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1 Introduction 

The paper cited in this Appendix is called “Engineering and Numerical Tools for Explosion Protection of 

Reinforced Concrete” (Riedel et al., 2009). Numerous experiments are performed and compared with 

engineering tools. The experiments are conducted at the Ernst-Mach-Institut (EMI) in Germany using a 

shock tube. A shock tube simulates a blast load under controlled conditions. Two types of experiments are 

performed: one that represents a close-in detonation and one that represents far field detonations. The far 

field detonation is what this Appendix focusses on. The engineering tool used for the far field detonations 

is a pressure-impulse diagram. 

The geometry of the specimen is indicated in Figure 1.1. The reinforcement has a 10 mm concrete cover. 

The reinforcement type BSt 500S is used, which is equivalent to B500A. The ultimate strain of this type of 

reinforcement may be 2.5%. In contrast to the commonly used reinforcement type B500B, BSt 500S is 

much less ductile. 

 

Figure 1.1: Geometry of the specimen 

This Appendix presents the analysis of the experiment with the finite element method (FEM) and the finite 

difference method (FDM). Both methods are compared and where needed adjusted to fit the experiment. 

Besides the comparison between FEM and FDM and the calibration with the experiment, this document 

provides more insights in the analysis than Appendix II and Appendix III, such as the pressure-impulse 

diagram and a more in-depth explanation on the DIANA input. 

 

The experimental results are presented in chapter 2. After that, the analysis input is addressed in chapter 

3 (parameters) and chapter 4 (applied force). The finite difference model (FDM) results are presented in 

chapter 5 and are verified by the finite element method (FEM) analysis in chapter 6. The results are 

discussed in chapter 7. 
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2 Experiment results 

The obtained results in the experiment are presented in this chapter. The goal is to recreate these results 

in the FEM model and FDM model. 

2.1 Observations 

Figure 2.1 displays the deflection curves in time of the mid-point of the beams. As Table 2.1 clarifies, the 

beam with the highest load is called EPR4 and the beam with the lowest load is called EPR1. EPR1 and 

EPR2 both remain intact, suggesting that their structural behaviour is elastic throughout the whole 

analysis. EPR1 is not analysed, because EPR2 will provide enough insight in the elastic behaviour of the 

beam. EPR4 is failing, as shown in Figure 2.2. Although EPR3 is showing cracks, it has not snapped 

through.  

 

 

Figure 2.1: Experimental deflection-time history graph 

Table 2.1: Applied impulse and pressure on the specimens 

Beam Peak pressure Pd Impulse I Scaled distance Z 

EPR1 52 459 7.3 

EPR2 105 1284 5.0 

EPR3 155 2154 4.1 

EPR4 208 3038 3.6 
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Figure 2.2: Walls after the blast. Top wall: NRC-3. Bottom wall: NRC-4 

2.2 Pressure-Impulse diagram 

(Riedel et al., 2009) analyses the beam with the engineering tool EMI-BEAUX. This tool creates a 

pressure-impulse (PI) diagram. A PI diagram is a quick method to predict damage on a structure. Figure 

2.3 shows the PI-diagram that is obtained in the paper. Anything above the dotted line is the region where 

damage is expected.  

 

Figure 2.3: PI-diagram for the experiment parameters 

The PI-diagram is shown in a log-log plot. The line has two asymptotes: an impulse asymptote and a 

pressure asymptote. The region where the impulse is high and the peak pressure low, is the quasi-static 

region. The region where the impulse is low and the peak pressure high, is the impulsive region. The 

region in between is called the dynamic region. The results of the experiment are located in the dynamic 

region, as indicated in Figure 2.4. This figure is adopted from (Abedini et al., 2018). The far field design 

range is almost always in the dynamic region. Near-field blast analyses are more likely to be in the 

impulse region. 
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Figure 2.4: PI diagram 

The PI-diagram is somewhat related to the failure mechanism. A sudden high pressure leads to more 

brittle and localised failure. Local failure is typical for the impulse region. Flexural failure is in most cases 

the governing failure mechanics for the dynamic region and quasi-static region. Figure 2.5 illustrates a few 

failure mechanisms for different locations in the PI-diagram. This figure is adopted from (Abedini et al., 

2018). 

 

 

Figure 2.5: Failure mechanisms 

The PI-diagram can be calculated by solving various mass-spring systems while changing the pressure 

and impulse each time. This approach is very time consuming. An alternative is the energy balance 

method. This is the most used method to derive the PI-diagram. It is based on the conservation of energy 

principle and works as follows: 

• The impulse asymptote is obtained by assuming that the initial total energy (TE) induced by an 

impulse is in the form of kinetic energy (KE) (2.1). The total energy is a constant throughout the 
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analysis. At the point of the maximum deflection, all the energy is stored in the strain energy (SE). 

An expression for the impulse asymptote (2.3) is derived by equating strain energy to the kinetic 

energy (2.2). 

 𝑇𝐸 = 𝐾𝐸 + 𝑆𝐸 →  𝑇𝐸(𝑡 = 0) = 𝐾𝐸(𝑡 = 0) + 0  (2.1) 

 𝐾𝐸(𝑡 = 0) = 𝑆𝐸 →  
𝐼2

2𝑚
=

1

2
𝑘𝑢𝑚𝑎𝑥

2 (2.2) 

 
𝐼

√𝑘𝑚 𝑢𝑚𝑎𝑥

= 1 (2.3) 

• The pressure asymptote or the quasi-static asymptote is obtained assuming a constant load 

throughout the analysis. By equating the total work done at the point of maximum deflection to the 

strain energy (2.4) at the point of maximum deflection, the pressure asymptote is derived (2.5). 

 𝑊𝐸 = 𝑆𝐸 →  𝐹𝑢𝑚𝑎𝑥 =
1

2
𝑘𝑢𝑚𝑎𝑥

2 (2.4) 

 
𝐹

𝑘𝑢𝑚𝑎𝑥

=
1

2
 (2.5) 

• The dynamic regime in the PI-diagram can be obtained by the correlation formula (2.6) suggested 

by (Baker et al., 1983). 

 𝑆𝐸 = 𝑊𝐸 tanh2 √𝐾𝐸/𝑊𝐸 (2.6) 

 

Figure 2.6 is showing two PI plots. The first one is the PI-diagram for three difference pressure functions. 

The previously derived asymptotes are observable. The second figure is another pressure function, typical 

for a roof. The pressure asymptote tends to shift up to 1.0 when the rise time to load duration ratio 

increases. This is because the load is applied relatively slowly, resulting in no dynamic amplification, as 

stated by (Krauthammer et al., 2008). 

 

 

Figure 2.6: PI diagram for different loading schemes (Krauthammer et al., 2008) 
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3 Parameters 

The parameters in the dynamic analysis are strain rate dependant. The strain rate is extracted from the 

analysis and can be different throughout the analysis. An average value for the strain rate is used 

according to (3.1) and (3.2), where tE is the time to yield the reinforcement bars. Usually, it is enough to do 

one iteration: in the first analysis a reasonable strain rate is assumed. From this analysis a better strain 

rate can be extracted that is used in the second analysis. 

 𝜀�̇�,𝑎𝑣𝑔 = 0.002/𝑡𝐸 (3.1) 

 𝜀�̇�,𝑎𝑣𝑔 = 𝑓𝑑𝑦/(𝐸𝑠𝑡𝐸) (3.2) 

  

Table 3.1: Dynamic parameters 

Parameter Units EPR4 EPR3 EPR2 

Time to yield tE s 0.0065 0.0085 0.0155* 

Concrete strain rate ε̇c,avg s-1 0.308 0.235 0.129 

Steel strain rate ε̇s,avg s-1 0.500 0.379 0.205 

DIFc - 1.25 1.24 1.22 

DIFt - 1.46 1.45 1.42 

DIFE - 1.27 1.26 1.24 

DIGGF - 1.00 1.00 1.00 

DIFGC - 1.25 1.24 1.22 

*The reinforcement in EPR2 does not yield. An interpolation is made as follows: εsy/εs,u,max*tu,max 

 
Table 3.2: Concrete properties 

Parameter Units EPR4 EPR3 EPR2 

Young’s modulus (static / 

dynamic) 
MPa 25750 / 32703 25750 / 32445 25750 / 31930 

Initial Poisson’s ratio - 0 0 0 

Mass density Kg/m3 2400 2400 2400 

Tensile curve - Hordijk Hordijk Hordijk 

Tensile strength (static/dynamic) MPa 2.56 / 3.74 2.56 / 3.71 2.56 / 3.64 

Fracture energy N/m 137 137 137 

Poisson’s ratio reduction - Damage based Damage based Damage based 

Compression curve - Parabolic Parabolic Parabolic 

Compressive strength MPa 33.00 / 41.25 33.00 / 40.92 33.00 / 40.26 

Compressive fracture energy N/m 34245 / 42906 34325 / 42464 34245 / 41779 
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Table 3.3: Steel reinforcement properties 

Parameter Units EPR4 EPR3 EPR2 

Young’s modulus MPa 200000 200000 200000 

Yield stress (static / dynamic) MPa 550 / 645 550 / 641 550 / 634 

Ultimate engineering stress 

(static / dynamic) 
MPa 594 / 691 594 / 688 594 / 680 

Ultimate engineering strain - 0.035 0.035 0.035 

The applied concrete and reinforcement stress-strain relationships are shown in Figure 3.1 and Figure 3.2. 

 

Figure 3.1: Concrete stress-strain relationship for the element length of 36.46 mm 

 

 

Figure 3.2: B500B stress-strain relationship 
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4 Applied force 

The pressure function in time is not given, so an assumption must be made. The pressure function is 

typically exponentially shaped and is given in (4.1).  

 𝑃𝑠(𝑡) = 𝑃𝑠𝑜 (1 −
𝑡

𝑡0

) 𝑒
−𝑏

𝑡
𝑡0 (4.1) 

Where: 

• Pso is the peak overpressure 

• t0 is the positive phase duration 

• b is the decay coefficient 

The impulse is calculated by integrating the pressure function over the positive phase duration. The result 

of this integral is given in (4.2). 

 𝐼(𝑡) = ∫ 𝑃𝑠(𝑡) 𝑑𝑡
𝑡

0

=
𝑃𝑠𝑜

𝑏2
(((1 − 𝑏)𝑡0 + 𝑏𝑡)𝑒

−𝑏
𝑡

𝑡0 + (𝑏 − 1)𝑡0) (4.2) 

The impulse and peak pressure are given in Table 2.1. Two variables remain unknown: the decay 

coefficient b and the positive phase duration t0. A reasonable assumption is made of those parameters. 

The used pressure functions are given in Figure 4.1. 

 

 

Figure 4.1: Applied pressure functions 

  

0

50000

100000

150000

200000

250000

0 0.01 0.02 0.03 0.04 0.05

P
re

s
s
u
re

 [
k
P

a
]

Time [s]

EPR2: t0=0.027 s / b=0.304 EPR3: t0=0.03 s / b=0.233 EPR4: t0=0.035 s / b=0.567



 
O p e n  

 

Appendix I FDM model 9 

 

5 FDM model 

5.1 Moment curvature relationship 

The M-κ graph is manually constructed and shown for the dynamic and static parameters in Figure 5.1. 

The M-κ graph found in the FEM analysis including dynamic parameters and with arc-length is included as 

a reference. There is a clear difference in the two methods. The manually constructed M-κ graph stops 

earlier because the concrete compressive capacity is reached. The M-κ graph in the FEM model stops 

when the reinforcement fails. 

 

Figure 5.1: Moment-curvature graph in the FDM analysis 

Table 5.1 

 Units Static EPR4 EPR3 EPR2 

Cracking bending moment kNm 4.46 6.42 6.38 6.26 

Cracking curvature 1/m 0.00159 0.00183 0.00183 0.00182 

Yielding bending moment kNm 27.64 32.24 31.87 31.64 

Yielding curvature 1/m 0.0355 0.0402 0.0397 0.0395 

Ultimate bending moment kNm 27.74 32.58 32.41 32.02 

Ultimate curvature 1/m 0.353 0.357 0.357 0.357 
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5.2 Force-displacement relationship 

Since the F-u graph is derived in a force-controlled manner, The F-u graph will flatten out after reaching 

the force where the reinforcement starts to yield. The F-u graph stops when the end of the M-κ is reached.  

 

Figure 5.2: Force-displacement graph in the FDM analysis 

Table 5.2 

 Units Static EPR4 EPR3  EPR2  

Cracking force kN 20.94 29.80 29.64 29.29 

Cracking deflection mm 0.521 0.593 0.594 0.596 

Yielding force kN 126.88 147.50 146.71 144.97 

Yielding deflection mm 11.24 13.04 12.98 12.73 

Ultimate force kN 126.88 148.99 148.19 146.44 

Ultimate deflection mm 24.64 32.78 32.88 32.13 

 

5.3 Single degree of freedom mass-spring system 

Where the FEM analysis implicitly includes the participating mass and participating load, it must be 

manually introduced in the SDOF mass-spring system by means of the participating mass factor KM and 

participating load factor KL. The mass factor and load factor are calculated using (5.1) and (5.2), where 

ϕ(x) is the normalised displacement function. 

 
𝐾𝑀 =

∫ 𝑚𝜙(𝑥)2𝐿

0
𝑑𝑥

𝑚𝐿
 (5.1) 

 
𝐾𝐿 =

∫ 𝑝𝜙(𝑥)
𝐿

0
𝑑𝑥

𝑝𝐿
 (5.2) 
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For the elastic case the mass factor is 0.50 and the load factor is 0.64. For the case with a plastic hinge in 

the middle the mass factor and load factor will approach 0.33 and 0.5 respectively. It is highly unlikely to 

ever reach the lower limit since the beam would fail before the lower limit is approached. 

Figure 5.3 is showing the mass factor and load factor for EPR4. The ones obtained for EPR3 and EPR2 

are similar. The factors start at the upper limit, this is where the beam is still elastic. Then cracking occurs, 

but the reinforcement is not yielding. This causes a drop in the mass and load factor and eventually 

stabilises. When the plastic hinge forms, at around the mid-point deflection of 13 mm, the mass and load 

factor drop again and continues to drop until the beam fails. 

 

Figure 5.3: Mass factor and load factor in the FDM analysis 

The mid-point deflection in time for EPR4, EPR3, and EPR2 are given in Figure 5.4. EPR4 is failing 

prematurely for two of the three analysed pressure functions. In the remaining analysis, the beams fail in 

the upwards deflection. 

 

Figure 5.4: SDOF mass-spring system results 
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6 FEM model (DIANA) 

6.1 DIANA input 

In addition to the previous mentioned input, DIANA needs some additional input. This is included in this 

chapter. 

6.1.1 Model 

The specimen is modelled as a class II beam with a symmetry axis (Figure 6.1). Table 6.1 and Table 6.2 

are specifying the finite elements in the model. 

 

 

 

Figure 6.1: Used FEM model 

Table 6.1: Used finite element type 

Element 

type 

No. of DoFs 

per node 

Interpolatio

n scheme 

Integration 

scheme 

Shape 

dimension 

No. integration points 

over thickness 

L13BE 3 Linear 
2-point 

Gaussian 
1D 19 

Table 6.2: Finite element type geometry 

Total no. of 

elements 
Element length 

Reinforcement 

eccentricity 
Element height Element width 

24 36.46 mm -48.5 mm 125 mm 620 mm 

 

Figure 6.2: Q20SH element 
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6.1.2 Concrete material model 

There are two main methods of modelling the cracking behaviour in concrete: discrete cracking and 

smeared cracking. In a discrete cracking model, the cracks are modelled as interfaces between elements. 

The crack location is thereby predefined. In a smeared model the cracks are spread out over an area, 

typically related to the element. Although a discrete cracking model should reflect the real behaviour of a 

structure better (when the exact crack locations are known), the smeared cracking model is the more 

popular choice in FEM. Regular continuum mechanics still apply in a smeared cracking model, which 

makes it more convenient to employ. Besides the suitability of the smeared cracking model in FEM, it is 

also convenient for the engineer to use. In a smeared cracking model, the crack location is undetermined 

on beforehand, which is most of the time the case. Secondly, a discrete cracking model requires input for 

the interface between elements, whereas a smeared cracking model follows the predefined constitutive 

relationship as the engineer is most likely used to. In DIANA this is also called the ‘total strain-based crack 

model’. The input required for this model is included in Table 6.3. 

Table 6.3: Additional required input for the total strain-based crack model in DIANA 

Parameter Units All beams 

Crack orientation - Rotating 

Crack bandwidth mm 36.46 (element length) 

Reduction due to lateral cracking - Vecchio and Collins 1993 

Lower bound reduction curve - 0.4 

Stress confinement model - None 

The chosen input for the total strain-based crack model is in accordance with RTD 1016-1:2020 (Hendriks 

& Roosen, 2020) and Model Code 2010 (Fédération internationale du béton (fib), 2013). In short, the 

chosen input is based on the following: 

• The constitutive relationship is evaluated perpendicular to the crack direction. The crack direction 

might rotate throughout the analysis. A rotating crack orientation takes this into account, while a 

fixed crack rotation keeps one coordinate system.  

• The crack bandwidth chosen equal to the element width due to the expected crack direction 

(through the middle).  

• The compressive strength of concrete starts to drop considerably after the occurrence of lateral 

cracks. The correction formula according Vecchio and Collins 1993 is used for the reduction of the 

concrete compressive strength due to lateral cracking 

• The compressive strength of confined concrete is increased according to Selby and Vecchio. The 

strength is only increased when applicable, therefore it is safe to use a stress confinement model 

in any case. 

6.1.2.1 Compressive behaviour in FEM compared with Eurocode 

NEN-EN 1992-1-1 (Normcommissie 351 001 "Technische Gronslagen voor Bouwconstruties",, 2011) 

prescribes the compressive strain at the maximum stress of 2‰ and the ultimate compressive strain of 

3.5‰. Defining prescribed strains in FEM software is inconvenient. This makes the results mesh 

dependant since the compressive fracture energy (area under the stress-strain curve) remains equal for 

any mesh size. Using an energy based concrete model for both tension and compression makes the FEM 

model mesh independent. Generally, this leads to a much larger ultimate strain of the discretised element.  

A comparison is made between the NEN-EN 1992-1-1 concrete compressive model and the ‘parabolic’ 

curve in DIANA. The compressive fracture energy of the NEN-EN 1992-1-1 concrete compressive model 
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is indicated in Figure 6.3. The elastic branch is accounted for, and the curve is limited by the ultimate 

compressive strain. The compressive fracture energy input for the parabolic curve in DIANA is only the 

area below the tension softening branch, without accounting for the elastic branch (Figure 6.4). Generally, 

the parabolic curve goes down to 0. The compressive fracture energy is scaled by the element length h. 

When the element length is less than 1 m, the compressive fracture energy of the element is enlarged 

compared to the input value. Considering that finite elements are usually much smaller than 1 m, the 

ultimate compressive strain of the element is much more than 3.5‰. For large elements (> ±800 mm) the 

curve might be limited in a similar manner as the NEN-EN 1992-1-1 concrete compressive model. 

 

 

Figure 6.3: Concrete compression stress-strain relationship according to NEN-EN 1992-1-1 

 

Figure 6.4: Concrete compression stress-strain relationship according to the parabolic curve 

The NEN-EN 1992-1-1 concrete compressive model is formulated in (6.1), (6.2) and (6.3). The 

compressive fracture energy of the NEN-EN 1992-1-1 concrete compressive model can be obtained by 

(6.4). 

 𝜎𝑐 =
𝑘𝜂 − 𝜂2

1 + (𝑘 − 2)𝜂
𝑓𝑐𝑚 (6.1) 

 𝜂 =
𝜀𝑐

𝜀𝑐1

 (6.2) 

 𝑘 = 1.05
𝐸𝑐𝑚𝜀𝑐1

𝑓𝑐𝑚

 (6.3) 

 𝐺𝑐,𝐸𝑁1992 = ∫ 𝜎𝑐

𝜀𝑐𝑢1

𝜀𝑐1

 𝑑𝜀𝑐 +
𝑓𝑐𝑚

2

2𝐸𝑐𝑚

 (6.4) 
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For the static material properties mentioned in Table 3.2, the compressive fracture energy of the NEN-EN 

1992-1-1 concrete compressive model is evaluated on 53966 Nm. This corresponds to the finite element 

length of 635 mm with the parabolic concrete compression curve in DIANA with the input compressive 

fracture energy of 34245 Nm (34245/0.635 = 53966).  

6.1.2.2 Lateral cracking and confinement 

The effects of lateral cracking and confinement are investigated by implementing them separately and 

observing differences in the results. In Figure 6.5, four graphs are included. Each one shows the influence 

of one parameter in relation to the reference model, where no additional effects are included. EPR3 is 

used to investigate the effects of lateral cracking and confinement. 

 

 

Figure 6.5: Effects of lateral cracking and confinement 
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At the time-step of 2 ms the deflection curve slightly jumps up for the model where the Vecchio and Collins 

1993 model with lower bound of 40% is applied. This jump is also visible in the model where the 

compressive strength is manually lowered. This indicates that the compressive strength is indeed 

decreased while employing the Vecchio and Collins 1993 model. The effects of the stress confinement 

seem minimal, but when it is combines with the Vecchio and Collins 1993 model it seems that both effects 

balance each other out. Despite the lack of these effects in the FDM, it is still comparable with the FEM 

model because of the little influence of these effects. 

6.1.3 Reinforcement steel material model 

The Von Mises plasticity model is used for the reinforcement steel. The additional input for DIANA in 

relation to the reinforcement steel model is included in Table 6.4. 

Table 6.4: Additional required input for the Von Mises plasticity reinforcement model in DIANA 

Parameter Units All beams 

Hardening hypothesis - Strain hardening (default) 

Hardening type - Isotropic hardening (default) 

To investigate whether DIANA uses the true stress-strain relationship or the engineering stress-strain 

relationship, a small test model is setup with a 1-meter-long steel bar. A prescribed deformation is applied 

to perform a displacement-controlled analysis. This is necessary to continue the analysis after yielding. 

The bar has Young’s modulus of 200000 MPa and a yield strength of 500 MPa. No hardening function is 

used since it is not necessary to conclude whether DIANA uses the true stress-strain relationship. The 

Poisson’s ratio is set on 0.3. An impression of the model is shown in Figure 6.6. 

 
Figure 6.6: Used specimen for the tensile test 

Three analyses are compared: one with physical nonlinearity (DIANA), one with physical and geometrical 

nonlinearity (DIANA) and one theoretical true stress-strain relationship. The analyses are shown in  

Figure 6.7. The addition of the geometrical nonlinearity in DIANA has effect. The stress gets larger than 

the prescribed maximum strength (yield strength) of 500 MPa. The only possible explanation is that 

DIANA indeed makes use of the area reduction that leads to a stress increase. 

The true stress and true strain are related to the engineering strain by (6.5) and (6.6). The true stress-

strain relationship deviates from the physical and geometrical nonlinear analysis in DIANA. However, in 

the experiment the ultimate strain is around 0.05. At this point the geometrical influence in DIANA is close 

to the theoretical true stress-strain. 

 𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(𝜀𝑒𝑛𝑔 + 1) (6.5) 

 𝜀𝑡𝑟𝑢𝑒 = ln(𝜀𝑒𝑛𝑔 + 1) (6.6) 



 
O p e n  

 

Appendix I FEM model (DIANA) 17 

 

 

Figure 6.7: Influence of geometrical nonlinearity 

6.2 Moment curvature relationship 

The analysis in DIANA must be force controlled since a displacement-controlled analysis is practically 

impossible. In a classical force-controlled analysis, the applied force cannot decrease. However, there is 

the option to turn on ‘arc-length control’. This is an algorithm that searches for an equilibrium path, 

allowing it to pass a certain limit point. The moment-curvature (M-κ) graph for the model with arc-length 

control is given in in Figure 6.8. The static M-κ graph is included to show the influence of the dynamic 

parameters compared to the static parameters. 

 

Figure 6.8: Moment-curvature relationship EPR4 (dynamic) and static 

Distinct points are visible in the moment-curvature curve. The first kink indicates cracking, and the second 

kink indicates yielding of the reinforcement.  
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6.3 Force-displacement relationship 

The force-displacement (F-u) graph is similar to the M-κ graph. The point of cracking and yielding of the 

reinforcement are well observable.  

 

Figure 6.9: Force-displacement relationship EPR4 (dynamic) and static 

6.4 Non-linear time history (NLTH) analysis 

The NLTH analysis is set up as follows: 

• Nonlinear effects: physical, geometrical, and transient. 

• Time steps of 0.00025 seconds 

• Iteration method: Secant. This is based on [NAFEMS], which states: ''Newton-Raphson controlled 

equilibrium iteration is not always an efficient way to perform equilibrium iterations, especially if 

cracking is involved. The approach works well where stiffness changes gradually, for instance in 

plastic deformation, but not for stiffness that can change suddenly. If there is brittle behaviour, the 

Secant method typically provides a more stable means to reach solution convergence.'' 

• Convergence norm: energy (tolerance: 0.001) 

The mid-point deflection graphs are included in Figure 6.10. Since the reinforcement is only placed at the 

tension side, the inward bending motion has much lower stiffness compared to the outwards bending 

stiffness.  
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Figure 6.10: NLTH analyses with DIFs 
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7 Discussion 

The reinforcement is only applied on one side of the beam. The inward deflection barely has any strength. 

Yet, the deflection curves in (Riedel et al., 2009) go way beyond the point of cracking. This is because the 

beam in the experiment is probably not fully restrained in the inward direction (negative deflection). 

Therefore, the focus in this appendix is on the first peak in the deflection curve. 

Chapter 3 shows the little influence on the DIFs when the strain rate is changed within the same order of 

magnitude. DIFs in the far field design range should be around the values presented in this Appendix. 

 

The constructed M-κ graph in python has good agreement with the FEM results from DIANA. The F-u 

graph of the FDM graph has a similar shape as the one obtained in DIANA but stops earlier. This is 

because the assumed plastic hinge length is shorter than the DIANA results. Considering the experimental 

observations, the F-u graph obtained in the FDM model is accurate. Figure 7.1 SDOF mass-spring system 

results with the experimental data. 

 

Figure 7.1: Comparison with the experiment 
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