is conducted. This is the subject of section I.  An introduction into tsunami waves 

and the relevant physical processes is given in chapter two. In chapter three the importance 

of frequency dispersion under large scale tsunamis is discussed. 

 

Subsequently the construction of a numerical model which can reproduce the various physical 

processes found under tsunamis is discussed. Section II deals with development of a 2DV 

numerical model. In chapter four the fundamental equations together with the numerical 

approximations used are presented. In chapter five the model is validated and verified using  

various existing analytical solutions and experimental data. 

 

In section III the existing model is extended into three dimensions. Chapter six deals with 

the necessary adaptations and the solutions for some of the problems this raises while 

chapter seven deals with the verification and validation of the three dimensional model. 

 

In section IV the model is applied to two tsunami benchmark cases. Chapter eight deals 

with the run-up of solitary waves on a vertical wall while chapter nine deals with the run-up 

of solitary waves on a conical island. 

 

Finally in section V the conclusions and recommendations resulting from this study are 

presented and discussed. 
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2. Tsunamis 

 

2.1. Introduction 

In many respects tsunami waves are similar to common sea waves generated by the wind. 

They undergo similar physical processes and many conclusions regarding shorter waves are 

also applicable to tsunami waves. What truly sets them apart from regular waves are their 

magnitude and in direct relation to this the potential for destruction they hold. Whereas a 

typical sea wave will have wavelengths in the order tens of metres a large scale tsunami can 

have a wavelength in the order of a hundred kilometres.  

 

Figure 2-1 Classification of surface waves according to their period. (Kinsman, 1965) 

To put them into perspective a classification of surface waves according to their period is 

given in Figure 2-1. From the figure it is seen that the periods of tsunami waves range from 

five minutes to twelve hours. This explains why the longer tsunamis used to be referred to as 

tidal waves. 

 

The word tsunami itself was chosen by oceanographers to prevent confusion with the tides 

and comes from Japanese where it means "harbour wave". Japanese fishermen often spend 

the daytime fishing on the deeper parts of the ocean where a tsunami is hardly noticeable, 

and when they came home they found there villages destroyed. They thus theorized that 

these large waves only happen in harbours and elsewhere near shore. 

This also illustrates that the danger a tsunami poses is not related to its wave height on the 

ocean, but rather to its wavelength. Due to shoaling a initial small surface elevation of a 

metre can grow to a massive ten metre high wave near shore. And because they are long 
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waves tsunamis can travel vast differences without loosing significant amounts of energy and 

wreak havoc on a distant shoreline. 

2.1.1. Tsunami sources 

The large wavelengths found with tsunamis are a consequence of the way they are 

generated. While most surface waves are wind generated tsunamis are typically created by 

sudden shifts in the ocean floor which displace large amounts of water. These could be 

underwater landslides, volcanic explosion or earthquakes. Due to the often large source areas 

the wave generated is much larger than a wind generated wave. 

 

  

Figure 2-2 Earthquake in a subduction zone causing a tsunami. (NGDC) 

Most large scale tsunamis occur in the pacific basin as here the pacific plate collides with the 

North American, Filipino and Australian plates. In these so called subduction zones one of the 

plates is forced under the other plate under great tension. The friction between the two 

plates is enormous causing them to become almost stuck and the upper plate starts to bent. 

The result is very similar to energy being stored in a spring. At some point the frictional force 

is no longer large enough to hold back the upper plate and the energy which was 

accumulated is suddenly released. The upper plate snaps back and raises often several 

metres displacing millions of cubic metres of water in the process and transferring large 

amounts of energy. The effect on the water surface is like an instantaneous raise of the 

water surface. 

 

The Atlantic ocean suffers from far less tsunamis as the tectonic plates move away from each 

other here, though recently the scientific community has speculated on the potential for large 
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landslide generated tsunamis1. The conventional view is that tsunamis caused by either 

landslides or volcanic eruptions result in waves which have smaller wavelengths. These waves 

can be extremely destructive locally but, due to the point like source, they quickly loose much 

of their danger when they propagate over larger distances. 

 

Since the discussion in the tsunami community regarding the importance of dispersion is 

focused on whether this plays a role under large scale earthquake generated tsunamis these 

form the main focus of the rest of this study. When the term tsunami is used reference is 

therefore made to an earthquake generated tsunami, unless stated otherwise. 

2.1.2. Historical tsunamis 

The occurrence of an tsunami is not as rare as is commonly thought.  However, most 

tsunamis usually go unnoticed as their impact is small. The National Geophysical data center 

(NGDC) has listed thirteen occurrences of tsunamis in 2007. The tsunami at 1 April near the 

Solomon Islands was the most deadly one with 57 casualties. 

 

year Earthquake 

magnitude 

Country Maximum 

inundation height 

Estimated number of 

casualties 

1906 8.8 Ecuador 5.00 1000 

1923 7.9 Japan 12.10 2144 

1933 8.4 Japan 29.30 3064 

1941 7.6 India - 5000 

1944 8.1 Japan 10.00 1223 

1946 8.1 Dom. Rep. 5.00 1790 

1946 8.1 Japan 6.60 1362 

1960 9.5 Chile 25.00 1260 

1976 8.1 Philippines 4.48 2349 

1992 7.8 Indonesia 26.20 2500 

2004 9.0 Indonesia 50.00 250000 

Table 2-1 Tsunamis generated by earthquakes in the last century with more then a thousand casualties. 

To illustrate the importance of being able to predict the risk a tsunami poses, an overview of 

tsunamis with more then a thousand casualties is given in Table 2-1. The actual number of 

tsunamis that caused damage is far larger than the selected few which are shown here. 

                                                

 
1 There are some claims that, most notably by Davis and Ward (2001), that a landslide tsunami near La Palma might 

result into a mega tsunami which could seriously affect the eastern seaboard of the United States. However their 

claims are controversial. See for instance van Nieuwkoop 2007 for a description of the case. 
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Without any doubt the Indian Ocean tsunami of December 2004 stands out as the most 

destructive tsunami ever. Besides the enormous amount of casualties the economic damage 

was well into the billions of US dollars. 

2.2. Initially generated waves 

The interaction between the sea bottom and the body of water on top can be very 

complicated locally. The irregularity of the rise, the difference in geographic features along 

the fault line, and the duration and frequency of the earthquake all contribute to the response 

of a body of water that finally results in some sort of deformation of the ocean surface. The 

correspondence between the  rise of the sea floor and the (local) rise of the free surface is 

especially of importance as this sets the initial conditions for the waves which then can be 

propagated using an appropriate model. 

 

In classical tsunami theory one usually considers the response of the sea surface to a bottom 

excitation in an ocean of uniform depth.  Especially the case of a sudden rise of a block at the 

bottom has seen extensive investigation using linear theory and experimental verification. In 

this context especially the investigation by Hammock (1973) has been instrumental in the 

understanding of this. Here some of his results will be presented in a descriptive manner.  

 

Consider the sudden uniform rise of a section of the ocean floor with a width of B, amplitude 

of 0d  and a characteristic time scale ct
1. Furthermore let the water depth in an undisturbed 

condition be given by H. The response of the free surface to such an event can be fairly well 

described by linear theory as was verified experimentally by Hammock and can be 

characterized by two dimensionless parameters: the ratio between the water depth and the 

width of the disturbance and the Hammack number. 

 

Starting with the Hammock number that is given by 

 
/

c
h

t
C

B gH
=  (2.1) 

The Hammack number describes the ratio between the time scale of generation and the time 

scale of propagation out of the disturbed region. For Hammock numbers much larger than 

one the tsunami leaves the area before the motion of the seafloor has stopped. Since the 

movement of the ocean floor is relatively slow this type of movement is often referred to as a 

creeping event. 

                                                

 

1 Let ct for instance be time necessary to reach two thirds of the final bottom excitation. 



Section I: Introduction 

8 

For earthquake generated tsunamis where the width of the affected area is usually large and 

the characteristic time scales small the Hammock number is much smaller than one. In this 

case the rise of the ocean floor is felt as almost instantaneous by the body of water on top as 

the disturbance doesn’t have time to leave the generation area during the uplift of the 

seafloor. Ocean floor movements that correspond to small Hammack number are also 

referred to as impulsive events. 

 

 

Figure 2-3 The bottom movement is often schematized with a block like shape which suddenly starts to move 

upward. The resulting free surface is dependent on the upwards velocity , amplitude and width of the block, 

The second important parameter is the ratio between the depth of the ocean and the width 

of the disturbance. For small scale events, where ≪/ 1B H , the resulting response of the 

free surface will be much smaller than the amplitude of the bottom excitation. On the other 

hand for large scale events, where ≫/ 1B H , the raise of the ocean floor at the centre is 

essentially translated one to one to the ocean surface. 

 

In Figure 2-4 experimental results from Hammack (1973) are shown that give the relative 

surface response for different combinations of the relative depth and the Hammack number. 

Both experimental and theoretical results clearly show that impulsive movements do indeed 

lead to a larger initial surface response. However, when the size of the source is small 

compared to the depth, the relative response diminishes considerably. For the smallest width 

to depth ratio ( ≈/ 0.61b h ) found in the figure the maximum response under impulsive 

conditions is only half of the maximum bottom excitation. Smaller ratios will result in an even 

smaller response  
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Figure 2-4 Experimental results from Hammack(1973) at the centre of a block like disturbance for different values of 

the Hammack number and the relative depth. Dots indicate the measured relative surface response while the solid 

line represents the surface elevation predicted by linear theory. In (a) an exponential movements was used while in 

(b) the motion represented half a sine. Be aware that in the graph η0 is the free surface displacement and ζ 0  the 

amplitude of the bottom rise.  
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For large scale events, where the width to depth ratio is much larger then one, the response 

will be similar to the amplitude of the bottom movement.  Note that this only holds for a 

position right above the centre of the disturbance, at either end the response will roughly be 

half of the amplitude at the bottom. 

A very interesting result from the experiments by Hammack is that the linear theory gives a 

good approximation of the relative amplitude. This makes the results more easily applicable 

to real world tsunamis as a superposition of linear solutions is also a solution. 

  

When considering a large scale earthquake the bottom rise will most likely not be uniform 

along the fault. However, if this is approximated by a combination of block like raises some 

conclusion regarding the initial wave and its components can still be made. The most 

important one is that local raises of the sea floor which are substantially larger or smaller 

than the average raise, but have dimensions smaller than the water depth, will not make a 

significant contribution to the relative amplitude. From Figure 2-4 it is clearly seen that the 

response at the free surface reduces for smaller ratios of the width to the depth. 

Furthermore, due to the smaller width the Hammack number will be much less and although 

the average bottom raise is impulsive the local bottom raise might be creeping. 

 

Thus although the bottom raise is non-uniform only large scale features, with sizes larger or 

equal to the water depth, will have a significant impact on the resulting free surface. The 

sizes of these disturbances can be seen as indicative for the wavelengths they generate. The 

shortest wavelengths with significant amplitude present in the initial wave will have a size 

comparable to the local water depth. And more importantly the dominant wave lengths will 

correspond to the large average movements along the fault. These will therefore have sizes 

much larger than the water depth. 

2.3. Wave propagation 

In this section the physical processes involved during the propagation of the tsunami wave 

trough the ocean and in coastal waters will discussed. The aim of this section is to describe 

these processes qualitatively and the theory will be presented in a descriptive manner without 

a formal mathematical derivation. Much of the processes can be justified in a more 

fundamental manner using either linear wave theory or appropriate non-linear theories. For a 

more comprehensive introduction into (non-) linear wave theory the reader is referred to 

Holthuijsen (2007), Dingemans (1997) or Mei (2005). 

 

Although some remarks regarding dispersion under tsunamis will also be presented in this 

section a full discussion on when this might be important is postponed until the next chapter. 
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2.3.1. Linear dispersion 

One of the most fundamental results from linear wave theory is that it predicts that the 

frequency of a freely propagating wave component1 is dependent on the local depth and its 

wavelength. This essentially means that at each depth there is a one to one relation between 

the wave period and its corresponding wave length. Such a coupling, which for instance also 

exists for light waves travelling through a medium, is called a dispersion relation. Linear wave 

theory predicts that this relation, in the absence of ambient currents, is given by 

 2 tanhgk kHω =  (2.2) 

Where k is the wave number, ω the angular frequency, g  the gravitational acceleration and 

H  the water depth. The wave number and the angular frequency are related to the wave 

period and wave length by  

2 2
,      

π π
ω= =k

L T
 (2.3) 

For very long waves kH is much smaller than one. In this case tanhkH kH≈  and the 

dispersion relation reduces to 

 2 2
s gk Hω =  (2.4) 

This is consistent with the expressions found in long wave theory. Linear long waves can 

therefore be regarded as a limiting case.  

 

Figure 2-5 A plot of the dispersion relation together with the deep and shallow water limits. 

The other useful limit is called the deep water limit and it is applicable to waves which have 

wavelengths which are much shorter than the depth. In this case kH is much larger than one 

and the dispersion relation reduces to 

                                                

 
1 Note that waves which are subject to external forcing can have arbitrary combinations of the angular frequency and 

wave number.  
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 2
d gkω =  (2.5) 

Now the waves no longer feel the bottom and the water depth is therefore no longer of 

influence. 

A very interesting consequence of the existence of a dispersion relation is that the wave 

celerity is now also dependent on the wavelength. Dividing (2.2) by the wave number 

squared and taking the root results in: 

 tanh  ,  if 1 ,  if 1d s

g g
c kH c kH c gH kH

k k
= = =≫ ≪  (2.6) 

Where c is the wave celerity, sc  the wave celerity for the shallow water approximation and 

dc  the deep water approximation. This clearly shows that the deep water wave celerity is 

fully dependent on the wavelength, while in the shallow water limit the wave celerity is only 

dependent on the depth. 

 

Since the focus of this study are essentially shallow water waves the main area of interest is 

the behaviour in the transition zone near the shallow water limit wave. In this transition zone 

the fundamental difference between the wave celerity approximation of the linear theory and 

the shallow water approximation is the absence of a dependence of the wavelength in the 

shallow water limit. Therefore all linear waves travel with the same celerity regardless of their 

wavelength.  

 

From paragraph Error! Reference source not found. it is known that the initial wave only 

contains wavelengths which are larger or equal to the depth. Furthermore the dominant 

wavelengths for large scale tsunamis are much larger than the local depth. In this case 

≪ 1kH  and the shallow water approximation seems justified. 

2.3.2. Shoaling 

Regardless if the shallow water wave theory applies the wave celerity will decrease with 

decreasing water depth. When approaching the shore the front of the wave will generally 

speaking be shallower water then the back of the wave. Using sc  as an estimate for the 

wave celerity the difference in propagation speed between the front and the back of the wave 

is highlighted in Table 2.  

 

Normally the difference will be less extreme but it highlights an important aspect, the 

wavelength will decrease due to the speed differential. A consequence of this is that the wave 

amplitude begins to grow. This process is often referred to as the shoaling and may 

transform what appears to be a small disturbance in the deep ocean into a ten meter high 

wave. 
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 Depth [m] c gh≈  [km/h] 

Front of wave 100 110 

Back of wave 4100 710 

 

Table 2 Difference in propagation speed between the front and back of a tsunami wave propagating over a sloping 

bottom. 

 

 

Figure 2-6 As the wave approaches the coastline the length and celerity of the wave decrease while the amplitude 

increases. This is also known as shoaling. 

Near the coast ratio between crest height and depth has grown to such an extent that linear 

wave theory is no longer applicable and we have to use non-linear approximations.  

2.3.3. Refraction 

Besides shoaling the wave will also be affected by refraction. Refraction is the tendency of 

waves to change their direction to a perpendicular orientation towards depth lines. This is 

caused by the dependency of the wave celerity on the depth. 

 

Refraction occurs due to variations of the wave celerity along wave crests. Parts of the wave 

crest which are in deeper water will propagate faster than those in shallower water. This 

causes the waves to turn into a direction perpendicular towards the depth lines. Besides 

variations in depth currents can also induce wave refraction. Due to refraction the wave 

energy is redistributed and at places where wave rays converge the wave amplitude increases 

while at places of diverging wave rays the amplitude decreases (see Figure 2-7). 
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Figure 2-7 Impression of wave refraction around a conical island. 

Refraction causes tsunami waves that start out in a direction of travel parallel to a coastline 

to turn towards the coast. Furthermore refraction can cause parts of the wave to become 

trapped to the coastline. 

2.3.4. Diffraction 

Diffraction occurs when waves meet an obstacle in the flow and the crests bend around the 

obstacle and thus penetrate into the zone to the lee of the obstacle. In Figure 2-8 for 

instance a breakwater in a region of uniform depth interrupts the incoming wave field.  

 

Figure 2-8 Impression of the diffraction of an incoming regular wave field around around a breakwater located in a 

region of uniform depth. 
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Due to the breakwater the waves penetrating in the lee zone are significantly reduced in 

height. In this (academic) case the wave height at the shadow line will be exactly half of the 

incoming wave height. In the shadow zone the amplitude decreases monotonically with 

increasing distance from the shadow line.  

 

The degree of diffraction which occurs depends on the ratio of a characteristic lateral 

dimension of the obstacles and the wave length. For a tsunami this means that only objects 

of significant length  (order of kilometres) will show a significant reduction of wave height on 

the lee side as for smaller object the tsunami will almost fully diffract around the object. Thus 

for instance islands with similar or larger length scales than the incoming tsunami wave will 

have reduced wave height at the lee of the islands.   

2.3.5. Non-linear behaviour 

In the linear theory of water waves it is assumed that the wave amplitude ζ 0  is small when 

compared to the total water depth orζ ≪0 / 1H . When this is no longer valid another 

approximation is required which takes the influence of the amplitude into account. 

 

 

Figure 2-9 When an initial sinusoidal disturbance is propagated with the NSWE the wave will steepen until the front 

slope has become almost vertical. 

The most profound consequence of non-linearity is that parts of the wave itself will now 

propagate with different speeds, even when travelling over a horizontal bottom. This is most 

easily shown for a shallow water wave although the results are valid for dispersive waves as 

well. Lets assume that an initial sinusoidal wave is travelling over a flat section of the bed, 

furthermore ( )ζ ≈0 / 1H O . In this case the troughs of the wave travels with a shallow water 

celerity ( )ζ= − 0troughc g H  while the tops travels with ( )ζ= + 0topc g H . Assuming an 

initial wavelength L, this means that the distance between a trough leading a top decreases 

with 
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ζ ζ    

 − + − − +        

0 01
2

~ 1 1trough topx x L gH t
H H

 

Since the factor between parentheses is always negative this means that the top of the wave 

will, in a finite duration, catch up with the trough of the wave. Therefore the front of the 

wave will steepen until the top has caught up with the trough and the front has become 

vertical. At that point the wave travels as a discontinuity in the equations and this is often 

interpreted as the braking of the wave. A result of non-linearity’s is thus that higher parts of 

the wave travel faster than lower parts, and higher waves travel faster than lower waves. 

This is the reason why it is also referred to as amplitude dispersion. 

 

In the absence of frequency dispersion any sinusoidal wave will in a finite time, even when 

ζ ≪0 / 1H , start to steepen and develop into a discontinuity. Therefore the NSWE, which 

include non-linearity but neglect frequency dispersion, do not have permanent wave forms as 

a solution. 

 

With the inclusion of frequency dispersion the behaviour will change. Starting again with a 

sinusoidal disturbance which can safely be approximated with the shallow water theory, the 

wave again begins to steepen due to the non-linear effects. As it steepens the waveform 

begins to differ significantly from a sinusoidal wave (see Figure 2-9). In this case steepening 

of the wave means that a description in Fourier modes needs more harmonics. Thus apart 

from the initial sinusoidal wave the non-linear effects are the cause of the appearance of 

higher harmonic components. In the dispersive linear case the higher harmonics, which are 

shorter, have more dispersion and the waves travel slower than the basic wave. This 

counteracts the steepening of the wave.  

 

In certain situations the effects of amplitude dispersion and frequency dispersion will balance 

each other and waves of permanent form become possible. Well know examples of this are 

Stokes waves, which have sharper higher peaks and shallower troughs, and the cnoidel 

waves. For a description of these types of waves and the theory behind them the reader is 

referred to Dingemans (1997) or Mei (2005). 

2.4. Leading wave 

When considering the initial evolution of a rise of the sea surface it is usually assumed that 

(1) the surface raise is instantaneous and (2) that the initial horizontal velocity is zero. From 

this initial disturbance two waves emerge, each travelling in the opposite direction. In 

Hammack and Segur (1974) the evolution of one of these waves is investigated. When the 

net volume of displaced water is positive they showed experimentally and theoretically that, 

eventually, the disturbance will separate into solitary waves with a following dispersive wave 
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train. Interestingly this even occurs for initial profiles which contain a leading depression. An 

example of some of their experimental results is given in Figure 2-10. 

 

This discovery explains the frequent use of the solitary wave at the off-shore boundary as a 

model for the leading wave of a far field tsunami. It should be recognized that this model 

only holds if there is a sufficient propagation distance between the source and the region in 

question. For near field tsunamis, such as the wave which hit Sumatra in the Indian Ocean 

Tsunami, there is insufficient time for the wave to evolve into this shape. 

 

Another reason for the frequent application of a solitary wave as model for the leading wave 

of a tsunami is the relative ease and consistency with which it can be generated under 

laboratory conditions. Numerous experimental studies with regard to tsunami run up where 

conducted with solitary waves as a model for the tsunami. Examples of this are Synolakis 

(1987), Briggs (1994) and Briggs (1995). All of these will later on feature as verification of 

the numerical model constructed in this study. 

 

Figure 2-10 Some results from Hammack and Segur (1973) illustrating the evolution of the initial disturbance into a 

series of solitary waves. On the left a completely positive wave and on the right an initial profile containing a 

depression. In both cases the net volume under the wave was positive.  

However, the solitary wave paradigm has recently come under criticism as the only model for 

leading waves. Under the Nicaraguan and Indian Ocean tsunami leading depression waves 



Section I: Introduction 

18 

where observed. It appears that the dynamics of a leading depression wave during run-up 

might be totally different than that of a leading elevation wave. 
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3. Dispersion of large scale tsunamis 

 

When considering the propagation of tsunamis there are basically two regions of interest 

which have different characteristics. Tsunamis generated far from the region of interest first 

need to cross large parts of the worlds oceans. Here the depth is typically in the order of 

several kilometres. In this case the ocean is usually sufficiently deep to neglect non-linear 

effects. 

 

On the other hand when a tsunami propagates into coastal waters the depth rapidly 

decreases and the height of the wave increases. Here non-linear effects become important 

and linear wave theory usually breaks down. 

 

In either case it is customary to neglect dispersive effects on the propagation of the tsunami. 

However, since the Indian Ocean Tsunami the discussion regarding the importance of 

frequency dispersion under large scale tsunamis has resurfaced. In this chapter the 

importance of dispersion is investigated for transoceanic propagation and for propagation 

over the continental shelf.  

3.1. Oceanic propagation 

When investigating the relative importance of frequency dispersion and non-linear effects 

usually the non-dimensional forms of the equations are considered. In this case the 

importance of the non-linear terms and frequency dispersion are indicated by 

 
ζ

ε µ
 

= =  
 

2

20  and 
H

H L
 (3.1) 

where ε  gives the importance of nonlinearity and µ  is a measurement for the importance of 

dispersion (Mei, 2005). Furthermore 0ζ  is a typical measure of the amplitude of the wave, H 

a typical water depth and L a typical horizontal length scale for the wave. When ε ≪ 1or 

µ ≪
2 1  either non-linear or dispersive effects are small and can be neglected. Both 

parameters are frequently combined to form the Ursell parameter 

 
ζε

µ
= =

2
0

2 3r

L
U

H
 (3.2) 

Sometimes also called the Stokes parameter (Dingemans 1997) this dimensionless number 

describes the relative importance of non-linear and dispersive effects. For = (1)rU O  both are 
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of equal importance while for ≪ 1rU  or ≫ 1rU  either dispersion or non-linear effects 

dominate. 

 

When deciding if dispersion and non-linearity are important a final important consideration is 

the propagation distance considered. Initially small effects might have a cumulative 

contribution which is still substantial.  

 

A qualitative analysis involving the Korteweg-de Vries (KdV) equation, which incorporates 

dispersion and non-linearity to the leading order, given in Mei (2005, p. 689) shows that 

dispersive effects remain small when: 

 
 
 
 

≪

3

d

g L
t

H H
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While for non-linear effects to remain small  

 
ζ

≪

0

n

g L
t

H
 (3.4) 

Combining these two time scales with the shallow water wave celerity results in a typical 

distance for which either non-dispersive or non-linear theories brake down.  

 

Let’s consider a large scale tsunami1 where the typical rupture length is of the order of 

1000km while the bottom rises over a width in the order of 100km. A typical response of the 

sea surface for these types of events is around 1m. Assuming the earthquake occurred in the 

deep ocean where the depth is about 4km an estimate for the initial importance of both 

dispersion and non-linearity is: ε −= ∗ 42.5 10  and µ −= ∗2 31.6 10  which are both much 

smaller than one. Therefore initially linear long wave theory is sufficient. To investigate when 

linear non-dispersive wave theory brakes both time scales (3.3) and (3.4) are calculated. The 

smallest of the two results in × 6~ 2,5 10t s , this means the fastest wave has propagated 

over distance proportional to = × 5~ 5 10x t gh km  before the linear non-dispersive wave 

theory brakes down. This distance is far larger than the typical dimensions of the world 

oceans. This justifies the application of non-dispersive linear theory for transoceanic 

propagation. 

 

                                                

 
1 In the Indian Ocean tsunami of 2004 the rupture length was about 1200 km while the zone where either uplift or 

subduction occurred had typical width of 100 km. 
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When considering a smaller scale tsunami with a characteristic length scale of say = 10L km  

the dispersive terms will become important over much smaller length scales (in this 

case ~ 500x km ). 

 

Approximate ranges for when dispersive and or non-linear effects are important are given in 

Table 3-1, which is taken from Mei (2005) and based on the investigations by Hammack and 

Segur (1978). 
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Table 3-1 Choice of approximate equations, adapted from Mei (2005) 

None of these results are considered controversial in the tsunami community when modelling 

the leading wave of a tsunami. There is however a growing discussion if the correct modelling 

of the leading wave(s) is sufficient, or that some of the shorter wave components can be 

significant. 

 

From the investigation by Hammack (1973) it is known that the smallest wave lengths with a 

significant amplitude present in the initial wave have a size proportional to the depth. There is 

no doubt that wave components which have lengths of up to ten times the depth will be 

affected by frequency dispersion. These waves will eventually be left behind by the leading 

wave when considering transoceanic propagation. However, the question remains if this 

significantly reduces the leading wave, or if these trailing waves can be destructive on their 

own. 
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In Ortiz et al (2000) a transoceanic propagation model including frequency dispersion is 

compared to a non-dispersive model. They used a wave profile computed by a dislocation 

model from the 1960 Chilean tsunami as an initial condition. This earthquake had a typical 

width of 200km and resulted in an initial wave with an amplitude of roughly a metre. After 

6000 km of transoceanic propagation they found differences in amplitude of more than 60% 

between the dispersive and non-dispersive model. They concluded that the dispersive effects 

are important in a correct estimation of the amplitude. 

 

In Horrillo et al. (2006) the argument is made that the trailing wave train will interact with 

the primary wave during its run-up, drawdown, and reflection from shelf or land, introducing 

strong modifications to the leading wave effects. Furthermore they argue that the length 

scales of the trailing wave components are more likely to induce resonance in harbours and 

bays. 

 

Following the Indian Ocean Tsunami numerous numerical simulations using Boussinesq 

models have been performed. In the remaining section of this paragraph some results 

regarding the dispersion of the Indian Ocean tsunami as it propagated in the westward 

direction are presented. 

 

The Indian Ocean tsunami of December 2004 was the first ever major tsunami detected by 

satellite altimeter data. Moreover, the tsunami was detected by over four satellite systems 

(TOPEX/POSEIDON, Jason, Envisat and Geosat) rather then just a single system. However, it 

was the Jason satellite operated by NASA and the French space agency (CNES) which was 

located strategically placed, providing accurate measurement of the tsunami wave height in 

the Indian ocean. Both the track and measured profile are given in Figure 3-1. 

 

In Kulikov (2005) the first analysis of this data was presented. He performed a wavelet 

analysis on the wave profile along the Jasons track on data captured 2 hours after the 

generating earthquake. The results of his analysis are presented in Figure 3-2. It shows that 

for the waves travelling in the South-western direction the shorter wave components where 

significantly delayed with regards to the longer wave components. And the location of the 

wave fronts is in good agreement with the theoretical dispersion curve (presented by a solid 

line). 
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Figure 3-1 Calculated tsunami wave in the Indian Ocean about two hours after the Sumatra Earthquake. Kulikov 

(2005). 

 

 

Figure 3-2 (a) Altimetry sea-level taken along the 129 track of the Jason-1 satellite for Cycle 109 and 10 days earlier 

along the same track for Cycle 108. The letter T indicates the tsunami wave front.  (b) Wavelet analysis of the 109 

Cycle sea-level. The solid line indicates the theoretical group velocity. Kulikov (2005). 
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Following the study by Kulikov numerous researchers have tried to model the IOT using 

Boussinesq models.  In Horrillo et al (2006) a comparison was made between a Boussinesq 

model, a non-hydrostatic model, and a model based on the NSWE. Here it was found that the 

leading waves of the tsunami where usually overestimated by the NSWE model while the 

following waves where underestimated or even absent in the model.  

 

Grilli et al. (2007) used their Boussinesq model Funwave to model the bay of Bengal and 

compared the results to a version solving the NSWE. They found differences of up to 20 

percent in surface elevations between the Boussinesq and NSWE simulations for the 

westward propagated wave. 

 

Glimsdal et al (2006) also used a Boussinesq model. The results where again compared to a 

NSWE model. In Figure 3-3 the results for the wave near Africa are shown, at about seven 

hours after the earthquake. The leading wave is much lower and wider due to the dispersive 

effects. 

 

Figure 3-3 The IOT after 7 hours propagated in the westward direction (near Africa). The wave front as predicted by 

the NSWE is in red and by the Boussinesq model in blue. Glimsdal et al. (2006) 

The general opinion from these articles is that especially the westward directed part of the 

tsunami was altered by dispersion. This is easily understood when considering that the 

tsunami travelled considerable distances over deep water while propagating in this direction. 

When compared with both measured data and Boussinesq models the NSWE usually 

predicted the time of arrival of the front well. The differences where mainly found in the 

details of, for example, a sequence of wave crests in the tsunami wave packet. 

3.2. Coastal waters 

When the tsunami propagates from the deep ocean into shallower zones the wave will start 

to shoal. At this point the importance of non-linear effects begins to grow, and it is generally 
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accepted that at least a non-linear theory is needed to correctly model the tsunami wave in 

this case. The question remains if dispersive effects need to be included in this case. 

3.2.1. Solitary wave fission 

When a soliton travels from one constant depth to another constant smaller depth it 

disintegrates into several solitons of varying sizes, trailed by an oscillatory tail. Thus from the 

single solitary wave multiple waves emerge with a trailing dispersive tail. This is often 

referred to as solitary wave fission (Mei 2005).  

 

Fission of solitary waves can occur under tsunamis for waves travelling from the deep ocean 

onto the continental shelf. A key aspect here is that the continental shelf is wide enough to 

allow the fission to occur.  

 

On may 26 1983, an earthquake of magnitude 7.7 occurred in the Japan Sea, generating a 

large tsunami, known as the 1983 Nihonkai-Chubu earthquake tsunami. During this event 

soliton fission was observed on the gentle seabed slope in the shallow water along the coast 

(Shuto 1985). Interestingly enough the leading soliton was larger in amplitude than the initial 

disturbance and it subsequently broke. 

 

Fission of waves in models can only occur when both dispersion and non-linear effects are 

included in the equations. This means that, if this effect is deemed important, the NSWE 

cannot be used anymore and an alternative theory including dispersive effects has to be 

used. 

3.2.2. Non-linearity and wave breaking 

When a tsunami is incident on a river mouth, estuary or a coast with a mild slope, the wave 

will often form a bore. The steep, turbulent and rapidly moving wave front is formed after 

breaking due to the nonlinear processes of the front in shallow water. For small scale 

tsunamis with large amplitudes this breaking occurs faster and it almost certainly occurs for 

tsunamis travelling up rivers. 

 

There have been question in the tsunami community if wave breaking occurs for large scale 

tsunamis. The Indian Ocean Tsunami has provided some confirmation that this indeed 

happens. Numerous eyewitness accounts of breaking fronts are available and there is also 

photographic evidence of what appears to be breaking tsunami waves. In Figure 3-4 the 

tsunami is captured on photo as it approaches the shore of Krabi in Thailand. The Tsunami 

clearly transformed into a bore. 
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Figure 3-4 The 2004  Indian Ocean tsunami as it approaches the shore of  Krabi, Thailand. The wave clearly has 

transformed into a bore and appears to have broken somewhere off-shore. 

In paragraph 2.3.5 the remark was made that the non-linear shallow water equations do not 

have permanent wave forms as a solutions. For tsunami waves which are not to steep this 

forms no real problem as the distance it takes for the non-linear effects to transform the 

solution to a bore far exceeds the width of most continental shelves. 

 

When a fairly steep leading wave travels a significant distance over the continental shelf the 

absence of frequency dispersion might become a problem. In this case the NSWE might 

distort the wave significantly from its physical appearance. Thus, as the waves move into 

shallower parts, shoaling causes the non-linear effects to become more dominant. The onset 

of breaking will happen at different locations when comparing a non-dispersive non-linear 

theory to a dispersive non-linear theory. And more importantly, waves which appear to brake 

in the NSWE, might actually propagate without breaking when the correct physics are used. 

The question now is if tsunami waves ever become steep enough to either cause the NSWE 

to fail or to actually cause wave breaking. 

 

Finally there is the possibility that the tsunami wave bore forms a weak or undular bore. In 

this case the initial wave front breaks up into a train of smooth waves. This phenomenon has 

been known to occur for tsunamis travelling upriver. Tsuji et. Al. (1990) reported this 

phenomenon in the 1983 Japan Sea tsunami. For practical purposes they noted that the 

undular bore which develops might be one and a half times larger than the initial height of 

the bore. This could be of importance for the height of the flood defences. 
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Figure 3-5 The tsunami as it arrives at  Koh Jum, Thailand (A. Grawin 2004). The front has developed into an 

undular bore. 

 

 

Figure 3-6 Satellite image taken by the Landsat Satellite near Devi Point at the east coast of India. It reportedly 

shows an undular bore.    
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However, it appears that an undular bores can also develop when a large scale tsunami hits a 

mildly sloping coastline. Spectacular evidence for this is found in the photo’s by Grawin in 

Figure 3-5. In the photo the leading wave has clearly transformed into a leading bore with a 

trailing train of smooth waves.  

 

A somewhat controversial source which does show the occurrence of undular bores during 

the IOT is found from satellite imagery taken by the Landsat satellite near Devi Point at the 

east coast of India shown in Figure 3-6. The time the photo was taken (10.17H local time) 

corresponds with the arrival of the second wave front at the Indian shore. The distance 

between the leading wavelet and the last (L1) is about 650 metre while the distance between 

individual wavelets (L2) is about 95 metre. 

 

Previously Sato (1996), in his study of the 1993 Okushiri Island tsunami found that local 

tsunami enhancement could be explained by a series of dispersive waves which ride on the 

main tsunami front.  

3.3. Discussion 

In this chapter various examples have been presented of situations where dispersion might 

be important under tsunamis. For trans oceanic propagation some authors are claiming that 

the short wave components which are left behind significantly lower the amplitude of the 

leading wave. Furthermore the argument is made that the inter arrival time between 

successive tsunami waves is important in assessing the impact on a distant coast.  

 

There is however little confirmation that the large differences in amplitude after transoceanic 

propagation reported in these studies are physical. Direct comparison with for example tide 

gages is difficult as there is a great deal of uncertainty regarding the initial wave. In this way 

any discrepancy between the model and measured data can be attributed to uncertainty in 

the initial data. This means that the only verification material is comparison between models 

as for instance done in Horillo (2006). It is encouraging that models based on the Boussinesq 

equations give similar results to a non-hydrostatic model while both give different results 

compared to the model based on the NSWE. 

 

There seems to be consensus that the prediction of the arrival time is excellent when using 

the NSWE. Furthermore it appears that the amplitude for far field tsunamis are over predicted 

using the NSWE.  

 

In shallower waters the verification material available for some of the effects caused by 

dispersion is more profound. There is for instance good evidence that undular bores indeed 
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do occur. In this case however the question whether or not these are significant immediately 

rises. It seems very unlikely that the short wave components with typical lengths of a 

hundred metres have a significant influence in comparison to the main wavelengths. 

Furthermore to capture this phenomenon a very fine grid resolution is needed. In this case 

this would lead to grid sizes in the order of five metres which is much to detailed for large 

scale applications where grid sizes in the order of kilometres are typical. 

For the development of the undular bore on a river due to a tsunami it seems far more 

efficient to use a hydrostatic model up to the river mound and then use the results of this 

model as boundary condition into a non-linear dispersive model. 

 

There appears to be sufficient evidence to at least make the occurrence of wave breaking 

under large scale tsunamis plausible. As the only physical effect which opposes the 

steepening of the wave front is dispersion the inclusion of this is important for the correct 

breaking behaviour. Especially when the continental shelf in front of the coast is extensive 

and shallow the NSWE might seriously distort the wave form and lead to premature breaking. 

This could lead to different inundation heights when compared to solutions which remain 

unbroken over a large part of the shelf. Whether or not this leads to large differences will 

depend greatly on the incoming wave length and the local bathymetry. 

 

The effects of frequency dispersion appear to be quite subtle and its importance is difficult to 

predict before hand. Furthermore the intended usage of the model will also play an important 

role. For early warning systems it is important that the model predicts the arrival times fast 

and accurately. For this purpose the (non-) linear shallow water equations should be 

sufficient as these predict the arrival of the leading wave accurately. Unfortunately, due to 

the coarse grid sizes, any information regarding wave heights and maximum run-up will be 

inaccurate from these models. 

To allow for a more detailed analysis a better approach might be to model many different 

earthquake scenarios beforehand and base risk evaluation and evacuation scenarios on these 

calculations. The runtime of the model is now less crucial and finer grids can be used. 

Furthermore the inclusion of frequency dispersion now becomes viable. Of coarse this should 

be done efficiently as the amount of scenarios can be very large. 

 

It can be concluded that there is a great deal of uncertainty regarding the importance of 

frequency dispersion under large scale tsunamis. In this context a model which would easily 

allow for the efficient inclusion of frequency dispersion could be very useful. 
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4. Model description 

 

4.1. Governing equations 

Although the principal subject of this chapter is the construction of a 2DV model including 

non-hydrostatic pressures it is convenient to introduce the underlying mathematical equations 

in three dimension in preparation for the three dimensional model which is presented in 

chapter 6. The two dimensional equations are easily retrieved from these equations as this 

simply involves dropping one of the two horizontal dimension. 

4.1.1. Navier-Stokes equations 

Using the physical principle of conservation momentum one is able to derive the well known 

Navier-Stokes equations for a Newtonian fluid which form the basis of a large part of the field 

of fluid mechanics. 
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Whereu ,v  and w  denote the velocity components [m/s] in the x , y  and z -direction 

respectively, ρ the density [kg/m3], P the pressure [N/m2] and ν  the kinematic viscosity 

[m2/s]. Furthermore 2∇ is the Laplacian defined as  
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Besides the conservation of momentum one usually also considers the conservation of mass.  
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 (4.2) 

This equation almost always accompanies the Navier-Stokes equations. Together they 

describe a wide variety of flows found, for both gases and fluids.  
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4.1.2. Basic assumptions 

fluid properties 

The area of interest in which (approximate) solutions to the Navier-Stokes equations are 

sought involves wave like phenomena in the coastal zone. This justifies some assumptions 

with regard too the fluid which can simplify the Navier Stokes equations. The fluid will be 

assumed to be: (i) Incompressible, (ii) Homogeneous and (iii) Inviscous. 

 

The assumption that the fluid is incompressible is not restricted to our domain but very 

common when the fluid in question is water. It is justified when the flow velocities are much 

lower than the speed of sound in the medium which is usually the case in naturally occurring 

flows1. An interesting property which results directly from the incompressibility assumption is 

that sound (pressure) waves travel with infinite speed through the medium 

 

The fluid is furthermore assumed to be homogenous. This means that both variations in 

density, which for example result from different salinity levels, and differences in 

temperatures are ignored. These differences do occur in nature but the situations where 

density differences play a role in wave propagation (e.g. fluid mud deposits in front of the 

coast) are not considered here. 

 

Finally the fluid is treaded as in viscous. This means that the viscous stresses are neglected in 

the equations and no turbulent stresses are introduced. This is mainly done for convenience 

as the (turbulent) viscosity plays a minor role in wave propagation. If needed the viscosity 

can be incorporated into the numerical model and the fluid is not necessarily assumed to be 

rotation free. 

Description of the free surface and bottom 

The domain of interest considered is vertically bounded by the free surface and the bottom. 

The free surface acts as an air water interface which, due to for example wave overturning, 

can assume complex shapes. Due to the mixing between air and water in breaking waves the 

interface is sometimes hard to define. These effects are difficult to include into a numerical 

model. Models which can deal with this are usually based on the Marker and Cell scheme or 

the Volume of fluid method. These methods have to resolve very small scales in both time 

and space. This makes large scale applications impossible. 

                                                

 

1 This is usually expressed in the Mach number, /Ma u c=   where u  is the fluid velocity and c  the speed of 

sound in water. With 1480 /c m s≈  this means that 1Ma≪  and the fluid can be assumed to be 

incompressible. 
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An alternative approach to deal with the free surface is to use a single valued function 

( ), ,ζ x y t  to describe the location of the free surface. This excludes overtopping waves. 

Rather than resolving this phenomenon it is considered to be a sub-grid effect that has to be 

captured by a proper conservation principle. This is the approach taken here.  

ζ

d

H
0z =

z

,x y  

Figure 4-1 Coordinate system used 

The bottom is assumed to be an immobile bed. Changes of the bathymetry due to 

sedimentation and erosion are neglected. The location of the bottom is measured positive 

downwards. The total water depth is now given by: 

 ( , , ) ( , , ) ( , )ζ= +H x y t x y t d x y  (4.3) 

Similar to the free surface the choice to use a single valued function to represent the location 

of the bottom excludes complex bathymetries where for example arches are present. 

4.1.3. Euler equations 

Using the assumptions as outlined in the previous paragraph we are now able to simplify the 

Navier-Stokes equations in (4.1). Neglecting the viscous contributions and treating the 

density as constant in space and time leads to the incompressible Euler equations 

 
1D

P
Dt ρ

= − ∇ −
u

g  (4.4) 

Where the material derivative is used defined as: 

 ( ) ( ) ( ) ( ) ( )
∂ ∂ ∂ ∂

≡ + + +
∂ ∂ ∂ ∂

D
u v w

Dt t x y z
  

And 

0

,       0

   
   

= =   
   
   

u

v

w g

u g  
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The conservation of mass reduces to the conservation of volume as the density is now 

constant in both space and time and can be divided out of the equation 

 0
∂ ∂ ∂

∇ = + + =
∂ ∂ ∂

i
u v w

x y z
u  (4.5) 

This equation will be referred to as the local continuity equation.  

4.1.4. Pressure decomposition 

In (4.4) the total pressure is used in the equations. Usually the largest contribution to the 

pressure in a water column is due to the weight of the water above, or the hydrostatic 

pressure component. This can be made explicit in the equations by decomposing the pressure 

in a hydrostatic and hydrodynamic part or 

 ( )  with d
d h

p
P p p p g z pρ ρ ζ

ρ
= + = + − =  (4.6) 

Where dp  is the dynamic pressure, hp  the hydrostatical part of the pressure and p  the 

dynamic pressure normalized with the reference density ρ . The pressure at the free surface 

has been assumed zero in (4.6). Substituting (4.6) into (4.4) gives 

 

ζ

ζ

∂ ∂
= − −

∂ ∂

∂ ∂
= − −

∂ ∂

∂
= −

∂

Du p
g

Dt x x
Dv p

g
Dt y y

Dw p

Dt z

 (4.7) 

If the dynamic pressure component is neglected in these equations they reduce to the well 

known non-linear shallow water equations (NSWE).  

4.1.5. Free surface equation 

To obtain an expression for the free surface the continuity equation is integrated over the 

depth: 

 ( , , , ) ( , , , )
ζ ζ

ζ

ζ
−

− −

∂ ∂
∇ ⋅ = + + − −

∂ ∂∫ ∫ ∫d
d d

u v
dz dz dz w x y t w x y d t

x y
u  (4.8) 

Now it is assumed that the water surface is always composed of the same particles. This is 

justified due to exclusion of wave overturning. The vertical velocity of a particle located at the 

free surface is therefore equal to the material derivative of the free surface. This results in 

the kinematic boundary condition of the free surface: 
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 ( , , , )
ζ ζ ζ ζ

ζ
∂ ∂ ∂

= = − −
∂ ∂ ∂

D
w x y t u v

Dt t x y
 (4.9) 

Something similar holds at the bottom where only the partial time derivative drops out as the 

bottom profile is constant in time. The kinematic boundary condition at the bottom is given 

by 

 ( , , , )
∂ ∂

− = − −
∂ ∂

d d
w x y d t u v

x y
 (4.10) 

When the equations (4.9) and (4.10) are substituted into equation (4.8) and use is made of 

the Leibniz rule of integration the integrated continuity equation becomes 

 0
ζ∂ ∂ ∂

+ + =
∂ ∂ ∂

UH VH

t x y
 (4.11) 

Where U and V are the depth averaged velocities given by 

 
1 1

,
ζ ζ

− −

= =∫ ∫
d d

U udz V vdz
H H

 (4.12) 

From now on equation (4.11) is referred to as the global continuity equation. This equation 

gives a relationship between the depth averaged velocity and the surface elevation.  

4.2. Grid schematization 

4.2.1. Vertical coordinate system 

The numerical model will cover areas where the bathymetry is irregular. Furthermore the free 

surface will vary as a function of time. The coordinate system must be able to accommodate 

both of these when we discretise the governing equations in the vertical. Both z-planes and 

sigma planes are suitable candidates for this. 

 

Using z-planes the usual practice is to discretise the computational domain into a set of 

strictly horizontal planes on which the variables are defined in the vertical. Due to the 

variation in bathymetry and the movement of the free surface the number of active grid 

points does not remain constant in space and time. In Figure 4-2 we see a situation in which 

the lowest horizontal plane is partly located below the bottom level and in this situation some 

of the grid points on this domain will remain inactive. Furthermore points might become dry 

due to the movement of the free surface. A further disadvantage is that the number of points 

in the vertical reduces from four in the deepest part too only two in the shallower areas. As 

the shallowest areas are often the area of interest this loss off accuracy is rather unfortunate. 

Note that much of the problems raised here can be solved if unstructured grids are employed. 
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( )z d x= −

( , )z x tζ= 0σ =

1σ = −

x

z

σ

x

 

Figure 4-2 A vertical cross section divided into z-layers on the left and sigma layers on the right. Notice that the 

number of layers in the sigma formulation remains constant along the x-axis while in the z-layer model the number 

of layers reduces from four to two. 

An alternative to z-planes can be found in the so called sigma coordinates. The sigma 

transformation was first introduced by Phillips (1957) and it introduces a transformation of 

the vertical z-axis.  

  { }
0

= , 1,0
i

z z

z H

ξ ξ
σ σ

ξ

− −
= = −

−
 (4.13) 

where σ is the sigma coordinate and 0z  the location of the bottom. The free surface is now 

located at 0σ =  while the bottom is located at 1σ = − .  

 

Under the sigma transformation the vertical domain no longer varies in the horizontal. In 

practise this mean it is now possible to discretise the entire horizontal domain using the same 

number of points in the vertical. However, the differential equations must contain extra terms 

which account for the grid movement and these are not present in the Cartesian formulation. 

 

In the present study the equations will not be transformed into σ -co-ordinates. Instead 

following Zijlema (1998,2000) and Stelling and Van Kester (1994) a sigma grid is generated 

by choosing a layer distribution over the vertical. The sigma lines will consequently be 

regarded as boundaries of the time varying volumes in Cartesian co-ordinates. The resulting 

equations are very similar but are formulated in terms of , ,x z t  instead of , ,σx t . 

Furthermore the moving coordinate system results in apparent vertical advection terms which 

are identical to the relative vertical velocity ω  encountered in the sigma transformation.  

4.2.2. Variable layout 

The staggered arrangement is the classical variable layout used by most non-hydrostatic 

models. It does not suffer from spurious oscillations in the pressure compared to the 
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collocated grid. Furthermore several terms which require interpolation in the collocated 

arrangement, are very naturally approximated by central differences without interpolation. 

 

Figure 4-3 Collocated arrangement on the left, classical staggered arrangement in the middle and the arrangement 

as proposed by Stelling and Ziijlema on the right.  

Both the staggered and collocated approach share the disadvantage that the surface pressure 

cannot be included easily. And it appears that a correct approximation of the pressure 

distribution in the top cell is key to modelling dispersive waves correctly. This lead Stelling 

and Zijlema (2003) to introduce the Keller box scheme in the vertical. Here the pressure 

points are no longer located in the cell centre but at the top and bottom cell face. In Figure 

4-3 the three arrangements are depicted. 

 

Adopting this approach results in a hybrid between a staggered grid in the horizontal and a 

compact approach in the vertical. Horizontal velocity components are staggered when 

compared to pressure points and the free surface location. In the vertical the pressure points 

are located at the same position as the vertical velocities. 

4.2.3. Grid description 

The horizontal gridlines are formed by a set of vertical planes numbered from 1,..,=i I  

located on ix . The distance between 1+ix  and ix   is indicated with  1
2

+
∆

i
x  while ∆ ix  is the 

distance between 1
2

+i
x and 1

2
−i

x . The vertical gridlines are formed by the sigma isolines 

numbered from 0,...,=k K  located atσ k . Here the bottom is located at 0σ  and the free 

surface at σK . The area between two sigma lines will often be referred to as a computational 

layer and the sigma lines separating the layers as layer interfaces. The layers are numbered 

from 1,...,=k K  and the layer interfaces of layer k  are 1
2

σ
+k

 and 1
2

σ
−k

. 
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Figure 4-4 An overview of the grid employed. On the left an impression of a typical grid and on the right a detailed 

view of the variable layout. 

The free surface ζ is located in the cell centre ( i ) while the non-hydrostatic pressure p  and 

vertical velocity w  are defined on the cell face ( 1
2

, +i k ). The horizontal velocity is located at 

the cell face ( 1
2
,+i k ). The relative layer thickness can now be described by: 

1 1
2 2

 1,...,σ σ σ
+ −

∆ = − =k k k
k K  (4.14) 

Multiplying with the water depth iH  gives the absolute layer thickness ,i k i kh H σ= ∆ . From 

this the location of the layer interfaces can be calculated using  

1 1
2 2

, ,
,  1,...,ki k i k

z z h k K
+ −

= + =  (4.15) 

Where 1
2

,i
z  is the location of the bottom and 1

2
, +i K

z  denotes the location of the free surface.  

4.2.4. Relative vertical velocity1 

Before introducing the numerical approximations it is convenient to introduce the relative 

vertical velocityω . This vertical velocity is due to the vertical schematizations and is defined 

as the rate of change of the vertical distance between a water particle and an observer 

moving along the projection of the water particle on the sigma isoline. The vertical velocity ω  

is defined as 

 σω = = −
pDz DzDL

Dt Dt Dt
 (4.16) 

                                                

 
1 Portions of the text in this paragraph are taken from Van Reeuwijk (2002) 
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Where L  is the distance between the observer and the water particle. This distance is 

defined as the difference between the z location of the particle pz  and the location of the 

sigma isoline σz .Thus the vertical velocity ω  can now be written as: 

 
t

z z
w u

x
ω

∂ ∂
= − −

∂ ∂
 (4.17) 

 

 

Figure 4-5 Definition of the vertical velocity ω . Van Reeuwijk (2002) 

Notice that the relative velocity ω  introduces a coupling between the horizontal and vertical 

velocities. Using (4.17) and the definitions of the kinematic boundary conditions it is easy to 

show that at the free surface: 

 ( )        0 
ζ ζ

ζ ω
∂ ∂

= = + ⇔ =
∂ ∂

z w u
t x

 (4.18) 

And at the bottom: 

 ( )      0 
ζ

ω
∂

= − = ⇔ =
∂

z d w u
x

 (4.19) 

4.3. Space discretisation 

With the grid defined the equations can now be discretized in both space and time. As this is 

a crucial step in the development of the model the methods used will be dealt with in detail. 

As a discretisation technique the method of lines has been used which clearly distinguishes 

between discretisation in space and time. This is certainly not the only method available but 

its clarity and relative simplicity was seen as an advantage  in developing the model.  
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The discretization in space was initially based on a compromise between the layer averaged 

method as given by Zijlema (1998) for the momentum equations, and a finite volume 

discretisation for the pressure gradient and the continuity equations. Due to the nature of the 

structured grid employed the layer averaged derivation and the finite volume discretisation of 

the continuity equations and the pressure gradient result in virtually identical numerical 

expressions. It was later found that when the model was fully recast into a finite volume 

method (including the momentum equations) the dam break problem performed marginally 

better. To keep the derivations consistent the layer averaged derivation is presented here as 

this model formed the basis of most cases presented later on. 

 

The derivation based on the layer averaged equations makes extensive use of the Leibniz 

Rule of integration which is therefore repeated here for convenience. 

 ( ) ( )
( ) ( )

( ) ( )

( , ) ( , ) ( , ) ( ) ( , ) ( )
∂ ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂∫ ∫

b t b t

a t a t

f z t dz f z t dz f b t t b t f a t t a t
t t t t

 (4.20) 

4.3.1. Global continuity equation 

As was outlined in the previous chapter the global continuity equation, which describes the 

relation between the free surface and the depth averaged discharge, is given by 

 ( ) 0
ζ∂ ∂

+ =
∂ ∂

UH
t x

 (4.21) 

A simple semi-discretisation of (4.21) using central differences for the space derivative is 

given by: 

 
1 1 1 1
2 2 2 2 0

ζ + + − −
−

+ =
∆

i i i ii
U H U Hd

dt x
 (4.22) 

The depth averaged velocity can be approximated by using the midpoint rule for the 

integration over a single layer and then summation over all the layers. Dividing by the depth 

results in a second order accurate approximation of the depth average velocity: 

 1 1 1 1
2 2 2 2

1
2

, , ,
1 1

1 K K

ki i k i k i k
k ki

U h u u
H

σ
+ + + +

= =+

= = ∆∑ ∑  (4.23) 

where σ∆ k  is the relative layer thickness. A problem with (4.22) is that the water depth is 

not defined in a velocity point and thus needs to be interpolated from surrounding points. 

Here a simple first order accurate upwind interpolation is employed defined as 

 

( )

1 1
2 2

1 1 1
2 2 2

1 1
2 2

i+

1 i+

1 i+

                 if U 0

               if U 0  

max ,  if U 0

ζ

ζ

ζ ζ

+

++ +

+ +

 + >



= + <


+ =

i i

ii i

i i i

d

H d

d

 (4.24) 



Model description 

43 

The resulting scheme is only first order accurate by virtue of the upwind interpolations and 

mass conservative. To increase the accuracy of the scheme higher order interpolations can be 

used but this will be the subject of 4.6.  

4.3.2. Local continuity equation 

The local continuity equation is integrated vertically over a layer. This results in a layer 

averaged equation. Using the Leibniz rule of integration this becomes: 

 ( )
1
2

1 1 1
12 2 2
2

1 11
2 22

0

+

−

+ −−

+ + −

∂ ∂ ∂ ∂ ∂ 
+ = − + + − = ∂ ∂ ∂ ∂ ∂ 

∫
k

k

k kk

z

k k k k k
z

u w z z
dz h u u u w w

x z x x x
 (4.25) 

Notice that this expression can be rewritten using equation (4.17) into 

 ( ) 1 1
2 2

0k
k k k k

h
h u

t x
ω ω

+ −

∂ ∂
+ + − =

∂ ∂
 (4.26) 

This equation is more compact and will be used later on in the derivation of the layer 

averaged momentum equations. Furthermore it is used in the determination of the relative 

velocity. A simple second order accurate discretisation of (4.26) is given by: 

 
1 1 1 1
2 2 2 2

1 1
2 2

1
2

, , , ,,

, ,
0

i k i k i k i ki k

i k i k

i

h u h uh

t x
ω ω

+ + − −

+ −

+

−∂
+ + − =

∂ ∆
 (4.27) 

However, for the local continuity equation we retain the form of equation (4.25) as this uses 

the physical velocity w . This has certain advantages when deriving an expression for the 

non-hydrostatic pressure. 

 

Thus continuing with equation (4.25) discretisized using central differences, multiplying the 

equation with ∆x  this results in: 

( ) ( )
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

, , , , , ,

, , , , , ,
0

i k i k i k i k i k i i k i

i k i k i k i k i k i k

u h u h w x w x

z z u z z u

+ + − − + + − +

+ + − + + + − − − −

− + ∆ − ∆

− − + − =
 (4.28) 

Expression (4.28) was derived using a layer averaged approach and then applying finite 

differences to the result. However, inspecting (4.28) in more detail reveals that it constitutes 

a mass balance for a control volume located at ,i k . This is consistent with a finite volume 

discretisation and is mass conservative. 
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Figure 4-6 Interpolating the horizontal velocity component from its surrounding points 

Notice that in equation (4.28) the velocity at 1
2

, +i k
u  is not known and therefore needs to be 

interpolated. For interior points this velocity is given by 
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1 1 1 1
2 2 2 2
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u u
z z

u
u u

z z

 (4.29) 

At the free surface and at the bottom the velocities follow from the discretisation of the 

kinematic boundary conditions.  

4.3.3. Horizontal momentum equation 

The horizontal momentum equations in conservative form for a 2DV framework are given by 

 
2 ζ ∂∂ ∂ ∂ ∂

+ + = − −
∂ ∂ ∂ ∂ ∂

dpu u wu
g

t x z x x
 (4.30) 

In order to arrive at a conservative approximation of the horizontal momentum equations 

they will be first integrated over a layer to arrive at the layer averaged equations. 

Subsequently these equations will be approximated with a finite difference like approach to 

arrive at the final expressions. 

Treating consecutively the integration over a layer of (i) the time derivative, (ii) the surface 

gradient (iii) the advective terms and (iv) the integration of the non-hydrostatic pressure 

gradient.  

 

Time derivative 

The time derivative of the momentum equation is integrated over the layer k and using the 

Leibniz rule of integration we obtain 
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1
2

1 1
2 2

1
11 2
22

+

−

+ −
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−

∂∂ ∂ ∂
∂ = − +

∂ ∂ ∂ ∂∫
k

k

z

k k
k k

kz
k

h uu z z
z u u

t t t t
 (1.31) 

The second and third terms on the right hand side are a result of the movement of the grid. 

Advective terms 

Layer averaging of the advective terms gives 

 

1 1 1
2 2 2
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22 2

2
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+ +

−− −

+
∂ ∂ ∂

+ = ∂ + −
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k k

kk k

z z
k

zz z

u uw z
dz u z u w u

x z x
 (1.32) 

In (1.32) we substitute the expression for ω , as given in (4.17), which yields 
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Finally we rewrite the integral on the right hand side of equation (1.33) using 

 ( )
1 1
2 2

1 1
2 2

22 2

+ +

− −

= + −∫ ∫
k k

k k

z z

k k k

z z
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∫ ∫
 (4.35) 

The integral term in the right hand side of equation (1.34) is the dispersion term which 

results from the vertical non-uniformities in the flow. A common practice to deal with this 

term is to model it as diffusion. When the vertical distribution of the flow over the layer does 

not vary to much the integral can be safely approximated with the first term on the right 

hand side of (1.34) and the contribution of the integral term can be neglected. When this 

assumption is violated the best remedy is to using a higher grid resolution in the vertical. This 

is then most likely needed anyway for the correct resolution of the vertical momentum 

equation. 

 

To summarize the layer averaged advection terms now read: 
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This is approximated as: 
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 (4.37) 

Where ,i kq  represents the discharge through the face of layer k . The velocity ,i ku is given by 

either a first order upwind scheme as defined in equation (4.38) or a limited scheme as 

described in 4.6. 
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We will leave the definition of ,i kq  rest for the time being for reasons which will become 

apparent later in this section. The values of u  at the layer interfaces are given by a simple 

first order upwind approximation: 
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 (4.39) 

This proved to be a more stable approach as apposed to central differences which gave 

erroneous results in the case of shockwaves. 

 

Free surface gradient 

As the free surface gradient is not dependent on the depth the term can be easily written as  
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The gradient is very naturally approximated with a central scheme which results in 
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Non-hydrostatic pressure gradient 

Finally the non-hydrostatic pressure is integrated over the layer as follows 
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The integral on the right hand side is approximated with the midpoint rule, combined with 

central differences and reordering of the terms this results in 

 

1
2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1
1 2
2

1, , 1, ,1, 1, , ,

, ,

k

k

z
z z

i k i k i k i ki k i k i k i k x x

i k i k
z i

z z z zh p h pp
dz p p

x x x x

+

−

+ + + + − −+ +

+ + + −

+

− −−∂
≈ − +

∂ ∆ ∆ ∆∫  (4.43) 

where 
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Substituting the definition of 1
2
,+i k

h  and some reordering of the terms shows that equation 

(4.43) is equivalent to a finite volume approximation of the non-hydrostatic pressure term. 

 

Layer averaged momentum equation 

Combining the equations (1.31), (4.37), (4.41) and (4.43) the layer averaged equation will 

now read 
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 (4.45) 

Unfortunately this equation is not expressed in the primitive variableu . To achieve this we 

consider a different version of the layer averaged continuity equation (4.25). This can be 

rewritten using the definition of ω  to  
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Now similar to Stelling and Duinmeijer [5.13] we consider a discrete version of the layer 

averaged continuity equation centered on an u -point. 
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Where 
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Multiplying equation (4.47) with 1
2
,+i k

u  and substracting the result from equation (4.45)   
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This is our final expression for the semi-discrete momentum equation. It is (momentum ) 

conservative and thus appropriate for the modelling of bores and breaking waves. 

Furthermore it does not contain a bed slope source term which prevents artificial circulations 

due to this term (see also Stelling and Duinmeijer 2002). As shown in Stelling and Duinmeijer 

(2002) equation (4.49) can be further simplified when upwind approximations are used which 

results in a very simple first order scheme for the advective terms. 

4.3.4. Vertical momentum equation 

The derivation of the semi-discrete vertical momentum equation is, unsurprisingly, very 

similar to the derivation of the semi-discrete horizontal momentum equation. The derivation is 

therefore treated in less detail. The only exception to this is the treatment of the pressure 

gradient term which will be dealt with in detail. The vertical momentum equation is given by 
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+ =
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Dw p

Dt z
 (4.50) 

Again the semi-discrete version of (4.50) is derived by considering separately (1) the time 

derivative (2) the advective terms and (3) the non-hydrostatic pressure terms. 

 

Time derivative and advective terms 

The time derivative is integrated over kz  to 1+kz . 

 
11

1 1
2 2

++
+ +

∂∂ ∂
= −

∂ ∂ ∂∫
kk

kk

zz
k k

zz

h ww z
dz w

t t t
 (4.51) 

Integrating the advective terms over the layer results in 
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Now similarly to the horizontal momentum equation ω  is substituted into equation(4.52), 

combined with central differences this gives, 
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Combining the equations (4.51) and (4.53) while subtracting the layer averaged continuity 

equation centred around the vertical velocity multiplied with 1
2

, +i k
w  results in: 
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Where  
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Finally we approximate the face values of w  using a simple first order upwind approach. 

 

Vertical pressure gradient 

The vertical pressure gradient still needs to be approximated. In Stelling and Zijlema (2004) 

the Keller box scheme is employed which yields good results. However, in Haiyang (2007) it 

is concluded that when introducing advection and viscosity the resulting system sometimes 

becomes ill-posed1. To circumvent this here a compact method, or mehrstellen verfahren, is 

adopted. This is identical to the Keller box when advection is not included, and performs 

equally well for modelling waves.  

 

The basis of this method lies in the coupling of the pressure gradients from two different 

interfaces given by 
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Substituting this relation into the vertical momentum equation this gives  

                                                

 
1 Note that in the current implementation with an explicit scheme for the advective terms and no viscosity there is no 

risk of the system ever becoming ill-posed. However with future implementations in mind where this might change 

the compact method is adopted none the less. 
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where ( )
1
2

+k

F w denotes a linear algebraic operator arising from the space discretisation of the 

convective terms. 

 

This seems to be of little use as the problem now shifts to the determination of the vertical 

pressure gradient in the  lower layer interface. However, by continuously substituting (4.56) 

for the unknown pressure gradient the vertical velocity is coupled to all pressure points 

below. 
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To close the system an expression is needed for the vertical pressure gradient at the bottom. 

This is readily obtained when the bed is horizontal as the pressure gradient is zero in this 

case (in the absence of viscosity). When the bed has a slope this term can be eliminated 

using the kinematic boundary condition and the vertical momentum equation at the bottom. 

 

Figure 4-7 Substituting the Hermitian relation for the vertical pressure gradient couples the vertical momentum 

equation to all the lower pressure points. 

The discrete version of the kinematic boundary condition at the bottom is given by: 
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This combined with the vertical momentum equation at the bottom gives the expression for 

the non-hydrostatic pressure gradient at the bottom: 
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Combining the equations in (4.58) and (4.60) leads to the semi-discrete vertical momentum 

equation. 
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The advective terms are here again summarized using ( )1
2

, +i k
F w . Notice that all the vertical 

momentum equations now contain a contribution from the bottom advective term due to the 

applied relation. 

4.4. Time discretisations 

In principle there are many variants possible for the time discretisation of equations which 

where presented in 4.3. Here a variant of the well known explicit Leapfrog scheme combined 

with a first order explicit time step for the advective terms and a first order implicit time step 

for the non-hydrostatic terms is used. The main reasons for doing this where: (1) ease of 

implementation (2) accuracy of the scheme with regards to wave propagation and (3) the 

accurate simulation of the waves required a relatively small time stepping anyway.  

 

For the coupling between the 

momentum equations and the 

free surface gradient the scheme 

by Hansen (1956) is used. This 

scheme is an adaptation of the 

well known Leapfrog scheme. In 

the traditional Leapfrog scheme 

both the velocity and surface 

elevation are evaluated at the 

same time level. The Hansen 

scheme distinguishes itself by 

evaluating the velocity 

components at half time steps 

while the surface elevation is still 

evaluated at whole time steps. 

This eliminates the need to store three time levels which is needed in the traditional leapfrog 

Figure 4-8 The Hansen scheme introduces a staggering in both space 

and time between the free surface (Black dots) and the horizontal 

velocity (grey points). 
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scheme and makes the algorithm easy to implement. As the Hansen scheme is a variant of 

the Leapfrog scheme it shares the property of this scheme that it dampens wave like 

solutions only very weakly. 

 

For the advective terms a first order accurate explicit scheme is used while for the non-

hydrostatic pressures a first order implicit scheme is employed. Interestingly the backward 

Euler method did not result in any observable wave dampening in any of the test cases and 

was found to be sufficiently accurate for time steps approaching the stability limit of the 

explicit schemes.  

 

Due to the explicit approximations the stability of the resulting model is bound by the 

Courant-Friedrichs-Levy (CFL) condition. This places a stability restriction on the maximum 

time step. Especially when considering steady state solutions this can place an unacceptable 

restriction on the time step which has lead many authors to consider implicit time stepping 

techniques (for instance Cassulli 1999). However, it is expected that the accurate simulation 

of propagating and breaking waves will lead to time steps which are well below the limit set 

by the CFL condition. This means that this condition is not restrictive in the current case. In a 

more general setting with larger variations in depth it is probably wise to use an implicit 

stepping instead. 

4.4.1. Discrete momentum and continuity equations 

Applying the Leapfrog method to the global continuity equation given in (4.24) will result in 
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Notice that to remove the non-linearity the discharge at the half time step is approximated 

with 
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H U H U . For a moment ignoring the non-hydrostatic pressures the 

horizontal momentum equation is written as follows.  
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Where ( )
1
2

1
2
,

+

+
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i k
F u  denotes the advection evaluated at the current time. The fact that the non-

hydrostatic pressures have not been taken into account is indicated with an asterisk. If the 

model is run in the hydrostatic mode these are the equations which are solved and 
3
2

1
2
,

+

+

n

i k
u  is 

taken to be equal to 1
2

*

,+i k
u .  The vertical velocities are then approximated directly from the 

local continuity equation (4.28). 
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Using equation (4.63) as the definition of 1
2

*

,+i k
u  the horizontal momentum equation with the 

non-hydrostatic pressure included becomes 
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Where the non-hydrostatic pressure terms are taken on new time level. Here it should be 

noted that the time step the pressure belongs to is somewhat arbitrary. If the pressure 

gradient is considered to be part of the current time step (or 1
2

+n ) nothing changes in the 

solution method presented in 4.5 (apart from a replacement of 
3
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p ). 

 

Similar to the horizontal advection equation the vertical momentum equation can now be 

written as 
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Where again an explicit stepping is used for the advective terms while the non-hydrostatic 

pressure is included implicitly. Equation (4.65) is solved for every vertical velocity including 

the one located at the free surface but excluding the vertical velocity at the bottom. The 

vertical velocity at the bottom is simply prescribed to be equal to the kinematic boundary 

condition (4.59). 

 

Finally the form of the local continuity equation as given in (4.27) is integrated in time as: 
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This expression will be used to determine 
1
2

1
2

,

n

i k
ω

+

+
 . From (4.19) is is known that 1

2
,

0
i

ω =  and 

using (4.66) the other values can be calculated from the bottom up.  

4.4.2. Stability 

As noted before the explicit nature of the time stepping with regard to the free surface 

gradient and advection introduces a constraint on the maximum time step. This constraint is 

often referred to as the Courant-Friedrichs-Levy (CFL) condition. It expresses that the domain 
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of dependence of the differential equation should be entirely contained in the numerical 

domain of dependence of the discretised equations. In other words, the numerical scheme 

defining the approximation in mesh point i  must be able to include all the physical 

information which influences the behaviour of the system in this point. As the expressions for 

mesh point i  as defined in 4.4.1 only contain contributions from its direct neighbours it 

follows that information can only be allowed to travel a distance of ∆x  in a time of ∆t . This 

leads to the usual definition of the CFL condition1: 

 1σ
∆

= ≤
∆

c t

x
 (4.67) 

Where C  is the velocity of information in the system which is given by the summation of the 

shallow water wave phase velocity and the contribution of the current: 

 = + kC gd u  (4.68) 

Although in general the free surface waves will not travel with their shallow water velocity it 

does provide an upper bound and is thus a safe approximation. Equation (4.68) allows us to 

rewrite equation (4.67) into the wave courant number and the advection courant number or: 

 1 where  and σ σ σ σ σ
∆ ∆

= + ≤ = =
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adv wave adv wave

u t gH t

x x
 (4.69) 

The wave courant number is the dominant contribution under most circumstances and this 

can therefore safely be used to estimate the time step beforehand. Due to vertical advection 

the time step is also restricted by: 

 1
ω∆

≤
t

h
 (4.70) 

Only under very small water layers and bore like solutions this forms any restriction on the 

time step.  

4.4.3. Dynamic time step 

Usually a time step is chosen beforehand which satisfies the CFL condition. This has the 

disadvantage that the worst case scenario determines the maximum time step which can be 

taken. During most of the simulation it is likely that a much larger time step is possible which 

means that the simulation is quite inefficient. To circumvent this problem the XBeach model 

uses a dynamically adjusted time step. The user supplies a value for the CFL condition 

beforehand and the program dynamically adjust the time step taken to adhere to this 

                                                

 
1 A more formal derivation based on the von Neumann method for stability analysis for the Leapfrog and explicit 

Euler scheme can be found in Hirsch (2007). 
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condition using the most up to date system state. In this way the largest possible time step is 

taken and more efficient time integration is the result.  

 

With the extension to multiple layers and the addition of the non-hydrostatic pressure 

correction this mechanism was left in place. Only an additional check was added to ensure 

that condition (4.70) was also full filled.  

4.5. Determining the non-hydrostatic pressure 

From the previous paragraph it is clear that the evolution of the free surface location in time 

is determined by equation (4.63). In turn both velocity components at the new time level are 

determined from their respective momentum equations. In contrast to this the non-

hydrostatic pressure does not have an equation which relates the new pressure to the 

pressure at the previous time level. This lack of an explicit equation is due to the assumption 

of incompressible flow which means there is no longer an equation of state which relates 

density to pressure. 

In order to determine the pressure a different route has to be taken. From the principle of 

conservation of mass it was shown that the incompressible Euler equations have a divergence 

free flow field. Generally speaking equations (4.64) and (4.65) do not result in a divergence 

free field when neglecting the non-hydrostatic pressure terms. Thus the only term which 

ensures that the flow stays divergence free is the non-hydrostatic pressure. 

 

 

Figure 4-9 Substitution of the momentum equations for the velocities in the continuity equation gives the 

dependence of a cell on its surrounding pressure points.  

The non-hydrostatic pressure can be calculated through the demand that the new velocity 

field is divergence free. To achieve this consider a control volume centered at ,i k  where the 

discrete local continuity equation reads 
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Now substituting the momentum equations and kinematic boundary condition at  the bottom 

into equation (4.71) for u  and w  results in an equation which relates the surrounding 

pressure points to the current control volume. Subsequently doing this for every control 

volume results into a system with I K× equations. This is the system which needs to be 

solved to calculate the pressure. 

 

Figure 4-10 Renumbering the pressure points. Pressure points located at the free surface are excluded as they are 

known to be zero. 

To solve this system it is convenient to first map the pressure points onto a single vector as 

this allows us to use standard linear algebra . Using 

 ( ) ( ) ( )1
2

,
 with 1 1  where 1....  and 0... 1

+
= = − + + = = −m i k

p p m i K k i I k K  (4.72) 

The resulting system can be written in Matrix form. Let A  denote the pressure coefficient 

matrix and x  the vector containing the pressure points. Then the system is written as: 

 =Ax q  (4.73) 

Where q  is the right hand side resulting from equation (4.71) that contains the all the 

explicit contributions. The resulting matrix A has a block like structure as shown in Figure 

4-11 for a case with two computational layers (or 2=K ). Generally speaking the blocks have 

a width of 3K  and a height ofK . This means that the bandwidth of the matrix increases 

considerably when multiple layers are used. On the other hand for the case of a single layer 

the system reduces exactly to a tridiagonal system. 
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Figure 4-11 The resulting matrix after the momentum equations have been substituted into the local continuity 

equation 

Solving the discrete version of the pressure Poisson equation thus obtained forms the largest 

computational burden for all but the single layer case. To solve this system a direct method 

has been used based on Gaussian elimination which sweeps the matrix into an upper 

triangular system and then uses back substitution to find the solution. Usually for large sparse 

matrices iterative solvers are employed as Gaussian elimination is far too expensive. 

However, the special block like structure of the matrix prevents fill in from becoming a 

problem. Therefore, as long as the bandwidth is not too large, Gaussian elimination proved to 

be sufficiently fast for the 2DV case.  

4.6. Higher order spatial approximations 

Up until now extensive use has been made of upwind approximation when interpolation of a 

variable was required. This in turn has lead to the situation that most expressions which are 

second order approximation in their own right are reduced to first order accuracy in space. 

(See for instance paragraph 4.3.1). These first order approximations might lead to 

unacceptably small grid sizes as upwind discretisations are known to introduce large amounts 

of numerical diffusion. 

 

A logical step to improve this is to use higher order interpolation instead and the obvious 

choice is to use an central scheme to interpolate the variable in question. This is an 

acceptable choice when the variable in question is sufficiently smooth. Unfortunately the 

application of a central scheme on the advective terms will give rise to unphysical behaviour 

near discontinuities. The most striking result of this is the appearance of new maxima (or 

wiggles) in the solution, which were not present in the initial situation. This can be especially 
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harmful when the considered variable is physically bounded, such as concentration, and the 

numerical oscillations can lead to negative values. 

 

The generation of these unwanted maxima is closely related to the notion of monotonicity 

introduced by Gudonov. This essentially states that a numerical solution should have 

monotone behaviour, whereby the new solution value 1+n
iu  should not reach values outside 

the range covered by the solution values
+

n
i ju . If the scheme is monotone, no new extrema 

are created other than those already present in the solution.  

It was also Gudonov who showed that all linear monotone schemes for the convection 

equation are at most first order. A proof of this can be found in Hirsch (2007). 

 

In the current application the free surface and velocity field are usually smooth enough that 

the application of a higher order scheme will not cause any problems. The one exception to 

this is when the waves brake and propagate as bores. In this case a discontinuity in the 

variables is introduced and the higher order approximations can no longer be used. Thus the 

possibility of discontinuities forces the use of upwind approximations in order to accurately 

represent such a discontinuity with the side effect that a small grid spacing is required in 

order to control numerical diffusion. 

 

To solution to this dilemma was first introduced by Van Leer and revolves around the notion 

that nonlinear schemes can fulfill the concept of monotonicity and still be of higher order then 

one. The basic idea is to control the generation of the over- and undershoots by preventing 

gradients to exceed certain limits. To achieve this certain functions are introduced, called 

limiters, which when encountering a discontinuity, locally reduce to scheme to first order. On 

the other hand when the field is locally smooth the limiter applies the second order 

approximation. 

4.6.1. The minmod limiter 

In the traditional sense limiters are mainly used as so called flux-limiters where they control 

the accuracy of the finite difference scheme. In the current implementation they have been 

implemented as a way to control the interpolation of the various variables in the model. In 

this case they are usually referred to as slope limiters, but the effect they have is very similar.   

 

One of the simplest limiters which is often applied is the so called minmod limiter. This limiter 

bases the choice to use either second order upwind, first order upwind or central 

interpolation, on the ratio between successive gradients. Let’s for instance assume the free 

surface location ζ
+ 1

2
i

 need to be interpolated from the surrounding points. Furthermore, let 
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> 0U , then the two successive gradients are: ζ ζ ζ++
∆ = −1

2
1i ii

 and ζ ζ ζ −−
∆ = −1

2
1i ii
. The 

ratio of these two gradients is given by 

 
ζ ζ

ζ ζ
+

−

−
=

−
1

1

i i
i

i i

r  (4.74) 

The choice between central, first order upwind or second order upwind interpolation is now 

made on the basis of the value of ir , where an important condition is that the value of the 

interpolated ζ
+ 1

2
i

 is contained between ( ) ( )ζ ζ ζ ζ ζ ζ ζ− + − ++
≤ ≤1

2
1 1 1 1min , , max , ,i i i i i ii

.  In other 

words, no new extreme value is introduced. 

 

Figure 4-12 Minmod limiter with the three scenario’s for the successive gradients for positive flow and the scheme 

applied. (a) second order upwind extrapolation (b) central interpolation and (c) upwind interpolation 

 

 If 0≤r there might be a discontinuity present and to avoid the generation of unwanted 

wiggles the scheme is reduced to first order (Figure 4-12c) . Note that this also means that 

near the top of for instance a sinusoidal wave, which is continuous, the limiter still detects a 

possible discontinuity and switches to first order. 

 

When < ≤0 1ir , the upwind gradient is larger than the central gradient. In this case the 

smallest of the two (central) is used to interpolate (Figure 4-12b). Finally for > 1ir the second 

order upwind scheme is used (Figure 4-12a). 

 

The minmod limiter as described above can be defined as: 

 ( )
( )min ,1  if 0

0               if 0

 >
Ψ = 

≤

r r
r

r
 (4.75) 

where r is the ratio between the successive gradients. Using this definition the interpolation 

of the free surface location as described above can be given by 
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 ( ) ( )ζ ζ ζ ζ −+
= + Ψ −1

2

1
12i i i ii

r  (4.76) 

Where ir  is defined as in (4.74). This expression for the free surface is second order accurate 

when the solution is smooth and only reduces to first order in the case of a discontinuity. 

Note that the water depth the limiter is only applied to the free surface, and not to location of 

the bottom to ensure positive water depths (see 4.7.2). 

 

The minmod limiter is certainly not the only limiter available and a good overview of the 

available choices and their derivation is present in Hirch (2007). It was found that the 

minmod limiter performed adequately in most test cases and no investigation was made if 

other alternatives might be better candidates. 

4.6.2. Second order interpolations 

Interpolation in the horizontal when needed was performed with the minmod limiter as 

described in the previous paragraph. An overview of the slope limiter when applied to 

different variables is given in Table 5-1. Expressions are given for both positive and negative 

flow directions. 

 

 
Extrapolation ir  
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Table 4-1 Various extrapolations based on the minmod limiter. 

Notice that switching between upwind approximations and the approximations using the 

minmod limiter can be achieved by simply returning zero for the limiter for all values of ir  

when a certain flag is set in the program code. 
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Interpolation in the vertical direction is necessary to obtain 1 1
2 2

i+ ,k+
u  and i,kw  which are used in 

the momentum equations. Usually the number of layers in the vertical will be very small and 

it therefore doesn’t make much sense to use higher order limited schemes. In this case a 

simple second order accurate central scheme was chosen when higher accuracy was 

demanded. 

4.7. Flooding and drying 

For the calculation of wave run-up and run-down on the beach, use of a moving boundary 

condition is required. Several strategies are available for the representation of the shoreline 

motion and examples which are often used in Boussinesq type models are: (1) allowing the 

grid to move in the horizontal similar to the grid movement in the vertical (2)  a permeable-

bed technique or (3) a Riemann solver based algorithm. A somewhat more detailed treatment 

on each of these techniques can be found in Stelling and Zijlema (2008) who also point out 

references for further reading into each of the techniques. In the present work the method 

proposed in Stelling and Duinmeijer (2003) is used which tracks the moving shoreline 

accurately using a very simple approach while guaranteeing non-negative water depths.  

4.7.1. Staircase like bottom 

Depth points are only defined at water level points and, just as the free surface, need to be 

interpolated to velocity points. For a positive downward defined depth the minimum of the 

surrounding depth points is taken or: 

 ( )1
2

1min , ++
= i ii

d d d  (4.77) 

Using this definition the bottom can be represented as a series of tiles centred around a 

water level point with a width of ∆x . An example is shown in Figure 4-13 which shows that 

the bottom has a staircase like appearance in this case.  

 

This definition might seem a bit awkward as the bottom is assumed to be constant and 

therefore a second order interpolation seems more appropriate. It certainly is the case that 

second order interpolation will give more accurate results during simulations where flooding 

and drying isn’t involved. However, when considering the possibility of a moving shoreline the 

definition in equation (4.77) leads to a smoother behaviour.  
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Figure 4-13 The bottom is represented as a series of tiles centred around a waterlevel point. This gives the 

description of the bottom a staircase like appearance. 

 

Figure 4-14 (a) Bottom at velocity point interpolated by central differences. When the velocity point becomes dry the 

free surface gradient works in the opposite direction to the incoming wave. (b) Interpolation using the minimum 

depth of the surrounding points. In this case the free surface gradient never opposes the incoming wave. 
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This can be illustrated by considering a rising water level near shore as depicted in Figure 

4-14. As the water level in iH  increases it eventually rises above the bottom +1 / 2id . At this 

point the velocity +1 / 2iu  becomes active. When +1 / 2id  is interpolated using a central scheme 

its value will lie below
+1id . Since at this moment this point is still dry the free surface ζ +1i  is 

also located at the level
+1id . Therefore 

 
ζ ζ+ −

>
∆
1 0i i

x
 

But this means that, in the absence of advection, the velocity at +1 / 2iu  will, for a short period 

in time, actually oppose the incoming current. This unphysical behaviour can be avoided if the 

bottom is interpolated using (4.77). This is visually illustrated in Figure 4-14b. 

 

Other examples can be constructed during run off which also show that the current definition 

leads to better results and a much smoother behaviour during flooding and drying. 

4.7.2. Positive water depths 

An important consideration is that the water depth always has a positive value since negative 

water depths have no physical meaning. If negative water depths do occur special flooding 

and drying procedures are required which can be difficult to implement correctly and the loss 

of mass is a frequently encountered problem.  

In Stelling and Duinmeijer (2003) a scheme is constructed which guarantees positive water 

depths. Following their derivation a slightly adapted form of the discrete global continuity 

equation (4.62) is considered: 
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For
1
2

1
2

0
n

i
U

+

+
> , assuming positive water depths, the new water depth will always be larger then 

zero if 
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When upwind interpolation is used 1 1
2 2

ζ
+ +

= +n n
ii i

H d , combined with equation (4.77) this 

gives 1
2

+
≤n n

ii
H H . Using 1

2
+

=n n
ii

H H   equation (4.79) becomes 

 

1
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1
21 0
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+
∆

− ≥
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n

i
U t

x
 (4.80) 
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This shows that positive water levels are guaranteed when the following condition is adhered 

to  

 

1
2

1
2 1

+

+
∆

≤
∆

n

i
U t

x
 (4.81) 

But equation (4.81) is precisely the CFL condition related to the stability of the advection and 

therefore poses no new time step limitation. This also shows that, using upwind 

interpolations, no special flooding and drying procedures are required. A similar expression 

can be derived for the case when
1
2

1
2

0
n

i
U

+

+
< . 

When the limited expressions are used the easiest way to ensure positive water levels is to 

comply with (4.79), or for positive flow: 

 

1
2

1
2

1
2

+

+

+

∆
≤

∆

n
n

i i
n

i

U t H

x H
 (4.82) 

This condition is more restrictive as the right hand side can now become smaller then one.  

As the limiter is applied only to the water level and it generates no new maxima it is known 

that 1
2

ζ
+

n

i
 is bounded by 

( ) ( )1
2

1 1min , max ,ζ ζ ζ ζ ζ+ ++
≤ ≤n n n n

i i i ii
 (4.83) 

And since ( )1
2

1min , ++
= i ii

d d d  this shows that: 

 ( )1
2

1max , ++
≤n n n

i ii
H H H  (4.84) 

Therefore if the water depth does not chance drastically between two consecutive grid points 

equation (4.82) doesn’t impose a heavy restriction on the time step. Generally speaking due 

to the wave CFL condition (4.69) the left hand side will be much lower than the right hand 

side anyway. Only when considering discontinuities there might be a problem. Fortunately, 

when considering discontinuities the scheme locally reduces to first order, which means 

(4.81) is once again applicable.  

4.7.3. Flooding and drying criteria 

If a point is either wet or dry is largely based on a very simple criteria. A velocity point is 

considered wet if the water level iH  is larger than an a priori determined threshold depth ε . 

Defining wet as one and dry as zero the function wetu  is introduced defined as 

 
1
2

1
2

1 if 

0 if 

ε

ε

+

+

>
= 

≤

i

i

H
wetu

H
 (4.85) 
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Notice that this function is only given for velocity points as a different criteria is used for 

water level points. If the velocity point under consideration is marked as being dry, all the 

horizontal velocities in the vertical are set to zero, and the momentum equations for this point 

are skipped. This also means that no coupling is introduced in the pressure coefficient matrix 

between i  and 1+i . 

 

Figure 4-15 (a) A velocity point is considered dry if the total water depth is under a certain threshold. (b) A water 

level point is considered wet if any of the surrounding velocity points are wet, even if the water depth itself is below 

the threshold.  

For ζ -points the global continuity equation is always applied, irrespective of if the point is 

considered wet or dry. Thus the state of the particular point only influences whether or not 

the vertical momentum equations and the pressure are calculated. Again the criteria could be 

similar as in (4.85). However, this could lead to some ambiguity regarding the pressure 

gradient in the bordering horizontal momentum equations. Therefore water level points are 

only set dry if both surrounding velocity points are dry. In this way the non-hydrostatic 

pressure gradient in the horizontal momentum equations is always defined and no artificial 

boundaries (e.g. 0
∂

=
∂

p

x
) need to be introduced. Similar to the function wetu  the function 

ζwet is introduced which is defined as: 

 
( ) ( )
( ) ( )
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2 2
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2 2

1 if 1- 1 - 1 - 1
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+ −

+ −

 =
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 =


i i

i

i i

wetu wetu
wet

wetu wetu
 (4.86) 

If the point is considered dry (or 0ζ =iwet ) then the vertical momentum equations are 

skipped and all the vertical velocities and non-hydrostatic pressures are set to zero. 

Furthermore the entries on the main diagonal in the pressure coefficient matrix are set to one 

and the right hand side is set to zero to prevent an undetermined system of equations in 

(4.73). 
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4.8. Boundary conditions 

For the boundary conditions a distinction is made between open boundaries and closed 

boundaries. At open boundaries characteristics can either enter or leave the domain while at 

a closed boundary full reflection takes place. Of the two open boundary conditions proved to 

be the more challenging to implement and these will therefore be treated more extensively.  

4.8.1. Incoming boundary 

An unfortunate consequence of addition of non-hydrostatic pressures is that an extra degree 

of freedom is introduced in the equations. This means that if a time series of the free surface 

is used as an incoming wave signal the pressure has to be defined as well. This poses a 

problem as most measurements only include the free surface at the ocean boundary.  

 

For fairly long incoming waves, where the non-hydrostatic pressures only play a role after the 

wave shoals, a reasonable approximation is to set the dynamic pressure to zero at the 

boundary and assume a hydrostatic pressure profile in the vertical. This approach becomes 

more problematic when short waves are considered. In Van Reeuwijk (2002) it is shown that 

the energy flux this boundary generates is: 

 21
02

 with  and ρ= = =oF Ec E ga c gd  (4.87) 

According to linear wave theory the time-averaged power transported through a vertical 

plane is equal to: 

 1
2

 With 
sinh2

= = +
kH

F Enc n
kH

 (4.88) 

Where n  varies between 1
2

1≤ ≤n . Since the shallow water phase velocity is always larger 

then the one obtained from the linear dispersion relation this means that the boundary will 

always generate to much wave power. This means a redistribution of the pressure will occur 

as soon as the wave enters the domain which results in an increase of the amplitude.  

 

The easiest way to deal with this problem is to use the velocity as a boundary condition 

instead of the free surface. In this case no momentum equation is solved at the boundary. 

Therefore there is no more need to prescribe the free surface and pressure at the boundary 

anymore. This type of forcing works very well and does not introduce an increase in 

amplitude for linear waves. It does however require that the velocity is known at the 

boundary and, if multiple layers are used, information about the vertical distribution of the 

velocity. If no information on the vertical structure is present the same average velocity is 

used for all layers. 
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4.8.2. Absorbing boundary conditions 

It is often beneficial if disturbances are allowed to freely leave the computational domain with 

minimal reflection. To achieve this so called absorbing boundary conditions are applied which 

are often based on the Sommerfeld radiation condition: 

 0
∂ ∂

+ =
∂ ∂

f f
c

t x
 (4.89) 

Where f  represents the surface elevation and the velocity components and c is the wave 

phase velocity vector.  Under long waves the phase velocity is set equal to the shallow water 

wave velocity and the Sommerfeld condition performs very well. In this case the Sommerfeld 

condition for very shallow water reads 

 1 1
2 2

1
2

,
0ζ

+ +

+

− =
i k i

i

g
u

H
 (4.90) 

For short waves however the phase velocity is not easily extracted from the model results 

and the application of the Sommerfeld condition will lead to reflection. Instead of trying to 

improve condition (4.90) the choice was made to combine it with a so called sponge layer. 

When using a sponge layer a dampening term 1 1
2 2

ν
+ +i i
u is added to the horizontal momentum 

equation (4.63) 
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Where ν  is a dampening parameter for which the following form is chosen (Dingemans, 

1997) 
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With the shape function given by 
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 (4.93) 

Where L  denotes the length of the sponge layer which starts at 0=x L . This function is  

shown in shown in Figure 4-16. 
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Figure 4-16  The shape function ( )sf y  

Notice that the shape function goes to zero again towards the end of the sponge layer. This 

reduces the reflection of the sponge layer. It is important that the length of the sponge layer 

compared to the waves leaving the domain is not to short for two reasons: (1) if the sponge 

layer is not long enough there will be insufficient damping of the waves and (2) for short 

sponge layers the gradients in the dampening coefficient are large. This means that the 

dampening coefficient can vary substantially between grid points and this might induce 

reflection. 

 

The combination of the Sommerfeld radiation condition (4.90) with the sponge layer results in 

a considerable reduction of the reflected waves. Incoming waves are first damped 

significantly by the sponge layer, which is most effective on the higher frequencies. The 

longer waves are then allowed to leave the domain using the radiation condition. Any 

reflected signal must then pass through the sponge layer again and the amplitudes are 

therefore diminished substantially. (Dingemans, 1997) 
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5. Validation and verification 

 

In order to asses if the model is correctly implemented and to show that it can cope with the 

physically relevant processes the numerical model is compared to several problems which 

have an (approximate) analytical solution and results from experiments. In the next 

paragraphs the following cases will be considered: 

 

1. Linear dispersion relation 

2. Solitary wave propagation in a straight canal 

3. The run-up of long waves on a plane beach 

4. The dam break problem 

5. Run-up of solitary waves on a plane beach 

 

The first and second test consider the correct implementation of the non-hydrostatic model 

and its properties concerning wave propagation. The third test is used to verify the flooding 

and drying algorithm. The dam break problem is used to asses the accuracy of momentum 

conservative approximations. Finally the model is compared to experimental data of the run-

up of solitary waves. 

 

5.1. Linear dispersion relation 

5.1.1. Numerical dispersion relation 

The inclusion of the non-hydrostatic pressures introduces a coupling between the wave 

number and frequency into the classical NSWE. However, the dispersion relation that is 

represented by the numerical model in not exact and it is therefore necessary to asses how 

well the approximations perform. It is known that models based on the non-hydrostatic 

approach improve their dispersion relations by increasing the number of layers present in the 

model. But due to limited available processing power it is usually preferred to keep the 

number of layers as small as possible. 

 

In order to investigate the dispersion relation present in the scheme a semi-discretisation in 

the vertical has been carried out for the linearized equations.  Substituting harmonic solutions 

for the variables one is able to show that for the single layer case the dispersion relation 

resulting from the application of the compact scheme in the vertical is (see appendix A.2 for a 

full derivation) 
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This solution is very similar to the dispersion relations present in lower order Boussinesq 

models. For two computational layers the dispersion relation is given by (see appendix A.3 for 

a derivation) 
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Both solutions are drawn in Figure 5-1. It is immediately clear that using two layers improves 

the solution dramatically. In this case the error in the predicted phase velocity stays below 

1% for 7.8<kh . 

 

Figure 5-1 The analytical dispersion relation from linear wave theory (dotted line) compared against the dispersion 

relation using one layer (thin solid line) and the dispersion relation using two layers (thick solid line). Solution scaled 

with the deep water frequency. 

Increasing the number of layers will result in an even better correspondence between the 

analytical solution and the numerical dispersion relations. It is expected that for waves 

considered in this study the two layer approach should be more than sufficient. Note that due 

to the semi-discrete approach the results obtained here are only truly valid for an exact 

scheme in the horizontal. Due to the approximations in the horizontal the results here can 

only be compared to solutions which have a high resolution in the horizontal.  

5.1.2. Standing wave in basin 

One of the standard tests in literature to test the dispersive properties of both models based 

on Boussinesq like equations and on the Non-hydrostatic approach is a standing linear wave 

in a basin. 

 

In this test a closed two dimensional basin is considered with a depth a still water depthd  

and a width B . As an initial condition a sinusoidal wave is imposed as (see Figure 5-2). It is 
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easily shown that the basin will display a standing wave pattern for waves with a wavelength 

of  

 
1
2

=
B

L
n

 (5.3) 

Where n  is any positive integer. Since the dispersive characteristics are a function of the 

wavelength with regard to the depth, but independent of the standing wave pattern, n  is set 

to one, which corresponds to the fundamental mode. 

 

Figure 5-2 Initial condition for the standing wave in a basin 

Choosing as an initial condition the sinusoidal wave 

 ( ) ( ),0 cosζ =x a kx  (5.4) 

The analytical solution is now given by equation (5.5) where a  represents the amplitude of 

the standing wave, ω  the angular frequency and k  the wave number.  

 ( ) ( ) ( ), cos cosζ ω=x t a t kx  (5.5) 

From linear wave theory the relation between ω  and k  is known and given by 

 2 tanhω = gk kh  (5.6) 

Thus if both the width and the depth of the basin are known the movement of the initial 

disturbance given by (5.4) is completely determined by equation (5.5). The only restrictions 

are that the wave amplitude is small compared to the depth and that the wave steepness is 

small. Thus 1≪
a

d
 and 1≪

a

L
. 0.002∆ ≈t  

 

The dimensions of the basin are given in Table 5-1 together with the relative parameters 

which determine the wave movement. Notice that both the wave steepness and the ratio 
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between the water depth and the wave height are taken to be much smaller as one, such 

that the wave can be regarded as a linear wave. 

 

d [m] a [m] L [m] 
a

d
[-] 

a

L
[-] kh  [-] 

10 0.001 20 0.0001 0.00005 π  

Table 5-1 Parameters for the basin test 

 

The domain is discretised using one hundred grid points with fully reflective closed 

boundaries. Furthermore the CFL condition is set to 0.1  which roughly corresponds with a 

mean time step of s. As an initial condition (5.4) is imposed with the velocities set to zero. 

The simulation is run for five wave periods using one and two computational layers.  

 

Figure 5-3 Free surface elevation at the start of the basin. Shown are the analytical solution (thick black line), results 

with one layer (thin black line) and the results with two layers (red crosses). Axis are made dimensionless with the 

analytical period T and the initial wave amplitude a. 

In Figure 5-3 the free surface elevation as a function of time at the start of the basin is 

compared to the analytical solution. It appears that the solution using only a single layer has 

a slightly longer period which results in the ever increasing phase difference between the 

numerical and analytical solution. Using two computational layers there is no more visual 

difference between the analytical solution and the numerical results. Furthermore for both 

cases the amplitude of the wave remains constant in time, even when the simulation is 

extended.  
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Although the single layer model has a wave period which is slightly to long it is a considerable 

improvement with the hydrostatic model run. As the wave is already in relative deepwater the 

ratio between the analytical period and the period obtained using the shallow water equations 

is about 0.5631=hT

T
. This means that in this particular case using the hydrostatic assumption 

would result in a wave with a frequency which is almost twice as fast. In this light the 

improvement of the single layer model is already substantial.  

 

Figure 5-4 (Top figure) Comparing the wave celerity from the one layer model (solid line) with the analytical 

solution (dotted line) and the dispersion relation from (5.1) (Crosses). (Bottom figure) Comparing the wave celerity 

from the two layer model (solid line) with the analytical solution (dotted line) and the dispersion relation from (5.2) 

(Crosses). 

In order to investigate the range for which the one and two layer model return valid results a 

similar setup as in Table 5-1 is used for a range ofkh  values. Keeping the wave length, and 

thus the basin width, constant the depth is gradually increased. In this way standing waves 

with a range of 0.1 10≤ ≤kh  where modelled with an interval of 0.1∆ =kh . Thus a total of 

two hundred runs where performed for a setup with one- and two layers. Each of the 

individual runs had a length of ten wave periods. Using the distance between two consecutive 

upward zero-crossings in the time-signal as a measurement for the wave period the wave 

celerity for each run is determined. The results are made dimensionless with the deep water 

wave celerity given by: 
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2

0 2π
=

gT
c  (5.7) 

The results are presented in Figure 5-4 where the top figure represents result from the one 

layer case and the bottom figure the results using two layers. In both figures the solid line 

represents the model results, the dotted line the solution from linear wave theory and the 

crosses the solutions from paragraph 5.1. 

 

The figure clearly shows that using two computational layers improves the results 

considerably and the model stays valid over a longer range. For values up to 1≈kh  the 

single layer setup performs well.  

 

A more objective measurement is found in Figure 5-5 which shows the relative error defined 

by 

 ε
−

= n a

a

c c

c
 (5.8) 

Where nc is the wave celerity as computed by the model and ac  the wave celerity from linear 

wave theory.  

 

Figure 5-5 Relative error between respectively the analytical solution and the model using one layer (thin solid line), 

the analytical solution and the model using two layers (thick solid line) . 

The relative error remains under 1%  for the two layer model for values of kh of up to 

7.8≈kh . This is much less the case in the one layer setup which already has errors larger 

than 1%  for 0.5>kh . Thus the two-layer model is more accurate and has a wider range of 

applicability at the cost of an increase in computing time. Therefore for long waves with 

0.5<kh  the single layer model is appropriate while when shorter waves are expected two 
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layers need to be used. If even more accuracy is required than the two-layer setup provides 

the number of layers can be increased even further, at the cost of more work per time step. 

5.2. Solitary wave in channel 

The solitary wave is a non-linear wave of finite amplitude with the characteristic property that 

it is neither preceded nor followed by any surface disturbance. An interesting aspect of this 

test is that the solitary wave is not a solution of the shallow water equations and, as such, 

cannot be reproduced in models based on the hydrostatic pressure assumption. 

 

Furthermore, many laboratory experiments concerning tsunami run-up (including some 

featured in this report) use solitary waves as these are easy to generate under laboratory 

conditions. This makes that correct propagation of solitary waves is important. 

 

Figure 5-6 The solitary wave profile according to the Boussinesq (Bq) and improved Boussinesq equations (iBq). The 

iBq profile is slightly wider. 

The explicit expressions for the surface elevation are dependent on the fundamental 

equations considered (e.g. de Korteweg de Vries equations or the improved Boussinesq 

equations) but all usually have a similar shape of the free surface elevation. An example is 

shown in Figure 5-6 comparing the solitary wave profile obtained from the Boussinesq and 

improved Boussinesq equations. More details regarding the various solitary wave solutions 

can be found in Dingemans (2000 p.p. 701-708). 

 

The solitary wave solutions mentioned are only accurate for small waves where  

 0

0

1
d

ζ
ε ≡ ≪  (5.9) 
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here 
0

ζ  is the amplitude of the solitary wave and 
0

d  the still water depth. As it is anticipated 

that larger waves need to be dealt with as well here a third order accurate solution is used 

due to Grimshaw (1971). This solution is obtained from a series expansion of the non-linear 

equation where all terms of order 4ε  are neglected. In this case the expression for the 

surface elevation becomes: 

 

( )
( )

( )

2 2 2 2 3 2 2 4 23 5 101
4 8 80

0

23 5 71
4 8 128

,

1

ζ
ε ε ε

α ε ε ε

= − + −

= − +

x t
s s t s t s t

d  (5.10) 

 Where sech tanh and s x t xα α= = . The horizontal and vertical velocities become: 
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 (5.11) 

When terms of order 2ε  and above are ignored the Boussinesq solitary wave is retrieved. 

 

Before continuing with the description of the test first a measurement for the width of the 

solitary wave is introduced. Since, in theory, the wavelength of the solitary wave is infinite 

another measure for the practical length of the wave is needed. Here an effective length is 

adopted which is defined as the distance between points of the profile, for which the height 

ζ is some small fraction of the wave height, or 

 0

3
0

3 1
2 cosh

4

ζ

ε

  
=   

  
L arc sqrt

d
 (5.12) 

where ε is a small fraction which is set to 1
20

. (See also Figure 5-6). For practical purposes the 

length is defined according to the Boussinesq profile. As this wavelength will only be used as 

a scaling parameter this is a reasonable approximation. 

 

For the first test the channel is set to a depth of ten metres, with a length of fourteen 

wavelengths the initial profile is prescribed by the equations (5.10) and (5.11). The wave 

heights is set to one metre, which results in a depth to height ratio of 0.1 and a wavelength 

of 79.5≈L m . The domain is discretised using 200 points per wavelength. At 0=t s the wave 

is located at 0 2=x L . The wave is now allowed to propagate over a distance of ten 
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wavelengths and at the end of the test the resulting profile is compared to the theoretical 

profile. Simulations are run using one and two layers and the results are presented in Figure 

5-8 to Figure 5-10. 

 

Figure 5-7 Overview of the solitary wave test 

In Figure 5-8 the free surface obtained from the numerical simulations is compared to that of 

the theoretical profile as described by (5.10). First looking at the solution obtained with a 

single layer a small growth in amplitude of the wave is observed. Furthermore the wave has 

still not evolved into its final shape as it is still loosing some of the higher harmonics which 

are not correctly propagated. This also explains the change in profile of the wave as with the 

loss of these harmonics the wave is deformed. If the wave is allowed to propagate even 

further it does obtain a stable shape with a height comparable to the one in the figure. Finally 

it is noted that the propagation velocity is slightly too high. 

 

When using two layers the situation is improved considerably as the wave now still has the 

correct shape and amplitude when compared to the analytical wave. Now there are now more 

visible trailing waves although at the start of the simulation the solitary wave still adapts itself 

slightly.  

 

In Figure 5-9 the depth averaged velocity compared to the analytical solution is shown while 

in Figure 5-10 the comparison is made for the vertical velocities. Note that for the single layer 

model the vertical velocity is only shown at the free surface as there are no interior points in 

this case. Also be aware the vertical velocity points are defined on sigma iso-lines and not on 

planes of constant z.  
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Figure 5-8 Free surface profile after propagation over ten wave lengths. Shown are the analytical solution (dotted 

line), the numerical solution using one layer (thin red line) and the numerical solution using two layers (thick black 

line). 

 

Figure 5-9 Velocity profile after propagation over ten wave lengths. Shown are the analytical solution (dotted line), 

the numerical solution using one layer (thin red line) and the numerical solution using two layers (thick black line).  

 

Figure 5-10 The vertical velocity profile after propagation over ten wave lengths. Shown are the analytical solution 

(dotted line), the numerical solution using one layer (thin red line) and the numerical solution using two layers (thick 

black line). Results are scaled with the maximum vertical velocity of the analytical solution. Notice that for the single 

layer model only the vertical velocity at the free surface is given. 
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With increasing height to depth ratios the nonlinearities play an increasingly vital role. Not 

only is the wave height now a significant portion of the total depth, but there is also a 

shortening of the typical horizontal length scales (see (5.12)).  

 

Two more cases where modelled with 0.2ε =  and 0.3ε = . The free surface profiles at the end 

of the run are shown in Figure 5-11 and Figure 5-12. 

 

Figure 5-11 Solitary wave profile for 0.2ε =  Analytical solution by Grimshaw (striped black line) compared to the 

depth averaged model (red line) and the two layer model (thick solid black line). 

 

Figure 5-12 Solitary wave profile for 0.3ε =  Analytical solution by Grimshaw (striped black line) compared to the 

depth averaged model (red line) and the two layer model (thick solid black line). 

The figures show a similar situation as before, where the depth averaged model shows a 

smaller higher wave profile while the two layer model fits the analytical solution very well. 

Furthermore the two layer model has no trailing waves which do show up in the depth 

averaged model. 
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5.3. Long waves on a beach 

In order to asses the accuracy of the model in capturing the moving shoreline the model 

results are compared to an analytical solution by Carrier and Greenspan (1958). This case has 

been frequently considered in literature and recent examples of this include Zijlema and 

Stelling (2008) and Fuhrman and Madsen (2008).  

The case considers an incoming long wave approaching a uniformly sloping beach with a 

steep slope relative to the wave. The wave fully reflects and a standing wave pattern is 

produced. Due to the non-linearity and the moving shoreline the resulting pattern differs 

significantly from a sinusoidal pattern. Carrier and Greenspan solved this situation for the 

dimensionless shallow water equations by means of a coordinate transformation. A derivation 

of their solution is presented in Mei (1989).  

 

As the Carrier and Greenspan solution is based on the shallow water equations it only 

considers long waves for which the dispersive terms are physically small. It is therefore quite 

common to consider this case without either the Boussinesq or non-hydrostatic terms (e.g.  

Zijlema and Stelling, 2008). In contrast to this Fuhrman and Madsen (2008) did model the 

case with the Boussinesq approximations and concluded that these effects did indeed have a 

negligible impact on the result.  

The model as described in this chapter is largely based on the formulations of Stelling and 

Zijlema (2008) and thus there is no reason to expect any difference in the results between 

the models. However, it is interesting to see if the non-hydrostatic pressure approach also 

has a negligible effect on the results. Therefore the model is run with the non-hydrostatic 

pressures enabled and using two computational layers.  

 

The model area consisted of a sloping (1 / 25 ) beach with a still water depth of 5 m on the 

ocean boundary. On the boundary an incoming long wave was prescribed from linear wave 

theory with a wave height of 0.12 m and a wave period of 32 s. This corresponds to an 

incoming wave with a wavelength of 223.4 m and 0.14≈kh . The area had a length 

(including dry areas) of 150m and was simulated on a 1500 point grid. The CFL condition 

was set to 0.1which roughly translates to a time step of 0.001∆ ≈t s. The relatively small 

grid spacing of 0.1∆ =x m was chosen so that a very high resolution was available in the 

run-up region. This was necessary to capture the solution with sufficient accuracy. The 

simulation was run for 400 seconds with the initial velocity field set to zero. 

 

In Figure 5-13 the surface elevation from the numerical model and the analytical solution is 

drawn at different stages of the wave period. Figure 5-14 gives a similar picture for the depth 

averaged velocities while Figure 5-15 presents the horizontal location of the shoreline as a 

function of time. 
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Figure 5-13 Surface elevation at different stages of the wave period. The analytical solution (black dashed line) is 

compared to the numerical results (solid red line).  

 

Figure 5-14 Depth averaged velocity at different stages of the wave period. The analytical solution (black dashed 

line) is compared to the numerical results (solid red line).  

 

Figure 5-15 Location of the shoreline as a function of time. The analytical solution (black dashed line) is compared to 

the numerical results (solid red line). 
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The free surface profile shows an excellent agreement with the analytical solution. The 

location of maxima and the nodes is well represented. For the depth averaged velocities the 

agreement is good in the deeper part where the location of the node at the boundary and the 

second node is correctly reproduced. Near the shoreline the numerical model has a tendency 

to somewhat overestimate the depth averaged velocities, especially during the draw down of 

the wave. This is most likely due to the staircase like approximation of the bottom which in 

 

this case results in smaller water depths in velocity points. Normally this difference is 

negligible when compared to the total water depth but near the shoreline this difference is 

more pronounced. Fortunately, due to the relatively small water depths involved, these 

differences with the analytical solution have a small impact on the overall solution. The 

movement of the shoreline is still represented very well as can be seen in Figure 5-15. 

 

Finally it is observed that running the model with the non-hydrostatic approximations did not 

result in large differences with the analytical solution. This is as expected as was noted before 

since the dispersive terms are very small and is in agreement with the results obtained by 

Fuhrman and Madsen in a comparable configuration.  

 

5.4. Dam break 

In order to test if the implementation of the advection scheme is indeed momentum 

conservative the dam break case is considered. This case was also considered in Stelling and 

Duinmeijer (2003) where they showed that the depth averaged version of there conservative 

scheme indeed reproduces the dam break wave well. 

 

The case considers two regions of fluid with different water levels and fluid velocities which 

are initially separated by a vertical wall. This mimics for example the case of a reservoir used 

for the generation of hydroelectric current where there is a small discharge through the 

structure. At t=0 the wall is suddenly removed and a flood wave enters the downstream 

portion of the canal. 

 

The so called dry bed case was first considered by Ritter(1892) and considers a flat bed 

where the downstream region is completely dry and the initial velocities are zero in the 

upstream portion. He derived an analytical solution to this problem from the Saint-Venant 

equations. His solutions were later extended to incorporate a non-zero water level 

downstream with non-zero initial velocities (see for example Stoker 1952). Later contributions 

by Dresler(1952) and Whitham(1954) also added the influence of friction. 
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Figure 5-16 Dam break case. Two reservoirs are separated by a structure (left), but at t=0 suddenly the structure is 

removed (right). 

For our purposes the friction is ignored and the model results are only compared to the wet 

and dry bed analytical solutions. For convenience only zero initial velocities are considered in 

the wet bed case.  

 

In the absence of friction the only driving force is the gradient of the piezometric level. But 

since this gradient is zero in the vertical there shouldn’t be any gradients in the horizontal 

velocities in the vertical. When a depth averaged approach is used this condition is naturally 

always met. However, when more layers are added, this can be violated when the numerical 

approximations are not considered carefully. Especially when using z-layers this is notoriously 

difficult to achieve in the presence of a jump discontinuity. Here it will be shown that in the 

hydrostatic case the sigma transformation very naturally conforms to this condition, even in 

the presence of a shock.  

 

As noted the analytical solutions where derived from the Saint-Venant equations which in turn 

means that they implicitly contain the hydrostatic pressure assumption. As vertical 

accelerations are negligible everywhere except in the region of the discontinuity this seems 

justified. However, comparisons between the analytical solution and the non-hydrostatic 

version of the model are also made to see how the pressure correction technique behaves in 

the case of a discontinuity. 

 

The computational domain consisted of two thousand grid points with an uniform grid 

spacing of 0.05∆ =x m  and a total length of 100=L m . The dam was located at the centre 

of the domain ( 50=x m ). For both the dry and wet bed case the upstream water level was 

0 1=d m  while the downstream water level in the wet bed case was initially 0.1m . The CFL 

condition was set to 0.1  which resulted in an average time step of about 0.0014∆ ≈t s . 

Finally the flooding and drying threshold was set to 1010− m . This was necessary to capture 

the wave celerity in the dry bed case correctly. 
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Dry bed 

Initially two different depth averaged scenario’s where run for the dry bed case. One using 

upwind approximations while the other used a second order limited scheme. From Stelling 

and Duinmeijer (2002) it is already known that the momentum conservative depth averaged 

advection scheme should perform rather well and these tests where mainly used to verify the 

implementation. The results for the upwind scheme can also be considered representative for 

the original XBeach1 code.  The results for the dry bed case after seven seconds can been 

seen in Figure 5-17.  

 

Figure 5-17 The location of the free surface (top figure) and the depth averaged velocity (bottom figure)  at t=7  for 

the analytical solution(black solid line), upwind scheme(dotted line) and the minmod limited scheme(crosses). 

The figure shows that both the upwind and limited schemes predict the free surface shape 

rather well. The velocity profile is less sharp in the case of upwind approximations while the 

second order limited scheme shows a small improvement in this respect. It should be noted 

that the differences become more profound when using a larger grid spacing. The second 

order scheme remains quite accurate when increasing the grid spacing while the first order 

upwind scheme becomes very inaccurate. This difference in behaviour is hardly surprising 

and well documented in literature.  

 

                                                

 
1 Although the expressions used are quite different in appearance they converge to the same solution when upwind 

interpolation is used. 
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Finally it is worthwhile mentioning that the minmod limiter successfully avoids the generation 

of wiggles near the discontinuity in the velocity which are typically generated when central 

difference schemes are used.  

 

 

Figure 5-18 The vertical velocity profiles for the model using the minmod limiter at the indicated locations. 

In Figure 5-18 the vertical velocity profiles are shown for a run using the minmod limiter with 

ten computational layers. The profiles clearly show that there is no variation in the horizontal 

velocity in the vertical. As was explained before this is correct in the absence of friction and 

this shows that the numerical model artificial gradients when confronted with shocks..  

 

Figure 5-19 The location of the free surface (top figure) and the depth averaged velocity (bottom figure)  at t=7  for 

the analytical solution(black solid line) and the minmod limited scheme(crosses) with the non-hydrostatic pressure 

correction enabled. 
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In Figure 5-19 the results with the non-hydrostatic pressure correction technique enabled is 

shown. Here again the free surface is predicted rather well. However, when looking at the 

depth averaged velocities, the wave front seems to have covered a larger distance. 

Furthermore it appears that the maximum attained velocities are higher when compared to 

the analytical solution. At this point it is yet unclear if the difference can be attributed to the 

hydrostatic pressure assumption in the analytical method, or if this is either a result from the 

numerical approximations used or implementation errors. 

Wet bed 

The results for the wet bed case are represented in Figure 5-20. Here the difference between 

the limited solution and the upwind approach are negligible which is due to the fine grid and 

therefore only the results using the minmod limiter are shown. The agreement with the 

analytical solution is excellent, also when the ratio between the up- and downstream levels is 

varied. Of more interest are the undulations which are produced by the non-hydrostatic 

solution. Here we can distinguish two different regions, (1) the undulations which remain 

stationary around the middle of the canal and (2) the undulations at the wave front.  

 

 

Figure 5-20 Depth integrated wet bed dam break. Upstream dept was one metre while the downstream depth was 

set to one tenth of a metre. Shown are the limited hydrostatic solution (crosses), the non-hydrostatic solution (solid 

line) and the analytical solution (thick black stripped line). 

The initial straight front mathematically contains an infinite number of harmonics which 

propagate in both directions. Those harmonics for which the wave celerity equals the current 
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velocity cannot travel upstream and show up as stationary waves in both space and time, 

these are the source of the undulations in region one. The source for the undulations in 

region two are most likely the leading harmonic, which travels with the front celerity and the 

trailing harmonics which do travel in the same direction as the front but whose celerity is 

lower. The absence of both types of undulations in the hydrostatic solutions is readily 

explained with the fact that all waves travel at the same velocity in hydrostatic models.  

 

The extend and occurrence of the undulations is depended on the ratio 0 1/d d . Furthermore 

the number of undulations which show up is dependent on the grid spacing, as this 

determines which wave components can be represented on the grid. 

5.5. Run up of solitary waves 

Synolakis (1986) performed several experiments involving the run-up of solitary waves on a 

beach. In these experiments solitary waves with depth to height ratios between 

ˆ0.009 0.633ζ≤ ≤  ( 1
0 0ζ̂ ζ −= d ) where generated and sent into the direction of a plane beach. 

For each of the depth to height ratios the maximum run-up was recorded. In the original 

experiment the water depth varied between 00.0625 0.38≤ ≤m d m . This was mainly done to 

investigate if the relative wave height is indeed a defining variable for the maximum run-up 

of solitary waves. As the measurements showed that the relative wave height, as a first 

approximation, does indeed define the relative run up the variance in the still water depth will 

be ignored from now on. 

 

Unfortunately only the relative run-up heights compared to the relative wave heights where 

available for comparison. The wave data recorded by the wave gages and the snapshots of 

the free surface taken from video data where not listed in the rapport which was available. 

This means that there was little sense to try and model the experiment in detail as there was 

no data to compare to. Instead the choice was made to only keep the bathymetry information 

identical to the original experiment and then model a series of solitary waves with relative 

wave heights comparable as the ones in the experiment. Since the relative wave height is the 

dominant variable for the definition of the relative run-up these can be compared to the 

original experimental data. A definition sketch is given in Figure 5-21. 
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Figure 5-21 Sketch defining the run up of a solitary wave on a plane beach 

For all experiments the still water depth was fixed at 0 0.1m=d  and only the incoming wave 

height was varied. At 0=t s  the solitary wave was prescribed from the Boussinesq solitary 

wave profile as an initial condition in the free surface, horizontal and vertical velocity. The top 

of the wave was located five and a half wavelengths away from the toe of the beach (with 

the wavelength as defined in equation (5.12)). In this way the initial profile had a chance to 

evolve into its final stable form. This does mean that most waves (except the smallest ones) 

contained a small spurious tail. However, the front of the waves was smooth and therefore 

the maximum run up was most likely not significantly affected by the spurious oscillations. 

 

Similar to the experiment the final wave height was measured at a distance of half a wave 

length away from the toe of the beach. Due to the varying solitary waves the total length of 

the area varied from experiment to experiment. However, each wave was modeled using the 

same number of 250 points per wavelength. The large number of points per wavelength 

where necessary because the higher approximations using the limiter resulted in less smooth 

run up behavior1 during the run-up and run down of the wave. Using upwind approximations 

these instabilities where not encountered but now a high resolution was required until the 

simulations converged due to excessive numerical diffusion. 

 

Using a CFL condition of 0.1σ =  the model was run long enough for the wave to leave the 

domain again. To facilitate this a non-reflective boundary was applied at the open end of the 

                                                

 
1 Using the minmod limiter with higher relative wave heights resulted in a small hump on the tip of the wave during 

run-up. Furthermore the draw down was accompanied with irregular flooding and drying, patches of the slope would 

fall dry while higher up the slope there was still water according to the model. 
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domain. All the simulations where run in the depth averaged mode of the model. A total of 63 

waves where modeled starting with ˆ 0.02ζ =  and ending with ˆ 0.65ζ =  

 

Figure 5-22 The relative run up of solitary waves on a plane 1/19.85 beach as a function of the relative wave height . 

Wave heights where measured half a wave length away from the toe of the beach. Breaking waves are marked with 

a circle while non-breaking waves are marked with a cross. 

The results are presented in Figure 5-22 which shows the relative run up height as a function 

of the relative incoming wave height. It is immediately clear that the run up for the higher 

waves is grossly overestimated. For the highest waves modeled the run up as calculated by 

the model is more than two and a half times larger than the run-up that was measured. 

Interestingly it appears that the run-up is modeled accurately up to relative wave heights of 

about 0.1, which is also the point where breaking of the waves started to occur in the 

measurements. 

 

The most likely cause for the large difference in computed and observed run-up is found in 

the absence of friction in the numerical model. As the broken wave runs up a mild slope, it 

travels as a fairly thin layer of water moving with a high speed. The front can be considered 

highly turbulent and this combined with the small water depths and high speeds means that 

friction indeed becomes important. This is also consistent with the results obtained by Lynett 

et al. (2002) who used a Boussinesq model to compute the run-up. They also found that the 

inclusion of bottom friction is indeed important in this case and their results without bottom 

friction where similar to the results obtained here.  
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Figure 5-23 The relative run up of solitary waves on a plane 1/19.85 beach as a function of the relative wave height . 

Wave heights where measured half a wave length away from the toe of the beach. 

Fortunately the addition of friction can be achieved relatively easy for the depth averaged 

model by the inclusion of a simply friction law into the horizontal momentum equation. As the 

original XBeach code already featured a friction term based on a Chezy formulation this was 

also chosen in the current case. Therefore the momentum equation in the depth averaged 

case becomes 

 
2

... 0
U Uu g

t hC

∂
+ + =

∂
 (5.13) 

Where C is the Chezy friction coefficient. No information was available regarding the material 

used to construct the slope, however it is assumed that the slope was constructed of a 

smooth material and the Chezy coefficients where therefore sought in the range 60 80C< <  

which is similar to the range reported by Lynett et al. After some trial an error a Chezy 

coefficient of 65C =  appeared to give a fit which was quite good.  

 

The results are presented in Figure 5-23 and show that the agreement with the 

measurements is excellent for relative wave heights of up to 0.4. It appears to confirm that 

friction is indeed important in the run up of waves, which, in hindsight, is not very surprising. 
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For values of ζ̂  larger than 0.4 the measurements and the computed results begin to diverge 

more significantly, a trend which appears to start around ˆ 0.35ζ =  where the slope of the line 

suddenly begins to increase again.  

 

Using more than one layer in the computations produced similar results to the depth 

averaged runs without friction. This is not to surprising as the effect of the non-hydrostatic 

pressures was only expected to be mild. Unfortunately no comparison to the runs with friction 

could be made as the inclusion of bottom friction is non-trivial in the case of more than one 

computational layer. In this case (turbulent) viscosity needs to be included in the model 

which also means some sort of turbulence closure model has to be introduced. This was not 

further pursued.  

5.6. Discussion 

In this chapter the numerical 2DV model as described in the previous chapter has been 

validated against a variety of test cases. The test cases considered where (i) an oscillating 

basin (ii) a solitary wave in channel, (iii) long waves on a beach, (iv) a dam break wave and 

(v) the run-up of solitary waves on a plane beach. 

 

The oscillating basin test showed the excellent linear dispersion characteristics present in the 

model. The model propagates waves up to 7.8kH =  with an error in wave celerity of less 

than one percent for the two layer model while, using a single layer, the model has a similar 

error for waves up to 0.5kH = . Furthermore the dispersion relation reproduced by the 

model agreed very well with the theoretical dispersion relation derived for a semi 

discretisation in the vertical. 

 

The solitary wave test confirmed that the model can accurately propagate solitary waves 

without any trailing waves. The solitary waves have a constant shape with little to no wave 

damping. Furthermore when compared to an approximate analytical solution the agreement 

with the two layer model was excellent. 

 

The carrier and Greenspan test was used to validate the flooding and drying algorithm. 

Although the model produced results which agree well with the analytical solution, a very fine 

grid was needed to capture the run-up and drawdown of the waves in sufficient detail. This is 

most likely due to the staircase like appearance of the bottom. Furthermore the use of the 

second order limited approximations appears to lead to less smooth behavior in this case.  

 

The Dam break test served as verification for the momentum conservation properties of the 

model and as a way to verify the ability of the scheme to deal with shock like solutions. The 
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wet and dry bed hydrostatic runs confirmed the correct implementation of the momentum 

conservative scheme. These runs also showed the improvement the limited second order 

approximations bring when compared to the first order upwind approximations. When the 

non-hydrostatic terms where enabled for the dry bed case the flood wave appears to move 

faster than the analytical solution. Since the analytical solution is based on the hydrostatic 

pressure assumption it is difficult to tell if the difference is physical or due to implementation 

/ numerical errors. 

  

Finally the model was verified against the run-up of solitary waves on a plane beach. In this 

tests serious problems where found with flooding and drying when the higher order 

interpolations where used. Portions of the slope would fall dry while the parts above and 

below would still remain wet. This lead to unstable behavior and from this point onward it 

was therefore decided to only use upwind discretisations in the case of flooding and drying. 

This however meant that the grid resolution had to be increased considerably as the upwind 

approximations introduce significant amounts of numerical diffusion. 

Without friction run-up heights up to a factor of two too large where found for the higher 

incoming waves. When a simple friction law is introduced the results agree very well with the 

measurements. This large difference between solutions with and without friction was also 

reported by Lynett et al. (2002).  
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6. Model description 

In this chapter the 2DV model is extended towards a full three dimensional model. The 

governing equations where already described for a three dimensional case in paragraph 4.1 

and will not be repeated in this chapter. Furthermore the methodology of deriving the layer 

averaged equations and the subsequent discretisation in both space and time remains 

unchanged, apart from the addition of extra terms. Therefore this derivation will not be 

repeated here. Instead the resulting equations will be presented and the major focus will be 

the influence the addition of the extra dimension has on the resulting system of equations 

and the consequences this has on how to solve this.  

6.1. Grid 

The grid layout is kept similar to the 2DV numerical model and the horizontal velocity 

variables in the horizontal are still staggered with respect to water level points. This does 

mean that u-velocities are defined in different points than v-velocities. The resulting layout in 

the horizontal is shown in Figure 6-1, where also the resulting control volumes for each 

variable are indicated. 

 

Figure 6-1 The staggered grid in the horizontal. 

 

In the vertical the staggered arrangement is maintained for the velocities, but again the 

pressure points are located on the cell interfaces for accurate wave propagation. The 

resulting layout is sketched in Figure 6-2. 
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Figure 6-2 Vertical variable arrangement for u  variables on the left and v variables on the right 

The addition of the y-direction also introduces an extra index variable for each of the 

variables. Thus the location of a variable is now indicated with the subscript (i,j,k), where 

again half indices will be used for variables located on cell faces. 

6.1.1. Variable grid size 

A notable feature of the grid which was not dealt with in detail in the previous chapter is that 

a non-uniform grid spacing will be allowed. This means that the horizontal grid size ,x y∆ ∆  

will now also vary in space. This makes it possible to increase the number of points locally in 

regions where strong variation in the flow is expected, and thus a large number of grid points 

is required. On the other hand region with a relatively smooth variance in flow behaviour can 

be dealt with using fewer grid points. An example can be seen in Figure 6-3.  

 

As the grid is still orthogonal the freedom this allows is rather limited and it is expected that 

for complex domains there will still be a considerable amount of overhead. An unstructured 

method based on the finite element or finite volume method is more efficient. However, the 

adoption to handle non-uniform grids is relatively easy to make as the existing code needed 

little modification. 
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Figure 6-3 An example of a non-uniform grid where the 

grid spacing is locally reduced to capture a region of the 

domain in more detail. 

 

Figure 6-4 The gradient of the free surface is no longer 

evaluated midway between waterlevel points. Therefore 

the central approximation reduces locally to first order 

accuracy 

A consequence of using non-uniform grids is that locally the central approximations reduce to 

first order accuracy (Hirch 2007). This is due to the fact that the derivative approximated is 

no longer located midway between the variables. As long as the changes in the grid are not 

sudden the error made is still substantially smaller than those made in a forward or backward 

difference scheme. Here the changes in the grid spacing will often follow 

 
1 1

 and i i i j j jx r x y r y+ +∆ = ∆ ∆ = ∆  (6.1) 

As long as the expansion (or contraction) parameter r is close to unity the first order 

truncation error made will indeed be small and the scheme is of almost second order1. The 

use of a smoothly varying grid as described in equation (6.1) also creates a smooth transition 

between zones with a fine grid resolution and regions where a coarser grid is appropriate.  

6.2. Discretised equations 

The addition of the extra horizontal dimension adds extra convective terms to the global and 

local continuity equations and each of the momentum equations. Besides these extra terms 

there is also the addition of an extra momentum equation for the y-direction. However, as 

noted before, the appearance of these extra terms and the extra equation is very similar to 

the existing equations. Therefore the complete derivation will not be repeated as the 

procedure outlined in 4.3 and 4.4 is easily extended. 

                                                

 
1 See also Ferziger and Peric 2002, p 48-49. 
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6.2.1. Global continuity equation 

The global continuity equation including the extra horizontal dimension now becomes:  
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Furthermore 1
2
, ,i j k

H
+

 and 1
2

, ,i j k
H

+
 are determined using upwind interpolation similar to 

equation (4.24) or the limited higher order expressions. 

6.2.2. Local continuity equation 

In the local continuity equation two new terms appear due to the time and space dependent 

grid in the vertical  
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 (6.4) 

The velocity 1
2

, , +i j k
u  is still acquired using equation (4.29) while for 1

2
, , +i j k

v  a similar 

expression in the y-direction is used.  

6.2.3. Horizontal momentum equations 

Let ( ) 1
2
, ,i j k

F u
+

 represent the advective terms in the u-momentum equation so that 
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Where  
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While 1
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h are defined similarly to the two dimensional case (see 

4.3.3). Now the hydrostatic approximation for u on the next time level is 
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And the horizontal momentum equation for u including the non-hydrostatic pressured 

becomes 
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Notice that the expression for the horizontal u-momentum equation only contains extra 

advective terms, in all other aspects it is identical to equation (4.64).  

 

For the v-momentum equation a similar situation holds. Let ( ) 1
2

, ,i j k
F v

+
 denote the advective 

terms given by 
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Where the variables, when needed, are interpolated using similar expressions as in the u-

momentum case. The hydrostatic approximation 1
2

*

, ,i j k
v

+
on the next time level is 
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While the v-momentum equation including non-hydrostatic pressures now becomes 
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6.2.4. Vertical momentum equation 

Let ( ) 1
2

, ,i j k
F w

+
represent the advective terms in the vertical momentum equation: 
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Using (6.12) the vertical momentum equation can now be written as 
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It is interesting too see that, through the kinematic boundary condition at the bottom, the 

horizontal velocities are introduced in the vertical momentum equation. This implies that, 

when the bottom is uneven, the w-momentum equation introduces a coupling between the 

surrounding pressure points at the bottom.  

6.3. Non-hydrostatic pressure 

The solution method for the non-hydrostatic pressure is essentially equivalent to the two 

dimensional case. Again the momentum equations (6.5),(6.11) and (6.13) are substituted 

into the local continuity equation (6.4) to enforce a divergence free velocity field. The 

resulting system of equations must then be solved in order to obtain the non-hydrostatic 

pressures. With these pressures the updated velocities can be calculated as now all terms in 

the momentum equations are known. When the velocities are substituted into the local 

continuity equation this equation takes a form similar to 
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Where A are the coefficients for the pressure resulting from the substitution and Q contains 

all the explicit terms. Notice that even for a single layer ( 1K = ) equation (6.14) couples five 

pressure points. For two layers each equation contains ten strongly coupled pressure points 

and the matrix resulting from this takes a shape like in Figure 6-5. 

 

Figure 6-5 An example of a matrix resulting from the discretised system for two computational layers. 

The main difference with the matrix obtained in the 2DV model is the appearance of the extra 

diagonals to the left and right. Due to these diagonals the block solver based on Gaussian 

elimination used in the 2DV model is no longer a viable option. Even in the depth averaged 

case this would lead to extensive fill in which makes the application of Gauss elimination 

inefficient for even modest systems. 

 

For the shallow water equations a similar situation is found when the free surface gradient is 

treated in an implicit manner. Here a very attractive alternative is found in a splitting method 

like alternate direction implicit (ADI). This method reduces the full matrix to a set of tri-

diagonal systems by alternately switching the direction which is treated implicitly. However, 

the absence of a time derivative for the pressure in the local continuity equation means that 

the ADI method can only be implemented by adding a pseudo time derivative for the 

pressure to the equations. In this way the elliptic problem is transformed into a hyperbolic 

problem which is solved until a steady state is reached. At that point the time derivative is 

zero and the original elliptic problem is satisfied (see for instance Ferziger and Peric 2002). 

Due to an incorrect implementation the ADI which produced excessive dampening the 
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method was rejected. However, when implemented correctly, it might still form a viable 

alternative. 

. 

Two other methods where considered, the strongly implicit procedure (SIP) by Stone (1968) 

and the preconditioned BiConjugate Gradient Stabilized (BiCGSTAB) method by van den Vorst 

(1992). They will be summarized briefly below, but for a more detailed description the reader 

is referred to Ferziger and Peric (2002). 

 

The strongly implicit procedure is based on an incomplete lower-upper factorization of the 

matrix A. This factorization is constructed in such a way that it has the same sparsity as the 

original matrix. The resulting system can then be solved very efficiently in an iterative manner 

using forward and backward substitutions. The implementation of the SIP method used is 

based on a five point computational molecule and is therefore only applicable to the pressure 

Poisson system generated in the depth averaged case. 

 

When multiple layers are used a different method needed. Because of the application of a 

vertical boundary-fitted coordinate system the pressure Poisson systems involved are always 

non-symmetric. This means that the preconditioned conjugate gradient methods are no 

longer applicable. Therefore, following Zijlema and Stelling (2004), a popular method 

appropriate for solving non-symmetric matrices is used, namely BiCGSTAB. This method is 

combined with a preconditioner based on incomplete LU decompositions to improve 

efficiency.  

The BiCGSTAB method is applicable for the solution of general systems and can be applied to 

both structured and unstructured grids. However, for additional computational speed, the 

method used was tailored for the use on a structured grid with a maximum of two layers. 

 

The choice to either use the BiCGSTAB method or the SIP method, which is only relevant in 

the depth averaged case, is made on the bases of efficiency. Usually the SIP method will 

require more iterations per time step than the preconditioned BiCGSTAB method. However, 

the work done per iteration is much lower and on balance the SIP method is faster than the 

BICGSTAB method. This is the reason that, whenever a single layer is used, the SIP method 

is employed. The BiCGSTAB method is applied to problems involving two layers. 

 

Both methods rely on iterative solution of the pressure Poisson equation and will therefore 

generate intermediate solutions which improve in accuracy when more iterations are taken. 

There is usually no need to continue this procedure until machine precision is reached, since 

the errors made in the underlying discretisation process are usually much larger than the 
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accuracy of the computer arithmetic. A stopping criteria is needed that determines when the 

solution is considered to be sufficiently accurate. Here the following criterium is adopted  

 α<

s
Ap - Q

Q
 (6.15) 

Where α is a pre determined threshold Q  the right hand side of the linear problem and  

is the 
2

L  norm of the respective vector. Interestingly it appears that the solution of the 

pressure matrix is not very sensitive to the threshold α  and it usually suffices to set it to 

about 2
10α −=  (see Stelling and Zijlema, 2002).  

6.4. Flooding and drying 

Most remarks made in the previous chapter regarding flooding and drying still hold and most 

concepts are easily extended in a setting with two horizontal directions. Here only an 

extension to the criterion for positive water depths is given as this is considered an essential 

part of the flooding and drying algorithm. 

6.4.1.  Positive water depths in two dimensions 

Again, in order to investigate under which conditions the water depth never falls below zero, 

the global continuity equation is considered. 
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However, in contrast to the previous derivation now a situation is considered where all 

velocities are directed outward of the cell. This situation can be thought of as the worst case 

scenario for the algorithm. Using the tile like description of the bottom again we have: 

 ( ) ( )1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
, , , , 1, , , , , , , 1,

max , max , and 
i j i j i j i j i j i j

z z z z z z
+ + + +

= =  (6.17) 

This means that the water depth at velocity points, when using upwind approximations, is 

always smaller or equal to the water depth in the free surface point. Again picking the worst 

case scenario entails using the maximum water depth. Now equation (6.16) can be rewritten 

as: 
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Obviously, as long as the water depths at the current time step are positive this is always 

positive if 
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However, when the velocities are directed into the cell they transport mass into the control 

volume and they thus have a positive contribution. 

 

Figure 6-6 (a) Worst case scenario for a particular mass control volume, all velocities are pointed outward. (b) 

Situation where only two velocities are directed outward while the other boundaries are closed. 

A sufficient condition can be derived by neglecting any positive contributions into the cell, this 

means condition (6.18) becomes 
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This condition has a very simple physical interpretation. It basically checks that the amount of 

water leaving through the faces in a single time step is never greater than the volume of 

water contained the cell (multiply both sides of (6.20) with the volume will immediately make 

this clear). The condition for the dynamic time step therefore becomes 
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In some circumstances, especially when considering overflow situations, this condition 

becomes more restrictive than the stability condition. Lets for a moment in time assume that 

the velocity is dominant in the propagation of information (e.g. supercritical flow) and assume 

only two boundaries are open (see Figure 6-6b). Furthermore let 
1 1
2 2
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In this case equation (6.21) becomes 
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Comparing this to a time step criteria obtained from the CFL condition: 

 
x

t
U gH

∆
∆ ≤

+
 (6.23) 

This shows that if U gH> the flooding and drying criteria of (6.22) becomes dominant. 

Notice that if more velocities are directed outward this can becomes even worse. However, 

this is a situation that is rarely encountered and usually the time step is restricted by the 

courant number. 
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7. Validation and verification 

The numerical model as described in chapter 6 is validated against two test. First the 

oscillating basin is used to verify the correct implementation of the non-hydrostatic pressure 

routine in three dimensions. After this the Berkhoff Shoal is used as verification of the model. 

7.1. Oscillating basin 

As a validation test of the correct implementation of the pressure corrections in three 

dimensions we return to the oscillating basin test which was also used as a verification of the 

2DV model. (see section 5.1.2). However, now the basin is extended in the y-direction and 

the initial condition will also slightly change.  

 

Consider a three dimensional basin which has a square shape horizontally with sides of length 

L. The fundamental mode of such a basin can be described with a wave like solution given 

by: 

 ( ) ( ) ( ) ( )0, , cos cos cosx yx y t k x k y tζ ζ ω=  (7.1) 

Where 1

x yk k Lπ −= =  and ω is determined by the linear dispersion relation: 

 2 2 2 1tanh  with 2y xgk kh k k k Lω π −= = + =  (7.2) 

As again only waves with a small steepness are considered the velocities can be 

approximated safely with linear wave theory and are given by: 
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 (7.3) 

The sides of the basin where set at 250L m=  while the still water depth was also chosen to 

be 
0

250d m= . In such basin 2kH π= and the wave is therefore in relatively deep water. As 

an initial condition the solution at t=0 is prescribed. This means a zero velocity field is used. 

The free surface is given by (7.1) where the amplitude was
0

0.01mζ = .  An impression of the 

initial condition is found in Figure 7-1. 
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Figure 7-1 Overview of the basin together with the contours of the initial condition at t=0s at the left. At the right a 

three dimensional impression of the free surface at t=0s..  

The basin was discretised using an uniform 81 by 81 grid while in the vertical either one or 

two layers where used. For the depth averaged case the SIP solver was used while the 

BiCGSTAB method was employed when using multiple layers. In both cases the convergence 

criteria (6.15) was set to 2
10 [ ]α −= − . The simulation was run for a total of six periods of the 

analytical solution and the CFL condition was set to 0.2CFL =  which corresponds to a mean 

time step of roughly 0.0043t s∆ ≈ . As no flooding and drying occurred the second order 

expressions could safely be used. 

Depth averaged run 

In Figure 7-2 time series are given for the free surface, the depth averaged horizontal 

velocities and the vertical velocity at the free surface. They were taken at a point located at 

x=50m, y=50m and are compared to the analytical solutions1.  

 

The solutions obtained for the free surface shows the expected behaviour already found in 

the 2dV basin test. Here the numerical solution also lags the analytical solution due to the 

inaccurate dispersion relation. After about three periods the analytical and numerical solution 

                                                

 
1 Note that both analytical solutions for the horizontal velocities where integrated over the depth and then divided by 

the depth to obtain a depth average velocity. 
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are actually in anti-phase. However, the amplitude is correctly reproduced and no sign of 

numerical dampening is found. For the velocity components something similar holds although 

in there the amplitudes are also different. This can be explained by the difference in 

frequency. In the expressions for the amplitudes in (7.3) ω  is present in the denominator. 

For longer periods this means that the amplitudes are smaller, which explains the observed 

differences. 

 

In Figure 7-3  contours are shown for six different times during the first period, together with 

the velocity vectors and the contours of the analytical solution at the same time. Aside from 

the difference in phase the numerical solution does reproduce the correct behavior. The 

solution stays symmetric around the diagonals and the velocity pattern is correct. 

Remembering that the wave modeled here is essentially in too deep water for a depth 

averaged solution and all errors found can be attributed to this. It is expected that for 

solutions in shallower water the depth averaged solution will perform better.  

 

Finally it is worth mentioning that both the SIP method and the BiCGSTAB method 

reproduced a very similar solution which provides some confidence in the correct integration 

of these two methods in the model. Furthermore, hardly any improvement was found when 

the stopping criteria was set to achieve more accurate solutions, which is consistent with the 

remarks in Stelling and Zijlema (2003).  
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Figure 7-2 The free surface, horizontal depth averaged velocities u,v The free surface, horizontal depth averaged 

velocities u,v and the vertical velocity w compared to the analytical solutions at x=50,y=50. The analytical solution is 

indicated with a dotted line while the analytical solution is given by a solid line. 
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Figure 7-3 Contours of the free surface and velocity vectors of the numerical solution obtained during the first 

numerical wave period for the depth averaged solution. Contour lines of the analytical solution are indicated by the 

thick dotted lines. 
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Two layers 

From the depth average case it was already observed that the major source in the 

discrepancies between the analytical solution and the numerical solution was the inaccurate 

dispersion contained in the numerical model. From paragraph 5.1 it is known that the linear 

dispersion relation present in the model improves enormously when using two layers. As the 

expansion with the extra horizontal dimension does not change this (a similar expression can 

be obtained in three dimension) the addition of an extra layer should improve the results.  

 

Figure 7-4 gives the time series for the free surface, depth averaged horizontal velocities and 

the vertical velocity at the free surface (at x=50m, y=50m). The figure clearly show that, 

using two layers, the solution obtained is virtually identical to the analytical solution. The 

amplitudes and phases are now correctly modelled and again no numerical dampening is 

observed.  

In Figure 7-5 contours are shown for six different times during the first period, together with 

the velocity vectors and the contours of the analytical solution at the same time. These show 

that correspondence between the analytical solution and the numerical solution is good 

throughout the basin. Furthermore the flow pattern is still correct and the solution is still 

symmetric around the diagonal which reinforces the notion that, in this particular case, the 

dominant terms are modeled well. 

 

As the runtime of a single run is quite long (about thirty minutes) no attempt was made to 

test the dispersive relation over a wider range of kH values. However, since the behavior 

observed is similar to the results in the 2DV model (the depth averaged run has a period 

which is slightly too long while the two layer solution has the correct period) it seems safe to 

assume that a similar picture as in Figure 5-5 can be produced. 
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Figure 7-4 The free surface, horizontal depth averaged velocities u, v and the vertical velocity w compared to the 

analytical solutions at x=50, y=50 for a model run with two computational layers. The analytical solution is indicated 

with a dotted line while the analytical solution is given by a solid line. 
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Figure 7-5 Contours of the free surface and velocity vectors of the numerical solution obtained during the first wave 

period for the model with two computational layers. Contour lines of the analytical solution are indicated by the thick 

dotted lines. 
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7.2. Wave deformation by an elliptic shoal on sloped 
bottom1 

The Berkhoff Shoal is a classic test conducted in 1982 by Berkhoff et al. which combines 

refraction, diffraction and shoaling of waves over a complex bathymetry. It was originally 

setup for a comparison of laboratory measurements with linear wave propagation models but 

has widely been used to verify models based on Boussinesq like equations. It was also 

discussed in Stelling and Zijlema (2003) where excellent agreement was found between their 

model results and the measurements.  

 

Figure 7-6 Bathymetry of the experiment carried out by Berkhoff et. Al and the location of the transects along which 

measurements where conducted. 

Here the test will be used to verify the correct implementation of the current model. 

Furthermore the accuracy of the depth averaged model will also be compared to one using 

multiple layers. Stelling and Zijlema (2003) never considered the depth averaged model in 

their paper because the kH value of the waves which propagate into the domain is about 1.9 

which is relatively large. From this they concluded they needed two layers to accurately 

model this problem.  

 

The bathymetry can be described using slope oriented coordinates ( ', ')x y  which are related 

to the ( , )x y  coordinates by means of rotation over 20− o . The water depth in the 

undisturbed condition without the shoal is then given by: 

                                                

 
1 The description of the test is taken from Stelling and Zijlema (2003) 
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An overview of the bathymetry is presented in Figure 7-6. The shoal is bound by: 
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And the thickness of the shoal is given by: 
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Monochromatic waves with a frequency of 1 Hz. and wave height of 4.64 cm are generated at 

the lower boundary and propagate into the domain. At x=-10 and x=10 a closed boundary is 

present. The grid size is set to 0.05 / 30λ∆ = ∆ = ≈x y m , where λ  denotes the wavelength 

in the deeper part. A simulation period of 30 s is chosen so that a stationary solution is 

obtained while the CFL condition is set to 0.2. 

 

In the experiment wave heights where measured along eight transects starting just behind 

the shoal. Three where placed in the x-direction and five in the y-direction. Along each 

transect ten wave gauges where deployed which where used to measure the wave height 

after a steady state was reached. In the numerical model the wave heights where measured 

straightforwardly by recording the maximum and minimum water level which occurred during 

five periods when the stationary solution was achieved. Locations of each of the transects are 

shown in Figure 7-6 where they are numbered from one to eight. 

Depth averaged model 

Due to refraction the shoal acts like a lens in the experiment and focuses the incoming waves 

to a point behind the shoal. Therefore the highest waves where found behind the shoal, and 

not at the top of the shoal, which would have been the case if only shoaling was taken into 

account. Figure 7-7 clearly shows that the highest waves are concentrated into relatively 

narrow region just behind the shoal, which is exactly which was observed in the experiments. 
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Figure 7-7 Result from the depth averaged run. Shown are the relative wave heights captured in the region just after 

the shoal. 

In Figure 7-8 the results from the model along transects indicated in Figure 7-6 are shown 

and compared to the measurements. In the results from sections three to five both the width 

and height of the focal point behind the shoal is adequately represented. The secondary 

maxima shown in the measurements are also reasonably captured. Only the minima in 

section five are clearly under predicted. Good agreement between model results and 

measurements is also found in the sections directed in the stream wise direction (5-7) where 

the global behaviour found in the measurements is reproduced. A notable exception to this is 

found in section six, where the model fails to resolve the caustic present in the 

measurements. This is a featured shared with lower ordered Boussinesq models which also 

overestimate the wave heights in this region. Usually Boussinesq models with an improved 

dispersion relation are needed to capture this minimum, and it is therefore not surprising that 

the depth averaged version fails to capture this point as its dispersive relation is comparable 

to that of lower order Boussinesq models. In general the depth averaged approach already 

performed above expectations capturing most of the physical processes well.  
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Figure 7-8 Comparison between measurements (symbols) and the results using a depth averaged approach. Shown 

are the relative wave heights along the eight transects (waves scaled with the incoming wave height). Sections one 

to five are parallel to the incoming waves fronts while sections six to eight are perpendicular to the waves. 
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Two layers 

Keeping all other parameters identical the number of computational layers was now increased 

from one to two which is expected to improve the model results. An overview of the resulting 

relative wave heights behind the shoal is presented in Figure 7-9 

 

Figure 7-9 Result from the model using two layers. Shown are the relative wave heights captured in the region just 

after the shoal. 

Comparing this figure to the depth averaged version (Figure 7-7) shows little differences. The 

relative position of the various maxima and minima is slightly changed and there sizes differ 

somewhat but overall the model results are consistent with each other. A comparison with 

the measured data is presented in Figure 7-10 which shows results similar to the ones 

published by Stelling and Zijlema (2003, 2008). The caustic in section six is now present and 

the secondary maxima in sections three to six are better resolved. Only the maximum behind 

the shoal in sections three and five is slightly to low.  

 

In general the two layer model predicts the wave heights more accurately than the one layer 

model but the differences are relatively minor. The depth averaged model is therefore quite 

attractive. It does reproduce the global trends surprisingly well. Especially considering that 

the incoming wave was relatively short. The most staggering difference can be found in the 

computational time, where the twofold increase of grid points resulted in an 300%  increase 

in computational time (from around two hours to around six). 
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Figure 7-10 Comparison between measurements (symbols) and model using two layers. Shown are the relative wave 

heights along the eight transects (waves scaled with the incoming wave height). Sections one to five are parallel to 

the incoming waves fronts while sections six to eight are perpendicular to the waves. 

7.3. Discussion 

To test the implementation of the three dimensional model it has been validated against an 

academic test case for which analytical solutions exist, and against measurements performed 

in laboratory conditions. The validation of the three dimensional model was less extensive 

than in the 2DV case due to time constraints. Especially the lack of a flooding and drying test 
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in two horizontal dimensions is something which is unfortunate. Nevertheless, all of the 2DV 

flooding and drying cases gave similar results when run in the other horizontal direction 

which gives some confidence in the correct implementation. 

 

In the basin test the model showed similar behaviour as found in the 2DV test. With a single 

layer linear dispersion is less accurately represented in the model than using two layers. 

Although only a single basin was tested, as opposed to several basins of varying depth, it 

seems plausible that the dispersion relations found in the previous chapters are also valid in a 

three dimensional setting. 

 

It is encouraging though that the depth averaged model offers a significant improvement 

over the hydrostatic model. Furthermore it does qualitatively reproduce the solution with the 

correct surface amplitude and a qualitatively correct velocity field . However, the periods of 

the solution are slower than those of the analytical solution and the amplitudes of the velocity 

components are over predicted. 

 

Finally the performance of both of the matrix solvers seems to be satisfactory. Both gave 

similar solutions for the depth averaged case and both appear to give sufficiently accurate 

results for a relatively large threshold. In general the BiCGSTAB solver needed roughly a 

single iteration per time step while the SIP solver used about three. However, the SIP solver 

was, due to its smaller memory footprint and simpler algorithm still faster when it could be 

used.  

 

The Berkhoff test was used to verify that the effects of shoaling, diffraction and refraction 

could be successfully modelled. It featured relatively small waves on the off shore boundary 

which propagated over a shoal located on a slope. 

 

The results achieved with both the depth averaged model and the two layer model are 

considered to be very good. Especially the results in the depth averaged case where far 

above expectations. The depth averaged model was able to reproduce the shoaling and 

refraction on top of the shoal and the wave focussing behind the shoal very well. When 

compared to these results the improvements the two layer model gave where not 

spectacular. The caustic, which was not well resolved in the depth averaged model, now 

appears to be correctly modelled and the wave focussing is marginally better. Other than this 

the results for both models are quite similar. 
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This is a quite favourable result when considering the propagation of tsunami waves. Since in 

this case the waves will have larger relative wavelengths it appears that a depth averaged 

approach should be sufficient to correctly represent these effects. 
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Section IV: Application to tsunami 
benchmark experiments 
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8. Run up on a vertical wall 

The numerical model as constructed and verified in the previous chapters appears to be able 

to reproduce most of the physically relevant processes for wave propagation and run up 

reasonably well. Although the model needs more verification when considering short wave 

propagation and run-up it appears that, at least qualitatively, the model gives good results 

under long waves. It therefore seems appropriate to test the model against measurements of 

tsunami like waves.  

 

The National Science Foundation (NSF) funded a study beginning in 1992 to identify 

important physical parameters involved in 3D tsunami run-up. Over the course of this study, 

several flumes and basins were used to conduct four physical models of a plane beach, 

vertical wall, and a circular island. Of these four experiments the measurements from the 

vertical wall and circular island case are freely available1  and where featured in a workshop 

on tsunami run-up where several long wave models where used to reproduce the data. 

8.1. Experimental setup 

In 1995 two-dimensional (2D) flume experiments of solitary wave run-up on a vertical wall 

were conducted by Briggs et al. at the U.S. Army Engineer Waterways Experiment Station, 

Vicksburg, Mississippi. .The wave flume used was 23.23m  long and 0.45m wide and 

contained a compound slope fixed bed bathymetry simulating the bottom profile at Revere 

Beach, Massachusetts.  The bathymetry consisted of a deep section and three different slopes 

(1/50, 1/150./1:13). At the start of the domain a wave maker was located which generated 

the solitary waves.  

  

Ten capacitance wave gages were used to measure surface wave elevations along the 

centerline of the flume (Y=0). The origin of the x-axis was at the wavemaker. The first four 

gages were located in the constant depth region to measure incident wave conditions. Gages 

1 to 3 remained at fixed positions for all tests. Prior to each run, gage 4 was moved seaward 

from the toe of the 1:53 slope a distance equivalent to half-a-wavelength (i.e. L/2) of the 

wave to be generated. This procedure ensured that the tsunami wave was always measured 

at the same relative stage of evolution. Gages 5, 7, and 9 were located over the toes and the 

remaining gages were spaced approximately midway up each slope of the compound-slope 

beach profile. 

                                                

 
1 At the time of writing these were available at: http://chl.erdc.usace.army.mil/ 
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23.23m

15.04m 4.36m 2.93m

1: 50 1:150

0.218m

 

Figure 8-1 Schematic overview of the experiment conducted by Briggs et. Al.  

 

Gage 4A 4B 4C 5 6 7 8 9 10 

X (m) 12.64 14.06 14.40 15.04 17.22 19.40 20.86 22.23 22.80 

Table 8-1 The locations of the different used wave gages and the three cases which where run. 

 

 

Figure 8-2 Wave paddle trajectories for the cases A. B and C.  
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The maximum run-up near the wall was also visually recorded. When the waves reached the 

vertical wall, a plume of water would shoot upward. The highest point of this excursion was 

visually noted through the glass walls of the flume and manually recorded after each run. 

 

Case  A B C 

Target 
0 0

/ dζ  0.05 0.30 0.70 

Achieved 
0 0

/ dζ  0.039 0.246 0.696 

0
/ Lζ  0.0022 0.0178 0.1164 

/d L  0.044 0.088 0.166 

Table 8-2 Target and achieved waveheights for the three cases. 

As a model for tsunami waves solitary waves of different amplitudes where generated by the 

wave maker. A total of three different cases where simulated and the target and achieved 

relative wave heights are listed in Table 8-2. The paddle trajectories for each of the cases are 

shown in Figure 8-2. 

 

Of the three cases only case A can be considered to roughly represent a tsunami of 

geophysical scale. Taking for instance a typical wavelength of 10 kilometers at a depth of 

100m with a maximum wave height of ten metres leads to a wave steepness of roughly 0.001 

and a relative shortness of / 0.01d L = .  These parameters are of the same order of 

magnitude as the wave in case A. Case B has a wave steepness which is one order of 

magnitude larger and can be considered as an upper limit. Case C is  two orders of 

magnitude steeper and much shorter and cannot be considered  as being representative for 

the leading wave of a tsunami. 

8.2. Numerical model setup 

Although the wave paddle trajectories where available, these where not used as a forcing in 

the model, as the correct implementation of such a boundary can be complicated. Instead it 

was decided to use a similar procedure as was used in the modeling of the run-up of solitary 

waves on a plane beach. The solitary wave was prescribed three wavelengths away from the 

first gage as an initial profile on the water surface. Here again the definition for a wavelength 

under a solitary wave given by equation (5.12) was used. This initial profile was then 

propagated in the direction of the vertical wall. The arrival time of the peak of the solitary 

wave was matched to the measured peak at the first wave gage. 

 

Unfortunately no data was available from the first three wave gages and it therefore little 

sense to include the full wave tank in the modeled domain. Instead the choice was made to 

put the boundary of the domain five wavelengths in front of the fourth gage. In this way the 
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peak of the initial solitary wave was located two wavelengths away from the boundary. The 

larger solitary waves have a tendency to deform a little from their starting profile and in doing 

so some wave components are send in the opposite direction to the wave propagation. To 

allow these waves to leave the computational domain a weakly reflective boundary was 

placed on the side of the wavemaker. 

 

The domain was discretisized using an uniform grid spacing which was coupled to the 

wavelength of the solitary waves. The grid resolution was coupled to the wavelength such 

that each of the waves was modeled with at least a hundred points per wavelength. The 

number of grid points and the grid spacing was therefore dependent on the incoming wave. 

The CFL condition was set at 0.1 which roughly corresponded to an average time step of 

0.07st∆ = , although this varied between the runs due to the differences in the grid spacing. 

 

Each of the cases was modelled using one and two computational layers. Furthermore a 

model run was done without the non-hydrostatic pressure corrections. Since this experiment 

was  2DV in nature the block solver was used as a matrix solver. Furthermore as no flooding 

and drying was encountered the limited second order expressions where used. 

8.3. Results 

8.3.1. Case A 

Of the three cases considered case A had the lowest incoming wave and in this case it was 

expected that the hydrostatic model still should perform reasonable. The first run was 

therefore performed using the model without the non-hydrostatic pressures and this case 

functions as a benchmark for the improvements, if any, the inclusion of the non-hydrostatic 

pressure brings. 

 

In Figure 8-3  results are presented for the gages five, seven, nine and ten. The results for 

the other gages can be found in appendix D.1.1. Starting at the toe of the slope (at gage 

five) it appears the hydrostatic solution gives virtually identical results to the measurements. 

Both wave height and width are consistent with the measurements. There does appear to be 

a small mismatch in the still water level between measurements and the model which is also 

observed in the measurements of the other gages. The still water level is slightly too high in 

the model in gages five seven and nine while somewhat too low in gage ten. 

 

Traveling in the direction of the wall the wave starts to shoal and begins to steepen. The 

correspondence between the wave and the measurements is still good at gage seven and the 

results are also reasonable at gage nine,  
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At the wall near gage ten the wave has steeped too much and immediately breaks upon 

reflection. Traveling back in the direction of the boundary it is apparent that  the hydrostatic 

solution is no longer similar to the measurements as the wave form is totally different. In the 

experiments the reflected wave still clearly represents a solitary wave while in the numerical 

model the wave travels as a bore. 

 
 

 

Figure 8-3 Case A: Hydrostatic results for the gages 5,7,9 and 10, Solid line indicates model results while the broken 

line indicates measurements. 

The lack of dispersion to combat the wave steepening due to the non-linearities apparently 

already has a substantial influence. It should be noted that the wave only fully broke at the 

vertical wall. If, instead of a wall there would have been a mildly sloping beach the results 

probably would have been more favorable for the hydrostatic model.  

 

Enabling the non-hydrostatic pressures the case is rerun in the depth averaged mode. The 

results for the gages five, seven, nine and ten are presented in Figure 8-4 while the results 

for the other gages can again be found in the appendix. The large difference between the 

non-hydrostatic and hydrostatic solutions is immediately apparent as the reflected wave now  

is unbroken. The wave now has a shape similar to the wave found in the measurements. 
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There is a difference in phase and amplitude as the reflected wave in the model is slightly 

higher and faster than the wave in the measurements. 

 
 

Figure 8-4 Case A: Depth averaged non-hydrostatic results for the gages 5,7,9 and 10, Solid line indicates model 

results while the dotted line indicates measurements. 

There are also some minor improvements found in the shoaling process of the wave as can 

be seen from comparing the gages seven and nine from the hydrostatic to the non-

hydrostatic runs. 

 

Finally it is noted this first case was also modelled using two layers. This did not produce any 

significant differences with the depth averaged runs and the results are not presented here. 

They are available in appendix D.1.1. 

8.3.2. Case B 

The incoming wave specified in case B is significantly higher than in case A. Due to the 

nature of solitary waves this means that the wavelength has decreased leading to a much 

steeper incoming wave. The wave in case A had a wavelength L  of about 2.80m while the 

wavelength for the incoming wave in case B is about 1.11m. Thus, not only is the wave 

almost five times as high, it is more than twice as short as well. This clearly indicates that the 
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wave is much steeper than in the first case and the balance between frequency dispersion 

and amplitude dispersion becomes much more critical. 

 

This is confirmed when looking at the results from a hydrostatic run at gage six in Figure 8-5. 

Gage six is located midway on the primary slope and the measured wave starts to show signs 

of shoaling here. In contrast to this the wave in the numerical model has already broken. This 

clearly shows that the hydrostatic pressure assumption is no longer valid in this case. 

 

Figure 8-5 Hydrostatic solution for case B. The wave has already broken in the numerical model at gage six. Solid 

line indicates model results while the dotted line indicates measurements. 

The results for the other gages are shown in the appendix but they show a progressively 

worsening picture. 

 

Using the depth averaged version the non-hydrostatic model the results in Figure 8-6 were 

obtained.  The overall agreement with the measurements is excellent as all gages show that 

the wave shape and amplitude are well resolved. Only at gage ten there is a significant 

difference between the measured and calculated amplitude. However, the measured wave 

appears to have a physically unrealistic shape here and the measurements are most likely in 

error. 

After the wave reflects a small error in the phase is observed and the amplitude is slightly 

overestimated. Furthermore it is noted that only the leading wave is correctly modelled. The 

secondary wave, which still has a significant wave height, is present. It has a smaller 

amplitude and the wave train following these primary waves shows only superficial 

resemblance to the measurements. Finally it is noted that, similar to case A, using multiple 

layers resulted in no significant improvement.  
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Figure 8-6 Results from the depth averaged non-hydrostatic model for Case B. The solid line indicates model results 

while the dotted line indicates measurements. 

8.3.3. Case C 

In the final case the target relative wave height in the experiment was 0.70 while the 

achieved wave height was very close to this at 0.696. Unfortunately such a highly non-linear 

solitary wave can no longer be adequately prescribed by the third order solitary wave 

equations given in (5.11). The main problem with these expressions is that they begin to 

show new extrema in the velocity components that are not physically realistic.  
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The problem is that the higher order terms which are neglected are needed to balance the 

behavior of the lower order terms. Interestingly the free surface profile does not exhibit this 

behavior and therefore remains acceptable as a solution. To circumvent this problem a first 

order Boussinesq solution was prescribed as this solution does not contain the oscillatory 

behavior for higher waves. This does mean that the initial wave deformed significantly which 

resulted in a larger spurious tail and a significant decrease in amplitude. In order to achieve 

the correct amplitude at wave gage four some trial and error was therefore involved.  

 

For the results using the hydrostatic approximation the reader is referred to the appendices. 

The wave is now is significantly non-linear and using the hydrostatic pressure assumption 

leads to inaccurate results. 

 

Also due to the high initial wave case C is the first case where using two layers visibly 

produces better results. Here the solution using two layers is presented in Figure 8-7 and the 

results using the depth averaged model are given in the appendices. 

  

Up until gage eight the results for the wave traveling towards the vertical wall show a good 

correspondence to the measurements. Wave height, wave form and phase are all consistent 

with the measurements. However, from the measurements it appears that the wave breaks 

between gages seven and eight. This is not reproduced in the model as the wave height 

remains constant in the results.  

The model wave height does start to diminish between the gages eight and ten despite the 

still declining water depth which indicates that wave braking is starting to occur.  

The reflective wave is also substantially larger in the model and this is the reason the phase 

error begins to increase. The final form is reached between the gages four and five where the 

solution qualitatively agrees with the measurements. Both show a leading wave with a small 

following trough and a spurious tail. 

 

Concluding it can be said that the main source of errors in this case appears to be the 

incorrect location of the onset of breaking. It is expected that if this is captured more 

accurately both subsequent phase and amplitude errors will diminish significantly. 
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Figure 8-7 Results from the non-hydrostatic model using two layers for Case C. The solid line indicates model results 

while the dotted line indicates measurements. 

8.4. Discussion 

The experimental results of the run-up of three different solitary waves on a compound beach 

ending in a vertical wall where compared to the results produced by the numerical model. 

Both hydrostatic and non-hydrostatic runs where performed to see the difference, if any, the 

inclusion of frequency dispersion gives. 

 



Run up on a vertical wall 

135 

It is interesting to see that in all three cases the hydrostatic solutions lead to wave fronts that 

where steeper than the measured waves and eventually this lead to premature breaking.  In 

cases B and C the differences where so dramatic that the hydrostatic model can no longer be 

regarded as a viable alternative.  

 

For case A this was different as the incoming wave was much lower and longer which meant 

that the over steepening typical of the NSWE would not result in very large differences before 

reflection. For the reflected wave again the NSWE resulted in premature breaking while the 

measured wave travelling in the off-shore direction still represented a solitary wave. 

 

When using the non-hydrostatic model the waves kept their correct shape and the agreement 

between the measurements and the numerical results where quite favourable. 

 Especially case A and case B produced excellent agreement for the leading waves. The 

agreement for the wave train following the solitary wave after reflection was less good. But it 

should be mentioned that the back slope of the experimental waves was generated with less 

accuracy than the front. 

In the final case the model actually predicts the breakpoint of the wave a little bit too late. 

Here the wave continues shoaling while the measurements appear to indicate that the wave 

broke.   

 

In all three cases the reflected wave appears to have a higher amplitude and it travels slightly 

faster than the measured wave. The phase difference can readily be explained by noting that 

higher solitary waves travel faster and therefore if the amplitude is overestimated this 

automatically leads to phase errors. However, this does not explain the error in amplitude. 

This might be explained by the lack of viscous damping in the model which could have 

effected the propagation of the wave in the wave tank. 

 

The comparison between the hydrostatic and non-hydrostatic runs is quite favourable for the 

non-hydrostatic model. It is therefore tempting to conclude that the non-hydrostatic model is 

necessary for tsunami run-up in comparable bathymetries. However, as noted before, the 

modelled waves are rather steep when compared to geophysical tsunamis. Especially case C 

has little significance, since the incoming wave is at least two orders of magnitude steeper 

than realistic tsunamis. Even case B is most likely too short and too steep to draw any 

conclusion on.  

 

Although case A is still steeper and shorter than a typical tsunami it does at least have 

parameters with similar orders of magnitude. It is quite striking that when using the NSWE 
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the reflected wave, which has travelled over a relatively modest distance of around four 

incoming wave lengths, has already broken. 

It does appear that the wave which impacts the vertical wall is a good approximation of the 

incoming wave. This suggests that for local impact assessment the results are acceptable. 

When the reflected wave is also of interest the non-hydrostatic approach has to be used. This 

confirms that, in the final stages where the wave becomes strongly non-linear, dispersion 

might be necessary to prevent the over steepening of the wave front.  

 

In this context the results in this section show that the depth averaged model can provide an 

attractive alternative that has sufficiently accurate dispersion characteristics to make long 

waves of permanent form possible.  
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9. Run-up of solitary waves on a Conical 
island 

The second benchmark test of the tsunami workshop features the run-up of a solitary wave 

on a conically shaped island. The test was undertaken after the Flores island tsunami of 1992 

and the Okushiri island tsunami of 1993 produced unexpectedly large tsunami run-up heights 

at the lee side of small islands. During the Flores Island tsunami, two villages located on the 

southern side of the circular Babi Island (Indonesia), whose diameter is approximately 2km, 

were washed away by the tsunami attacking from the north (see Figure 9-1a). 

 

 

(a) 

 

 

 

(b) 

Figure 9-1 (a) A sketch of Babi island (Yeh et al 1994). The 1992 tsunami attacked the island from the north while 

two villages on the lee side of the island where destroyed. (b) A sketch of Okushiri Island of Japan (from Hokkaido 

Tsunami Survey Group 1993). The 1993 tsunami attacked from the northwestern direction. Maximum run-up height 

reached 30.5 m at Monai which faces the tsunami directly. However, the second largest run-up height (- 20 m) was 

observed northeast of Aonae in the lee side of the island indicated by x. 

Something similar happened during the Hokkaido Island tsunami near Okishiri Island (Japan). 

Here the pear shaped Okushiri island was attacked from the northwestern direction and 

caused extensive damage on the southern side of the island. Run-up heights as high as 

twenty meters where observed at the marked location in Figure 9-1b. 

 

In both instances the highest damages where found on the lee side of the islands. This is 

apparently not an entirely uncommon and as reported by Bascom(1990): “We discovered 
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that, except for headlands pointing into the tsunami, embayment’s facing exactly opposite to 

the wave direction were likely to be most affected.”  

 

At the time, numerical simulations by different international teams produced results that 

differed substantially from field measurements, often by a factor of ten (see Briggs et. al 

1995).  Recognizing the need for a better understanding of the important physical parameters 

involved in three-dimensional run-up, the experimental study by Briggs et al. (1995) was 

undertaken. 

 

In the experiment a tsunami impact on a small conical island was simulated and the run-up 

height was measured around the island. Interestingly they found that for certain wave 

heights the run-up on the lee side could actually become slightly larger than that on the 

front. Refraction and diffraction cause the wave to bend around the island as edge waves. 

Because the island and source were symmetric, the wave wraps evenly around the island and 

produces relatively large run-up on the back side.  

 

The experimental results from this study have since then featured in numerous articles. 

Examples of these include Fuhrman and Madsen (2007), Titov and Synolakis (1998), Choi et. 

al (2007) and Lui et al (1995).  

9.1. Experimental setup1 

A physical model of a conical island was constructed in the centre of a 30 m wide and 25 m 

long flat bottom basin at the U.S. Army Engineer Waterways Experiment Station. The shape 

of the island was a truncated circular cone with diameters of 7.2m at the toe and 2.2 m at 

the crest. The vertical height of the island was about 62.5 cm, with a 1:4 beach face. In the 

experiments test where conducted with two waterdepths, 32 cm and 42 cm. Only the 

measurements from the 32 cm tests where available and are used here.  

 

The origin of the X-axis of the coordinate system was located at the wave maker and had an 

orientation perpendicular to the wavemaker while he Y-axis was directed parallel to the 

wavemaker. (see also Error! Reference source not found.). The centre of the island was 

located at x=12.96m and y= 13.80m.  

 

A total of twenty seven wave gages where used to measure the surface elevation. From these 

twenty seven gages the time signals from gages 1-4,6,9,16 and 22 are freely available and 

where used. Their locations are indicated in Error! Reference source not found.. Similar 

                                                

 
1 The description of the experimental setup is taken from Briggs et al. (1995) 
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to the experiment with the vertical wall the gages measuring the incoming wave  (1-4) where 

moved seaward from the toe. The distance moved was equivalent to half-a-wavelength (i.e. 

L/2) of the wave to be generated. The maximum vertical run-up was measured using a rod 

and transit at twenty locations around the island. 

 

Figure 9-2 Experimental setup of the experiment performed by Briggs (1995) on the left and the numerical grid  used 

on the right. Note that only every fifth line of the grid is shown. 

As a model for tsunami waves solitary waves of different amplitudes where generated by the 

wave maker. A total of three different cases where simulated and the target and achieved 

relative wave heights are listed in Table 9-1. 

 

Case  A B C 

Target 
0 0

/ dζ  0.05 0.10 0.20 

Achieved 
0 0

/ dζ  0.045 0.096 0.181 

0
/ Lζ  0.0022 0.0063 0.0178 

/d L  0.044 0.063 0.089 

Table 9-1 Target and achieved incoming wave heights. 

The wave parameters are very similar to those in the vertical wall experiment and the 

comments made there still hold here. The maximum case, case C has the same wave 

steepens and relative shortness as case B in the previous experiment, while case A is virtually 

identical to case A of the Vertical wall experiment (see 8.1). Again the cases B and C are 
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steeper than typical geophysical tsunamis while case A might be representative for the 

leading wave of a medium sized tsunami.  

9.2. Numerical Setup 

To reduce the problem size only a rectangular sub-domain of the basin was modeled. The 

wave maker boundary was placed one wavelength away from the first gages while the back 

boundary was placed one and a half wavelength away from gage 22. On both boundaries a 

Sommerfeld radiation condition was applied. Both lateral boundaries where placed two 

wavelengths away from the island centre and where modeled as fully reflecting boundaries. 

In the original experiment these boundaries where located further away and where coated in 

wave absorber. Therefore significant deviations from the measurements are expected when 

the reflections become important. The resulting domain extended from 4x m=  to 20x m=  

and 6.6y m=  to 21y m= . 

 

The region near the island is expected to contain the largest gradients in the velocity profiles 

and the free surface. Therefore a higher grid resolution is needed here to achieve comparable 

accuracy to regions where the solution is smoother. To facilitate this the domain was 

discretised using a non-uniform grid. 

 

Since flooding and drying is a major feature of this particular experiment only first order 

approximations where used. To minimize the numerical diffusion inherent to the first order 

approximations first a 2DV test was run to determine the maximum step size for the flat bed 

region. This test consisted of a canal, equal in length to the basin, through which the 

maximum solitary wave to be modeled was propagated. For a grid spacing of 0.04m the 

numerical diffusion had only small impact on the amplitude of the wave. This was then 

adopted as the grid spacing in the flat bed region. 

 

The whole region from the centre of the shoal to just beyond the waterline was discretised 

using 0.015x y m∆ = ∆ = . In this way the whole area where flooding and drying occurred was 

captured in detail. The region between the fine and coarse grid was covered with a 

transitional grid defined by (6.1) with a growth factor of 1.1. This ensured a smooth transition 

between the two grid sizes. The resulting grid contained 592 by 572 points in the horizontal . 

 

The maximum incoming solitary wave has a depth to height ratio of 0.2. This ratio falls right 

between the waves in case A and case B from chapter 8. Here it was found that the 

propagation of a solitary wave over a compound beach is well captured using only a singly 

layer. Although the slopes of the conical island are steeper it is still expected that in this case 

a single layer will be enough as well. Since the number of gridpoints in the horizontal is 
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already substantial this is a welcome reduction. Furthermore this makes it possible to use the 

SIP solver which has a smaller memory footprint and is slightly faster than the BiCGSTAB 

method. 

 

The CFL condition was set to 0.5 which resulted in an averaged timestep of roughly 

0.0016t s∆ = . This small timestep is a result of the combination of an explicit method with the 

need for a high resolution in the area of flooding and drying and is probably not necessary 

with regard to accuracy. Again each run was conducted with and without the non-hydrostatic 

pressure correction. Finally it should be mentioned that only the cases B and C where 

modeled due to time constraints. 

9.3. Results 

9.3.1. Case B 

To facilitate the discussing of the results in the coming sections first a sequence of snapshot 

type figures presented in Figure 9-3. In this figure snapshots of the contour lines of the free 

surface are shown which show how the wave refracts around the island. 

  

Starting at t=6.4s the incoming wave starts to shoal in front of the island. At t=7.6s the 

solitary wave attacks the front side of the island and generates significant amount of run-up.  

It also starts to separate into a portion of the wave which travels along the top of the island 

and a wave which travels along the bottom. Due to the bathymetry portions of the wave are 

still in deeper water where they travel faster than the portions of the wave near the island. 

This causes the bending of the wave crest which starts to appear at t=7.5s and is clearly 

visible at t=9.2s. 

 

Between t=9.2s and t=10s the main part of the wave propagates away from the island 

separating from a small part of the wave which continues to travel alongshore. At t=12.4s 

both of the trapped waves crash into each other inundating large parts at the back of the 

island. They then separate again while continuing to propagate alongshore as can be seen at  

t=13.6s. At this point they continue to leak energy away in the off shore direction which 

means that their wave height is quickly diminishing from this point onwards. Furthermore 

reflections from the top and bottom walls now begin to interfere with the results. 

 

What is interesting from these results is that the physics of the problem are qualitatively 

captured quite well. The incoming solitary wave bends around the island and travels away 

from the island while portions of the wave become trapped and eventually crash into each 

other to cause enhanced run-up at the back of the island. 
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ζ  (m) 

Figure 9-3 Snapshots of the free surface taken at the indicated times for case B.   
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Figure 9-4 Measured (thin line) and calculated (thick line) results at the indicated wave gages for case B.  

When comparing the results to the measurements of the four available wave gages the 

results in front of the island are quite good. In Figure 9-4 the measurements of the gages 

6,9,16 and 22 are compared to the computed results. The location of the gages is indicated in 

Error! Reference source not found.. The gages 6 and 9 show the wave as it shoals at the 

front of the island and partly reflects back. Especially the front of the incoming wave agrees 

very well with the measurements. At gage 9 the trough of the reflected wave is less deep and 

sharp as measured, which is also visible at gage 6. Furthermore the depression quickly 

disappears in the model while the measurements show that the free surface stays below the 

still water depth for quite some time after the main reflection has passed. 

 

Looking at gage 16, which is located below the island, the arrival time of the wave is 

predicted well together with its initial amplitude. Again the following depression is slightly less 

pronounced and has a shorter duration compared to the measurements. Finally at the back of 

the island at gage 22 again the arrival time of the wave is in excellent agreement. However, 

the maximum amplitude is over predicted at this location. The wave appears to be 

significantly larger in the computations than measured, although the shape appears to agree 

quite well. The amplitude of the following depression is correctly reproduced with a small 

phase difference. 
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Finally it should be mentioned that this case was also run hydrostatically and the results for 

the four wave gages in this case are presented in appendix D.2.1. In these results again the 

hydrostatic approximation leads to wave fronts which are to steep although the results for 

gages 6,9 and 16 are very reasonable. 

 

The run-up around the island is also compared to the measured run-up. Both the non-

hydrostatic and hydrostatic results will be presented to see how much they differ.  

 

In Figure 9-5 the run-up around the island is shown in a polar plot. The center of the plots 

correspond to the center of the island. It is clear that the inundation depth is quite similar for 

the hydrostatic and non-hydrostatic solutions although the hydrostatic solution appears to 

have traveled a bit further inland at the front of the island.  

(a) (b) 

Figure 9-5 Computed (solid lne) and measured (circles) maximum inundation depth around the conical island for 

case B. The dashed line indicates the initial shoreline position. (a) depth averaged hydrostatic results, (b) depth 

averaged non-hydrostatic results.  

In Figure 9-6 the run-up height around the island is shown for the hydrostatic solution 

compared to the measurements. Here it is clear that at the front of the island (corresponding 

to 180
o± ) the run-up is over predicted with more than ten percent. This trend occurs until at  

the back of the island the run-up is slightly under predicted. Thus the results from the 

measurements that the run-up height at the back is higher than at the front is not 

reproduced for the hydrostatic case. 

 

In Figure 9-7 a similar figure is presented for the non-hydrostatic case. Again the run-up at 

the front of the island is slightly over predicted, but less so than in the hydrostatic case.  



Run-up of solitary waves on a Conical island 

145 

 

Figure 9-6  Maximum relative run-up around the island for case B in the depth averaged hydrostatic run. 

Measurements are indicated with a circle while model results are shown as a solid line. 

 

 

Figure 9-7 Maximum relative run-up around the island for case B in the depth averaged non-hydrostatic run. 

Measurements are indicated with a circle while model results are shown as a solid line. 

The run-up at the back of the island has a similar magnitude as in the hydrostatic case but is 

now higher than the run-up at the front of the island. All in all the correspondence between 

run-up and measurements is not great. Qualitatively the solutions agree but the quantitative 

differences are quite large for both solutions. 
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9.3.2. Case C 

The only difference between case B and C is the different height of the incoming solitary 

wave. The solution therefore qualitatively behaves in much the same way as the wave in case 

B and the analysis of the evolution of the wave will not be repeated here.  

Figure 9-8 Measured (thin line) and calculated (thick line) results at the indicated wave gages for case B.  

In Figure 9-8 the measurements from the gages for case C are compared to the numerical 

results. The results for this case do not differ much from the results in the previous one. 

Again the incoming wave at the front of the island is captured quite well. At gage 6 both the 

arrival time and the wave amplitude are predicted excellently. The measured incoming wave 

signal contained a small trailing trough which is probably the reason why there is a large 

difference at t=10s. At gage 9 the incoming amplitude is slightly over predicted and this also 

appears to be the case for the subsequent trough. However, from the shape of the measured 

signal, which is almost straight here, a more likely explanation is an error in the 

measurement.  

 

At gage 16 the arrival time of the primary wave and its amplitude are well captured. Even the 

small secondary maximum, which is also present in the measurements, is accurately 

represented. Again the reflected depression wave is under predicted in size and duration. 
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Finally for gage 22 located behind the island the wave appears to have broken or be on the 

verge of braking. The steepness of the front corresponds well with the measurements in this 

case but the height is almost 50% too large. However, quickly after the small pronounced 

peak the two signals correspond again. This would indicate that the real wave broke at an 

earlier point. Also for this gage the back of the wave is not represented as well as the front. 

 

The hydrostatic results are again presented in the appendices. For this case the hydrostatic 

approximations resulted in too steep fronts and premature breaking for all gages.  

 

The run-up compared to the measurements for both the hydrostatic and non-hydrostatic 

cases are presented in Figure 9-9. In this instance the results from the gages showed large 

differences for the hydrostatic runs when compared to the non-hydrostatic runs. 

Figure 9-9 Computed (solid lne) and measured (circles) maximum inundation depth around the conical island for 

case C. The dashed line indicates the initial shoreline position. (a) depth averaged hydrostatic results, (b) depth 

averaged non-hydrostatic results., 

Looking at the run-up around the island the hydrostatic results again lead to higher 

inundation depths than the non-hydrostatic runs. And the difference appears to be the most 

profound at the front of the island. 
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Figure 9-10 Maximum relative run-up around the island for case C in the depth averaged hydrostatic run. 

Measurements are indicated with a circle while model results are shown as a solid line. 

 

 

Figure 9-11 Maximum relative run-up around the island for case C in the depth averaged non-hydrostatic run. 

Measurements are indicated with a circle while model results are shown as a solid line. 

In Figure 9-11 and Figure 9-10 the run-up height is compared for the non-hydrostatic and 

hydrostatic runs. The hydrostatic results show that, similar to case B, the run-up height in 

front of the island is over predicted while it is slightly under predicted at the back. 
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For the non-hydrostatic run the results are very good. The run-up height is predicted 

correctly at the front, back and sides of the island. It appears that the difference between the 

non-hydrostatic and hydrostatic solutions now has a small but significant influence on the 

run-up. 

9.4. Comparison 

As was mentioned in the introduction this particular experiment has served as a verification 

case for several numerical codes. Here a comparison between the results from this study is 

made with the results from the studies performed by Fuhrman and Madsen (2007), Choi et. al 

(2007) and Lui et al (1995).  

 

In Lui at al the first numerical results for this experiment where presented. They used a 

model based upon the NSWE  combined with a simple threshold based flooding and drying 

scheme. In their report the inundation heights are predicted consistently lower than the 

measured data. This is in contrast with the results of the hydrostatic results in this study 

which, at the front of the island, gave significantly higher run-up. However, they also use a 

much coarser grid ( .1x y m∆ = ∆ = ) coupled with upwind discretizations. It could very well 

be that their results would be similar if higher grid resolutions where used as at coarser grid 

resolutions the present model also predicted smaller run up values. They remark that case C 

is indeed not suited to be modeled with the NSWE as the results at the gages differ 

considerably with the measurements. 

 

Fuhrman and Madsen used a higher order Boussinesq model combined with a extrapolation 

technique at the wet dry interface. They used a more coarse grid ( .15x y m∆ = ∆ = )  than 

the one employed in the present study due to the use of higher order spatial schemes. The 

results they obtained for case B are almost identical to the results obtained in the current 

study. They also consistently under predict the reflected depression wave and they also over 

predict the wave height at gage 22.  For case C their results are less accurate then the results 

presented here. Their model fails to resolve the steep braking front at gage 22 and it also 

over predicts the amplitude at gage 16.  Unfortunately the figures they present regarding the 

run-up heights are unclear which makes a comparison of these impossible. 

 

In Choi et al. a non-hydrostatic model using the true volume of fluid method for the free 

surface is used. They had an comparable grid size in the horizontal but used a high resolution 

in the vertical. Their computed run-up heights are comparable to those in this study for both 

modeled cases. They also find excellent agreement in run-up height for the third case while 

the second case is less well resolved. Unfortunately they do not make comparisons to the 

gage data. 
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9.5. Discussion 

9.5.1. Results 

The results from the model are, in both cases, in good agreement with the measured results. 

In particular the results for case C are excellent. The measurements from the wave gages are 

in good agreement with the results for almost all the gages. Only the final gage 22 shows a 

significant deviation as the model produces a wave height which is fifty percent higher than 

the measured wave height. When looking at the run-up the agreement is excellent and form 

a significant improvement compared to the results of the hydrostatic run.  

 

For case B the comparisons are somewhat less favourable as the agreement in both run-up 

and measured wave heights is less good. For the wave gages the situation is not to bad as 

the leading wave is usually quite well captured in the results. The run-up is markedly different 

from the measurements. Unfortunately time constraints have prevented a detailed 

investigation into this. It is particularly puzzling that case C has such excellent agreement 

while this case involves a much higher shorter wave which should be much more difficult to 

model effectively. 

 

The differences between the hydrostatic and non-hydrostatic solutions are as expected 

beforehand. The hydrostatic model is no longer applicable for case C while it still gives 

reasonable results for case B. 

 

When compared to other numerical studies concerning the same experiments the model 

results stand out quite favourably. Especially the results for case C appear to be better than 

all the other model results mentioned here. For Case B the results are comparable to those 

published by others. Only when looking at the efficiency of the model the picture is a lot less 

favourable. 

 

As with the previous test concerning the vertical wall the comparisons between the 

hydrostatic and non-hydrostatic runs are not relevant with regards to the need for dispersion 

under large scale tsunamis. The waves used in the Tsunami benchmarks are not truly 

representative for large scale tsunamis. The test can however be regarded as an indication 

that the model will be able to handle the dispersion found under large scale tsunamis. 

9.5.2. Model efficiency 

In this test for the first time the limitations of a regular grid combined with an explicit time 

stepping and the need for upwind approximations under flooding and drying show up. These 
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all contributed to the large runtime the model needed for what appears to be a relatively 

simple setup. In both cases the hydrostatic model took about 26 hours to finish while the 

non-hydrostatic model needed about 36 hours on a single Athlon 64 1.8 MHz processor. This 

stands in sharp contrast to for instance Fuhrman and Madsen who report they needed only 4 

hours on a single 3.2 MHz Pentium 4 processor. 

 

This large difference can be explained by the need for an extremely small resolution in the 

run-up zone. Due to the upwind approximations convergence is very slow and high detail is 

needed to reduce the numerical diffusion. 

Secondly, the regular grid used is not very flexible even when a non-uniform approach is 

taken. In this particular case the need for an high resolution in the flooding and drying zone 

makes it necessary to reduce the grid size for all cells along a particular row or column. The 

result is that the parts of the cone, that will never become wet, are covered in the most 

detailed part of the grid. Also some of the deep parts are now discretised using the small grid 

size.  

 

Unfortunately these problems mask the fact that the inclusion of the non-hydrostatic model 

only resulted in a fifty percent increase in time when compared to the hydrostatic solution. 

This result bodes quite well for the application of the depth averaged model to large areas.  
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10. Conclusions and recommendations 

The objective of this study was to construct a non-hydrostatic numerical model based upon 

the scheme proposed by Stelling and Zijlema (2003) and investigate if it can be an effective 

and efficient way to include the effect of frequency dispersion in the modelling of tsunamis in 

their propagation and run-up. 

It was also the intention to show that the employed non-hydrostatic scheme can be easily 

integrated into an existing shallow water solver. For this purpose the algorithm was added to 

the XBeach model. 

In this section the results found in this study will be presented together with 

recommendations for future development and research 

10.1. Conclusions 

10.1.1. Numerical model 

The non-hydrostatic model based upon Stelling and Zijlema (2003) appears to have excellent 

characteristics regarding frequency dispersion. When two layers are used very short waves 

can be correctly modelled and in this regard it compares very favourably to, for instance, the 

higher order Boussinesq models. 

 

The most interesting result obtained from the various validation cases is that, using a single 

layer, weakly dispersive waves can be accurately modelled. This can be seen in for instance 

the solitary wave test, but also in the oscillating basin tests. The most striking example of this 

is the Berkoff test. Here a complicated case involving diffraction, refraction and wave shoaling 

with relatively short incoming waves was modelled very satisfactorily using only a single 

layer. Using two layers did improve the solution marginally, but the differences could only be 

found in the details.  

 

Whether one or two layers are employed a large banded matrix needs to be solved. In the 

2DV case this can be very efficiently done using Gaussian elimination due to the block like 

structure of the matrix. However, when three dimensions are involved, Gaussian elimination 

is no longer possible. In this case either the SIP solver or the BiCGSTAB solver can be used. 

The SIP solver is only applicable in the depth averaged case, but when it can be used it is 

substantially faster than the BiCGSTAB method. It is therefore the recommended solver for 

depth averaged runs.  
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Regarding flooding and drying the model performs adequately for the validation and 

verification tests performed. It is unfortunate that the higher order interpolations cause 

unstable behaviour in the flooding and drying algorithm as they allow for much larger grid 

sizes in comparison the upwind method. 

The final test performed in this thesis really showed the limits of the model in its current 

form. Here the upwind interpolations required a very fine grid in order for the results to be 

accurate. This combined with the regular grid and explicit time stepping caused the large 

difference in computational time: 36 hours for the present model versus 3 hours for the 

model by Fuhrman and Madsen (2007).  

Implementation into XBeach 

The original intention, as stated in the objective, was to integrate the non-hydrostatic 

pressure correction technique into the XBeach model. This was done to show that the non-

hydrostatic pressures could be easily implemented into an existing shallow water solver. It 

also allowed for a shorter development time as the facilities provided by the XBeach 

modelling environment could be used.  

 

During this study a depth averaged version of this model was successfully constructed which 

could be used as an add-on to the XBeach model. The XBeach model provided the velocity 

field based on the non-linear shallow water equations and the non-hydrostatic module would 

subsequently correct these. Unfortunately the decision to allow for multiple layers meant that 

the XBeach flow model needed to be rewritten. Besides the possibility of multiple layers also 

higher order interpolations where implemented to improve the accuracy for wave propagation 

problems. The final model can therefore no longer function as a simple add-on to the XBeach 

model. 

However, the successful construction of an add-on based on a single layer version proved 

that in principle the non-hydrostatic pressures can be added to an existing model. Although 

this is simplest for explicit models it should also be possible, with minor modifications, for 

implicit models based on the NSWE. In this case a projection based technique as used in for 

example Zijlema and Stelling (2005) can be used. 

10.1.2. Application to tsunamis 

For the application to tsunamis two experimental studies where considered. These where 

featured in a workshop on tsunamis and are regarded as benchmark tests. 

 

 The first experiment consisted of the run-up of a solitary wave on a vertical wall. Three cases 

where modelled, which differed in wave height, and results from the hydrostatic runs where 

compared to the non-hydrostatic runs. For all three cases the inclusion of the non-hydrostatic 

pressures improved the results considerably. Especially the higher waves suffered from over 
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steepening in the hydrostatic case. Only the lowest wave could be reasonably modelled using 

the non-linear shallow water equations. 

 

The second test featured the run up of a solitary wave on a conical island. In both the model 

and the experiment the waves split into two parts which propagate above and below the 

island. Parts of the wave became trapped and separated from the main wave which 

propagates away from the island after passing it. Due to symmetry both of the trapped waves 

met each other exactly at the back of the island and caused enhanced run-up there. 

Comparing both gage signals and run-up measurements to the model results resulted in 

reasonably good to good results. It is somewhat surprising that for the highest incoming 

wave excellent results where obtained for the run-up around the island, while for the lower 

wave the agreement was far less good. For both cases enabling the non-hydrostatic 

pressures improved the result. 

 

However, it is dangerous to draw conclusions based on these benchmarks regarding the 

importance of frequency dispersion. Even the lowest wave was already quite steep when 

compared too geophysical tsunamis. For more realistic scenarios it is expected that the 

differences will be less pronounced. However, they do function as a validation test as the 

waves can be considered as a worst case scenario. From the test it can be concluded that the 

depth averaged non-hydrostatic model captures the phenomenon of frequency dispersion 

sufficiently accurate to justify application towards large scale tsunamis. 

 

This raises the important question if the model is efficient enough to compete with for 

instance Boussinesq models. From the final test this does not appear to be the case as the 

model needed far more time to come to a similar answer as a competing Boussinesq model. 

However, it should be stressed that this had little to do with the non-hydrostatic pressure 

technique, and everything to do with the first order upwind approximations. 

 

It might be more insightful to look at the additional time the algorithm took when compared 

to the hydrostatic version of the model. It appears that the model adds roughly fifty percent 

extra time to the total calculation. And there is definitely room to improve the efficiency of 

the model. 

 

From this we can conclude that the non-hydrostatic scheme devised by Stelling and Zijlema is 

indeed applicable for application towards large scale tsunami problems. If the dispersive 

terms are truly important in these situations needs still to be investigated further. However. it 

is expected that a depth averaged version will be sufficiently accurate. 
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10.2. Recommendations 

10.2.1. Numerical model 

The final test showed that the flooding and drying algorithm in its current form is very 

inefficient. One of the first things to consider is to try and combine the second order 

interpolations and the flooding and drying algorithm. It appears that a simple solution for this 

is available. Due to the higher order interpolations the water level in velocity points is 

sometimes predicted below the flooding and drying threshold while the surrounding water 

level points still contain water. This can be prevented by the introduction of a rule which only 

applies the higher order approximations for cases where either the total depth is sufficiently 

high or where the higher order approximations lead to an increase in the predicted water 

level. However. this needs to be investigated further before it can be safely applied. 

  

A second important improvement can be made by using an implicit algorithm. This would 

increase the stability and would make it possible to vary the grid size while keeping the time 

step constant. Since a regular grid is employed a very attractive alternative is an ADI type of 

integration combined with a projection technique for the pressure. 

 

Finally it would be useful to integrate the non-hydrostatic flow model with the existing 

XBeach code base. In this way the model could be used in the modeling of short waves near 

shore, coupled with the morphological model this would open up a lot of new possibilities. 

The easiest way to do this is to use the depth integrated version of the constructed code in 

XBeach. In this case the non-hydrostatic module functions as an add-on, as was one of the 

original objectives of this study. However, it is still advised in that the current upwind scheme 

used in XBeach is replaced with higher order approximations.  

10.2.2. Applications to Tsunamis 

The first next logical step with regard to the application to tsunamis would be to try and 

model a real world event. This would build more confidence in the application of the model 

and also could lead to some interesting insights Furthermore comparisons should be made to 

existing Boussinesq models.  

 

In the context of tsunami modeling it would also seem very interesting to construct a model 

which can enable the non-hydrostatic pressures on certain sub-domains. In this way the size 

of the resulting matrices can be kept small as the non-hydrostatic pressures are only 

calculated in the regions of the domain where they are important. This is most likely best 

achieved in combination with an unstructured grid.  
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List of main symbols 

symbols    

ζ  : Free surface [m] 

u  : Horizontal velocity component in the x-direction [ms-1] 

v  : Horizontal velocity component in the y-direction [ms-1] 

w  : Vertical velocity component [ms-1] 

U  : Depth averaged velocity in the x-direction [ms-1] 

V  : Depth averaged velocity in the y-direction [ms-1] 

q  : Layer averaged discharge [m2s-1] 

ω  : Relative vertical velocity [ms-1] 

ρ  : Density [kg m-3] 

h  : Layer height [m] 

H  : Total water depth [m] 

,x y∆ ∆  : Grid spacing in the x- or y-direction [m] 

t∆  : Time step [s] 

σ  : Sigma coordinate [-] 

x : Horizontal x-coordinate [m] 

y : Horizontal y-coordinate [m] 

z : Vertical coordinate [m] 

d : Water depth [m] 

P : Total pressure [N m-2] 

P : Normalized dynamic pressure [m2s-2] 

hp  : Hydrostatic pressure [N m-2] 

g : Gravitational acceleration [m s-2] 

    

indeces :   

i : Index of horizontal grid point in the x-direction.  

I : Maximum number of grid points in the horizontal  

j : Index of horizontal grid point in the y-direction.  

J : Maximum number of grid points in the horizontal  

k : Index of vertical grid points.  

K : Maximum number of grid points in the vertical  
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A. Numerical dispersion relation 
 

A.1. Linearized equations 

In order to derive the dispersion relation it is assumed that the initial condition is a small 

disturbance in which case the non-linear terms can be neglected. Furthermore the bottom is 

assumed to be flat. In this case the Euler equations are simplified to: 

 0
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Notice that all advective terms have dropped out. Now a semi-discretisation is performed in 

the vertical only. It is assumed that there is an equidistant layer distribution with layer 

thickness =
H

h
k

. In this case the equations become: 
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For the vertical momentum equation the Keller box has been employed instead of the 

compact scheme. But as mentioned before, these are essentially equivalent when advection 

terms are ignored. As there are k  momentum and local continuity equations the total 

number of equations becomes 3 1= +n k . 

Substituting for each of the variables a single fourier mode with different amplitudes and 

phases. As a linear superposition different fourier modes will also be a solution this does not 

mean a loss of generality. 
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In order to simplify the expression the amplitudes are taken to be complex and therefore 

include the phase differences. Using the relations in (A.9) the system of equations (A.5)-(A.8) 

result into: 
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With 1
max 2

0
+

=
k

p  and 1
2

0=w  by virtue of the kinematic boundary condition at the  bottom. 

A.2. Single layer system 

First deriving an expression for the single layer system the equations are written in matrix 

notation as: 
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In order for the system of equations in (A.11) to have more than the trivial solution =x 0  

the determinant of the matrix A has to be equal to zero thus: 
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A cofactor expansion of the determinant of the matrix yields: 
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This expression is precisely zero if the following equation holds: 
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This relation between ω  and k  is the dispersion relation present in the case of a single 

computational layer. 

A.3. Two computational layers 

For the two layer system again the equations of (A.10) are written in matrix form resulting in 

a seven by seven square matrix: 

 

1 1
2 2

1
2
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2

1
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ω

ω

ω

ω
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− 
 
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 
 − −
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 =
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 
 
 
 −
 

i ikh ikh

ikg i ik ik

ikg i ik

i
h h

i
h

ik
h

ik
h h

A  (A.16) 

The determinant of this system can also be determined by a cofactor expansion1 and results 

in the following equations: 

 ( )
2 2 2 2 2 4 4 4 3 21

3 4

4

6 4 2 8ω ω ω
ω

+ + − −
= −

k h k h k gh k gh
Det i

h
A  (A.17) 

This expression is zero if either 0ω =  or: 

 2 2 2 2 2 4 4 4 3 21
4

6 4 2 8 0ω ω ω+ + − − =k h k h k gh k gh  (A.18) 

From equation (A.18) the relation between ω  and k  becomes: 

 
( )

( ) ( )

21
162 2

2 43 1
8 256

1
ω

+
=

+ +

kH gH gH
k

kH kH
 (A.19) 

Notice that 1
2

=h H  has been substituted here. Equation (A.19) is the dispersion relation 

present in the two-layer model. 

 

                                                

 
1 Performed by Maple as the number of computations involved is extensive 
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B. XBEACH1 
 

The XBeach program contains a number of Fortran 90/95 routines for short wave 

propagation, non stationary shallow water equations, sediment transport and continuity 

equations that can be coupled in various ways and are designed to cope with extreme 

conditions such as encountered during hurricanes. Since length scales are short in terms of 

wave lengths and supercritical flow frequently occurs, the numerical implementation is mainly 

first order upwind, which in combination with a staggered grid makes the model robust. The 

model scheme utilizes explicit schemes with an automatic time step based on Courant 

criterion, with output at fixed or user defined time intervals, which keeps the code simple and 

makes coupling and parallellization easier, while increasing stability. 

 

 The short wave propagation model contains a newly-developed time-dependent wave action 

balance solver, which solves the wave refraction and allows variation of wave action in x, y, 

time and over the directional space, and can be used to simulate the propagation and 

dissipation of wave groups. An added advantage to this set-up, compared to the existing 

surfbeat model, is that a separate wave model is not needed to predict the mean wave 

direction, and it allows different wave groups to travel in different directions. Full wavecurrent 

interaction in the short wave propagation is included. Roelvink (1993) wave dissipation model 

is implemented for use in the nonstationary wave energy balance (in other words, when the 

wave energy varies on the wave group time scale).  

 

The Generalised Lagrangean Mean (GLM) approach was implemented to represent the depth-

averaged undertow and its effect on bed shear stresses and sediment transport, cf. Reniers 

et al. (2004). The numerical scheme was updated, in line with Stelling and Duinmeijer 

method, to improve long-wave run-up and backwash on the beach. Themomentum-

conserving form is applied, while retaining the simple first-order approach. The resulting 

scheme has been verified with the well-known Carrier and Greenspan (1958) test.  

 

Soulsby – Van Rijn transport formulations have been included, which solves the 2DH 

advection-diffusion equation and produces total transport vectors, which can be used to 

update the bathymetry. The pickup function follows Reniers et al (2004) was implemented. 

An avalanching routine was implemented with separate criteria for critical slope at wet or dry 

points. The model has been validated against a number of analytical and laboratory tests, 

both hydrodynamic and morphodynamic. 

                                                

 
1 Description taken from Dano Roelvink et al (2008) 
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C. strongly implicit procedure 
 

The basis for the SIP method lies in the observation that an LU decomposition is an excellent 

general purpose solver, which unfortunately cannot take advantage of the sparseness of a 

matrix. Secondly, in an iterative method, if the matrix M is a good approximation to the 

pressure coefficient matrix A, rapid convergence results. These observations lead to the idea 

of using an approximate LU factorization of A as the iteration matrix M. i.e.: 

 M = LU = A + N  (1.20) 

Where L and U are both sparse and N is small. For asymmetric matrices the incomplete LU 

(ILU) factorisation gives such an decomposition but unfortunately converges rather slowly. In 

the ILU method one proceeds as in a standard LU decomposition. However, for every element 

of the original matrix A that is zero the corresponding elements in L or U is set to zero. This 

means that the product of LU will contain more nonzero diagonals that the original matrix A. 

Therefore the matrix N must contain these extra diagonals as well if (1.20) is to hold.  

 

Stone reasoned that if the equations approximate an elliptic partial differential equation the 

solution can be expected to be smooth. This means that the pressure points corresponding to 

the extra diagonals can be approximated by interpolation of the surrounding points. By 

allowing N to have more non zero entries on all seven diagonals and using the interpolation 

mentioned above the SIP method constructs an LU factorization with the property that for a 

given approximate solution φ  the product 0φ ≈N  and thus the iteration matrix M is close to 

A by relation (1.20). To solve the system of equations the following iterations is performed, 

starting with an initial guess for the pressure vector sp an iteration is performed solving: 

 s+1 -1 s -1Up = L Np + L Q  (1.21) 

Since the matrix U is upper triangular this equation is efficiently solved by back substitution. 

An essential property which makes the method feasible is that the matrix L is easily 

invertible. This iterative process is repeated until convergence is reached. Note that when 

the solution of  is identical to the original problem.  
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D. Tsunami run up 

D.1. Run up on a vertical wall 

D.1.1. Case A 

Hydrostatic Results 
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Non-hydrostatic 1-layer 
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Non-hydrostatic 2 layer 
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D.1.2.Case B 

Hydrostatic run 
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Non-hydrostatic 2-layer 
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D.1.3.Case C 

Hydrostatic 
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Non-hydrostatic 1-layer 
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D.2. Run up of solitary waves on a Conical island 

D.2.1.Timeseries Case B 

Hydrostatic 
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Non-hydrostatic 

D.2.2. Timeseries Case C 

Hydrostatic 



Tsunami run up 

 

181 

Non-hydrostatic 

 

 

 


