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Abstract

It is investigated if a Multi Point Inflow Performance Relationship (MIPR) using Uncer-
tainty Quantification (UQ) can lead to a step change in completion design. The MIPR
model consists of several Kuchuk IPR models coupled with a wellbore network, and is
verified against a discretized model. It is found that the assumption of artificial no-flow
boundaries for this model is limiting, which leads to an overprediction of the distributed
productivity index. A calibration using Markov Chain Monte Carlo (MCMC) is pre-
formed, which incorporates both epistemic and aleatory model parameters. In addition,
a more efficient ‘partitioned MCMC’ is investigated, which shows promising results. The
UQ MIPR model can predict the change in productivity index due to a uniform com-
pletion skin profile, and can give an indication of results for a non-uniform change in
completion skin. In conjunction with a discretized model, a MIPR model can lead to a
step change in completion by providing information to a production technologists earlier
on in field development.
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Problem Definition
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Introduction

The world’s population of seven billion people can only be sustained if there is a plentiful
supply of energy. Today over 84% of this energy is drawn from fossil fuels, and even by
2035 it is estimated that only 26% of the world’s energy will come from renewable sources
Tanaka [2010]. However, over past decades, the amount of discovered oil and gas has
been steadily declining Helman [2011]. It is therefore essential that current reservoirs are
developed as efficiently as possible, and it is here where this thesis aims to make an impact.
The research, which has been performed at Shell, focusses on the following thesis question:
‘Can a horizontal Multi Point IPR model incorporating Uncertainty Quantification lead
to a step change in completion design?’
Part I covers the concepts of IPR equations and Uncertainty Quantification in Chapters
1 and 2, before the problem definition and approach is elaborated upon in Chapter 3.
Part II covers the research performed to answer the thesis question, with an Multi Point
IPR description, verification and calibration in Chapter 4, 5 and 6, respectively. Chapter
7 addresses the prediction of the calibrated Multi Point IPR.
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Chapter 1

Petroleum Engineering

Petroleum engineering is a collection of disciplines involved in the extraction of hydro-
carbons from the Earth’s crust. This chapter serves as an introduction to the concepts
and terminology required to understand the context of the thesis question. The gov-
erning partial differential equations of reservoir flow are stated, from which simplified
Inflow Performance Relationships are derived. These models are subsequently verified
and calibrated in Chapter 5 and 6.

1.1 Petroleum Engineering Concepts

Three key concepts in petroleum engineering are the reservoir, well, and reservoir flu-
ids, described in Section 1.1.1 through 1.1.3. In Section 1.1.4, subsurface measurement
techniques are introduced.

1.1.1 Reservoir

A petroleum reservoir is a porous domain of rock containing hydrocarbons. Reservoirs
form when ancient organic material becomes trapped under impermeable cap rock. Typ-
ically, a reservoir consists of an aquifer, oil layer and, in many cases, a gas cap. An
illustration of a reservoir is depicted in Figure 1.1.

The water and hydrocarbons are contained in rock pores. The (effective) porosity, φ, is a
measure of the connected empty space in a rock, and is described by (1.1)

φ =
Vp

Vb

. (1.1)

Here Vp is the non-isolated pore volume and Vb is the bulk volume of the rock. Typi-
cally the porosity range is from 0.1 to 0.3 Economides et al. [1993]. Permeability, k,
characterizes the capacity of a rock to let fluids flow through these pores.

5



6 Petroleum Engineering

Figure 1.1: Diagram of a reservoir

The reservoir rock is inherently inhomogeneous. Not only are there features such as
fractures and faults that can drastically increase permeability or form a no-flow boundary
condition, the rock itself also has heterogeneity depending on its depositional structure.
The permeability field can be anisotropic; the vertical permeability can be ten times
smaller than that of horizontal directions Dake [1978].

1.1.2 Well

The connection between a reservoir and the surface is a well, the inside of which is
called the wellbore. A horizontal well is illustrated in Figure 1.1. Completions are the
interface between a well and a reservoir, these are designed to inhibit sand production
while minimizing the pressure loss. A set of adjacent completions is called a perforation.
The common types of completions are depicted in Figure 1.2. Production technologists
are responsible for selecting the right completion strategy for a well.

1.1.3 Fluid Flow

The treatment of fluid flow through the reservoir differs from that in the wellbore.
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Figure 1.2: Well completion types Bellarby [2009]

Reservoir flow

A one-dimensional single phase fluid flow through porous media is governed by Darcy’s
law (1.2) Chen [2007]:

qv = −kA

µ

dp

dx1
. (1.2)

Here qv is the volumetric flow rate over an area A. This flow rate is proportional to the
pressure gradient. The symbol p denotes pressure, and µ the viscosity. Equation 1.2
above has been written for single phase flow. Multiphase flow requires the introduction
of relative permeability’s into Darcy’s equations, as described in Appendix A.1.

The Darcy velocity is defined as

u =
qv
A
. (1.3)
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For a three-dimensional flow in a horizontal reservoir, (1.2) and (1.3) can be written as

u =
−1

µ
k(∇p). (1.4)

In (1.4), k is the permeability tensor of size [3 × 3].

The mass conservation equation (1.5) is derived for a flow element by Chen [2007] as

∂(φρ)

∂t
= −∇ · (ρu) + q. (1.5)

Here q represents the mass flow sources and sinks in the domain. Equation (1.5) states
that the change in mass in a flow element over time can either be due to changes in a
domain, namely the rock pore volume, density ρ, or the presence of a source or sink such
as a well. Additionally, a chance in mass of the flow element can be due to a flux over
the boundary of the element.

Combining (1.4) and (1.5) yields

∂(φρ)

∂t
= ∇ ·

(
ρ

µ
k(∇p)

)
+ q. (1.6)

Equation (1.6) is the equation governing single phase compressible flow, including hetero-
geneous permeability and rock compressibility. A simplified form of (1.6) will be solved
analytically in Section 1.2.2, which will form the basis of the IPR models to be investigated
in this thesis.

Pipe flow

The physics of the reservoir flows described in the previous section differ from that of
wellbore flows. There are numerous alternative models for wellbore flows, including em-
pirical correlations and mechanistic models. Even when the reservoir flow is single phase,
the wellbore pressures near the surface are often such that a gaseous component forms
as well. Famous empirical correlations include those of Duns & Ros [1963], Orkiszewski
[1967] and Hagedorn & Brown [1964]. Notable mechanistic models are those of Tailel &
Dukler [1976], Ansari et al. [1994], Gomez et al. [2000] and Petalas & Aziz [2000]. For
this thesis the model of Beggs & Brill [1973] is used, which consists of correlations for
pipe flow with an inclination varying from horizontal to vertical. The equations of this
model are addressed in Section 4.2.1.

1.1.4 Subsurface Data Acquisition

A number of parameters were introduced in the previous sections, such as permeability
and porosity. There are a variety of methods to measure these parameters.

Seismic data, obtained using acoustic measurements at the surface, is the primary source
of information for geologists to estimate the rock composition and extent of the reservoir.
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This then forms the basis of what is called the static model. Seismic data typically has
an areal resolution of 80 meters Fengshu et al. [2009]. In Nalonnil & Marion [2012], the
typical vertical resolution of 15 meters has been reduced to one meter using cross well
seismic imaging.

Several measurements can be obtained from a well to determine the near wellbore char-
acteristics. A crude form of determining the geology of a reservoir is via mud logging,
where rock cuttings are filtered out of the drilling fluid. Another measurement is coring,
where a physical section of rock is extracted from the reservoir. Flow measurements and
CAT scans are then used to measure permeability and porosity on a sub centimeter scale
Serag et al. [2010].

Well logs made by lowering sensors down into the wellbore can determine the geology
and fluids in the near wellbore region. These logs can include “multi-depth resistivity,
gamma ray, neutron, density, dipole sonic, NMR, spectroscopy, resistivity imager and
pressure/fluid samples.” Scholtes & Saha [2008]. Data obtained from cores and well logs
often show significant disagreement. Extensive literature has been written on reconciling
this data; Adams [2005], Serag et al. [2010], Adams [2005]. Nevertheless, Fylling [2002]
notes that the difference in independent evaluations of the same subsurface properties is
on the order of ten percent. A table with parameter uncertainty is given in Maschio et
al. [2009], where the permeability is found to have a standard deviation on the order of
10 [mD].

Gouges that measure pressure, temperature and flow can be inserted permanently at the
bottom hole. The latest technology for wellbore measurements is fiber optics. These
measurement techniques are important for the MIPR calibration to be done in Chapter
6. In contrast with gouges, this can provide data at several stations along a perforation.
Traditionally, fiber optic measurements have been restricted to temperature, but recent
developments extend these to pressure and acoustic derived flow measurements Bond
et al. [2004], K.Kragas et al. [2004]. Koelman et al. [2012] note that “when combined
in a single downhole-deployable cable, these fiber optic sensing technologies promise to
provide a much more complete picture of downhole conditions, thereby allowing operators
to optimize workovers, completions, well lift and flow conformance.” Fiber optics are
not yet a wide-spread technology because of the challenging physics involved, large data
volumes (1 TB/day), and high cost Koelman & Potters [2012].

1.2 Inflow Performance Relationship

1.2.1 Introduction to IPR

An Inflow Performance Relationship (IPR) gives a relation between the well flow and the
difference between the bottom hole pressure pwf and the average reservoir pressure pr,
called drawdown. It is a measure of what the reservoir can produce for a certain bottom
hole pressure. The Vertical Lift Performance (VLP) is a curve determining how much flow
a well can deliver to the surface, for a certain bottom hole pressure. Figure 1.3 illustrates
the equilibrium operating point of the well-reservoir system, at the intersection of the
IPR and VLP curves.
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Figure 1.3: VLP IPR curve

For the region of laminar Darcy flow, which is the region of interest for this thesis, the
IPR curve in Figure 1.3 has a linear form of (1.7)

qv = J(pwb − pr). (1.7)

The coefficient J is the Productivity Index (PI). One of the most basic IPR equations is
that of Darcy IPR for a vertical well in the center of a cylindrical drainage area, written
as (1.8)

qv =
kh(pr − pwf )

µB
[
ln
(

re
rw

− 0.75 + s
)] . (1.8)

Although this equation is not considered for this thesis, its basic form allows an easy
interpretation of how subsurface parameters effect the PI. In (1.8) re is the radial length
to the edge of the drainage area, rw is the wellbore radius. B is the volume formation
factor, which relates the change in volume of fluids from reservoir conditions to standard
surface conditions.

The skin s is a composite modeling parameter representing a variety of different pressure
drops or jumps used to approximate model inadequacies. For instance, drilling causes
a reduction in permeability due to rock compression and drilling fluid infiltration into



1.2 Inflow Performance Relationship 11

the formation, hence the skin is increased. On the other hand, the insertion of a frack
pack completion, or other forms of well stimulation, can be represented by a negative
skin factor. An example of a model inadequacy correction is a ‘reservoir skin’, that can
approximate the effect when the assumption of non-radial flow is violated. All model
inaccuracy skins combined are called a ‘calibration skin’ in this thesis, which will be used
in the calibration in Chapter 6.

Equation (1.8) holds for steady state flow, where the derivative of q with respect to time is
constant. Pseudo steady state flow occurs when the effect of all the boundary conditions
is felt at the wellbore. It can take several hours, or even weeks, before the transient
effects of a change in bottom hole pressure become negligible Ahmed [2010]. Transient
response interpretation is called well testing, and can be used for Bayesian inference of
permeability and drainage area.

The main use of IPR models is optimizing perforation length and designing the well
completion strategy. A large number of different IPR models exist, including models for
horizontal wells. Early work in deriving analytical IPR models for horizontal wells has
been performed by Giger et al. [1984], Karcher et al. [1986] and S. Joshi [1988]. The
work of Karcher et al. [1986] focuses on a box shape drainage area where the completion is
placed exactly in the center. In contrast, S. Joshi [1988] derived equations for a reservoir
of infinite areal extent, with a completion placed at half the height of the reservoir.
These models have been superseded by that of Goode & Kuchuk [1991], which allows
considerably more freedom in the placement of the completion. For this reason, a Kuchuk
IPR model is used for this thesis.

1.2.2 Kuchuk IPR

Goode & Kuchuk [1991] derived an analytical equation for a domain with no flow bound-
aries depicted in Figure 1.4. From here on, this model will be called the Kuchuk IPR
model.

The equations in the domain of Figure 1.4 are derived from (1.6), rewritten in the form
of (1.9)

(
φ
dρ

dp
+ ρ

dφ

dp

)
∂p

∂t
= ∇ ·

(
ρ

µ
k(∇p)

)
+ q. (1.9)

In (1.9), q represents sources or sinks, such as the presence of a well. If the assumption is
made of slightly compressible flow, then according to Chen [2007], ρ can be approximated
by a fluid compressibility coefficient cf ,

ρ ≈ ρ0(1 + cf (p− p0) +O(c2fp
2)). (1.10)

The rock compressibility coefficient cR is given by (1.11)

cR =
1

φ

dφ

dp
. (1.11)
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Figure 1.4: Kuchuk domain Goode & Kuchuk [1991]

Substituting (1.10) and (1.11) in (1.9) yields

φρct
∂p

∂t
= ∇ ·

(
ρ

µ
k(∇p)

)
+ q, (1.12)

where the total compressibility ct is defined as the fluid plus rock compressibility

ct = cf +
φ0

φ
cR. (1.13)

Next, the dimensions of length can be scaled such that





x̃
ỹ
z̃



 =





x

y
√

kx
ky

z
√

kx
kz





. (1.14)

An assumption can then be made that the permeability tensor is diagonal

k = diag{kx, ky, kz}. (1.15)

What this assumption implies is that the chosen axis system x, y and z must be the
principal flow directions. Thus, the perforation must be parallel to one of the principal
flow directions, with the other two orthogonal to it. This assumption is often not limiting
for production technologists. Horizontal wells are often drilled such that the principal
flow direction with the least resistance to flow is perpendicular to the well Dake [1978].
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The anisotropy in (1.12) can then be eliminated, when a homogeneous medium is assumed.
The source term q is removed, as it will be shown that the well can be treated as a
boundary condition;

φρµct
kx

∂p

∂t
= ∇̃ ·

(
ρ(∇̃p)

)
. (1.16)

Substituting (1.13) into (1.16),

φρct
kx

∂p

∂t
= ∆̃p+ ∇̃ ·

(
cf (p − p0)(∇̃p)

)
. (1.17)

Going beyond the assumption of slightly compressible flow, and assuming incompress-
ibility altogether, the second term on the right hand side can be eliminated, leaving the
Poisson equation that forms the basis for the model that is used for the remainder of this
thesis:

φρct
kx

∂p

∂t
= ∆̃p. (1.18)

Equation (1.18) is then solved analytically by Goode & Kuchuk [1991], starting with

∂pd
∂td

=
∂2pd
∂x2d

+
∂2pd
∂y2d

, (1.19)

for the domain surrounded by no flow boundary conditions as depicted in Figure 1.4. In
(1.19), the dimensionless pressure pd, time td, and horizontal dimensions xd and yd are
defined as

pd = 2πLz

√
kxky

(pr − pwf )

qvµ
, (1.20)

td =
kxt

φµctL2
x

, (1.21)

xd =
x

Lx
, (1.22)

yd =

√
kx
ky

y

Lx
. (1.23)

Instead of an infinite conductivity boundary condition at the wellbore, the wellbore is
represented as a strip boundary condition with a constant flux as in (1.24)

lim
yd→ywd

2Lwd

π

∂pd
∂yd

=

{
−1 for xwd − Lwh ≤ xd ≤ xwd + Lwh.
0 otherwise ,

(1.24)
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This boundary condition is derived from (1.2) in the y direction

qv = −kA

µ

dp

dy
. (1.25)

Taking a control volume infinitely close around the well ‘strip’ will give an area of

A = 2(2LwhLz). (1.26)

Inserting (1.26) into (1.25) and non-dimensionalizing p and y gives

qv =

(
−ky4LwhLz

µ

)(
qvµ

2πLz

√
kxky

)


√
kx
ky

Lx


 ∂pwd

∂yd
, (1.27)

which can be rearranged to yield the desired boundary condition (1.24). A vertical skin
Szd is used as a proxy for the effect of flow in the z direction.

After derivation, the final analytical Kuchuk IPR solution for the above mentioned domain
and boundary conditions is given by (1.28)

PwD =
2πLy

Lx

√
kx
ky

(
1

3
− yw

Ly
+

y2w
L2
y

)

+
2L2

x

π2L2
wh

∞∑

n=1

1

n3

(
sin

(
nπ

Lwh

Lx

)
cos

(
nπ

xw
Lx

))2

(1 + ξ) + SzD. (1.28)

The parameters in (1.28) are found in (1.29) through (1.32):

SzD = − Lz

2Lwh

√
kx
kz

[
ln

(
2πr′w
Lz

sin

(
πzw
Lz

))
+

√
kx
kz

Lz

Lwh

(
1

3
− zw

Lz
+

z2w
L2
z

)]
, (1.29)

r′w :=
rw
2

(
1 +

√
kw
ky

)
, (1.30)

ξ :=
2eγLy + eγ(Ly−yw) + eγyw

1− eγLy
, (1.31)

γ := −2nπ

Lx

√
kx
ky

. (1.32)
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The dimensionless pressure is then inserted into the equation for the productivity index

J = 2π

√
kxkyLz

µBo(PwD + S∗

m)
. (1.33)

Here the skin has been scaled according to

S∗

m =
h

2Lh

√
kx
ky

Sm. (1.34)

Summarizing, the assumptions made in the Kuchuk model are

• Steady state, single phase, isothermal and incompressible flow

• Homogeneous non-isentropic medium

• Horizontal box reservoir, no gravitational effects, principal flow directions parallel
to axis

• Long perforation with respect to Lz ( Goode & Kuchuk [1991])

• No wellbore pressure drop

In particular the assumptions of a homogeneous medium and zero wellbore pressure drop
are constraining factors for production technologists Hill & Zhu [2006]. A discretized
model can be used as alternative.

1.2.3 Discretized Model

The analytical solution derived by Kuchuk can also be tackled with a discretized model.
The discretized model used in this thesis solves solves multiphase black oil equations. In
Appendix A.1 it is shown that when these are solved for a single phase fluid, the equations
reduce to the familiar form of (1.4) and (1.5), written again for convenience:

u =
−1

µ
k(∇p), (1.35)

∂(φρ)

∂t
= −∇ · (ρu) + q. (1.36)

These equations are solved using a first order finite volume discretization. A Peaceman
[1977] inflow model, described in Appedix A.2, is used to connect every perforated cell to
the well network with Beggs and Brill pipe models. A detailed description of the wellbore
network is given in Section 4.2. The entire well reservoir system is solved implicitly,
using adaptive time stepping. After a time period of month, pseudo steady state flow is
obtained and a comparison can be made with the Kuchuk IPR.

The assumptions of the usage of this specific discretized model are:
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• Steady state, single phase, compressible isothermal flow

• Horizontal box reservoir

• Inclusion of gravitational force

Next to the Kuchuk and discretized model, there is a potential for intermediate fidelity
IPR models.

1.2.4 Potential for an Intermediate Fidelity IPR

The Kuchuk model is limited because of its low fidelity wellbore treatment, and require-
ment on domain homogeneity. The discretized model has neither of these limitations, but
in turn it is computationally expensive. An intermediate level of fidelity is envisioned,
namely a Multi Point IPR (MIPR). This model is intended to have a more detailed
wellbore inflow treatment, and can account for some reservoir heterogeneity, at a lower
computational cost than the discretized model. The MIPR model is described in Chapter
4.



Chapter 2

Uncertainty Quantification

This chapter is an introduction to Uncertainty Quantification (UQ), in which the most
important concepts are described that are necessary for solving the thesis research ques-
tion. Section 2.1 addresses UQ terminology, Section 2.2 the concept of Bayesian inference,
followed by Monte Carlo and Markov Chain Monte Carlo methods in Section 2.3 and 2.4.
The specific implementation of these concepts can be found in Chapter 6. This chapter
finishes with a section on examples of UQ in the domain of reservoir engineering and
production technology.

2.1 UQ Concepts

Uncertainty Quantification “is the science of quantitative characterization and reduction
of uncertainties in applications” Iaccanrino et al. [2009]. The definition of uncertainty
itself requires elaboration. According to “AIAA guide for the verification and validation
of computer fluid dynamics simulations” [1998], uncertainties are defined as “potential
deficiency that is due to the lack of knowledge”, as opposed to errors, which are “recog-
nizable deficiencies of the models or the algorithms employed”. Examples of model errors
are those caused by truncation errors in series expansions, and physical effects that are
not modeled.

There are two flavors of uncertainty, namely aleatory and epistemic uncertainty. The
first type is irreducible physical variability in a system. An example in the context of
reservoir simulation would be geometrical properties far from the wellbore that cannot
be measured. On the other hand, epistemic uncertainty “is a potential deficiency that is
solely due to a lack of knowledge” Iaccanrino et al. [2009]. This uncertainty is reducible.

Two steps can be made to reduce the uncertainties in applications. Model verification
is the “substantiation that a computerized model represents a conceptual model within
specified limits of accuracy.” The second step, validation, is the “substantiation that a
computerized model within its domain of applicability possesses a satisfactory range of
accuracy consistent with the intended application of the model.” Schlesinger [1979]. For
this thesis, only model verification is within the scope of the project.

17
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2.2 Bayesian Inference

Epistemic uncertainty can be reduced by means of Bayesian inference Kennedy & O’Hagan
[2000]. This consists of updating a hypothesis based upon evidence acquired by data. It
is based upon Bayes’ law (2.1)

px(x|y) =
py(y|x)ρx(x)

py(y)
. (2.1)

The aim here is to obtain the posterior of the hypothesis x given data y. This is equal to
the likelihood of the data py(y|x) multiplied by the prior distribution ρx(x), divided by
the probability py(y). The latter is a shorthand notation for

py(y) ∝
∫

x

py(y|x)px(x) dx. (2.2)

The process of removing a random variable from a distribution is called marginalization.
The denominator can be removed from (2.1), leaving the proportionality

px(x|y) ∝ py(y|x)ρx(x). (2.3)

Two types of methods used to evaluate (2.3) are intrusive methods and non-intrusive
methods. Intrusive methods, like polynomial chaos, require changes to the model code,
whereas non-intrusive methods use multiple deterministic evaluations of the model. The
benefit of intrusive methods such as that of Loeven & Bijl [2008] is that the computa-
tional efficiency can exceed that of non-intrusive methods. However, the large number of
parameters present in the MIPR model requires the usage of non-intrusive methods. Two
of these methods are the Monte Carlo, and Markov Chain Monte Carlo methods.

2.3 Monte Carlo

Evaluating (2.3) requires numerical integration, commonly over a high dimensional space.
Using sampling at regular intervals can become prohibitively expensive because of the
curse of dimensionality. Monte Carlo techniques offer a way around this curse of dimen-
sionality. The integral can be approximated as

∫
f(x)p(x) dx ≈ E

(
1

N

N∑

i=1

f(Xi)

)
. (2.4)

Here Xi denotes the random samples obtained from the prior distribution ρ(x). The
convergence of (2.4) is proportional to 1/

√
N Weinzierl [2000]. This is significant, as

this convergence behavior is independent from the number of dimensions of x. A more
sophisticated method exists to further reduce the number of samples required, namely
the Markov Chain Monte Carlo method.
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2.4 Markov Chain Monte Carlo

The samples Xi in equation 2.4 do not necessarily have to be independent. Markov
Chain Monte Carlo (MCMC) is an extension of Monte Carlo by Metropolis et al. [1953]
that utilizes this property. Essentially, it consists of constructing a chain by accepting
or rejecting random steps that will eventually attain the desired stationary posterior
distribution.

A good introduction to MCMC is found in Diaconis [2009]. In this article, Markov chains
have a stationary distribution π,

∑

x

π(x)K(x, y) = π(y). (2.5)

HereK(x, y) is the matrix that defines the Markov chain, which determines the probability
of step y taken from position x. Then the first theorem of Markov chains states that

Theorem 1: Let X be a finite set and K(x, y) a Markov chain indexed by

X. If there is no so that Kn(x, y) ≥ 0 for all n > n0, then K has a unique

stationary distribution π and, as n → ∞, Kn(x, y) → π(y) for each x, y ∈ X,
Diaconis [2009].

Thus, for large n, the Markov chain will approximate the target distribution π(y). The
initial steps taken from n0 typically display a non-stationary ‘burn-in’ phase, before con-
verging on π(y). This part of the chain must be discarded.

Necessary properties of Markov chains are that these must be irreducible and aperiodic;
all states should be reachable by the chain and the chain should not enter an infinite loop
over a subset of states. Andrieu et al. [2003] Markov chains also display reversibility, in
that the chain can move from x to y and back again.

Whereas Monte Carlo has a straightforward convergence behavior, this is not the case for
MCMC, which is still an area of ongoing research. The mixing behavior of the chain can
provide an indication of the number of steps required, where it is observed how readily
the chain can move over the target distribution.

2.5 Application of UQ in Petroleum Engineering

Uncertainty Quantification is playing an increasing role in the domain of reservoir simu-
lation, but is largely unused in the domain of production technology. The most common
usage of UQ in reservoir simulation is the process of history matching. In this ill-posed
inverse problem, subsurface parameters are updated according to field production data.
Examples of history matching using UQ can be found in Abdollahzadeh et al. [2011] and
Maschio et al. [2009]. An MCMC method is investigated by Hong & Sen [2008] using
4D seismic data. Ma et al. [2008] use a multi-stage MCMCM method. The author has
been unable to find papers where UQ is applied in the domain of production technology.
Expert consultation confirmed that UQ is not frequently used for IPR methods. This
implies that the thesis topic has the potential to make a difference in this field.
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Chapter 3

Problem Definition and Approach

3.1 Thesis Question Relevance

In asking the question whether a MIPR incorporating UQ can lead to a step change in
completion design, it is essential to first understand why completion design matters for
Shell.

As there are increasingly fewer hydrocarbon discoveries, it is imperative to develop ex-
isting fields as effectively as possible. Typically, the amount of hydrocarbons that can
be extracted from a reservoir using primary recovery is on the order of 25% of the total
hydrocarbons present Satter et al. [2008]. Increasing this percentage therefore has a
significant potential. A number of options exist to increase the flow in (1.8), rewritten
here for convenience:

qv =
kh(pr − pwf)

µB
[
ln
(

re
rw

− 0.75 + s
)] . (3.1)

Techniques such as steam flooding and polymer injection can change the average reservoir
pressure, viscosity and relative permeability. Artificial lift such as gas injection can reduce
the bottom hole pressure. Production technologists focus on selecting the best possible
skin, and it is here where this research aims to make a contribution.

Currently there is a trend for more complex completions, which can cost up to one million
dollars S. D. Joshi [1991]. A poorly designed completion requires rework, or can even
render a well useless. Considerable uncertainty exists in the data on which the decision is
made for a certain completion design. In Section 2.5 it is found that although sophisticated
UQ exists in the domain of reservoir engineering, this is not yet the case for the domain
of production technology. Given the costs involved when mistakes are made, this is a
potential area of improvement.

An uncertainty quantified MIPR model could bring about a step change in completion
design, not because it designs completions, but because it efficiently provides information
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used to design completions. As it is computationally efficient, it will provide production
technologists with data earlier on in a project. For instance, provide a quick prediction
before an expensive discretized model run is started. The latter is relevant, as Shell
currently aims to integrate multi-fidelity reservoir and production technology tools into
one single computational framework. Making use of this integrated approach, this thesis
research aims to extend the UQ techniques of Chapter 2 into the production technology
domain.

3.2 MIPR UQ Approach

For a MIPR incorporating UQ to provide a step change in completion design, three aspects
have to be demonstrated. First of all, it must first be shown that MIPR and its Kuchuk
zones are valid models and are candidate substitutes for a discretized model. This is
accomplished in Chapter 4 and 5. Secondly, it must be demonstrated that UQ techniques
can be used to calibrate a MIPR model.

As a MIPR model divides the perforation up into zones, the data should also be ob-
tained at several measurement stations in the perforation. With the advent of fiber optic
measurements as described in Section 1.1.2, this is now a possibility. Fiber optic mea-
surements are an expensive state-of-the-art measurement technique, hence work in this
area has been performed in research rather than field wide operations. As surrogate, a
discretized ‘truth model’ will supply synthetic fiber optic measurements. The MIPR UQ
based on this data will be performed in Chapter 6.

Lastly, it should be shown that the productivity index predictions of the UQ MIPR are
sound. As a discretized ‘truth model’ is used for the creation of data, this same model
can be used to provide ‘truth predictions’ to compare results with. This is accomplished
in Chapter 7.



Part II

MIPR Uncertainty Quantification

and Calibration
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Chapter 4

MIPR Model

In this chapter a description of the MIPR model is given. After the introduction in Section
4.1, the mechanics of the model are described in Section 4.2. Section 4.3 compares the
assumptions of the MIPR model with those of a single-zone Kuchuk IPR and a discretized
model.

4.1 Introduction to MIPR

The assumptions of a Kuchuk IPR are limiting for production technologists. For long
horizontal wells, the wellbore pressure drop cannot always be neglected Novy [1995].
Furthermore, the reservoir is often inhomogeneous in nature. This can require different
completion designs per section of the perforation. A discretized model is an alternative,
albeit at a larger computational cost and set-up time.

An intermediate level of fidelity, incorporating heterogeneity, is intended for production
technologists who need an fast and flexible initial sizing tool. This proxy can then be
used before detailed analysis is performed in a later stage of well development when
discretized models are used. In literature, a variety of approaches can be found. Ryou et
al. [1989] derived a multi-layered reservoir IPR for axial inflow into a vertical well. Lolon
et al. [2008] derived a similar model for radial flow. Yudin & Lubnin [2011] investigated
transient effects for a horizontal multi-layer well. An transient model used to infer skin
distributions from a single gauge well test is made for a homogeneous reservoir by Al-
Otaibi & Ozkan [2005].

4.2 MIPR Model Description

The Multi Point IPR model required by Shell for this thesis is intended to simulate
horizontal wells in the pseudo steady flow regime, making use of Kuchuk IPR models.
As pointed out in Section 1.2.1, the reason for the requirement of Kuchuk IPR models is
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that these offer more degrees of freedom in the position of the completion with respect to
the drainage area than that of older models. An illustration of a Multi Point IPR can be
found in Figure 4.1.

Figure 4.1: MIPR illustration

This model consists of several Kuchuk IPR models in series and can account for reser-
voir inhomogeneity and wellbore pressure drop, along with increased freedom in overall
drainage area shape. Such a MIPR model can already be constructed from the tools
available in the PROSPER production technology software, however, the author has not
been able to find papers in which this particular model is verified.

An illustration of the wellbore network of an MIPR model with three zones is given in
Figure 4.2.

Figure 4.2: MIPR wellbore network topology with three zones

The circles at the top are sources in the reservoir, with fluids flowing through the network
to the bottom hole, which acts as a sink. A network is represented by network connectors,
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on which pressures live. The network connectors are linked by pipe segments, depicted
as horizontal bars in Figure 4.2. Volumetric flow passing through a particular segment is
represented as qi. The vertical IPR segments lie in the reservoir and contain the Kuchuk
IPR models, the equations of which have been described in Section 1.2.2.

4.2.1 Well Network Models

Pipe flow models are inserted into the pipe segments. Out of all pipe models described
in Section 1.1.3, the empirical correlations found by Beggs & Brill [1973] are selected for
this thesis. The reason for this is that these correlations are an industry standard, and
because they differentiate themselves in that they can handle multiphase pipe flows at any
pipe inclination. It is useful to give a brief description of the form of these correlations.

Beggs & Brill [1973] start their work with the energy equation

dp

dZ
= −

[
g

gc
ρtp sin θ + ρtp

νm
gc

dνm
dZ

+ ρtp
dwf

dZ

]
, (4.1)

which has the form of

− dp

dZ
=

(
∂p

∂Z

)

el

+

(
∂p

∂Z

)

acc

+

(
∂p

∂Z

)

f

. (4.2)

The respective terms on the right hand side of the equation are the potential energy
gradient, kinetic energy gradient, and friction dissipation. After rewriting the terms in
(4.1), the final energy equation is written as

− ∂p

∂Z
=

g
gc
sin(α)[ρLHL + ρg(1−HL)] +

ftpGmνm
2gcd

1− [ρLHL+ρg(1−HL)]νmνsg
gcp

. (4.3)

The parameters of (4.1) and (4.3) are given in Table 4.1. The two parameters in (4.3)
that Beggs & Brill [1973] have found experimental correlations for are the liquid holdup
HL and the friction factor ftp. The liquid holdup is defined as the cross sectional area of
the pipe occupied by liquid flow. Extensive correlations have been found for HL for all
multiphase flow regimes, however, for the single phase flow of this thesis, HL is simply
equal to one.

Secondly, the friction factor is addressed. The correlation found for the no-slip friction
factor is

fns =

[
2 log

(
NRens

4.5223 logNRens − 3.8215

)]
−2

, (4.4)

where

NRens =
[ρLλ+ ρg(1− λ)]νmd

µLλ+ µg(1− λ)
. (4.5)
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Parameter Description

d Pipe diameter
ftp Two phase friction factor
Gm Mixture mass flux rate w/Ap
g Acceleration due to gravity
gc Gravitational constant
HL Liquid holdup
w Mass flow rate
wf Friction losses
Z Coordinate along pipe
ρL Density of the liquid phase
ρtp Two phase mixture density ρLHL + ρg(1−HL)
νsl Superficial liquid velocity qL/Ap
νm Mixture velocity (qL + qg)/Ap
νsg Superficial gas velocity qg/Ap
θ Pipe inclination angle from horizontal

Table 4.1: Parameters in pipe model

The no-slip friction factor is correlated with the two phase friction factor by parameter
S:

ftp
fns

= eS , (4.6)

S = ln(y∗)
(
−0.0523 + 3.182 ln(y∗)− 0.8725(ln(y∗))2 + 0.01853(ln(y∗)4)

)−1
, (4.7)

where y∗ is defined by

y∗ :=
λ

(HL(θ)2)
. (4.8)

For a single phase fluid, y∗ = 1, hence S = 0, from which it follows that ftp = fns. With
the description of the pipe models and that of the Kuchuk IPR model, the process of
solving this network can be addressed.

4.2.2 Solution Process

The solution of the wellbore network in Figure 4.2 starts with imposing the boundary
conditions. On each of the sources, the pressure and the type of fluid flowing into the
network are specified. All pressures at the sources are set equal to the average reservoir
pressure. The fluid is described using oil tables of the type found in Appendix B. It will
be shown in Section 5.3 what repercussions this has. Finally, a bottom hole pressure is
specified at the sink.
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The entire network is solved implicitly, but it is useful to describe the solution process
in an iterative manner. The first step is to assume a certain pressure in the wellbore.
Each Kuchuk IPR model can then use the pressure difference to determine the volumetric
flow q flowing through each Kuchuk IPR segment. Next, a control volume can be drawn
around each network connector, in which conservation of mass holds. Consequently the
flows through each of the pipe segments are known. These flows can then be inserted into
the pipe model equation (4.3), which consequently calculates the pressure drop. Starting
from the pressure at the bottom hole, each of the upstream network connectors can then
have its pressure updated. From here the next iteration can start. One complication is
that the fluid properties are pressure dependent, these are retrieved from tables for each
individual pipe segment. This is also called a ‘fluid flash’ calculation. For the single phase
fluid of this thesis, this nonlinearity is weak. Instead of the iterative description above,
this thesis uses an implicit first order Newton-Rhapson solution method, which is detailed
in Appendix A.3.

Significantly, when the MIPR model will be verified against discretized models, the same
well network construction method is used. The number of network connectors and sources
on the other hand will be larger. Instead of the Kuchuk zones, the wellbore network is
attached to each perforated cell using a Peaceman inflow model described in Appendix
A.2. Hence discrepancies between the two models can primarily be attributed to a different
description of reservoir flow rather than wellbore flow, the former being the primary
interest of this thesis.

4.3 MIPR Assumptions

Returning to Figure 4.2, each of the zones can accommodate its own permeability’s and
skins. At the expense of this increase of functionality, it requires the placement of no-flow
boundaries between the different zones. Therefore, it assumes radial flow in all but the
zones at either end.

The assumptions of the three models are compared in Table 4.2

Assumption Kuchuk MIPR DM

Steady state
√ √ √

Single phase
√ √ √

Isothermal
√ √ √

Compressible × × √

Gravitational force × × √

Wellbore pressure drop × √ √

Principle flow directions on axis
√ √ √

Horizontal box domain
√ √ √

No homogeneous domain required × √ √

No long perforation required w.r.t. Lz × × √

No artificial no-flow boundaries in domain
√ × √

Table 4.2: Assumptions of the Kuchuk, MIPR and discretized model
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Summarizing, the Kuchuk model does not incorporate a wellbore pressure drop or hetero-
geneity in the permeability. The MIPR model does not have these restrictions, however,
this comes at the expense of artificial no-flow boundaries in the domain. A discretized
model has neither of these two drawbacks. In Chapter 5, the effect of these different
assumptions is investigated.



Chapter 5

MIPR Verification

Verification of the MIPR model can be achieved by several different means. The main
challenge of verifying the MIPR model lies in the fact that it has a large number of
parameters. The goal of the verification is to assess within which range the MIPR lies
compared to a reference discretized model. For simple domains, a single zone Kuchuk
model can be included as an extra model. Verifying the Kuchuk model itself is significant,
as this model is used for each of the zones in the MIPR model.

The verification is performed in three steps. Firstly, the effect on the number of zones in a
homogeneous permeability MIPR box domain is investigated with respect to a discretized
model in Section 5.1. In this verification step, the gridding error of the discretized model
will also be investigated. The second step in Section 5.2 will involve a similar homogeneous
box verification between the three models, over the entire parameter space of the MIPR
model. The last verification step in Section 5.3 will involve a more complex MIPR, with
a different permeability in each zone, which is then verified against a discretized model
with a similar domain.

5.1 Model Gridding Verification

In Section 5.1.1 the discretization error of the discretized model is analyzed. The effect
of the number of zones of the MIPR model is investigated in Section 5.1.2. The quantity
of interest is the productivity index. There are two kinds of productivity indexes; the
overall PI, or the distributed PI, denoted as PIL. The overall PI is the ratio of well flow
and drawdown at the bottom hole location. The PIL is a local PI per unit length of
perforation.

5.1.1 Discertized Model Grid

A mesh convergence analysis is performed for a discretized model with parameters found
in 5.1, which have been taken from the case studied by Goode & Kuchuk [1991].
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Parameter Value Unit

kx 4.93E-14 [m2]
ky 4.93E-14 [m2]
kz 4.93E-14 [m2]
xw 609.6 [m]
yw 609.6 [m]
zw 7.62 [m]
Lx 1219.2 [m]
Ly 1219.2 [m]
Lz 15.24 [m]
Lwh 457.2 [m]
s 0.0 [−]
rw 0.0762 [m]
pr 2.4821E7 [Pa]
pfw 2.4132E7 [Pa]

Table 5.1: Verification domain of MIPR and discretized model gridding investigation

The black oil fluid used can be found in Appendix B. The effect on the number of cells
on the PI is shown in Figure 5.1.

It is found that the PI error has converged to within 2.0E−11 % at 10,000 cells. For
this study, an orthogonal grid of 14,415 cells is used: [31, 31, 15]. The slope of the line
in Figure 5.1 is −0.9, confirming that a first order discretization is used. The outlier
that is observed can be attributed to the effect when the ends of the perforation are only
perforating a cell by a small length; for this point it was 9 meters as opposed to a cell
length of 31 meters. Ultimately, this discretized model will not be convergent, as the
Peaceman inflow model correlating the pressures in a perforated cell with the wellbore
pressure will fail when cell length scales approach that of the wellbore radius.

The effect on the number of cells can also be observed on PIL, as seen in Figure 5.2

It is observed that increasing the number of cells containing the perforation will cause the
PIL to converge to a U-shape profile. To either edge of the perforation, a hemispherical
inflow is observed. Towards the center regions, radial inflow exists.

5.1.2 MIPR Zones

Increasing the number of MIPR zones has an entirely different response. Taking the same
parameter set from Table 5.1, the overall PI zone convergence plot is displayed in Figure
5.3.

Unlike Figure 5.1, it does not converge when the number of zones are increased. It
does, however, approximate the PI of 2.78E − 9 calculated by the discretized model. An
explanation for the curve in Figure 5.3 can be found when observing the effect on the
distributed PIL in Figure 5.4

It can be seen that the profile with only four zones mimics the discretized model better
than that with 11 zones. This is because every zone introduces a new artificial no-flow
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Figure 5.1: Discretized model grid convergence for PI

boundary in the domain. This causes the two end-zones to have hemispherical inflow,
while the middle zones can only model radial inflow. Increasing the number of zones
decreases the size of the zones at the end, meaning that the MIPR model assumes radial
flow closer to the perforation edge than there is in reality.

After increasing the number of zones to 11, the PI begins to decrease again. What is
being observed here is that the error in no-flow boundaries is being counteracted by the
increased inflow resolution along the wellbore. In a Kuchuk model, the inflow occurs only
at one point at the center of the perforation. In the MIPR model, increasing the zones
will imply an increasingly more realistic inflow into the perforation. From the description
of the wellbore network in Section 4.2, it is seen that there will be more pipe segments
and more inflow points.

To conclude, it is found that the MIPR should be used with end-zones that contain a
significant percentage of the perforation length. For this thesis, this is taken to be twenty
percent.
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Figure 5.2: Discretized model grid convergence for PIL

5.2 Homogeneous Drainage Area Verification

The verification of the MIPR model against the Kuchuk and discretized model is per-
formed in two steps. Firstly, the effect of changes in individual parameters is studied.
Later, a Latin hypercube sampling technique is applied to study the overall error for a
certain parameter space.

5.2.1 Individual Parameter Verification

Four individual parameter variations are performed. The well position xw, yw and zw are
varied, and lastly the perforation length. The latter grows into the domain starting from
one of the boundaries. A non-dimensional form will be used as in Table 5.2.

The results for changing these parameters are found in Figure 5.5. As expected, the
Kuchuk model performs better than the MIPR model for this homogeneous case.

What can be seen in the figure in the top left hand corner, is that the MIPR performs
best when the perforation is placed in the center. For the case of a perforation to the
side of the drainage area, there is a large part of the end zone without a perforation. The
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Parameter Definition Value range

xwn
xw−Lwh

Lx−2Lwh
0.05-0.95

ywn
xy

Ly
0.05-0.95

zwn
xz

Lz
0.05-0.95

2Lwhns

2Lwh

Lx
0.05-0.95

Table 5.2: Non-dimensional parameter definition

zonal pressure used here is then too low, whereas the completely perforated zones have
an average pressure that is too high.

When varying ywn, the discretized model shows a reduction in PI as the perforation moves
towards the top of the drainage box. The reason for this is the absence of a gravitational
force in the Kuchuk and MIPR model.

The limitations of the MIPR model are best visible in the response to a change in the
perforation length, as can be seen in the bottom right figure. When the perforation length
is increased the PI increases linearly, as the average zone pressure is equal to the total
average reservoir pressure. The Kuchuk and discretized model do not have this limitation,
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Figure 5.4: MIPR zone convergence for PIL

and show a more curved response.

5.2.2 Latin Hypercube Sampling

In Section 5.2.1 it has been shown that the MIPR, Kuchuk and discretized models agree
to within a certain PI range. To determine to which degree precisely, a Latin hypercube
sampling method is utilized for the parameter space in Table 5.3, using a uniform distri-
bution. A good description of Latin hypercube sampling can be found in Helton & Davis
[2002].

Figure 5.6 shows the percentage offset in PI of Kuchuk and MIPR from the results of
the discretized model. In this figure, the 10th, 25th, 75th and 90th percentiles are plotted,
with the median represented by the horizontal bar in the center. It can be seen that the
Kuchuk model systematically overpredicts the PI by about nine percent. From the model
investigation in Chapter 4, this overprediction can be attributed to several effects, namely
the assumption of incompressibility, gravity and wellbore dynamics in the Kuchuk model.
The MIPR model performs worse; it overpredicts by around twenty percent, with a larger
spread in results. This can be attributed to the incorrect assumption that the average
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Figure 5.5: PI verification for individual parameters

Parameter Min Value Max Value Unit

kx 3.95E-14 5.92E-14 [m2]
ky 3.95E-14 5.92E-14 [m2]
kz 3.95E-14 5.92E-14 [m2]
xwnd

0.4 0.6 [−]
ywnd

0.4 0.6 [−]
zwnd

0.4 0.6 [−]
Lx 1000 1400 [m]
Ly 1000 1400 [m]
Lz 14 16 [m]
Lwhnd

0.3 0.5 [−]
s 0.0 2.0 [−]

Table 5.3: Verification sample space
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Figure 5.6: PI Kuchuk and MIRP percentage offset from a discretized model

zonal reservoir pressure is equal to the total average reservoir pressure, as will be shown
in Section 5.3.

5.3 Heterogeneous Drainage Area Verification

In Section 5.2 a verification is performed for the homogeneous domain. However, MIPR
is intended for use in cases where there are variations in zonal parameters. A verification
over a domain with heterogeneity in the x direction is therefore required. The Kuchuk
model can not be used in this case, thus a comparison is now only made between MIPR
and the discretized model. These two models are constructed in such a way that the two
domains are as similar as possible. The MIPR zone interfaces correspond with cell-to-cell
interfaces in the discretized model. The range of cells corresponding to a MIPR zone have
the same zonal permeability assigned. With this setup, the effect of zone-to-zone flow can
be investigated. Tables 5.4 and 5.5 describe the parameter set over which the verification
is performed.
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Parameter Unit Value

Lx [m] 2400.0
Ly [m] 1600.0
Lz [m] 22.0
xw [m] 1200.0
yw [m] 800.0
zw [m] 11.0

Ψh [−] 1.0
Ψv [−] 0.1

Table 5.4: Global heterogeneous verification domain of a MIPR and discretized model

Zone Lxi
[m] 2Lxi

[m] ktoti [Darcy]

1 720 320 0.3
2 160 160 0.45
3 240 240 0.25
4 80 80 0.15
5 400 400 0.2
6 800 400 0.3

Table 5.5: Zonal heterogeneous verification domain of a MIPR and discretized model

In Table 5.4, Ψ denotes the permeability anisotropy. Ψv = 0.1 implies that the perme-
ability in axial direction is ten times as large as permeability in horizontal direction.

The distributed PIL plot can be seen in Figure 5.7. What can be observed for the MIPR
model is that the PIL profile shape shows a reasonable comparison with that of the
discretized model, with the second end zone performing the worst. In this zone, which
has the highest permeability, the MIPR model significantly overpredicts the PIL. In
Chapter 4, it is shown that the average zonal pressure equals the total average reservoir
pressure. This assumption can be a source of error that can lead to this result. The
average zonal pressures from the discretized model can be used to find the error in the
MIPR drawdown, tabulated in Table 5.6.

Zone 1 2 3 4 5 6

MIPR drawdown error [%] -6.55 14.76 13.88 10.76 6.19 -17.33

Table 5.6: Error in MIPR drawdown

A positive error means that the predicted drawdown is too large, and vice versa. Indeed,
the assumption of a zonal average pressure equal to the total average pressure is large
for the second zone. This makes sense, as a higher permeability would naturally cause
the pressure to drop more than that of a low permeability region. For the last zone, the
predicted drawdown is too small. With a correct MIPR drawdown, the MIPR prediction
would actually be larger than it currently is.

These errors are in a sense unavoidable with the model in its current form. Corrections
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can be made only when the solution is known, which would defeat the purpose of making
these corrections. Model calibration is a solution to this problem, where artificial pressure
drops in the form of skins can be inserted in to the Kuchuk model to correct for the errors
in zonal drawdown.

5.4 Conclusion

It is found that for the homogeneous box domain of Table 5.3, the MIPR overpredicts
the discretized model by around twenty percent when compared to a discretized model.
A Kuchuk model has an overprediction of nine percent. Therefore, a MIPR model can
used best only for those cases where reservoir heterogeneity along the x axis exists, and
where an enhanced wellbore treatment is required. These results also imply that an MIPR
model should ideally not be used as a completely stand-alone tool.

The MIPR model is not convergent, due to the placement of artificial no-flow boundaries in
the domain. The length of end zones play a significant role in modeling the transition from
hemispherical to radial inflow. For this thesis, the choice is made to let the length of the
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perforation in the end zone be twenty percent of the total length of the perforation. This
forms the main limitation on selecting the MIPR zones. The outcome of this verification
is significant, as prior to this research, it was expected that zone-to-zone flow would be
negligible. The verification work during this research will therefore have a large impact
for customers of this model.

For a heterogeneous verification, MIPR shows a large overprediction with respect to the
discretized model, which can primarily be attributed to the assumption that the average
zonal pressure is assumed equal to the total average reservoir pressure. On the other
hand, the actual shape of the PIL distribution is similar.

It can be concluded that a uncalibrated MIPR by itself is useful, but not accurate enough
to lead to a step change in completion design. In the next chapter, it is determined if this
can be changed by introducing UQ.
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Chapter 6

MIPR Calibration

In Chapter 5 it has been found that the MIPR model can be used as an intermediate
fidelity model. The model has been shown to have a tendency to overpredict the PI on
the order of twenty percent, for the particular experiment that has been performed. The
model, if used as is, will therefore not facilitate a step change in completion design. It
should then be determined if a MIPR model can be calibrated, and if this would then
lead to a positive answer to the thesis research question.

In Section 6.1, the calibration approach is described. This is followed by a description
of how UQ will be applied in Section 6.2. In Section 6.3, results of the calibration are
presented. Lastly, in Section 6.4 an additional investigation into the MCMC method is
made.

6.1 Calibration Approach

6.1.1 Model and Data

The heterogeneous model described in Section 5.3 is used for the calibration in this chap-
ter. When performing a calibration, the data must have a form such that it can be
predicted by the model to be calibrated for a chance of a unique solution. MIPR makes
predictions of the PIL at several points along the perforation. With the advent of fiber
optic data, as described in Section 1.1.4, distributed productivity index measurements
are becoming possible. As these techniques are still in an experimental phase, synthetic
data will be used for thesis. For this, a discretized ‘truth’ model will be used. From the
discretized model, PIL distributions are obtained, to which measurement noise will be
added.

6.1.2 Parameter Selection

The total list of model parameters in the MIPR model are {kxi
,xw,Lx, Lx, µ,Bo, s},

whereas the primary variables are qv and p. Here the subscript i denotes the zone in

43
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question, while the remaining parameters concern the ‘global’ parameters. The MIPR
parameters need to be placed into three sets; the epistemic parameters to be updated,
the aleatory parameters, and parameters which are to be treated as deterministic.

As there is only one datum per zone, there should ideally be only one epistemic parameter
to have a chance of a unique solution. The aim of the calibration is to reduce the model
error. The parameters traditionally used to achieve this are calibration skins, denoted as
sβ. These model the pressure drops caused by physics not resolved in the IPR model, such
as non-radial flow. Alternative parameters, such as permeability, are not good candidates.
Permeability’s are already measured using well logs and other techniques mentioned in
Section 1.1.4. Updating these parameters will not be very informative, as MIPR has a
nontrivial model error that would need to be taken into account. It is best to update sβ,
which represents the model error itself.

The remaining set of parameters is either aleatory or deterministic. The parameters µ and
Bo are omitted from the set of aleatory parameters, as the black oil fluid used in DRMS
does not lend itself for the parameterization within the constraints of the thesis project.
Next, xw and Lx are removed as well from the list, such that the grid and zones remain
synchronized. Lastly, the three permeability’s are reduced to one per zone to shorten
the list and hence reduce the computational cost. This is accomplished by introducing
an uncertain anisotropic permeability k that is multiplied with a fixed anisotropy. The
uncertainties in the state parameters pr, pwbi and qi are represented as measurement
uncertainty. Hence the aleatory parameter set α becomes

α =





ki
Ly

Lz

yw
zw





. (6.1)

These will then have the values in Table 6.1 and 6.2. According to the sources from
Section 1.1.4, the length scales are proportional to the seismic data uncertainty. The
permeability’s have a distribution proportional to the measurement uncertainty of well
logs.

Parameter Unit Value σ

Ly [m] 1600.0 80.0
Lz [m] 22.0 0.1
yw [m] 800.0 5.0
zw [m] 11.0 0.05

Table 6.1: Prior distributions for the global domain

The prior of sβ is taken to have low informative value, as it has been found in Chapter 5
that there is a large spread in MIRP predictions:

sβ ∼ N(0, 20) [−]. (6.2)
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Parameter Unit Value σ

k1 [Darcy] 0.3 0.01
k2 [Darcy] 0.45 0.01
k3 [Darcy] 0.25 0.01
k4 [Darcy] 0.15 0.01
k5 [Darcy] 0.2 0.01
k6 [Darcy] 0.3 0.01

Table 6.2: Zonal prior permeability distributions

When inserted into the MIPR model, the prior contains the entire range of physically
plausible PIL predictions, as will be shown in Section 6.3.1. Finally, the measurement
uncertainty is assumed to be that of (6.3)

σD = 1 · 10−12 [PI/m]. (6.3)

Fiber optic data is still in an experimental stage, and literature on measurement accuracy
is scarce. After expert consultation, the author was advised to use the approximation in
(6.3).

6.1.3 Sensitivity Study

A sensitivity study is performed to investigate the sensitivities of the epistemic and
aleatory parameters. The effect on PIL for the uncertainty distributions of Table 6.1
and 6.2 are investigated. In this sensitivity study, the skin is distributed as s ∼ N(0, 2).
Only the results of the smallest and widest zone are plotted in Figure 6.1 and 6.2; that
of zone four and six.

It is evident that PIL is sensitive to sβ. The next most significant parameter is that of
Lz, followed by k. The distribution in PIL due to sβ is wider for the larger zone six. It
is therefore expected that the calibrated skin distribution will be narrower for zone six
than it will be for zone four.

6.1.4 Calibration Approach

The calibration is split up into two parts. The first part is a verification of the calibration
method itself. For this, only measurement uncertainty is incorporated. The aleatory
parameters identified in Section 6.1.1 are to be treated as deterministic. As the prior
contains little information, it is expected that the predicted PIL will have the means and
standard deviations of the data.

The second calibration in Section 6.1.2 includes the full aleatory uncertainty. Here, it is
expected that the predicted PIL will have a larger spread than that of the data.
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Figure 6.1: Sensitivity study for aleatory and epistemic parameters on PIL for zone number
four

6.2 Calibration Theory Application

In this section, the methodology for a deterministic calibration, and subsequently a
stochastic calibration is outlined.

6.2.1 Deterministic Calibration

A deterministic calibration of a MIPR model using local fiber optic PIL measurements
can be accomplished analytically. The Kuchuk PI equation, (1.33) consists of two parts

JM :=
c1
c2
, (6.4)

where

c1 :=
2π
√

kxkyLz

Boµ
. (6.5)
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Figure 6.2: Sensitivity study for aleatory and epistemic parameters on PIL for zone number
six

This model should be calibrated with PIL data obtained from measurements, JD, by
means of a calibration skin, sβM

JD =
c1

c2 + sβM

. (6.6)

Combining (6.4) and (6.6) and rewriting in terms of sβM
,

sβM
= c1

(
1

JD
− 1

JM

)
. (6.7)

The subscript M stands for the MIPR model. Potentially, this method can also be used
for the calibration of a discretized model in an iterative manner.

6.2.2 MIPR Bayesian Inference

The aim of the UQ MIPR is to use Bayesian inference to calibrate the model with data
from fiber optic measurements. Bayes’ rule found in (2.3) can be rewritten for the case
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described in (6.7) as

pβM
(βM |JD) ∝ pJ(JD|βM )ρβM

(βM ). (6.8)

Here β represents the set of epistemic calibration skins. The likelihood of pJ(JD|βM )ρβ(βM )
can be approximated by

JD = JM + ǫ, ǫ ∼ N(0, σ2
D), (6.9)

where ǫ is the measurement error. Equation (6.8) can then be written as

pJ(JD|βM ) ≈ exp

(−(JM (βM )− JD)
2

2σ2
D

)
. (6.10)

In (6.10), σD is the standard deviation used to account for measurement uncertainty.
The productivity index JM is calculated for a set of deterministic domain and boundary
parameters.

A more involved scenario is required to solve the thesis research question, as the aleatory
parameter set α from Section 6.1.2 is included. Equation (6.8) is then written as

pβM
(βM |JD ∩ α) ∝ pJ(JD|(βM ∩ α))pα(α|βM )ρβM

(βM ). (6.11)

Here the likelihood of pα(α|βM ) is equal to

pα(α|βM ) = pα(α). (6.12)

This holds as α⊥βM ; the prior belief is that the distributions of the calibration skins β
are centered at zero no matter what the state of the aleatory parameters is.

In (6.11) the likelihood of pJ(JD|(βM ∩ α)) is written as

pJ(JD|βM ∩ α) ≈ exp

(−(JM (α, βM )− JD)
2

2σ2
D

)
. (6.13)

The marginalization of pJ(JD|βM ∩ α)pα(α) is addressed in Section 6.2.2.

MCMC With Aleatory Marginalization

The procedure for a MCMC approach to solve (6.11) using a Hastings [1970] transition
kernel is written as follows

1. Set βMi
to βM0

at iteration i = 0

2. Generate candidate step β′

M from βMi
, according to a normal distribution with a

mean βMi
and a variance tuned to generate the right acceptance ratio (20% to 50%).
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3. Generate a random sample U from the uniform unit distribution [0, 1]

4. Evaluate

U ≤ min

{
1,

pβ(β
′

M |(JD ∩ α))pα(α)pβ(βMi
|β′

M )

pβ(βMi
|(JD ∩ α))pα(α)pβ(β

′

M |βMi
)

}
, (6.14)

if this is true, accept the candidate step such that βMi+1
= β′

M , set βMi+1
= β′

M .
Otherwise, βMi+1

= βMi
.

5. Continue previous three steps until a steady state solution is obtained. Discard the
initial ‘burn-in’ part of the chain.

For the fourth step, an MC marginalization is performed over the space of α, for every
βM evaluation.

Partitioned Aleatory/Epistemic MCMC Marginalization

The evaluation procedure in 6.11 is computationally expensive. If the number of β itera-
tions is Nβ and for the MC marginalization Nα, then the total number of solves required
is

Ntot = NβNα. (6.15)

For the MIPR model, one iteration takes 0.3 seconds, and for the discretized model this is
up to ten seconds. An approach to reduce the number of iterations has been investigated,
with mixed results, as will be revealed in Section 6.3.1.

Instead of the sequential approach with acquiring a new β and performing the marginal-
ization, an integrated approach is desired with a single MCMC method with the state
Φ:

Φ =

{
α
βM

}
. (6.16)

Notice that state 6.16 includes both the aleatory and epistemic parameters. A traditional
solution such an MCMC problem, where Φ′ is obtained from Φi, would cause the aleatory
parameters α to be updated as well, which is not desired. A solution to this problem is
to treat α and β separately in a ‘partitioned MCMC’.

1. Set Φi to Φ0 at iteration i = 0

2. Generate candidate step β′

M from βMi
, according to a normal distribution with a

mean βMi
and a variance tuned to generate the right acceptance ratio (20% to 50%)

for a new chain step candidate.

3. Generate random sample α′ directly from the distribution of α
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4. Generate a random sample U from the uniform unit distribution [0, 1]

5. Evaluate

U ≤ min

{
1,

pβ(β
′

M |(JD ∩ α′))pα(α
′)pβ(βMi

|β′

M )

pβ(βMi
|(JD ∩ α′))pα(α′)pβ(β

′

M |βMi
)

}
, (6.17)

if this is true, accept the candidate step such that βMi+1
= β′

M , set βMi+1
= β′

M .
Otherwise, βMi+1

= βMi
. Then Φi+1 = {βMi+1

, α′}. The α component of Φ does
not need to be stored, as the stationary distribution of this is already known.

6. Continue previous three steps until a steady state solution is obtained. Discard the
initial ‘burn-in’ part of the chain.

If the α component is drawn not from the previous step, but directly from its random
distribution, it will have a stationary distribution as well, albeit uninfluenced by the data.
The inclusion of α in Φ does increase the uncertainty in the posterior of β, as would be
expected. If the number of samples NΦ has the property that

NΦ ∝ Nβ, (6.18)

then the performance increase has the proportionality of

Ntot

NΦ
∝ NβNα

Nβ

= Nα. (6.19)

The results of both MCMC approaches with aleatory marginalization are compared in
Section 6.3.2.

6.3 Results Bayesian Inference

Before the results of the case with full aleatory uncertainty are presented, the case with
only measurement uncertainty is addressed. This is a means to verify the calibration
procedure.

6.3.1 Calibration Method Verification

The calibration that incorporates only measurement uncertainty is performed on the
MIPR model. This provides a check to see if this model can indeed be calibrated with
sβ. It is expected that the posterior distribution will correspond with that of the data.

The posterior and calibrated skins for the case where there is only measurement uncer-
tainty are found in Figure 6.3.

It can be observed in Figure 6.3 that the posterior distributions of some calibration skins
are larger than others, especially that of the fourth zone. This is because Lx4

is shorter
than that of other zones, causing the PIL to be less sensitive to a change in skin.
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Figure 6.3: sβ with measurement uncertainty only, 19487 samples

In Figure 6.4, the predicted PIL is shown. The range above the prior median has not
been plotted. It is seen that the mean of the posterior coincides with that of the data, as
the influence of the prior is small. As expected, the spread of the posterior approximates
that of the data; it has a standard deviation of 1.0E− 12.

6.3.2 Calibration Results with Aleatory Uncertainty

Two approaches for determining the calibration posterior are investigated. The first is
the conventional MCMC, where alpha is marginalized using MC for every MCMC step.
The second is the ‘pMCMC’ method, as described in Section 6.2.2.

MIPR with Full Uncertainty

The calibration skins for a MIRP calibration with both epistemic and aleatory uncertainty
are found in Figure 6.5.

The number of MCMC steps is 2984, each with an MC integral of 25 samples. The latter
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Figure 6.4: Predicted PIL with measurement uncertainty only, 19487 samples. The upper-
most line of prior represents the median, the region above has not been plotted

is taken to be small to limit the computational cost. The subsequent PIL prediction is
depicted in Figure 6.6.

It can be seen that the predicted PIL posterior has a larger spread than that of the data,
as the combined aleatory and measurement uncertainty is larger than just that of the
measurement uncertainty. For some zones, the median of the data is slightly lower than
the median of the prediction. This can be attributed to the slight effect of the prior
distribution.

pMCMC Evaluation

The calibration skins using the pMCMC method are found in Figure 6.7.

The posterior distribution is close to that of the MCMC approach, but shows slight
differences in distributions and median values. This does not necessarily mean that the
results of pMCMC are incorrect. These slight differences could potentially be attributed
to residual errors that could be reduced if more computational power is available and the
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Figure 6.5: sβ with full uncertainty, 2984 MCMC samples

number of MCMC steps is increased. A further investigation into pMCMC is required to
reach a conclusion, which is performed in Section 6.4.

6.4 Analysis of pMCMC

The pMCMC and MCMC method have both been used to calibrate the MIPR model,
with only slight differences observed between these two methods. In this section, an
additional investigation into pMCMC is performed to conclude whether this method can
be used or not. First of all, the effect on the acceptance of a step is investigated in Section
6.4.1. Secondly, a simple problem is used to observe the difference between MCMC and
pMCMC in Section 6.4.2.

6.4.1 Step Acceptance Comparison Between MCMC and pMCMC

In this section it is shown that that there is indeed a difference in the acceptance criterion
between the MCMC and pMCMC model.
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Figure 6.6: Predicted PIL for full uncertainty, 2984 samples. The uppermost line of prior
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Say the state Xi is the same for both MCMC and pMCMC. A candidate step Y as in
Figure 6.8 is evaluated using the two methods. A sample U0 is drawn from the uniform
unit distribution [0,1]. For MCMC, the acceptance Boolean ξ will be

ξMCMC(Xi, Y, α, (U0 < Uacc)) = false, (6.20)

ξMCMC(Xi, Y, α, (U0 > Uacc)) = true. (6.21)

Here Uacc is the smallest value of U0 to lead to the acceptance of the new step for the
MCMC method.

In the case of pMCMC, there is a subtle difference. The acceptance criterion is now a
function not of the distribution α, but a particular sample drawn from this distribution,
αN :

ξpMCMC(Xi, Y, αN , U0). (6.22)
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Figure 6.7: sβ with full uncertainty calculated with pMCMC, 16489 samples

Y Xi
x

p(
x)

Figure 6.8: Candidate steps

Now as α is Gaussian, there is a subset α̂1 ⊆ α, from which an αN ∈ α̂ is drawn, such
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that

ξpMCMC(Xi, Y, αN , U0) = true for αN ∈ α̂1 and (U0 < Uacc), (6.23)

ξpMCMC(Xi, Y, αN , U0) = false for αN /∈ α̂1 and (U0 < Uacc). (6.24)

Where Uacc is retained from the previous MCMC example.

Casually speaking, the set of α̂ is a region with low likelihood that dominates over the
fact that the candidate epistemic state increases the likelihood. What this demonstrates
is that there is a chance that the pMCMC can take steps which would not have been
taken with the MCMC method. Significantly, while the acceptance criterion is different,
it does not necessarily imply that the posterior distributions are different as well for both
methods. Possibly, these different steps can cancel in such a way that the same distribu-
tion is attained. From here there are two ways to verify the pMCMC method, one using
more experiments, and secondly, a mathematical proof. The author has continued with
experimentation, and recommends the proof for follow-up research.

6.4.2 Simple pMCMC Experiment

The outcomes of MCMC and pMCMC in Section 6.3.2 show a small difference that can
be explained either by an error in the methods, or a residual effect due to limited samples
having been taken. In this section, a computationally inexpensive problem is used to
compare the two methods.

Let f be a model composed of two random variables a and b:

f = a+ b (6.25)

Where the prior distributions of a and b are both unit normal distributions

ρ(a) ∼ N(0, 1), (6.26)

ρ(b) ∼ N(0, 1). (6.27)

Say that an observation fd is made on f , where

fd ∼ N(0.5, 1.5) (6.28)

If a and b are both treated as epistemic, these can be updated to find the posterior
distributions

p(a|fd) ∼ N(0.1169, 0.8745), (6.29)

p(b|fd) ∼ N(0.1177, 0.8740). (6.30)
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Note that because of the symmetry in (6.25), both posterior distributions are equal, save
for a small residual.

Now let a be aleatory, and only b epistemic. Several experiments are done, each with 1E7
samples, but some with a larger number of samples in the a plane. The results for the
posterior b distribution are found in Table 6.3.

# MC samples 1 (pMCMC) 10 100 1000
# MCMC samples 1E7 1E6 1E5 1E4

mean experiment set 1 0.1334 0.1327 0.1250 0.1590
mean experiment set 2 0.1335 0.1330 0.1346 0.1362
mean experiment set 3 0.1341 0.1323 0.1380 0.1286
mean experiment set 4 0.1329 0.1331 0.1337 0.1102

σ experiment set 1 0.8558 0.8559 0.8527 0.8506
σ experiment set 2 0.8564 0.8571 0.8857 0.8600
σ experiment set 3 0.8568 0.8566 0.8486 0.8480
σ experiment set 4 0.8564 0.8568 0.8528 0.8681

Table 6.3: Posterior b for the aleatory and epistemic case

It can be seen that the means have a higher value than those of the case without aleatory
parameters. This makes sense, as b requires a larger shift to let f move in the direction
of the data at 0.5.

The spread in calculated means from pMCMC until an MCMC with 1000 samples in the
a space is seen to increase. This is logical, as the number of MCMC steps is decreasing
from 1E7 to 1E4, implying that the latter will have a larger residual error. However, all
experiments have a comparable mean of 0.133, independent of the number of MC steps.
Significantly, this appears to suggest that pMCMC is a promising method that is more
efficient than MCMC.

6.5 Conclusion

It can be concluded that a MIPR model calibration can be performed for the case of
measurement uncertainty only, as well as that of combined measurement and aleatory
uncertainty. In the case of only measurement uncertainty, the distributed PIL posterior
of the MIPR model approximates that of the data. For the case where aleatory uncertainty
is included as well, the predictions have a larger spread than that of the data.

A pMCMC method is proposed that is significantly more efficient than a MCMC method
with explicit aleatory parameter marginalization. Experiments performed on a simple
example problem and on the full scale MIPR model calibration suggest that this method
gives promising results.

Overall, the results show that a MIPR calibration can be performed. This by itself is
not yet sufficient to answer the thesis research question. To determine whether a UQ
MIPR model can lead to a step change in completion design, PIL predictions with these
calibrated models must be made for different completion designs. In Chapter 7, it will be



58 MIPR Calibration

demonstrated if these calibrated models indeed predict the effect of inserting completion
skins.



Chapter 7

MIPR Prediction

In Chapter 6, it is shown that a MIPR can be calibrated using fiber optic data. How well
this calibrated MIPR can predict changes in completion skin has not yet been tested, this
is the objective of this chapter. If predictions of the calibrated MIPR match the response
of the truth model, it would indicate that a MIPR can indeed bring about a step change
in completion design.

Two types of predictions will be made. The first features a homogeneous completion skin
profile, the second a heterogeneous completion skin profile.

7.1 Prediction for a Homogeneous Completion Skin Profile

The homogeneous skin profile that is inserted is given by 7.1

sc = {2, 2, 2, 2, 2, 2}. (7.1)

The six completion skins are listed from heel to toe. The resulting PIL prediction is found
in Figure 7.1.

The circles indicate the prediction made by the truth model, from which the fiber optic
data is distilled. It can be seen that the real change in PIL falls within the prediction
of the calibrated MIPR model. For a homogeneous completion skin change, a calibrated
MIPR model can therefore be used as a predictive tool.

7.2 Prediction for a Heterogeneous Completion Skin Profile

In Section 7.1 it is found that a homogeneous skin change can be predicted by a calibrated
MIPR model. In some cases, production technologists need to insert a heterogeneous
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Figure 7.1: PIL prediction for homogeneous skin with full uncertainty, 2984 samples.

completion skin, for instance if certain zones require different sand inflow treatment than
adjacent zones. A heterogeneous completion skin profile tested according to (7.2),

sc = {1, 3, 1, 3, 1, 3}. (7.2)

The predicted PIL for this completion skin profile is given in Figure 7.2.

Contrary to the homogeneous skin prediction, the truth lies just outside the outer edges of
the uncertainty bounds of the calibrated MIPR prediction. It can be concluded that the
calibrated MIPR model cannot predict the change in PIL for a heterogeneous completion
profile. This is because a heterogeneous completion skin profile changes the zone-to-zone
flow pattern to which the MIPR model is calibrated. Fluids tend to flow around zones
where flow is inhibited, to an adjacent zone. The MIPR does not incorporate these
zone-to-zone flows.
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Figure 7.2: PIL prediction for heterogeneous skin with full uncertainty, 2984 samples.

7.3 Conclusion

It has been found that a MIPR can be calibrated, and can predict PIL changes for a
homogeneous skin profile. However, for a heterogeneous skin profile, the predictions are
outside the 10th and 90th percentile, due to changes in zone-to-zone flows in the discretized
model. It can still be said that a calibrated MIPR will perform better than an uncalibrated
MIPR for predicting heterogeneous skin profiles.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The objective of this thesis is to determine if a MIPR using Uncertainty Quantification
can lead to a step change in completion design. An answer can be obtained by collecting
and analyzing the conclusions from Chapters 4 through 7.

It is found in Chapter 4 that a MIPR can be constructed from several Kuchuk IPR zones
coupled with a wellbore network, for an incompressible, isothermal, single phase, pseudo
steady flow. The benefit of a MIPR model over a single zone Kuchuk model is that
it allows more freedom in the shape of the drainage area, it can handle heterogeneous
permeability fields along the direction of the perforation, and it allows a wellbore pressure
drop. It is computationally more efficient than a discretized model. The penalty for the
increase in functionality of a MIPR model with respect to a Kuchuk model is the insertion
of no-flow boundaries between zones.

A verification of the MIPR model has been completed in Chapter 5. For a homogeneous
box domain, a single zone Kuchuk IPR model and a MIPR model overpredict the PI
by nine and twenty percent respectively, compared to a discretized model. The offset
for a Kuchuk zone can be attributed due to compressibility effects, gravity effects, the
assumption of an infinitely conductive wellbore and discretization errors in the discretized
model. While the MIPR model is composed of Kuchuk IPRmodels itself, its error is larger.
This can be explained by the fact that the zonal average pressures are approximated to
be equal to the total average reservoir pressure. Furthermore, MIPR model also assumes
radial flow in all intermediate zones; only the two end zones have hemispherical inflow.
This implies that a MIPR model is not convergent when the number of zones are increased.
The author has used end zones that contain at least twenty percent of the perforation
length.
A comparison has also been performed for a domain with a heterogeneous permeability
field. It is found that a MIPR model is on the order of twenty times faster than a
discretized model. While the MIRP model overpredicts the distributed PI, the shape
of the distributions resemble each other. While this means that an uncalibrated MIPR
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model should ideally not be used as a completely stand-alone tool, it is concluded that a
MIPR model is a candidate for calibration. Potentially, a calibrated MIPR model could
lead to a step change in design.

In Chapter 6 a MIPR model is calibrated using fiber optic data distilled from a discretized
model. One calibration skin per zone is chosen as epistemic parameter set. Aleatory pa-
rameters include the zonal permeability, and, for both the y and z direction, the drainage
area size and perforation position. Two techniques are utilized for Bayesian inference,
one with an MCMC using an explicit aleatory uncertainty marginalization, and secondly,
a proposed ‘partitioned MCMC’ that the author has not been able to find in literature.
In the pMCMC method, aleatory uncertainties become part of the state of the Markov
chain. Without an explicit marginalization integral each MCMC step, this method is an
order of magnitude faster. It has been found, using both a simple mock experiment and
the full scale calibration experiment, that pMCMC gives results comparable to those of
the original MCMC method. While these two experiments are not enough to state that
the pMCMC method is validated, this method appears very promising to develop further.

The calibrated MIPR predictions for different completion designs are studied in Chapter 7.
It is found that the prediction for a homogeneous completion skin equal to two falls within
the 10th and 90th percentile. A heterogeneous completion skin, ranging from one to three,
results in predictions just outside the 10th and 90th percentile. This can be explained by
the fact that the MIPR model has zones that are separated by a no flow boundary. In
reality, flow obstruction in one zone will cause increased flow into an adjacent zone. It can
be concluded that a calibrated MIPR can predict the effect of a homogeneous completion,
and can provide an indication of the effect of a heterogeneous completion.

An answer to the thesis research question can now be given. It is concluded that a MIPR
model incorporating UQ can indeed lead to a step change in completion design, if used in
conjunction with a discretized model. The strength of next generation reservoir simulators
will be in the easy switching between multiple levels of fidelity. A calibrated MIPR
can provide a computationally inexpensive tool for preliminary sizing, sensitivity and
uncertainty analysis during the initial phases of well development. Using this information,
more expensive and rigorous studies can be performed with a discretized model. With
this combined approach, more candidate completion designs can be evaluated in a certain
period of time, where the selected final designs can be verified with multiple models.
Ultimately, with such improvements to the completion design process, another small step
can be taken to address the world’s energy problem.

8.2 Recommendations

In the process of converging to an outcome of the research question, several areas of
follow-up research have been found. These can be split up into model and calibration
improvements.

8.2.1 Model Recommendations

Several recommendations can be made to improve the MIPR model. First of all, the
proposed condition that an end zone should contain twenty percent of the perforation
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length should be investigated in more detail. It is expected that this will be a function of
kx, as well as the skin profile. The easier it is for fluids to flow in the direction parallel to
the wellbore, the larger the hemispherical inflow region will be.

Secondly, zonal IPR models with different boundary conditions can be considered. For
instance, the influence of aquifers can be included by a specified pressure boundary. Fur-
thermore, research can be performed on an ‘inter-zone leakage model’. This would deter-
mine the leakage from one zone to another, dependent on the gradient in permeability.
The zonal average pressures can then be corrected to some degree even before a calibra-
tion is done. The efficiency of a MIPR model can also be compared to that of a discretized
model response surface.

Moreover, a recommendation for the discretized model is that the MIPR model user
interface could be utilized for the construction of a discretized model as well. This would
significantly reduce the setup time during comparison studies. The discretized model
itself can also be made more efficient if a better estimate can be given for when the start
of pseudo steady flow occurs, so that fewer time steps are required.

8.2.2 Calibration Recommendations

Recommendations have also been found to improve the MIPR calibration. First of all,
calibration studies should be performed on the discretized model to further verify the
results of the MIPR calibration. It is expected that the discretized model predictions will
be accurate even for a heterogeneous skin profile. A discretized model calibration has
not been possible within the computational budget of this thesis for the case of a MCMC
method with explicit marginalization. The computational cost of this calibration can be
reduced significantly by using the pMCMC method.

Furthermore, the UQ techniques used for MIPR calibration can also be generalized to
calibrate an entire range of alternative IPR models. Research on UQ calibration could
also be interesting to investigate in the domain of well testing, where transient flow is
analyzed.

The proposed pMCMC method in this thesis shows promising results. However, the two
tests that have been performed are by themselves not sufficient to claim that this is a
valid method. Follow up research would be to test the pMCMC method for more complex
models and prior distributions types. It is also recommended to pursue a mathematical
proof on the equivalence of MCMC and pMCMC posterior distributions.
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Appendix A

Theory

A.1 Black Oil Reservoir Simulation

The discretized model used for this thesis uses a black oil fluid, with water, a heavy and a
light hydrocarbon component. It can be shown that when this discretized model is solved
with a single phase fluid, the governing equations are equal to those solved for Kuchuk
IPR, namely (1.4) and (1.5). The black oil equations are written in terms of oil, water
and gas (o, w, g) Chen [2007]:

∂φ(ρwSw)

∂t
= −∇ · (ρw uw) + qW , (A.1a)

∂(φρOoSo)

∂t
= −∇ · (ρo uo) + qO (A.1b)

∂

∂t
(φ[ρGoSo + ρgSg]) = −∇ · (ρGo uo + ρg ug) + qG, (A.1c)

where

uν = − 1

µν
kν (∇pν − ρνg∇z) ν = {o,w, g}. (A.2)

The saturation S is the ratio of the volume occupied by a particular fluid over the total
interconnected pore volume. For the closure of (A.1a) through (A.1c), the saturation
equation (A.3) and capillary pressures equation (A.4c) are required;

Sw + So + Sg = 1, (A.3)
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pcow = po − pw, (A.4a)

pcgo = pg − po, (A.4b)

pcgw = pcow + pcgo. (A.4c)

All the above equations can be reduced to the single phase form of (1.6) . When oil is
the only mobile phase, equations (A.3) through (A.4c) become trivial. The same holds
for (A.1a), and, if the pressure is above the oil phase bubble point, (A.1c) becomes trivial
as well. With the assumption of a horizontal reservoir, this leaves the desired equations
(A.1b) and (A.2):

u =
−1

µ
k(∇p), (A.5)

∂(φρ)

∂t
= −∇ · (ρu) + q. (A.6)

The representation of the completion in q is calculated with a Peaceman inflow model
Peaceman [1977].

The black oil models assume that there are no hydrocarbons dissolved in water, and that
there is just a single oil and a single gas phase. For the purposes of investigating a single
phase oil flow, the black oil model does not have any limiting assumptions. The dominant
source of model error will be that of discretization error.

A.2 Peaceman Inflow Model

Peaceman [1978] was the first to systematically analyze cell to well models, these are
still used today. The main problem is that there is a difference between the pressure in
the cell that contains the well and the pressure measured in the well itself; the bottom
hole flowing pressure. This is because the logarithmic pressure ‘cusp’ at the wellbore
is averaged over the entire cell. Peaceman approached this by finding an equivalent
radius req at which the pressure equals the steady state bottom hole flowing pressure.
Peaceman [1978] investigated several methods to find req, one of which was the finite
difference approximation where

p1 = p0 +
qµ

2πkh
ln

∆x

ro
. (A.7)

Here po is the pressure at the well cell, with p1 through p4 being the pressures in the
cells adjacent to the well cell edges, forming a symmetric cross. The last term is simply a
pressure drop according to a single phase steady radial inflow model. The well is inserted
by (A.8)

(
kh

µ

)
(p1 + p2 + p3 + p4 − 4p0) = q. (A.8)
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Due to symmetry, all the pressures in the cells adjacent to the well cell are equal, therefore
combining (A.7) and (A.8) leads to the result of

ln
∆x

req
=

π

2
, (A.9)

req = 0.208∆x. (A.10)

Although the equivalent radius in (A.10) is found to be 0.208∆x, other investigations by
Peaceman lead to the conclusion that

req ≈ 0.2∆x. (A.11)

A.3 Newton–Rhapson Linearization

The different solution techniques use Newton–Raphson methods to solve the nonlinear
equations for each time step. The method is described by Chen [2007], starting with
(A.12):

Lm[Fm(p(x))] = fm(x), m = 1, 2, . . . M, x ∈ Ω. (A.12)

Here Lm is a linear differential operator, Fm is a nonlinear function, p is a vector of
dependent variables, f is a vector and m the equation number. Using a Taylor series
expansion,

Fm(p+ δ p) = Fm(p) +∇Fm(p) · δ p+O(|δ p|2). (A.13)

Ignoring the last term and substituting back into (A.12) yields

Lm[Fm(pl) +∇Fm(pl) · δ pl+1] = fm(x), m = 1, 2, . . .M, x ∈ Ω. (A.14)

Here l denotes the number of iterations performed, and pl+1 is the unknown. Then

Lm[∇Fm(pl) · δ pl+1] = gm(x), m = 1, 2, . . . M, x ∈ Ω, (A.15)

where gm(x) is the residual

gm(x) = fm(x)− Lm[∇Fm(pl)], (A.16)

and ∇Fm(pl) is the Jacobian of Fm. Equation (A.15) can then be solved in terms of the
new time step δ pl+1.
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Appendix B

Tables

p [bar] Rs [scf/stb] Bo [rb/stb] µo [cP]

1.0300 0.4100 1.0000 7.1160
16.6000 3.9500 1.0560 5.9940
32.1600 8.2800 1.0600 5.0000
40.0000 11.4600 1.0640 4.3380
60.0000 17.8900 1.0780 3.8780
80.0000 24.3200 1.0920 3.4670
100.0000 30.7600 1.1060 3.1000
120.0000 37.1900 1.1200 2.7710
140.0000 43.6200 1.1340 2.4780
150.0000 46.8400 1.1410 2.3430
160.0000 50.0500 1.1480 2.2150
170.0000 53.2700 1.1550 2.0950
180.0000 56.4900 1.1620 1.9810
190.0000 59.7000 1.1690 1.8730
200.0000 62.9200 1.1760 1.7710
210.0000 66.1300 1.1830 1.6740
220.0000 69.3500 1.1900 1.5830
230.0000 72.5700 1.1970 1.4970
234.4600 74.0000 1.2000 1.4600
247.5700 78.2180 1.2090 1.3570
260.6800 82.4340 1.2180 1.2600
273.7800 86.6470 1.2280 1.1710
286.8900 90.8640 1.2370 1.0880
300.0000 95.0800 1.2460 1.0110

Table B.1: PUNQ oil table
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p [bar] Bg [rb/scf ] µg [cP ]

1.0300 1.0000 0.0078
16.6000 0.0450 0.0080
32.1600 0.0370 0.0084
40.0000 0.0291 0.0088
60.0000 0.0189 0.0092
80.0000 0.0139 0.0096
100.0000 0.0109 0.0100
120.0000 0.0090 0.0104
140.0000 0.0076 0.0109
150.0000 0.0071 0.0111
160.0000 0.0066 0.0114
170.0000 0.0062 0.0116
180.0000 0.0058 0.0119
190.0000 0.0055 0.0121
200.0000 0.0052 0.0124
210.0000 0.0050 0.0126
220.0000 0.0047 0.0129
230.0000 0.0045 0.0132
234.4600 0.0044 0.0133
247.5700 0.0042 0.0136
260.6800 0.0039 0.0140
273.7800 0.0037 0.0144
286.8900 0.0036 0.0148
300.0000 0.0034 0.0152

Table B.2: PUNQ gas table

Parameter Description Value

co [1/psi] Compressibility coefficient 0.0001
cvo [1/psi] Viscosibility coefficient 0.0
mo [kg/mol] Oil molecular mass 0.144
mg [kg/mol] Gas molecular mass 0.01
K [Pa] Bubble point 2.0684

Table B.3: Additional oil parameters
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English unit Conversion factor SI unit

[API] 141.5/(131.5 +API) [g/cm3]
[BBL] 1.589873E − 01 [m3]
[cp] 1.0E − 03 [Pas]
[ft] 3.048 − 01 [m]
[ft2] 9.290304E − 02 [m2]
[ft3] 2.831685E − 02 [m3]
[lbm] 4.535924E − 01 [kg]
[md] 9.869233E − 04 [m2]
[psi] 6.894757E + 09 [kPa]
[psi] 1.450377E − 01 [kPa]
[R] 5/9 [K]
[Btu] ≈ [kJ ]

Table B.4: Unit conversion factors Chen [2007]
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