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1
A PLACE FOR MECHANICAL

RESONATORS IN THE QUANTUM

WORLD

Igor Marinković

I will discuss why some of the properties of mechanical resonators can be attractive for
quantum information applications. Also I will show how experimental efforts described
in this thesis fit into the story.

1



1

2 1. A PLACE FOR MECHANICAL RESONATORS IN THE QUANTUM WORLD

1.1. WHY MECHANICAL RESONATORS?
Investigating optical fields at level of single photons and understanding the differences
between the predictions of a quantum and a classical field theory[1–3] played pivotal
role in development of quantum optics and quantum information. In recent years ex-
periments that follow this trail, but involving phonons instead of photons, were per-
formed. I hope to motivate why it makes sense to pursue this task of quantum control of
micromechanical resonators like it has been done for optical fields.

Demonstrating quantum effects with mechanical resonators is not a straightforward
task, primarily because of their linearity and somewhat low frequency. These properties
are the main reason that quantum experiments with mechanical resonators are a young
research field. Because of the linearity, most quantum experiments involving microme-
chanical resonators use another quantum system to make them behave non-classically.
All this suggests we can expect that mechanical resonators will be useful for quantum
technology only when integrated along with another quantum system. Despite of this
somewhat sidekick role, this chapter aims to show that there is potential for mechanical
resonators to make an impact on the development of quantum technologies.

The same way current computation and communication uses several technologies, it
is reasonable to expect that the same is what might happen with their quantum counter-
parts. Mechanical resonators might be well suited for the task of connecting quantum
technologies because of their ability to couple to electromagnetic modes in wide fre-
quency spectrum, but also to various other quantum systems (superconducting qubits[4],
ultracold atoms[5], NV centers[6]...). Quantum proccesors that operate with microwave
frequencies (like superconducting qubits) are usualy contained in dilution fridge with-
out the ability to communicate with other distant quantum processors. Faithful con-
version of quantum information between optical and microwave modes means that one
could exchange information among these processors over long distances. This type of
device that can transmit quantum information between various quantum hardware is
called a quantum transducer. Most mechanical devices so far have been designed to in-
teract only with one quantum system. This is slowly changing and designing mechanical
resonator with good coupling to both optical and microwave resonators has become a
hot research topic in recent years [7–9]. Besides the ability to exchange quantum infor-
mation with various systems, mechanical resonators could be used to store quantum
information as well[10, 11], as their lifetimes extend into time scale of seconds[12]

Besides this application driven side of research, fundamental interest in non-classical
states of massive objects exsits, as the question of boundary between quantum and clas-
sical physics is still open. Because of their large particle number and large mass, mi-
cromechanical resonators with experimentally accessible non-classical states are well
suited hardware to test modifications to quantum mechanics[13–15].

1.2. WHY OPTOMECHANICS?
This thesis will concentrated on interfacing mechanical with optical1 resonators, which
is the main focus of the field of cavity optomechanics[16]. The interaction is intrinsi-

1More precisely we work with infrared (about 1550nm) resonators, but in this thesis I will often refer to it as
optical
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Figure 1.1: Mechanical resonators can coherently interact with many quantum systems that are seen as hard-
ware candidates for quantum computing and communication.

cally nonlinear and one can expect rich quantum dynamics[17]. Still, the nonlinearity
in the systems created so far was small enough that interaction takes a linear character.
Despite this, optomechanics at optical and infra-red frequencies has already produced
several milestone experiments like cooling mechanical resonator to the ground state and
squeezed light generation[18, 19].

As mentioned in the previous section mechanical resonators couple to various phys-
ical systems (Fig. 1.1), giving them high potential for wide application as detectors as
well. On the other hand light interferometers are known as a good way of detecting small
variations in position. Detecting the motion of mirrors using light has been a driving
force for optomechanics[16, 20]. In our research, we wish to exploit another quality of
optomechanical system, and that is a good combination of a system that can transmit
and a system that can store information. This type of interface is exactly what is needed
for achieving long-distance quantum networks via quantum repeaters[21]. Additionally,
optomechanics is an interesting approach for quantum communication because of the
ability to design optomechanical devices of a wide range of wavelength, including wave-
lengths used in standard telecommunication that have low propagation losses. Usually,
one can place many optomechanical devices on a single chip and design them such that
they have different frequency and that way achieve multiplexing.

1.3. WHY THIS THESIS?
Previous optomechanics experiments with micromechanical resonator mostly operated
in a regime where the state of the mechanical resonator was dominated by thermal
noise. A higher level of control is needed in order to be able to use mechanical resonator
for quantum applications. Previous research with similar optomechanical devices[22]
showed that this might not be possible due to the heating of structure from laser light.

This thesis experimentally demonstrates the control of a quantum state of microme-
chanical resonators with laser pulses, with a goal of laying the groundwork for applica-
tions of mechanical resonators in quantum technologies.
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Quantum experiment demonstrating entanglement between bulk phonons in dia-
mond has been already conducted[23]. By performing similar experiments on an en-
gineered system we want to bring mechanical resonators closer to a useful technology.
With devices presented in this thesis there is much more freedom in choosing mechani-
cal and optical frequencies and lifetimes, as well as the coupling between two resonators.
In this thesis I will focus on two experiments published in [24, 25]. Additionaly our
team has performed an experiment demonstrating the entanglement of two mechani-
cal modes in [26].
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2
BASICS OF OPTOMECHANICS

Igor Marinković

This chapter introduces a basic theory of sideband resolved optomechanics and correla-
tion functions of optical and mechanical modes.
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M1M2

xm
Figure 2.1: Generic optomechanical system, where motion of one of the mirrors modulates the length of the
optical cavity.

2.1. INTRO TO OPTOMECHANICS
This thesis deals with one of the simplest yet very important concept in physics - the
Harmonic oscillator. We will investigate two coupled harmonic oscillators. One them
will be mechanical in nature and simple to imagine-a mass on a spring. The other one
is somewhat more complex and electromagnetic in nature. It will be an optical cavity.
To make things a bit more advanced we will look into experiments where the quantum
description of nature has to be evoked in order to explain results produced by coupling
of these two oscillators.

In this section I will outline the basics of the theory of optomechanics that can be
found in more detail in references [1–3]. We mostly follow [1]. Then I will briefly present
measures that are commonly used in quantum optics to demonstrate non-clasical be-
haviour of harmonic oscillator (for further reading please look at any textbook on quan-
tum optics e.g. [4]).

2.1.1. OPTOMECHANICAL HAMILTONIAN
Let’s consider the following experimental situation given in Fig. 2.1. An optical cavity
(frequency ωc /2π) is formed by two mirrors, where one of them (M2) is connected with
a spring to a fixed wall (Fig. 2.1) and acts as a harmonic oscillator of mass m and resonant
frequency ωm/2π. Hamiltonian of uncoupled systems is:

Ĥ =ħωm b̂†b̂ +ħωc ĉ†ĉ (2.1)

where b̂ and ĉ are annihilation operators for the mechanical and optical mode respec-
tively. Frequency of the optical resonance is determined by the length of the cavity and
therefore a change in position of M2 (xm) will modulate the resonant frequency of the
optical cavity. We can expand ωc (xm) in a Taylor series around zero:

ωc (xm) =ωc (0)+ ∂ωc (xm)

∂xm

∣∣∣
0

xm + ...
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If we consider only elements up to first order of the Taylor expansion, the Hamilto-
nian describing this interaction is given by:

Ĥ =ħωm b̂†b̂ +ħωc (0)ĉ†ĉ +ħg0(b̂† + b̂)ĉ†ĉ, (2.2)

where g0 = ∂ωc (xm )
∂xm

∣∣∣
0

xzp f is called the single photon coupling and can be interpreted

as the shift in optical frequency due to motion of the mirror by the zero point fluctuation:

xzp f =
√

ħ
2mωm

.

Where we have used the following link between position operator and creation and an-
nihilation operators:

x̂m = xzp f (b̂ + b̂†). (2.3)

2.1.2. LINEARIZED HAMILTONIAN
In experiments we will always drive (pump) the optical resonator with one input laser

field (frequency ωl /2π) at a time. Using the unitary transformation Û (t ) = e iωl t ĉ† ĉ . We
can move into a frame rotating with drive frequency:

Ĥr f =ħωm b̂†b̂ −ħ∆ĉ†ĉ +ħg0(b̂† + b̂)ĉ†ĉ, (2.4)

where ∆ =ωl −ωc (0) is the detuning of the drive laser with respect to the cavity. At this
point we have to take into account that optical cavity will always be coupled to external
modes. In all physical realizations interaction of optical cavity with external modes is
stronger than optomechanical coupling. In this case we can linearize the optical field
around mean value such that ĉ = α+ â, where α is chosen to be real. For devices with
small non-linearity (g0 smaller than the optical cavity decay rate κ and mechanical fre-
quency ωm) we will neglect terms that are not enhanced by α. Also we will neglect the
effect of constant shift to optical resonance. We obtain the final form of linearised Hamil-
tonian:

Ĥl =ħωm b̂†b̂ −ħ∆â†â +ħg0(αâ† +αâ)(b̂† + b̂). (2.5)

Though we now have a linear Hamiltonian, the interaction is now enhanced by the
amplitude of the mean intracavity field, meaning we can tune the coupling by the power
of our pump laser.

2.1.3. ACTION OF OPTOMECHANICAL HAMILTONIAN
Looking at equation 2.5, we see that the initial nonlinear Hamiltonian is now replaced
with linear interaction between two resonators with frequencies ωm and ∆. In order to
make interaction resonant, absolute detuning of drive laser should be equal to the me-
chanical frequency. At this point pump light only determines the coupling strength and
effective frequency of the optical resonator, but what happens to pump photons is not
much of our concerns. Here photons of laser pump beam are removed from quantum
picture and we assume that optomechanical interaction has a negligible effect on the
state of the strong pump beam. If we operate in the sideband resolved regime (ωm À κ)
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Hb
+

+

mechanical resonator state

drive photons

Figure 2.2: Blue are photons coming from laser. Green are on resonance inside cavity. We start with both
mechanical and optical resonator in ground state (no phonons, no green photons). Whenever a green photon
is created, mechanical resonator will go up by 1 excitation on level diagram. When laser pulse containing
photons interacts with mechanical resonator superposition of different number of particle pairs is created.
Probabilities associated with excitations can be controlled by number of blue photons.

we can selectively drive the transitions that increase or decrease number of excitations
in mechanical resonator (Fig. 2.4). If the pump laser is blue detuned (∆ = ωm) optical
resonator has effective negative frequency and we keep only energy preserving terms, so
Hamiltonian can be approximated using rotating wave approximation[5]

Ĥb =ħg0α(â†b̂† + âb̂). (2.6)

This is known in quantum optics as two mode squeezing Hamiltonian (Fig. 2.2). We
consider special case when both mechanical and optical resonators are in ground state.
In the ideal case of no losses, mechanical (m) and resonant optical mode (o) after weak
blue detuned laser pulse:

|ψ〉b → (|0〉o|0〉m +εb |1〉o|1〉m +O(ε2
b)), (2.7)

where ε2
b ¿ 1 is excitation probability that can be tuned by number of blue detuned

photons (see next section for explicit expression). We can see that as a result of blue pulse
we have created entanglement between optical and mechanical mode. In simple words
we create phonons and photons as pairs and the final state is a superposition of having 0
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or 1 or 2... pairs of particles. As this interaction entangles optical and mechanical modes,
it will be starting point for all our protocols.

On the other hand, if the pump laser is red detuned from the optical cavity resonance
we obtain so called beam splitter Hamiltonian:

Ĥr =ħg0α(â†b̂ + âb̂†). (2.8)

We can describe this interaction as transfer of quantum state from one mode to an-
other. As the name suggests this is equivalent to optical beam splitter, with the exception
that one of the input and one of the output modes are mechanical rather than optical
(Fig. 2.3). As already mentioned the coupling between the optical and mechanical mode
is determined by pump light, we can use amount of pump light to tune the reflectivity of
the splitter. This part of Hamiltonian is crucial for wavelength conversion protocols.

In experiments in this thesis the beam splitter Hamiltonian will be used to transfer
the state of mechanical resonator onto the optical mode (Fig. 2.3). This means that we
can use sophisticated optical detection apparatus in order to measure the mechanical
degree of freedom. If we start with state |0〉o|ψ〉m of optical (o) and mechanical mode
(m), under beam splitter interaction this state will evolve towards |ψ〉o|0〉m in the limit
of complete state transfer. If only partial state transfer is achieved we have the case that
beam splitter is partially reflective. The expression for reflectivity (ε2

r ) is given in next
section. In case of εr < 1 and if the state of the mechanical resonator is not detected by
some other means we have to trace out the mechanics, leading us to a mixed state of the
optics.

The interaction of blue and red detuned light with the mechanical resonator can be
seen also the way presented in Fig. 2.4.

2.2. OPEN DYNAMICS

In actual optical cavities the field will always leak out of the cavity. We can still consider
the cavity to be a single mode, but coupled linearly to the continuum of optical modes in
the ground state1[4]. Additionally mechanical frequency is orders of magnitude smaller
than frequency difference from other nearest optical mode, so we don’t expect coupling
between optical modes due to mechanics. Optomechanical state after two mode squeez-
ing laser pulse acting on optomechanical system in ground state is derived in [7, 8] using
Langevin equations, with assumption of over-coupled cavity i.e. cavity losses are dom-
inated by coupling to external modes over which we have control (input coupling rate
equal to total loss rate: κe ≈ κ). Still we can use this result in our case with small modifi-
cations. When going from completely overcoupled to partially coupled cavity we have to
correct the intracavity pump power. We can still write the state of mechanics and scat-
tered field from cavity after pumped by blue detuned laser pulse as two mode squeezed
state having excitation probability as derived in [8] with correction for intracavity photon

1Approach valid for high Q resonators[6]
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resonator state
final mechanical 

resonator state

initial state of
resonant optical mode

initial mechanical 

final state of
resonant optical mode

Photon Detector

Phonon Detector

Hr

Figure 2.3: Red detuned pumping of optical resonator can be visualized as beam splitter where one of the
inputs (outputs) is optical and other is mechanical. In the limit of perfect reflectivity (optomechanical scat-
tering probability ε2

r → 1), after the red pump we will have mechanical resonator in ground state while optical
mode will contain state that was previously in mechanical resonator. If we then detect output optical mode,
it is effectively as if we measured initial mechanical mode with phonon detector. Since we do not poses such
a device, we always transfer state of mechanical mode onto optical mode and perform detection with single
photon detectors.

(a) (b)

ωm

ωc

Figure 2.4: Optomechanical scattering of light red (a) and blue (b) detuned from optical resonance (black
line). In order to become resonant with the cavity,red(blue) pump photons take (give away) energy from (to)
mechanical resonator. Inset: Energy levels of optomechanical system. If we operate in sideband resolved
regime we can selectively drive transitions that increase or decrease number of mechanical excitations. Process
in (a) is also called anti-Stokes scattering, while process in (b) is also referred to as Stokes scattering.

number:

ε2
b = exp

(
κe

κ

4g 2
0 Ep

ħωl (ω2
m + (κ/2)2)

)
−1

≈ κe

κ

4g 2
0 Ep

ħωl (ω2
m + (κ/2)2)

for ε2
b ¿ 1 (2.9)
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where Ep is energy of the pulse. Another correction is needed as the two mode squeezed
state contains optical radiation modes that we do not have access to. These modes have
to be traced out such that a mixed state is created. We can model this by acting onto
the state with beam splitter with transmission given by cavity collection efficiency and
tracing out modes that are inaccessible. So basically our detection efficiency is lower
by κe /κ. Full derivation of Equation 2.9 can be found in [3]. Leak of phonons from the
mechanical resonator can be treated in similar fashion to optical mode scattering losses.
Still, experiments in this thesis are performed on timescale much shorter than the life-
time of mechanical resonator, so mechanical losses can be neglected. Similarly to scat-
tering probability of two mode squeezing process, we can correct result obtained in [8]
scattering probability of red detuned pulse (beam splitter reflectivity):

ε2
r = 1−exp

(
− κe

κ

4g 2
0 Ep

ħωl (ω2
m + (κ/2)2)

)
.

Important additional assumption used for deriving these equations is that g0α ¿
κ [8], which set time limit for how fast we can transfer state between mechanics and
optics (Fig. 2.3). Also pulses should be much slower than 1/κ such that there are no
pulse distortions due to finite cavity linewidth.

2.3. QUANTUM EXPERIMENTS OF HARMONIC OSCILLATOR
Infra-red and optical photons are prime candidates for implementing quantum com-
munication protocol. There are several benchmark experiments that one can perform
on the road towards creating quantum technology that uses photons. Prominent mea-
sures that we will also use in this thesis to demonstrate quantum phenomena of me-
chanical resonators are Hanbury-Brown twiss interferometry, Cauchy Schwarz inequal-
ity2 and Bell inequality. As we saw in the previous chapter we can use optomechanical
beamsplitter Hamiltonian to transfer quantum state from the mechanical to optical res-
onator. That way we can utilize techniques used to demonstrate the nonclassicality of
optical oscillator to establish nonclassical behaviour of the mechanical oscillator.

2.3.1. SIDEBAND ASYMMETRY

One of the common requirements for showing quantum behaviour of mechanical res-
onators is removing thermal excitations. For high frequency (GHz) resonators in dillu-
tion refrigerator (≈20 mK) the average number of thermal excitations should be neg-
ligible. In order to confirm this we can perform sideband asymmetry[9] (Fig. 2.5(a)).
We send repeatedly weak (εb ¿ 1) blue detuned pulse to the mechanical resonator and
count how many on resonant photons are created in the interaction of the pulse with
the mechanics. We then perform the same mesurement also for red detuned pulses with
the same input pulse length and same average number of photons as blue pulses. We
wait inbetween each pulse such that mechanical resonator can rethermalize with the

2Measurement of Cauchy Schwarz inequality with optomechanical devices has already been demonstrated[9],
still I will describe it here as we will make use of it in Bell experiment.
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(a)

Beam splitter Detector 2

Detector 1(b)

a1
a2

Figure 2.5: (a) Mechanical resonator is in lowest possible energy state so photons can not gain any energy to
become resonant with cavity. This is not the case for blue detuned photons that instead need to give away
energy to become resonant. (b) Hanbury Brown Twiss interferometry is performed using beam splitter and
two single photon detectors.

environment. The number of thermal excitations can be determined as[9]

nth = Γr

Γb −Γr
(2.10)

where Γb and Γr are rates at which resonant photons are created when device is pumped
with blue and red detuned light respectively. Intuitively this asymmetry in scattering of
blue and red detuned light can be seen as following. If the mechanical resonator is in the
ground state it has no excitations to give to the light, so photons can not upconvert to be-
come resonant with the cavity. On the other hand the mechanical resonator can always
receive excitations from blue-detuned light and in that case photons can downconvert
to become resonant with the cavity Fig. 2.5(a).

The number of thermal excitations is an important number that characterizes our
experiment and that is easy to measure. As it will be shown in later chapters sideband
asymmetry can be used to estimate the results of quantum experiments. It is important
to make sure that the intra-cavity pulse powers for blue and red pulses are the same
and that the detection probability is the same for both. In the case of counting scattered
photons, one also needs to filter out photon of the pump pulses. Additionally we assume
that pump light at the cavity frequency is in a vacuum state, therefore any technical noise
at these frequencies can result in wrong measurement of temperature.

2.3.2. HANBURY BROWN AND TWISS INTERFEROMETRY

One can distinguish between certain types of quantum states of light by evaluating its
second order autocorrelation function at time delay τ, defined as:

g (2)
oo (τ) = 〈â†(0)â†(τ)â(τ)â(0)〉

〈â†(τ)â(τ)〉〈â†(0)â(0)〉 (2.11)

It can be shown[4] that commonly occurring coherent states and their incoherent mix-
tures satisfy following inequality g 2

oo(τ) ≥ 1. As this inequality is also predicted by semi-
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classical theories3 of photodetection, the states that do not follow this inequality we
call non-classical. An example of this state is the single excitation Fock state that has
g 2

oo(0) = 0. Generating single excitations in optical modes is of high importance for
quantum communication[11] and Hanbury Brown and Twiss interferometry became
standard way of determining the quality of single photon source.

This second order autocorrelation function can be measured by performing Hanbury
Brown and Twiss interferometry (Fig. 2.5b). The idea is to split the beam of light in two
and send it to two single photon detectors. By sending the sending the light through
the beam splitter and detecting two output modes (a1 and a2) on two detectors we can
measure:

g (2)
12 (0) = 〈â†

1â†
2â1â2〉

〈â†
1â1〉〈â†

2â2〉
, (2.12)

where the numerator is the expectation value of coincidences between two detectors
(chapter 12 in [12]), while the denominator is the product of the expectation values of
number of individual clicks of detectors. Since the other input port of the beam splitter
is in vacuum state we get g (2)

12 (0) = g (2)
oo (0).

If the optical mode is truly populated by a single photon, one should observe no
coincidence clicks between two detectors. On the other hand a semiclassical theory pre-
dicts that there will be equal light intensity at both detectors, therefore coincidences are
possible[10]. The same reasoning can be applied to mechanical waves and therefore we
also use Hanbury Brown and Twiss for checking the non-classical nature of mechanical
excitations. We can then define second order correlation function of mechanical mode
in terms of its annihilation operator as:

g (2)
mm(τ) = 〈b̂†(0)b̂†(τ)b̂(τ)b̂(0)〉

〈b̂†(τ)b̂(τ)〉〈b̂†(0)b̂(0)〉 ,

satisfying the same non-classicality condition as its optical counterpart.

2.3.3. CAUCHY SCHWARZ INEQUALITY
Now let’s consider an experiment involving two optical mode (âA and âB ) and each one
is divided and sent to a pair of detectors. We can define the cross correlation function for
these two modes as:

g (2)
AB (0) = 〈â†

A â†
B âB âA〉

〈â†
A âA〉〈â†

B âB 〉
(2.13)

Initialy this measurement was also used to disprove semiclassical theories of photode-
tection, as using the Cauchy-Schwarz inequality it can be proven that classical fields fol-
low the inequality[10]:

g (2)
AB <

√
g (2)

A A g (2)
BB

where g (2)
A A , g (2)

BB are the second order correlations for each of two modes (as described in
the previous section).

3Semiclassical theories treat the detector as a quantum object, while the light is treated like a classical field[10]
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y=0 or y=1x=0 or x=1

o=+1
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m=+1

m=-1rail A

rail B

inputsdetector 1

detector 2

detector 1
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Figure 2.6: Idealistic depiction of an optomechanical Bell test. Two entangled particles photon (green) and
phonon (orange) are each sent to distant measurement apparatus. States are encoded such that e.g. |A〉o
represents photon comming in through rail A and |B〉m represents phonon coming in through rail B. Phase in
A arms of both photon and phonon can be changed using phase shifters. These are the settings (x and y) used
for Bell measurement. The result of optical interference is measured on single photon detector and the result
of mechanical interference on single phonon detector (let’s assume we have such a device). At each setup
measurement results are asigned the following way: if detector 1 clicks we record result +1, likewise click of
detector 2 corresponds to result -1. Equivalent experiment in purely optical regime (4 optical modes) has been
demonstrated[16].

In the following chapters we will use it to evaluate the correlations between the op-
tical and mechanical mode after the action of the two mode squeezing Hamiltonian.
Definition of optical cross correlation can easily be changed to optomechanical:

g (2)
om(0) = 〈â†b̂†b̂â〉

〈â†â〉〈b̂†b̂〉 . (2.14)

For the ideal state given in Equation 2.7 we expect[13]:

g (2)
om = 1+1/ε2

b

But thermal excitations will degrade this value. We can use the value of nth to estimate
g (2)

om ≈ 1+nth
nth

[9].
Cross correlation was not only used as a measure to disprove semiclassical theories of

photodetection, but it is also important benchmark[14] as certain minimum values are
required in order to allow for the same setup to detect several more advanced quantum
measures like the Bell inequality g (2)

om > 5.8[15].

2.3.4. BELL INEQUALITY
I will give a very short introduction to hidden variable theories and Bell theorem. De-
tailed discussion can be found [17], and we partially follow it here, for historic perspec-
tive refer to [18]. In this thesis we will deal with only one type of Bell inequality called
CHSH (Clauser-Horne-Shimony-Holt) inequality, but I will often in this thesis refer to it
simply as the Bell inequality as well.

Let’s consider two particles (we will name them O and M) that are spatially separated
and we have two potential settings at which we can measure the particles x ∈ {0,1}; y ∈
{0,1}. Two potential outcomes for each particle measurement o = ±1;m = ±1. Quan-
tum mechanics predicts that the measurement on entangled states of two particles can
lead to (anti-) correlation of the measurement results. Local hidden variable theories
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try to explain the existence of the correlations by introducing hypothetical parameters
λ, called hidden variables. If such variables exist, joint probability of obtaining certain
results o and m for settings x and y (p(o,m|x, y)) can be factorized:

p(o,m|x, y,λ) =
∫
ρ(λ)p(o|x,λ)p(m|y,λ)dλ (2.15)

where ρ(λ) is a statistical distribution of the hidden variables. We now wish to evalu-
ate the following expression

S = 〈o0m0〉+〈o0m1〉+〈o1m0〉−〈o1m1〉, (2.16)

where 〈o0m0〉 is the expectation value of the measurement of the quantity o ·m when the
measurement settings are kept at x = 0, y = 0. Using Equation 2.15 we have: 〈ox my 〉 =∫

dλρ(λ)〈ox〉λ〈my 〉λ . Finally we get:

S =
∫

dλρ(λ)
[
〈o0〉λ

(
〈m0〉λ+〈m1〉λ

)
+〈o1〉λ

(
〈m0〉λ−〈m1〉λ

)]
. (2.17)

As the expression in the brackets can only yield ±2 we get a final CHSH expression:

−2 ≤ S ≤ 2.

The locality condition is captured in the form of ρ(λ),〈ox〉λ and 〈my 〉λ. If the re-
sult of measurement of particle O depended on measurement settings of particle M we
would write 〈ox〉λ,y , in which case we could not factorize S to get the form given in Equa-
tion 2.17.

Now let’s show that quantum mechanics can provide result different to this one us-
ing the experiment shown in Fig. 2.6. Particle O is now chosen to be a photon and it
is measured at apparatus O. The photon can arrive to apparatus through two optical
modes (rails). States are encoded such that |A〉o represents photon in rail A, and state
|B〉o labels photon being in other rail. Same labelling is used for apparatus M that re-
ceives particle M - a phonon. Let’s consider case when entangled state |A A〉om +|BB〉om

is measured. Using phase shifters this state can be transformed into:

|A A〉om +e iφo+iφm |BB〉om

where φo and φm are phases added in rails B for optical and mechanical mode re-
spectively.

After the beam splitter, the photon can end up in front of detector 1 (|1〉) or detector
2 (|2〉). The states passing the beam splitter are transformed |A〉 → |1〉 + i |2〉 and |B〉 →
i |1〉 + |2〉, meaning the resulting state is

|Φ〉 = 1

2
p

2

[(
1−e i (φo+φm)

)(
|1〉|1〉 − |2〉|2〉

)
+ i

(
1+e i (φo+φm)

)(
|1〉|2〉 + |2〉|1〉

)]
= 1p

2

[
sin

(φo +φm

2

)(
|1〉|1〉 − |2〉|2〉

)
+cos

(φo +φm

2

)(
|1〉|2〉 + |2〉|1〉

)]
, (2.18)
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with the global phase factor dropped. We make labels on each setup such that if detector
|1〉 clicks we assign the measurement result +1, likewise click on |2〉 produces result -1.

We can evaluate expectation value 〈ox my 〉 = sin2
(
φo+φm

2

)
−cos2

(
φo+φm

2

)
. We select that

measurements settings x ∈ {0,1} to correspond to φo = 0 and φo = π/2, while y ∈ {0,1}
correspond to φm = −π/4 and φm = π/4. With these we obtain |S| = 2

p
2. The experi-

ment is repeated many times and we need to record on what detector photon/phonon
ended for each experiment run. Then we need to count how many times same and op-
posite detectors clicked. Using these number we can evaluate the expectation value by
counting coincidences:

〈ox my 〉 = p(o = 1,m = 1)+p(o =−1,m =−1)−p(o = 1,m =−1)−p(o =−1,m = 1)

= n11 +n22 −n12 −n21

n11 +n22 +n12 +n21
,

where p(o = 1,m = 1) (x and y omitted) is the probability for outcomes o = 1,m = 1
and so on, while ni j labels the number of times a photon was recorded at detector i ∈
{1,2} and a phonon was recorded at detector j ∈ {1,2}.

We will show in Chapter 6 the actual experiment is performed such that we con-
vert mechanical excitations in both mechanical rails into optical ones right before the
phonon beam splitter. After that we can use optical components for measurement of
phonon state. In order to simplify the experiment instead of spatially separating the de-
tection of photon and phonon, detections are time separated. This is done so we can
now use the same equipment for detecting the state of photons and phonons.

Bell inequality is not only interesting because of foundations of quantum mechanics,
but it can be used as basis for quantum cryptography protocols[19, 20]. The ability of
quantum hardware to violate Bell inequalities can be seen as an important benchmark
test.

REFERENCES
[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev.

Mod. Phys. 86, 1391 (2014).

[2] C. K. Law, Effective hamiltonian for the radiation in a cavity with a moving mirror
and a time-varying dielectric medium, Phys. Rev. A 49, 433 (1994).

[3] R. Riedinger, Single Phonon Quantum Optics, Ph.D. thesis, University of Vienna
(2018).

[4] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

[5] M. D. et al., ed., Quantum Machines: Measurement and Control of Engineered Quan-
tum Systems (Oxford University Press, 2011).

[6] R. Lang, M. O. Scully, and W. E. Lamb, Why is the laser line so narrow? a theory of
single-quasimode laser operation, Phys. Rev. A 7, 1788 (1973).

http://dx.doi.org/ 10.1103/PhysRevA.7.1788


REFERENCES

2

19

[7] C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, Heralded Single-
Phonon Preparation, Storage, and Readout in Cavity Optomechanics, Phys. Rev. Lett.
112, 143602 (2014).

[8] S. G. Hofer, W. Wieczorek, M. Aspelmeyer, and K. Hammerer, Quantum entan-
glement and teleportation in pulsed cavity optomechanics, Phys. Rev. A 84, 52327
(2011).

[9] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. As-
pelmeyer, and S. Gröblacher, Non-classical correlations between single photons and
phonons from a mechanical oscillator, Nature 530, 313 (2016).

[10] J. F. Clauser, Experimental distinction between the quantum and classical field-
theoretic predictions for the photoelectric effect, Phys. Rev. D 9, 853 (1974).

[11] C. H. Bennett and G. Brassard, An update on quantum cryptography, in Advances in
Cryptology (Springer Berlin Heidelberg) pp. 475–480.

[12] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univer-
sity Press, 1995).

[13] C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Single-photon generation
from stored excitation in an atomic ensemble, Phys. Rev. Lett. 92, 213601 (2004).

[14] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J.
Kimble, Generation of nonclassical photon pairs for scalable quantum communica-
tion with atomic ensembles, Nature 423, 731 (2003).

[15] H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, and H. J.
Kimble, Direct measurement of decoherence for entanglement between a photon and
stored atomic excitation, Phys. Rev. Lett. 97, 113603 (2006).

[16] J. G. Rarity and P. R. Tapster, Experimental violation of Bells inequality based on
phase and momentum, Phys. Rev. Lett. 64, 2495 (1990).

[17] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality,
Rev. Mod. Phys. 86, 419 (2014).

[18] H. M. Wiseman and E. G. Cavalcanti, Causarum Investigatio and the Two Bell’s
Theorems of John Bell, arXiv e-prints , arXiv:1503.06413 (2015), arXiv:1503.06413
[quant-ph] .

[19] A. K. Ekert, Quantum cryptography based on bell’s theorem, Physical Review Letters
67, 661 (1991).

[20] A. Acín, N. Gisin, and L. Masanes, From Bells Theorem to Secure Quantum Key Dis-
tribution, Phys. Rev. Lett. 97, 120405 (2006).

http://dx.doi.org/ 10.1103/PhysRevLett.112.143602
http://dx.doi.org/ 10.1103/PhysRevLett.112.143602
http://dx.doi.org/ 10.1103/PhysRevA.84.052327
http://dx.doi.org/ 10.1103/PhysRevA.84.052327
http://dx.doi.org/10.1007/3-540-39568-7_39
http://dx.doi.org/10.1007/3-540-39568-7_39
http://dx.doi.org/ 10.1038/nature01714
http://dx.doi.org/ 10.1103/RevModPhys.86.419
http://arxiv.org/abs/1503.06413
http://arxiv.org/abs/1503.06413
http://dx.doi.org/ 10.1103/physrevlett.67.661
http://dx.doi.org/ 10.1103/physrevlett.67.661




3
OPTOMECHANICAL CRYSTAL

NANOBEAM

Igor Marinković

While the previous chapter was dealing with a generic optomechanical system, in this
chapter I will describe the particular optomechanical hardware used in this thesis - an
optomechanical crystal nanobeam.
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3.1. PHOTONIC CRYSTAL CAVITY
We showed in the previous chapters that our task is obtaining control of mechanical
resonator at single phonon level using light. In this chapter I will first present the par-
ticular structure that we will use for our task and that is optomechanical crystal (OMC)
nanobeam[1]. Why this particular design is used, will be discussed in the last section
of this chapter. A detailed description of designing a nanobeam device can be found
in[2]. For completeness, here I will give a short introduction. A starting point is a sili-
con nanowire that serves as a rectangular waveguide that can localize light in two direc-
tions by total internal reflection, as well as mechanical vibrations. This way optical and
mechanical excitations can propagate along the nanowire. By patterning holes into it,
one can create a mirror for both optical and mechanical excitations (so they become re-
flected). Holes are designed using crystal theory, such that they have both a mechanical
and an optical bandgap (Fig. 3.1) at frequencies of excitations. Patterning two mirrors on
the waveguide results in the formation of an optomechanical cavity, meaning confine-
ment of mechanical and optical waves in all three dimensions. Two such mirrors can
be placed close to each other so they form a small mode volume mechanical and opti-
cal resonators with a large overlap that will result in the high optomechanical coupling.
The space between two mirrors is also filled with holes, but such that crystal in middle
supports mode inside of bandgap of mirrors. This is done instead of a simple nanowire
without holes between mirrors in order to minimize light scattering. As described in ([3])
sudden changes in the electric field of the optical mode will lead to a broad distribution
of field in the momentum space. This is detrimental to the quality factor as more field
will be inside the light cone, not satisfying the total internal reflection condition, and ul-
timately leading to large scattering of light into free space. Unlike the the generic system
described in the previous chapter, moving boundary contribution to optomechanical
coupling is secondary to photo-elastic coupling[2].

Though the same mirrors are used for optical and mechanical waves, independent
control of mechanical from optical quality factor can be achieved. Phonon leakage from
the cavity can be to some extent tuned[1, 4]. Surrounding the nanobeam with an addi-
tional phononic shield can lead to mechanical lifetimes as high as 1.5 seconds [5].

3.2. FIBER TO NANOBEAM COUPLING
It is important to have an efficient way to couple light from the laser to the nanobeams.
We choose to deliver light from an optical fiber to the optical cavity of nanobeam in two
steps[6]. First light is coupled into an optical waveguide and after that into the cavity.
Both are achieved by evanescent coupling. Adding these structures to the nanobeam
results in device outline presented in Fig. 3.2.

3.2.1. FIBER TO WAVEGUIDE COUPLING

Next to the optical device we fabricated a optical waveguide that is used as the interme-
diate step in transferring laser light from a standard single mode optical fiber (SMF28) to
optomechanical cavity.

Detailed exploration of several options to deliver light from fiber to silicon nanobeam
can be found in [8], in addition to those I will write about single sided tapered fiber cou-
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Figure 3.1: (a) Bandgap diagram of a nanobeam mirror photonic crystal. By slowly modifying the unit cell,
the mirror region is transformed such that its frequency (ωc ) at X point is inside bandgap (red arrow). Shaded
region presents the light cone. (b) Optical(up) and mechanical(down) mode shapes of the nanobeam. Red
arrow shows the geometric transformation between the mirror and defect region.
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Figure 3.2: Outline of complete device-nanobeam with coupling waveguide and taper for fiber coupling. There
are two nanobeams per waveguide so we fabricate more devices per chip. Overlap of optical resonances of two
nanobeams is unlikely, so we can use one at the time. Waveguide support is used so waveguide does not
collapse (only relevant when fabrication is taken into account).

pling. Throughout this thesis, for coupling light into the waveguide, lensed fibers were
used[9]. This was mainly because it is easy to use it inside dilution fridge, it is robust,
and it is commercially available (OZoptics, 2.5±0.3 µm mode diameter). Still, best trans-
fer efficiency achieved was below 0.7, which matches with similar reports[10]. In prin-
ciple, this method can provide higher efficiency, but one needs much longer tapered
waveguides[11]. If we make waveguides longer than about 15 µm they tend to bend
and stick to substrate layer. We wanted to improve transfer efficiency while being able
to couple light into waveguide inside dilution fridge. The first approach was to use so-
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Figure 3.3: (a) Transferring laser light from tapered fiber to waveguide. At the beginning of the taper there will
be a discontinuity, still high transfer efficiency is possible if one designs the system such that input fiber mode
and supermode(upper-right |E | mode profile) have overlap close to unity. Same goes for the discontinuity at
her end of taper (upper-left |E | mode profile). The plot on the bottom is effective refractive index at various
points along the waveguide. (b) Simulated transfer efficiency for various widths of waveguide tip, fixed end
width of 350 nm, length of 10 µm and fiber with angle 3◦. This fiber angle should give negligible losses for fiber
tapering itself[7], so we simulate only region where it is coupling to the waveguide.

called dimpled fibers because of their ability for transfer of light into the waveguide with
efficiencies up to 0.95[6]. The problem with this technique is that it requires a micro-
scope for alignment and fibers are very fragile. Though we had some success, after a few
months we gave up on this approach and turned back to lensed fibers.

Another way to couple light from the fiber to the waveguide is using single sided
tapered fiber. This is an attractive approach, because of reported efficiency of 0.96 for
coupling to silicon nitride and diamond waveguides[7, 12]. Using frequency domain
COMSOL simulation we show that efficiencies above 0.95 can be achieved for silicon as
well (Fig. 3.3). Although these are also tapered fibers, they are much more robust than
dimpled fibers and do not require a microscope for alignment inside dilution fridge. One
can simply use the reflection of the side of the chip as a reference when aligning (see
Appendix).

We use taper design guidelines as described in [6, 7, 12]. When fiber and waveguide
are nearby (< λ) such that they couple evanescently, the system is described by super-
modes. Idea is to start with supermode that looks very much like a bare fiber mode
and to slowly transform the system until the supermode has high overlap with the bare
waveguide mode. If the transformation is done slow enough the field will always stay in
the same eigenmode of the system. The explicit adiabatic condition is[6, 7]:

dne f f

d z
¿ 2π

λ
∆n2

where ne f f is the effective refractive index of supermode, z is the coordinate along the
waveguide, λ is the free space wavelength of light and ∆n is the refractive index differ-
ence of the supermode and an other nearest mode of the system. In our case, same as
in reference [12] nearest modes with appropriate polarization are radiation modes with
refractive index 1.
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Figure 3.4: (a) Waveguide with a reflector used to couple light into the cavity. Coupling can be modified by
changing the spacing between waveguide and the cavity - d . The width of the waveguide and the position of
the reflector also influence coupling. (b) Simulated collection efficiency from cavity as a function of spacing
between waveguide and cavity. We can see that we can change the coupling. We expect that the intrinsic qual-
ity factor of fabricated devices is fairly different from simulated, therefore this plot only serves us for qualitative
purpose and rough estimation of distance

3.2.2. WAVEGUIDE TO NANOBEAM COUPLING
Once the light is inside the waveguide, we need to couple it to the optical resonator. This
is also done in evanescent fashion[8]. The waveguide is placed parallel in vicinity of the
cavity (Fig. 3.4(a)). Additionally there is a mirror patterned at the end of the waveguide in
order to obtain single sided coupling. Other than to the waveguide, the optical mode is
coupled to other loss channels. It is important to know both of these couplings in order
to be able to determine parameters like fraction of photons collected by waveguide and
intracavity power. Nice introduction to this problem for similar devices is given in [13]
and in general [14].

The simplest way to probe the optical cavity is to record the intensity of the reflected
light as a function of the detuning (∆). The output field from optical cavity in steady
state, that is driven by input field ai n (|ai n |2 in units photons/s) is given as[13]:

aout = ai n

(
1− κe

κ
2 − i∆

)
, (3.1)

where κ,κe are the total decay rate and decay rate into waveguide. This field can be
detected on the photodiode giving a signal proportional to:

R = |ai n |2
(
1− κe (κ−κe )

(κ2 )2 +∆2

)
(3.2)

If we plot the signal as a function of detuning we can observe a Lorentzian with full width
half maximum of κ. So, first we can extract total loss rate as it is equal to linewidth of
recorded signal. After that we can try to extractκe from on resonance depth of Lorentzian:

D = R(∆= 0)

R(∆À 0)
= (κ2 −κe )2

κ2

4
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Figure 3.5: (a) Intensity response of single side coupled optical cavity. Cavity parameters are intrinsic linewidth
κ0=800 MHz and extrinsic coupling 600 MHz, 800 MHz, 1200 MHz for blue, orange, green line respectively. We
can see that the over-coupled and under-coupled cavity both reflect more signal than critically-coupled one
at the resonance. This prevents us from distinguishing between two. (b) Phase response of cavity, same cavity
parameters and color coding.

A problem is that we can not distinguish between the over-coupled and under-coupled
cavity. If we have this information we can determine κe from values of D and κ. This
is usually done by measuring the phase response of the cavity as well (Appendix). The
phase response of the cavity is plotted in Fig. 3.5(b) for various coupling regimes.

Once we have both total cavity loss and coupling constant we can determine the
fraction of photons that are collected by the cavity is given by η = κe

κ , and intracavity

number of photons nc =
(

κe
( κ2 )2+∆2

)
|ai n |2.

In order to vary κe on devices we can either change the distance between the waveg-
uide and the cavity (Fig. 3.4) or shift the position of the waveguide mirror holes along the
waveguide.

3.3. MORE THAN OPTOMECHANICS
In previous chapter we mentioned only vacuum bath as additional modes to which op-
tomechanical system is coupled. The internal state of the silicon atoms couple to nanobeam
as well, primarily through optical absorption (for a detailed description refer to [15]).
Fig. 3.6 illustrates the complexity of actual nanobeam physical system. When inside sil-
icon cavity the light will excite electrons in silicon. These will decay and emit high fre-
quency phonons in silicon. Mechanical modes of the nanobeam will locally thermalize
before thermalizing with rest of the chip. This leads to the thermal occupation of breath-
ing mode of nanobeam that is much higher than given by the temperature of the chip.
As we will see the thermal phonons will not immediately populate the mechanical state,
but it usually takes 1-2 µs to achieve maximum thermal population. While many param-
eters of optomechanical nanobeam tend to drift with fabrication, this one tends to stay
in this small range.

This heating will limit the amount of pump light we can send and therefore the con-
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Figure 3.6: Relevant degrees of freedom of silicon OMC nanobeam. With green are labeled the interaction that
one wishes to enhance and red ones that one wishes to suppress. Phonon leakage can be chosen depend-
ing of the application. By internal states we mean electronic states as well other phononic modes. Outside
environment consists of infinite number of optical and mechanical resonators in ground state.

version efficiency. Also it means that we can not actively cool the device into the ground
state. In addition to that whenever we send laser pulse (red or blue), we have to wait for
nanobeam to thermalize to substrate if we wish to be in the ground state. I will discuss
potential roads towards solving this problem in the conclusion chapter.

3.4. WHY SILICON NANOBEAMS
There are a plethora of optomechanical designs that have been investigated in detail.
Our goal was to take one of these and try to observe quantum behaviour with it. We
chose to perform our experiments with optomechanical crystal nanobeam devices for
the following reasons

1. Ability to fabricate the devices in the sideband resolved regime, as this is one of
the requirements in order to be able to select between the two mode squeezing
and beamsplitter Hamiltonian.

2. High mechanical frequency enables us to have mechanical mode naturally initial-

ized close to the ground state with negligible thermal occupation nth = [e
ħωm
kb T −

1]−1, when placed in dilution fridge at 20 mK. Another way of getting into the
ground state is red sideband cooling, but optical absorption makes this approach
practically really hard. Therefore we consider only optomechanical systems whose
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mechanical frequency is in the GHz range.

3. Fairly high g0/κ≈ 10−3

4. Fabrication that is not too demanding and it is possible to fabricate a large num-
ber of devices on a single chip. This was crucial for performing two device experi-
ments.

5. They are one of most researched on optomechanical devices, with a lot of knowl-
edge already available

6. Integrated on the chip makes them easy to use inside dilution fridge and attractive
for applications

One of the disadvantages of OMC nanobeam geometry is its bad thermal connection
to the rest of the chip, which means that absorption induced thermal excitations are
more likely to couple into our mechanical mode than to leak into the substrate.

OMC nanobeams can be fabricated out of almost any dielectric, with silicon, gallium
arsenide, aluminium nitride, silicon nitride devices among already reported ones [16–
18].

Devices described in this thesis are made out of silicon, for the following reasons

1. high refractive that enables high optomechanical coupling

2. bandgap (1.1 eV) bigger than energy of telecom photons (1550 nm→0.8 eV)

3. it is a widely used material, so fabrication is quite developed

There is usually the trade-off between bulk absorption and refractive index. Because
a lot of the absorption will be from the surface of the photonic devices[19], this trade-off
does not necessarily hold the same way for nanophotonic structures.

REFERENCES
[1] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, Optimized

optomechanical crystal cavity with acoustic radiation shield, App. Phys. Lett. 101,
081115 (2012).

[2] J. Chan, Laser cooling of an optomechanical crystal resonator to its quantum ground
state of motion, Ph.D. thesis, California Institute of Technology (2012).

[3] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Erratum: High-q photonic nanocavity
in a two-dimensional photonic crystal, Nature 425, 944 (2003).

[4] R. N. Patel, C. J. Sarabalis, W. Jiang, J. T. Hill, and A. H. Safavi-Naeini, Engineering
phonon leakage in nanomechanical resonators, Phys. Rev. Applied 8, 041001 (2017).

[5] G. MacCabe, H. Ren, J. Luo, J. Cohen, H. Zhou, A. Ardizzi, and O. Painter, Optome-
chanical measurements of ultra-long-lived microwave phonon modes in a phononic
bandgap cavity, (APS March Meeting, 2018).

http://dx.doi.org/10.1038/nature02063


REFERENCES

3

29

[6] S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Highly efficient
coupling from an optical fiber to a nanoscale silicon optomechanical cavity, Appl.
Phys. Lett., 103, 181104 (2013).

[7] M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala,
B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin,
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FABRICATION OF

OPTOMECHANICAL NANOBEAM

DEVICES

Igor Marinković

In this chapter I will describe microfabrication steps used in this thesis to make optome-
chanical nanobeam devices. I will also describe a process of making single sided tapered
fibers.
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Figure 4.1: Fabrication steps of silicon nanobeams. Side view of a SOI chip (a) Starting with SOI chip (b) Spin-
ning resist (c) Exposing resist with electrom beam lithography and developing resist (d) Etching silicon layer
(e) Removing resist (f) Removing oxide layer underneath device

4.1. FABRICATION OF SILICON NANOBEAM DEVICES
Once the design process of the optomechanical crystal is completed, our next task is to
fabricate devices as similar to the design as possible. All devices fabricated in this thesis
are made out of silicon. More precisely out of the top layer of silicon-on-insulator (SOI)
wafer (boron doped,resistivity 13.5-22.5Ωhm·cm) from Soitec.

A summary of the fabrication steps is given in Fig. 4.1 and details for each step will
be provided in the following sections. We start with SOI wafer that is diced into smaller
10x5x0.675 mm chips. These chips are made of a silicon substrate with 3 µm layer of sil-
icon oxide above and 250 nm of crystalline silicon on top of everything. Optomechanical
nanobeam devices are made out of this 250 nm top layer.

In addition to this chapter, the appendix contains several examples of fabrication
trials that went wrong and how this can be prevented.

4.1.1. ELECTRON BEAM LITHOGRAPHY

We start fabrication with Electron Beam Lithography (EBL). In this step the nanobeam
design will be patterned onto EBL resist. First we spin CSAR 62-09 resist on a SOI chip
(Fig. 4.1(b)) using vacuum chuck spinner, that is programmed to spin for 5 seconds at
500 rpm and at 2000 rpm for 55 seconds. The chip is then baked at 150oC for 3 min-
utes on hot plate. This creates a layer of EBL resist (about 250 nm) on top of our chip,
onto which nanobeam design will be written using an EBL machine. We expose the pat-
terns primarily using Raith EBPG5200, though Raith EBPG5000 was also available and
occasionally used. First step is making .dxf file of pattern that should be exposed. After
that pattern is fractured into trapezoids and rectangles of the same dose[1]. Fracturing
is done with beam step size that is about 1.5 times smaller than beam diameter (smaller
than 5 nm usually). This is the distance between points that ebeam will expose. When
exposing pattern for the first time, it is good to try different combinations of beam step
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size and beam spot size. For each combination one should do a dose sweep in order to
determine the optimal dose. In the appendix one can find example SEM images where
EBL parameters were far from optimal. When choosing parameters, one should also
have in mind that high resolution of exposure requires more time. Therefore sometimes
it is good to separate exposure into fine and less fine patterns, and use the appropriate
beams.

After the EBL write, parts of the resist that have been exposed will be removed in pro-
cess called development (Fig. 4.1(c)). This is done by submerging the chip for 1 minute
each, first in pentyl acetate, then 1:1 mixture of isopropanol and methyl isobutyl ketone
and finally in just isopropanol.

Further improvements in the EBL step can be obtained by using a multipass tech-
nique, that minimizes the effect of noise during exposure by exposing pattern multiple
times with smaller dose [2]. We noticed that this method is more reliable than simple ex-
posure, as it averages out fast beam drifts. Few more details on multipass can be found
in the appendix.

4.1.2. DRY ETCHING

Resist

Silicon

Resist

Silicon

(a) (b)

Figure 4.2: (a) Etch profile of anisotropic etching inside RIE etcher (b) Isotropic etch profile inside RIE etcher.

Areas of silicon that are not anymore covered with resist can now be etched using
Inductively Coupled Plasma (ICP) Reactive Ion Etcher (RIE). Recipe for etching silicon
has been developed before I joined the project, still some optimization had to be done.
Introduction to ICP RIE etching can be found in [1, 3]. The basic idea is that gases used
for etching are released into the vacuum chamber where the chip is. Using strong elec-
tromagnetic field plasma is created out of the gases and the ions are accelerated towards
the chip. These ions can remove atoms of silicon by chemical reaction or if they have
enough energy, by milling. Chemical etching tends to produce isotropic etch profile
Fig. 4.2, which would make devices quite different from the design. On the other hand,
milling tends to produce vertical sidewalls, but gives poor etch selectivity between sili-
con and resist. Some of the ions can react with silicon such that protective (passivation)
layer is created. This layer has a property of not reacting with ions that are etching away
silicon. Still passivation layer can be milled away. Since milling happens on surfaces
facing plasma, passivation layer helps to produce vertical sidewalls.

As one can see, this is a rather complicated process with a lot of parameters that
can influence the quality of the etched devices. What we desire is to fabricate devices
as close as possible to the designed ones. This means a straight vertical etch with min-
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Name                         SET20                                     SET22b                                         SET22d

SF6[sccm]                      75                                             65                                                  65

O2[sccm]                       30                                            30                                                  30

P[mbar]                         1.4                                            1.1                                                0.9

ICP [W]                         1200                                         1200                                            1200

Fwd [W]                         34                                              34                                                 34

time[s]                           56                                             56                                                 56

Name                        SET04b                                     SET04c                                         SET05e

SF6[sccm]                      75                                              75                                                  75

O2[sccm]                       25                                              30                                                  40

P[mbar]                         1.3                                             1.3                                                 1.3

ICP [W]                         1200                                         1200                                              1200

Fwd [W]                         30                                              30                                                  30

time[s]                           44                                              44                                                  80

Figure 4.3: Scanning Electron Microscope (SEM) images of the etch profiles for several different etch recipes.
Wide and narrow trenches of 500 nm and 100 nm are etched into silicon. After that, the chip was cleaved such
that cleave intercepts the trench. Finally the side of the chip can be inspected using a SEM. On some of the
SEMs, the resist had been removed. ICP[W]-power of RF source used for generating plasma. Fwd[W]-power
of RF source used to accelerate ions towards the sample.
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imum roughness of side walls. It is really hard to figure out what etch parameters have
to be used in order to achieve this. There is some logic behind it, but also a lot of guess-
work. We had to perform a lot of etch tests in search for optimal etch recipe. I show sev-
eral combinations of parameters (recipes) and the result they produce in Fig. 4.3. In our
fabrication process, the device pattern is transferred to the top silicon layer in ICP RIE
machine Adixen AMS 100. We use a plasma of sulfur hexafluoride (SF6) and oxygen(O2)
gases. Etching of silicon relies on ions produced by SF6, while both SF6 and O2 provide
ions used for passivation (SiOxFy). Therefore the etch rate decreases with increase in the
amount of oxygen ions in the chamber, while dependence on the amount of SF6 is more
complicated as this gas is used both for etching and passivation. The etch is performed
at -120◦C, as the passivation layer does not condense at higher temeratures[3]. Therefore
it is important to wait several minutes in between placing the chip into the chamber and
etching, so chip thermalizes to the right temperature. The electric field that accelerates
ions towards the sample is switched on every 90 ms for about 10 ms only (pulsed opera-
tion). This is done so the sample can discharge any locally built up charges that may oc-
cur and that might deflect ions and that way influence the etch profile. Fig. 4.3 shows the
typical sidewall profile that we obtain with this etch. Initial etch recipe Fig. 4.3-SET04b
had a problem of large scalloping at top of silicon layer. Increasing amount of O2 helps
mitigate this issue to some extent-SET04b,SET05e. This also decreases etching rate. We
can see that reducing the pressure in chamber by adjusting valve of turbo pump can also
help with removing the scallop, yet in this case etching rate is increased-SET22b. Bottom
three etches in Fig. 4.3 have been performed three years after top three etches, so cross
comparison might not be ideal, since etch tends to vary over time even if all parameters
are the same. If parameters suddenly change a lot, there is a chance the tool requires
maintenance. One of the potential issues is leaking of helium into chamber. Helium is
used for better thermal contact[1], but it leak into the chamber and influence the etch.
There is a sensor measuring the pressure and flow of helium, so it is wise to monitor it.
Another potential issue can be RF power reflected into the RF source. The tool automat-
ically adjusts the impedance matching, but high reflected power can occur. This can be
detrimental to the source as well the etch performance.
Silicon oxide is not etched in SF6+O2 plasma. It is important to stop the etch as soon as
oxide layer is reached, otherwise ions will start under-etching silicon sideways resulting
in profile shown in Fig. 4.3-SET22d.
Other combinations of gases can be used to anisotropicaly etch silicon. We had SF6+C4F8

combination available in our etcher. This etch indeed was producing more straight side-
walls. Still we decided not to use this etch as it can leave polymer residues.
As the etch rate may drift over timescale of weeks, it is good to check the etch profile
occasionally. If etch rates vary too much, it is good idea to have an additional chip in
the etcher for checking etch depth at the end. So far we used the silicon carrier wafer.
Problem with this is that wafer is etched and we can see surface color change over time
and this might be one the reasons that etch rate is fluctuating. One can try to use carrier
wafer that has silicon oxide layer on top. Another improvement might be reducing the
etch rate by reducing SF6 or increasing O2. Reducing SF6 is not advisable with our etcher
as flow controller is not stable at low flows. After etching we dice the chip around 10
µm away from devices in order to be able to approach device with optical fiber (Fig. 4.4)
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when we want to perform measurements.

4.1.3. WET PROCESSING

4μm

(a)

10 μm

(b)

Figure 4.4: (a) Scanning electron microscope(SEM) top view image of nanobeam device at the end of fabrica-
tion process. (b) Side view on chip with fully fabricated waveguide and two nanobeams.

After the chip is diced, the resist layer is removed by leaving it in N,N-Dimethylformamide
for 5 minutes at 70 ◦C. In order to remove contamination from the chip, that might have
occurred during the fabrication, we perform standard RCA cleaning[4]. This step is good
at removing the most organic contaminants as well as some metalic contaminants. An-
other option would be using Pirnaha solution for cleaning. RCA cleaning is well known
silicon process that consist of two steps[5]

1. RCA1: mixture of 5 parts of deionized water, 1 part of 28% ammonia water is heated
to 75 ◦C. 1 part of hydrogen peroxide is added and finally holder with chip is placed
inside for 10 minutes.

2. RCA2: mixture of 6 parts of deionized water, 1 part of aqueous 37% HCl is heated to
75 ◦C. 1 part of hydrogen peroxide is added and finally holder with chip is placed
inside for 10 minutes.

Finally the oxide under the device is removed by keeping it in 40% Hydrofluoric acid
(HF) at room temperature for 3 minutes and 30 seconds. 40% HF isotropically etches
oxide with about one micrometer per minute while the silicon etch rate is negligible.
Optionally additional RCA cleaning and 10 second dip in 1% HF can be performed in
order to clean and smooth down the surface. Once we take the chip out of HF, its surface
should be passivated with hydrogen atoms. RCA oxidises the silicon surface, while HF
strips the grown oxide, therefore each RCA+HF step tends to shift the optical resonance
(by about 15 nm to lower wavelength).

At this point the devices are finished and a first quick thing to check is the optical
resonance. If the resonance is not at the wavelength desired or their linewidth is too
large, it is necessary to inspect the structure with SEM. Sizes of the features can be mea-
sured and if they are far from designed, this can be compensated for in next generation
of chips. Optical quality factor strongly depends on the fabrication imperfections. Typi-
cal optical intrinsic quality factor of a fabricated device is about 4 ·105, while simulated
value is above 107[6]. Mechanical quality factor is also sensitive on fabrication imperfec-
tions, but as we will see in later chapters we intentionally wanted low mechanical quality
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Figure 4.5: Distribution of optical resonances for: (a) Devices fabricated on two chips with proximity error cor-
rection and devices were exposed in blocks of 8 (devices separated 30 µm inside same blocks, blocks separated
by 100 µm). Standard deviation is about 2 nm. Figure taken from [7]. (b) Devices fabricated on single chip
without proximity error correction with single block of few hundred devices each separated 30 µm. Standard
deviation is about 1 nm.

factors so devices thermalize faster to the base temperature. Images of a fully processed
device can be seen in Fig. 4.4.

4.2. FABRICATING IDENTICAL DEVICES
As it will be seen in the later chapters, for some applications it is crucial to be able to fab-
ricate devices with nearly identical optical and mechanical resonances. In this section I
would like to give few hints that can help in achieving that. Initially we always fabricated
two chips and looked for a matching pair. Statistical distribution of resonances is given in
Fig. 4.5. Main approach here was to simply fabricate large number of devices on the chip
and select ones with similar properties. After this experiment it was realized that a bet-
ter overlap can be achieved by fabricating only one chip and cleaving it into two pieces.
Devices for an experiment can be then chosen from each of these two pieces. This en-
ables chips that have center of resonance distribution closer to each other. When writing
devices with EBL it is important to have same dose on all devices in order to have most
identical devices. We initially arranged devices in block of eight devices and performed
proximity error correction (PEC). About 30 µm away we would place next identical block
and so on. It turned out this is not the best solution and half the resonance spread can
be achieved by simply not using PEC and writing one large block. Of course devices at
the edge will have their resonance off, but in previous case devices at the edge of each
block is affected.

4.3. FABRICATING TAPERED FIBERS
As described in the previous chapter, tapered fibers can be used to efficiently transfer
the light from fiber to a waveguide fabricated on a chip. We fabricate these tapered fibers
from regular 125 µm fibers (SMF28) by etching them in hydrofluoric (HF) acid[8]. Before
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Figure 4.6: (a)SEM image of HF fiber. Fiber is coated with gold in order to obtain SEM image. Unfortunately,
dust particles polluted the fiber during gold evaporation (Image credit Andreas Wallucks). (b) Pulling fiber out
of HF. Transition between coated and striped fiber(red) showed structural weakness-tends to break.

etching, the acrylic buffer is stripped at the end of the fiber. In order to obtain conical
shape we slowly pull fiber out of 40% HF for about 70 minutes with 0.4 µm/s using Thor-
labs MTS25-Z8. During the pulling HF evaporates and condenses on the fiber. This can
lead to roughness as well structural weakness (Fig. 4.6). A film of o-Xylene can be added
on top such that meniscus is formed, that shrinks as the fiber gets thinner and that way
provide a gradual etch even without pulling. This layer also probably helps with reducing
HF evaporation. Etching of fibers under acrylic can also be partialy mitigated by using
fiber ferrules as protection for fibers during the pulling. Alternatively one can produce
similar fibers by heating it with hydrogen flame and then pulling[9].
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and M. Lončar, Fiber-coupled diamond quantum nanophotonic interface, Phys. Rev.
Applied 8, 024026 (2017).

[9] T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, and
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Nano- and micromechanical devices have become a focus of attention as new solid-state
quantum devices. Reliably generating non-classical states of their motion is of interest
both for addressing fundamental questions about macroscopic quantum phenomena as
well as for developing quantum technologies in the domains of sensing and transduction.
We use quantum optical control techniques to conditionally generate single-phonon Fock
states of a nanomechanical resonator. We perform a Hanbury Brown and Twiss type ex-
periment that verifies the non-classical nature of the phonon state without requiring full
state reconstruction. Our result establishes purely optical quantum control of a mechani-
cal oscillator at the single phonon level.

* equal contribution

This chapter has been published in Science 358, 203 – 206 (2017)

41



5

42
5. HANBURY BROWN AND TWISS INTERFEROMETRY OF SINGLE PHONONS FROM AN

OPTOMECHANICAL RESONATOR

5.1. MAIN TEXT
Intensity correlations in electromagnetic fields have been pivotal in the development of
modern quantum optics. The experiments by Hanbury Brown and Twiss were a par-
ticular milestone that connected the temporal and spatial coherence properties of a
light source with the second-order intensity autocorrelation function g (2)(τ, x) [1–3]. In
essence, g (2) correlates intensities measured at times differing by τ or at locations dif-
fering by x and is hence a measure for their joint detection probability. At the same
time, these correlations allow the quantum nature of the underlying field to be inferred
directly. For example, a classical light source of finite coherence time can only exhibit
positive correlations at τ≈ 0 delay in the joint intensity detection probability, leading to
bunching in the photon arrival time. This result is true for all bosonic fields. Fermions,
on the other hand, exhibit negative correlations and hence anti-bunching in the detec-
tion events [4–6], which is a manifestation of the Pauli exclusion principle. A bosonic
system needs to be in a genuine non-classical state to exhibit anti-bunching. The canon-
ical example is a single photon (Fock) state, for which g (2)(τ = 0) = 0 because no joint
detection can take place [7]. For this reason, measuring g (2) has become a standard
method to characterize the purity of single-photon sources [8]. In general, g (2)(τ) car-
ries a wealth of information on the statistical properties of a bosonic field with no clas-
sical analogue [9, 10], specifically sub-Poissonian counting statistics (g (2)(0) < 1) and
anti-bunching (g (2)(τ) ≥ g (2)(0)), all of which have been demonstrated successfully with
quantum states of light [11, 12].

Over the past decade, motional degrees of freedom, i.e. phonons, of solid-state de-
vices have emerged as a novel quantum resource. Quantum control of phonons was pio-
neered in the field of trapped ions [13], where single excitations of the motion of the ions
are manipulated through laser light. These single phonon states have been used for fun-
damental studies of decoherence [14] as well as for elementary transduction channels
in quantum gates for universal quantum computing [15]. Cavity optomechanics [16]
has successfully extended these ideas to optically controlling the collective motion of
solid-state mechanical systems. It has allowed for remarkable progress in controlling
solid-state phonons at the quantum level, including sideband cooling into the quantum
ground state of motion [17, 18], the generation of quantum correlated states between ra-
diation fields and mechanical motion [19–21] and the generation of squeezed motional
states [22–24].

So far single phonon manipulation of micromechanical systems has exclusively been
achieved via coupling to superconducting qubits [25–27], while optical control was lim-
ited to the generation of quantum states of bipartite systems [20, 21, 28]. Here we demon-
strate all-optical quantum control of a purely mechanical system, creating phonons at
the single quantum level and unambiguously showing their non-classical nature. We
combine optomechanical control of motion and single phonon counting techniques [21,
29] to probabilistically generate a single phonon Fock state from a nanomechanical de-
vice. Implementing Hanbury Brown and Twiss interferometry for phonons [21, 29] (Fig-
ure 5.1), allows us to probe the quantum mechanical character of single phonons with-
out reconstructing their states. We observe g (2)(0) < 1, which is a direct verification of the
non-classicality of the optomechanically generated phonons, highlighting their particle-
like behavior.
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Figure 5.1: Working principle of the scheme used to generate single-phonon states and to verify their non-
classicality. The first step (left) starts with a mechanical oscillator in its quantum ground state, followed by
pumping the optomechanical cavity with a blue-detuned pulse. The resonator is excited to a single-phonon
state with a probability pb = 1.2% through the optomechanical interaction, which is accompanied with the
emission of a photon on resonance with the cavity. The detection of such a photon in a single-photon detector
allows us to post-select on a purely mechanical Fock state. In order to verify the quantum state we created,
a red-detuned read pulse is sent onto the optomechanical cavity in the second step (right), which performs a
partial state transfer between the optics and the mechanics. With a probability of pr = 32.5% the mechanical
system’s excitation is converted into a photon on cavity resonance, returning the mechanics to its ground state.
The photon is sent onto a beamsplitter, where we measure the second order intensity correlation function g (2)

using a pair of single-photon detectors. g (2)(0) < 1 confirms the non-classicality of the generated phonon
states. The insets show the equivalent energy level diagrams of the processes.

Our optomechanical crystal [18] consists of a micro-fabricated silicon nanobeam
patterned in a way that it simultaneously acts as a photonic and phononic resonator
(Figure 5.2). The resulting optical and mechanical modes couple through radiation pres-
sure and the photoelastic effect such that a displacement equivalent to the zero-point
fluctuation of the mechanical mode leads to a frequency shift of the optical mode by
g0/2π= 869 kHz (g0: optomechanical coupling rate). The optical resonance has a wave-
length of λ = 1554.35 nm and a critically coupled total quality factor of Qo = 2.28×105

(i.e. cavity energy decay rateκ/2π= 846 MHz), while the mechanical resonance has a fre-
quency of ωm/2π= 5.25 GHz and a quality factor of Qm = 3.8×105. The device is placed
in a dilution refrigerator with a base temperature of T = 35 mK. When the device is ther-
malized, its high frequency guarantees that the mechanical mode is initialized deep in
its quantum ground state [21].

We utilize two types of linearized optomechanical interactions: the parametric down-
conversion and the state-swap, which can be realized by driving the system with de-
tuned laser beams in the limit of weak coupling (g0

p
nc ¿ κ; nc : intracavity photon

number) and resolved sidebands (κ¿ ωm) [16]. The parametric down-conversion in-
teraction has the form Hdc = ħg0

p
nc (â†b̂† + âb̂) where ħ is the reduced Planck con-



5

44
5. HANBURY BROWN AND TWISS INTERFEROMETRY OF SINGLE PHONONS FROM AN

OPTOMECHANICAL RESONATOR

stant and b̂† (b̂) the phononic creation- (annihilation-) operator, while â† (â) are the re-
spective photonic operators. This interaction is selectively turned on by detuning the
laser frequency ωL to the blue side of the cavity resonance ωc (ωL = ωc +ωm). Hdc

drives the joint optical and mechanical state, initially in the ground state, into the state
|ψ〉om ∝|00〉+p1/2

b |11〉+pb |22〉+O(p3/2
b ). For low excitation probabilities pb ¿ 1, higher

order terms can be neglected such that the system can be approximated as emitting a
pair of resonant signal photon and idler phonon with a probability pb [30]. Detection of
the signal photon emanating from the device heralds a single excitation of the mechan-
ical oscillator |ψ〉m ≈ |1〉, in close analogy to heralded single photons from spontaneous
parametric down-conversion. To read out the phonon state, we send in another laser
pulse that is now red-detuned from the cavity resonance by ωm (ωL = ωc −ωm). This
realizes a state-swap interaction Hsw ap = ħg0

p
nc (â†b̂ + âb̂†) which transfers the me-

chanical state to the optical mode with efficiency pr . We can therefore use the scattered
light field from this “read" operation to directly measure the second-order intensity cor-
relation function g (2) of the mechanical oscillator mode, which is defined as

g (2)(τ) = 〈b̂†(0)b̂†(τ)b̂(τ)b̂(0)〉/〈b̂†(0)b̂(0)〉〈b̂†(τ)b̂(τ)〉, (5.1)

where τ is the time between the first and the second detection event. Just like for any
other bosonic systems, g (2)(0) > 1 means that the phonons exhibit super-Poissonian
(classical) behavior, while g (2)(0) < 1 is direct evidence of the quantum mechanical na-
ture of the state and implies sub-Poissonian phonon statistics [10].

We implement the experimental scheme (Fig. 5.1) by repeatedly sending a pair of op-
tical pulses, the first one blue-detuned (pump pulse, full width at half maximum, FWHM
≈ 32 ns) and a subsequent one red-detuned (read pulse, FWHM ≈ 32 ns) with a fixed
repetition period, Tr = 50 µs. Photons generated through the optomechanical interac-
tions are reflected back from the device, and are analyzed by a Hanbury Brown and Twiss
interferometer using two superconducting nanowire single-photon detectors (SNSPD).
We set the mean pump pulse energy to 27 fJ such that pb = 1.2% [31]. Detection of res-
onant (signal) photons created by this pulse heralds the preparation of the mechanical
oscillator in a single phonon Fock state, in principle with a probability of 98.8%. Due to
a small amount of initial thermal phonons and residual absorption heating, a fraction
of unwanted phonons are incoherently added to the quantum states we prepare [21].
Following each pump pulse, a red-detuned read pulse is sent to the device with a pro-
grammable delay td , reading out phonons stored in the device by converting them into
photons on resonance with the cavity. The mean read pulse energy is set to 924 fJ, corre-
sponding to a state-swap efficiency pr ≈ 32.5%. Taking into account subsequent optical
scattering losses, this yields an absolute quantum efficiency for the detection of phonons
of 0.9% [31]. Finally, the pulse repetition period of Tr = 50 µs, which is long compared
to the mechanical damping time of 11 µs, provides ample time for dissipating any ex-
citation or unwanted heating generated by optical absorption. This ensures that each
experimental cycle starts with the mechanical mode well in the quantum ground state.
The pulse sequence is repeated more than 7×109 times in order to acquire enough statis-
tics. Conditioned on heralding events from detectors D1 by the blue-detuned pulses, we
analyze the coincidence detection probability of photons at D1 and D2, that are trans-
ferred from phonons by the swap operation.
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Figure 5.2: Sketch of the experimental setup used to measure the intensity autocorrelation function g (2) of
phonons. Blue-detuned pump pulses are sent into the optomechanical cavity which is kept at 35 mK. With
a small probability pb the optomechanical interaction creates a single excitation of the mechanical mode at
5.25 GHz (idler) and at the same time emit a signal photon on resonance with the cavity. The original optical
pump field is then filtered and only the signal photon created in the optomechanical down-conversion process
is detected in one of the single-photon detectors D1 or D2. With a time delay of td a red-detuned read pulse
is sent into the device, converting any mechanical idler excitation into an idler photon, which again is filtered
from the original pump. Conditioned on the detection of a signal photon, we measure the g (2) of the idler
photons. As the red-detuned pulse is equivalent to a state-swap interaction (see text), the g (2) function we
obtain for the photons is a direct measure of the g (2) function of the phonons in the mechanical oscillator. The
inset in the top left corner shows a scanning electron microscope image of the device (top) next to a waveguide
(bottom).

In our first experiment, we set td = 115 ns and measure g (2)(0) of the heralded phonons.
We note that one of our SNSPDs, D2, exhibits a longer dead time than td [31] and we
therefore only use photon counts from D1 for heralding the phonon states. From these
measurements we obtain a g (2)(0) of 0.65+0.11

−0.08 (Figure 5.3c), demonstrating a non-classical
character of the mechanical state.

The observed g (2)(0) of 0.65 is considerably higher than what we expect in the ideal
case g (2)

i deal (0) ≈ 4×pb = 0.045 [31]. We attribute this to heating induced by the absorp-
tion of the pump and read pulses. While a detailed physical mechanism of the absorp-
tion and subsequent heat transfer into the mechanical mode is still a subject of current
studies [21], the influx of thermal phonons ṅabs caused by the absorption of drive laser
pulses can be experimentally deduced from the (unconditional) photon count rates gen-
erated by the read pulses [31]. Including an estimation of the initial thermal phonon
number ni ni t , which is likewise inferred from the unconditional photon counts asso-
ciated with the pump and read pulses, we construct a theoretical model that predicts
g (2)(0) as a function of pb , ni ni t , and ṅabs . Given the measured ni ni t ≈ 0.20 and nabs [31]
within the read pulse, our model predicts g (2)(0) ≈ 0.76, which is consistent with the ex-
perimental value.

To further probe the effect of thermal phonons, we perform a set of experiments with
reduced repetition periods Tr , while keeping the other settings for the pump pulses the
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Figure 5.3: (a) Pulse sequence used in the experiments. Each cycle consists of a blue-detuned pump pulse and a
subsequent red-detuned read pulse delayed by td . The pulse sequence is repeated with the cycle of Tr . Both td
and Tr can be adjusted. (b) The measurement result of the second-order correlation function g (2)(τ=∆n×Tr )
of the heralded phonons, with g (2)(0) < 1 being a direct measure of their non-classicality. In this measurement,
we set td = 115 ns and Tr = 50 µs. g (2)(∆n ×Tr ) with ∆n 6= 0 depicts the correlations between phonons read
from separate pulse sequences with the cycle difference of∆n. While phonons from independent pulses show
no correlation g (2)(∆n ×Tr ;∆n 6= 0) ≈ 1, those from the same read pulse are strongly anti-correlated with a
g (2)(τ= 0) = 0.65+0.11

−0.08. (c) The influence of an incoherent phonon background on the g (2)(0) of the generated
mechanical states. We plot several measurements for a range of different effective initial temperatures of the
nanomechanical oscillator. The first data point (green) is taken with a delay td = 115 ns and a repetition period
Tr = 50 µs. We control the initial mode occupation ni ni t utilizing the long lifetime of the thermally excited
phonons stemming from the delayed absorption heating by pump and read pulses. This allows to increase
ni ni t while keeping the bulk temperature and properties of the device constant, causing an increase of g (2)(0),
as the state becomes more thermal. The red line shows the simulated g (2)(0) as discussed in [31]. For technical
reasons all data points (yellow, purple) except the leftmost (green) were taken with td = 95 ns. In addition, the
second from the right (purple) was taken at an elevated bath temperature of Tbath = 160 mK.

same. This effectively increases ni ni t , because the absorbed heat does not have enough
time to dissipate before the next pair of pulses arrives. As expected, as Tr is reduced,
we observe an increase in g (2)(0). With the measured ni ni t and ṅabs from the same data
set, we can plot the predicted g (2)(0) values. As is shown in Figure 5.3, the experimental
values and theoretical bounds on g (2)(0) are in good agreement.

We also measure g (2)(0) for td = 350 ns, and find that it is increased to 0.84+0.07
−0.06.

This increase is consistent with previously observed delayed heating effects of the ab-
sorption [21] and is in good agreement with the theoretical prediction of 0.84. Even for
these longer delays, the value is still distinctively below 1, demonstrating the potential
of our device as a single phonon quantum memory on the time scale of several hundred
nanoseconds.

We have experimentally demonstrated the quantum nature of heralded single phonons
in a nanomechanical oscillator by measuring their intensity correlation function g (2)(0) <
1. The deviation from a perfect single-phonon state can be modeled by a finite initial
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thermal occupation and additional heating from our optical cavity fields. We achieve
conversion efficiencies between phonons and telecom photons of more than 30%, only
limited by our available laser power and residual absorption. Full state reconstruction
of the single phonon state, as demonstrated with phononic states of trapped ions [14],
should be realizable with slightly improved read-out efficiency and through homodyne
tomography. The demonstrated fully optical quantum control of a nanomechanical mode,
preparing sub-Poissonian phonons, shows that optomechanical cavities are a useful re-
source for future integrated quantum phononic devices, both as single phonon sources
and detectors. They are also an ideal candidate for storage of quantum information in
mechanical excitations and constitute a fundamental building block for quantum in-
formation processing involving phonons. Some of the potential applications include
quantum-noise limited, coherent microwave to optics conversion, as well as studying
the quantum behavior of individual phonons of a massive system.
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5.2. MATERIALS AND METHODS

OPTOMECHANICAL DEVICES
The optomechanical device is fabricated from a silicon on insulator wafer (Soitec) with
a device layer of 250 nm thickness on top of a 3 µm buried oxide layer. We pattern our
chips with an electron beam writer and transfer the structures into the silicon layer in
a reactive ion etcher using a SF6/O2 plasma. One of the sides of the chip is removed to
allow for in-plane access to the lensed fiber couplers. After the resist is removed, the
device layer is undercut in 40% hydrofluoric acid. An additional cleaning step using the
so-called RCA method [32] is performed to remove organic and metallic residuals. The
final step is a dip in 2% hydrofluoric acid to remove the oxide layer formed by the RCA
cleaning and to terminate the silicon surface with hydrogen atoms.

Unlike in previous device designs [33], we do not use an additional phononic shield
around the optomechanical structure as this unnecessarily increases the re-thermalization
time and therefore reduces the achievable repetition rate of our experiment [21]. We re-
duce the mechanical quality factors of the designed structures further by offsetting the
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photonic crystal holes laterally from the center of the beam by 30 nm [34]. This yields
a measured quality factor of Qm = 3.8× 105 at mK temperatures, while otherwise such
structures exhibit Q’s beyond 107.

In order to find particularly good devices on a chip, we characterize them in a pump-
probe experiment at cryogenic temperatures (35mK) and select devices with optimal
mechanical Q and low optical absorption. We then perform cross-correlation measure-
ments of the photon-phonon pairs scattered by the pump pulse, while varying the repe-
tition period Tr , pump excitation probability pb and state-swap efficiency pr . This short
two-fold coincidence measurement (∼1h) allows us to predict the expectation value of
the three-fold coincidence autocorrelation measurement [21, 35, 36] as well as the time
required to obtain enough statistics for a targeted confidence interval. We chose a pa-
rameter set, which allows for a statistically significant (p-value< 0.001, see below) demon-
stration of intensity anti-correlations (g (2)(0) < 1) of the phononic state within a realistic
measurement time (∼100h).
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Figure 5.4: A sideband asymmetry measurement is performed to extract the optomechanical coupling rate g0.
For a detailed explanation of the measurement see the text below. We plot the detected photon counts per
pulse repetition per nanosecond for a blue-detuned (blue) and a red-detuned beam (red). Unwanted con-
tributions from leaked pump photons and detector dark counts are independently measured and subtracted.
Integrating over the whole detection window (i.e. from 30 to 150 ns in the plot) gives the photon counting prob-
abilities Cb and Cr , respectively. From this data, we extract the optomechanical coupling rate g0/2π= 869 kHz.

DETECTION EFFICIENCY

We calibrate the total detection efficiencies of optomechanically generated cavity pho-
tons (ηi ; i = 1,2) by performing a series of independent measurements. First, the fiber-
to-device coupling efficiency (η f c = 0.48) is measured by sending light with known power
to the photonic crystal and then measuring the reflected power. The extraction efficiency
of cavity photons ηdev is obtained from the device impedance ratio, ηdev = κe /κ, where
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κe is the external cavity energy decay rate. These values are extracted from the visibility
and the linewidth of the optical resonance scan, and we find ηdev = 0.5. Furthermore, we
measure the efficiency of detecting photons coming from the device for each SNSPD. We
launch weak, off-resonant optical pulses with an average of 5.14 photons to the device
and measure the photon count rate of each SNSPD. This measurement gives the quan-
tities η2

f c ×ηtr ans,i ×ηQE ,i , where ηtr ans,i is the transmission efficiency of the detection

path to each SNSPD, while ηQE ,i is their quantum efficiency. As η f c is measured inde-
pendently, ηtr ans,i ×ηQE ,i can be calculated from these results. Finally, this allows us to
obtain ηi = ηdev ×η f c ×ηtr ans,i ×ηQE ,i , which are η1 = 1.16% and η2 = 1.50%, respec-
tively.

OPTOMECHANICAL COUPLING RATE

In order to calibrate the optomechanical coupling rate g0 between the cavity field and
the mechanical mode, we perform a measurement similar to sideband thermometry [21,
37] (see Figure 5.4). In this measurement, pairs of pump and probe pulses are sent to the
device with a repetition period of Tr = 100 µs. For this pulse sequence, a blue-detuned
pump pulse (190.62 fJ) is sent to intentionally heat the device’s mechanical mode, fol-
lowed by the probe pulse (55.16 fJ) with a long delay of 99.825 µs. We perform two sets of
such repetitive measurements, one with red-detuned and the other with blue-detuned
probe pulses. From each measurement, we acquire a photon counting probability for
the probe pulses, Cr (red-detuned) and Cb (blue-detuned). These can be expressed as
Cr = (η1 +η2)× pr ×nth and Cb = (η1 +η2)× pb × (1+nth) in the limit of pb ¿ 1 and
pr ¿ 1, where pb and pr are equivalent to the photon-phonon pair excitation probabil-
ity and state-swap efficiency as introduced in the main text. pb and pr can be explicitly
written as

pb = exp(κe /κ
[
4g 2

0 Ep /ħωc (ω2
m + (κ/2)2)

]
)−1, (5.2)

pr = 1−exp(−κe /κ
[
4g 2

0 Ep /ħωc (ω2
m + (κ/2)2)

]
), (5.3)

where Ep is the total energy of the incident laser pulses and all the other terms as defined
in the main text. We find that Cr = 0.0064% and Cb = 0.0697%. From these values we ex-
tract nth = 0.104, pr = 2.32% ¿ 1 and pb = 2.37% ¿ 1, which allows us to directly obtain
g0/2π = 869 kHz, in good agreement with our simulated value [21]. With the calibrated
value of g0, the scattering probabilites pr and pb can now be directly set by simply choos-
ing the appropriate pulse energies. The average phonon occupation of the mechanical
oscillator nth can also be obtained by measuring the count rates with predetermined
values of pb and pr , without requiring sideband thermometry.

DATA ANALYSIS

The second order autocorrelation function is defined as

g (2)(t1, t2) =
〈

: N̂ (t1)N̂ (t2) :
〉〈

N̂ (t2)
〉〈

N̂ (t1)
〉 , (5.4)
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where N̂ (t ) = b̂†(t )b̂(t ) is the phonon number operator of the mechanical mode at time t
after the start of the pulse sequence, and : : is the notation for time and normal ordering
of the operators. The mechanical mode is measured by the optical read pulses and the
signal, i.e. the scattered photons, are filtered before they are detected by SNSPDs. Con-
sequently, the observed detection events are averaged by the optical filters and weighted
with the envelope of the read pulse np (t ), which holds for the weak coupling (i.e. adi-
abatic) regime. Further, to gain enough statistics, the events associated with the read
pulse are integrated. We define the time interval [ta , tb], containing the effective pulse
shape p(t ), which is obtained from the actual pulse envelope np (t ) and the filter transfer
function. This allows us to express the observed autocorrelation function

g (2)
obs (τ) =

∫ tb
ta

d t1
∫ tb+τ

ta+τ d t2p(t1)p(t2)
〈

: N̂ (t1)N̂ (t2) :
〉(∫ tb

ta
d t1p(t1)

〈
N̂ (t1)

〉)(∫ tb+τ
ta+τ d t2p(t2)

〈
N̂ (t2)

〉) , (5.5)

for a delay τ between two phonon measurements. This averaging does not influence the
validity of the statements about sub-poissonian statistics and non-classicality of the me-
chanical state. Strictly speaking, within the averaging window there is a randomization
of the phonon statistics due to damping and heating. Thus, a small regression towards
g (2) = 1 is the expected. Due to the short averaging time, this effect is negligible com-
pared the other uncertainties and systematic effects described below, such that we can
safely assume g (2)(τ) ≡ g (2)(td , td +τ) ≈ g (2)

obs (τ), with the effective delay of the read pulse
td = (ta + tb)/2.

A Hanbury Brown and Twiss setup with two single-photon detectors D1 and D2 with
low count rates allows to measure this second order autocorrelation [30, 36]. Specifically,
for τ= 0, this expression reduces to the cross-correlation between those detectors

g (2)(0) ≈ g (2)
E1,E2

= P (E1 ∩E2)/P (E1)P (E2), (5.6)

where P (X ) describes the probability of the occurrence of event X , and En is a detection
event at detector Dn (n = 1,2) during the time interval [ta , tb]. In this notation, it can
easily be seen that a rescaling of the detection efficiency of either detector drops out of
the expression. Consequently, g (2) is independent of losses in the optical path or the fi-
delity of the state transfer by the read pulse. However, the value of g (2) can be changed
by measurement noise, in our case dominated by false positive detection events (caused
by electronic noise, stray light or leaked pump photons). In our setup this gives a neg-
ligible systematic error δg (2) = g (2)

E1,E2
− g (2)(0) of 0 < δg (2) < 3× 10−4. If the state-swap

is seen as part of the measurement, heating of the mechanical state by optical absorp-
tion of pump photons within the device can also be interpreted as measurement noise.
The effect on g (2) depends strongly on the initial effective temperature of the mechanical
mode, so that we cannot give a general number for the systematic error. From simula-
tions, we deduce that it spans from about 0 < δg (2)

abs < 0.17 for the lowest temperature

measurement to 0 < δg (2)
abs < 0.02 for the highest initial temperature. The absorption

heating in combination with dead time of the SNSPDs, additionally causes a systematic
error of 0 < δg (2)

d t < 0.03, which is described in detail in the following section. As the heat-
ing related effects can also be considered to be part of the actual mechanical state and
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the other effects are much smaller than the statistical uncertainties, all g (2) values pre-
sented in this work are not corrected for these systematic errors. With all δg (2) > 0, the
presented values are upper bounds to the noise free auto-correlation of the mechanical
state.

To estimate the statistical uncertainty of our measurement, we use the likelihood
function based on a binomial distribution of photon detection events in the limit of low
probabilities. The experimentally measurable values for g (2)

E1,E2
(0) are the maximum like-

lihood values

ḡ (2)
E1,E2

≡ C (E1 ∩E2)/N

(C (E1)/N )(C (E2)/N )
≈ g (2)

E1,E2
, (5.7)

where C (E1) (C (E2)) is the number of counts registered at detector D1 (D2) and C (E1 ∩
E2) is the number of co-detection events at both detectors, all conditioned on herald-
ing events (i.e. detection events from earlier pump pulses). N refers to the number of
such heralding events. In our experiment, the uncertainty of g (2)

E1,E2
is dominated by that

of P̄ (E1 ∩E2) ≡ C (E1 ∩E2)/N , i.e. the estimated probability of P (E1 ∩E2), as E1 ∩E2 is
the rarest event among all the other events. Therefore, we use the likelihood function of
P (E1 ∩E2) to determine the confidence interval of the given values g (2)(0) = ḡ (2)

E1,E2

+σ+−σ− ,

such that the likelihood of the actual value of g (2)
E1,E2

is 34% to be within
[

ḡ (2)
E1,E2

−σ−, ḡ (2)
E1,E2

]
and 34% to be within

[
ḡ (2)

E1,E2
, ḡ (2)

E1,E2
+σ+

]
. While the low count numbers produce skewed

likelihood functions and therefore unequal upper and lower uncertaintiesσ±, the counts
are high enough such that the rule of thumb of requiring 3σ for statistical significance
(p-value< 0.001) still holds. Specifically, our null hypothesis is no correlation between
the phonons in the oscillator, i.e. an actual g (2)

actual = 1. For the delay of the read pulse of

td = 115 ns and T = 35 mK, we measured an autocorrelation of g (2)(0) = 0.647+0.105
−0.079. The

p-value, i.e. the probability of observing this or a more extreme result, given that the null
hypothesis of no correlation was true, is p = P

(
ḡ (2)

E1,E2
≤ 0.647

∣∣g (2)
actual = 1, N = 1.2×106

)<
7× 10−4. In our case this coincides with the probability of falsely rejecting the classi-
cal bound P

(
g (2)

actual(0) ≥ 1
∣∣ḡ (2)(0) = 0.647+0.105

−0.079

) < 7×10−4. For the delay of td = 370 ns

and T = 35 mK, we find the p-value p < 0.01 for the observed g (2)(0) = 0.832+0.068
−0.058, also

coinciding with P
(
g (2)

actual(0) ≥ 1
∣∣g (2)(0) = 0.832+0.068

−0.058

)< 0.01.

DEAD TIME EFFECTS

In order to reduce the effects of absorption heating on the mechanical state [21, 37, 38], it
is important to measure the state as quickly as possible upon its generation by the pump
pulse. For the data shown in Figure 5.3b in the main text, the time delay between the
read and the pump pulses is td = 115 ns. For the measurements in Figure 5.3c , td is set
to 95 ns, except for the first data point, which represents the result of Figure 5.3b .

In our measurement scheme, we use the same pair of SNSPDs to herald the gener-
ation of non-classical mechanical states as we use to measure g (2)(0) through the read
pulses. After a detection event, the superconducting nanowire is in the normal conduct-
ing state and is therefore blind to additional photons arriving during this time, before it
cools down and returns into the superconducting state. This so-called dead time for our
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Figure 5.5: Plotted are the heralded counts for various combinations of detection events: In brown, yellow,
purple and green are the counts of photons scattered by the read pulse (left axis), heralded on the detection
of a photon scattered by the pump pulse. They are normalized to the detection efficiency of events heralded
by detector D1 and detected by D2 (yellow). All combinations involving D1 either for heralding or detection
match well with the simulated counting distribution (blue). Notably, the combination of heralding and de-
tecting with D2 deviates from that. This reduced detection efficiency is caused by the longer dead time of D2
compared to D1. In addition, the time window over which the pulse averages, is shifted to later times and is
more heavily influenced by the cumulative heating nabs (t ) (red) by absorbed driving photons from the read
pulse. The latter is extracted from the detection of a thermal state and compensated for the optomechanical
cooling to obtain the true cumulative number of added phonons nabs (t ) (right axis).

detectors is nominally on the order of 50 – 70 ns. If the state is heralded by one of the
SNSPDs and its dead time overlaps with the arrival time of the photons from the read
pulse, its detection efficiency will be lower than the nominal value. In our experiment
this is in fact the case for detector D2 in the measurement of g (2)(0) with td = 115 ns (cf.
Figure 5.5).

To first approximation, this should have no influence on the value of g (2)(0) itself, as
the detection probability of the heralded pulses enters equation (5.6) in the numera-
tor P (E1 ∩E2) and the denominator P (E2) in the same way. However, a detected readout
pulse with a seemingly distorted shape as in Figure 5.5 effectively measures the mechan-
ical state slightly later than the nominal delay time td . Due to absorption heating during
the read pulse (cf. Figure 5.5), the mechanical state at later times is corrupted by the in-
flux of thermal phonons ṅabs (t ). Therefore, it will increase the observed value of g (2)(0)
towards 2, the value of a thermal state. For this reason we discard heralding events from
detector D2 for short delays.

A more detailed analysis allows us to quantify the systematic error by the shorter
dead time of detector D1. The minor reduction of the detection efficiency for a td of
115 ns leads to 0 < δg (2)

d t < 0.01, which corresponds to an overestimation of our observed

value of g (2)(0) by much less than our statistical uncertainty. For td = 95 ns, this effect
from detector D1 becomes stronger, resulting in 10% reduced detection efficiency. How-
ever, thanks to an increased thermal background, it only produces a systematic error
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of around 0 < δg (2)
d t < 0.03, which is again smaller than the statistical uncertainty. As

they are negligible in magnitude, we did not account for these systematic errors in the
reported values of g (2) in the main text.

SIMULATION OF THE CORRELATION FUNCTION

To calculate the expected value of g (2) we use the formalism developed by Barchielli [39,
40]. In order to do this, we require a model of the open-system dynamics of our optome-
chanical system, describing the coupling to the environment. In addition to the typical
assumption that the mechanical system couples to a heat bath of a fixed temperature,
we observe in our experiment an additional, time-dependent heating effect that is acti-
vated by the strong read pulse. In the absence of a microscopic description of this effect,
we adopt a simple phenomenological description and model it as a standard Lindblad
dynamics with two parameters γ and nbath , which can be estimated from the singlefold
detection events of the exerimental g (2) data for each ni ni t . Note that nbath is not the
occupation number determined by the dilution refrigerator and is assumed to be a func-
tion of time. In essence, the incoherent (thermal) phonon influx ṅabs = γnbath(t ) is the
derivative of the cummulative absorbtion heating and can be extracted from singlefold
detection events, with calibrated scattering rates from sideband asymmetry measure-
ments (see above) and knowledge of the envelope of the read pulse (cf. Figure 5.5). The
mechanical decay rate γ is assumed to be the measured decay rate ωm/Qm . The Lind-
blad dynamics stay identical when coupling to a number of different baths with differ-
ent coupling strengths, as long as the phonon influx and the mechanical decay rate stay
constant. For reasons of simplicity, we therefore work with a single phenomenological
phonon influx γ×nbath(t ).

The evolution of the optomechanical quantum state ρ under open-system dynamics
can be described by a Lindblad master equation [41] of the form [42]

ρ̇ =Lρ =− i

ħ [Hsw ap (t ),ρ]+κD[a]ρ+γ(nbath(t )+1)D[b]ρ+γnbath(t )D[b†]ρ, (5.8)

where the time dependence in Hsw ap accounts for the time-dependent drive by the light
pulses. The Lindblad terms,

D[s]ρ = sρs† − 1

2

(
s†sρ+ρs†s

)
, (5.9)

describe the coupling of the system to its electromagnetic environment (second term in
eq. (5.8)) and the mechanical heat bath with a mean occupation number nbath (third
and fourth term in eq. (5.8)). Below we will write the formal solution of eq. (5.8) as ρ(t ) =
T(t , t0)ρ(t0).

To describe a photon-counting measurement with a quantum efficiency η, we itera-
tively solve the master equation as [43]

ρ(t ) = S(t , t0)ρ(t0)+
∞∑

m=1

∫ t

0
d tm . . .

∫ t2

0
d t1S(t , tm)JS(t , tm−1) . . .JS(t1,0)ρ(t0), (5.10)
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where we defined the operator Jρ = ηκaρa† (which corresponds to the emission of one
photon from the cavity), and the propagator S that solves the effective evolution Ṡ= (L−
J)S. Equation (5.10) allows for the following interpretation: Assuming that we register m
photons on the photo-detector, the conditional state of the system is, up to a normalizing
factor, given by the m-th term in the sum above. In case no photons are registered, the
unnormalized conditional state is given by S(t , t0)ρ(t0) instead. The heralded state of the
mechanical system after the blue-detuned write pulse (for a click of the detector at time
tcl i ck ) is thus given by

ρcl i ck = Trcav [T(tcl i ck , t0)ρ(t0)−S(tcl i ck , t0)ρ(t0)]

Tr[T(tcl i ck , t0)ρ(t0)−S(tcl i ck , t0)ρ(t0)]
. (5.11)

Note that this state is conditioned on a measurement of at least one phonon. For our
case where two-fold events are rare, this effectively reduces to the first term in the sum
in eq. (5.10), i.e., ρcl i ck ∝ Trcav [a†aS(tcl i ck , t0)ρ(t0)].

As the evaluation of g (2) is computationally expensive, we first adiabatically elimi-
nate the cavity mode from eq. (5.8), which is possible in the weak-coupling limit g0 ×p

nc ¿ κ. For the case of the red-detuned read pulse we find the equation (neglecting
the very weak optical-spring effect) [42]

ρ̇m = [γ(nbath +1)+Γ−(t )]D[b]ρm + (γnbath +Γ+(t ))D[b†]ρm , (5.12)

for the reduced state of the mechanical system ρm , with Γ±(t ) = 2κe /κ× g 2
0 nc (t )Re(η±),

η− = 2/κ, η+ = 2/(κ+4iωm). In this approximation the photo-counting measurement at
the cavity resonance frequency is described by J(t )ρ = ηΓ−(t )bρb†.

To calculate g (2) of the photons emitted from the cavity (after heralding) we need to
evaluate time- and normal-ordered expectation values of the cavity output field, which
is readily achieved in this formalism. We find [40]

〈Î (t1)〉 = Tr[J(t1)T(t1, tcl i ck )ρcl i ck ], (5.13)

〈: Î (t1)Î (t2) :〉 = Tr[J(t2)T(t2, t1)J(t1)T(t1, tcl i ck )ρcl i ck ]. (5.14)

To evaluate equations (5.13) and (5.14), we expand the mechanical operators in a num-
ber basis up to a maximal phonon number of 50. We assume the mechanical system
to initially be in a thermal state with a mean phonon number ni ni t . In optomechani-
cal crystals, the mechanical damping rate γ tends to be a function of the environmental
temperature. As γ×nbath is effectively treated as a single parameter ṅabs and the time
scale of the simulation is short compared to the mechanical decay time 1/γ, potential
changes of γ with the bath temperature by up to one order of magnitude do not influ-
ence the simulations significantly.

NON-CLASSICALITY AND g (2)

The degree of second order coherence g (2) allows to draw various conclusions on the sys-
tem under investigation. The most prominent use of g (2) is to violate the non-classicality



5.2. MATERIALS AND METHODS

5

55

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.9

g(2
) (0

)

0.8
0.5 1.5 2.5 3.51.0 2.0 3.0

α−
0.0

r = 0.0
r = 0.1
r = 0.2
r = 0.3
r = 0.4
r = 0.5
r = 0.6
r = 0.7

Figure 5.6: Shown is the numerically calculated g (2) function of a squeezed Gaussian state with an initial ther-
mal occupation of ni ni t = 0.20 as a function of displacement ᾱ and squeezing parameter r (color-coded) for
θ = 2φ. Even for the optimal choice of settings r = 0.44 and ᾱ= 2.00, such a model cannot explain our data.

bound as described in the main text. The physical meaning of this bound can be inferred
from the variance of the energy Ĥ =ħωm b̂†b̂ of the free mechanical oscillator.

Var(Ĥ) = 〈
Ĥ 2〉−〈

Ĥ
〉2 = (

g (2)(0)−1
)〈

Ĥ
〉2 +ħωm

〈
Ĥ

〉
. (5.15)

For classical physics, i.e. not applying canonical quantization, 〈: Ĥ 2 :〉 = 〈Ĥ 2〉 and there-
fore the last term, stemming from the commutation relations, drops out. It immediately
follows from Var(Ĥ) ≥ 0 that g (2)(0) ≥ 1. When using the canonical quantization, we
can infer from g (2)(0) < 1 that the source had sub-Poissonian phonon statistics. This
also classifies the mechanical state as "non-classical" in the sense that it cannot be rep-
resented as an incoherent mixture of coherent states [12]. The degree of second order
coherence g (2) can be used to test against stricter bounds as well [44], some of them
depending on the physical system under investigation. For two level systems it is for ex-
ample important to demonstrate that only a single emitter is present. This can be done
by demonstrating g (2)(0) < 0.5 [45]. In our case it is sufficient to show g (2)(0) < 1 as we
only have a single macroscopic oscillator by design.

As we can see from equation (5.15), states possessing a small variance and/or low
energies can also exhibit g (2)(0) < 1. One set of states, which is interesting to exclude
is incoherent mixtures of Gaussian states. In general, linear bosonic systems that in-
volve squeezing can exhibit g (2)(0) < 1. This has recently been theoretically shown in
the context of optomechanics [46]. Using these models we numerically calculate g (2)(0)
for a general mechanical single-mode Gaussian state undergoing squeezing. For this,
we use the most favorable parameters observed in our correlation experiments. We
start from an initial thermal state ρ̂i ni t with ni ni t = 0.20 phonons, which corresponds
to the lowest temperature observed in the correlation measurements. The state is as-
sumed to be purely thermal, which is in agreement with the experimentally observed
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autocorrelation of the pump pulse of g (2)(0) = 2.0+0.1
−0.1. Neglecting any heating from the

optical pulses, we apply displacement D̂(α) = exp[αb̂† −α∗b̂] and squeezing operations
Ŝ(ξ) = exp[ 1

2 (ξ∗b̂2 − ξb̂†2)] with variable α = ᾱeiφ and ξ = r eiθ (ᾱ,r > 0). We then nu-

merically minimize g (2)(0) of the resulting states ρ̂ = D̂(α)Ŝ(ξ)ρ̂i ni t Ŝ†(ξ)D̂†(α) as a func-
tion of α and ξ using the quantum toolbox QuTiP [47, 48]. The minimal correlation we
can obtain is g (2)(0) ≈ 0.95, with r = 0.44 and ᾱ = 2.00 for θ = 2φ, clearly exceeding our
experimentally measured value, as shown in Fig. 5.6. This simple model therefore al-
lows us to exclude, with a p-value of 0.002, the possibility that the states we generate
are in fact squeezed Gaussian states. When additionally limiting the mean occupation
n = Tr[ρ̂b̂†b̂] to the experimentally observed occupation number of the heralded states,
1.25 < n < 1.90, we get a minimum g (2)(0) ≈ 0.99, rejecting the hypothesis of observing a
squeezed state with even stronger statistical confidence.
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OPTOMECHANICAL BELL TEST

Igor Marinković*, Andreas Wallucks*, Ralf Riedinger,
Sungkun Hong, Markus Aspelmeyer, Simon Gröblacher

Over the past few decades, experimental tests of Bell-type inequalities have been at the
forefront of understanding quantum mechanics and its implications. These strong bounds
on specific measurements on a physical system originate from some of the most funda-
mental concepts of classical physics – in particular that properties of an object are well
defined independent of measurements (realism) and only affected by local interactions
(locality). The violation of these bounds unambiguously shows that the measured system
does not behave classically, void of any assumption on the validity of quantum theory. It
has also found applications in quantum technologies for certifying the suitability of de-
vices for generating quantum randomness, distributing secret keys and for quantum com-
puting. Here we report on the violation of a Bell inequality involving a massive, macro-
scopic mechanical system. We create light-matter entanglement between the vibrational
motion of two silicon optomechanical oscillators, each comprising approx. 1010 atoms,
and two optical modes. This state allows us to violate a Bell inequality by more than 4
standard deviations, directly confirming the non-classical behavior of our optomechani-
cal system under the fair sampling assumption.

* equal contribution

This chapter has been published in Phys.Rev.Lett.121, 220404(2018)
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6.1. MAIN TEXT
Bell’s theorem [1] predicts that any local realistic theory is at variance with quantum
mechanics. It was originally conceived to settle an argument between Einstein [2] and
Bohr [3] on locality in physics, and to investigate the axioms of quantum physics. First
tests of the Clauser-Horne-Shimony-Holt (CHSH) inequality [4], an experimentally testable
version of Bell’s original inequality, were performed with photons from cascaded de-
cays of atoms [5, 6] and parametric down-conversion [7–9]. Subsequent experiments
reduced the set of assumptions required for the falsification of classical theories, closing,
e.g., the locality [10] and detection loopholes [11], first individually and recently simul-
taneously [12–15]. In addition to the fundamental importance of these experiments, the
violation of a Bell-type inequality has very practical implications – in particular, it has
become the most important benchmark for thrust-worthily verifying entanglement in
various systems [16, 17], including mesoscopic superconducting circuits [18], for certi-
fying randomness [19, 20], secret keys [21], and quantum computing [22].

While the standard form of quantum theory does not impose any limits on the mass
or size of a quantum system [23], the potential persistence of quantum effects on a
macroscopic scale seems to contradict the human experience of classical physics. Over
the past years, quantum optomechanics has emerged as a new research field, coupling
mechanical oscillators to optical fields. While these systems are very promising for quan-
tum information applications due to their complete engineerability, they also hold great
potential to test quantum physics on a new mass scale. Recent experiments have demon-
strated quantum control of such mechanical systems, including mechanical squeez-
ing [24], single-phonon manipulation [25–28], as well as entanglement between light
and mechanics [29] and entanglement between two mechanical modes [30–32]. How-
ever, explaining the observed results in these experiments required assuming the valid-
ity of quantum theory at some level. A Bell test, in contrast, is a genuine test of non-
classicality without quantum assumptions.

Here we report on the first Bell test using correlations between light and microfabri-
cated mechanical resonators, which constitute massive macroscopic objects, hence ver-
ifying non-classical behavior of our system without relying on the quantum formalism.
Bell-tests do not require assumptions about the physical implementation of a quantum
system such as the dimension of the underlying Hilbert space or the fundamental in-
teractions involved in state preparation and measurement [33]. The violation of a Bell-
inequality is hence the most unambiguous demonstration of entanglement with numer-
ous important implications. From a fundamental perspective, the robust entanglement
between flying optical photons and a stored mechanical state rules out local hidden-
variables, which can be used for further tests of quantum mechanics at even larger mass
scales [34, 35]. From an application perspective, the presented measurements also imply
that optomechanics is a promising technique to be used for quantum information pro-
cessing tasks including teleportation, quantum memories and the possibility of quan-
tum communication with device-independent security [21].

The optomechanical structures used in this work are two photonic crystal nanobeams
on two separate chips. They are designed to have an optical resonance in the telecom
band that is coupled to a co-localized, high-frequency mechanical mode [36]. Each de-
vice is placed in one of the arms of an actively stabilized fiber interferometer (see [31] and
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SI for additional details). The resonators are cryogenically cooled close to their motional
ground state inside a dilution refrigerator. Our entanglement creation and verification
protocol consists of two optical control pulses that give rise to linearized optomechan-
ical interactions, addressing the Stokes and anti-Stokes transitions of the system (see
Figure 6.1). Both types of interactions result in scattered photons that are resonant with
the cavity and can be efficiently filtered from the drive beams before being detected by
superconducting nanowire single photon detectors (SNSPDs).

A blue detuned, ∼40 ns long laser pulse with frequency νb = νo +νm (νo optical res-
onance, νm mechanical resonance) generates photon-phonon pairs. The interaction in
this case is described by Ĥb =−ħg0

p
nbâ†b̂† +h.c., with the intracavity photon number

nb, the optomechanical single photon coupling g0 and the optical (mechanical) creation
operators â† (b̂†). This correlates the number of mechanical and optical excitations in
each of the arms of the interferometer as

|ψ〉 ∝ (|00〉om +ε|11〉om +O(ε2)), (6.1)

where o denotes the optical and m the mechanical mode, while p = ε2 is the excitation
probability. For small p ¿ 1, states with multiple excitations are unlikely to occur, and
can therefore be neglected in the statistical analysis. Driving the devices simultaneously
and post-selecting on trials with a successful detection of both the Stokes-photon and
the phonon, we approximate the combined state as

|Ψ〉 = 1p
2

(|11〉A|00〉B +e iφb |00〉A|11〉B)

= 1p
2

(|A A〉om +e iφb |BB〉om), (6.2)

again neglecting higher order excitations. Here φb is the phase difference that the blue
drives acquire in the two interferometer paths A and B, including the phase shift of the
first beam splitter. Expressing the state in a path basis |A〉x = |10〉AB, where x is o for
the photonic and m for the phononic subsystem in arm A and B, allows to identify the
Bell-state, similarly to polarization entanglement in optical down-conversion experi-
ments. Unlike the two mode entangled mechanical state in [31], this four-mode en-
tangled optomechanical state allows us to realize a Bell measurement of the type sug-
gested by Horne, Shimony and Zeilinger [37] and first demonstrated by Rarity and Tap-
ster [8] involving two-particle interference between four different modes. In order to
access interferences between the mechanical modes, we convert the phonons into pho-
tons using a red detuned laser pulse (duration ∼40 ns, drive frequency νr = νo −νm).
This realizes an optomechanical beamsplitter interaction which allows for a state trans-
fer (Ĥr =−ħg0

p
nrâ†b̂ +h.c. , with the intracavity photon number nr). Note that this can

also be described as a classical mapping process. The optical readout fields in the inter-
ferometer arms are again recombined on a beam splitter, after which the state of Stokes
/ anti-Stokes field is

|Φ〉 = 1

2
p

2
[(1−e i (φb+φr))(â†

r1â†
b1 − â†

r2â†
b2)

+ i (1+e i (φb+φr))(â†
r1â†

b2 + â†
r2â†

b1)]|0000〉. (6.3)
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Figure 6.1: (a) Schematic of the setup: blue detuned drive pulses interact with the mechanical resonators (de-
vices A & B) producing entangled photon-phonon pairs. The light-matter entanglement is in the path basis
(A or B), corresponding to the device in which the Stokes scattering event took place. The generated photons
are detected in single-photon detectors giving the measurement results ab1 and ab2. The detection of the
phonons is done by transferring their states to another optical mode by using a red drive after some time ∆τ
and subsequently obtaining the results ar1 and ar2. Note that for technical reasons the photons created by the
blue and red drives are detected on the same pair of detectors, but with a time delay ∆τ = 200 ns. Therefore
we have time-separation of the two parties of the Bell test instead of space-separation (as commonly done).
BS1/2 represent beamsplitter 1/2. (b) Scanning electron microscope image of one of the optomechanical de-
vices, represented with a star-symbol in (a) and (c), next to the coupling waveguide (top). (c) Illustration of our
experimental sequence: one party of the Bell test measures in which detector path the Stokes photon is found
at time t = 0, while the other performs the same measurement for the anti-Stokes photon after a time t =∆τ.
We probe their correlations in order to violate the CHSH inequality. Since the two photons never interacted
directly (only through the mechanics), the observed correlations are a direct consequence of the correlations
between the Stokes photons and phonons.

Here we express the detected fields in terms of their creation operators with labels
b (r ) for photons scattered from the blue (red) drive and 1 (2) for the two detectors (cf.
Fig. 6.1). Furthermore φr is the phase difference that the red detuned pulse photons
acquire in the two arms of the interferometer. Since experimentally the mechanical fre-
quencies of the devices differ by a small offset ∆νm (see below), the state acquires an
additional phase Ω = ∆νm∆τ, where ∆τ is the delay between the blue and red pulses.
In all data below, however, we keep ∆τ fixed such that we can treat it as constant and
set Ω = 0. Typically, Bell experiments are done by rotating the measurement basis in
which each particle is detected. Equivalently, the state itself can be rotated, while keep-
ing the measurement basis fixed. In our experiment we choose the latter option, as this
is simpler to implement in our setup. We achieve this by applying a phase shift with an
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electro-optical modulator (EOM) in arm A of the interferometer, with which we can vary
φb and φr independently (see SI). This allows us to select the relative angles between the
photonic and phononic states.

In our experiment, the optical resonances are at a wavelength of λ= 1550.4 nm with
a relative mismatch of ∆νo ≈ 150 MHz. The mechanical modes have frequencies of νm

= 5.101 GHz and 5.099 GHz for device A and B, respectively. The bare optomechanical
coupling rate g0/2π is 910 kHz for device A and 950 kHz for device B. While the optical
mismatch is much smaller than the linewidth ∆νo ¿ κ ∼ 1 GHz such that the devices
are sufficiently identical, the mechanical mismatch requires optical compensation. This
is realized using the EOM in arm A of the interferometer to ensure that the scattered
photons from each arm interfere with a well defined phase on the second beamsplitter
(see also SI).

At the base temperature of the dilution refrigerator of around 12 mK we obtain the
phonon temperature of the mechanical modes by performing sideband asymmetry mea-
surements [38]. The measured thermal occupations for both devices is ninit ≤ 0.09. We
determine the lifetimes of the phonons in our structures to be τA = 3.3 ± 0.5 µs and
τB = 3.6± 0.7 µs using a pump-probe type experiment in which we excite the devices
and vary the delay to the readout pulse. To re-initialize the devices in their groundstates
prior to each measurement trial, we repeat the drive sequence every 50 µs, leaving more
than 10 times their lifetime for thermalization with the environment. Furthermore, we
set the delay between the blue and red detuned pulses to∆τ= 200 ns. The pulse energies
for the Bell inequality experiment are chosen such that the excitation probability is 0.8%
(1%), while the readout efficiency is 3% (4.1%) for device A (device B). These probabil-
ities match the number of optomechanically generated photons for each device at the
beamsplitter.

To characterize the performance of the devices, we first perform cross-correlation
measurements of the photons scattered from blue and red drives on each individual op-
tomechanical system. With the above mentioned settings, we obtain normalized cross-
correlation values of g (2)

br,A = 9.3 ± 0.5 and g (2)
br,B = 11.2 ± 0.6 [38]. We can use this to

estimate the expected interferometric visibility for the experiments below as Vxpcd =
g (2)

br −1

g (2)
br +1

[39]. As there is a small mismatch in the observed cross-correlations of the two

devices, we use the smaller value of device A, which results in an expected visibility of
around Vxpcd = 81%.

In order to experimentally test a Bell inequality, we then drive the two devices simul-
taneously in a Mach-Zehnder interferometer (see Fig. 6.1 and SI). We define the correla-
tion coefficients

E(φb,φr) = n11 +n22 −n12 −n21

n11 +n22 +n12 +n21
. (6.4)

Here ni j represents the number of detected coincidences scattered from blue (i ) and
red ( j ) pulses on the two detectors (i , j = 1,2), such that e.g. n21 is the number of tri-
als where the blue drive resulted in an event on detector 2, whereas the consecutive red
drive on detector 1. The visibility V is given as the maximum correlation coefficient
V =|E(φb,φr)|max. We measure the correlation coefficients for various phase settings for
the blue (φb) and red (φr) pulses, as shown in Figure 6.2. Strong correlations in the detec-
tion events by photons scattered from blue and red pump pulses can be seen, of which
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Figure 6.2: Correlation coefficients for various phase settings. We set the blue phase parameterφb to 0 (orange)
and 0.5π (green), while we scan the red pulse’s phase setting φr over more than 2π. The optimal angles to
test the CHSH inequality are shown with different symbols. The associated measured values can be found in
Table 6.1.

the latter are a coherent mapping of the mechanical state of the resonator. This sweep
demonstrates that we are able to independently shift the phases for the Stokes and anti-
Stokes states. The visibility V = 80.0±2.5% we obtain from fitting the data matches the
prediction from the individual cross-correlation measurements very well. The interfer-
ence furthermore shows the expected periodicity of 2π.

To test possible local hidden-variable descriptions of our correlation measurements
we use the CHSH-inequality [4], a Bell-type inequality. Using the correlation coefficients
E(φb,φr), it is defined as

S =|E(φ1
b,φ1

r )+E(φ1
b,φ2

r )+E(φ2
b,φ1

r )−E(φ2
b,φ2

r )| ≤ 2. (6.5)

A violation of this bound allows us to exclude a potential local realistic theory from de-
scribing the optomechanical state that we generate in our setup. The maximal violation

SQM = 2
p

2 ·V is expected for settings φi
b = [0,π/2] and φ

j
r = [−π/4+φc,π/4+φc], with

i , j = 1,2 [40]. Here φc = 0.337π is an arbitrary, fixed phase offset that is inherent to
the setup. Our experimentally achieved visibility exceeds the minimal requirement for
a violation of the classical bound V ≥ 1/

p
2 ≈ 70.7%. We proceed to directly measure
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Settings i , j φi
b[π] φ

j
r [π] E(φb,φr)

(1,1) 0.0 0.087 0.561+0.019
−0.020

(1,2) 0.0 0.587 0.550+0.020
−0.022

(2,1) 0.5 0.087 0.542+0.018
−0.021

(2,2) 0.5 0.587 −0.523+0.021
−0.021

Table 6.1: Correlation coefficients for the optimal CHSH angles. The violation of the inequality can be com-
puted according to Eq. (6.5) and results in a S value of S = 2.174+0.041

−0.042, corresponding to a violation of the
classical bound by more than 4 standard deviations.

the correlation coefficients in the four settings, as indicated in Figure 6.2, and obtain
S = 2.174+0.041

−0.042 (cf. Table 6.1). This corresponds to a violation of the CHSH inequality by
more than 4 standard deviations, clearly confirming the non-classical character of our
state. From the observed visibility of V = 80.0%, we would expect a slightly stronger vi-
olation with S ≈ 2.26. The reduction in our experimentally obtained value for S can be
attributed to imperfect filtering of drive photons in front of one of the SNPSDs, which
gives rise to varying amounts of leak photons at different phase settings (see discussion
in SI).

For quantum network applications it is also important to analyze the quality of the
detected optomechanical entanglement with regard to the detection rate. In our mea-
surements we can achieve this by changing the energies of the drive beams to alter the
optomechanical interaction strengths. An increase in the blue pulse energy is accompa-
nied by two mechanisms that decrease the state fidelity. Firstly, the probability for higher
order scattering events O(p2

A,B) is increased. Secondly, higher pulse energies also result
in more absorption, degrading the state through thermal excitations. As observed in pre-
vious experiments [31, 38], optical pumping of the devices creates a thermal population
of the mechanical modes with timescales on the order of several hundreds of nanosec-
onds (see also SI). While we keep the delay to the readout pulse short (∆τ = 200 ns), we
cannot fully avoid these spurious heating effects. Hence the decrease in visibility with
increased pulse energy, as seen in Figure 6.3(a), can be attributed mostly to this direct
absorption heating. To further test the heating dynamics of our state, we also sweep
the red pulse energies while keeping the excitation energy fixed at the value used in the
main experiment (pb = 0.8% and 1%). As expected, the increased readout pulse energies
lead to substantial heating of the devices [27]. However, even for relatively large optical
powers corresponding to ∼14% read out efficiency, the correlation coefficient is above
the threshold for violating a Bell inequality under the fair sampling assumption, see Fig-
ure 6.3(b).

Our system is fully engineered and hence we have complete control over the reso-
nance frequencies and possibilities to integrate with other systems. While in our current
structures we intentionally cap the mechanical quality factors to keep the measurement
time short [41], recent experiments with very similar devices have observed lifetimes
larger than 1 s [42]. Long lived non-classical states of large masses are interesting for fun-
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Figure 6.3: Visibility as a function of generation rate and state transfer probability. We sweep the power of the
blue pulse while keeping the red state transfer probability fixed, inducing absorption of the optical field in the
silicon structure, and see that for excitation probabilities up to around 3% the measured visibility exceeds the
threshold to violate the CHSH inequality (left). When increasing only the red pump power (right) a similar
behavior can be observed, allowing us to increase the state transfer probability beyond 14%, while still being
able to overcome the classical bound (orange shaded region). The visibilities V =|E(φb,φr)|max are measured
in a single phase setting at the optimal angles φb = 0 and φr = 0.337π.

damental studies of quantum mechanics. Combined with the fact that we can efficiently
couple these states to photons in the telecom band could enable interesting experiments
with Bell tests at remote locations. Employing fast optical switches that route one of the
photons to a second set of detectors would furthermore allow us to close the locality
loophole in the future. Our probabilistic scheme could, in principle, also be adapted to
perform a ’loophole-free’ Bell test [13], if in addition the detection loophole would be
closed through a more efficient read-out.

In summary, we have demonstrated the violation of a Bell-type inequality using mas-
sive (around 1010 atoms), macroscopic optomechanical devices, thereby verifying the
non-classicality of their state without the need for a quantum description of our exper-
iment. The experimental scheme demonstrated here may also be employed in other,
even more massive optomechanical systems. One outstanding challenge is to generate
states of genuine macroscopic distinction, for example a macroscopic separation in the
center of mass, to investigate fundamental decoherence mechanisms [43] or even the
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interplay between quantum physics and gravity [44, 45]. We also show that the created
entangled states are relatively robust to absorption heating, which could lead to a real-
istic implementation of entanglement generation for a future quantum network using
optomechanical devices. Violation of a CHSH inequality can also be used to verify long-
distance quantum communication with device-independent security using mechanical
systems.
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6.2. SUPPLEMENTARY INFORMATION

EXPERIMENTAL SETUP
A sketch of the fiber-based setup used in the main text is shown in Figure 6.4. The pulse
generation consists of two tunable diode lasers (Santec TSL550 and Toptica CTL1550),
which are stabilized at the sidebands of device B using a wavelength meter. We suppress
high frequency noise on both laser through optical filtering (linewidth ∼50 MHz), before
we generate the drive pulses using acousto-optic modulators (pulse length ∼40 ns). The
interferometer is formed by a variable ratio coupler and a calibrated 50:50 coupler (de-
viation below 3%). The interferometer has a free spectral range of 1.2 GHz and is phase-
stabilized with a home built fiber stretcher. The EOM is used to select a desired phase on
a fast timescale and simultaneously to compensate the frequency mismatch of the me-
chanical devices of ∆νm = 2.3 MHz. This mismatch is small enough to be compensated
by a linear phase sweep during the pulses without the need of a serrodyne drive.

In order to achieve high efficiencies in our detection paths we use a home-built
freespace filtering setup. Each filter line consists of two linear cavities which are actively
stabilized to the resonance of the devices. The total detection efficiency for optomechan-
ically scattered photons from device A is 3.4% for detector 1 and 2.9% for detector 2. The
efficiency for device B is 2.9% for detector 1 and 2.3% for detector 2. The total loss budget
consists of various contributions: photons that are created in one of the optomechani-
cal cavities are transfered to an on-chip silicon waveguide with efficiencies of 65% and
55% for devices A and B, respectively. The transmission from the waveguide to the out-
put of the circulator (59% and 55%) is dominated by waveguide to fiber coupling losses.
The rest of the losses are due to a finite transmission through filters, optical components
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Figure 6.4: (a) Sketch of the setup. We first generate blue and red pulses that drive the optomechanical interac-
tions. The devices are each placed in one arm of a fiber interferometer realized between a variable ratio coupler
(VRC) and a 50:50 beamsplitter. We stabilize the overall phase with a fiber stretcher such that we can select par-
ticular phase settings with our EOM in arm A. The optomechanically generated photons are filtered from the
drive pulses before finally being detected on single-photon superconducting nanowire detectors (SNSPDs).
(b) Interferometer visibility. We detune the filter locking point from the device resonance such that we are only
sensitive to pump photons that leak through the filters. Here we plot the rate of pump photons detected with
detector 1 (orange) and detector 2 (green) as a function of phase difference of the interferometer arms. We
observe the expected 2π periodicity with an interference visibility of 98.4%. The difference in amplitude stems
from different degrees of suppression of pump photons through the two filter lines.

needed for feeding continuous locking light and finite detection efficiency of SNSPDs.

In order to evaluate the quality of our interferometer we record the first order inter-
ference of our lasers. For this, we detune the filters by ∼2 GHz from the optomechan-
ically scattered photons, such that we are only sensitive to leaked pump photons. We
then lock the interferometer with the fiber stretcher and sweep the phase using the EOM
as we do for the visibility sweep in Figure 6.1. The visibility we obtain of 98.4% matches
well with the independently measured short term fluctuations of the interferometer lock
of around ∼ π/25 [46]. The main cause of these fluctuations is noise that is picked up by
the fibers inside the dilution refrigerator stemming from the pulse tube cryo cooler.

PUMP FILTERING AND FALSE COINCIDENCES

To estimate the effect of erroneous coincidence clicks that do not stem from the op-
tomechanical state, we perform calibration measurements to estimate the role of leaked
drive photons. To do this, we slightly detune the filters away from the frequency of the
optomechanicaly scattered photons, such that they are reflected from the filters and do
not reach the SNSPDs. We find that during the main experiments around 17% of red
counts detected on detector 2 are in fact imperfectly filtered drive photons. For detec-
tor 1 this number is around 7%. To understand this asymmetry, we note that the cavities
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Figure 6.5: Spectroscopy of optomechanical devices A (green) and B (orange). Left: Optical cavity reflection
spectrum of the cavities. Right: Mechanical resonances of the two devices.

in front of detector 1 both have linewidths of ∼35 MHz, while the ones in front of de-
tector 2 have a slightly larger linewidth of ∼45 MHz. We estimate that perfect filtering
would enable us to obtain roughly 12% higher cross correlation values for the individual
devices. Similarly, we measure that less than 2% of the detected photons during the blue
pulses are leak photons.

The asymmetry in pump suppression has additional consequences for the experi-
ments in which we drive the devices simultaneously. The total rate of leak photons varies
with the selected phase setting φr. The angular dependency is proportional to the sum
of the two curves in inset (b) of Figure 6.4. These unwanted photons result in additional
coincidences in the second order interference of the main experiment, hence they dis-
tort the visibility sweeps of Figure 6.2. The purely sinusoidal fits are not capturing this
accurately and therefore mostly serve as a guide to the eye. The values of the correlation
coefficients E(φb,φr) in Table 6.1 are affected in the same way. We measure at angles
φr = 0.087π and 0.587π, of which the latter suffers more from the imperfectly filtered
drive pulses. This is the main reason of why we observe a reduction in the Bell param-
eter S compared to the expected results from the visibility V in figure 6.2 alone. Dark
counts on the other hand are low enough (around 15 Hz) to only contribute by less than
1% to the detection events.

DEVICE FABRICATION AND CHARACTERIZATION
The optomechanical devices are fabricated from silicon-on-insulator wafers with a de-
vice film thickness of 250 nm as described in [27]. In order to reliably find identical de-
vices on distinct chips, we optimized the electron-beam doses throughout the lithog-
raphy step, which allowed us to obtain a distribution of only 1 nm of the optical res-
onances. To further reduce the variability between different chips, we first fabricate a
single large chip, fully process it, and then cleave it into smaller pieces as a last step.
This optimized procedure results in two chips with excellent overlap of the optical reso-
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Figure 6.6: Absorption heating and mechanical decay. Heating dynamics of device A (green) and device B
(orange) from a pump-probe experiment are plotted. We excite the devices with a blue pulse and read out
the mechanical state after a variable delay ∆τ. Thermal phonons due to absorption of the blue drive occupy
the mode on a timescale of several hundreds of nanoseconds, after which the excitations decay to the cold
environment with the mechanical lifetimes.

nances. Unlike in previous experiments [31], our fabrication method allowed us to per-
form the experiments without the need for serrodyne shifting of the photon frequencies
in one of the arms of the interferometer but rather only apply a small linear ramp signal
to the red and blue pulses using the EOM in arm A.

We characterize the optical resonances by sweeping a continuous-wave part of our
laser and recording the reflected intensity resonances (cf. Figure 6.5(a)). As we use re-
flectors at the end of our waveguides (see Figure 6.1), we effectively couple in a single
sided way to our devices and therefore expect to see resonances as dips in the reflected
light. The measurements of the mechanical resonances are performed by locking the
laser to the blue sideband of the optical resonances, amplifying the reflected light in a
fiber amplifier and then detecting the optomechanically generated sideband on a fast
photodiode (Figure 6.5(b)).

To evaluate the absorption heating dynamics, we perform a pump-probe experiment
with the individual devices. Here we excite the devices with a blue and probe with a red
drive pulse after a variable delay ∆τ, see Figure 6.6. The pulse energies are chosen sim-
ilarly to the ones in the main text. As already observed in previous work [27, 31, 38], the
devices see absorption caused heating with a rise time of several hundreds of nanosec-
onds. The highest temperature is reached in both cases at a delay of around 1 µs, after
which the devices decay with their intrinsic quality factors. We fit the excitation dynam-
ics di (∆τ) of the two devices (i = A, B) with a phenomenologically motivated double
exponential model of the form di (∆τ) = ai e−∆τ/τi −bi e−∆τ/ηi +ninit,i [31]. We can extract
the energy lifetimes of our devices as τA = 3.3±0.5 µs and τB = 3.6±0.7 µs. Note that the
final decay level ninit,i does not represent the true base temperature, as we still observe
counts from the intra-pulse heating. Nevertheless, we can bound the occupancy ninit,i
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CHSH setting Trials Heralding clicks n00 n01 n10 n11

(1,1) 597302527 645858 708 194 175 611
(1,2) 500363903 546488 606 162 164 521
(2,1) 622224596 680260 752 212 185 589
(2,2) 540137661 592728 170 586 590 198

Table 6.2: Recorded coincidence clicks of the main experiment. Individual trials are performed every 50 µs.
Heralding clicks are the detected photons scattered by the blue pulse. Coincidences ni , j are clicks that were
registered after getting a heralding event in the same trial, with i , j indicating the detector for the blue and red
scattered photons.

from above using the asymmetry in the click rates of blue and red sideband scattered
photons Cb,i and Cr,i as ninit,i =Cr,i /(Cb,i −Cr,i ) [38]. We perform the measurements for
blue and red pulses individually with a duty cycle of 50 µs each. For device A, we deter-
mine the initial occupation to be ∼0.07 phonons if measured on detector 1 and ∼0.09
phonons if measured on detector 2. Device B has similar apparent occupations of ∼0.06
phonons on detector 1 and ∼0.09 phonons if measured on detector 2. The difference in
the measurements on the two detectors reflects the different amount of leak suppression
as discussed above. However, both measurements also contain the intrapulse heating
detection events, meaning we expect the real occupancy in the dark to be below these
extracted numbers.

STATISTICAL ANALYSIS

The statistical analysis for the CHSH inequality is done using the same techniques as
Ref. [31]. We apply binominal statistics on the number of coincidence events ni j in
Equation (6.4) and generate discrete probability distributions. We then treat the corre-
lation coefficients E as non-trivial functions of two random variables (nsame = n11 +n22

and ndiff = n12 +n21) and numerically find their probability distributions via the cum-
mulative density function method. We calculate the probability distribution for the Bell
parameter S as a convolution of the probability distributions of the four correlation coef-
ficients. Finally we calculate the expectation value and error bounds (±34% confidence
interval) by numerical integration of the resulting probability density function.

The data for the main experiment was acquired in with approx. 500−620 million trials
per CHSH setting. Together with the duty time of 50 µs, this amounts to pure measure-
ment times of 7.0− 8.6 hours per setting, or ∼31 hours in total. This time is excluding
additional overhead that is needed to re-lock the filters or manage the acquired data.
The total actual measurement time is about a factor of two larger. The data was taken
in intervals of 20 minutes and the CHSH settings were cycled after each interval. During
the experiment, a total of 6423 photon pairs were detected, which amounts to roughly
210 successful trials per pure measurement hour.
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7
CONCLUSION

In this chapter, I will discuss what challenges have to be solved in order to enable further
progress of optomechanical crystal devices.

There are several ways integrated optomechanical structures with GHz frequency
can have an impact of quantum technologies. We have shown in our work that it is
possible to convert mechanical excitations with frequencies around 5 GHz to optical
excitation at 190 THz, while preserving the non-classicality. This is an important step
towards microwave-optical transducers. Still with devices presented in this thesis low
conversion efficiency between optics and mechanics was attained. The main limitation
is due to optical absorption that limits the amount of pump power that can be used for
readout, without heating up device substantially.

Other application would be quantum repeaters based on nanobeams. Important
step has been already demonstrate by generating entanglement between nanobeams
on different chips using telecom wavelength[1]. Same as previous example quantum
networks based on nanobeam are currently prohibited by absorption. We see from two
applications presented that the next main step for gigahertz optomechanical crystals
will be to demonstrate high conversion efficiency between phonons and optical pho-
tons without added thermal noise, by reducing optical absorption or its effects on me-
chanical state. I will briefly outline a few possible directions that could improve current
performance.

If one wishes to keep the OMC nanobeam geometry some of the options would be
following. One can experiment with different materials and their surface terminations.
Once photons are absorbed in silicon, electron-hole pairs are generated. Potentially
these can be collected in solar cell fashion before energy is lost as heat. Short lifetimes
of excited electrons in silicon photonic structures may prohibit this[2].

Improved performance can be expected by optimizing pulse sequence. This has not
been addressed in this thesis. Shorter pulses might enable lower number of thermal
photons for same readout efficiency. Still this will not prevent delayed heating from a
laser pulse.

Because of their one dimensional nature, nanobeams have a bad thermal connection
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with the rest of the chip. Therefore once heat is generated inside nanobeam it takes a
while for it to leak into the substrate. During this time it can start populating nanobeam
breathing mode, which we wish to avoid. A natural way to approach this problem is to
consider 2d optomechanical resonators and achieve a better thermal connection[3].

Even better thermal properties can be achieved with surface acoustic wave mechan-
ical resonators[4]. Plus those can be efficiently interfaced with microwave signal. The
problem is designing an optical cavity having good overlap with mechanical mode. Large
mode volume might prevent coupling rates as high as in nanobeam.

Coupling the mechanical resonators to microwave cavities can have more upsides
than just wavelength conversion. Potentially microwave cooling the silicon nanobeam
would be a way to restart it into the ground state without waiting for a long time for
absorption induced phonons to decay. One can also dream of transferring the state of
mechanical resonator to microwave resonator temporarily before absorption kicks in.

Although the lifetime of nanobeams can be extremely long, absorption limited the
life of quantum excitation in these structures up to a few hundred nanoseconds in our
experiments. Preserving optically created excitation inside the nanobeam for much longer
time is a necessity. Even the if absorption problem is not solved one can hope to achieve
storage of heralded phonon for long time by sacrificing the generation rate. Still, this is
probably not helping coming closer to actual applications.

If absorption issue is solved, one can hope for devices that have long lifetime, high
readout efficiency, high entanglement generation rate, a possibility for multiplexing.
Also, active cooling of the device using red-detuned light would become a possibility
of making nanobeams even more attractive for applications.
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8
APPENDIX

8.1. FABRICATION FAILURES AND HINTS
In this section I would like to show several figures of fabrication that went wrong and
share few fabrications tips.

As mentioned before the RIE ICP etch rate of silicon can drift over a timescale of
weeks, so it is smart to check it occasionally. Our etch chemistry does not etch silicon
dioxide. Once all silicon is etched away from the top, ions will start etching silicon side-
ways (Fig. 8.2(b)). Etching SOI with SF6 +C4F8 plasma can be solution to this problem,
but carbon based passivation used in this process is much harder to remove.

Choosing bad combination of parameters for EBL can lead to disaster (Fig. 8.1(a)). If
for technical issues one has to change any of the parameters (beam current or aperture)
it is best to do a sweep of a beam step size and dose.

Multipass exposure technique showed to be much more resilient to EBL machine is-
sues. We can simply expose the pattern several times (3-5), with a dose that is roughly
that many times smaller. It is important not to change the main field of the EBL. Even
when writing within the same main-field, drifts can occur between exposures if the pat-
tern takes a long time to write (Fig. 8.2(a)). Therefore it is best to expose each nanobeam
fully with multipass before moving to the next device.

8.2. MEASURING INPUT COUPLING OF PHOTONIC RESONATOR
As described in Chapter 3 in order to determine whether the photonic cavity is under
or over-coupled one should perform the measurement that is sensitive to the phase of
reflected light[1]. This can be done by using setup showed in Fig. 8.3. We send amplitude
modulated light, such that carrier and one sideband are fully off-resonant. That way they
can be used as a phase reference. The second sideband is used to probe the resonance.
When these three waves are detected on photodiode the detected signal at modulation
frequency will depend on amplitude and phase response of the cavity.

Laser light (frequency ω, amplitude A) is weakly amplitude modulated (with fre-
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1µm

Figure 8.1: SEM image of fully fabricated nanobeams that were exposed with (a)too low and (b) too high EBL
dose

Figure 8.2: (a) Occasionally nanobeams written with multipass technique looked as presented here. On this
particular chip we had nanobeams exposed in two different ways: 1.expose single nanobeam multiple times
and then go for next one. 2. expose nanobeam once, then few more nanobeams also once and go back for
the initial one and repeat process multiple times (all nanobeams were in the same mainfield). Only devices
exposed with the second technique had the distortion. This make us believe that this distortion of holes comes
from EBL machine drift during time delay between exposure passes in multipass techniques. (b) Cross section
SEM of a trench etched in silicon when etching was not stopped on time. Resist has been removed with DMF
before taking SEM image.

quency ωa) using Electro-Optic Modulator (EOM) producing the signal:

S = A cos(ωt )+a cos([ω+ωa]t )+a cos([ω−ωa]t )

where a is amplitude of sidebands created by modulation. When reflected from the pho-
tonic resonator, the amplitude and phase of one of the sidebands will be changed due to
cavity response (Chapter 3):

S = A cos(ωt )+a cos((ω+ωa)t )+a
√

R(ωa) cos((ω+ωa)t +θ(ωa))

We detect these waves on photodiode giving the signal V that is proportional to S2. Since
we are driving the EOMs with VNA and detecting only terms that rotate with ωa :

V = Aa cos((ω+ωa)t )+ Aa
√

R(ωa) cos((ω+ωa)t +θ(ωa))
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Figure 8.3: Setup for measuring the phase response of the cavity. Light from diode laser(Santec TSL550) is
modulated using an amplitude electro optic modulator(ixblue MX-LN-10) and sent through circulator to the
photonic cavity. Field reflected from the cavity is sent to fast photodiode(ET-3500AF). Vector Network Anal-
yser (VNA) is used to drive the EOM and detect signal from photodiode. Additionally, polarization controllers
should be used for adjusting the polarization coming into the EOM and device. Inset: Carrier and two side-
bands (red) are reflected back to photodiode. As we sweep the modulation frequency with VNA the right side-
band will probe the spectrum of the optical cavity.

We plot this result in Fig. 8.4. The phase of this signal with respect to signal that modu-
lated EOM can be determined using VNA. We can see that it contains the phase response
of the cavity (θ(ωa)) but because of the second sideband, two are not equal. Still dif-
ference between the minimum and maximum of the phase is a monotonic function of
coupling and we can determine whether the cavity is over- or under-coupled.

We can also determine the coupling regime from the amplitude of the detected sig-
nal. This can be understood as following. When the cavity is critically couple no light
on resonance is reflected, therefore we expect half of the signal when one sideband is on
resonance compared to when none of the three tones are on the resonance (all three re-
flected). As we enter the over-coupled regime cavity shifts the phase such that the prob-
ing sideband is the opposite phase than other one, leading to even lower signal. One can
look at this as now part of our signal is transformed to phase modulated. Sideband that is
probing resonance is smaller because of the amplitude response of the cavity and there-
fore we still see the signal that comes from amplitude modulation. As we approach the
infinitely over-coupled regime, the amplitude of the RF signal goes to 0 at resonance, as
two sidebands are out of phase and becoming the same in size. Calibration of VNA can
be done by locking laser more than 10 GHz away so that all three waves are reflected.
Also this technique assumes that reflection is flat around the resonance, such that all
waves are equally reflected when off resonance. Erbium doped fiber amplifier (EDFA)
can be used in front of photodiode to increase the signal. Power coming into the cavity
should be small enough to avoid thermo-optic effects. At high RF powers higer order
sidebands might corrupt the measurement.

Using this phase sensitive measurement technique we can determine the collection
efficiency of optical cavity to the waveguide as shown in Fig. 8.5 for a set of devices. If
one has ability to sweep the coupling between the waveguide and device, all parameters
can be determined without the need for the technique presented here(just from inten-
sity response for various κe ). But this would rely on the (maybe true) fact that intrinsic
quality factor is the same for all devices.
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(a) (b)

Figure 8.4: (a)Amplitude of the RF signal detected using setup in Fig. 8.3 as a function of the detuning of the
probing sideband. Cavity parameters are: intrinsic linewidth κ0 =800 MHz and extrinsic coupling 600 MHz,
800 MHz, 1200 MHz for blue, orange, green line respectively. We can see that depth of resonance keeps increas-
ing with external coupling even above critical coupling regime. (b) Phase of same RF signal,cavity parameters
and color coding.

8.3. EFFICIENT FIBER COUPLING INSIDE A DILUTION FRIDGE
Coupling light with HF pulled fiber usually requires an imaging system. Installing mi-
croscope inside the fridge is possible but not a straight forward task[3]. Still it is possible
to align the tapered fiber to waveguide on the chip inside the dilution fridge without a
microscope following the steps given in Fig. 8.6. Alignment is done at T = 4 K before
the condensing. If mounted under angle, the tapered fiber can be used to address also
devices that are not on the edge of the chip. We have demonstrated this with setup that
includes microscope but it should work without microscope as well as long as one uses
positioning stages with position encoding and know how far from chip edge the devices
are. We have measured a single pass efficiency above 0.9 inside dilution fridge. Prob-
lem with this way of coupling is that the fiber can occasionally slip of the waveguide
even without intentional movement, depending how stable is the setup. We plan to in-
vestigate this problem further. The fiber can break if one runs into substrate, but being
careful can result in very reliable alignment. Some softer materials can have an issue
that the fiber rips off the waveguide. We saw this ocassionally happening with gallium
arsenide waveguides.
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(a) (b)

Figure 8.5: (a) Measured collection efficiency on set of devices with different spacing between the waveguide
and nanobeam. Waveguide reflector is placed such that there is no offset along the waveguide between reflec-
tor holes and nanobeam holes. Tapering of the reflector is done as described in [2]. (b) Total decay rate of same
devices.

oxide

device layer

substrate 1

2

3 4

x

z

Figure 8.6: Simple procedure for aligning tapered fiber in fridge. Before cooling down one aligns the chip
roughly to the substrate such that the reflected light can be detected. At 4K take following steps. 1. Approach
the chip. As we do this amount of reflected light increases. The periodicity of interferometer formed by chip
and fiber can be used to estimate the distance. 2. After approaching to within 20 µm, one can move up until
reflection is gone and that way find the top surface of chip. 3. Move fiber about 40 µm in negative x direction
and lower it until small reflection from chip surface is observed. 4. Drag the fiber across the chip surface until
reflection is gets a sudden change. This enables to determine more precisely the side surface. Steps 3 and 4
can be avoided, specially if there is a lot of chipping due to dicing of chip. Last step is to try to couple to the
device, although we have no information where the device is in y direction. Therefore one has to try several
times at different locations. It is therefore advisable to have high density of devices on the chip. Some of them
can be placed only as markers, cause as soon as one device is located, position of the rest is known.
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SUMMARY

This thesis explores the possibility of controlling the quantum states of high frequency
mechanical resonators using infra-red laser pulses.
Chapter 1 gives an overview of quantum technologies based on mechanical resonators
relevant for this thesis.
Chapter 2 provides the basics of the theoretical background of optomechanics. The
Hamiltonian that describes the interaction between the moving mirror and electromag-
netic waves will be described. The second part of the chapter will deal with methods
borrowed from quantum optics and used to demonstrate non-classical behaviour of a
mechanical resonator.
Chapter 3 presents a physical implementation of optomechanics Hamiltonian in form
of silicon nanobeam devices. Additional hardware that needs to be integrated with op-
tomechanical devices in order to perform experiments will be described. This includes
optical waveguides and fibers used for coupling light into the cavity. We will start the
discussion on how effects beyond simple optomechanics model impact these devices.
Chapter 4 describes methods used to microfabricate nanobeam devices on a chip. This
chapter aims to give tips and hits toward the successful fabrication of optomechanical
devices.
Chapter 5 presents the results of an experiment demonstrating non-classical behaviour
of a single optomechanical device. We will use a heralding scheme to prepare the non-
classical state of mechanical resonator and use optical detection to confirm its non-
classicality.
Chapter 6 describes the measurement of Bell inequality between two optical and two
mechanical modes.
Chapter 7 is the conclusion chapter, where I discuss the results of experiments pre-
sented, as well the potential directions of future experiments and how control over quan-
tum state of mechanical resonators can be improved.
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SAMENVATTING

Dit proefschrift onderzoekt de mogelijkheid om kwantumtoestanden van hoogfrequente
mechanische resonatoren te controleren door middel van infrarode laserpulsen.
Hoofdstuk 1 geeft een overzicht van de kwantumtechnologieën gebaseerd op mechani-
sche resonatoren die relevant zijn voor dit proefschrift.
Hoofdstuk 2 geeft de basis van de theoretische achtergrond van de optomechanica. De
Hamiltoniaan die de interactie tussen een bewegende spiegel en het elektromagnetisch
veld beschrijft, zal worden beschreven . Het tweede deel van dit hoofdstuk gaat over me-
thodes uit het veld van de kwantumoptica die gebruikt worden om niet-klassiek gedrag
van een mechanische resonator aan te tonen.
Hoofdstuk 3 bevat de implementatie van de optomechanische Hamiltoniaan voor ap-
paraten gebaseerd op Silicium nanobalken. Extra apparatuur die nodig is om experi-
menten te doen met optomechanische apparaten, zal worden beschreven. Dit omvat
optische golfgeleiders en glasvezels die gebruikt worden om licht naar de optische holte
te koppelen. We zullen een begin maken aan de discussie over hoe effecten die verder
gaan dan het simpele optomechanische model deze apparaten beïnvloeden.
Hoofdstuk 4 beschrijft methodes die gebruikt worden om nanobalken te maken op een
chip. Het doel van dit hoofdstuk is om tips en hits te geven voor de succesvolle fabricage
van optomechanische apparaten.
Hoofdstuk 5 bevat de resultaten van een experiment waarin het niet-klassieke gedrag
van een enkel optomechanisch apparaat gedemonstreerd wordt. We gebruiken een aan-
kondigingsschema om de niet-klassieke staat van de mechanische resonator te maken,
en gebruiken optische detectie om te bevestigen dat de staat niet-klassiek is.
Hoofdstuk 6 beschrijft de meting van de Bell-ongelijkheid tussen twee optische en twee
mechanische eigentoestanden.
Hoofdstuk 7 is het concluderende hoofdstuk, waar ik de behaalde resultaten bediscus-
sieer, evenals potentiële richtingen voor toekomstige experimenten en hoe de kwantum
controle van mechanische resonatoren verbeterd kan worden.
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