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1 CHAPTER

Introduction

The recent progress in technology, as for example, in miniaturization
and microtechnologies, has made it now possible to create devices

made up of a huge set of small subunits, which must cooperate in order
to achieve a common goal. These new developments, together with ad-
vances in automation and autonomous control of formations of vehicles
are now forcing control engineers to confront themselves with systems
of incredibly high dimensionality, with an ever growing number of input
and output channels. For such systems, which we call “large scale sys-
tems”, it is necessary to take a new, smarter approach in order to solve
control problems in a reasonable time, as well as for being able to design
controllers which can be realized in a physically implementable way.

The scope of this thesis is to propose a new set of methods for dealing
with a special class of such large scale systems, for which a decomposition
property will make it possible to overcome the curse of dimensionality
and to design controllers which will be implementable in a distributed
way, as a collection of simple, small units.

1.1 Motivation

The students who decide to specialize in system and control engineering usually
start their studies with the techniques that in the past have been developed for
linear systems with a single input and a single output, better known as SISO.
Classical control engineering tools as Bode plots, root loci and Nyquist diagrams
are more than enough to deal with such kind of systems. Students who continue
their course of studies later on have to face a kind of paradigm shift, when the
focus is put on more and more complex systems, and the number of inputs and
outputs grows. It is at this point that the students are introduced to the state-space
approach, that is considered more flexible for multiple-input, multiple-output (or
MIMO) systems.

1



2 Chapter 1: Introduction

A second kind of paradigm shift might be needed now, due to recent technological
advances. Developments in miniaturization, Micro Electro-Mechanical Systems
(MEMS) and microfluidics, just to name a few, have made it possible to construct
devices with very high number of inputs and outputs, like arrays of micro can-
tilevers, or deformable mirrors for adaptive optics. As a motivating example, we
could report a few numbers from a telescope that is currently being designed,
namely the European Extremely Large Telescope (E-ELT) of the European South-
ern Observatory (ESO) [3]. This telescope will feature a 42 m diameter primary
mirror, made of 1000 hexagonal segments. A deformable secondary mirror with
more than 5000 actuators will be used for the adaptive optics system.

Systems of this size might be difficult to manage with standard techniques. The
thing that comes to our aid, is that usually such “large scale systems” have a cer-
tain structure which can be exploited in order to reduce the computational com-
plexity of the problem, e.g. the system might be thought of as a set of subunits
interacting with one another, as shown in Figure 1.1 on the left-hand side.

Figure 1.1: On the left, a distributed system made of the interconnection of five
subsystems; the arrows represent the interaction that the subsystems
have, in terms e.g. of signals that they exchange. On the right, the
concept of distributed control is shown: the controller is implemented
as a set of local controllers (the smaller circles) which have the same
interconnection pattern as the plant.

Another difficulty involved in controlling large scale systems is the implementation
of the control system itself. For a system with a huge number of inputs and out-
puts, the classical approach of a centralized controller collecting all the outputs
and deciding all the inputs is not feasible in practice. This causes the necessity
of considering localized or distributed approaches as shown in Figure 1.1 on the
right-hand side. The centralized controller is replaced by a number of small, sim-
pler units, each of which controlling a single subunit of the plant; these local con-
trollers communicate with each other with the same interaction structure as the
plant.
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1.2 Contribution of this thesis

Large scale systems have been a topic of interest in system and control theory
since the seventies [78]. Most of the existing literature focuses on the problem of
distributed control of large scale systems, making use of some special technique that
can either help reducing the computational complexity of the controller design, or
enforce the constraint of synthesizing a controller with a distributed structure as
well. These techniques are usually tailored to the structure of specific classes of
system.

In this section we will first review those which we judge the most relevant results
in the field, which cover a set of different kinds of distributed or large scale sys-
tems. After this, we will show the goals of this thesis work and the contributions
that it has made.

1.2.1 Relevant work in the field

The literature in distributed control is vast and a multitude of different approaches
has been proposed and analyzed. In general, as pointed out in [76], it is unknown
whether the problem of synthesizing a controller that keeps the same structure
as the plant can be efficiently cast into a convex optimization problem, without
introducing any conservatism of some kind. This explains why the most relevant
results in the field usually either involve only stability consideration or suboptimal
performance. A classification of the literature in distributed control can be made by
distinguishing the classes of systems that are examined.

A first distinction should be made between the classes of distributed parameter sys-
tems [15] and lumped systems. Distributed parameter systems are uncountably
infinite-order systems, which typically are the result of dynamics described by
partial differential equations. The state of a distributed parameter system is a
vector function x depending on a spatial coordinate ζ (assuming values on a real
interval, or cartesian product of intervals for multiple dimensional systems), and
on a time variable, either continuous (t) or discrete (k). The dynamical equation
of such system is then of the form:

ẋ(t, ζ) = f(x(t, ζ),
∂

∂ζ
x(t, ζ), ζ, t) + u(t, ζ) (1.1)

where u denotes an input. Such equation has to be complemented with an initial
condition and boundary conditions in order to define a well-posed problem. A
practical example of such kind of formulas is given by the heat equation; if we
consider the problem of the spatio-temporal evolution of the temperature profile
of a bar of length l, then we can assume the state (the temperature) x as a function
of the time t and the spatial coordinate ζ ∈ [0, l]; the dynamic law is the following:

ẋ(t, ζ) = c
∂2

∂ζ2
x(t, ζ) + u(t, ζ) (1.2)
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where c is a constant depending on the material; two boundary conditions are
needed to complete the problem, for example:

x(t, 0) = x(t, l) = x0 (1.3)

which correspond to a constant temperature at the edges of the bar.

Distributed parameter systems though are not the subject of this thesis, where we
focus instead on lumped systems, which are a discrete kind of systems, where the
number of states is either finite or countable. The discretization of distributed
parameter systems leads to lumped systems: for example, we can take (1.2) and
decide to approximate the continuous temperature distribution x with a discrete
distribution χ; this state variable will not be depending on ζ anymore, but on a
discrete index which we call i, which can assume integer values from 1 to N ; ide-
ally, we would have χ(t, i) = x(t, l

N−1(i− 1)). A partial derivative approximation
scheme would then yield the following dynamic equation:

χ̇(t, i) =
c(N − 1)

2l
(−χ(t, i−1)+2χ(t, i)−χ(t, i+1))+u(t, i) for i = 2 . . .N−1 (1.4)

and the boundary conditions:

χ(t, 0) = χ(t, N) = x0. (1.5)

Lumped systems do not only originate from distributed parameter systems, but
can also represent systems which have an inherent discrete spatial form, for exam-
ple a set of subsystems (or agents) each one with its own dynamics and interacting
with the others. For example, consider a set of N masses disposed on a line, each
of them connected to the one preceding and the one following by a spring. If we
call xi the displacement with respect to the equilibrium position of the ith body,
then the motion of such body is described by the equation:

ẍi(t) = −ci−1

mi
(xi − xi−1) −

ci

mi
(xi − xi+1) + ui(t) (1.6)

(where ci is the spring constant is and mi is the mass of the bodies). The de-
scription as in (1.6) can be seen as a local kind of information, as it describes the
dynamics of each single subsystem. Another approach is possible, in the sense
that we can consider the system as a whole, joining all the state variables together
in a single state vector x(t) = [x1(t)

T x2(t)
T . . . xN (t)T ]T , the inputs in one in-

put vector, etc. The dynamic equation of the system then becomes the familiar
state-space description of a dynamical system:

ẋ(t) = Ax(t) + Bu(t) (1.7)

where the matrices A and B will have a special, sparse structure that is due to the
“distributedness” of the original system; for example, A will be block tridiagonal,
with the entries in the diagonal blocks representing the inherent second-order dy-
namics of the oscillators, and the off-diagonal terms representing the interaction
between neighboring masses. We call this state-space system the lifted system; this
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thesis will make extensive use of this formulation.

The difference between distributed parameter systems and lumped systems is
graphically rendered in Figure 1.2.

Figure 1.2: A first classification of distributed systems can be distinguishing be-
tween distributed parameter systems and lumped systems. The heat
conduction on a bar is an example of the former, while the line of os-
cillators is an example of the latter.

The second criterion for classification can be distinguishing heterogeneous systems
[48; 65; 74] from homogeneous systems [10; 16; 26]. Heterogeneous systems con-
sist of the combination of a set of interacting subsystems that are different from
one another, whereas for homogeneous systems all the subsystems are the same.
Lumped homogeneous systems typically portray multi-agent systems, i.e. platoons
or formations of robots/vehicles. The main objective of the literature focusing on
heterogeneous systems is usually the synthesis of structured controllers, which
means controllers that can be implemented in a distributed way. For homoge-
neous systems instead, in most cases it is possible to exploit the regularity of the
system to obtain a significant reduction in the complexity of the problem as well,
which results in methods for controller synthesis with a complexity that is inde-
pendent of the system size (i.e., the number of subsystems).

At last, we can point out that in the literature some authors assume an arbitrary
interconnection structure among the subsystems [10; 26; 48; 65], which is usually
tackled by making use of graph theory, while others assume a regular lattice struc-
ture [16; 44; 73; 74; 82]. A lattice structure can allow introducing the formalism of
spatial groups, or it makes it possible to consider the system as multi-dimensional,
where the spatial variable is assimilated to an additional temporal variable (with
both causal and anti-causal dynamics). Figure 1.3 shows graphically the differ-
ences among the classes of lumped distributed systems.

This thesis concerns lumped homogeneous systems with arbitrary interconnections.

We now review the results of some of the most recent and most cited work in the
field.

For what concerns the analysis and controller synthesis of heterogenous systems
with arbitrary interconnections, a well-known result is reported in [48]. Here a
technique for analysis and synthesis with H∞ performance is developed making
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Figure 1.3: Different classes of lumped distributed systems.

use of passivity theory and gain-scheduling control, and cast as LMI (Linear Ma-
trix Inequality) tests. This result is very general and allows designing distributed
controllers for a vast class of systems, but the computational load grows very
quickly with the number of subsystems involved, as the size of the synthesis LMIs
grows proportionally with the number of subsystems.

A different result, still making use of LMIs for analysis and synthesis with H∞

performance, is reported in [22]. The methods therein apply to heterogenous sys-
tems with lattice interconnection, and they are derived from results from Linear
Time-Varying systems [23]. Another relevant result for the same class of systems
(heterogenous with regular lattice structure) is reported in [74], where it is shown
that such systems can be described by means of matrices with a Sequentially Semi-
Separable (SSS) structure. Operations on SSS matrices (including solving Riccati
equations) can be made in a very fast way (the computational complexity grows
linearly with the size of the system) and they are structure-preserving, thus allow-
ing the synthesis of heterogeneous distributed controllers.

Other very famous results, which apply to homogeneous systems on a lattice,
are reported in [6]. Here, it is shown that for infinite lattices or finite ones with
“wrap around” boundary conditions, a Fourier transform can decouple the sys-
tem, thus allowing a simpler approach to analysis and design problems. For the
same class of systems, a different approach, based on LMIs deriving from a multi-
dimensional version of the Kalman-Yakubovich-Popov lemma [71], can be found
in [16]. This method exploits the structure of the system and the computational
complexity of the controller synthesis problem turns out to be independent of the
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system size.

At last let us cite two papers focusing on the same subject as this thesis, namely
homogeneous systems with arbitrary interconnections. Reference [10] regards the
problem of designing a distributed LQR controller for a set of identical agents
which have couplings only in their performance output. It is shown that, for any
number of agents, it is always possible to solve a “small” LQR synthesis prob-
lem involving only a limited number of subsystems, and then extend it to the full
system with guaranteed stability. This method represents a good example of con-
troller synthesis whose computational complexity is independent of the number
of subsystems. The same class of systems is subject of [26], where it is shown
that sets of identical agents with performance output couplings (which are called
“formations”) can be described as a parameter-dependent linear system of the or-
der of one agent only. This leads to a very simple and intuitive stability test for
this class of systems, based on an extension of the Nyquist plot, which again does
not depend on the number of subsystems. Later on in the paper, a stabilizing
controller synthesis method is shown, together with an “information flow” filter
which allows a quicker arrival at the steady state. The first part of this last paper
can be considered as a starting point for this thesis work, and it will be discussed
in more details in Section 2.4 in the next chapter.

1.2.2 Scope of this thesis and contribution to the field

As said, this thesis work regards lumped homogeneous systems with arbitrary inter-
connections, and it can be considered as a continuation in the line of research of
[10; 26]. These papers provide methods for computing distributed stabilizing con-
trollers for sets of identical agents coupled to one another by their output signals.
These methods are computationally attractive because their complexity does not
grow with the number of agents. In this thesis, we try to answer the following
questions:

1. In the literature [10; 26] we have found methods for analysis and controller synthe-
sis which apply to homogeneous systems coupled by arbitrary interconnections on
the output signals. These methods allow checking the stability of the system or de-
signing a stabilizing controller, and their computational complexity does not grow
with the number of agents. Is it possible to extend such results in order to account
for H2 and H∞ performance indices as well?

2. Is it possible to account for couplings among the agents other than those in the
output signals, e.g. for dynamic couplings?

The other question that we will try to answer regards the problem of identification:

3. How can we find, from input/output data, structured models for which we can apply
the distributed control techniques developed in 1. and 2.?

The second question will be answered first, as we will define a class of Linear
Time-Invariant distributed systems, which includes the ones in [10; 26] as a subset.
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We will call these systems decomposable systems: the reason of the name is that
for these systems an approach based on a sort of modal decomposition applies.
The decomposition depends only on the interconnection structure and not on the
specific system, and it is a consequence of the properties of the Kronecker algebra
[12].

Exploiting this “decomposition theorem” as we will call it, we will then answer
the first question: we will show that by employing a variety of tools from the ro-
bust control literature (which make use of Linear Matrix Inequalities), it will be
possible to generate controller synthesis methods for obtaining suboptimal per-
formance in a variety of cases (e.g. H2 or H∞ performance, continuous or discrete
time, state or output feedback). Some of these methods will have a computa-
tional complexity that does not depend on the actual number of subsystems, so
they will be applicable to systems of any size. We will also see that we can use
results from graph theory in order to gain insight into the properties of the pos-
sible interconnection structures and arrive at controllers that are not depending
on these structures either. In addition, we will show how these distributed con-
troller synthesis methods can be applied to the field of adaptive optics, namely to
the control of an adaptive mirror for wavefront correction, and to satellite forma-
tion flying problems. For this last purpose, one of the synthesis methods will be
extended to be able to cope with time-varying dynamics, thus enabling the possi-
bility of considering any periodic orbit whose dynamics can be approximated as
Linear Time-Varying.

The last question will be answered at the end of the thesis, as we will show that the
decomposition theorem can be used also in the framework of system identifica-
tion, i.e. for identifying models of decomposable systems from data. The problem
is first treated for a special case, namely for the class of circulant systems, and then
examined in the general case, which will prove to be a more challenging task.

The summary of the contributions, and by means of which tools they are achieved,
is graphically shown in Figure 1.4.

1.3 Structure of this thesis

This thesis contains seven chapters, the first of which is this introduction. Chap-
ter 2 contains the preliminary notions that are used throughout the thesis. Chap-
ters 3 to 5 ideally form a subpart in the thesis that is dedicated to the problem of
distributed control, while Chapter 6 is focused on the complementary problem,
namely distributed identification. The conclusions are in Chapter 7.

The detailed content of the main chapters is summarized here. The main refer-
ences where the content of each chapter has been published are reported as well.

• Chapter 2 starts with an introduction to graph theory and Kronecker prod-
uct algebra. Later on, the class of decomposable systems is defined and ex-
plained. The results in [26] are recapitulated and used as an introduction
and justification for focusing on this class of systems.
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Figure 1.4: Scheme of the contributions of this thesis.

• Chapter 3 contains the main contribution of the thesis, namely a set of dis-
tributed controller synthesis methods which apply to Linear Time-Invariant
decomposable systems.

References:

P. Massioni and M. Verhaegen. Distributed control for identical dynamically
coupled systems: a decomposition approach. IEEE Transactions on Automatic
Control, 54(1):124–135, January 2009.

P. Massioni and M. Verhaegen. A full block S-procedure application to dis-
tributed control. Accepted for publication in the proceedings of the 2010 American
Control Conference, Baltimore, USA.

• Chapter 4 contains a simulation of application of one of the synthesis meth-
ods of Chapter 3 to a problem in the field of adaptive optics.

Reference:

P. Massioni, R. Fraanje, and M. Verhaegen. Adaptive optics application of
distributed control design for decomposable systems. In Proceedings of the
48th IEEE Conference on Decision & Control, Shanghai, China, December 2009.

• Chapter 5 regards the problem of satellite formation flying, and the exten-
sion of one of the methods of Chapter 3 to Linear Time-Varying dynamics.
Simulations of application to two test cases are shown at the end of the chap-
ter.

Reference:

P. Massioni, T. Keviczky, E. Gill, and M. Verhaegen. A decomposition based
approach to linear time-periodic distributed control of satellite formations.
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IEEE Transactions on Control Systems Technology, to appear.

• Chapter 6 is focused on the problem of identifying decomposable systems
from input/output data.

References:

P. Massioni and M. Verhaegen. Subspace identification of circulant systems.
Automatica, 44(11):2825–2833, November 2008.

P. Massioni and M. Verhaegen. Subspace identification of distributed, de-
composable systems. In Proceedings of the 48th IEEE Conference on Decision &
Control, Shanghai, China, December 2009.



2 CHAPTER

Preliminaries

This chapter contains a brief introduction to the general concepts that
will be used in the course of this thesis. We start by recalling one

of the famous results in distributed control theory, the paper on forma-
tion stability by Fax and Murray [26]. This paper introduces an analy-
sis method for a class of systems that are described by means of graph-
theoretical tools. We use this earlier result as a starting point for introduc-
ing a more general class of systems, the “decomposable systems”, that
is the subject of this thesis. Such systems have the remarkable property
that they can be decomposed into a set of smaller, independent modal
systems through a sort of “coordinate transformation” of inputs, outputs
and state. This property will allow control and identification problems
related to these systems to be approached under the point of view of the
small modal systems, which will prove to be more convenient than the
centralized, global approach.

2.1 Introduction

In this chapter we are going to introduce the main preliminary notions which we
will need in the course of this thesis. The first tool that is presented, that has
become very popular in control of multi-agent or distributed system, or in the
so-called consensus theory, is the theory of graphs. The first interesting aspect of
graphs is that they provide a simple and friendly way of modelling interactions
between systems, with the visual aid of a set of nodes, which represent the ele-
ments, and a set of arrows connecting the nodes, which represent the signals that
the nodes exchange or the dynamical interactions that they might have. The other
key aspect is that a very strong mathematical theory is associated with graphs
[14; 31], allowing the visual aid to be turned into a powerful formal instrument.
Papers like [10; 26; 43] are just examples of the vast use of graphs that nowadays
is done in control theory.

11
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In particular, we are going to review in this chapter the results of [26], which can
be seen as a “precursor” of the methods shown in this thesis (especially of Chap-
ter 3). In this article Fax and Murray have shown that the stability of a formation
of vehicles, whose interactions can be described by a graph, can be considered
equivalent to the stability of a set of independent systems depending on a pa-
rameter. This observation leads to a link between distributed systems of a certain
kind and Linear Parameter-Varying (LPV) systems. On inspiration of this earlier
result, we will define the class of “decomposable systems”, for which a very gen-
eral decomposition theorem applies. This decomposition theorem will enable the
developments that are shown in Chapters 3 and 6. The main difference between
this new decomposition theorem and the observation in Fax and Murray’s paper
is that the new results offer a real equivalence between the global system and the
set of independent systems, not only in terms of stability properties, but also in
terms of input-output relations. This gives the possibility of evaluating the system
performance in terms of system norms, and that is the key for the development of
performance-based controller synthesis methods.

The chapter is organized as follows. In Section 2.2 a brief review of graph theory
is given, with a tutorial style. This review is intentionally not complete, and it
aims only at showing the concepts that are relevant for this thesis; there are many
other results in the field that can be of use in this scope, but they are somehow not
essential, and we have decided not to report them. Section 2.3 introduces one of
the other tools that is extensively used in this thesis, namely the Kronecker prod-
uct, and its properties. In Section 2.4 we report some of the results of [26], which
will allow us to introduce the definition of “decomposable systems”, the subject
of this thesis, in Section 2.5. In the same section the properties of these systems
are introduced as well, and finally Section 2.6 reports some cases of decomposable
systems of special interest.

2.1.1 Notation

We denote the field of real numbers by R, the field of complex numbers by C and
the set of real (complex) n × m matrices by Rn×m (Cn×m). Let ⊗ indicate the Kro-
necker product, In the identity matrix of order n and let j be the imaginary unit.
The notation A ≻ 0 (A ≺ 0) indicates that all the eigenvalues of the Hermitian
matrix A are strictly positive (negative). For a matrix A, AT indicates its trans-
pose and AH indicates its Hermitian (complex conjugate transpose); ā indicates
the complex conjugate of a matrix or scalar a. The bullet • denotes a symbol that
is either not relevant or clear from the context, and the star ∗ will be used to re-
place parts of expressions involving symmetric matrices that can be inferred by
the symmetry itself.

2.2 Graphs and Laplacian matrices

A few elements of graph theory are often used in the course of this thesis. For
this reason, we will summarize here a few definitions and a theorem that will be
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fundamental in the following pages. The interested reader can find out more in
[20] and [14].

Definition 2.1 (graphs) A directed graph G consists of a set of vertices (or nodes) V
and a set of edges E ⊂ V2, which can be interpreted as connections between vertices: for
an edge (a, b), we call the vertex a the initial vertex or tail and b the terminal vertex
or head. We assume that each element of E is unique. A graph with the property that
(a, b) ∈ E ⇔ (b, a) ∈ E ∀a, b ∈ V is called an undirected graph.

Directed graphs are typically depicted as a set of circles and arrows. The circles
represent the nodes, whereas the arrows connecting them represent the edges, as
in Figure 2.1.

1

2

3

4

5

Figure 2.1: An example of directed graph.

Graph theory becomes useful in control thanks to the properties of special kinds
of matrices which are associated with graphs. For introducing these matrices, we
assume that the N vertices of the graph G are enumerated, and each of them is
denoted ai.

Definition 2.2 (normalized adjacency matrix) The normalized adjacency matrix
A of a graph G with N vertices is an N × N matrix defined by Ai,k = 1/do(ai) if
(ai, ak) ∈ G and 0 otherwise; do(ai) is the out-degree of ai, that is, the number of edges
that feature ai as their tail.
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Example 2.1 (normalized adjacency matrix)
The graph in Figure 2.1 has the following normalized adjacency matrix:

A =









0 0 1 0 0
0 0 1 0 0
0 1

2 0 1
2 0

1
2 0 0 0 1

2
0 0 0 0 0









1
2
3
4
5







outgoing

connections

1 2 3 4 5
︸ ︷︷ ︸

incoming connections

(2.2)

Definition 2.3 The normalized Laplacian matrix1 L of a graph is defined as L =
IN −A.

Example 2.2 (normalized Laplacian matrix)
The graph in Figure 2.1 has the following normalized Laplacian matrix:

L = IN −A =









1 0 −1 0 0
0 1 −1 0 0
0 − 1

2 1 − 1
2 0

− 1
2 0 0 1 − 1

2
0 0 0 0 1









(2.4)

Normalized Laplacians have special properties that we are going to use, which
are stated in the following theorem and corollaries.

Theorem 2.1 The eigenvalues of the normalized Laplacian are located in a disk of radius
1 centered at 1 + 0j in the complex plane.
Proof: [4] Consider the adjacency matrix A first, and notice that by construction all of its

entries are non-negative and every row sums up to either 1 or 0, so 0 6
∑N

k=1 Ai,k 6 1.
Let v ∈ RN be a left eigenvector of A, and λ the associated eigenvalue. It holds that:

N∑

i=1

Ai,kvi = λvk (2.5)

taking the absolute value of this expression, we have:

|λvk| = |λ| |vk| =

∣
∣
∣
∣
∣

N∑

i=1

Ai,kvi

∣
∣
∣
∣
∣
6

N∑

i=1

Ai,k|vi| (2.6)

1In [26] this matrix is called just “Laplacian”; but, as stated there, in literature there are different
definitions for it. In this thesis we define the matrix used here as “normalized”, in order to distinguish
it from the other definition of the Laplacian matrix, that can be found e.g. in [31].
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and then summing over k, we get:

|λ|
N∑

k=1

|vk| 6

N∑

i=1

N∑

k=1

Ai,k|vi| 6

N∑

i=1

|vi|. (2.7)

This implies |λ| 6 1, that is, the eigenvalues of A are located in a disk of radius 1 centered
in the origin. The eigenvalues of the normalized Laplacian L = IN −A are simply 1− λ,
proving what was stated. 2

Corollary 2.1 For undirected graphs the eigenvalues of the normalized Laplacian are real
(thus they are located between 0 and 2).
Proof: Normalized Laplacians of undirected graphs can be factorized as the product of a
positive definite matrix and a symmetric matrix. Such matrix products have real eigen-
values [69]. 2

Example 2.3 (normalized Laplacian of an undirected graph)
Consider the graph in Figure 2.1 in its undirected version (assume that for every
edge, also the inverse edge exists). Its normalized Laplacian matrix would be:

L =










1 0 − 1
2 − 1

2 0

0 1 −1 0 0

− 1
3 − 1

3 1 − 1
3 0

− 1
3 0 − 1

3 1 − 1
3

0 0 0 −1 1










=

=










1
2 0 0 0 0

0 1 0 0 0

0 0 1
3 0 0

0 0 0 1
3 0

0 0 0 0 1



















2 0 −1 −1 0

0 1 −1 0 0

−1 −1 3 −1 0

−1 0 −1 3 −1

0 0 0 −1 1










(2.9)

The second matrix in the product is what in literature (e.g. in [31]) is called
Laplacian.

It is also possible to construct Laplacian matrices that are indeed symmetric for
symmetric graphs, using the notion of a weighted normalized Laplacian matrix.
In this case, we consider that a weight is associated to every edge. The introduc-
tion of weighted self-loops (edges from one node to itself) can be used to balance
the Laplacian and make it symmetric. This is shown in the next example.
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Example 2.4 (weighted Laplacians)
Consider again the graph in Figure 2.1 in its undirected version. We introduce a
self loop for the first node, and a double self loop for the second and the fifth node.
This leads to the following normalized adjacency matrix:

Aw =










1
3 0 1

3
1
3 0

0 2
3

1
3 0 0

1
3

1
3 0 1

3 0
1
3 0 1

3 0 1
3

0 0 0 1
3

2
3










(2.12)

yielding the following normalized Laplacian:

Lw =










2
3 0 − 1

3 − 1
3 0

0 1
3 − 1

3 0 0

− 1
3 − 1

3 1 − 1
3 0

− 1
3 0 − 1

3 1 − 1
3

0 0 0 − 1
3

1
3










(2.13)

Notice that this last matrix is symmetric.

Weighted normalized Laplacians have the same properties as normalized Lapla-
cians in general (Theorem 2.1 and Corollary 2.1).

In the coming pages we will show a result that relates the stability properties of
a formation to the eigenvalues of a normalized Laplacian matrix; this explains
why it can be very important to have a priori information on the location of these
eigenvalues.

2.3 Kronecker product and its properties

In this thesis we will often deal with distributed or sparse systems, which fea-
ture sparse matrices in their state-space realization. A useful tool for expressing
blockwise the sparsity of matrices is the Kronecker product [12] of two matrices
P ∈ Rn×m and Q ∈ Rj×k, defined as:

P ⊗ Q =






p1,1Q . . . p1,nQ
...

. . .
...

pm,1Q . . . pm,nQ




 ∈ R

nj×mk (2.14)

where pa,b is the element of P in the ath row and bth column.

The Kronecker product has some special properties that we are going to use, and
which are stated in the two following lemmas.
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Lemma 2.1 Consider the matrices P , Q, R and S. If the number of rows and columns of
such matrices is compatible such that the products PR and QS are meaningful, then

(P ⊗ Q)(R ⊗ S) = (PR ⊗ QS). (2.15)

Lemma 2.2 If P and Q are invertible matrices, then

(P ⊗ Q)−1 = P−1 ⊗ Q−1. (2.16)

2.4 Earlier results on formation stability

In this section we report briefly the results of [26], which can be considered as the
starting point for the methods that are presented in this thesis. The paper focuses
on continuous-time systems, but the same reasonings apply to discrete time as
well. Let us consider a set of N identical linear systems (agents, vehicles, etc.),
whose dynamics is modeled by the equation:

ẋi = Axi + Bui (2.17)

where xi ∈ Rl are the agents’ states, ui ∈ Rm are their control inputs and i ∈
{1, . . . , N} is the index for the vehicles in the formation. From this it follows that
the dynamics of the formation is described by the equation:

ẋ = (IN ⊗ A)x + (IN ⊗ B)u (2.18)

where we have x = [xT
1 xT

2 . . . xT
N ]T ∈ RlN and u = [uT

1 uT
2 . . . uT

N ]T ∈ RmN .

Let us now assume that each vehicle has a limited visibility with respect to the
others; for this purpose we define the set Ji ⊂ {1, . . . , N}\{i} of the vehicles
that the ith vehicle can sense. Then, each vehicle has the following measurements
available for feedback control:

yi = Caxi

qi =







1

|Ji|
Cb

∑

j∈Ji

(xi − xj) if |Ji| 6= 0

Cbxi if |Ji| = 0

(2.19)

where |Ji| is the number of elements of the set Ji. In this way, the global output
function is equivalent to:

y = (IN ⊗ Ca)x

q = (L ⊗ Cb)x
(2.20)

where as before y = [yT
1 yT

2 . . . yT
N ]T ∈ RryN and q = [qT

1 qT
2 . . . qT

N ]T ∈ RrqN ;
thanks to the choice for the definition of q in (2.19)L is then indeed the normalized
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Laplacian of the graph that describes the information flow in the formation (i.e.,
an edge connects vertex i to vertex k if and only if agent k receives the output of
agent i).

Let us now assume that each vehicle is locally controlled by identical local con-
trollers K of order s:

v̇i = KAvi + KBy
yi + KBq

qi

ui = KCvi + KDy
yi + KDq

qi

(2.21)

Then the following theorem holds.

Theorem 2.2 (formation stability) A local controller K as in (2.21) stabilizes the for-
mation dynamics in (2.17), (2.19) if and only if it simultaneously stabilizes the following
set of N systems:

˙̂xi = Ax̂i + Bûi

ŷi = Cax̂i

q̂i = λiCbx̂i

(2.22)

where the λi are the eigenvalues of the matrix L of (2.20).
Proof: [26] The dynamics of the system in (2.18) and (2.19) in closed-loop with the
controller (2.21) is described by:

[
ẋ
v̇

]

=

[
A11 A12

A21 A22

] [
x
v

]

(2.23)

where
A11 = IN ⊗ (A + BKDy

Ca) + L ⊗ (BKDz
Cb)

A12 = IN ⊗ (BKC)
A21 = IN ⊗ (KBy

Ca) + L ⊗ (KBz
Cb)

A22 = IN ⊗ KA

(2.24)

Now consider that for any square matrix L there exists a Schur transformation [33] such
as:

L = T−1UT (2.25)

where T is unitary and U is upper triangular, with the eigenvalues of L on the diagonal;
both T and U can be complex-valued. Let us define:

x̃ = (T ⊗ Il)x, ṽ = (T ⊗ Is)v (2.26)

We can then restate (2.23) in terms of and x̃ and ṽ; in this case the matrix elements will
be:

Ã11 = (T ⊗ Il)A11(T ⊗ Il)
−1

Ã12 = (T ⊗ Il)A12(T ⊗ Is)
−1

Ã21 = (T ⊗ Is)A21(T ⊗ Il)
−1

Ã22 = (T ⊗ Is)A22(T ⊗ Is)
−1

(2.27)

As a consequence of the properties of Kronecker product (Lemmas 2.1 and 2.2), we have
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that:
Ã11 = IN ⊗ (A + BKDy

Ca) + U ⊗ (BKDz
Cb)

Ã12 = IN ⊗ (BKC)

Ã21 = IN ⊗ (KBy
Ca) + U ⊗ (KBz

Cb)

Ã22 = IN ⊗ KA

(2.28)

Notice that the elements of the transformed system matrix are either block diagonal (Ã12

and Ã22) or block upper-triangular (Ã11 and Ã21); this implies that the stability of this
system is equivalent to the stability of the N subsystems defined taking the diagonal blocks.
As the diagonal of U contains the eigenvalues λi of L, then the equations of the N diagonal
subsystems are:

˙̃xi = (A + BKDy
Ca + λiBKDz

Cb)x̃i + BKC ṽi

˙̃vi = (KBy
Ca + λiKBz

Cb)x̃i + KAṽi
(2.29)

which is equivalent to the controller (2.21) stabilizing (2.22). 2

It has to be pointed out that λi can be complex, leading to complex-valued sys-
tems. The key element of the proof is the fact that for any square matrix there
exists a Schur transformation that makes it possible to see the global system as
a cascade of local systems (that is, an “upper triangular system”). This result is
valid for any matrix L, not only for Laplacians, but the use of Laplacians will
allow having information on the λi without computing them.

It is also possible to derive a kind of Nyquist criterion for the formations in the
case of single-input single-output agents; by comparing the agent equations and
the subsystem equations (2.22), it is clear that if the transfer function from ui to
Cbxi of an agent is G, then the transfer functions of the subsystems (from ûi to q̂i)
are λiG. Then, if we assume a feedback on q alone, if K is the transfer function
of the controller, the formation is stable if and only if the point −1 is correctly en-
circled by the Nyquist diagram of all of the closed-loop transfer functions λiGK
(see [26] for details.). This is equivalent to saying that the function GK must cor-
rectly encircle all the points − 1

λi
, so a single Nyquist diagram can be enough to

grant the stability of the formation. Moreover, in certain situations, these points
are restricted a priori to be in certain specific areas: for example, for normalized
Laplacians of undirected formations, we will have − 1

λi
∈ R and −∞ ≤ − 1

λi
6 − 1

2
(Theorem 2.1). A Nyquist diagram that correctly encircles all the region where
− 1

λi
is constrained to be located will grant stability for all undirected formations;

so with a single, simple test it is possible to prove a very general result.
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Example 2.5 (Nyquist criterion for formations)
Consider the graph in Figure 2.1, and a stable loop gain transfer function with
the following Nyquist diagram:

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

The crosses in the picture represent the positions of − 1
λi

for the normalized Lapla-
cian of the graph we consider. As the diagram does not encircle any one of them,
the formation described by this graph and the chosen loop gain is stable. Actu-
ally, it is marginally stable as L has also a zero eigenvalue that corresponds to
a non-controllable part of the formation, that is basically the “drift effect” of the
formation as a whole. This accounts for the fact that it is impossible to stabilize
the absolute position of the formation if only relative measurements between its
members are taken. Notice also that the diagram does never reach real values
smaller than − 1

2 . Considering that the values of − 1
λ i

for a normalized Laplacian

can only be in the area where the real part is smaller than − 1
2 (that is where the

disk where the eigenvalues are located is mapped), this means that the chosen “lo-
cal” loop gain function GK yields stable formations for any graph, as long as
normalized Laplacian matrices are used to describe them.

2.5 Decomposable systems

In this section we extend the class of systems described in (2.18) and (2.19) to a
more general class of systems, which we call “decomposable systems”. These
systems are all the linear systems for which a change of variables like in (2.26)
generates a decomposition into smaller, “modal” systems. We will also replace
the Schur transformation with a diagonalization: although this might seem a loss
of generality, this choice introduces a great advantage as it will allow performance
considerations too, and not only stability checks as in Theorem 2.2.
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2.5.1 Definition

In this section we will introduce the class of systems that are subject of this thesis.
We start by defining the class of matrices which are of interest in their description.

Definition 2.4 Assume that the matrix P ∈ RN×N , which we call “pattern matrix”, is
diagonalizable (i.e. there exists an invertible S such that S−1PS is diagonal [37]): let us
define as GP,p,q the set of all matrices M ∈ RNp×Nq for which there exist two matrices
Ma, Mb ∈ Rp×q such that:

M = IN ⊗ Ma + P ⊗ Mb. (2.30)

We state an interesting property of these matrices that will be used in the sequel.

Lemma 2.3 Let S ∈ CN×N be a non-singular matrix such that Λ = S−1PS is diagonal.
If M ∈ GP,p,q then:

M = (S ⊗ Ip)
−1M(S ⊗ Iq) (2.31)

is block diagonal.
Proof: From Definition 2.4, we can write:

M = (S ⊗ Ip)
−1(IN ⊗ Ma + P ⊗ Mb)(S ⊗ Iq) (2.32)

then from the properties of the Kronecker product (Lemmas 2.1 and 2.2) we have:

M = (S−1INS⊗ IpMaIq)+(S−1PS⊗ IpMbIq) ⇔ M = IN ⊗Ma +Λ⊗Mb. (2.33)

Since IN and Λ are diagonal, we have that M is block diagonal. 2

So it is immediate to find a kind of similarity transformation that renders a matrix
in GP,p,q block diagonal, once the matrix that diagonalizes P is known. We also
notice that the matrix M of the previous lemma is not just any block diagonal
matrix, but it is a matrix that can be parameterized according to (2.33). If we call
Mi the ith block in the diagonal of Mi, it is easy to show that:

Mi = Ma + λiMb (2.34)

where λi is the ith entry in the diagonal of Λ, which is the ith eigenvalue of P . We
define as BP,p,q the set of block diagonal matrices whose blocks satisfy (2.34), and
for them we state the following corollary that will be useful later on.

Corollary 2.2 Let S ∈ C
N×N be a non-singular matrix such that Λ = S−1PS is diag-

onal. Then we have that:

N = (S ⊗ Ip)N(S ⊗ Iq)
−1 ∈ GP,p,q (2.35)
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if and only if N ∈ BP,p,q .
Proof: The proof is trivial and analogous to the one of Lemma 2.3. 2

Notice that this corollary implies that if N /∈ BP,p,q ⇒ (S ⊗ Ip)N(S ⊗ Iq)
−1 /∈

GP,p,q.

Remark 2.1 From now on, in this thesis we will always use the bold font to identify
matrices that can be parameterized according to (2.34).

In this thesis we focus on linear dynamical systems such that the system matrices
of their state-space representation are all in the set GP,•,• for the same matrix P .
We shall consider discrete time systems of the kind:







x(k + 1) = Ax(k) + Bww(k) + Buu(k)
z(k) = Czx(k) + Dzww(k) + Dzuu(k)
y(k) = Cyx(k) + Dyww(k)

(2.36)

as well as continuous time systems:







ẋ(t) = Ax(t) + Bww(t) + Buu(t)
z(t) = Czx(t) + Dzww(t) + Dzuu(t)
y(t) = Cyx(t) + Dyww(t)

(2.37)

where, as in the notation usually found in literature, k ∈ Z, t ∈ R, u is the input
to the system, w is a disturbance, y is the measured output and z is the output on
which the performance of the system is evaluated. We can now define the set of
systems that we will study in the course of this thesis.

Definition 2.5 (decomposable systems) Let us consider the linear dynamical systems
described by (2.36) or (2.37). We call such systems “decomposable systems” if and only if
A ∈ GP,l,l, Bw ∈ GP,l,mw

, Bu ∈ GP,l,mu
, Cz ∈ GP,rz,l, Cy ∈ GP,ry,l, Dzw ∈ GP,rz,mw

,
Dzu ∈ GP,rz,mu

and Dyw ∈ GP,ry,mw
for some matrix P . Notice that the order of the

system is Nl, and that u ∈ RNmu , w ∈ RNmw , y ∈ RNry and z ∈ RNrz .

In the case that the pattern matrix P is symmetric, then we call the system a “symmetric
decomposable system”.

In the course of this thesis we will mainly look at discrete time systems, for reasons
that will be clear from the next chapter.

Decomposable systems can be thought of as the result of the interconnection of
a large number of identical subsystems (Figure 2.2). The structure of the inter-
connection is given by the pattern matrix, which has as many columns and rows
as the number N of subsystems. Each entry of the pattern matrix determines
whether two subsystems influence each other or not, i.e., the element in the pth

row, qth column is non-zero if and only if the pth subsystem is influenced by the
qth one. Moreover, the nature of the interaction among subsystems can be of dif-
ferent kinds. For example, it can be dynamic, in the sense that the states of each
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subsystem influence the states of the ones to which it is connected; this will re-
sult in non-zero off-diagonal terms in the state matrix, that is, in a non-zero Ab

matrix. Another possibility is that the coupling is introduced in the performance
index, implying non-zero Cz,b, Dzu,b or Dzw,b matrices. Also other situations are
possible, for example we can think of coupling introduced by the input matrices.
Section 3.3 of the following chapter, and Chapters 4 and 5 later on, will show a
number of systems of interest which can fit into this class.

Figure 2.2: A system made of the interconnection of more identical subsystems.
The straight arrows represent input/output signals with the external
environment, while the curved stand for interactions between subsys-
tems.

We now present a theorem which is of fundamental importance for the results
shown in this thesis.

Theorem 2.3 (decomposition property) A decomposable system of order Nl as de-
scribed in Definition 2.5 is equivalent in terms of input-output map to N independent
subsystems of order l. Each of these subsystems has only mu inputs, mw disturbances, rz

performance outputs and ry control outputs.
Proof: According to Lemma 2.3, every matrix M appearing in the state-space description
of the system can be rewritten as:

M = (S ⊗ Ip)M(S ⊗ Iq)
−1 (2.38)

with M ∈ BP,p,q , block diagonal, with p, q assuming appropriate values. We can then
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rewrite the system equations (e.g. (2.36), those of the discrete time case) as:







(S ⊗ Il)
−1x(k + 1) = A(S ⊗ Il)

−1x(k) + Bw(S ⊗ Imw
)−1w(k)+

+Bu(S ⊗ Imu
)−1u(k)

(S ⊗ Irz
)−1z(k) = Cz(S ⊗ Il)

−1x(k) + Dzw(S ⊗ Imw
)−1w(k)+

+Dzu(S ⊗ Imu
)−1u(k)

(S ⊗ Iry
)−1y(k) = Cy(S ⊗ Il)

−1x(k) + Dyw(S ⊗ Imw
)−1w(k)

(2.39)

Then, with the following (invertible) change of variables:

x = (S ⊗ Il)x̂
w = (S ⊗ Imw

)ŵ
u = (S ⊗ Imu

)û
z = (S ⊗ Irz

)ẑ
y = (S ⊗ Iry

)ŷ

(2.40)

the system finally becomes:







x̂(k + 1) = Ax̂(k) + Bwŵ(k) + Buû(k)
ẑ(k) = Czx̂(k) + Dzwŵ(k) + Dzuû(k)
ŷ(k) = Cyx̂(k) + Dywŵ(k)

(2.41)

where the system matrices A, Bw, Bu, Cz , etc. are all block diagonal. This is equivalent
to the following set of N independent lth order systems:







x̂i(k + 1) = Aix̂i(k) + Bw,iŵi(k) + Bu,iûi(k)
ẑi(k) = Cz,ix̂i(k) + Dzw,iŵi(k) + Dzu,iûi(k)
ŷi(k) = Cy,ix̂i(k) + Dyw,iŵi(k)

for i = 1, . . . , N

(2.42)

where x̂i is the ith block of size l × 1 of x̂, and ŵi, ûi, ẑi and ŷi are similarly defined. We
stress that these subsystems are different from the physical subsystems that may compose
the global plant (i.e., the diagonal part of A); for this reason, we will sometimes call them
“modal subsystems” to emphasize this fact. 2

Also notice that according to (2.33), these systems can be written as:







x̂i(k + 1) = (Aa+λiAb)x̂i(k) + (Bw,a + λiBw,b)ŵi(k) + (Bu,a+λiBu,b)ûi(k)
ẑi(k) = (Cz,a+λiCz,b)x̂i(k)+(Dzw,a+λiDzw,b)ŵi(k) + (Dzu,a+λiDzu,b)ûi(k)
ŷi(k) = (Cy,a + λiCy,b)x̂i(k)+(Dyw,a+λiDyw,b)ŵi(k)

for i = 1, . . . , N
(2.43)

This property means that for this class of systems many problems, like analysis
or control design and even identification in some cases, can be approached by
looking at the decomposed problem. This idea of decomposing the problem into
a set of smaller problems is at the base of the control design methods shown in
Chapter 3, and the identification methods of Chapter 6. We now highlight an
additional observation that will be of use.
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2.5.2 System norms

At the beginning of this section, we stated that the use of a diagonalization instead
of a Schur transformation allows making considerations also on the performance
of the system. If we call Twz the transfer function of the system from the distur-
bance w to the performance output z, we can show that the norms of such transfer
function is related to the norm of the transfer function in the transformed vari-
ables ẑ and ŵ. It is important to notice that the decomposing transformation in
(2.40) is made of both a similarity transformation and a transformation of inputs
and outputs; while the former does not affect system norms, the latter might do
it. For this reason we state the following lemma.

Lemma 2.4 Let Twz be the transfer function of a decomposable system (Definition 2.5)

from disturbance w to output z; let T̂ŵẑ be the transfer function of the same system after
transforming them with (2.40), from the new disturbance ŵ to the new output ẑ. Then it
holds (for both discrete and continuous time systems):

1

κ(S)
||T̂ŵẑ||H2

6 ||Twz||H2
6 κ(S)||T̂ŵẑ||H2

(2.44)

1

κ(S)
||T̂ŵẑ||H∞

6 ||Twz||H∞
6 κ(S)||T̂ŵẑ||H∞

(2.45)

where κ(S) is the condition number of S. Moreover, let us call T̂ŵiẑi
the transfer functions

of each of the N modal subsystems into which the system can be decomposed, from ŵi to
ẑi. Then:

||T̂ŵẑ||2H2
=

N∑

i=1

||T̂ŵiẑi
||2H2

(2.46)

||T̂ŵẑ||H∞
= maxi||T̂ŵiẑi

||H∞
(2.47)

Proof: These expressions can be obtained from the definitions of the H2 and H∞ norms
[29]. 2

Remark 2.2 If we have a symmetric decomposable system, then S is orthogonal [37]: this
means κ(S) = 1. So, according to (2.44) and (2.45), the system norms are the same for

T̂ŵẑ and Twz.

Remark 2.3 In the remainder of the thesis we will almost only consider symmetric de-
composable systems. These systems are easier to treat for two reasons: first, as seen in
the last remark, because of the identity of the norms for the systems in the untransformed
and in the transformed form; second: symmetric matrices have real eigenvalues and eigen-
vectors. But what will be shown in the next chapter can be easily generalized to any
decomposable system; extra care will only be needed because of the presence of complex pa-
rameters, as well as the fact that the bounds we can impose to the norms have to be scaled
by the factor κ(S).
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2.5.3 The decomposition theorem

A question that comes natural by looking at Theorem 2.3 is whether such a decom-
position property is possible for other kinds of systems as well. For example, we
know from literature (see [13]) that any circulant system can be decomposed, but
Theorem 2.3 in its form does not accommodate all the possible circulant systems
(although P can be circulant). Another question would be whether systems that
have state-space matrices constructed with more than one pattern matrix, e.g.:

M = IN ⊗ Ma + P1 ⊗ Mb1 + P2 ⊗ Mb2 (2.48)

can still be object of decomposition.

We thus present a more general version of the decomposition theorem, that al-
lows taking into account a wider set of possibilities; as we will show, a number
of results in literature which make use of system decompositions can be given a
unified point of view thanks to this theorem.

Theorem 2.4 (general decomposition theorem) Consider a state-space system descri-
bed by the equations in (2.36). Assume that all the state-space matrices (A, Bw, etc.) can
be expressed as:

M =

µ
∑

k=1

Pk ⊗ M (k) (2.49)

where µ is an integer of choice and the matrices Pk are simultaneously diagonalizable by
a nonsingular matrix S (i.e., S−1PkS are all diagonal for k = 1, . . . , µ).

Then the system is equivalent to a set of N systems of equations as in (2.42), where all the
state-space matrices (Ai, Bw,i, etc.) are of the form:

Mi =

µ
∑

k=1

λ
(k)
i M (k) (2.50)

where the matrices M (k) are the same which appear in (2.49), and λ
(k)
i is the ith eigenvalue

of Pk (i.e., the ith entry of the diagonal matrix S−1PkS).

Conversely, a set of N systems as in (2.42) is equivalent to a system as in (2.36) with
matrices as in (2.49), if all the matrices in the N systems are parameterized according to
(2.50).
Proof: The proof follows the same reasoning as the one for Theorem 2.3. 2

So it is possible to have a whole set of pattern matrices, as long as they are si-
multaneously diagonalizable. Matrices that commute in the multiplication and are
diagonalizable are simultaneously diagonalizable [37], so a simple rule for having
multiple patterns is to choose Pk matrices which commute. Theorem 2.3 is the
special case of this last theorem for P1 = IN and P2 = P ; as IN commutes with
any N × N matrix, then any diagonalizable P is acceptable. An easy way to get
multiple pattern matrices which commute is just to use the powers of the same
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“base” pattern matrix P , as all it powers (P2, P3, etc.) will commute with one
another.

Following from this last reasoning, we can extend Definition 2.5 to accommodate
a wider class of systems to which a decomposition apply.

Definition 2.6 (wide-sense decomposable systems) We call “wide-sense decompos-
able systems” the systems for which Theorem 2.4 applies (i.e., systems which have a state-
space realization with matrices as in (2.49), for a certain set of simultaneously diagonaliz-
able pattern matrices Pk).

2.6 Special cases

As a conclusion to this chapter, we briefly introduce two very special cases of
systems which have been described in literature, and for which the general de-
composition theorem applies.

2.6.1 Circulant systems

Circulant systems [13] are systems that have a state-space realization made of
block circulant matrices [17]. Such matrices fit the description of (2.49), as they
can be expressed as:

M =
n∑

k=1

Πk−1
N ⊗ M (k) (2.51)

where ΠN is the circulant shift permutation matrix:

ΠN =










0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

1 0 0 0 · · · 0










=

[
0 IN−1

1 0

]

(2.52)

This permutation matrix and its powers are all diagonalizable and all commute
with one another, so they can be simultaneously diagonalized by a complex matrix
FN . This matrix is well known in literature and it is called the Fourier matrix [17].
In this perspective, circulant systems are an example of wide-sense decomposable
systems (Definition 2.6).

Circulant systems will be used later on to introduce the problem of identification
of decomposable systems; more will be told about them in Section 6.2.1.



28 Chapter 2: Preliminaries

2.6.2 Symmetrically interconnected systems

Symmetrically interconnected systems [39] can be represented as having a state-
space realization with matrices of the kind:

M = IN ⊗ Ma + Lc ⊗ Mb (2.53)

where Lc is the (normalized) Laplacian of the complete graph (i.e. the graph with
all the possible interconnections):

Lc =










1 − 1
N−1 − 1

N−1 . . . − 1
N−1

− 1
N−1 1 − 1

N−1 . . . − 1
N−1

− 1
N−1 − 1

N−1 1 . . . − 1
N−1

...
...

...
. . .

...
− 1

N−1 − 1
N−1 − 1

N−1 . . . 1










(2.54)

This kind of matrix is always diagonalizable (since it is circulant, [17]); however,
it has only two distinct eigenvalues, 0 with algebraic multiplicity 1 and N

N−1 with
multiplicity N − 1 [26]. This means that decomposing this system will result in N
modal subsystems, N − 1 of which are all the same. So symmetrically intercon-
nected systems are inherently described by only two subsystems, and this prop-
erty is not a consequence of using a Laplacian matrix to represent the system, as
it was already pointed out in [39].



3 CHAPTER

Control of Decomposable Systems

I
n the previous chapter we have introduced the class of “decomposable
systems”. The decomposition theorem has shown that these systems

are equivalent to a set of smaller, parameter-dependent systems. This
equivalence allows developing several suboptimal controller synthesis
methods, which are shown in this chapter. The first method, that can
be considered the main result of this thesis, is based on the application
of a technique similar to the “multiobjective optimization” to this specific
problem; this technique makes use of Linear Matrix Inequalities (LMIs)
and can exploit an extended parameterization in the discrete time case.
Other possible methods are based on robust control tools, like full block
S-procedure or robust H∞ synthesis, but they prove to be more conserva-
tive and less flexible than the first approach. Several simple examples of
applications are shown, together with comparisons among the methods.

3.1 Introduction

This chapter contains the main contribution of this thesis, namely a set of sub-
optimal distributed controller synthesis algorithms. In the previous chapter, we
introduced a class of LTI systems, the so-called “decomposable systems”, that can
be used to model a number of distributed or large scale systems made by the
interconnection of identical elements, which typically have sparse state-space ma-
trices. We have shown that we require the off-diagonal terms in the state-space
matrices, which represent the interconnections, to be expressed as a Kronecker
product involving a “pattern matrix”. If we use the language of graph theory,
the subsystems can be considered as nodes of the graph and the interconnections
as edges, and the pattern matrix can be considered a generalization of the graph
adjacency or graph Laplacian matrices.

This kind of systems can be decomposed into a set of smaller subsystems, whose
system norms are still related to the ones of the original system. This property can

29
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be used in the first place to simplify the computations involving decomposable
systems, by looking at them as an ensemble of smaller, independent systems. Ac-
tually the idea of decomposing a system for simplifying the controller synthesis
is not new at all in the literature, and it has been applied for example for circulant
systems [13], symmetrically interconnected systems [39; 87] and in SVD (Singular
Value Decomposition) controllers and their generalizations [5; 38; 89]; in all these
cases it is shown how the global control synthesis problem can be reduced to a col-
lection of simpler problems through a transformation of input, outputs and state
(typically, a MIMO system with N inputs and N outputs is reduced to a set of N
SISO systems).

However, if we look at the problem of controlling such systems, what is desirable
is to have the controller that is distributed as well. This means, it would be de-
sirable to restrict the result of the controller synthesis only to controllers which
are decomposable systems as well, with same pattern matrix as the plant. This
is graphically shown in Figure 3.1. A controller of such structure, as previously

Figure 3.1: On the left, a system made of the interconnection of identical subsys-
tems. On the right, a distributed controller made of a set of local con-
trollers (the smaller circles): the spatial structure of the controller is
the same as the one of the plant, and every local controller acts only on
one subsystem and its nearest neighbors. The solid lines represent in-
teractions between members of the same system, the dashed lines are
input/output flow between plant and controller.

said, is preferable to a centralized controller for implementation reason, as it can
be realized in practice as the interconnection of simple, local units acting on each
single agent, without the need of a centralized supervisor with access to all out-
put data. The earlier results mentioned above (e.g. [13; 38]) allow the use of the
decomposition just for simplifying the computations, but they all yield as the fi-
nal result a full centralized optimal controller. For example, SVD controllers are
centralized controllers which can be seen as a set of simple SISO controllers after
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a transformation of input and output. In the course of this chapter instead we
will develop algorithms that make sure that the controller has the same sparsity
as the system, allowing a distributed implementation of the controller. However,
we will see that the distributed structure is achieved at the cost of suboptimality
with respect to a global controller.

We are going to present several ways to obtain such kind of controllers. The first
and most versatile method is based on the use an LMI-based technique that al-
lows optimizing a controller for different output channels at the same time. This
method is based on very intuitive ideas and it will prove very easily generaliz-
able to other classes of problems and systems; this will be shown for example in
Chapter 5, where we will introduce an extension to Linear Time-Periodic (LTP)
systems. The other methods that we are going to develop are based on assuming
the λi, which parameterizes the systems in the decomposed form, as an uncer-
tainty. These methods will not prove as efficient as the first, but still they will
prove of some interest.

This chapter is organized as follows. Section 3.2 introduces the main results of
this thesis, the distributed control algorithms for decomposable systems based on
the multiobjective optimization technique. The idea at the base of the method is
shown first, and then all the relevant results are given explicitly and in a directly
usable form; some cases of special interest are discusses as well. Section 3.3 con-
tains two simple examples of application of this method; the first is a formation
flying problem (such problems will be treated extensively in Chapter 5), whereas
the second involves paper machines. Section 3.4 shows the two other possible
approaches to controller synthesis based on other robust control techniques, and
finally Section 3.5 contains the conclusions and some considerations on the value
of the methods proposed here.

The results contained in this chapter have been published in [57; 59].

3.2 A decomposition approach to control

In the previous chapter, we have seen that for the class of decomposable systems,
problems can be approached in the domain of the transformed variables, where
the system is equivalent to a set of smaller independent modal subsystems. Once
the solution has been obtained independently for each subsystem, one can retrieve
the solution to the original problems through the inverse of the transformation
shown in the proof of Theorem 2.3. Notice that the fact of working with a de-
composed system does not imply that the final controller will be distributed or
sparse; for this purpose, additional care will be needed, which we are going to
show shortly.

3.2.1 Distributed control

As stated, we are going to design controllers for systems in the decomposed form,
such that we may consider every modal subsystem independently. We consider
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either static state-feedback controllers of the kind:

ûi = Kix̂i for i = 1, . . . , N (3.1)

or dynamic output-feedback controllers:

{
x̂c,i(k + 1) = Ac,ix̂c,i(k) + Bc,iŷi(k)
ûi(k) = Cc,ix̂c,i(k) + Dc,iŷi(k)

for i = 1, . . . , N (3.2)

(for the discrete time case). In general, these controllers will not have any special
structure once they are rewritten in the domain of the variables “without the hat”:

u = Kx (static state feedback) (3.3)

or {
xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k)

(dynamic
output feedback)

(3.4)

For example, it will be:

K = (S ⊗ Imu
)K(S ⊗ Il)

−1 /∈ GP,mu,l. (3.5)

where K is the block diagonal matrix that contains the Ki’s in its diagonal. As-
sume now that the controller matrices are chosen such as they can be parameter-
ized according to (2.33); remember that we denote such matrices with the bold
font, so we will write K = K, Ac = Ac etc. Then the matrices:

K = (S ⊗ Imu
)K(S ⊗ Il)

−1

Ac = (S ⊗ Il)Ac(S ⊗ Il)
−1

Bc = (S ⊗ Il)Bc(S ⊗ Iry
)−1

Cc = (S ⊗ Imu
)Cc(S ⊗ Il)

−1

Dc = (S ⊗ Imu
)Dc(S ⊗ Iry

)−1

(3.6)

which represent the possible controllers for the untransformed system, will have
the same structure as the matrices of the system: thanks to Corollary 2.2, K, Ac,
Bc, Cc, Dc ∈ GP,•,•, where the bullets indicate consistent dimensions for each ma-
trix. This means that the controller will have the same “physical” interconnection
structure as the plant itself.

3.2.2 The basic idea

For example, let us now consider the problem of finding a stabilizing static state
feedback (as in (3.3)) for a symmetric decomposable system (Definition 2.5). The
basic LMI approach for solving the problem is to find a feasible solution to the
following inequality [81]:

[
X AX + BuL
∗ X

]

≻ 0 (3.7)
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where X = X T and L are decision variables; K = LX−1. In the transformed
domain, the LMI above is equivalent to the following set of smaller independent
LMIs: [

Xi (Aa + λiAb)Xi + (Bu,a + λiBu,b)Li

∗ Xi

]

≻ 0

for i = 1, . . . , N

(3.8)

where now Xi = XT
i and Li are decision variables. If we just solve each of the N

LMIs independently, then there will be a gain Ki = LiX
−1
i for each subsystem; but

if we stack all these gains in a block diagonal matrix K and perform the inverse
transformation of (3.6) to get K, then this K in general will not be in the set GP,mu,l.

If we instead want to have K ∈ GP,mu,l, we can solve the set of LMIs in (3.8) with
the following coupling constraints:

Xi = X
Li = Li = La + λiLb

for i = 1, . . . , N (3.9)

and thus, the gains Ki will be “bold”, parameterized according to (2.34):

Ki = (La + λiLb)X
−1 = Ka + λiKb = Ki (3.10)

yielding a K ∈ GP,mu,l. This approach is similar to what is done in the so-called
LMI multiobjective optimization [80]; this method introduces some conservatism
because we have set the same X matrix for all the LMIs. Since X is associated
to the Lyapunov function of the closed loop system, this method is also called
Lyapunov shaping.

In the literature a result has appeared that allows more generality to these multi-
objective optimization problems in discrete time. In [18] it is shown that (3.7) can
be replaced by the equivalent:

[
X AG + BuL
∗ G + GT −X

]

≻ 0 (3.11)

where G (not necessarily symmetric), X and L are the decision variables; K =
LG−1. Then the equivalent of (3.8) is:

[
Xi (Aa + λiAb)Gi + (Bu,a + λiBu,b)Li

∗ Gi + GT
i − Xi

]

≻ 0

for i = 1, . . . , N

(3.12)

on which we can put the following constraints:

Gi = G
Li = Li = La + λiLb

for i = 1, . . . , N (3.13)

These constraints still introduce conservatism due to the single matrix G for all the
LMIs, but leave a wider generality because no constraint is put on the Lyapunov
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function (each LMI has its own Xi). This will lead to better results in the search
for optimal values for the control problems that will be examined later on. In fact,
the approach that has been used here for finding a stabilizing feedback can be
extended to a wider range of problems, as it will be shown later on in this chapter.

Remark 3.1 There are some cases when the set of N LMIs in (3.12) coupled by (3.13)
are actually equivalent to just two LMIs. For example, if Bu,b = 0 (that is, if Bu is block
diagonal) then all the LMIs can be expressed as a convex combination of the two LMIs
that contain the extreme (maximum and minimum) values of λi. Then the feasibility of
just these two inequalities will automatically grant the feasibility of all the others.

Remark 3.2 Let us evaluate the reduction in complexity of the problem, by going from its
general formulation of (3.11) to the approach proposed here (equation (3.12) together with
(3.13)). As the computational time involved in solving LMIs depends on the specific solver,
we limit ourselves to finding the order of magnitude of the decision variables involved and
the number of constraints. In (3.11) the number of decision variables is of the order of the
biggest decision matrix involved, that is X , with X ∈ RNl×Nl; so the decision variables
are of dimension O(N2l2). The number of constraints (the size of the LMI) is O(N2l2) as
well. For (3.12) and (3.13), the biggest decision variables are the Xi ∈ Rl×l, which appear
N times; so the decision variables are O(Nl2). The constraints are N LMIs of the order
of l × l, so they are O(Nl2) as well in number. The reduction of complexity is then of the
order of the number N .

Moreover, if Remark 3.1 holds, then the number Xi variables becomes only two as well
as the number of LMIs: so we can claim that then the complexity is only O(l2), another
factor N less. We have to stress that in general we can consider N ≫ l for distributed
systems.

These reductions of complexity will hold as well for all the problems that are discussed in
the following pages.

3.2.3 Controller synthesis methods

The method shown in Section 3.2.2 to stabilize a system can be generalized and
used to find suboptimal controllers with respect to the system norms. We say
“suboptimal” as we can only provide sufficient and not necessary conditions.

Controller synthesis: discrete time, static state feedback

We first look for static state-feedback controllers which have the same structure as
the system; they can be expressed by (3.3), with:

K = IN ⊗ Ka + P ⊗ Kb. (3.14)
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We adapt the results of [18] to the class of systems considered here, for which
we can state the two following theorems, the proofs of which are trivial once the
content of Section 3.2.2 is understood.

Theorem 3.1 (H∞ state feedback, discrete time) Consider a discrete-time symmet-
ric decomposable system according to Definition 2.5. A sufficient condition for the ex-
istence of a static state-feedback controller described by (3.1) and (3.14) that yields a
||Twz||H∞

< γ is that the following set of LMIs has a feasible solution:







Pi AiX + Bu,iLi Bw,i 0
∗ X + XT − Pi 0 XTCT

z,i + LT
i DT

zu,i

∗ ∗ Imw
DT

zw,i

∗ ∗ ∗ γ2Irz






≻0

for i = 1, . . . , N

(3.15)

where Pi = PT
i , X , Li = La + λiLb are optimization variables, Ka = LaX

−1, Kb =
LbX

−1.

Notice again that, according to Remark 2.1, the matrices of index i that are pa-
rameterized according to (2.34) have been written in bold, like for example Li, Ai,
Bu,i in the last equation.

Theorem 3.2 (H2 state feedback, discrete time) Consider a discrete-time symmetric
decomposable system according to Definition 2.5. A sufficient condition for the existence of
a static state-feedback controller described by (3.1) and (3.14) that yields a ||Twz||H2

< γ
is that the following set of LMIs has a feasible solution:

[
Wi Cz,iX + Dzu,iLi

∗ X + XT − Pi

]

≻ 0,





Pi AiX + Bu,iLi Bw,i

∗ X + XT − Pi 0
∗ ∗ Imw



 ≻ 0

for i = 1, . . . , N, and

∑N
i=1 trace(Wi) < γ2

(3.16)

where Pi = PT
i , Wi = WT

i , X , Li = La + λiLb are optimization variables, Ka =
LaX−1, Kb = LbX

−1.
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Remark 3.3 As for Remark 3.1, there are situations when the sets of LMIs in Theorem 3.1
can be reduced by considering only those of index i for which λi assumes the maximum and
minimum values. This happens if Bu,b = 0, Dzu,b = 0. This also applies to Theorem 3.2,
if the additional constraint of Wi being “bold” as well (Wi = Wi = Wa + λiWb) is
applied (this will be worked out in detail in Chapter 4).

As in standard multiobjective optimization, more than one system norm can be
constrained at the same time. For example, let us assume we have a symmetric
decomposable system of the kind:

{
x(k + 1) = (A + ∆)x(k) + Bww(k) + Buu(k)
y(k) = Cx(k) + Dww(k) + Duu(k)

(3.17)

where ∆ represents a static time-invariant uncertainty in the system. Let us as-
sume that ∆ depends on only one scalar parameter δ, such as:

∆ = IN ⊗ (VaδWa) + P ⊗ (VbδWb) = ∆0δ (3.18)

where Va, Vb are column matrices and Wa, Wb are row matrices. Then for ∆ as
well we have that:

(
S−1 ⊗ Il

)
∆(S ⊗ Il) = ∆ (3.19)

where ∆ is block diagonal. If the uncertainty is only in the diagonal (so Vb, Wb =
0) or only in the interconnections (Va, Wa = 0), then for each block it will hold:

∆i = δViWi (3.20)

where again Vi is a column and Wi is a row. Assuming that |δ| < δmax, we can use
the multiobjective synthesis method to design a controller with H∞ performance
with robust stability, by solving the following optimization problem:

minimize γ2 over:







Pi AiX + Bu,iLi Bw,i 0
∗ X + XT − Pi 0 XTCT

i + LT
i DT

u,i

∗ ∗ Imw
DT

w,i

∗ ∗ ∗ γ2Irz






≻0







Qi AiX + Bu,iLi Wi 0
∗ X + XT − Qi 0 XTVT

i

∗ ∗ 1 0
∗ ∗ ∗ 1

δ2
max






≻ 0

for i = 1, . . . , N

(3.21)

where Pi = PT
i , Qi = QT

i , X and Li = La + λiLb are optimization variables. The
first LMI sets the performance, while the second imposes that the H∞ norm of
the transfer function from the output of the uncertainty (which has been “pulled
out”) to its input is smaller than 1. This grants robust stability as a consequence of



3.2 A decomposition approach to control 37

the small gain theorem [95].

Notice that conservatism is introduced because the X in the first and second LMI
are not necessarily the same, but they have to be chosen so in order to make the
problem solvable. Notice also that since the robustness criterion is based on the
small gain theorem, the system in closed loop will be robustly stable for any un-
certainty ∆′ that is elementwise smaller in modulus than ∆max = ∆0δmax, even if
it does not have the same structure.

Controller synthesis: discrete time, dynamic output feedback

The method can be used also for dynamic output feedback. Let us first start by
reporting the general result as in [18], for H∞. Let us assume we have a generic
system of the kind:







x(k + 1) = Ax(k) + Bww(k) + Buu(k)
z(k) = Czx(k) + Dzww(k) + Dzuu(k)
y(k) = Cyx(k) + Dyww(k)

(3.22)

for which we want to create a controller:
{

xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k)

(3.23)

that minimizes the H∞ norm from w to z. Such controllers can be found by min-
imizing γ2 over an LMI constraint (not shown here for brevity), where P = P T ,
H = HT , X , L, Y , F , Q, R, S, J are decision variables. The controller matrices are
then found with the relations:






Dc = R
Cc = (L − RCyX)U−1

Bc = V −1 (F − Y BuR)
Ac = V −1 (Q − Y (A + BuDcCy)X − V BcCyX)U−1 − V −1Y BuCc

(3.24)

where U and V are two arbitrary non-singular matrices such that V U = S − Y X .

If the system is decomposable, we can again evaluate the N independent modal
subsystems resulting from the decomposition of the global system, and solve the
related N independent LMIs, each one with its own decision variables:











Pi Ji AiXi+Bu,iLi Ai+Bu,iRiCy,i Bw,i+Bu,iRiDyw,i 0

∗ Hi Qi YiAi+FiCy,i YiBw,i+FiDyw,i 0

∗ ∗ Xi+XT
i −Pi Il+ST

i −Ji 0 XT
i CT

z,i+LT
i DT

zu,i

∗ ∗ ∗ Yi+Y T
i −Hi 0 CT

z,i+CT
y,iR

T
i DT

zu,i

∗ ∗ ∗ ∗ Imw DT
zw,i+DT

yw,iR
T DT

zu,i

∗ ∗ ∗ ∗ ∗ γ2Irz











≻0

for i = 1, . . . , N
(3.25)
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And these are the LMIs for the H2 case:





Wi Cz,iXi + Dzu,iLi Cz,i + Dzu,iRiCy,i

∗ Xi + XT
i − Pi Il + ST

i − Ji

∗ ∗ Yi + Y T
i − Hi



 ≻ 0,









Pi Ji AiXi + Bu,iLi Ai + Bu,iRiCy,i Bw,i + Bu,iRiDyw,i

∗ Hi Qi YiAi + FiCy,i YiBw,i + FiDyw,i

∗ ∗ Xi + XT
i − Pi Il + ST

i − Ji 0
∗ ∗ ∗ Yi + Y T

i − Hi 0
∗ ∗ ∗ ∗ Imw









≻0,

Dzw,i + Dzu,iRiDyw,i = 0

for i = 1, . . . , N , and:

∑N
i=1 trace(Wi) < γ2.

(3.26)

It is possible to see that, under certain assumptions which we will shortly show,
there is a parameterization of the decision variables such that Ac, Bc, Cc, Dc ∈
BP,•,•, yielding a controller in the untransformed domain that will be of the same
structure as the plant. The parameterization is the following:







Xi = X
Yi = Y
Si = S
Li = La + λiLb

Fi = Fa + λiFb

Qi = Qa + λiQb

Ri = Ra + λiRb

Pi = PT
i , Hi = HT

i , Ji unconstrained

for i = 1, . . . , N (3.27)

that together with:







V U = S − Y X (with U, V non singular)
Dc,i = Ri

Cc,i = (Li − RiCy,iX)U−1

Bc,i = V −1 (Fi − Y Bu,iRi)
Ac,i = V −1 (Qi − Y (Ai + Bu,iRiCy,i)X −V Bc,iCy,iX)U−1−V −1Y Bu,iCc,i

(3.28)
and (3.6) will yield Ac, Bc, Cc, Dc ∈ GP,•,•; we only have to assume that when-
ever we have a product of more than one bold matrix, then all the bold matrices
involved but one must be constant over the index i. For example, we have that:

Cc,i = (Li − RiCy,iX)U−1 = (3.29)

= (Lc,a + λiLc,b − (Ra + λiRb)(Cy,a + λiCy,b)X)U−1 (3.30)
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So if we want Cc,i to be parameterized as Cc,i = Cc,a +λiCc,b, then we either need
to have Cy,i constant (Cy,b = 0) or to set Ri as constant (Rb = 0). All the possible
cases in which this holds, as well as the additional constraints which might be
required, are listed in Table 3.1.

Table 3.1: Conditions and additional constraints for solving dynamic output feed-
back problems.

Case Conditions Additional constraints

1 Cy,b = 0, Bu,b = 0 none
2 Bu,b = 0 Rb = 0, Fu,b = 0
3 Cy,b = 0 Rb = 0

We summarize these results in the following theorems.

Theorem 3.3 (H∞ output feedback, discrete time) Consider a discrete-time symmet-
ric decomposable system according to Definition 2.5, in one of the cases of Table 3.1. A
sufficient condition for the existence of a decomposable dynamic output-feedback controller
described by (3.23) that yields a ||Twz||H∞

< γ is that the set of LMI constraints in (3.25)
has a feasible solution. The decision variables and their parameterization are shown in
(3.27), while Table 3.1 shows the additional constraints which might be needed. The state-
space matrices of the controller can be retrieved through (3.28).

Theorem 3.4 (H2 output feedback, discrete time) Consider a discrete-time symmet-
ric decomposable system according to Definition 2.5, in one of the cases of Table 3.1. A
sufficient condition for the existence of a decomposable dynamic output-feedback controller
described by (3.23) that yields a ||Twz||H2

< γ is that the set of LMI constraints in (3.26)
has a feasible solution. The decision variables and their parameterization are the ones
shown in (3.27), with the addition of Wi = WT

i ; Table 3.1 shows the additional con-
straints which might be needed. The state-space matrices of the controller can be retrieved
through (3.28).

Remark 3.4 As for Remark 3.1, also for the LMIs in Theorem 3.3 and Theorem 3.4 a
reduction can be done in the case of Bu,b = 0, Dzu,b = 0, Dyw,b = 0 (and Wi = Wi =
Wa + λiWb for Theorem 3.4).

Controller synthesis: continuous time, static state feedback

As shown in the previous pages for discrete-time systems, for continuous-time
systems as well it is possible to use the same kind of reasoning and get to subopti-
mal controller synthesis methods. The main difference with the discrete time case
is that in continuous time there is, to our knowledge, no extended LMI parameter-
ization like in [18] that we can easily use for our scope. We summarize the results
for continuous time in two theorems, only for the static state-feedback case.
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Theorem 3.5 (H∞ state feedback, continuous time) Consider a continuous-time
symmetric decomposable system according to Definition 2.5. A sufficient condition for
the existence of a static state-feedback controller described by (3.1) and (3.14) that yields a
||Twz||H∞

< γ is that the following set of LMIs has a feasible solution:





AiX + Bu,iLi + XTAT
i + LT

i BT
u,i Bw,i XCT

z,i + LT
i DT

zu,i

∗ −Imw
DT

zw,i

∗ ∗ −γ2Irz



≻0

for i = 1, . . . , N

(3.31)

where Pi = PT
i , X , Li = La + λiLb are optimization variables, Ka = LaX

−1, Kb =
LbX

−1.

Theorem 3.6 (H2 state feedback, continuous time) Consider a continuous-time
symmetric decomposable system according to Definition 2.5. A sufficient condition for the
existence of a static state-feedback controller described by (3.1) and (3.14) that yields a
||Twz||H2

< γ is that the following set of LMIs has a feasible solution:

[
X XCT

z,i + LT
i DT

zu,i

∗ Wi

]

≻ 0,

[
AiX + Bu,iLi + XTAT

i + LT
i BT

u,i Bw,i

∗ −Imw

]

≻ 0

for i = 1, . . . , N, and

∑N
i=1 trace(Wi) < γ2

(3.32)

where Pi = PT
i , Wi = WT

i , X , Li = La + λiLb are optimization variables, Ka =
LaX−1, Kb = LbX

−1.

Notice that Remark 3.3 holds for these last two theorems as well.

3.2.4 Links with graph theory

In Chapter 2 we mentioned graph theory as a way of interpreting decomposable
systems. Actually, graph theory can be also of further use in this situation, as it
can give guidelines in the choice of the pattern matrices. In fact, by looking at
(2.30) it is apparent that the same matrix M can be obtained with different P ’s,
by adjusting Ma and Mb. The pattern matrix for a system is not unique; however,
it can be convenient to choose a P with guaranteed bounds on its eigenvalues.
Following the same reasoning as in [26], then it can be convenient to choose it as a
normalized graph Laplacian matrix. For such kind of matrices it may be actually
not necessary to compute the eigenvalues, as we already know a boundary for
them; this means that in the cases when Remark 3.3 or 3.4 holds, we can assume
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directly 0 as minimum eigenvalue and 2 as the maximum one. Secondly, as these
boundaries hold for all normalized Laplacians, then the result of this controller
synthesis will be valid regardless of the number of interconnected elements N and re-
gardless of the topology, as long as the pattern is a normalized Laplacian matrix.
These statements will be made clearer by the first example in Section 3.3.

3.2.5 Special cases

Multiple patterns

The LMI procedures shown in Section 3.2.3 can be naturally extended to accom-
modate wide-sense decomposable systems, with any number of patterns (Defini-
tion 2.6); simply by redefining “bold” decision variables as in (2.50), then formally
the same LMIs can be used to search for controllers. Remarks 3.1, 3.3 and 3.4 will
not hold anymore in their present form, although it can be possible to reduce the

number of LMIs only to those which contain the λ
(k)
i that are at the vertices of the

convex hull of all the possible µ-tuples of them. This last sentence will be made
clearer in the first example of Section 3.3, where we will briefly show the synthesis
of a controller with multiple pattern matrices.

Symmetrically interconnected systems

Optimal controllers for symmetrically interconnected systems are inherently sym-
metrically interconnected too, for this reason, the synthesis method shown earlier
is not necessary for this kind of systems. In Section 3.2.3 we have shown how the
introduction of constraints will force the controller to be of the same kind as the
plant; these constraints are not needed in this case. Let us show an example to clar-
ify this. Consider the problem of finding a state feedback; the decomposition of
the problem will lead to just two subsystems, thus two LMIs (or two Riccati equa-
tions) need to be solved for the optimal control problem. We do not introduce the
constraints, so we will get two independent state gains for the two subsystems, let
us call them K1 and K2...N . Whatever these gains are, it will always be possible to
parameterize them as:

K1 = Ka

K2...N = Ka + N
N−1Kb

(3.33)

This means that no conservatism needs to be added in order to get a symmetrically
interconnected controller. This explains why controllers of this kind, which have
been obtained through decompositions, are always optimal (sometimes they are
called superoptimal in literature [39]).

Circulant systems

Circulant systems have inherently circulant optimal controllers as well, so in order
to find a full circulant controller for a circulant system there is no need of intro-
ducing the constraints; in fact in literature control design methods for circulant
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systems based on decomposition have already been explored [13; 19]. However,
it can be useful to use the method shown in this section for control design of sys-
tems which have a limited bandwidth in the circulant matrix, i.e., with matrices
stemming from a limited number of permutation matrices:

M =

b∑

k=−b

Πk
N ⊗ M (k) (3.34)

where b is the bandwidth. The earlier methods would yield a full circulant con-
troller, while the method of this thesis would keep the bandwidth limited thanks
to the introduction of constraints, at the cost of suboptimality.

3.3 Examples of applications

In this section we present three simple examples of application of the proposed
controller synthesis method, which are meant to give a first flavor of what can be
done with them. More in-depth examples of applications are given in Chapter 4
and Chapter 5.

3.3.1 Formation flying of satellites in a circular orbit

As a first example, we present a problem where the physical subsystems are dy-
namically disconnected, but a cross-coupling between them is introduced by the
performance index. A formation flying problem is a typical example of this situ-
ation. Let us consider a swarm of satellites orbiting around a planet on a circular
orbit (a similar example is shown in [25]). The small perturbations of their mo-
tion with respect to the nominal circular trajectory are described by the so-called
Clohessy-Wiltshire (CW) equations [72]:







ẍ1 = 3ω2
nx1 + 2ωnẋ2 + a1

ẍ2 = −2ωnẋ1 + a2

ẍ3 = −ω2
nx3 + a3

(3.35)

where x1, x2 and x3 are respectively the displacements in the radial, tangential
and out-of-plane direction with respect to an ideal body covering perfectly the
circular orbit at an angular speed ωn; a1, a2 and a3 are the accelerations of the
spacecraft due to either propulsion or external disturbances.

Let us now assume that N satellites are uniformly distributed on the same circu-
lar orbit, and that we would like to design a controller that minimizes the error
on their relative positions, with an H∞ criterion. We are going to compare three
different controllers: 1) a centralized controller that considers the formation as a
whole; 2) a decentralized controller that acts on every satellite on its own, mini-
mizing the norm from its local input to its local output; 3) a distributed controller
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made of the interaction of local controllers which can communicate with the near-
est neighbors. Figure 3.2 visually shows the difference between these types of
controllers.

Centralized Controller

Decentralized Controller

Distributed Controller

Figure 3.2: Three different types of controllers. The arrows represent information
flow.

The last of the three controllers can be designed with the method shown in this
chapter. We said that the goal is designing a controller for minimizing the errors
on the relative positions; as there is no dynamic interaction between the satellites,
the cross-coupling between them will be introduced by the performance output.
So if we consider the set of satellites as a single system, all the matrices will be
block diagonal but Cz . Since we need to put a penalty on the difference of the
position, we can choose as performance output the following:

zxν ,i = − 1
2xν,i−1 + xν,i − 1

2xν,i+1 for ν = 1, 2, 3 (3.36)

In this way, the performance output matrix Cz will be block symmetric, and it will
be possible to express it by means of a symmetric pattern matrix. This would not
happen if we choose something like xν,i − xν,i+1 as output, which might seem a
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more natural choice.

Once the output has been decided, the pattern matrix has to be chosen. As stated
in Section 3.2.4, normalized Laplacian matrices are a better choice, and in this case
it is possible to use a symmetric normalized Laplacian matrix which we call L(1):

L(1) =








1 − 1
2 0 · · · 0 − 1

2
− 1

2 1 − 1
2 · · · 0 0

...
...

...
. . .

...
...

− 1
2 0 0 · · · − 1

2 1








(3.37)

With this, if we call Cz the output matrix of a single satellite, then the global per-
formance output matrix will be Cz = L(1) ⊗ Cz . Notice that L(1) is circulant as
well.

In addition, we consider a non-zero Dzu matrix in order to penalize the use of
the actuators (the consumption of propellant), for which reason we can add the
following three performance outputs:

zaν ,i = waν for ν = 1, 2, 3 (3.38)

where w is a weighting parameter.

We turned the problem into a discrete-time problem with a Tustin approximation
[27]: then we can use Theorem 3.3, and as we are in the case of Remark 3.4, the
output-feedback synthesis problem can be solved with a reduced set of only two
LMIs. Moreover, as L(1) is a normalized Laplacian, it is possible to execute the
computation only once for all the formations of any size, by assuming as maxi-
mum and minimum eigenvalues 0 and 2 respectively.

This controller is of course suboptimal, but it will be distributed and it will require
only communications between nearest neighbors: the ith satellite will communi-
cate with the satellites of index i + 1 and i − 1. The performance of the controller
can be increased by allowing one more communication link, that means, allowing
the ith satellite to communicate with those of of index i + 2 and i − 2. This can be
done by introducing a second pattern matrix as in Section 2.5.3:

L(2) =








1 0 − 1
2 0 · · · 0 − 1

2 0
0 1 0 − 1

2 · · · 0 0 − 1
2

...
...

...
. . .

...
...

0 − 1
2 0 0 · · · − 1

2 0 1








(3.39)

This is again a symmetric normalized Laplacian, and it is a valid choice for a
second pattern matrix1 as it is circulant too, and all circulant matrices commute
[17]. However, as explained in Section 2.5.3, Remark 3.4 cannot be applied in its

form anymore, as the eigenvalues λ
(1)
i and λ

(2)
i of L(1) and L(2) respectively must

not be considered on their own but as couples (λ
(1)
i , λ

(2)
i ). The set of LMIs can be

1Actually, it is a third pattern matrix, as IN can be considered a pattern as well.
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reduced to only those that generate the convex hull of all the (λ
(1)
i , λ

(2)
i ), but as

it can be seen from Figure 3.3, no reduction is possible in this case and all the N
LMIs have to be considered.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

λ
(2

)
i

λ
(1)
i

Figure 3.3: Eigenvalues of L(1) versus those of L(2) (N = 30). The shaded area is
the convex hull of these points: the vertices of the convex hull are all
the points themselves in this case.

The computations for the synthesis of the two distributed controllers have been
executed with Matlab, using SeDuMi [86] as solver, with the help of the user-
friendly interface provided by the Yalmip toolbox [52]. Also an optimal central-
ized controller and a decentralized one have been computed for comparison. The
results of the computations, for different numbers of satellites, are shown in Fig-
ure 3.4. As it was expected, the centralized optimal control offers the best per-
formance, while the decentralized has the worst ones. The distributed controllers
are in between and quite close to the global optimum, with the 2-pattern one per-
forming slightly better.

Figure 3.5 shows the sparsity of the four different controllers of Figure 3.4.

3.3.2 Formation flying in deep space

We now consider again a formation flying problem, where the physical subsys-
tems are dynamically disconnected and the cross-coupling is introduced by the
performance index, as in the previous example. We consider a formation in deep
space, whose dynamics is basically Newton’s second law:

ẍ = a (3.40)

which we consider in the discretized version; x is the position in the tridimen-
sional space and a is the acceleration of the spacecraft due to either propulsion or
disturbances. We use this example to show the effects of choosing a directed graph
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Decentralized control

Full global optimal controller
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Figure 3.4: H∞ norm with the 4 different controllers, for different numbers N of
satellites.
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Distributed controller
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Distributed controller with 2 patterns

6 12 18 24 30 36 42 48 54 60 66 72

6

12

18

24

30

36

42

48

54

60

66

72

Figure 3.5: Sparsity of the state matrix of the 4 different controllers, for N = 12. A
black dot indicates a non-zero entry.
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or a non-symmetric pattern matrix in the synthesis method, whereas in the rest of
the thesis only symmetric decomposable systems are considered (as explained in
Remark 2.3).

We consider a formation of 4 spacecraft associated to the directed graph shown in
Figure 3.6.

Figure 3.6: Directed graph for the deep space formation.

The pattern matrix that we choose is going to determine the cross-couplings in the
performance output, exactly as in the previous example. We are going to execute
the distributed H∞ synthesis for this formation for three different patterns, and
then we will compare the results.

The first pattern that we will use is the following:

P1 =







1 −1 0 0
0 1 −1 0
− 1

2 0 1 − 1
2

0 −1 0 1







(3.41)

which is the normalized Laplacian of the directed graph in Figure 3.6. This matrix
has complex eigenvalues, and it is decomposed by a non unitary S matrix. This
implies that the LMIs used for the distributed synthesis, namely those of Theo-
rem 3.3, will feature complex values of λi (and the transpose operator needs to be
replaced by the conjugate transpose or Hermitian). We also have to constrain the
decision variables to be real in order to have a real controller (notice that λi can
be factorized in (3.28), and will not influence the Ac,a, Ac,b, etc. matrices). More-
over, as explained in Lemma 2.4, the bound γ on the H∞ of the closed-loop system
needs to be rescaled by the condition number of S, making the true bound on the
norm equal to γκ(S).
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The second pattern matrix that we consider is:

P2 =







1 − 1
2 − 1

2 0

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

0 − 1
2 − 1

2 1







(3.42)

which is the normalized Laplacian of the undirected graph associated to the one in
Figure 3.6. This matrix is not symmetric but it has real eigenvalues, so Remark 3.4
applies. Still the bounds on the norm need to be scaled by the condition number.

Finally, we will consider:

P3 =







2
3 − 1

3 − 1
3 0

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

0 − 1
3 − 1

3
2
3







(3.43)

which is the weighted normalized Laplacian of the undirected graph, obtained by
adding arbitrary self loops on the first and last node (as shown in Example 2.4).
This matrix is symmetric.

The results with the three different matrices are shown in Table 3.2, together with
the comparison with a centralized controller.

Table 3.2: Controller performance for the deep space formation example.

centralized controller distributed controller
Case H∞ norm H∞ norm γ κ(S) γκ(S)

P1 28.63 34.79 28.00 1.41 39.60
P2 24.02 25.47 22.69 1.22 27.68
P3 22.52 22.52 22.52 1 22.52

The first thing to notice in the evaluation of the results, is that the three cases rep-
resent different problems: changing the pattern matrix changes the optimization
criterion (namely, the performance index), so choosing a different representation
of the graph links is a relevant part of the problem formulation, and not only a
different point of view on the same problem. This is also clear from the fact that
the centralized controller yields different performance in the three cases. We can
see that in the first case (directed graph) the difference in performance between
distributed controller and centralized controller is significant. For the undirected
graph case (P2 and P3), we see that using a symmetric Laplacian yields a dis-
tributed controller that has almost the same performance as the centralized one.
This does not happen if we use the non-symmetric pattern matrix. In the exam-
ples of Chapter 5 we will always use symmetric weighted Laplacians as pattern
matrices of undirected graphs, in order to always have κ(S) = 1.
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3.3.3 Paper machines

Another example of a system that can be analyzed with the same methods comes
from the cross-directional control of paper machines [85]. In such devices, the wet
paper pulp is distributed on a conveyor belt and then forced through a gap in
order to create an extrusion (the paper sheet). A good quality paper should have
constant properties (e.g. thickness, weight per unit area), so it is necessary to have
an array of actuators that compensates for the irregularities in the distribution of
the paper pulp.

Under the point of view of system theory, a paper machine can be modeled as a
discrete-time system with N inputs (the actuator commands) and N outputs (the
error in the paper thickness). If we denote such inputs as u(k) ∈ RN and the
outputs as y(k) ∈ RN , then a model for the system can be:

y(k) = Pu(k − d) + ay(k − 1) + w(k) (3.44)

where a is a scalar (representing a stable pole), d is a delay, w is a disturbance and
P is a band matrix that accounts for the cross-coupling between the actuators.
Actually, P is the only source of cross-coupling between the physical subsystems,
which interact with as many neighbors as the number of off-diagonal bands in P .
Some references (like [89], with some adaptations) assume P as a generic band
matrix, while others (like [85]) take it as a band symmetric Toeplitz matrix.

Many different methods have been used in literature for dealing with the problem;
the most common approaches are either to approximate the Toeplitz matrix with
a circulant matrix [49; 85], or to use a centralized optimal SVD controller which
uses the decomposition to simplify the complexity of the computations [89]. With
our approach, we will find a suboptimal controller that can be implemented as
distributed; Figure 3.7 shows the difference between the structure of this controller
and of an SVD one.

The first thing that we need to do is to turn the model of the machine into a state-
space formulation as in (2.36), with the result that P becomes the pattern matrix.
We prefer working with a symmetric P , so we chose the numerical model from
[85]; more generic models could still be handled, but they would require the use
of LMIs with complex values, as explained in Remark 2.3.

The state-space formulation is also non-unique, in fact the off-diagonal terms can
be put either in Bu or in A; of course we prefer the second option, as we will have
fewer restrictions in the synthesis problem (see Table 3.1), and we will also be able
to use the reduced method (Remark 3.4).

This time we have used H2 synthesis for different values of N . The results are
shown in Table 3.3. Figure 3.8 gives an idea of the structure of the systems, show-
ing the sparsity pattern of the state matrix of the plant and the controller.
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SVD controller Distributed Controller

plant outputsplant outputs

plant inputsplant inputs

Figure 3.7: Difference between an SVD controller and a distributed controller. The
boxes represent static transformations, while the circles are dynamic
controllers. The SVD controller still needs to handle all the inputs and
outputs in the same processing units, so it can be considered as a stat-
ically centralized controller, with decoupled dynamics.

Table 3.3: Controller performance for the paper machine example.

Number of H2 norm:
actuators No Control Distributed Control

50 0.14587 0.09786
100 0.20629 0.13893
150 0.25265 0.17035
200 0.29173 0.19625
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Figure 3.8: Sparsity of the state matrix of the plant (A) and of the controller, for
N = 50. A black dot indicates a non-zero entry.

3.4 Variations on the theme

The controller synthesis methods shown in Section 3.2 are one possibility of ex-
ploiting the decomposition property of decomposable systems in order to obtain
distributed controllers, but not the only one. Actually, we can exploit the similari-
ties between a decomposed system and an LPV system, and use different methods
from robust control in order to perform the synthesis. In this section we show pos-
sible examples of state-feedback H∞ control that still brings some conservatism
with it. Future research should be focused on looking at whether it can be possi-
ble to find a method that is not conservative, and would lead to an “if and only
if” kind of result.

3.4.1 The full block S-procedure

We start by introducing the theoretical tool that we are going to use; it consists of
a convex solution to the general robust state feedback synthesis problem that is
obtained by means of the so-called “full block S-procedure”.

Theorem 3.7 (full block S-procedure) (adapted from [81]) Let us consider an uncer-
tain continuous-time system described by the equations:







ẋ(t) = Ax(t) + B1p(t) + B2w(t) + Bu(t)
q(t) = C1x(t) + D1p(t) + D12w(t) + E1u(t)
z(t) = C2x(t) + D21p(t) + D2w(t) + E2u(t)

(3.45)

where x(t) is the state, w(t) the disturbance, u(t) the control input, z(t) the performance
output, q(t) and p(t) signals for which it holds:

p(t) = ∆(t)q(t) (3.46)
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where ∆(t) is a (time-varying) uncertainty assuming values in the convex hull generated
by a set {∆j} for j = 1, ..., J , which includes the zero vector.

The state feedback controller yielding an H∞ norm from w to z smaller than γ for all the
valid uncertainties can be found via the following LMI set:

Y ≻ 0, R̃ ≺ 0 (3.47)

∗
[

Q̃ S̃

S̃T R̃

] [
I

−∆T
j

]

≺ 0 for all j = 1, .., J (3.48)

∗











0 I 0 0 0 0
I 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 −1
γ2 I 0

0 0 0 0 0 I





















−(AY +BM)T −(C1Y +E1M)T −(C2Y +E2M)T

I 0 0
−BT

1 −DT
1 −DT

12

0 I 0
−BT

2 −DT
21 −DT

2

0 0 I











≻0

(3.49)
where Y = Y T , M , R̃ = R̃T , S̃, Q̃ = Q̃T are the decision variables, and the stars ∗
replace the symbols that would make the left-hand side of the inequalities symmetric. The
controller gain K is given by K = MY −1.

Notice that this theorem offers only a sufficient condition, so its use implies con-
servatism. Also notice that the theorem involves a time-varying uncertainty, which
means that some more conservatism will be introduced when applying it to the
decentralized or distributed control methods, as in that case the uncertainties (the
eigenvalues of the pattern matrix) are time-invariant. Alas the S-procedure, in the
form presented here, offers a solution only for the state-feedback case, so we will
not be able to use this result for dynamic output-feedback controller synthesis, as
we did in the previous section.

3.4.2 Full block S-procedure and decentralized control

We consider a subclass of continuous-time decomposable systems, where only
the state matrix is built with the pattern and the other state-space matrices are
diagonal. We assume a symmetric pattern matrix P , with real eigenvalues. The
methods in Section 3.2 would find a suboptimal H∞ controller with state gain as
in (3.14), with a diagonal part and a part with the sparsity described by the pattern
matrix. We call such controllers “distributed controllers”, meaning that the control
action on each agent is determined on the basis of the local output and the output
of the neighboring agents. It is possible to constrain the controller to have Kb = 0,
which would yield a decentralized controller. By “decentralized controller” we
mean a controller made of a set of local controllers that interact only with each
single agent, and not with their neighbors; for this reason, such controllers have
a block diagonal gain matrix. Such controllers can be obtained with the full block
S-procedure, and the result is summarized in the following theorem.
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Theorem 3.8 (H∞ S-procedure decentralized control) Let us consider a continuous-
time symmetric decomposable systems described by the equations:

{
ẋ(t) = (IN ⊗ Aa + P ⊗ Ab)x(t) + (IN ⊗ Bu)u(t) + (IN ⊗ Bw)w(t)
z(t) = (IN ⊗ C)x(t) + (IN ⊗ D)u(t)

(3.50)

where x(t) is the state, w(t) the disturbance, u(t) the control input and z(t) the perfor-
mance output. There exists a suboptimal decentralized controller of the kind:

u(t) = (IN ⊗ K)x(t) (3.51)

with H∞ norm from w to z smaller than γ, if the following LMIs are feasible:

Y ≻ 0, R̃ ≺ 0, λ 6 0 6 λ (3.52)

∗
[

Q̃ S̃

S̃T R̃

] [
I

−λI

]

≺ 0, ∗
[

Q̃ S̃

S̃T R̃

] [
I

−λI

]

≺ 0 (3.53)
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0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0
0 0 0 0 −1
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0 0 0 0 0 I





















−(AaY +BuM)T −(AbY )T −(CY +DM)T
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−BT
w 0 0
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(3.54)
where λ and λ are the maximum and minimum eigenvalue of P , and Y = Y T , M ,
R̃ = R̃T , S̃, Q̃ = Q̃T are the decision variables. The controller gain K is given by
K = MY −1.

3.4.3 Full block S-procedure and distributed control

With the new method it is not possible to introduce directly a Kb term as in (3.51)
that would produce a distributed controller instead of a decentralized one. There
is a “trick” though that allows using the decentralized controller synthesis method
of Theorem 3.8 to generate a distributed controller. It is just sufficient to extend
(3.50) by adding another input channel that is influenced by the pattern matrix. In
fact, we can prove that:

{
ẋ(t) = (IN ⊗ Aa + P ⊗ Ab)x(t) + (IN ⊗ Bu)u(t) + (IN ⊗ Bw)w(t)
z(t) = (IN ⊗ Cz,a + P ⊗ Cz,b)x(t) + (IN ⊗ Dzu)u(t)

(3.55)

in closed loop with:
u(t) = (IN ⊗ Ka + P ⊗ Kb)x(t) (3.56)
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is equivalent to:

{
ẋ(t) = (IN ⊗ Aa+P ⊗ Ab)x(t)+(IN ⊗ [Bu 0]+P ⊗ [0 Bu])ũ(t)+(IN ⊗ Bw)w(t)
z(x) = (IN ⊗ Cz,a + P ⊗ Cz,b)x(t) + (IN ⊗ [Dzu 0] + P ⊗ [0 Dzu])ũ(t)

(3.57)
in closed loop with:

ũ(t) = IN ⊗
[

Ka

Kb

]

x(t) (3.58)

They both yield:

{
ẋ(t)=(IN ⊗(Aa + BuKa) + P⊗(Ab + BuKb))x(t) + (IN ⊗ Bw)w(t)
z(x)=(IN ⊗(Cz,a+DzuKa)+P⊗(Cz,b+DzuKb))x(t)

(3.59)

The system in (3.57) in closed loop with the decentralized controller (3.58) is equiv-
alent to the controller in (3.55) in closed loop with the distributed controller in
(3.56). So one can use (3.57) and (3.58) as a reference for computing the distributed
controller of the system in (3.55). Again we summarize this in a theorem.

Theorem 3.9 (H∞ S-procedure distributed control) Let us consider a continuous-
time symmetric decomposable systems described by the equations:

{
ẋ(t) = (IN ⊗ Aa + P ⊗ Ab)x(t) + (IN ⊗ Bu)u(t) + (IN ⊗ Bw)w(t)
z(x) = (IN ⊗ Cz,a + P ⊗ Cz,b)x(t) + (IN ⊗ Dzu)u(t)

(3.60)

where x(t) ∈ R
l is the state, w(t) ∈ R

mw the disturbance, u(t) ∈ R
mu the control input

and z(t) ∈ Rrz the performance output. There exists a suboptimal distributed controller
of the kind:

u(t) = (IN ⊗ Ka + P ⊗ Kb)x(t) (3.61)

with H∞ norm from w to z smaller than γ, if the following LMIs are feasible:

Y ≻ 0, R̃ ≺ 0, λ 6 0 6 λ (3.62)

∗
[

Q̃ S̃

S̃T R̃

] [
I

−λI

]

≺ 0, ∗
[

Q̃ S̃

S̃T R̃

] [
I

−λI

]

≺ 0 (3.63)
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(3.64)
where:





A B1 B2 B

C1 D1 D12 E1

C2 D21 D2 E2



=







Aa Ab Bu Bw Bu 0
I 0 0 0 0 0
0 0 0 0 0 I

Ca Cb D 0 D 0







(3.65)
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and λ, λ are the maximum and minimum eigenvalue of P , and Y = Y T , M , R̃ = R̃T , S̃,
Q̃ = Q̃T are the decision variables. The controller gains Ka, Kb, are given by the relation:

K =

[
Ka

Kb

]

= MY −1 (3.66)

Proof: Consider the equivalent system (3.57) in its decomposed form:

{
ẋi(t)=(Aa+λi ⊗ Ab)xi(t)+([Bu 0]+λi [0 Bu])ũi(t)+Bwwi(t)
zi(x) = (Cz,a + λiCz,b)xi(t) + ([Dzu 0] + λi [0 Dzu])ũi(t)

(3.67)

with ũi = [ũT
a,i ũT

b,i]
T . This set of systems (depending on λi) can be interpreted as a

system depending on the (uncertain) parameter λi. Define the output signal qi(t) as:

qi(t) = [xT
i ũT

b,i]
T (3.68)

and the input signal pi(t) as:
pi(t) = λiqi(t) (3.69)

Then the system can be rewritten as:







ẋi(t) = Aaxi(t) +
[

Ab Bu

]
pi(t) +

[
Bu 0

]
ũi(t) + Bwwi(t)

qi(t) =

[
I
0

]

xi(t) +

[
0 0
0 I

]

ũi(t)

zi(x) = Cz,axi(t) +
[

Cz,b Dzu

]
pi(t) +

[
Dzu 0

]
ũi(t)

(3.70)

from which the matrices in (3.65) can be defined by inspection. Then apply Theorem 3.7.
2

A discrete-time version of Theorem 3.9 can be similarly derived (but it is not
shown in this thesis).

Remark 3.5 Notice that the cases to which Theorem 3.9 applies are fewer with respect to
the method in Section 3.2.3, because there is no possibility of having a part in the input
matrix or in the feedthrough matrix depending on the pattern (Theorem 3.9 applies only
if Bu,b = 0, Dzu,b = 0).

Remark 3.6 The technical condition that λ 6 0 6 λ does not reduce the applicability
of the theorem, as the parameterization in (2.34) is not unique. For example, in the case
that 0 6 λ 6 λ, then pick an a such that λ 6 a 6 λ; choose a new pattern matrix
P ′ = P − aIN , and replace the state-space matrices Ma with M ′

a = Ma + aMb. The
global state-space matrices are unchanged and the eigenvalues of P ′ satisfy the condition.
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3.4.4 Small gain theorem for distributed control

It is possible to use the small gain theorem [95] as an alternative to the full block
S-procedure in order to guarantee the robust H∞ performance for all the possible
values of the parameter λ, similarly to what is done in [68]. This would lead to the
following theorem.

Theorem 3.10 (H∞ robust performance-based control) Let us consider a conti-
nuous-time symmetric decomposable system described by (3.60), and put it in the form
as in (3.45) via the relations in (3.65) considering λi as the perturbation. There exists a
suboptimal distributed controller as in (3.61) that yields a closed-loop H∞ norm smaller
or equal to γ if the H∞ norm of the closed loop system from the joint inputs [wT pT ]T to
the joint outputs [zT qT ]T is 6 γ and maxi(|λi|) < 1

γ .

The synthesis can be executed by iterating an H∞ synthesis LMI on the value of
γ, rescaling the disturbance signal p if maxi(|λi|) is too far from 1

γ .

3.4.5 Evaluation of numerical results

It is natural to compare the method of Theorem 3.9 with the method of Theo-
rem 3.5 and the method in Theorem 3.10. The three methods have been tried on
randomly generated systems and compared. It appears that most of the times
(more than 95% of the cases, in our tests) the method of Theorem 3.5 yields better
performance. Yet there are some cases where the opposite happens; for example,
it happens for this system:
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0.1 −0.2 0.7
−0.9 −0.6 −0.4
−0.9 0.6 −0.5



+ P ⊗
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(

IN ⊗
[
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]

+ P ⊗
[

0.5 0.3 0.5
0 0 0

])

x(t) + IN ⊗
[

0
1

]

u(t)

(3.71)
with pattern matrix shown in Figure 3.9. This pattern matrix is a (non normal-
ized) adjacency matrix this time. The eigenvalues of the pattern matrix are in the
interval [−2.2361, 2.2361] and the local order is l = 3. The results of the different
synthesis methods are shown in Table 3.4.

A more common situation would instead yield results as in Table 3.5, which shows
the performance for a different system, whose matrices we do not report, again
with l = 3 and the same pattern matrix. It can be seen that the best performance is
given by the multiobjective optimization method, while the small gain is the most
conservative of the three.



58 Chapter 3: Control of Decomposable Systems

1 2

3

45

6 P =
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Figure 3.9: Pattern matrix for the example, and the graph connections that it rep-
resents.

Table 3.4: Optimization results for case 1

Method H∞ norm γ
Open loop 1.9637
Multiobjective optimization (Theorem 3.5) 0.2170 0.2952
Full block S-procedure (Theorem 3.9) 0.1833 0.2779
Small gain (Theorem 3.10) 0.2141 1.4953

Table 3.5: Optimization results for case 2

Method H∞ norm γ
Open loop 0.2481
Multiobjective optimization (Theorem 3.5) 0.0513 0.0521
Full block S-procedure (Theorem 3.9) 0.1716 0.2254
Small gain (Theorem 3.10) 0.2181 1.4998

3.5 Conclusions

In this chapter we have presented new methods for designing distributed con-
trollers for a special class of systems, which can be considered as the intercon-
nection of N identical subsystems. Thanks to the properties of the matrices in
the state-space formulation of these systems, it is possible to decompose synthesis
problems into a set of smaller ones, thus reducing the computation time. More-
over, by constraining the possible results of the synthesis for the smaller problems,
it is possible to keep the distributed structure of the plant in the controller. These
constraints can be easily introduced if the synthesis is expressed in terms of LMIs
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and a parameterization of the decision variables is introduced. Another approach
to decomposable systems is to employ robust control techniques, like full block
S-procedure or robust H∞ synthesis. We have shown that the complexity of the
design problems in terms of number of decision variables and constraints is re-
duced by a factor N with respect to a centralized controller. In some cases, the
reduction is of a factor N2, making actually the complexity independent from N .

In fact, Theorems 3.1, 3.2, 3.5, and 3.6 under the conditions of Remark 3.3, Theo-
rems 3.3 and 3.4 under Remark 3.4, and finally Theorem 3.9, offer the possibility of
executing performance-based controller synthesis for a system with an LMI test
whose size is not dependent on the number N of subsystems. Under this per-
spective, the methods that we propose can then be thought of as extensions of
the results of [26] (summarized in Example 2.5). One of the most interesting re-
sults of this reference is a variant of the Nyquist criterion that relates the stability
of the formation to the number of encirclements of certain points in the Nyquist
plot. As these points are related to the eigenvalues of a normalized Laplacian, it
is then possible to define a region where they are restricted to be, and this makes
it possible to find a controller that stabilizes all the possible formations of a kind
with a single simple test. The synthesis methods shown here, when they are not
depending on N , can be considered as an equivalent of this method for perfor-
mance optimization, instead of simple stability: a single LMI test, which does not
grow with the number of agents, can be enough to guarantee disturbance rejec-
tion performance for all the systems whose structure is described by normalized
Laplacian of an undirected graph.

The following two chapters show two examples of application of the approach
developed here in two different fields. Together with the practical applicability of
the proposed methods, the examples will show that these method can be easily tai-
lored to fit the specific requirements that a certain problem might require. Namely,
in Chapter 4 we will employ pattern matrices with bounded spectra which are not
graph Laplacians, and in Chapter 5 we will extend the H∞ synthesis methods to
Linear Time Varying systems.





4 CHAPTER

Adaptive Optics Applications

The results for distributed control design of decomposable systems
can be applied in the field of adaptive optics, specifically to the prob-

lem of controlling the deformation of a mirror under the effect of cross-
coupled actuators. We will consider pattern matrices which are not graph
Laplacians, but we will be able to put a bound on their eigenvalues as
well. In this way, the new technique allows the design of a distributed H2

controller for a mirror of any size or shape, with a computational cost that
does not increase with the size of the mirror.

4.1 Introduction

In this chapter we will use the results on control of decomposable systems in order
to show an application to a class of problems arising from adaptive optics, namely
the control of the shape of a deformable mirror, whose actuators have a reciprocal
cross-coupling. One of the results that we are going to see is that if the function de-
scribing the cross-coupling has a certain regularity (or “spatial invariance”), then
it is possible to obtain controllers which are proved to work for mirrors of any
size. This would allow the implementation of such controllers in a truly modu-
lar fashion, as local computational units connected to each other, which achieve
their performance goals regardless of the size of the mirror. The proof is obtained
thanks to considerations on the spectrum of the matrices describing the actuator
cross-coupling; under this perspective, the approach is similar to what shown in
Chapter 3 with respect to Laplacian matrices: once bounds on the spectrum of the
pattern matrices are obtained, it is possible to find a controller holding for a whole
category of systems, regardless of their number of elements.

The chapter is organized as follows. Section 4.2 introduces adaptive optics and the
problem of the control of a deformable mirror. Section 4.3 explains how the results
of Chapter 3 can be applied to the problem. Section 4.4 shows a reasoning that will
allow deriving controllers for mirrors of any size, with a constant computational
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cost. Numerical results are given in Section 4.5 and finally the conclusions are
drawn in Section 4.6.

The results contained in this chapter have been published in [55].

4.2 Adaptive optics

Adaptive optics [36] is a technique that can be employed to improve the quality
of imaging systems, e.g. telescopes. If a telescope is based on the Earth, the light
collected at the primary mirror is affected by distortions in the wavefront due
to atmospheric turbulence. These distortions can be measured with wavefront
sensors and be compensated for by means of a deformable mirror. Deformable
mirrors [34] are typically made of a thin membrane that can be shaped my means
of an array of linear actuators (e.g. voice coils), arranged in a regular lattice (see
Figure 4.1).

Figure 4.1: An adaptive optics mirror. Each circle contains an actuator.

If N is the number of actuators, let us call x ∈ RN the vector of the commands
(e.g. voltage) given to displace them. If we consider the control points for the mir-
ror’s shape to be co-located with the actuators, we can define the vector y ∈ RN

of the (normal) displacements of the mirror in correspondence with the actuators’
positions. Basically, y describes a possible shape that the mirror can have. Dur-
ing the functioning of an adaptive optics system, the reference vector y is com-
puted at each time step in order to compensate for the turbulence, and there is
the necessity of computing the appropriate actuators commands x that can give
the desired shape to the mirror y. The actuator dynamics is usually considered as
very fast, such that the relation between actuator commands and mirror shape can
be considered as static; alas things become complicated because of cross-coupling
between neighboring actuators. The relation linking actuators and mirror shape
is described by the following formula:

y = Gx (4.1)



4.3 Distributed control of decomposable systems 63

where G ∈ RN×N is the so called “influence matrix”, a sparse matrix that accounts
for reciprocal interactions between neighboring elements.

We will assume that the displacement in the normal direction ζ induced by the
action of a single actuator is described by a kind of Gaussian formula:

ζ = ae−
d2

2σ2 (4.2)

where d is the distance from the center of the actuator, a and σ are parameters [75].

With this function, G is symmetric and so it will have real eigenvalues. For the
method we present, the Gaussian shape is not essential; it will be only necessary
and sufficient that the influence function is spatially invariant, which is approx-
imately true for large homogeneous, continuous or segmented, deformable mir-
rors.

We consider hexagonal grids for the actuators (as in Figure 4.1) and we normalize
the distance d such that the space between each neighboring actuator is 1. We
can also introduce the parameter R indicating the size of the mirror, namely the
length in terms of actuators of each side of the hexagonal mirror. With these kind
of assumptions, Figure 4.2 shows the displacement of the mirror induced by one
single actuator, for σ = 0.7. The influence function quickly decreases with d, and
we consider it to be 0 for d > 3σ. Figure 4.3 shows the elements that are affected
by the use of one single actuator.

−2 −1 0 1 2 −2

0

2
0

0.5

1

Figure 4.2: Deformation of the mirror caused by a single actuator.

4.3 Distributed control of decomposable systems

Decomposable systems represent systems that are the result of the interconnec-
tion of N identical subsystems of order l. The interconnection follows a pattern
that is described by a “pattern matrix” P ; a sparse pattern matrix accounts for a
limited interaction among the subsystems, that for example can only influence a
few neighboring elements.
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Figure 4.3: Cross coupling in a deformable mirror: the elements affected by a sin-
gle actuator (indicated by the circle) are filled.

We can write a simplified model of the deformable mirror as a decomposable sys-
tem, that will allow using the distributed control technique described in Chapter 3.
We consider the problem of tracking the reference signal for the mirror shape, with
H2 performance. The reference signal is then to be considered as a disturbance;
we assume it to be a random walk. This will be a good first order approximation
of atmospheric turbulence, see for example [21]. We also assume the control input
u ∈ RN to effect the mirror statically (through the influence matrix G), but after a
time delay; we employ the technique of the integrator-in-the loop in order to en-
force integral action, so we will integrate the control input in the model. Both the
measured and performance outputs (z, y ∈ R

N ) are the error in the mirror shape.
With these assumptions, we can write the state-space model as follows:







x(k + 1) =



IN ⊗





1 0 0
0 1 0
0 0 0





︸ ︷︷ ︸

Aa

+G ⊗





0 0 0
0 0 1
0 0 0





︸ ︷︷ ︸

Ab



x(k)+

+ IN ⊗





b
0
0





︸ ︷︷ ︸

Bw,a

w(k) + IN ⊗





0
0
1





︸ ︷︷ ︸

Bu,a

u(k)

y(k) = z(k) = IN ⊗
[

1 −1 0
]

︸ ︷︷ ︸

Cy,a=Cz,a

x(k)

(4.3)
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The model is of order 3N (l = 3). The signal w ∈ RN represents the random noise
moving the random walk of the reference signal, which is the first element of the
local state. The control input u is first stored in the third element of the local state
(for introducing a delay), and then integrated in the second state, through the
influence matrix G which plays the role of pattern matrix. The second element of
the local state is then the “compensating effect” due to the actuators, which means
that the output is basically the difference between this value and the reference (the
first local state). The parameter b is a weight for the intensity of the noise driving
the motion of the reference signal.

With this model it is possible to solve the H2 suboptimal control problem, by mini-
mizing γ under the conditions of Theorem 3.4. As we are in the case of Remark 3.4,
the LMIs that need to be evaluated are only those concerning the maximum and
minimum eigenvalue of G, if we constrain the decision variable Wi to be “bold”
(Wi = Wi = Wa + λiWb). We look for a dynamic output-feedback controller of
the form:
{

xc(k + 1) = (IN ⊗ Ac,a + G ⊗ Ac,b)xc(k) + (IN ⊗ Bc,a + G ⊗ Bc,b)y(k)
u(k) = (IN ⊗ Cc,a + G ⊗ Cc,b)xc(k) + (IN ⊗ Dc,a + G ⊗ Dc,b)y(k)

(4.4)

This controller can be found by minimizing γ2 over the following LMI constraints:





Wi Cz,aX Cz,a

∗ X + XT − Pi Il + ST − Ji

∗ ∗ Y + Y T − Hi



 ≻ 0,









Pi Ji AiX + Bu,aLi Ai + Bu,aRiCy,a Bw,a

∗ Hi Qi Y Ai + FiCy,a Y Bw,a

∗ ∗ X + XT − Pi Il + ST − Ji 0
∗ ∗ ∗ Y + Y T − Hi 0
∗ ∗ ∗ ∗ Imw









≻ 0,

for i = i, i, and:

trace(Wa + λavWb) < γ2

N

(4.5)

where the decision variables are X , Y , S, Pi = PT
i , Hi = HT

i , Ji, Fi, Ri, Wi, Li

and Qi; i and i are defined as the indices for which λi = λ, λi = λ, and λav is the
average of the eigenvalues, that can be easily computed as the trace of the pattern
matrix divided by N (the trace is the sum of the eigenvalues). The controller
matrices can be retrieved via (3.28); if we work these relations out, separating the
constant part of each bold matrix from the part linear in λi, we obtain for this
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situation the following explicit expressions:







find non-singular V, U such that U = S − Y X
Dc,a = Ra

Dc,b = Rb

Cc,a = (La − RaCy,aX)U−1

Cc,b = (Lb − RbCy,aX)U−1

Bc,a = V −1(Fa − Y Bu,aRa)
Bc,b = V −1(Fb − Y Bu,aRb)
Ac,a =−V −1(Qa−Y (Aa−Bu,aRaCy,a)X)U−1−Bc,aCy,aXU−1−V −1Y Bu,aCc,a

Ac,b =−V −1(Qb−Y (Ab−Bu,aRbCy,a)X)U−1−Bc,bCy,aXU−1−V −1Y Bu,aCc,b

(4.6)

It should be noticed that the size of the mirror, that is, the number N of elements,
and the pattern/influence matrix G, only marginally influence the optimization
problem described in (4.5). If we solve with respect to γ2/N , that is basically
a scaled version of the H2 norm, we notice that the parameters influenced by
the pattern matrix are only its spectral properties, namely λ, λ and λav. We can
postulate that these spectral properties are to a certain extent independent of the
size of the mirror, as long as the same influence function is used. For example,
all influence matrices derived from (4.2), with a = 1, will have 1 on the diagonal,
meaning that the trace of such matrices will always be N , implying that λav = 1
always. Figure 4.4 shows the eigenvalues of the influence matrices derived from
(4.2), for hexagonal mirrors of different sizes. From the picture it is possible to
see that the eigenvalues are always located in the same interval, and the effect of
increasing the size is merely making the spectrum denser.

Actually it can be useful to find an upper and a lower bound for such eigenvalues;
in fact, if we replace λ and λ in (4.5) with their upper and lower bound and solve,
then the LMIs with the actual maximum and minimum eigenvalues are guaran-
teed to be solved as well, as they are convex combinations of the two which we
solved (this issue of the convexity is better explained in [59]). So the solution ob-
tained with the bounds of the eigenvalues would be applicable to any mirror with
a certain influence function. The literature (e.g. [11]) contains results that can be
used to prove that the spectrum of G is constrained to be in a fixed interval. The
object of the next section is to provide a simple, self-contained proof which does
not require a deep knowledge of all the related theory.

4.4 Spectra of influence matrices

It can be shown that the spectrum of all influence matrices coming from the same
spatially invariant influence functions (as in (4.2)) is bounded. In order to do so,
we will first evaluate the spectrum of the influence matrix (or better, operator)
in the infinite case (R → ∞), by making use of the theory of spatially invariant
systems [6], and then relate this result to finite truncations.
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Figure 4.4: Spectrum of the influence matrix of a mirror as a function of the mirror
size.

4.4.1 The infinite dimensional case

In the infinite case the mirror can be described as a infinite 2-dimensional hexago-
nal grid, identifiable with the Abelian group Z2 (where Z is the set of the integers).
We identify two directions or coordinates s1 and s2 as in Figure 4.5, and then we
consider real functions of these coordinates (x = x(s1, s2) : Z

2 → R); we define
S1 and S2 as the two shift operators corresponding to the two directions, such as
S1x(s1, s2) = x(s1 + 1, s2), and S2x(s1, s2) = x(s1, s2 + 1).

s1

s2

Figure 4.5: Infinite hexagonal grid, schematized as Z2.
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We define for two functions x and y of this kind an inner product:

〈x, y〉 :=

+∞∑

s1=−∞

+∞∑

s2=−∞

x(s1, s2)y(s1, s2) (4.7)

and a norm:
||x||2 := 〈x, x〉. (4.8)

We define as L2 the set of the functions whose norm is finite, and we restrict our
attention to functions in this set. Let us consider the operators mapping L2 to L2.
We define the linear operator G as the infinite extension of the influence matrix G,
as follows:

(Gx)(s1, s2) :=

+∞∑

s′

1
=−∞

+∞∑

s′

2
=−∞

ζ(s1 − s′1, s2 − s′2)x(s′1, s
′
2) (4.9)

where ζ is an influence function related to (4.2), which depends on the physical
distance between two elements on the grid.

For the case of σ = 0.7, this operator can be expressed as:

y=Gx=x + a1(S1+S2+S−1
1 +S−1

2 +S1S
−1
2 +S−1

1 S2)x+
+a2(S1S2+S2

1S−1
2 +S1S

−2
2 +S−1

1 S−1
2 +S−2

1 S2+S−1
1 S2

2)x+
+a3(S

2
1 +S2

1S−2
2 +S−2

2 +S−2
1 +S−2

1 S2
2 +S2

2)x

(4.10)

where a1 = 0.3604, a2 = 0.0468, and a3 = 0.0169 are the values of (4.2) com-
puted on the basis of the relative distance. A Fourier transform [77] in the two
dimensions diagonalizes the equation above, that formally stays the same with S1

and S2 replaced by z1 and z2 (complex numbers on the unit circle), and x and G
replaced by its transformed version X and Ĝ:

ĜX =X + a1X(z1+z2+z−1
1 +z−1

2 +z1z
−1
2 +z−1

1 z2)+
+a2X(z1z2+z2

1z
−1
2 +z1z

−2
2 +z−1

1 z−1
2 +z−2

1 z2+z−1
1 z2

2)+
+a3X(z2

1+z2
1z

−2
2 +z−2

2 +z−2
1 +z−2

1 z2
2+z2

2).

(4.11)

As in the unit circle the inverse of a number is equivalent to its complex conjugate
(z−1 = z), then it can be pointed out that whenever a complex quantity appears
in (4.11), it is summed to its conjugate (thanks to the symmetry of the operator).
This means that the above relation is equivalent to:

ĜX = X + 2a1XRe(z1 + z2 + z−1
1 z2)+

+2a2XRe(z1z2 + z2
1z

−1
2 + z1z

−2
2 )+

+2a3XRe(z2
1 + z2

1z−2
2 + z2

2).

(4.12)

The spectrum of G is then a continuous real interval between the maximum and
minimum value of the function:

g = 1 + 2Re(a1(z1 + z2 + z−1
1 z2)+

+a2(z1z2 + z2
1z−1

2 + z1z
−2
2 ) + a3(z

2
1 + z2

1z
−2
2 + z2

2))
(4.13)
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with z1 = ejθ1 , z2 = ejθ2 , and θ1, θ2 ∈ [0, 2π]. Gridding and plotting the function
as in Figure 4.6, we find global maximum and minimum, that allows stating that
the spectrum is given approximately by the interval [0.1496, 3.5446]. This matches
with what is shown by Figure 4.4.
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Figure 4.6: Spectrum of the operator G.

4.4.2 From infinite to finite

We now consider finite influence matrices, that can be considered as truncations
of the operators, and we try to relate the spectrum of the former to the one of the
latter. In order to do so, we first state some properties of G.

Lemma 4.1 (Properties of G)

1. G is self-adjoint: 〈x,Gy〉 = 〈Gx, y〉 ∀x, y ∈ L2;

2. G is translation invariant: (S1G)x = G(S1x), (S2G)x = G(S2x) ∀x ∈ L2

3. G is bounded if Iζ =
∑+∞

s1=−∞

∑+∞
s2=−∞ |ζ(s1, s2)| exists and is a finite number.

Proof:
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1. From (4.9) and (4.7):

〈x,Gy〉 =
∑

s1

∑

s2
x(s1, s2)(Gy)(s1, s2) =

=
∑

s1

∑

s2

∑

s′

1

∑

s′

2
ζ(s1 − s′1, s2 − s′2)x(s1, s2)y(s′1, s

′
2)

(4.14)

as ζ depends only on the distance, then we have that ζ(s1 − s′1, s2 − s′2) = ζ(s′1 −
s1, s

′
2 − s2). Recognizing that:

∑

s1

∑

s2
ζ(s′1 − s1, s

′
2 − s2)x(s′1, s

′
2) = (Gx)(s′1, s

′
2) (4.15)

this proves this part of the lemma.

2. From (4.9):

(S1G)x(s1, s2) =
∑

s′

1

∑

s′

2
ζ(s1−s′1+1, s2−s′2)x(s1, s2) =

= (Gx(s1 + 1, s2)) = G(S1x(s1, s2))
(4.16)

proving immediately what stated.

3. It is immediate to see that for any x ∈ L2, it holds that ||Gx|| 6 Iζ ||x||. 2

Theorem 4.1 [41] For any arbitrary bounded self-adjoint linear operator F , the follow-
ing:

λ(F) = inf
||x||=1

〈Fx, x〉 (4.17)

λ(F) = sup
||x||=1

〈Fx, x〉 (4.18)

are spectral points, and the spectrum is contained in the interval [λ(F), λ(F)].

Theorem 4.2 Consider a finite subset G ⊂ Z2, and the functions g : G → R. Let us
define the embedding operator xg mapping functions of G to functions of Z

2:

(xgg)(s1, s2) :=

{
g(s1, s2) if (s1, s2) ∈ G

0 if (s1, s2) /∈ G
(4.19)

Let us also define the restriction operator x∗
g mapping functions of Z2 to G:

(x∗
gx)(s1, s2) := x(s1, s2) (4.20)

Notice that the restriction operator is the adjoint of the embedding operator. We define as
G the linear function mapping the space of the real functions in G to itself as follows:

(Gg)(s1, s2) := (x∗
gGxgg)(s1, s2) (∀(s1, s2) ∈ G) (4.21)

Notice that g corresponds to a vector in Rk, where k is the number of elements in G, and
that G corresponds to the finite influence matrix previously defined, mapping the space of
vectors Rk into itself. Then it holds that:

λ(G) 6 λ(G) 6 λ(G) 6 λ(G) (4.22)



4.5 Simulation results 71

Proof: We only show that λ(G) 6 λ(G), the rest of the theorem can be similarly proven.
From Theorem 4.1 we have that:

λ(G) = inf
||g||=1

〈x∗
gGxgg, g〉 = inf

||g||=1
〈Gxgg, xgg〉 =

= inf
x∈{xgg:||g||=1}

〈Gx, x〉 > inf
||x||=1

〈Gx, x〉 = λ(G)
(4.23)

where we exploited the fact that the set of x ∈ {xgg : ||g|| = 1} is a subset of all the
x : ||x|| = 1. 2

The concept expressed in Theorem 4.2 can be summarized as follows: the max-
imum and minimum values of the spectrum of a linear, bounded, self-adjoint
(symmetric) operator are bounds for the spectrum of any finite linear operator
(matrix) resulting from a truncation. This means that the upper and lower bounds
of the spectrum of the operator are also upper and lower bounds for any finite
influence matrix stemming from the same spatially invariant influence function.
So, by choosing these bounds for λ and λ for the optimization problem in (4.5),
we can find a suboptimal H2 controller that is applicable to any mirror with the
same influence function, regardless of size and shape (hexagonal, rectangular or
of another kind).

4.5 Simulation results

Simulations have been performed with a mirror model consisting of 127 force ac-
tuators and wavefront sensors positioned on a hexagonal grid of 7 rings. In optical
imaging the objective is to maximize the Strehl ratio [36], which, for small phase
aberrations, is approximately equivalent to minimizing the H2 norm of the trans-
fer between the distortion w and the residual phase y. Therefore, a distributed
controller minimizing the H2 norm between w and y has been computed by solv-
ing the LMI problem (4.5). For comparison also the centralized H2 optimal con-
troller has been computed and a diagonal PI controller has been tuned close to
optimality.

Table 4.1 gives the resulting H2 norms. As expected the performance obtained by
the distributed controller is between the performance obtained by the H2 optimal
centralized solution and decentralized PI controller.

Table 4.1: H2 performance from disturbance w to output y with various control
methods.

Method H2 norm
Distributed H2 19.6
Decentralized PI 25.2
Centralized H2 15.9
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Figure 4.7: Spectral density of the mean square error with unit-covariance zero-
mean white noise as input.
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Figure 4.7 shows the mean squared error spectral density of the output y as a
response to w being a zero-mean white noise process with unit covariance, i.e.,
the frequency distribution of the H2 norm. We observe that the decentralized
PI controller shows some resonance, whereas the distributed and the centralized
H2 optimal controller provide a well damped closed loop. Figure 4.8 shows the
closed-loop impulse responses from the first disturbance input to the first output
obtained by the various controllers. The centralized controller completely cancels
the impulse response after one sample due to the one sample delay in the system.
The impulse response of the distributed controller is a bit longer, but shorter than
the one of the decentralized PI controller.

4.6 Conclusions

In this chapter we have shown an application to adaptive optics of the methods
for controller design that have been introduced in Chapter 3. We have shaped the
model of a deformable mirror into a decomposable system, whose pattern matrix
is not linked to a specific graph structure, even if it does have a significant sparsity.
The properties of these pattern matrices have allowed bounding their eigenvalues,
leading us to a similar result as the ones in Section 3.2.4 or [26]: controllers which
hold for any mirror with the same influence function.

Further developments of the research might see the application of the method on
an adaptive optics breadboard, and the possibility of applications of the methods
to the problem of wavefront reconstruction.





5 CHAPTER

Formation Flying Applications

Formation flying is a key technology that will allow a new generation
of scientific space missions. The control methods of this thesis per-

fectly fit these kind of problems, proving to be an efficient way to ap-
proach formation flying control, looking both at positioning requirements
as well as propellant consumption. We will first develop an extension of
the H∞ synthesis method that will specifically suit the dynamics of space-
craft in non-circular orbits, and after that we are going to show the appli-
cation in simulation to two case studies.

The first case study is a formation of microsatellites flying in a sun-
synchronous orbit, inspired by the Formation for Atmospheric Science
and Technology demonstration (FAST) mission, a Dutch-Chinese cooper-
ation. The second case is inspired by future deep space telescope mis-
sions, which might feature formations of satellites covering halo orbits
around Lagrangian points of the Sun-Earth system.

5.1 Introduction

Distributed space systems such as satellite formations play an ever increasing role
in the design of space missions for applications such as Earth observation, com-
munication, navigation, servicing and exploration. These distributed systems of-
ten call for an efficient control approach, which minimizes control expenses in
terms of propellant, communication bandwidth and computational load while as-
suring stability and good performance of the distributed system. Performance in
this context typically refers to the maintenance of prescribed relative positions,
velocities and orientations.

There is a large number of publications on satellite formation flight, which has
emerged over the last decade, see for example [7; 45; 63; 79; 90] and references
therein. The literature on position control of satellite formations typically con-

75
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siders following a nominal trajectory while minimizing propellant consumption
[40; 54; 83].

In this chapter we show how the H∞ synthesis method introduced in Chapter 3
can be applied to formation flying problems, in an extended form that better suits
their specific features. Namely, we extend Theorem 3.3, which applies to time-
invariant system, to the so-called “Linear Time-Periodic” (LTP) models, which
can be used as an approximation of the dynamics of spacecraft following an orbit
of any kind. An LTP approach to the control of spacecraft in non-Keplerian orbits
has been described in [47]. In this perspective, the contents of this chapter can be
considered also as an extension of [47] to distributed formation flying.

Applying the proposed method brings a number of advantages. The use of dis-
tributed control techniques makes it possible to have a local implementation, on
each single satellite, without the need for a central processing unit that has the
complete knowledge of the state of the entire formation. Moreover, the method
is based on a performance metric (the H∞ norm), which makes it especially suit-
able for long term station keeping control as it allows minimizing the propellant
consumption, whereas other methods, e.g., those based on artificial potential func-
tions [42; 61; 84] do not have any means of optimizing the propellant consump-
tions, though they might be more efficient for proximity maneuvers and collision
avoidance. At last, we have seen that the use of the properties of Laplacian ma-
trices allows finding controllers with guaranteed performance for all the possible
formations, regardless of the number of elements in it. This makes it possible to
have flexible and reconfigurable formations.

In order to illustrate the efficacy of our approach we consider two application ex-
amples involving satellite formation control, the first of which is tailored to the
specifications of a mission currently under development, the Dutch-Chinese For-
mation for Atmospheric Science and Technology demonstration (FAST) [53]. This
mission features a core of two microsatellites with sensors collecting data on at-
mospheric aerosols. The use of formation flying can provide superior scientific
data both in quality and quantity with respect to what the two spacecraft alone
could deliver. The formation will, in specific mission phases, be operated as a
train (a line of satellites one after the other) and the use of standard interfaces will
allow other nations to join the train configuration, making the size of the forma-
tion grow. This makes the efficient control of such a train a particular challenge,
and the method proposed here is able to give the mission the required flexibil-
ity. The simulation results show the effectiveness of the controller in keeping the
formation at an affordable propellant cost. We present also a second, more quali-
tative example, inspired by the work in [47], featuring a formation in a halo orbit,
which has numerous envisioned applications in future missions [1; 2].

The chapter is structured as follows. Section 5.2 briefly presents the Linear Time-
Periodic models and it shows how spacecraft dynamics can be approximated with
such models. Section 5.3 contains the controller synthesis method that is the the-
oretical result of this chapter. Sections 5.4 describes the two benchmark cases, the
first of which is explained in more details and focused on the FAST mission. In
Section 5.5, the conclusions are drawn and some possible extensions of the method
are described.
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The results contained in this chapter have been published in [56].

5.2 Linear Time-Periodic models

In Section 3.3 we have shown an example featuring a formation of satellites flying
in a circular orbit. The relative close motion of spacecraft in circular orbits can
be described by means of the LTI model in (3.35) (the CW equations), but this
approximation is no longer useful in case the orbit is non-circular or even non-
Keplerian (not elliptical). We have then to consider a more general approach.

If we consider a high-level description of a spacecraft for relative positioning pur-
poses as a point mass with 3 degrees of freedom, we can describe its unperturbed
motion in a stationary gravitational force field in general by means of a time-
invariant differential equation in its state vector x, which comprises the coordi-
nates of the body (in any reference system) and its velocity. A solution x(t) of
such equation is a trajectory in the state-space that satisfies the differential equa-
tion at any time t, and it will depend on the initial conditions x0:

x = x(t, x0). (5.1)

A solution is called “periodic” of period T if it has the property that x(t, x0) =
x(t + T, x0) for any t.

If we introduce additional forces, i.e., disturbance forces w (e.g., solar radiation,
unmodeled dynamics, etc.) and control forces u (e.g., thrust), then the solution to
the equations will depend on these forces too:

x = x(t, x0, w, u). (5.2)

The purpose of a station-keeping controller is to keep the body as close as possible
to a nominal, desired trajectory which we call x(t), by employing the control ac-
tions that are possible. The nominal trajectory is a periodic solution that we would
have ideally in case the disturbance and control forces are absent, with the correct
initial conditions: x(t) = x(t, x0, 0, 0). The presence of external forces will change
the trajectory making it drift from the nominal one. If the nominal trajectory is
stable, then the perturbed one will not diverge too much from it, whereas if it is
unstable it will diverge quickly. In general, the effect of these perturbations is of
nonlinear nature. It is however possible to use linear methods for dealing with
the problem of controlling the motion of a body following a nominal trajectory by
means of a so-called Linear Time-Periodic (LTP) approximation of the dynamics.

Let us divide the period T into p intervals of duration ∆T . We can then replace the
continuous-time dynamics with a discrete-time dynamics by writing, with a little
abuse of notation, x(k) in place of x(k∆T ), where k is an integer that from now on
will replace the time. It is obvious then, due to the periodicity, that x(k) = x(k+p).
For a body moving under no perturbations we will just have x(k, x0, 0, 0) = x(k),
but introducing the perturbation terms will cause an additional term to appear:
x(k, x0, w, u) = x(k) + ∆x(k).
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We can think of this additional term ∆x(k) as something that evolves from one
time step to the other, as a function of its value at the previous time step and of
the values of the input terms u and w which we assume constant during the in-
terval. In general this dependence will be nonlinear, but we can write a linearized
approximation of the dynamics:

x(k, x0, w, u) = x(k) + ∆x(k) ≈
≈ x(k) + ∂∆x(k)

∂∆x(k−1)∆x(k − 1) + ∂∆x(k)
∂u(k−1)u(k − 1) + ∂∆x(k)

∂w(k−1)w(k − 1).
(5.3)

This allows us to write the dynamics of the perturbed part in a state-space formu-
lation, with time-varying state-space matrices (A(k), Bu(k), Bw(k)):

∆x(k + 1) = A(k)∆x(k) + Bu(k)u(k) + Bw(k)w(k) (5.4)

where A(k) = ∂∆x(k)
∂∆x(k−1) , Bu = ∂∆x(k)

∂u(k−1) and Bw = ∂∆x(k)
∂w(k−1) , constituting the LTP

model that can be used for linear controller design.

The goal of a controller for station keeping of a single body would then be to
keep this perturbation part as close as possible to zero. The nominal part can be
considered as “mapped” a priori and we will neglect it from now on and consider
only the perturbation part. This part is described as we have seen by an LTP
model. In its general form, a state-space LTP model is given by the equations:







x(k + 1) = A(k)x(k) + Bw(k)w(k) + Bu(k)u(k)
z(k) = Cz(k)x(k) + Dzw(k)w(k) + Dzu(k)u(k)
y(k) = Cy(k)x(k) + Dyw(k)w(k)

(5.5)

where x(k) is a generic state, and y and z are two different outputs: y is the mea-
sured output, the one that the controller can use for determining the control action,
and z is the performance output, the quantity that the controller has to minimize.
For all the matrices M(k) in (5.5) it holds that M(k + p) = M(k); in the case of
p = 1 we have a Linear Time-Invariant (LTI) system.

5.3 Distributed controller synthesis for Linear Time-

Periodic models

If we describe the motion of spacecraft in generic orbits by means of an LTP model,
then what we need to get a controller for them is to upgrade Theorem 3.3 in order
to make it able to handle this kind of model. We will first define the model of a
formation as a kind of LTP version of a decomposable system, and after that we
are going to report the controller synthesis theorem.

Consider a formation of N spacecraft (or vehicles in general), whose identical
dynamics can be described by a p-periodic linear time-varying system as follows:

xi(k + 1) = A(k)xi(k) + Bu(k)ui(k) + Bw(k)wi(k) (5.6)



5.3 Distributed controller synthesis for Linear Time-Periodic models 79

where xi(k), ui(k) and wi(k) are respectively the vectors containing the states, the
control inputs and the disturbance inputs of the ith vehicle, and A(k), Bu(k) and
Bw(k) are time-varying state-space matrices.

Let us assume that the measurements that are available for control are given by:

yi(k) = Cy(k)xi(k) + Dyw(k)wi(k) (5.7)

where Cy(k) is an output matrix and Dyw(k) allows accounting for measurement
noise.

We also define x(k) = [xT
1 (k) xT

2 (k) . . . xT
N (k)]T , w(k) = [wT

1 (k) wT
2 (k) . . . wT

N (k)]T

and y(k) = [yT
1 (k) yT

2 (k) . . . yT
N (k)]T . So far the dynamics of the vehicles are de-

coupled. Let us now introduce a global coupling performance index z as follows:

z(k) = (IN ⊗ Cz,a(k) + P ⊗ Cz,b(k))x(k) + (IN ⊗ Dzu(k))u(k) (5.8)

where P is a symmetric “pattern matrix”, which has respectively λ and λ as upper
and lower bounds for its real eigenvalues. Dzu(k) allows putting a penalty on
the use of the actuators. Notice that the resulting dynamical system has all its
matrices in the form defined by (2.34), thus they can be decomposed according to
Theorem 2.3. We look for distributed LTP controllers of the same form:







xc(k + 1) = (IN ⊗ Ac,a(k) + P ⊗ Ac,b(k))xc(k)+
+ (IN ⊗ Bc,a(k) + P ⊗ Bc,b(k))y(k)

u(k) = (IN ⊗ Cc,a(k) + P ⊗ Cc,b(k))xc(k)+
+ (IN ⊗ Dc,a(k) + P ⊗ Dc,b(k))y(k)

(5.9)

Theorem 5.1 Let Twz be the map from disturbance w to output z of the system in (5.6),
(5.7) and (5.8) in closed loop with the controller in (5.9). There exists a distributed (or
sparse) p-periodic time-scheduled controller of such form that stabilizes the system and
yields an l2 gain strictly smaller than γ if there is a feasible solution for the LMIs in (5.10)
on the next page, where X(k), Y (k), S(k), Pi(k) = Pi(k)T , Hi(k) = Hi(k)T , Ji(k),
La(k), Lb(k), Fa(k), Fb(k), Qa(k), Qb(k), Ra(k) and Rb(k) are the decision variables.
The matrices of the controller can be retrieved from (5.11), shown again on next page.
Proof: The proof follows along the lines of Theorem 3.3, but using the Linear Time-
Varying framework that was developed in [23] as a starting point. We do not report
the complete proof as it is quite long and it does not contain any special insight, but the
interested reader can find it in [56]. 2

As we are again under the conditions of Remark 3.4, neither the matrix P nor the
number of vehicles N appear explicitly in the theorem: the only way they influ-
ence the computation is through the maximum and minimum eigenvalues of P .
This implies that the same controller can be valid for a whole class of formations,
with different number of elements, at the condition that these maximum and mini-
mum eigenvalues do not change (or that they are bounded between the two values
that were used in the synthesis). That is why this control design approach is very
flexible, as it allows both changes in the number of vehicles as well as changes
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Pi(k+1) Ji(k+1) A(k)X(k)+Bu(k)Li(k) A(k)+Bu(k)Ri(k)Cy(k) Bw(k)+Bu(k)Ri(k)Dyw(k) 0

∗ Hi(k+1) Qi(k) Y (k+1)A(k)+Fi(k)Cy(k) Y (k+1)Bw(k)+Fi(k)Dyw(k) 0

∗ ∗ X(k)+X(k)T −Pi(k) Il+S(k)T −Ji(k) 0 X(k)T Cz,i(k)T +Li(k)T Dzu(k)T

∗ ∗ ∗ Y (k)+Y (k)T −Hi(k) 0 Cz,i(k)T +Cy(k)T Ri(k)T Dzu(k)T

∗ ∗ ∗ ∗ Imw Dyw(k)T R(k)T Dzu(k)T

∗ ∗ ∗ ∗ ∗ γ2Irz











≻ 0

for k = 1, . . . , p
for i = i, i

(5.10)





find non-singular V (k), U(k) such that U(k) = S(k) − Y (k)X(k)
Dc,a(k) = Ra(k)
Dc,b(k) = Rb(k)
Cc,a(k) = (La(k) − Ra(k)Cy(k)X(k))U(k)−1

Cc,b(k) = (Lb(k) − Rb(k)Cy(k)X(k))U(k)−1

Bc,a(k) = V (k + 1)−1(Fa(k) − Y (k + 1)Bu(k)Ra(k))
Bc,b(k) = V (k + 1)−1(Fb(k) − Y (k + 1)Bu(k)Rb(k))
Ac,a(k) = −V (k + 1)−1(Qa(k) − Y (k + 1)(A(k) − Bu(k)Ra(k)Cy(k))X(k))U(k)−1+

− Bc,a(k)Cy(k)X(k)U(k)−1 − V (k + 1)−1Y (k + 1)Bu(k)Cc,a(k)
Ac,b(k) = −V (k + 1)−1(Qb(k) + Y (k + 1)(Bu(k)Rb(k)Cy(k))X(k))U(k)−1+

− Bc,b(k)Cy(k)X(k)U(k)−1 − V (k + 1)−1Y (k + 1)Bu(k)Cc,b(k)

(5.11)
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in the interconnection structure: the only action needed is a controller reconfig-
uration that accommodates the new pattern matrix as it explicitly appears in the
controller equations (5.9). This makes such a controller very suitable for missions
with open architectures such as the FAST mission.

5.4 Test cases

5.4.1 The FAST mission

We consider an extended version of the already mentioned FAST mission, with a
number N = 10 of satellites following one another along-track in a quasi-circular
orbit (this special configuration is referred to as a train). The satellites have direct
measurements of their absolute position thanks to GPS receivers [50; 67], and they
exchange this information in order to compute their relative positions with respect
to their neighbors. Typically the satellites would also exchange raw data, i.e. pseu-
doranges and carrier phases, and they would also have local filters to determine
position and velocity, but we do not consider this aspect as we are going to de-
velop an H∞ controller that includes in itself a state estimator. The spacecraft are
equipped with thrusters which can execute impulsive maneuvers for trajectory
corrections.

The orbit is a sun-synchronous orbit at an altitude of 650 km and inclination of
98◦ (Figure 5.1), with a period of approximately 5320 s (1h 28′ 40′′).

Figure 5.1: Orbit of the FAST mission.

A possible approach to this orbit could be to use the linear CW equations [46] in
order to describe the dynamics of the perturbation of the motion of each space-
craft with respect to its own nominal circular Keplerian orbit. These equations
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are valid for a point-mass gravity source and spacecraft separations that are much
smaller than the distance of the reference point to the center of gravity. Using
the CW equations would neglect the fact that low-Earth orbits are significantly
different from Keplerian ones, mainly due to the effects of the Earth’s oblateness,
or J2 effects [46]. In fact, it is the J2 component of the gravity field that causes
the line of the nodes to drift at the rate of approximately 0.985 deg/day, making
the orbit sun-synchronous. For this reason, the J2 effect cannot be neglected, and
we will use, instead of the CW model, an LTP model as in (5.5) which takes into
account this component, obtained numerically as explained in Section 5.2. We di-
vide the orbit into 100 segments, finding the nominal position where each satellite
will be at each time step. We consider a distance of 10 km between each neigh-
boring satellite, which allows us to assume that the satellites are all governed by
the same dynamic law (e.g., they are located in the same piece of the 100 orbital
segments making up the LTP model). We still consider the local orbital coordinate
frame as in the CW equations. It is also to be taken into account that the orbit
is non-circular, so it is not covered at the same velocity at all times. This causes
natural oscillations in terms of the relative positions of the satellites. It is possible
to show by means of simulation that for two satellites following each other, along
track, with an initial distance of 10 km, we will have an oscillation of an ampli-
tude of approximately 10 m in the relative distance in the course of an orbit. The
controller should not try to counteract this effect (as it would be a useless waste
of propellant), so this natural oscillation will be accounted for when computing
relative distances.

In order to compute the feedback controller, we formulate the problem as a global
optimization problem, introducing measurement errors and disturbances, and
specifying measured outputs and performance outputs. We assume that the satel-
lites correct their trajectories by means of impulsive maneuvers executed at the
beginning of every segment of orbit. The inputs to the satellites shall then be the
variation of velocity (or ∆v) caused by thrust, the accelerations caused by external
forces and the errors in the position measurements. The ∆v is the control input u,
determined by the controller, while the external forces are considered disturbance
inputs w and they are assumed to be unknown and uncontrollable (and they are
assumed to be constant during each orbit segment). The outputs are the relative
and absolute positions of the satellites. Again we will define as measurements (or
outputs used for control) the signals y that the controller can monitor in order to
decide its control actions. We will have also performance outputs z that are the er-
ror signals that the controller will try to minimize. In this case, the measurements
are the absolute positions of the satellites (coming from GPS receivers), while the
performance outputs are given by the errors in the relative positions. As the con-
troller must also minimize the propellant consumption, the ∆v caused by thrust
will be considered as a performance output as well.

Once these signals have been defined, the system of N satellites in formation can
be formulated as follows:

{
x(k + 1) = IN ⊗ A(k)x(t) + IN ⊗ Bw(k)w(k) + IN ⊗ Bu(k)u(k)
y(k) = IN ⊗ Cyx(k) + IN ⊗Dyww(k)

(5.12)
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In this last equation, x ∈ RNl is the vector containing all the states of all the satel-
lites; we will call xi the vector containing the l = 6 states of the ith satellite. The
states comprise the variations with respect to nominal position and nominal ve-
locity in the three directions. There are Nry control outputs and Nrz performance
outputs, which are respectively in the vectors y ∈ RNry and z ∈ RNry . There are
also Nmu control inputs (the signals that the controller produces) to the system,
stored in the vector u ∈ RNmu ; the disturbances are in the vector w ∈ RNmw . We
define the disturbances as follows:

wi =
[

pRi
Wp pTi

Wp pNi
Wp qRi

Wq qTi
Wq qNi

Wq

]T
(5.13)

where p• represents the disturbance accelerations in the three directions and q•
represent the measurement noise to be added to the output of the GPS receiver.
Such disturbances have different units, that is why two weighting constants Wp

and Wq have been introduced in order to have that p• and q•, without weights,
can be considered as dimensionless, homogeneous, random noise.

The control inputs are simply the ∆v’s in the three directions due to the impulsive
maneuvers:

ui =
[

uRi
uTi

uNi

]T
=
[

∆vRi
∆vTi

∆vNi

]T
(5.14)

As measurement output we define the following:

yi =
[

yRi
yTi

yNi

]T
=

=
[

∆rRi
+ qRi

Wq ∆rTi
+ qTi

Wq ∆rNi
+ qNi

Wq

]T (5.15)

where the three y• are the absolute positions corrupted by the measurement noise.

Before defining the performance output, let us point out that the dynamics of each
single satellite is independent from the other ones, so it turns out that all the state-
space matrices in (5.12) are block diagonal, with identical diagonal blocks. The
performance output, generated by the matrix which we call Cz , introduces cross
coupling: since we aim at maintaining the relative positions of the satellites, then it
must contain off-diagonal terms that allow calculating the differences between the
positions of neighboring spacecraft. This cross-coupling implies that the control
synthesis problem cannot be approached anymore by considering every satellite
as independent from the other. The system can be considered as the LTP version
of a decomposable system if such matrix can be written as:

Cz = IN ⊗ Cz,a + P ⊗ Cz,b (5.16)

where P is the “pattern matrix”. We can formulate the performance output in such
a way that it contains the relative positions (as our goal is minimizing them) and
at the same time can be expressed by means of a symmetric, spectrally bounded
pattern matrix. For example, if we choose the following outputs:

z•i
=







1
2∆r•i

− 1
2∆r•i+1

for i = 1
− 1

2∆r•i−1
+ ∆r•i

− 1
2∆r•i+1

for 2 6 i 6 n − 1
1
2∆r•i

− 1
2∆r•i−1

for i = n
(5.17)
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then it can be easily seen that this output can be obtained with the following pat-
tern matrix:

P =














1
2 − 1

2 0 0 · · · 0 0
− 1

2 1 − 1
2 0 · · · 0 0

0 − 1
2 1 − 1

2 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · − 1
2 1 − 1

2 0
0 0 · · · 0 − 1

2 1 − 1
2

0 0 · · · 0 0 − 1
2

1
2














(5.18)

with Cz,a = 0, Cz,b = C (where C is just a matrix that selects the positions of the
satellites as outputs). The matrix P is a weighted normalized graph Laplacian and
its eigenvalues are real and confined between 0 and 2 regardless of its size. The
controller can thus be computed for virtually any formation size, with always the
same level of guaranteed performance.

With such choice of P , the performance output z can be chosen as the following:

z = P ⊗
[

C
0

]

x + RIN ⊗
[

0
I3

]

u (5.19)

In this way, both the errors and the control effort are considered as a cost. Again,
the z•i

and the u•i
are heterogeneous, but become commensurable thanks to the

weights. The scalar parameter R is the penalty on control effort. This R can be
thought of as a design parameter that allows trading off relative position per-
formance with fuel savings: a higher value of R will generate a controller that
minimizes propellant consumption, while a smaller R will result in more accurate
relative positioning.

At this point, the method shown in Section 5.3 can be applied. Thanks to the
sparsity of the pattern matrix in (5.18), this controller will be implementable as
a distributed controller made of local controllers located in each satellite; each
of these controllers needs to know only the position measurements of the satellite
where it is located, and the ones of the satellites preceding and following, together
with their controller states.

In order to perform the synthesis, it is also necessary to choose the design param-
eters that have been described earlier in this section. This data can be determined
from the mission specifications [30], or otherwise estimated with empirical crite-
ria. The weights Wp and Wq are chosen such as to represent the normal value of
disturbance accelerations and measurement noise; we assume Wp = 10−7 m/s2

([64] mainly due to aerodynamic drag) and Wq = 2 m (standard deviation of GPS
measurements). We computed controllers for different values of R and we chose
R = 100 as best compromise.

We simulated the effect of the chosen controller on 6000 orbits (approximately
1 solar year). One of the parameters that we consider is the total ∆v that the
satellites need, in order to see whether the propellant consumption is feasible or
not. It is possible to translate the ∆v requirements into propellant requirements
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with Tsiolkovsky’s rocket equation [72]:

∆v = g0Ispln

(
m0 + mp

m0

)

(5.20)

where g0 is the standard acceleration of gravity (9.81 m/s2), Isp is the specific
impulse of the thruster, m0 is the satellite’s dry mass and mp is the total propellant
mass. In this way, it is possible to compute the propellant that is needed (in terms
of fraction of the total satellite mass) in order to maintain the formation for one
year. The results of the simulation are shown in Table 5.1.

Table 5.1: Distributed control of the formation: parameters and results of the first
simulation.

H∞ norm of closed loop system 5.47 · 10−2

∆v needed for 1 year 251.5 m/s
Fraction of propellant (cold gas thruster, Isp = 70 s) 30.69 %
Fraction of propellant (hydrazine thruster, Isp = 230 s) 10.56 %
Average error in relative positions 0.72 m
Maximum error in relative positions 3.35 m

The H∞ norm of the closed-loop system is a parameter that does not say much
if considered alone; it has been included in the table in order to compare it with
the value that we would get if we synthesize a centralized controller, for example
with the method in [47]. The H∞ norm for the centralized controller is 5.28 · 10−2,
which is only 3.4% lower: this means that the distributed approach does not result
in a significant loss of performance. The consumption of propellant is high but
acceptable for both thruster options.

In order to evaluate a possible means of reducing the propellant consumption, we
have carried out other simulations where each satellite uses its thrusters only if its
relative position with respect to its neighbors has an error that exceeds a certain
threshold. Keeping the propellant consumption low is a critical issue in space
flight, and this method is a common practice that allows the controller to use a
smaller effort, resulting though in bigger average error.

We simulated the formation for two different values of the threshold; the results
are shown in Table 5.2 and Table 5.3; for the second simulation, the error and cu-
mulative ∆v for each satellite are shown (only for the first 100 orbits) in Figure 5.2
and 5.3 respectively.

As could be predicted, the introduction of the threshold dramatically decreases
the propellant costs; the higher the threshold, the higher the savings, at the cost
of higher inaccuracy. It is also possible to notice some chattering in Figure 5.2 due
to the on/off nature of the controller, but this does not appear to compromise
stability. This simulation shows the feasibility of the mission concept and the
possibility of keeping the formation operational for one or more years.
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Table 5.2: Distributed control of the formation: results of the first simulation with
on/off control.

Threshold 5 m
∆v needed for 1 year 24.5 m/s
Fraction of propellant (cold gas thruster, Isp = 70 s) 3.51 %
Fraction of propellant (hydrazine thruster, Isp = 230 s) 1.08 %
Average error in relative positions 1.18 m
Maximum error in relative positions 5.66 m

Table 5.3: Distributed control of the formation: results of the second simulation
with on/off control.

Threshold 10 m
∆v needed for 1 year 15.3 m/s
Fraction of propellant (cold gas thruster, Isp = 70 s) 2.20 %
Fraction of propellant (hydrazine thruster, Isp = 230 s) 0.67 %
Average error in relative positions 4.31 m
Maximum error in relative positions 14.32 m
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Figure 5.2: Errors in the relative positions of the satellites in the formation, for
the second simulation with on/off control. The controller is turned on
only if the relative position error exceeds 10 m.



5.4 Test cases 87

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

orbits

de
lta

v 
(m

/s
)

Figure 5.3: Cumulative ∆v employed during the course of 100 orbits, for the sec-
ond simulation with on/off control. Every line represents the con-
sumption of one of the ten satellites; the functions increase in steps
due to the on/off nature of the controller, caused by the use of the
threshold (10 m).

5.4.2 Formation in a halo orbit

The Lagrangian points are the five equilibrium points for a point mass moving in
the rotating frame of two celestial bodies revolving around their mutual center of
mass. These points feature stable or unstable orbits which are called “halo orbits”;
the use of satellites in these orbits has been of subject of interest for a considerable
time [24]. Future missions also envision the possibility of formations of spacecraft
in proximities of Lagrangian points in order to perform far-range astronomy [28].
For this reason we show the applicability of the control method also to formations
located in halo orbits. We consider the Circular Restricted Three Body Problem
for an object moving in the Sun-Earth system. The motion of a body in such a
situation is described by the following differential equations:







Ẍ = 2nẎ + ∂U
∂X

Ÿ = −2nẊ + ∂U
∂Y

Z̈ = ∂U
∂Z

(5.21)

where X , Y and Z are the coordinates of the spacecraft, n is the angular velocity
of the revolution of the Sun-Earth system and U is the combined gravitational and
centrifugal potential, defined as:

U =
1

2
n2(X2 + Y 2) +

Gm1

r1
+

Gm2

r2
(5.22)
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with G the universal gravitational constant, m1 and m2 the masses of the Sun and
the Earth, and r1 and r2 the distances of the spacecraft with respect to these two
celestial bodies (see [93] for further details). We considered the equations in their
non-dimensional form, and a direct shooting method [9] was used for finding
numerically a periodic orbit around L1, that is shown in Figure 5.4. Orbits around
such points are unstable and need to be maintained with active control.
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Projections of the Lagrangian point on the orthogonal planes

Figure 5.4: Halo orbit around the L1 point of the Sun-Earth system (axes in non-
dimensional units).

We discretized the orbit in 200 different points in order to obtain numerically an
LTP model. We consider a formation of spacecraft in a 9-element threefold sym-
metric Golay array [32] that might be a reasonable choice for a synthetic aperture
space telescope. The shape of the formation is shown in Figure 5.5, where the
dashed lines indicate the allowed communication links. Constructing the pattern
matrix P related to this graph as a weighted normalized graph Laplacian, we have
again that its real eigenvalues λi are such that 0 6 λi 6 2.
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Figure 5.5: Communication structure of the graph representing a 9-element Golay
formation.

We also assume that the spacecraft are all following the same orbit close to each
other, so the same dynamic law holds for all of them.

Figure 5.6 shows the results of the simulation, where it can be seen how the space-
craft from a random initial position eventually get to recover the correct shape.
We stress again that communication is needed only among nearest neighbors in
the formation: the controllers exchange their states and measurements only with
the closes spacecraft. Figure 5.7 shows the errors in the relative distances between
the spacecraft. The results of this simulation are to be taken mainly qualitatively
and they show the efficacy of the control in stabilizing the formation in a complex
situation like an unstable orbit around a Lagrangian point.

5.5 Conclusions

In this chapter we have shown that the decomposition approach to control that is
the object of this thesis can be effectively applied to spacecraft formations in pe-
riodic orbits. We have shown by means of examples that the new method makes
it possible to have controllers with a performance that is quite close to the cen-
tralized theoretical H∞ optimum and at the same time to allow flexibility and a
distributed architecture.

The method is based on LMI tools for control synthesis, so it can be extended to
accommodate other requirements that are managed by such methods, for example
robustness issues with respect to model uncertainties. Another possibility is to
use multiobjective optimization [80], that would allow minimizing the propellant
consumption while keeping the positioning accuracy within certain bounds.

In this work we have shown only applications to position control of the spacecraft
in the formation, but it is possible to extend the use of the controller synthesis
method shown here also to the station keeping of the relative attitude, if a lin-
earized dynamics around the nominal position is used.
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6 CHAPTER

Identification

After considering the problem of distributed control, we now move to
the complementary problem: identification of “distributed” mod-

els. The controller synthesis methods shown in Chapter 3 require the
models to have the structure of a decomposable system. If such models
are not available from first principles, is it still possible to identify them
from input/output data?

We first approach the problem for a different kind of class, namely for the
class of “circulant systems” that was briefly introduced in Section 2.6.1.
Afterwards, we will look at the problem of identifying decomposable sys-
tem models, and we will show that the solution is not as simple as for the
circulant case, and it will require an additional step featuring a nonconvex
optimization.

6.1 Introduction

The system and control theory community has dedicated recently a lot of atten-
tion to the study of distributed or large scale systems and their properties; this
thesis is one of the results of such effort. The literature focuses mainly on the
problem of distributed control design, as we too have done so far. From now on,
in this last chapter, we will instead consider a different problem: identification.
The distributed control techniques offer a wealth of methods that can be applied
to special classes of large scale systems, but is there a way to get models fitting in
these classes out of data?

In this chapter we are going to look for answers to this last question. It is clear
that when “distributed” models of systems are not available from first principles,
it is important to have a way to find such models from measured data, in order
to be able to employ the distributed control techniques. To our knowledge the
problem has not been fully explored in the literature yet. Of course, in order to be
able to identify a system as a decomposable system, we will need to have the prior
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knowledge of the fact that the system can be described with such a model, and we
will also need to postulate a pattern matrix in advance. This prior knowledge can
typically derive from the inspection of the physical system that we want to model;
look again at Figure 2.2, decomposable systems can be imagined as the result of
the interconnection of a set of identical systems, which interact with each other
following a pattern. If the signals that the subsystems use to interact are measur-
able, then it is possible to identify each single subsystem including such signals
into the input/output set; but if these signals cannot be measured, obtaining a
structured model from the global input/output data alone is not a trivial task.
Also notice that if we can measure the signals that the subsystems exchange, but
it is not possible to separate a single subsystem from the others, then we would
need to use identification methods that are suitable for closed-loop identification,
as each element can be considered to be in closed-loop with the rest of the system.

Before analyzing the general problem of identifying decomposable systems, we
first focus on the identification of a special subclass of them (in the wide sense):
circulant systems [19]. Circulant systems represent a very special situation, for
which the identification algorithm will turn out to be simpler with respect to the
general case: for this reason, we consider the circulant case as a starting point.
Later on, we will move to the identification of decomposable systems in general,
which will need an additional step involving a nonlinear optimization. In the end,
we will make some considerations on when this step might not be necessary, also
for systems other than circulant.

This chapter is structured as follows. Section 6.2 concerns the identification of
circulant systems whereas Section 6.3 concerns the identification of decomposable
systems in general. Both these two sections contain identification algorithms and
simulated examples of the use of such algorithms in practice. The conclusions are
in Section 6.5.

The results contained in this chapter have been published in [58; 60].

6.2 Identification of circulant systems

Circulant systems, introduced briefly in Section 2.6.1, represent the best example
of systems for which a customized identification algorithm based on decomposi-
tion can be developed. We start by presenting more in detail the definition and
the properties of such systems, and subsequently we will present a possible iden-
tification algorithm based on subspace identification.

6.2.1 Circulant systems and their properties

We now show the basic concepts that are needed for introducing the notion of a
circulant system. We first recall the concept of permutation matrix (introduced in
Section 2.6.1).
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Definition 6.1 (permutation matrix) The circulant shift permutation matrix of order
N > 1 is defined as:

ΠN =

[
0 IN−1

1 0

]

(6.1)

Notice that ΠN is orthogonal (Π−1
N = ΠT

N ). Right-multiplying an N ×N matrix by
ΠN is equivalent to cyclically shifting all its columns of one position to the right.
Left-multiplication instead cyclically shifts the rows up.

Definition 6.2 (circulant matrix) A square matrix E of size N×N is called “circulant”
if and only if it has the following structure:

E =










e1 e2 e3 e4 · · · eN

eN e1 e2 e3 · · · eN−1

eN−1 eN e1 e2 · · · eN−2

...
...

...
...

...
e2 e3 e4 e5 · · · e1










(6.2)

where ei ∈ R or ei ∈ C. This is the same as saying, a square matrix is circulant if and
only if each row is obtained from the preceding one by a cyclic shift of one position to the
right.

This definition is equivalent to saying that a circulant matrix is invariant under a
similarity transformation with respect to ΠN : E = Π−1

N EΠN = ΠT
NEΠN .

Definition 6.3 (block circulant matrix) A block circulant matrix E of order N is a
(not necessarily square) matrix with the following block structure:

E =










E1 E2 E3 E4 · · · EN

EN E1 E2 E3 · · · EN−1

EN−1 EN E1 E2 · · · EN−2

...
...

...
...

...
E2 E3 E4 E5 · · · E1










(6.3)

where Ei ∈ R
p×q or Ei ∈ C

p×q , with p, q positive integers.

It is immediate to see [17] that such a matrix can also be written as:

E =

N∑

i=1

(
Πi−1

N ⊗ Ei

)
. (6.4)

Let us now introduce some new notation. We will denote the set of block circulant
matrices of order N , with blocks of size p × q, as CN,p,q; we will use the symbol
C R

N,p,q or C C

N,p,q if we want to specify that the entries of such matrices are respec-
tively real or complex. Let DN,p,q instead denote the set of block diagonal matrices
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with N block rows and block columns, and blocks of size p×q. Again, we will use
either DR

N,p,q or DC

N,p,q if we want to emphasize the nature of the entries of such

matrices. For a matrix E ∈ DN,p,q, Ei will indicate the ith block on the diagonal;
for a matrix E ∈ CN,p,q, Ei indicates the ith block in the first row (as shown in
Definition 6.3).

Remark 6.1 The sums and products of block circulant matrices of the same order are still
block circulant. The inverse of a square invertible block circulant matrix is block circulant
[17].

Lemma 6.1 (block-permutation) A block circulant matrix E ∈ CN,p,q is invariant
under a block-permutation transformation, which means:

(ΠN ⊗ Ip)
−1

E (ΠN ⊗ Iq)=
(
Π−1

N ⊗ Ip

)
E (ΠN ⊗ Iq)=E. (6.5)

Proof: From (6.4), we have:

(ΠN ⊗ Ip)
−1

E (ΠN ⊗ Iq) =

N∑

i=1

(ΠN ⊗ Ip)
−1 (

Πi−1
N ⊗ Ei

)
(ΠN ⊗ Iq) . (6.6)

From the properties of the Kronecker product [12] it follows:

(ΠN ⊗ Ip)
−1E (ΠN ⊗ Iq) =

N∑

i=1

(
Π−1

N Πi−1
N ΠN ⊗ IpEiIq

)
=

N∑

i=1

(
Πi−1

N ⊗ Ei

)
= E.

(6.7)
2

Definition 6.4 (Fourier matrix) We define the Fourier matrix of order N as:

FN =
1√
N











1 1 1 · · · 1

1 wN w2
N · · · w

(N−1)
N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
...

1 w
(N−1)
N w

2(N−1)
N · · · w

(N−1)(N−1)
N











(6.8)

with wN = e−
2πj
N = cos 2π

N − j sin 2π
N .

The matrix FN is unitary and symmetric: FH
N FN = FNFH

N = IN , FT
N = FN . Left-

multiplying a column vector with a Fourier matrix is equivalent to computing its
Discrete Fourier Transform (DFT); for large values of N , it is convenient to use the
Fast Fourier Transform (FFT) algorithm instead of computing the matrix product
[17].

We call fi the ith row of FN . We will show now that all the rows but the first of
the Fourier matrix are complex conjugate between each other; if N is even, then
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f1 and fN/2 are real, while the other rows form complex conjugate pairs; if N is
odd, then f1 alone is real with the other rows forming complex conjugate pairs.

Lemma 6.2 The rows of FN are either real or in complex conjugate pairs according to the
relation: fN+2−i = f̄i for i = 2, . . . , N .
Proof: The first row f1 is trivially always real. For what concerns the other rows, we

can see that the kth element of fN+2−i is: fN+2−i,k = e−
2πj
N

(N+1−i)(k−1), while the kth

element of fi is: fi,k = e−
2πj
N

(i−1)(k−1). From the properties of the complex exponential
(ez̄ = ez , ez+2πjk = ez for k ∈ Z) then we have:

fN+2−i,k = e−
2πj
N

(−i+1)(k−1) = e−
2πj
N

(i−1)(k−1) = f̄i,k. (6.9)

This implies fN+2−i = f̄i. 2

Fourier matrices have the remarkable property of diagonalizing any circulant ma-
trix. This property is crucial because it allows decomposing circulant systems
to smaller independent ones, thus reducing the complexity of the identification
problem. The property is stated in the theorem that follows, and then generalized
to block circulant matrices.

Theorem 6.1 (diagonalization property) For any matrix E ∈ CN×N , it holds that
FNEFH

N is a diagonal matrix if and only if E is circulant.
Proof: The proof can be found in [17]. 2

Corollary 6.1 Consider a matrix E ∈ CNp×Nq. Then E = (FN ⊗ Ip)E (FN ⊗ Iq)
H ∈

DC

N,p,q if and only if E ∈ C C

N,p,q.
Proof: We start with the “if” part. If E is block circulant, then from (6.4) we have:

E = (FN ⊗ Ir)

(
N∑

i=1

Πi−1
N ⊗ Ei

)

(FN ⊗ Im)
H

. (6.10)

From the properties of the Kronecker product (see Section 2.3) then we have:

E =

N∑

i=1

(
FNΠi−1

N FH
N

)
⊗ Ei. (6.11)

Notice that Πi−1
N is circulant, so FNΠi−1

N FH
N is diagonal (Theorem 6.1). Then we have

that
(
FNΠi−1

N FH
N

)
⊗ Ei is block diagonal, and E is a sum of block diagonal matrices, so

it is block diagonal too. This proves the “if” part. The “only if” part is the equivalent of

saying that for a matrix G ∈ C
Np×Nq , (FN ⊗ Ir)

H
G (FN ⊗ Ir) ∈ C C

N,p,q if G ∈ DC

N,p,q

(just assume that G = (FN ⊗ Ip)E (FN ⊗ Iq)
H ∈ DC

N,p,q). We can see that being G
block diagonal, it holds that:

(FN ⊗ Ip)
H

G (FN ⊗ Iq) =

N∑

i=1

(
fH

i ⊗ Ip

)
Gi (fi ⊗ Iq) . (6.12)
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Then thanks to (2.15) (consider that Gi = 1 ⊗ Gi), we have:

(FN ⊗ Ip)
H

G (FN ⊗ Iq) =

N∑

i=1

(
fH

i fi ⊗ Gi

)
. (6.13)

Notice that fH
i fi = FH

N HiFN , where Hi is a matrix with all entries equal to 0 but the
ith entry on the diagonal that is 1. So Hi is diagonal and thanks to Theorem 6.1, fH

i fi

is circulant. Then
(
fH

i fi ⊗ Gi

)
is block circulant, and (FN ⊗ Ip)

H
G (FN ⊗ Iq) being a

sum of block circulant matrices is block circulant as well. 2

It is possible to show that the complex block diagonal matrices obtained through
the transformation via Fourier matrices from real block circulant matrices have
some special features; and all of the block diagonal matrices of such kind can be
transformed into real block circulant ones with the inverse transformation.

Corollary 6.2 For a matrix E ∈ C R

N,p,q, then for E = (FN ⊗ Ip)E (FN ⊗ Iq)
H ∈

DC

N,p,q it holds that E1 ∈ Rp×q and EN+2−i = Ēi for i = 2, . . . , N .

Conversely, for a matrix G ∈ DC

N,p,q for which G1 ∈ Rp×q and GN+2−i = Ḡi for

i = 2, . . . , N , we have that (FN ⊗ Ip)
H

G (FN ⊗ Iq) ∈ C R

N,p,q.
Proof: It is a consequence of Lemma 6.2. 2

We are now ready to introduce the notion of circulant system and show its key
features. After the definition, we will first state a property that characterizes such
kind of systems, and then we will show how they can be decomposed into smaller
independent systems, thus enabling efficient solutions to the identification prob-
lem.

Definition 6.5 (circulant systems) Consider a discrete-time MIMO system with Nm
inputs and Nr outputs, which can be described by state-space equations of the kind:

{
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(6.14)

with A ∈ RNl×Nl, B ∈ RNl×Nm, C ∈ RNr×Nl, D ∈ RNr×Nm. The vector x ∈ RNl×1

is the state, u ∈ R
Nm×1 is the input signal and y ∈ R

Nr×1 is the output signal. We
call the system “circulant” (or block circulant) if and only if it has a representation with
A ∈ C R

N,l,l, B ∈ C R

N,l,m, C ∈ C R

N,r,l and D ∈ C R

N,r,m. When we will refer to the matrices
of a circulant system, we will consider only this realization with circulant matrices.

We consider also the input u to be made of N blocks of size m× 1, which we denote as ui,
and the output y to be made of N blocks of size r×1, which we denote as yi (i = 1, . . . , N ).
We call these blocks “local inputs” and “local outputs”.

If a state-space realization of a system is given, such a system is a circulant system
if and only if there exists a similarity transformation that turns the state-space
matrices into block circulant ones.
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An important property of circulant systems is the invariance with respect to shift
in the inputs and outputs. If a certain input signal u generates an output signal
y, then a permuted version of the same input ((ΠN ⊗ Im)u) will generate a per-
muted version of the same output ((ΠN ⊗ Ir) y). This is better explained in the
following lemma.

Lemma 6.3 (invariance to input/output shift) Let the signal y(k) ∈ RNr be a valid
output of a system as in (6.14) when excited by the input signal u(k) ∈ RNm. Then
ũ(k) = (ΠN ⊗ Im)u(k) and ỹ(k) = (ΠN ⊗ Ir) y(k) are a valid input/output pair for
the same system if and only if the system is circulant.
Proof: We start by proving the “if” part, that is, all circulant systems have the shift
invariance property. From Lemma 6.1, we can rewrite (6.14) as:

{
x(k + 1) = (Π−1

N ⊗ Il)A(ΠN ⊗ Il)x(k) + (Π−1
N ⊗ Il)B(ΠN ⊗ Im)u(k)

y(k) = (Π−1
N ⊗ Ir)C(ΠN ⊗ Il)x(k) + (Π−1

N ⊗ Ir)D(ΠN ⊗ Im)u(k)
(6.15)

If we perform the state transformation: x̃(k) = (ΠN ⊗ Il)x(k), then the system becomes:







x̃(k + 1) = Ax̃(k) + B (ΠN ⊗ Im)u(k)
︸ ︷︷ ︸

ũ(k)

(ΠN ⊗ Ir)y(k)
︸ ︷︷ ︸

ỹ(k)

= Cx̃(k) + D (ΠN ⊗ Im)u(k)
︸ ︷︷ ︸

ũ(k)

(6.16)

We see that the dynamic equations for the input/output pair ũ(k) and ỹ(k) are the same
as for u(k) and y(k). So if y(k) is valid output for u(k), then ỹ(k) is a valid output for
ũ(k). Of course, the initial conditions x̃(0) for the (ũ,ỹ) pair which will make this possible
are related to the initial conditions x(0) for (u,y) by the formula: x̃(0) = (ΠN ⊗ Il)x(0).

To prove the “only if” part, the first step is to understand that the shift invariance property
is equivalent to having a circulant transfer function T (z) for the system. If for any valid
pair u and y we have that (ΠN ⊗ Im)u and (ΠN ⊗ Ir) y are valid too (with appropriate
initial conditions), this means that

(
Π−1

N ⊗ Ir

)
T (z) (ΠN ⊗ Im) = T (z). From this it

can be proved that there exists a state-space formulation with block circulant matrices; we
omit the sequel of the proof for brevity, it can be found for example in [19]. 2

This Lemma 6.3 shows that a circulant system can be equivalently defined as a
system which has this shift invariance property. This is of fundamental impor-
tance, because it makes it possible to recognize a system as circulant a priori, from
physical insight, without knowing its dynamic equations. If a system possesses
certain symmetries such as it is possible to know that a shift in the input signals
will generate a shift in the output signals, then it is possible to assume a circu-
lant structure for it in the identification process. This circulant structure can be
exploited to derive a specific subspace identification algorithm that assumes such
structure. The following theorem is key to the development of such algorithm.

Theorem 6.2 (decomposition property) A circulant system of order Nl as described
in Definition 6.5 is equivalent to N independent systems of order l in the complex domain.
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Each of these subsystems has only m inputs and r outputs.
Proof: According to Corollary 6.1, it holds that:

A = (FN ⊗ Il)
HA(FN ⊗ Il)

B = (FN ⊗ Il)
HB(FN ⊗ Im)

C = (FN ⊗ Ir)
HC(FN ⊗ Il)

D = (FN ⊗ Ir)
HD(FN ⊗ Im)

(6.17)

with A ∈ DC

N,l,l, B ∈ DC

N,l,m, C ∈ DC

N,r,l, D ∈ DC

N,r,m. So we can rewrite equa-
tion (6.14) as:
{

x(k + 1) = (FN ⊗ Il)
HA(FN ⊗ Il)x(k) + (FN ⊗ Il)

HB(FN ⊗ Im)u(k)
y(k) = (FN ⊗ Ir)

HC(FN ⊗ Il)x(k) + (FN ⊗ Ir)
HD(FN ⊗ Im)u(k)

(6.18)

⇔
{

(FN ⊗ Il)x(k + 1)=A(FN ⊗ Il)x(k)+B(FN ⊗ Im)u(k)
(FN ⊗ Ir)y(k) = C(FN ⊗ Il)x(k) + D(FN ⊗ Im)u(k)

(6.19)

If we apply the following invertible transformations for state, input and output:

x̂(k) = (FN ⊗ Il)x(k)
û(k) = (FN ⊗ Im)u(k)
ŷ(k) = (FN ⊗ Ir)y(k)

(6.20)

then the system turns into:

{
x̂(k + 1) = Ax̂(k) + Bû(k)
ŷ(k) = Cx̂(k) + Dû(k)

(6.21)

All the matrices involved in this systems are block diagonal, so this system is equivalent
to the following N independent lth order subsystems (of complex variables), each of them
with m inputs and r outputs:

{
x̂i(k + 1) = Aix̂i(k) + Biûi(k)
ŷi(k) = Cix̂i(k) + Diûi(k)

for i = 1, . . . , N (6.22)

where Ai, Bi, Ci and Di are respectively the blocks in the diagonal of A, B, C and
D, and x̂i(k), ûi(k) and ŷi(k) are the blocks of the column vectors x̂(k), û(k) and ŷ(k);
Ai ∈ Cl×l, Bi ∈ Cl×m, Ci ∈ Cr×l, Di ∈ Cr×m, x̂i(k) ∈ Cl×1, ûi(k) ∈ Cm×1 and
ŷi(k) ∈ C

r×1. 2

It is important to point out that not all the N modal subsystems of (6.22) are in-
dependent; actually, as a direct consequence of Corollary 6.2, the systems of in-
dex N + 2 − i are the complex conjugate version of the systems of index i, for
i = 2, . . . , N . So there are only N/2 + 1 independent systems if N is even and
(N + 1)/2 independent systems if N is odd.

Corollary 6.3 With respect to (6.22), let Pi indicate any among the following: Ai, Bi,
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Ci, Di, x̂i(k), ûi(k) and ŷi(k). It holds that:

P1 is real
PN+2−i = P̄i for i = 2, . . . , N

(6.23)

Proof: It is a consequence of Lemma 6.2. 2

6.2.2 The identification algorithm

Motivation and rationale

As a consequence of Lemma 6.3, we have seen that there exist categories of sys-
tems which can be identified as circulant just from physical insight, as a result of
the invariance of their input and output pairs to shifts. As an example, consider
the system shown in Figure 6.1: the global system is made of four smaller identi-
cal subsystems, each with its input and output, connected in a circular way. The
interconnections between neighboring systems are all the same, and actually it is
impossible to distinguish one system from the other.

2u

y2u4

y4

y1 u1

y3u3

subsystem 1

subsystem 2subsystem 4

subsystem 3

Figure 6.1: Example of circulant system made of 4 identical subsystems.

In such a situation, putting Subsystem 1 in the place of Subsystem 2, Subsystem 2
in the place of Subsystem 3, Subsystem 3 in the place of Subsystem 4, and Subsys-
tem 4 in the place of Subsystem 1 would still yield the same global system. Then
we know that the invariance to shift of input/output pairs of Lemma 6.3 must
hold, as it is impossible to know whether we are looking at the original system
or its shifted (or “rotated”) version. An example of systems of this kind can be
found in adaptive optics; we can consider again for example the picture of a de-
formable mirror in Figure 4.1, under a different point of view. The mirror is made
of a set of actuators placed on a regular grid which can displace the reflecting sur-
face. Such device is invariant under rotations of multiples of 60 degrees, and it
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can be seen as the interconnection of six identical sectors, which influence each
other strongly. Another kind of circulant system could be a system made of two
identical interconnected parts, which could simply be a physical object with one
plane of symmetry.

So there might be the necessity of identifying such kind of systems from data.
Subspace methods [88; 91] are the most common choice for linear MIMO systems,
and they could be used in a situation as this to identify a discrete-time state-space
model of the global system, from the set of all outputs and all inputs. The problem
of this approach is in the fact that subspace methods return state-space matrices
up to an arbitrary similarity transformation, that disrupts any structure the sys-
tem may have. Moreover, we will also demonstrate that it can be useful to force
the circulant structure to the model in order to improve the accuracy of the esti-
mation: the knowledge of the symmetries of the system can be used as an a priori
information on the MIMO model.

We will shortly show that it is indeed possible to exploit the structure of circulant
systems for identification; in fact, we will illustrate an identification algorithm
that:

1. allows using the prior knowledge of the system as circulant;

2. reduces the computational complexity of the problem;

3. preserves the circulant structure, that is, the identified model is again a cir-
culant system.

The algorithm is a direct consequence of the diagonalization property of circulant
systems (Theorem 6.2) and it can be outlined as follows. As the system can be
turned into N independent subsystems, and as for each of these subsystem we
can find a priori which are the inputs and outputs, then it is possible to identify
each of these modal subsystems separately from each other. For this purpose, it
is sufficient to transform the inputs and the outputs as in (6.20), and use them
with any method (subspace identification, prediction error, etc. [51]) to identify
the state-space matrices of the modal systems; the only additional care we will
need to take is that we should extend the method to models with complex values.
Actually not all the N subsystems have to be identified, but only the free ones,
while the others are just the complex conjugates as explained in Corollary 6.3.
Then, once these systems have been identified, the global model can be retrieved
with the use of (6.17). Corollary 6.1 will grant that the global matrices obtained are
block circulant, while Corollary 6.2 will grant that such matrices have real entries.

We said in the previous paragraph that any method can be used for identifying the
modal subsystems; actually, subspace methods seem to be the best choice at this
point, as they are inherently fit to deal with state-space models (instead of transfer
functions) and they can naturally be extended to the complex domain (as it was
done in e.g. [62], for a different purpose). The subspace identification process is a
“numerical recipe” that yields four matrices as result of an input/output couple;
all the algebraic operations used in subspace identification (matrix sum, matrix
product, singular value decomposition or QR factorization) can be extended to
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complex numbers. Moreover, subspace methods will offer insight into the order l
of the subsystems from the singular values of the extended observability matrices
(see [92] for details). This will make it possible to choose a good value of the order:
although the different subsystems may yield different results, it is necessary to
choose the same order l for all of them. For these reasons, in the sequel we will
use a subspace algorithm, specifically the MOESP (Multi-variable Output-Error
State sPace) algorithm [91]. MOESP is fit for systems with white measurement
noise only, and in the examples here we will restrict to them, but of course the
idea of circulant identification can be extended to more sophisticated subspace
methods (e.g. PI-MOESP, PO-MOESP [92], N4SID [88]) that take into account
different models of noise. The characteristics of the noise are not changed by the
decoupling transformation, so MOESP will give an unbiased estimate if the noise
in the untransformed signals is white.

Now we are almost ready to write the algorithm explicitly in its steps. But first,
we discuss the condition of “persistency of excitation” that is necessary for the
identification process.

Persistency of excitation

The persistency of excitation is a requirement that is put on input signals in order
to make system identification possible.

Definition 6.6 (persistency of excitation [92]) The signal u(k), for k = 0, 1, . . . is
persistently exciting of order N if and only if there exists an integer M such that the
Hankel matrix of the input:

U0,N,M =








u(0) u(1) · · · u(M − 1)
u(1) u(2) · · · u(M)

...
. . .

...
u(N − 1) u(N) · · · u(M + N − 2)








(6.24)

has full row rank.

If we use a subspace method for identifying an N th order model, then it is neces-
sary to have an input which is persistently exciting of at least order N [94]. In case
we want to identify a circulant system of order Nl, then we would expect that the
input has to be at least persistently exciting of order Nl. Actually, this is not really
necessary, as we identify the modal subsystems and not the full model itself. So
for the subsystems we only need that the ûi which is involved is persistently excit-
ing of order l, which is less restrictive. The following lemma and an example will
give more insight into the issue of persistency of excitation for circulant systems.

Lemma 6.4 If the full input signal u(k) of a circulant system (equation (6.14)) is per-
sistently exciting of order s, then each one of the “modal” input signals ûi(k) obtained
through (6.20) is persistently exciting of order s.
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Proof: If the input is persistently exciting of order s, then there exists an M for which

U0,s,M has full row rank. If we consider the Hankel matrix Û0,s,M of the transformed
input û, it is easy to see that it is related to U0,s,M by the relation:

Û0,s,M = (Is ⊗ FN ⊗ Im)U0,s,M . (6.25)

As Is ⊗ FN ⊗ Im is full rank, then, thanks to Sylvester’s inequality [92], if U0,s,M is

full row rank then Û0,s,M is full row rank as well. We call Û i
0,s,M for i = 1, . . . , N the

Hankel matrices obtained from the single “modal” inputs ûi. All of these matrices are

submatrices of Û0,s,M that is full rank, and so they are all full rank (Û i
0,s,M is made of the

rows of Û0,s,M containing ûi). So each signal ûi(k) is persistently exciting of order s. 2

The relevant consequence of this lemma is that we do not actually need a signal
with persistency of excitation of order Nl in order to identify a circulant system
of the same order, but l is enough, as with it we can identify the modal systems
which are of order l. And besides this, there could be signals which are not even
persistently exciting of order l for the full system, but are so for the modal systems
once transformed.

Consider for example a situation where all the N local inputs are equal to zero,
but one (let us assume it is u1). Also assume that u1 alone would be persistently
exciting of order l, meaning that the Hankel matrix U1

0,s,M built with u1 is full
rank. Instead U0,s,M will never be full rank as it contains some null rows, mak-
ing the full signal u persistently exciting of order 0. So it will not be possible to
identify the full system without making any assumptions on its structure. But the

modal systems can be identified, as the matrices Û i
0,s,M will be all full rank; in fact

Û i
0,s,M = U1

0,s,M/
√

N . This example shows that the knowledge on the structure
of the system makes the identification possible for a much wider class of input
signals, and that it is not even necessary to put an input in all the physical subsys-
tems, but a single input channel can be enough.

The novel algorithm

We are then ready to propose a solution for the following problem:

Problem Description 6.1 (Circulant system identification)
Consider a given set of N input signals ui(k) ∈ Rm×1 and N output signals
yi(k) ∈ Rm×1, for i = 1, . . . , N and k = 1, . . . , kmax. This set of data is
associated to a dynamical system; we know, thanks to considerations stemming
from Lemma 6.3, that this system has a circulant structure and that we can use
a model of circulant system according to Definition 6.5 to describe it, where N ,
m and r are already known and l is unknown. Goal: identify an lN th order
state-space circulant model from input/output data.
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The solution is reported in the form of an algorithm.

Algorithm 6.1 (subspace identification of circulant systems)
Problem 6.1 is solved in the following steps:

1. Compute the Fourier matrix FN of order N .

2. Transform input and output signals, by computing:

û(k) = (FN ⊗ Im)u(k), ŷ(k) = (FN ⊗ Ir)y(k). (6.30)

3. Verify that each signal û(k) is persistently exciting of at least order l.

4. Use MOESP to identify independent state-space models of order l from
each ûi/ŷi pair:

{
x̂i(k + 1) = Âix̂i(k) + B̂iûi(k)

ŷi(k) = Ĉix̂i(k) + D̂iûi(k)
for i = 1, . . . , N (6.31)

If N is even, then identify the systems for i = 1, . . . , N/2; if N is odd
instead, identify the systems for i = 1, . . . , (N + 1)/2 (the other values
of i correspond to signals which are just the complex conjugates, so they
do not contain further information): the method will yield as results the

identified (complex) matrices Âi, B̂i, Ĉi and D̂i. Then use Corollary 6.3
to get the matrices of the other (dependent) systems:

Âi = ÂN+2−i

B̂i = B̂N+2−i

Ĉi = ĈN+2−i

D̂i = D̂N+2−i

for i=

{ N
2 + 1, . . . , N if N even
N+1

2 + 1, . . . , N if N odd
(6.32)

5. Construct the block diagonal matrices: Â, B̂, Ĉ and D̂ putting the identi-
fied blocks together.

6. Retrieve the global system matrices with the following formulas:

Â = (FN ⊗ Il)
HÂ(FN ⊗ Il)

B̂ = (FN ⊗ Il)
HB̂(FN ⊗ Im)

Ĉ = (FN ⊗ Ir)
HĈ(FN ⊗ Il)

D̂ = (FN ⊗ Ir)
HD̂(FN ⊗ Im)

(6.33)

Â, B̂, Ĉ and D̂ are real and block circulant, thanks to Corollaries 6.3, 6.1
and 6.2. Notice that it is not necessary to compute the multiplications
above fully, it is just enough to get the first block row of these matrices and
then the others are known thanks to the circulant structure.
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In addition, if desired, in most cases it is possible to find a transformation that

block-diagonalizes either B̂ or Ĉ (it could be useful to get more physical insight

into the system). For example, we can diagonalize Ĉ by finding the circulant ma-
trix T :

T =








Il T2 T3 · · · TN−1

TN−1 Il T2 · · · TN−2

...
...

...
...

T2 T3 T4 · · · Il








(6.34)

for which it holds:







C1 C2 C3 · · · CN−1

CN−1 C1 C2 · · · CN−2

...
...

...
...

C2 C3 C4 · · · C1








︸ ︷︷ ︸

Ĉ








Il T2 T3 · · · TN−1

TN−1 Il T2 · · · TN−2

...
...

...
...

T2 T3 T4 · · · Il








=

=








C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C








(6.35)

that is obtained by setting:






CN−1 C1 C2 · · · CN−2

...
...

...
...

C2 C3 C4 · · · C1






︸ ︷︷ ︸

Ĉ but the first row






Il

TN−1

...




 = 0 (6.36)

This allows finding the desired transformation:






TN−1

...
T2




 = −






C1 C2 · · · CN−2

...
...

...
C3 C4 · · · C1






†

︸ ︷︷ ︸

Ĉ but the first row and column






CN−1

...
C2




 (6.37)

where † indicates the pseudoinverse, if the matrix subject to pseudoinversion has
a left inverse.

Subspace algorithms deliver the system matrices up to a similarity transforma-
tion. We show in the next theorem that a set of independent similarity transfor-
mations of the N independent subsystems are of no concern for the final result.
In fact, all the possible similarity transformations of the subsystems are always
equivalent to a global similarity transformation for the complete system.
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Theorem 6.3 Let us assume that each of the subsystems described by (6.22) is known up
to a similarity transformation with a nonsingular matrix Ti:

{
x̂i(k + 1) = T−1

i AiTix̂i(k) + T−1
i Biûi(k)

ŷi(k) = CiTix̂i(k) + Diûi(k)
for i = 1, . . . , N.

(6.38)

Then this is equivalent to knowing the global circulant system up to a global similarity
transformation.
Proof: If we use (6.33) to recover the global matrices from the ones of the subsystems,

transformed by Ti, then we have (we neglect D̂ as it is not influenced by similarity trans-
formations):

ÂT = (FN ⊗ Il)
HT−1ÂT (FN ⊗ Il)

B̂T = (FN ⊗ Il)
HT−1B̂(FN ⊗ Im)

ĈT = (FN ⊗ Ir)
HĈT (FN ⊗ Il)

(6.39)

where T ∈ DN,l,l is the block diagonal matrix containing all the Ti blocks; T−1 is block
diagonal as well. We can rewrite the equations inserting some identity matrices in key
points; for the first one, we have:

ÂT = (FN ⊗ Il)
HT−1 (FN ⊗ Il)(FN ⊗ Il)

H

︸ ︷︷ ︸

INl

Â (FN ⊗ Il)(FN ⊗ Il)
H

︸ ︷︷ ︸

INl

T (FN ⊗ Il).

(6.40)
Being T block diagonal, then T = (FN ⊗ Il)

HT−1(FN ⊗ Il) is block-circulant (Corol-
lary 6.1). So we have:

ÂT = T (FN ⊗ Il)
HÂ(FN ⊗ Il)T −1 = T ÂT −1. (6.41)

In a similar way, we can show that:

B̂T = T B̂, ĈT = ĈT −1 (6.42)

that is the same as saying, we know the system matrices up to a similarity transformation.
2

Remark 6.2 As a last consideration, let us evaluate the reduction in complexity that is
obtained by using the proposed algorithm instead of a global MOESP. The complexity of
MOESP is determined by its most costly operation, that is the QR factorization; in this
analysis, we limit ourselves to looking at this step. For a matrix in Rj×k, the cost of the QR
factorization is O(jk2) [33]. Application of MOESP to the complete Nm input and Nr
output system, for M time steps, requires the QR factorization of a matrix with M rows
and sN(m + r) columns, where s is a number of choice that is bigger than the order (so
s = O(Nl)). This means that the cost of the QR for the global MOESP is O(Ms2N2(m+
r)2) ≈ O(M(m+r)2N4l2). If we use the circulant MOESP, we need to perform N times
the QR decomposition of N×s(m+r) matrices, where now s = O(l). This means that the
global cost of the QRs for the circulant MOESP is O(M(m + r)2Nl2), a factor N3 less.
Of course the circulant MOESP would require also the signal transformations and the
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construction of the global matrices (steps 2 and 6 of Algorithm 6.1); these operations can
be done with the FFT algorithm, and they would have a computational cost of O(M(r +
m)N log N) and O(l2N log N) respectively, which are anyway quite smaller compared
to the QR factorization.

6.2.3 Some simulation results

Measurement noise

For demonstrating the use of the algorithm, a stable circulant system of 12th order,
with N = 4, l = 3, m = 1 and r = 1 was randomly generated. The four input
signals are made of 200 random samples each; white measurement noise has been
added to all the four outputs.

In the test, we generated 250 different input/output pairs, and used them to iden-
tify the system. Algorithm 6.1 (from now on, we will call it “circulant MOESP”)
was used and compared to a standard MOESP that assumes no structure at all for
the system. In Figure 6.2 the poles of the true system are shown, together with
the poles identified with the two different methods in 50 of the 250 runs; the poles
identified with standard MOESP are indicated by a cross, while those found with
the algorithm which assumes a circulant structure are indicated by a circle. At a
glance it is possible to see that the circles are in general closer to the true poles
if compared to the crosses (Figure 6.3 shows a magnification around one of the
poles). Table 6.1 shows this observation in a more rigorous way, by comparing the
mean square of the error in identifying each of the poles of the system.
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Figure 6.2: Poles of the identified model in a set of 50 different experiments.
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Figure 6.3: Detail of Figure 6.2 around one of the poles.

Table 6.1: Comparison of the performance of the two different methods in identi-
fying the poles with measurement noise.

Root mean square error
Pole standard MOESP circulant MOESP

−0.02486 0.04641 0.01958
0.13497± 0.17077j 0.06768 0.01879
0.27881± 0.21487j 0.08064 0.02038
0.38761± 0.26329j 0.02801 0.00877
0.60841± 0.20941j 0.00783 0.00394
0.65795± 0.04966j 0.02973 0.00870

0.68937 0.05027 0.01679
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So this example suggests that if we have a system with circulant structure, the
novel method performs better than standard MOESP.

Not perfectly circulant systems

Another test has been done adding a “random perturbation” to the A matrix as
well. This causes the system to be not perfectly circulant (that is most likely in
real-life situations), but it has been verified that the method is still applicable; the
idea is to show that small perturbations in the circulant structure do not cause
completely wrong results. Again, we generated 250 different input/output pairs
(with measurement noise), and used them to identify the system. For each pair,
the A matrix has been perturbed with a different random perturbation matrix,
each element of which was smaller than 1/1000 in modulus. For small pertur-
bations as these, there is still an advantage in the accuracy of the method with
respect to standard MOESP, as shown in Figure 6.4 and in Table 6.2.
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Figure 6.4: Error in identifying one of the poles (the second in Table 6.2) in 50
experiments with perturbation on the A matrix.

Vibrating plate

A last test has been executed with the help of a finite element simulation. A kind
of test bed for a vibration control experiment was designed using a finite element
software (ABAQUS); the experiment consists of a metallic plate clamped at the
corners, with four co-located [70] actuator and sensor pairs. The overall set-up
satisfies the circulant symmetry and it is shown in Figure 6.5.
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Table 6.2: Comparison of performance of the different methods in identifying the
poles, with measurement noise and a perturbation on A.

Root mean square error
Pole (if no noise) standard MOESP circulant MOESP

−0.02486 0.05287 0.02033
0.13497± 0.17077j 0.06198 0.02002
0.27881± 0.21487j 0.07897 0.02169
0.38761± 0.26329j 0.02744 0.00926
0.60841± 0.20941j 0.00771 0.00426
0.65795± 0.04966j 0.02874 0.00922

0.68937 0.05199 0.01857

Figure 6.5: Finite element model of a vibrating plate. The plate is clamped at the
corners, the arrows indicate the location of the input forces. The mea-
sured output is the displacement of the application points of the forces.
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An experiment was executed with frequency sweeps as inputs. The inputs were
made of 512 samples each, and a time step of 0.02 s was used. Algorithm 6.1 has
been used to identify a 40th order model for the plate, in a noiseless case as well
as with white measurement noise (with a signal to noise ratio of about 30 dB).
The Bode plot of the transfer function from one actuator to its co-located sensor
is shown in Figure 6.6. In the picture we can see that the peaks of the transfer
function match the eigenfrequencies of the system as they can be computed by the
software, and that the presence of noise does not change the result significantly. It
is interesting to compare this to the results that are obtained with standard MOESP
in both cases, which are shown in Figure 6.7. We can see that the noiseless case
yields almost the same result, while the noise effects a much bigger distortion of
the transfer function when regular MOESP is used.

6.3 Identification of decomposable systems in general

If the pattern matrix is somehow known a priori, the problem of identifying de-
composable systems in general seems quite similar to the problem of identifying
circulant systems. But this is not exactly true: in this section we are going to use
the same ideas as before to develop algorithms for decomposable system iden-
tification, which will be significantly more complicated than the ones shown for
circulant systems.

6.3.1 Differences with respect to circulant system identification

As for the circulant system identification, the basic idea is the following: once it
has been assumed that the input/output data comes from a decomposable system
whose structure we know, we can perform the identification on the transformed
data û and ŷ:

û = (S ⊗ Im)−1u
ŷ = (S ⊗ Ir)

−1y
(6.43)

similarly to what is done in (6.20). The only knowledge that is required is the
matrix S that diagonalizes P , with which ŷ and û can be computed. As we can
then apply the identification to the system in the decomposed form, we know that
instead of identifying the whole system with the full input û and the full output
ŷ we can identify each modal subsystem independently; each one of these sub-
systems is related to only a part of the signal, i.e. the ith subsystem has only ûi as
input and ŷi as output. This procedure has again reduced the problem of iden-
tifying an model of order Nl with Nm inputs and Nr outputs into the problem
of identifying N systems of order l with m inputs ad r outputs. Notice that in
this way the computational complexity of the subspace identification algorithm
is reduced. Up to here, this is a very general idea and basically any identifica-
tion method for MIMO systems can be used; later on we will again focus on the
application of MOESP.
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Figure 6.6: Bode plot of the transfer from one actuator to its co-located sensor,
for the model identified with circulant MOESP. The dash-dotted lines
indicate the frequencies of the first five eigenmodes as they were com-
puted by the finite element software.
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Figure 6.7: Bode plot of the transfer from one actuator to its co-located sensor, for
the model identified with regular MOESP.



114 Chapter 6: Identification of decomposable systems

However, the procedure as described so far is not enough if we want to have
a decomposable realization of the state-space system as the final result. In fact,
applying any identification method to the modal subsystem will yield N sets of
state-space matrices, which we call Ai, Bi, Ci and Di, which are completely inde-
pendent from each other. If we stack these matrices into block diagonal matrices
A, B, C and D, and then we transform them back with (2.35) (such that they de-
scribe the dynamics between the original input and outputs u and y instead of the
transformed û and ŷ), what we get is not a decomposable system. In fact, as stated
in Corollary 2.2, only if these matrices Ai, Bi, Ci and Di are “bold” (parameter-
ized according to (2.34)), i.e. in the set BP,•,•, then the untransformed version will
be in GP,•,•. For example, this means that for the “A” matrix we will need:

A1 = Aa + λ1Ab

A2 = Aa + λ2Ab

. . .
AN = Aa + λNAb

(6.44)

but in general these Aa and Ab do not exist, even if we know that there exist a
realization of the system that is decomposable; in fact if we use subspace identifi-
cation methods we know that the state-space matrices of the system are obtained
up to a similarity transformation; so we can see each of these Ai as the arbitrarily
transformed version of an ideal, underlying matrix that satisfies the constraint.
So there is the need of finding a way to “force” the identified matrices into the
constraint. In the case of circulant systems, this problem does not exist, as any
block diagonal matrix can be transformed into a circulant matrix by the inverse
transformation. Figures 6.8 and 6.9 graphically explain the differences between
circulant and decomposable systems.

6.3.2 The novel algorithm

What we can try to do is to find a procedure that approximates the system A, B,
C and D with a system of “bold” matrices A, B, C and D. As it was done for the
design of controllers in [59], we can try to use Linear Matrix Inequalities (LMIs)
where constraints can easily be introduced.

A possible way of approximating a system with state-space matrices (A, B, C,

D) with another state-space realization Ã, B̃, C̃, D̃ (which might have some con-
straints) is to compute the difference between the systems and minimize the H∞

norm of this difference. The difference has the following realization:

Â =

[
A 0

0 Ã

]

, B̂ =

[
B

B̃

]

,

Ĉ =
[

C −C̃
]
, D̂ =

[

D − D̃
]
.

(6.45)

Computing the H∞ norm of this difference with the methods shown in [18] leads
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Figure 6.8: The decomposition transformation turns every circulant matrix into a
block diagonal matrix, and viceversa; to every matrix in CN,p,q corre-
sponds one and only one matrix in DN,p,q.

Figure 6.9: The decomposition transformation turns every matrix of a decom-
posable system into a block diagonal matrix, but the converse is not
true; to every matrix in GN,p,q corresponds one and only one matrix in
BP,p,q, but BP,p,q is a subset of DN,p,q.

to the following LMI:











P11 P12 AG11 AG12 B 0

∗ P22 ÃGT
12 ÃG22 B̃ 0

∗ ∗ G11 + GT
11 − P11 G12 + GT

12 − P12 0 GT
11C

T − G12C̃
T

∗ ∗ ∗ G22 + GT
22 − P22 0 GT

12C
T − GT

22C̃
T

∗ ∗ ∗ ∗ I DT − D̃T

∗ ∗ ∗ ∗ ∗ γ2I











≻ 0

(6.46)
The H∞ norm is the minimum value of γ for which (6.46) has a feasible solution,
where P11 = PT

11, P22 = PT
22, P12, G11, G22 and G12 are optimization variables.
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The details of this derivation are routine and not reported here for brevity.

If we want to use (6.46) for synthesis, i.e. for finding the Ã, B̃, C̃, D̃ which mini-
mize γ, then (6.46) is no longer an LMI due to the presence of products between

unknowns (e.g. ÃGT
12), but a Bilinear Matrix Inequality (BMI). So the optimiza-

tion problem cannot be solved directly by LMI solvers, but it can be solved with
an iterative procedure: one of the unknowns in the product is kept constant (e.g.

Ã), and then the problem is again an LMI that can be solved; the result for the
other unknown in the product (e.g. GT

12) can then be assumed as constant in order

to solve for the other one (Ã) again, and so on. Though this procedure does not
guarantee the global optimum, we will see from the examples that it proves to be
effective. A similar procedure is described in [35] for the purpose of model order

reduction of linear systems (notice that A, B, C, D and Ã, B̃, C̃, D̃ might represent
systems of different order), and also in this reference, the same iterative method is
proposed in order to solve the BMI.

At this point, all the elements needed to complete the identification algorithm
have been given; (6.46) can be used to cast the identified model into a decompos-
able system model: a set of N coupled BMIs is needed, namely:











P11,i P12,i AiG11,i AiG12,i Bi 0

∗ P22,i AiG
T
12,i AiG22,i Bi 0

∗ ∗ G11,i+GT
11,i−P11,i G12,i+GT

12,i−P12,i 0 GT
11,iC

T

i −G12,iC
T
i

∗ ∗ ∗ G22,i+GT
22,i−P22,i 0 GT

12,iC
T

i −GT
22,iC

T
i

∗ ∗ ∗ ∗ Im D
T

i −DT
i

∗ ∗ ∗ ∗ ∗ γ2Ir











≻ 0

for i = 1 . . .N
(6.47)

where A, B, C, D are replaced by Ai, Bi, Ci, Di and Ã, B̃, C̃, D̃ are replaced
by Ai, Bi, Ci, Di; remember that these last “bold variables” are constrained to
be function of only two matrices each (e.g., Ai = Aa + λiAb, etc.). We are ready
now to formulate the algorithm, which we provide in two different versions. As
an identification method we propose MOESP, which can deal only with white
measurement noise, but the algorithms can easily be extended to other methods
which assume different noise properties.

Problem Description 6.2 (Decomposable system identification)
A set of N input signals ui(k) ∈ Rm×1 and N output signals yi(k) ∈ Rr×1 is
given, for i = 1, . . . , N and k = 1, . . . , kmax. This set of data is associated with a
dynamical system; we assume that this system can be modelled as a decomposable
system (2.5) whose pattern matrix P we know. Moreover, N , m and r are known.
Goal: identify an lN th order decomposable system model from input/output data.
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Algorithm 6.2 (Subspace Identification of decomposable systems I)
Consider Problem 6.2. The problem is solved in the following steps:

1. Compute the matrix S that diagonalizes P .

2. Transform input and output signals, by computing:

û = (S ⊗ Im)−1u
ŷ = (S ⊗ Ir)

−1y
(6.51)

3. Verify that each signal û(k) is persistently exciting ([92]) of at least order
l.

4. Use MOESP to identify the independent state-space models of order l from
each ûi/ŷi pair:

{
x̂i(k + 1) = Aix̂i(k) + Biûi(k)

ŷi(k) = Cix̂i(k) + Diûi(k)
for i = 1, . . . , N (6.52)

5. Then use (6.47) to find the matrices of a decomposable system (Ai =
Aa + λiAb, Bi = Ba + λiBb, Ci = Ca + λiCb, Di = Da + λiDb)
that approximate the systems made of Ai, Bi, Ci, Di. Use the following
procedure:

(a) Choose initial values of Aa, Ab, Ca, Cb, (e.g., zero matrices);

(b) Assume Aa, Ab, Ca and Cb as constant using the values previously
found, and solve (6.47) with Ba, Bb, Da, Db, P11,i = PT

11,i, P22,i =

PT
22,i, P12,i, G11,i, G22,i and G12,i as decision variables, minimizing

γ;

(c) Assume G11,i, G22,i and G12,i as constant using the values previ-
ously found, and solve (6.47) with Aa, Ab, Ca, Cb, Ba, Bb, Da, Db,
P11,i = PT

11,i, P22,i = PT
22,i and P12,i as decision variables, mini-

mizing γ;

(d) If γ is smaller than a desired value or after a predetermined number
of iterations, end the loop, otherwise go to b).

6. The identified global system matrices are then given by:

A = IN ⊗ Aa + P ⊗ Ab

B = IN ⊗ Ba + P ⊗ Bb

C = IN ⊗ Ca + P ⊗ Cb

D = IN ⊗ Da + P ⊗ Db

(6.53)

Notice again that we have assumed that the model order l is chosen a priori, even
if MOESP can give hints on the model order.
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Another more computationally complex identification procedure is possible. Sub-
space identification methods like MOESP can be considered as a procedure in two
steps, where the first step is basically the identification of a model of high order
(the parameter that usually is called s in the literature) and the second step (which
involves the truncation of the singular value decomposition of the extended ob-
servability matrix) can be interpreted as a model order reduction (see [92] for de-
tails). As (6.47) can be used also as a model order reduction tool (similarly to what
done in [35]), we can think of performing this model order reduction part using
the iterative procedure instead of using the truncation. This would allow us to
both reduce the model order and cast the model into a decomposable system at
the same time, instead of doing one first and then the other (as in Algorithm 6.2).
This leads us the following Algorithm:

Algorithm 6.3 (Identification of decomposable systems II)
Consider again Problem 6.2. The problem is solved in the following steps:

1. 2. 3. Same as in Algorithm 6.2.

4. Use MOESP to identify a model (Ai, Bi, Ci, Di) of order a > l from each
ûi/ŷi pair. A choice for a can be a ≃ 2l; s can be a + 1.

5. Use (6.47) to find the matrices of a decomposable system (Ai = Aa+λiAb,
Bi = Ba + λiBb, Ci = Ca + λiCb, Di = Da + λiDb) that approximate
the systems made of Ai, Bi, Ci, Di. Use the same procedure as in 5. in
Algorithm 6.2.

6. Same as in Algorithm 6.2.

Notice that this last algorithm has a higher computational cost due to the presence
of bigger matrices in the LMI (e.g. Ai ∈ Rs×s instead of ∈ Rl×l). Also notice that,
for both algorithms, if P is not symmetric, then there may be complex eigenval-
ues that will appear in the LMIs; also ûi and ŷi might be complex. In any case
this does not affect the computations (the same as for the circulant case), as LMIs
can be solved also for the complex case, and subspace identification methods are
“numerical recipes” involving algebraic operations (matrix sum, matrix product,
singular value decomposition or QR factorization) that can be extended to com-
plex numbers.

6.3.3 Numerical results

In this section we present the results of the application of the identification al-
gorithms to an academic example. We randomly generated four different stable
systems of order 24, made of the interconnection of 8 identical SISO subsystems
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of order 3, with:

P =















0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0















(6.54)

According to the notation, we have l = 3, N = 8, r = 1 and m = 1; the pattern
matrix is symmetric so we will have only real numbers in our computations.

We simulate the system putting random signals to the 8 input channels, and subse-
quently white measurement noise is added to the outputs. We use data batches of
300 samples to perform the identification. We compare the results of the identifica-
tion using standard MOESP for MIMO systems, Algorithm 6.2 and Algorithm 6.3;
the index that we use for comparing is the Variance Accounted For, or VAF [92],
defined as:

VAF = 100% · max

(

0, 1 −
1
N

∑N
k=1 ||y(k) − ye(k)||22
1
N

∑N
k=1 ||y(k)||22

)

(6.55)

where N is the number of samples in the batch and ye is the output that can be
estimated simulating the identified system; the higher the value, the better the
model approximates the original input/output data. The parameter a is chosen as
6 (twice the order of the modal subsystems) for Algorithm 6.3, and the maximum
number of iterations for solving the BMIs is set to 60. The results of the tests are
shown in Figure 6.10 and Figure 6.11; the former shows the VAF with respect to
the identification data set, while the latter shows the VAF for a validation set.

From the plots it appears that Algorithm 6.3 always provides a better VAF with re-
spect to the unstructured approach. This confirms that using the prior knowledge
might, in most cases, improve the quality of the estimate. Algorithm 6.2 some-
times fails to find a good estimate, and this justifies the choice that was made in
upgrading it into Algorithm 6.3, by clumping together the model order reduction
and the “structuring” part.

Figure 6.12 shows the sparsity of the state matrix of the models identified with the
novel algorithms, to be compared with the standard MOESP which would deliver
a full, unstructured matrix. The LMIs have been solved using the solver DSDP [8]
and Yalmip [52] as interface. Figure 6.13 shows the typical convergence behavior
for the two iterative algorithms.

6.4 Other special cases

As we have just seen, the solution that we have proposed for the general problem
of identifying a decomposable system involves the solution of a BMI. The solution
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Figure 6.10: Comparison of the VAF (the average of the 8 channels) obtained with
the different methods for 4 randomly generated systems, for various
levels of signal to noise ratio (SNR); each graph corresponds to a dif-
ferent system. The VAF has been computed on the same data set that
was used for system identification. It is possible to see that Algo-
rithm 6.3 almost always scores the best, with a few exceptions where
it is slightly outperformed by Algorithm 6.2. Algorithm 6.2 does not
always prove reliable.
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Figure 6.11: Comparison of the VAF for the identified models, using a noiseless
validation data set that is different from the set used for identifica-
tion. Algorithm 6.3 scores the best in all cases but one, where it is
outperformed by Algorithm 6.2.
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of a BMI cannot be guaranteed to be the global optimum, so this step makes the
general procedure somehow weak, while the circulant identification algorithm is
guaranteed to work all the times. Actually, there are other situations where this
BMI step is not needed.

Let us look again at (6.44), which was used to justify the necessity of the nonlinear
optimization step. Ideally, out of (6.44) we would like to get the Aa and Ab from
the Ai, for i = 1 . . .N . In general these Aa and Ab do not exist, simply because
(6.44) contains N (matrix) equations and the (matrix) unknowns are only 2. This
might not be true if the Ai’s have a very special structure which would make
the N equations linearly dependent with each other, a thing that alas we cannot
guarantee as the Ai’s are the result of a subspace identification algorithm, and so
they are “corrupted” by random similarity transformations. It is easy to see that
for the circulant case instead, we would have as many unknowns as the number of
Ai’s, but this is not the only case: the same thing would happen, for example, for a
wide-sense decomposable system that has N pattern matrices; in fact, a circulant
system is a wide-sense decomposable system with the powers of ΠN as pattern
matrices, as shown in (2.51).

There might be also cases which can be solved without BMI where the unknowns
are fewer than N , if the equations (6.44) are not linearly independent. Consider
for example the class of symmetrically interconnected systems, introduced in Sec-
tion 2.6.2. We have seen that a symmetrically interconnected system is actually
equivalent to only two different systems. This means that we can put the signals
corresponding to the N − 1 identical subsystems together, and identify for it a
single set of state-space matrices, which we call A2...N , B2...N , etc. We have that
(6.44) becomes:

A1 = Aa + λ1Ab

A2...N = Aa + λ2...NAb (6.56)

In this case, the two unknowns in the two equations can always be found by solv-
ing the linear system (excluding the “pathological” cases of course).

6.5 Conclusions

In this chapter, we have proposed a number of procedures that allow the iden-
tification of structured models of decomposable systems, thus enabling their use
in distributed control design methods that are specifically targeted to this class
of systems. These procedures are based on a transformation of the input/output
signals and on an optimization procedure that solves an LMI recursively. This last
step is not necessary in certain cases, for example for circulant systems and for
symmetrically interconnected systems.

These procedures would allow a complete data-driven approach to the class of
large scale systems that is the subject of this thesis. It is though interesting to
point out that the examples of systems that we have given for the control part of
this work (Chapters 3, 4 and 5) and for the identification part are quite different.
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In fact, the control part is mainly focused on examples of multi-vehicle systems,
for which the distributed identification procedure would not make much sense as
we can easily identify each vehicle as a single unit. So, even if theoretically the
identification and the control part would seem to fit together perfectly with each
other, it might be true that for each specific application, only a part of the methods
would apply.



7 CHAPTER

Conclusions

With this thesis work we have extended the wealth of results in
the field of distributed control and identification. We provided

a set of controller synthesis methods applicable to the class of “decom-
posable systems”, and a complementary result concerning their identifi-
cation. These method can be readily applicable, as shown in the examples
contained in this thesis, but they can be also considered as a starting point
for more research. A few hints on future directions are given here.

7.1 Summary and considerations

We focused on a class of distributed/large scale systems, which we called “decom-
posable systems”, that can mirror a wide set of relevant systems in terms of appli-
cation. Decomposable systems portray systems made of identical subunits with
an arbitrary interconnection pattern, so they are specifically suitable to describe
vehicle formations or (micro)mechanical systems made of identical subparts. The
reason for focusing on this class of system is that they have a remarkable decom-
position property, that allows reducing any problem of analysis or synthesis re-
garding them to a problem concerning a parameter-varying system of the order of
a subunit. From this consideration, it is possible to develop a variety of methods.

The main contribution of this thesis is in the controller synthesis methods, which
we proved to be readily applicable to cases of interest in state-of-the-art techno-
logical applications, as satellite formation flying or control of deformable mirrors
for adaptive optics. Moreover, these methods are based on LMIs and they can eas-
ily be combined with other robust control results to obtain extensions, as we have
shown for the formation flying example, where a specific LTP extension was de-
veloped in order to cope with periodic non-circular orbits. As an additional result,
we have exploited the same ideas that are at the base of the controller synthesis
methods in order to develop system identification methods for the same class of
systems, which are useful in case a first principle model of the plant is lacking.

125
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7.2 Further research directions of this work

The research in this thesis, as any research, is of course not the end of the story.
The field of distributed control can be thought of as still in its first developments,
and more theoretical advances are needed and expected in the coming years. For
what concerns the specific topic of this work, we can highlight a few directions
that could be followed to continue with this research.

• Switching topologies
All the work done so far has only considered topologies (pattern matrices)
that do not switch. If the topologies switch “slowly”, no problem is intro-
duced: if all the configurations are stable and if enough time is given, the
system will eventually show asymptotic stability. If the switching is arbi-
trarily fast, then these considerations do not hold anymore. The fact that
Theorem 3.1, Theorem 3.2, etc. are based on a common Lyapunov function
might lead us to think that it should be possible to prove at least the stability
for any switching sequences. But there might be some further complica-
tions, as the equivalence between decomposable system and LPV system
might not reach this level. In fact, in a LPV system only the dynamic law
changes; but for a decomposable system, a change in topology means also a
change in the decomposing transformation, which implies a change in how
the state itself is defined. Even if we guarantee that the system is robust
with respect to time varying λi with a common Lyapunov function, this is
not enough to prove stability, because the state itself changes when switch-
ing. These considerations show how the analysis of switching topologies
can be a challenging task.

• Heterogenous systems
The work done considers systems made of the interconnection of identical
subsystems. An obvious question that we might ask is whether it is possible
to extend the methods to heterogeneous systems, or at least, heterogeneous
up to a certain extent. For example, it might be possible to include only
a limited set of different subsystems, or the methods might be adapted to
situations where the subsystems are “not too different” from one another.
The solution might be in dividing the control problem in two parts, first de-
signing a level of controller that casts the problem into the form that we can
handle. In any case, we should expect that the complexity of the computa-
tions will grow at least with the number of different subsystem classes that
are involved.

• Non-diagonalizable pattern matrices
The decomposition theorem can be proved only if the pattern matrix is diag-
onalizable. But will the controller design methods work as well if the matrix
is not diagonalizable? After all, a non-diagonalizable matrix is only ”an ε“
different from a diagonalizable matrix. Non-diagonalizable patterns could
be proved to work as a limit case of the diagonalizable ones.
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• Identification of decomposable systems
The general method for identification of decomposable systems has an ap-
proach based on BMIs. BMIs are non-convex problems, so the solution is not
guaranteed to be the global optimal. It is matter of future research whether
it is possible to solve such identification problem with convex optimization
techniques instead.

And these of course are only examples of what can be further investigated.

7.3 The future of distributed control

We started this thesis with a description of the future plans for the Extremely
Large Telescope, which can be seen as a motivation for the research in the field
of large scale systems. Later on, formation flying was shown as another main
motivating example. In the year 2000, the Panel of Future Directions in Con-
trol, Dynamics and Systems was formed to provide a renewed vision of future
challenges and opportunities in the control field, along with recommendations to
government agencies, universities, and research organizations to ensure contin-
ued progress in areas of importance to the industries. In the report [66] which was
published in 2003, the Panel pointed out five critical fields whose development
would be of the highest importance in the coming years. Among these fields,
distributed control is cited as one of them:

Control distributed across multiple computational units, intercon-
nected through packet-based communications, will require new for-
malisms for ensuring stability, performance, and robustness. This is
especially true in applications where one cannot ignore computational
and communication constraints in performing control operations.

This thesis work has looked only at a part of the problem, mainly ensuring sta-
bility and performance under the computational and communication constraints.
From an analysis of the literature, as seen in the introduction of this work, LMI
methods seem to be the natural choice to accommodate for constraints and struc-
tured variables for linear systems. Alas, the development in LMI techniques has
not been followed by a parallel development of LMI solvers, which makes the
practical applicability of the methods more problematic.

Large scale systems are a reality today, not only equations: in the same report,
the Internet is cited as the ”largest feedback control system ever built“. All these
considerations show how important the research in the field of large scale sys-
tems is, which can be seen as really technologically driven. The technology, for
example, is moving towards extreme levels of miniaturization, which will soon
make it possible to have millions of nano-machines working together to achieve
a collective task. The control theory will have to keep pace with the technology,
developing the right tools for managing these new kinds of systems. The fast pace
of technology might also force the adoption a more practical approach. As said
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in the introduction, reaching optimality for distributed control is already being
considered as too hard a task; the systems stemming from the new technologies
might be too complex even for using the suboptimality results we already have,
which would force the use of heuristic kinds of approaches.
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⊗ Kronecker product

∞ infinity

7→ maps to

〈· , ·〉 inner product

→ going to

|| · ||H∞
H∞ norm

|| · ||H2
H2 norm

m̄ complex conjugate of a scalar (or matrix) m

Mi “bold” matrix, parameterized as Mi = Ma + λiMb

Ma constant part of the “bold” matrix Mi

Mb matrix coefficient of the linear part of the “bold” matrix Mi

MH Hermitian (complex conjugate transpose) of the matrix M

MT transpose of the matrix M

M ≻ 0 the Hermitian (symmetric) matrix M is strictly positive definite

M ≺ 0 the Hermitian (symmetric) matrix M is strictly negative definite

• bullet, replaces a symbol that can be inferred from the contest

∗ star, replaces parts of Hermitian (symmetric) matrices to avoid

repetitions

C field of complex numbers

e Napier’s Constant

i index of the modal subsystems of a decomposable system

i index of the eigenvalues λi for which λi = λ

i index of the eigenvalues λi for which λi = λ

In identity matrix of order n

k discrete time index
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l local order of an element of a decomposable system

L (normalized) Laplacian matrix

m number of local inputs of an element of a decomposable system

mu number of local control inputs of an element of a decomposable

system

mw number of local disturbance inputs of an element of a

decomposable system

N number of elements of a decomposable system (or size of the

pattern matrix)

P pattern matrix

R field of real numbers

r number of local outputs of an element of a decomposable system

ry number of local measured outputs of an element of a
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S matrix diagonalizing the pattern matrix

t continuous time measure

trace(M) trace of the matrix M

Z ring of integer numbers

δ uncertainty in a system (scalar)

∆ uncertainty in a system (matrix)

κ condition number of a matrix

λi eigenvalues of the pattern matrix

λ maximum eigenvalue of the pattern matrix (with only real
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λ minimum eigenvalue of the pattern matrix (with only real
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λav average of the eigenvalues of a pattern matrix
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LPV Linear Parameter Varying
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SISO Single-Input Single-Output

SVD Singular Value Decomposition

VAF Variance Accounted For
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Summary

Decomposition Methods for Distributed Control and Identification

Paolo Massioni

The recent progress in technology, as in miniaturization and microtechnolo-
gies, is now forcing control engineers to confront themselves with systems of

incredibly high dimensionality, with an ever growing number of input and output
channels. For such systems, which we call “large scale systems”, it is necessary to
take a new approach in order to solve control problems in a reasonable time, as
well as for being able to design controllers which can be realized in a physically
implementable way.

This thesis concerns a class of linear time-invariant large scale systems which we
call “decomposable systems”. Decomposable systems describe systems made of
a set of identical subsystems (or agents) that are interacting with each other, and
they can be considered as an example of homogeneous systems with arbitrary
interconnections. This means that each subsystem interacts only with a limited set
of the others, and the interconnection pattern does not have to stick to a special
structure or lattice. This class of systems describes very well a number of physical
systems of interest, such as formations of vehicles or mechanical elements made of
identical subparts. Decomposable systems are interesting under the point of view
of the theory as they prove to be amenable to a kind of modal decomposition that
depends only on the interconnection pattern and not on the specific system; this
property, or “decomposition theorem”, is at the basis of all the results shown in
this thesis.

The first part of this work concerns the problem of synthesizing distributed con-
trollers for decomposable systems. By “distributed”, we mean that the controller
can be implemented as a set of simple, local controllers interacting with each
other, each of them commanding a limited set of neighboring subsystems. This
approach is demanded when the number of subsystems is very high: in this case
it is not feasible to implement a centralized controller that reads all the outputs
and decides all the control inputs. The decomposition property is exploited to
convert the problem of controller synthesis for the global decomposable system
into the problem of synthesizing controllers for the “modal” systems making up
its decomposed version; such modal subsystems have the same order as a single
agent. Then, by using techniques from robust control as well as a few results from
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graph theory, it is possible to cast the distributed controller synthesis problem as
an optimization problem under Linear Matrix Inequality constraints. This leads to
methods allowing performance-based synthesis of controllers in a variety of cases
(e.g. H2 or H∞ performance, continuous or discrete time, state or output feed-
back). The methods only offer suboptimality results, which can be considered as
the price to be paid in exchange for the distributed structure of the controller.

The distributed controller methods are then used in simulation for two exam-
ples of relevant technological application. The first application is the distributed
H2 control of a deformable mirror for adaptive optics; as future Earth-based tele-
scopes will feature deformable mirrors with actuators and sensors in the order of
the thousands, the independence of the computational complexity from the sys-
tem size makes the methods of this thesis very attractive. The second application
considered is satellite formation flying, for which an extension of the H∞ methods
to the time-varying case is proposed. The controller is evaluated on two examples
of space missions involving non-Keplerian orbits.

The last part of the thesis concerns a problem that is complementary to the one
of control; namely, it investigates the possibility of identifying models of decom-
posable systems from data. This possibility is useful in case such models are not
available from first principles. It is shown that the decomposition property can be
used in this case as well. The problem is first treated for a special case, namely for
the class of circulant systems, and then examined in the general case. An approach
based on subspace identification is proposed.



Samenvatting

Ontbindingsmethoden voor Gedistribueerde Regeling en Identificatie

Paolo Massioni

D
e recente vooruitgang in de technologie, zoals miniaturisatie en microtech-
nologieën, dwingt nu de regeltechnici tot het aangaan van de confrontatie

met systemen van ongelooflijk hoge dimensionaliteit en met een steeds groter
wordend aantal van input- en outputkanalen. Voor dergelijke systemen, die we
“grootschalige systemen” noemen, is het noodzakelijk om een nieuwe aanpak te
ontwikkelen waarmee niet alleen binnen een redelijke tijd opgelost kunnen wor-
den, maar waarmee ook de regelaars kunnen worden gerealiseerd op een fysiek
uitvoerbare manier.

Dit proefschrift heeft betrekking op een klasse van lineaire tijdsinvariante groot-
schalige systemen die wij “ontbindbare systemen” noemen. Ontbindbare syste-
men zijn systemen die bestaan uit een verzameling van identieke subsystemen, of
agenten, die elkaar beı̈nvloeden. Ze kunnen worden beschouwd als een voorbeeld
van homogene systemen met willekeurige interconnecties. Dit betekent dat elk
subsysteem slechts communiceert met een beperkte groep van andere subsyste-
men. Het verbindingspatroon hoeft zich hierbij niet te houden aan een bijzondere
structuur of raster. Deze klasse van systemen beschrijft een aantal belangrijke fy-
sische systemen heel goed, zoals samenstellingen van voertuigen of mechanische
onderdelen gemaakt van identieke subdelen. Ontbindbare systemen zijn theore-
tisch interessant, aangezien zij geschikt zijn voor een soort van modale ontbin-
ding die uitsluitend afhangt van het onderlinge verbindingspatroon en niet van
het specifieke systeem. Deze eigenschap, of “ontbinding theorema”, ligt aan de
basis van alle resultaten beschreven in dit proefschrift.

Het eerste deel van dit werk heeft betrekking op het probleem van de synthese
van gedistribueerde regelaars voor ontbindbare systemen. Met “gedistribueerd”
bedoelen we dat de regelaar kan worden gëimplementeerd als een verzameling
van eenvoudige, lokale regelaars in interactie met elkaar. Elke lokale regelaars
beı̈nvloedt een beperkt aantal aangrenzende subsystemen. Deze aanpak is ver-
eist wanneer het aantal subsystemen zeer hoog is: in dit geval is het niet haalbaar
om een centrale regelaar te implementeren die alle uitgangen leest en alle acties
bepaalt. De ontbindingseigenschap wordt benut om het probleem van de rege-
laarssynthese voor het ontbindbare systeem als geheel te zetten in het probleem
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van de regelaarssynthese voor de “modale” systemen die gezamenlijk het geschei-
den systeem vormen. Dergelijke modale subsystemen hebben dezelfde orde als
een enkele agent. Dan, met behulp van technieken uit de robuuste regeltechniek,
evenals resultaten uit de grafentheorie, is het mogelijk om het gedistribueerde
regelaarssyntheseprobleem te formuleren als een optimalisatieprobleem met be-
perkingen in de vorm van lineaire matrix ongelijkheden. Dit leidt tot methoden
waarmee prestatiegebaseerde regelaarssynthese voor verschillende criteria moge-
lijk wordt (bijvoorbeeld H2 of H∞ prestaties, continue of discrete tijd, toestand-
of uitgangterugkoppeling). De methoden leveren alleen suboptimale resultaten,
wat kan worden beschouwd als de prijs die betaald moet worden in ruil voor de
gedistribueerde structuur van de regelaar.

De gedistribueerde regelmethoden worden vervolgens gebruikt in simulatiestu-
dies van twee relevante technologische toepassingen. De eerste toepassing is de
gedistribueerde H2 regeling van een vervormbare spiegel voor adaptieve opti-
ca. Als toekomstige op aarde gestationeerde telescopen vervormbare spiegels
met duizenden actuatoren en sensoren zullen hebben, maakt de onafhankelijk-
heid van de regelkundige complexiteit en de systeemgrootte de methoden van dit
proefschrift zeer aantrekkelijk. De tweede toepassing is satelliet formatie vliegen,
waarvoor een uitbreiding van de H∞ methoden voor de tijdsafhankelijke situatie
wordt voorgesteld. De regelaar wordt beoordeeld aan de hand van twee voor-
beelden van ruimtemissies in niet-Kepleriaanse banen.

Het laatste deel van dit proefschrift beschouwt een probleem dat complementair
is aan het regelprobleem, namelijk, de mogelijkheid van het identificeren van mo-
dellen van ontbindbare systemen uit meetgegevens. Deze mogelijkheid is han-
dig in het geval dergelijke modellen niet beschikbaar zijn vanuit eerste principes.
Aangetoond wordt dat de ontbindingseigenschap ook in dit geval gebruikt kan
worden. Het probleem wordt eerst behandeld voor een speciaal geval, namelijk
voor de klasse van circulante systemen, en vervolgens voor het algemene geval.
Een aanpak gebaseerd op subspace identificatie wordt voorgesteld.
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