Learning Interpretable
Reduced-order Models
for Jumping Quadrupeds

Gioele Buriani

s e~y 3-2)
[-

| A;-‘Ji.-mq—w'-—-n

- reemenn tomharug
7 e Y .o-y_-';n

e

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

Learning Interpretable Reduced-order Models for
Jumping Quadrupeds

Gioele Buriani, Jingyue Liu, Cosimo Della Santina

Abstract—This work introduces a novel methodology for the
development of interpretable reduced-order dynamic models
specifically tailored for jumping quadruped robots. Leveraging
Symbolic Regression combined with autoencoder neural net-
works, the framework autonomously derives symbolic equations
from data and fundamental physics principles capturing the
complex dynamics of jumping actions with high fidelity. This
approach significantly reduces model complexity while enhancing
interpretability, facilitating deeper insights for legged robotic ap-
plications. The efficacy and accuracy of the proposed models are
validated through comprehensive experimental studies, marking
a substantial advancement in the design of agile and efficient
legged robots. This research demonstrates the outperformance
of a learned 2D model compared to existing template models
such as the ASLIP. Also, an analysis of the dimensionality of the
learned model is conducted showing the overarching tradeoff
between accuracy and complexity. The method is validated on
different simulated quadrupeds and an actual hardware robot.

Index Terms—Quadruped Robots, Dynamic Modeling, Sym-
bolic Regression, Autoencoders, Machine Learning, Interpretabil-
ity, Reduced-order Models.

I. INTRODUCTION

N the summer of 2022, at a live concert in Milan, the

well-known Belgian artist Stromae was handed a cape by
a Gol quadruped robot right before he performed his hit
song Formidable. This event is just one example of how
legged robots, once confined to research labs, are now making
their mark in popular culture. This shift is a direct result of
the significant advancements in robotics technology in recent
years, a trend that is expected to continue.

In the pursuit of developing state-of-the-art technologies for
controlling legged systems, researchers are also endeavouring
to accurately model these complex systems. Since most control
strategies for these robots are model-based, having a precise
model is crucial.

However, modelling such dynamic systems is not straight-
forward. Leading companies such as Boston Dynamics tend
to keep their models proprietary. Even if these models were
accessible, their utilization would remain beset with obstacles.
The complete dynamic model, or the full-order model, of
such systems, would be inherently complex, encompassing
all dimensions of the robot. As a result, applying control
algorithms directly using these full-order models is imprac-
tical and computationally burdensome. Consequently, many
researchers now rely on simplified, two-dimensional reduced-
order template models [1] that capture the essential dynamics
of the robot, making it easier to develop control algorithms.
However, this simplification reduces the accuracy of the model
when describing the robot’s actual behaviour, as only a few

dimensions are actually tracked and others, such as the leg
joint angles, are disregarded.

Current research also shows an increasing dependence on
machine learning algorithms to directly learn dynamics mod-
els, often employing neural networks to map input-output rela-
tionships [2]. Despite their effectiveness in capturing complex
relationships, these models often are not easily understandable
or adjustable by humans, presenting challenges due to their
opaque nature.

This work aims to bridge the gap between full-order and
template models by learning dynamic models from data that
allow for a balance between complexity and accuracy. Ad-
ditionally, to address the challenge of interpretability, the
study employs Symbolic Regression to generate models as
symbolic equations, thereby enhancing understandability and
adjustability.

The contribution of this work is developing an algorithm
tailored to:

o Effectively reduce the dimensionality of dynamic sys-
tems, quadrupeds in this work, to a latent space that
adequately represents the overall body dynamics for the
jumping motions

o Express the dynamic model of such reduced systems in
an interpretable way through symbolic equations within
the latent space

o Validate the proposed methods through both simulation
and hardware experiment

According to the author’s knowledge, this research is one
of the first to explore symbolic reduced-order dynamic models
of legged systems. As such, it aims to represent an initial
step in this emerging field, opening avenues for numerous
advancements.

II. RELATED WORKS

The landscape of dynamic system modelling and control
for legged robots has witnessed advancements in recent years.
This section reviews some key approaches in the existing
literature, providing a comprehensive understanding of the
state-of-the-art methodologies employed in similar domains.

A. Parameter identification

Zimmermann et al. [3] addressed the challenge of integrat-
ing a non-proprietary robotic arm with a Spot quadruped,
where building a model of the robot was necessitated by
the quadruped’s opaque behaviour. Their focus was on pa-
rameter optimization rather than traditional machine learning
approaches [4], aiming to refine a pre-established dynamic

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

model by optimizing its parameters using measured data. This
method, while effective in subsequent control applications,
relies on predefined template models for basic dynamics,
limiting its adaptability to complex scenarios. The authors
suggest that employing more advanced learning methods may
yield a more accurate model, enhancing system performance
in such contexts.

B. Gaussian Processes

Chatzilygeroudis et al. [5] model a hexapod robot employ-
ing Gaussian Processes (GPs) [6], known for their ability to
quantify model uncertainty [7], [8]. Their approach integrates
a parameterized simulator within the GP framework, utiliz-
ing the simulator’s output as the mean function. Despite its
strengths in handling uncertainties, this method faces chal-
lenges with discrepancies between simulator predictions and
real-world data, particularly as system complexity grows. Ex-
ploring alternative approaches that learn reduced-order models
without prior knowledge may address these issues.

III. PRELIMINARY

This section presents some theoretical background relevant
to the subjects explored in the later sections of this paper.

A. Quadruped Dynamics

In quadruped robot modelling, the floating base dynamics
approach is widely used. This method, illustrated in Figure
1, conceptualizes the robot as a movable base (body), with
kinematic chains (legs) attached. This model becomes intricate

l!(i
* body frame B

CZ)——c;:E‘IILLgE\' HAA
o A

actuated joint coordinates

intertial frame |

Fig. 1: Depiction of a quadruped robot using floating-base dynamics.
Source: [9].

in quadrupeds due to their numerous leg joints, leading to a
total of 12 dimensions for the legs alone. Additionally, floating
base systems, being under-actuated, require an additional 6
degrees of freedom, without direct actuation, to describe the
robot’s position and orientation relative to an inertial frame
[10].

The system’s mathematical representation, adapted from
[11], can be outlined as

— |
q= LJ ; (D

where g; € R" represents the actuated joint coordinates for the
quadruped’s n joints and g, € RS denotes the un-actuated base

coordinates relative to an inertial frame, including the body’s
Cartesian position (z,y, z) € R3 and Euler angles (¢,0,) €
SO°.

The equations of motion for the robot interacting with its
environment are expressed as:

M(q)q + h(g,q) = "7 + JE(@), 6)
where
o M(q) € R6)x(n+6) js the mass matrix for the floating
base

e h(q,q) € R™*+6) includes centripetal, Coriolis, and
gravitational forces in the floating base system
« S = [Inxm Onxﬁ] serves as the selection matrix for
actuated joints, ensuring torques affect only the actuated
joints and not the un-actuated base coordinates
o 7 € R” is the vector of applied torques
o Jo € RFX("+6) g the Jacobian matrix for k linearly
independent constraints
e A € RF represents the constraint forces for these k
constraints
The complexity and high dimensionality of this system often
pose challenges in developing a fully precise model with
floating base dynamics. Therefore, reduced-order template
models are frequently employed in practical applications to
simplify computations and improve efficiency.

B. Learning method

The chosen machine learning method aims at learning
a reduced-order model of the dynamic system to reduce
complexity while ensuring the model’s interpretability. The
autoencoder, a self-supervised network, is employed to ex-
tract a lower-dimensional representation of the input data
while minimizing information loss [12]. Then, for enhanc-
ing interpretability, symbolic regression is employed as the
learning algorithm, particularly utilizing Sparse Identification
of Nonlinear Dynamics (SYNDy) [13]. SINDy operates by
identifying sparse, governing equations from high-dimensional
data, efficiently distilling the dynamics of the system into
concise, interpretable mathematical forms.

Champion et al. [14] devised a method, illustrated in Figure
2, that combines the principles of SINDy with an autoencoder
to distil high-dimensional data into a lower-dimensional space,
enhancing manageability and interpretability. This method

B #1iniy lamnziazn 3 &bk

0000 0000

2 ¢000-0000
]

x(t) =(t)

Z e(z) T o=
Fig. 2: Schematic of the SINDy autoencoder method. Source: [14].
trains both the autoencoder parameters and the SINDy coeffi-

cients jointly, encouraging the autoencoder to find a lower-
dimensional representation of data that, at the same time,

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

presents certain characteristics, such as sparsity, that help the
SINDy algorithm work efficiently.

The algorithm aims to identify reduced coordinates z(t) =
¢ (x(t)) in a lower-dimensional space R? (where d is lower
than the original dimension n), linked to a first-order dynam-
ical model 2(t) = g(z(¢t)). It provides coordinate transfor-
mations ¢ and v, mapping the original data to these latent
coordinates via the encoder z = ¢(x), and reconstructing the
original measurements from the reduced coordinates through
the decoder x4 = ¥(2).

The final symbolic equations are created by constructing
a library of basis functions ©(z) = [01(z), 02(2),...,0,(2)]
and learning a set of SINDy coefficients = = [£1, ..., &y] such
that:

(1]

2(t) = g(=(t)) = ©(2(1)) 3)

Throughout training, all trainable parameters in the autoen-
coder ¢ and v, and the SINDy coefficients =, are optimized for
the best possible result, based on the joint loss function. The
function includes the standard autoencoder loss, the standard
SINDy loss in the latent space, the loss on the reconstructed
SINDy prediction in the real space and an L; regularization
on the SINDy coefficients = to promote sparsity. For model
refinement, a further sparsity-promoting coefficient mask, con-
sisting of Os and s, is applied to =. This selectively zeroes
coefficients beneath a specific threshold, yielding a sparser and
more simplified final model.

IV. METHODOLOGY

This section will now present the main changes and contri-
butions of this work to the model learning procedure.

A. Dynamic system interpretation

In line with the floating base dynamics described in Sub-
section III-A, the robot’s state ¢ and the applied torques 7 are
measurable, but the constraint forces A\ remain unobservable,
presenting a significant obstacle to identifying the model of
the system.

For the machine learning aspect of this work, the system is
simplified and approximated. It is assumed that the constraint
forces on the joints g; are negligible. Furthermore, the body’s
constraint forces are considered to be solely reliant on the
ground reaction forces (GRFs) acting on the robot’s feet during
ground contact.

To approximate the GRFs for a single foot in contact, each
limb is modelled as a kinematic chain that exerts a force from
the robot’s base to the ground. This force, equal in magnitude
and opposite in direction to the GREF, is calculated using the
Jacobian Jj of the leg k, relating changes in foot position
Auxy, to the change in joint configuration Agy, through Azy, =
JrAgg. The force calculation is

By, =J, Tm,)

where F, € R? is the leg’s ground force, and J;, and 7, are
known for each timestep. More details on the derivation can
be found in Appendix A.

The linear force acting on the robot’s centre of mass is
estimated by

4
Fin = Frox. 5)
k=1

Similarly, the angular torque acting on the robot’s body is
4
Fug = > _(Fi X z3)ck. 6)
k=1
In these formulas, ¢, € {0,1} is a binary variable that
represents the contact state of each foot, with the value of
1 denoting contact and 0 denoting no contact.
The total force I € RS acting on the robot’s body,
comprising both linear and angular components, is represented

as 2
_ lin
]

With these approximations, the dynamic system can be
expressed as

{q‘j = fi(a.9) + 91(r) ®)

G = f2(q,q) + g2(F)

where F' takes the role of a virtual actuation on the unactu-
ated coordinates, facilitating data preparation for the machine
learning procedure without actually providing a theoretical
description of the dynamic system.

B. Linear Actuated SINDy Autoencoder

Building upon the framework delineated in Subsection
III-B, the SINDy autoencoder algorithm is modified to align
with the objectives of this research.

The autoencoder was chosen to be linear, such that the
latent space can retain an easily identifiable linear relationship
with the real space, ensuring a more direct physical meaning.
Therefore, now the autoencoder operations that occur at the
start of every iteration are

2z =Weq+ Be,)
Qdec = Waz + Ba, (10)
where W and B represent the autoencoder weights and biases.
To learn the dynamical model of the quadruped, a second-
order model has to be considered to link the accelerations to
the robot state. Therefore, both Z and % are calculated as
z= Weq.a
z=W.q.

Y
12)

In the context of a robotic system, the control inputs u
are incorporated into the dynamics model. Together with the
system’s state, the system inputs in the real space must also
be transformed into their counterparts in the latent space, jy.
This transformation relies on the assumption that the input
space has the same dimension as the state space, as explained
in Subsection IV-A. uy is then calculated as

Ulat = W;Tu.

13)

more details on the derivation can be found in Appendix A.

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

The overall latent space dynamical model acquires the form

épred =g (Z, z, ulat) = 9('2’ z, ulat)Ea (14)

where © is the SINDy library encompassing first-order poly-
nomial and trigonometric functions of the inputs, along with
a constant. Further details about the library construction are
documented in Appendix B.

The concluding step entails processing the predicted accel-
erations in the latent space Zq through the decoder to map
these accelerations back to the real space as:

qpred =Wy épred (15)

The combined loss can now be formally defined. The first
term is the standard autoencoder loss:

Lace = ||g — quecl3 (16)

The second term is the standard SINDy loss in the latent space:
L: =%~ Zprealy (17)
The third term is the SINDy loss mapped to the real space:

L= 11d — Goreall? (18)

The final term is the L; regularization on the SINDy coeffi-
cients =:

Lieg = [Z]1 (19)
The overall loss is the sum of these terms:
L= ﬁdec + >\1£z +)\2£¢j + >\3£ng (20)

where A;, Ao, and A3 are hyperparameters that balance the
contributions of each loss term.

C. Data collection

1) Gol Simulation Data: Data for the experiment was
sourced from simulations of a quadruped robot executing
jumps of various lengths. The simulations were conducted
using the PyBullet engine [15], modelled after the Unitree
Gol quadruped robot, shown in Figure 3.

Fig. 3: Simulated Gol quadruped performing a jumping motion.

The dataset includes joint angles and velocities ¢;, ¢; € R'?,
body position and velocity gy, ¢, € RS, input torques 7 € R12,
and the contact state of the feet ¢ € R* for each timestep.
Therefore, the complete state of the robot ¢ € R'® along with
its time derivative is established.

In addition to the standard dataset, a variant with added
noise is also generated to enhance the model’s robustness
for real-world applications. This noise includes three different
components:

o Gaussian noise on the initial configuration
o Gaussian noise on the state readings
« External disturbance force applied to the robot’s CoM

2) Gol Real data: Together with the simulated data, hard-
ware data was collected from an actual Gol quadruped, shown
in Figure 4.

Fig. 4: Real Gol Quadruped performing a jumping motion.

The quadruped robot was operated using the same control
algorithm as in the simulation, and data collection was per-
formed similarly using the official Gol SDK.

3) Al Simulation Data: In exploring the algorithm’s adapt-
ability to different quadruped models besides the Gol, a
distinct dataset was recorded from an alternative simulation
[16].

The simulation involved the Unitree A1 quadruped, which is
visualized in Figure 5, operating within the Pybullet simulation
environment.

Fig. 5: Simulated A1 quadruped performing a jumping motion.

Observation of the figure reveals a variation in the jumping
strategy compared to the Gol scenario. Whereas the Gol
executes what is termed a synchronous jump, with all legs
propelling off the ground simultaneously, the Al employs an
asynchronous approach. This method features an initial de-
tachment of the front legs, followed by a subsequent powerful
push using the rear legs. This behavioural distinction in the
jumping technique serves to further contrast the two robotic
models.

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

4) Data preprocessing: The state’s acceleration is com-
puted as
. dg
=
The force on the center of mass F € RS is calculated as
outlined in Subsection IV-A:

4
F = |: 4Zk:1 chk :| .
> pm1 (B X)y,

This process enables the formation of the final input to the
system u € R18:
_ T
w= [F} |

At this point, all required data g, ¢, ¢, u, ¢ is accounted for at
each timestep.

The data is then segmented into distinct phases based on
the number of grounded feet, which influences the robot’s
dynamics. For jumping motions. Three phases are identified:

2L

(22)

(23)

o Launch phase: Preparing for the jump, with all feet
grounded.

« Flight phase: Airborne, with no feet grounded.

o Landing phase: Landing after the jump, with all feet
grounded.

Transitional timesteps with one to three grounded feet are
included in either the launch or landing phase, depending on
their occurrence.

Since both the launch and landing phases involve four
grounded feet, they are merged into a ’contact phase’. Conse-
quently, the data is divided into:

o Contact data: All four feet are grounded.
« Flight data: No feet are grounded.

To standardize phase durations for machine learning, which
operates in batches of 100 timesteps, data is interpolated to
ensure each phase’s duration is a multiple of 100. As a result,
each contact phase lasts 700 timesteps and each flight phase
200 timesteps.

Each dataset is then split into training, testing, and valida-
tion sets for machine learning applications.

D. Training procedure

When training the algorithm on the jumping dataset, the
inherent hybrid aspect of the system has to be taken into
account. In fact, during the different phases, the system
behaves differently due to the change in contact with the
ground, leading to necessarily different differential equations
belonging to different system phases.

Also, regarding the autoencoder, training it independently
on data from each phase before merging them for the final
model may introduce inconsistencies in latent space represen-
tation, potentially compromising the physical relevance of the
combined model’s latent space. On the other hand, training
only on a single phase could result in inaccurate reconstruc-
tions for the full jump dataset, mainly due to decoder biases.
To mitigate these challenges, transfer learning [17] is applied.

The initial training step prioritizes the contact data due to its
pivotal role in jump dynamics modelling. The focus here is on

refining the encoder to achieve a precise latent representation
of this critical phase.

In the second training step, the decoder is specifically tar-
geted for improvement to adeptly reconstruct the entire jump
dataset, not just the contact phase. This phase proceeds with
the encoder’s parameters fixed, ensuring the initial phase’s
accurate encoding is preserved while expanding the decoder’s
reconstruction capabilities to encompass the full jump data.

The final training step shifts focus to the SINDy parameters,
adjusting them for both the contact and flight data. This stage
is distinguished by keeping both the encoder and decoder
parameters fixed, allowing for the precise learning of distinct
SINDy coefficients. These coefficients represent different gov-
erning differential equations for each phase, ensuring that the
consistent encoding and decoding framework established pre-
viously remains intact while accurately capturing the diverse
dynamics of the jump.

E. Testing Method

To validate the final model M, a single dataset is selected
from multiple test jumps. The initial system state [go, §o] and
inputs v are transformed by the trained encoder and the input
transformation equation to the latent initial state [zq, Z9] and
e = W, Tu, respectively. Model M then predicts latent
accelerations Zpeda = M (2, £, war), Which are then integrated
using the LSODA method [18] to obtain predicted latent
positions and velocities. This process is repeated for each
timestep:

éf:pred = M(Zpredv zpred» ulat) 24

At the end, the predicted latent states zpq are decoded into
real-space Gprea = Wazprea + Bg for direct comparison with
actual jump data.

An alternative testing approach simulates the learned system
dor shorter intervals (e.g., 0.1 seconds) with periodic resets
to the original latent state [z, 2] rather than the predicted
state [zpred, épred}. This strategy reduces error accumulation
over time, enhancing precision, especially for short-term fore-
casts critical in model-based control. Meanwhile, the primary
method remains preferred for in-depth, long-term evaluations
like path planning, offering a broader assessment.

In hybrid systems, data points with unchanged contact states
are individually simulated according to the specific model and
then decoded with the established common decoder, ensuring
accurate and consistent evaluation across different phases.

V. EXPERIMENTAL VALIDATION

In this section, the results of the experiments and their
respective implications will be explored.

A. 2D model analysis

The initial exploration of the latent model for a jumping
quadruped robot employs two latent dimensions. This decision
aligns with the common dimensional choice in most template
models, such as the Actuated Spring-Loaded Inverted Pendu-
lum (ASLIP) [19].

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

Heatmap of the Transpose of the Encoder's Weight Matrix

fhx Position
fihy Position
fikn Position
flhx Position
flhy Position
flkn Position
rehx Position
rhy Position
1mkn Position
. Position
tLhy Position 06
1lkn Position

Body linear Position x

04
ar Position y

ar Position 7

Body angular Position x 02

Body angular Position y
Body angular Position 7

21 22

Fig. 6: Heatmap visualization of the transposed weight matrix from
the trained encoder, reflecting weight magnitudes. Brighter colours
denote higher absolute values of the weights, with the vertical
axis showing the 18 real-space dimensions and the horizontal axis
representing the two latent dimensions z; and za.

Figure 6 presents a heatmap of the transposed weight matrix
from the trained encoder.

The heatmap clearly shows that the predominant weight
values associate the two latent dimensions with the robot’s
linear x and z positions in real space, indicating a strong linear
relationship.

This observation corroborates the dimensionality choice
in template models like the ASLIP. The existence of such
models validates the findings here, and simultaneously, these
results empirically justify the dimensional choices made in
the template models. Nevertheless, it is crucial to note that
this selection of latent dimensions, though unbiased and al-
gorithmically determined, is likely limited by the linearity of
the autoencoder, potentially restricting the discovery of more
complex latent space structures.

Regarding the final learned equations, the model for the
contact phase is described by

Z1= 0.36 —0.162; — 0.9125 — 0.75sin (z1) + 0.11uy — 0.05us
Zp = —0.16 — 0.232; — 0.7522 — 0.96 sin (22) + 0.14uq
(25)
and for the flight phase by:
Z1 =0.29 — 1.227; — 1.00sin (21) + 51.05u; 26)

= 0.427) + 0.52sin (%)

These formulations differ significantly from the ASLIP
model, expressed as:

_ks(lo, +p1.) &

m ’ 27
ks(l
P (lo. +py.) P
m
for the contact phase, and

P =0
’ (28)
zZ =—g

for the flight phase, where:

e ks is the spring constant

o m is the mass of the body

e lp, and [y, are the leg rest lengths along the = and 2
dimensions

6

e py. and py, are the positions of the leg base along the x
and z dimensions

Nevertheless, the enhanced complexity of the 2D model
derived from data leads to a more accurate reconstruction
of real dimensions. Unlike most template models, including
ASLIP, which primarily track the linear and z dimensions,
the proposed model achieves precise reconstruction of most
real dimensions, as depicted in Figure 7. Coupling the learned

fr.hx Position

fr.hy Position

fr.kn Position

1 s s
Real data Real data
o Simulated data full | " W o Simulated data full
- 05 = Simulated data 0.1s 05 05 = Simulated data 0.1s
)
2 oof —— | e 00
2 s os 05
E
g0 10 10
< Real data /\
15 15 Simulated data full s W
20 20{ —— Simulated data 0.15 20
[D T R R TR T [R T TR TR TR T [R T TR TR TR TR
fl.hx Position fl.hy Position fl.kn Position
1s is s
Real data Real data
10 Simulated data full | "’ AQ}/K 10 Simulated data full
- 05 = Simulated data 0.1s 05 05 = Simulated data 0.1s
)
Y ————— e Y 00
2 s os 05
2
10 10 10
< — Real data /\
s s Simulated data full o W
2.0 ~201 = Simulated data 0.1s 2.0
[O T R TR TR T [R T TR TR TR T) T TR R TR TR
rr.hx Position rr.hy Position rrkn Position
1s is is
Real data Real data
1 Simulated data full | " M— " Simulated data full
- 05 = Simulated data 0.1s 05 > 05 — Simulated data 0.1s
)
2 oo 00 00
2 s 0s 05
2
10 10 10
< — Real data /\
1 1 Simulated data full s A4
2.0 201 = Simulated data 0.1s 0-
[R T R R TR TR [R T TR TR TR T [D T TR R TR T
rl.hx Position rl.hy Position rl.kn Position
Ls is is
Real data Real data
1 Simulated data full | " % 1 Simulated data full
- 05 = Simulated data 0.1s 05 N> 05 = Simulated data 0.1s
)
g oo 00 00
2 s 0s os
2
1o 10 10
< — Real data [\
o o Simulated data full 4 4
o 20— Simulated data 0.1 0
[SR R TR R TR [SR R T TR D S A R TR
Time (s) Time (s) Time (s)
Body linear Position x Body linear Position y Body linear Position z
06 06 Real data 06
os os Simulated data full | o5
— —— Simulated data 0.1
2 os 04 04
S0 03 03
Z 02 02
o Real data o ol Real data
Simulated data full Simulated data full
00 Simulated data 0.1s 00 007" = Simulated data 0.1s
[R TR TR SR TR [) T TR SR TR [) T RS F TR T
Body angular Position x Body angular Position Body angular Position z
e Real data 0o Real data 0o Real data
o5 Simulated data full | o5 Simulated data full | o5 Simulated data full
'g = Simulated data 0.1s — Simulated data 0.1s — Simulated data 0.1s
£o4 04 04
=
Sos 03 03
o2 02 02
2
S o = AN
00 00 S S S S S N A——

000 035 030 075 10 13 150

;
Time (s)

000 05 oS RO

TR T TR
Time (s)

Time (s)

Fig. 7: Comparison of joint angles (top) and body positions (bottom)
during a quadruped robot’s jumping motion. Blue lines represent
real data measurements, orange lines depict full interval simulated
reconstructions, and green lines show 0.1-second interval simulated
reconstructions, all within a 2D latent space model.

2D model with a decoder trained for accurate reconstruction
of real space from the latent space endows it with greater
versatility compared to standard template models, albeit at a
slightly increased complexity.

Moreover, when analysing only the body’s linear position
along the z and z axes, the learned model presents significant
advantages compared to a traditional ASLIP, as depicted in
Figure 8. In fact, while the virtual spring is suitable to model
the robot’s elasticity for the launch phase, it does not work

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

Body linear Position x Body linear Position z

o
o

o
>
o
>

-
g
=
= 04 04
§ AN " —
= D
Z 02 02
- —— Real data —— Real data

0.0 —— Aslip data 0.01- = Aslip data

Learned data Learned data
-02 -02
000 025 050 075 100 125 150 000 025 050 075 100 125 150
Time (s) Time (s)

Fig. 8: Comparison of the body’s linear positions along the x and z
axes during a quadruped robot’s jump. The blue line indicates real
data, the purple line represents the ASLIP model simulation, and the
orange line shows the learned model simulation.

well for the landing phase as the lack of a damping factor in
the model prevents energy dissipation and therefore the model
would keep oscillating indefinitely. On the other hand, the
learned model presents some damping terms that allow the
model to track correctly the trajectories in the landing phase
(despite some propagating error) without excessively limiting
the system’s kinetic energy during the launch phase.

B. Latent dimensionality analysis

The choice of latent space dimensionality is a crucial
aspect of the model’s design. An increase in the number of
latent dimensions leads to both enhanced accuracy and added
complexity.

It is observed that, due to the linear characteristics of
the autoencoder, a higher dimensional latent space captures
similar real states as for lower dimensional cases. This is
demonstrated in Figure 9, where the increase in the number

Heatmap of the Transpose of the Encoder's Weight Matrix

fthx Position

04

Body angular Position z

9 7210 711 712 713 7.14 2,15 7,16 717 718

Fig. 9: Heatmap visualization of the transposed weight matrix from
the trained encoder in the case of 18 latent dimensions, reflecting
weight magnitudes. Brighter colours denote higher absolute values of
the weights, with the vertical axis showing the 18 real-space dimen-
sions and the horizontal axis representing the 18 latent dimensions.

of latent dimensions, in this case up to 18, does not alter the
primary influence of the same real dimensions on the latent
state. More examples are in Appendix C.

This phenomenon might stem from the more nonlinear
behaviour of joint coordinates, complicating the establishment
of a linear relationship with the latent dimensions.

This necessitates a thorough analysis of the accuracy versus
complexity tradeoff based on the latent space dimension.
Complexity is represented by the final reconstruction error Egec

on the validation set, while the final number of active SINDy
coefficients |=Z| indicates accuracy.

Figure 10 displays the results of 18 different contact phase
models, each with a varying number of latent dimensions,
under identical training and testing conditions.

Decoder Error and Number of Coefficients per Dimensionality of Latent Space

1600

00141 _§— Decoder Error —#— Number of Coefficients

1400
0.012 1200
1000
0.010

800

600

Decoder Error

0.008

Number of Coefficients

400

0.006 200

Number of Latent Dimensions

Fig. 10: Graph showing the trade-off between accuracy and com-
plexity as the number of latent dimensions increases. The blue line
indicates the average decoder error, while the green line shows
the number of active SINDy coefficients. Error bars represent the
standard deviation from five different random seeds, reflecting the
consistency of the model’s performance across varying latent dimen-
sions.

For a more quantitative evaluation of this tradeoff, a com-
bined loss for the models L9 can be calculated using a
formula that takes inspiration from the Akaike Information
Criterion (AIC) for model selection [20]:

»Cmod = 25dec + 2X IOg (‘ED (29)

Here, |Z| denotes the number of active SINDy coefficients,
and A is a parameter that balances the significance of each
loss component.

With A = 0.001, a value appropriate for the dimensionality
of the two metrics, the final combined loss is illustrated
in Figure 11. According to this graph, models with 4 to 6

Combined Loss per Dimensionality of Latent Space

0.030

0.028

0.026

0.024

Combined Loss

0.022

Number of Latent Dimensions

Fig. 11: Plot illustrating the combined loss across varying numbers of
latent dimensions. The trend indicates how the model’s loss responds
to changes in dimensionality.

latent dimensions appear to offer the optimal balance between
accuracy and complexity. This aligns with the number of
visibly significant dimensions shown in Figure 9. For greater
latent dimensionality, the incremental gain in accuracy does
not seem to justify the heightened complexity.

It is worth mentioning that the choice between a simpler
but less accurate model and a more complex but accurate one
may vary depending on the specific application.

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

C. Results on Hardware Data

Following the approach outlined in Subsection IV-C, besides
the standard dataset from the Gol simulation, a noisy dataset
was collected to enable more robust training for real-world
scenarios.

A model with four latent dimensions was selected for this
evaluation, based on the discussion in Subsection V-B.

The impact of noise on the dataset and its extension into the
latent space is depicted in Figure 12. The model effectively

Latent Acceleration 1 Latent Acceleration 2

80 0 —— Latent data
60 60 Simulated latent data full
40 40 —— Simulated latent data 0.1s
20 20

0 0
20 20

—— Latent data
Simulated latent data full
—— Simulated latent data 0.1s

000 025 050 075 100 125 150 000 025 050 075 100 125 150
Latent Acceleration 3 Latent Acceleration 4
80 80
—— Latent data —— Latent data
60 Simulated latent data full 60 Simulated latent data full
40 —— Simulated latent data 0.1s 40 — Simulated latent data 0.1s
20 20
” Y "y
0 0
I

20 20
40 40
60 60
80 80

000 025 050 075 100 125 150 000 025 050 075 100 125 150

Time (s) Time (s)

Fig. 12: Latent space accelerations for a quadruped robot’s jumping
motion with noisy data. The direct encoding of real dimensions is
shown in blue, the learned latent accelerations over the full jump in
orange, and the learned latent accelerations at 0.1-second intervals in
green.

smooths out latent accelerations, demonstrating satisfactory
performance on the noisy dataset.

When transitioning to the real hardware, given the limited
availability of this data type compared to the simulated one,
the previously trained model was maintained, with minimal
refinement using hardware data.

Figure 13 illustrates the model’s ability to replicate a jump
on the actual hardware.

Notably, the model’s performance on actual hardware data,
especially during the flight and initial landing phases, was
not as accurate as with simulated data. This discrepancy
is attributed to differences in the real system’s behaviour
compared to the training data, especially regarding the Body
angular Positions.

D. Learning Different Simulated Systems

To assess the algorithm’s effectiveness across varied plat-
forms, training and testing were also conducted on data from
an Al quadruped, as outlined in Subsection I'V-C.

This scenario featured the robot performing what is termed
an asynchronous jump. This jump includes a sequence starting
with all legs grounded, transitioning to only the rear legs
making contact, and culminating in a flight phase. Notably,
the simulation excluded the landing phase, terminating the data

fr.hx Position fr.hy Position fr.kn Position
— Real data
i ' A/\—-—‘“‘ ! Simulated data full
= = Simulated data 0.05s
T ————————— | o
2
e - -
=
<,]/— Realdata L]/— Realdata ~ AN
Simulated data full Simulated data full
-3{ = Simulated data 0.05s -3{ = Simulated data 0.05s -
[TS SR SR TR R o 0 ok o 15 % [T SR SR TR)
fl.hx Position fl.hy Position fl.kn Position
— Real data
1 i /\\/\; 1 Simulated data full
= —— Simulated data 0.5
'E 0] ——— 0- 0-
2
e ! !
=
<] — Realdata L] — Real data s A
Simulated data full Simulated data full
3{ = Simulated data 0.05s 34 = Simulated data 0.05s
G 0n 0w o w15 % S0 035 0% 0 1w 13 150 L T SR X LR TR FER)
rr.hx Position rrhy Position rr.kn Position
— Real data
1 1 % \ A~ 1 Simulated data full
= —— Simulated data 0.05s
o | o
2
2 - -
2
< | — Realdaa L] — Realdaa P
Simulated data full Simulated data full
31 = Simulated data 0.05s 31 = Simulated data 0.05s
S0 03 0% o 1w 13 150 S0 03 0% o 1w 1m 150 G0 03 0% 0m 1w 1m0
rl.hx Position N rl.hy Position rl.kn Position
— Real data
1 1 M ' Simulated data full
= —— Simulated data 0.05s
-E o __ﬁt o o
2
X ! !
< | — Realdaa L] — Realdata)
Simulated data full Simulated data full
3{ = Simulated data 0.05s 3{ = Simulated data 0.05s 3
S0 03 0% o 1w 13 150 S0 03 0% o 1w 1m 150 T 03 0% _om 1w 1m0
Time (s) Time (s) Time (s)
Body linear Position x Body linear Position Body linear Position z
0s Real data 0s —— Real data s
Simulated data full Simulated data full
%41 —— Simulated data 0.05s 04 —— Simulated data 0055 | 04
E
o3 03 03
=
S
Zo0 02 0z
Z
Ao o1 o1 Real data
Simulated data full
" N —~————| "] — simulated data 0.05
T 0n om om 1w 15 1% 00 03 0% 0% 1w 15 1% S0 o o8 0% 10 13 1%
Body angular Position x Body angular Position Body angular Position z
— Real data — Real data — Real data
04 Simulated data full 04 Simulated data full 04 Simulated data full
"g ~—— Simulated data 0.05s ~—— Simulated data 0.05s ~—— Simulated data 0.05s
E o 02 02
=
S
E M e~ | " 0o
]
g
5 02 02
04 04 04

00 035 0% 07 L0 135 150

Time (5)

000 035 0% 07 Lo 135 150

Time (5)

000 035 0% 07 Lo 135 150

Time (s)

Fig. 13: Comparison of hardware-measured joint angles (top) and
body positions (bottom) throughout a quadruped robot’s jump. Blue
lines indicate actual hardware data, orange lines represent reconstruc-
tions from a 4D latent space model over the full jump interval, and
green lines depict reconstructions at 0.05-second intervals.

capture just before ground contact. This jump type necessitated
a tailored learning process, segmenting the motion into full
contact (four feet on the ground), partial contact (two feet
on the ground), and flight (no feet on the ground) phases.
This approach required an additional model within the hybrid
system to address the distinct phases, yet the overarching
training and testing procedure mirrored that used for the Gol,
with results displayed in Figure 14.

A notable difference is observed in the Body angular
Position y between the Al and the Gol. The asynchronous
jump induces a more pronounced angular rotation along the
y-axis in the Al’s case. Despite the increased significance
of this angular dimension for the jump motion, the four-
dimensional model successfully captures this dynamic and
most joint positions, which exhibit smoother behaviour, easier
to track than in the Gol scenario.

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

fr.hx Position fr.hy Position fr.kn Position

Real data
Simulated data full
Simulated data 0.05s

—— Real data
Simulated data full
Simulated data 0.05s

: — T ~————

Angle (rad)

-2 — Real data
Simulated data full
Simulated data 0.05s N

o0 02 o4 o6 o8 1o 12 o0 o2 o4 os o8 1o 12 00 o2 o4 os o8 1o 12

fl.hx Position fl.hy Position fl.kn Position

Real data
Simulated data full
Simulated data 0.05s

—— Real data
Simulated data full
—— Simulated data 0.05s

: —_— T~

Angle (rad)

2f —— Realdata
Simulated data full
Simulated data 0.05s N

o0 0z o4 o6 o8 1o 12 00 02z o4 o6 o8 1o 12 00 02 o4 o6 o8 1o 12

rrhx Position rhy Position rr.kn Position

e N

—— Simulated data 0.05s
-2 — Realdata

Simulated data full WA

‘ " Simulated data 0.05s ‘

Real data
Simulated data full
Simulated data 0.05s

—— Real data
Simulated data full

Angle (rad)

G0 0z o4 06 o5 0 12 0o 0z o4 o6 o5 0 2 00 02 o4 o6 o8 1o 12

rl.hx Position rl.hy Position rl.kn Position

| =

2 — Realdata
Simulated data full
Simulated data 0.05s ”

Real data
Simulated data full
—— Simulated data 0.05s

—— Real data
Simulated data full
—— Simulated data 0.05s

Angle (rad)

v0 0z 04 08 10 12 v 02 12 00 02 o4 08 10 12

g g g
Time (s) Time (s) Time (s)

Body linear Position x Body linear Position Body linear Position z

—— Real data

Real data
Simulated data full
—— Simulated data 0.05s

—— Real data
Simulated data full 06
—— Simulated data 0.05s

Simulated data full 06
—— Simulated data 0.05s

Position (m)

00 3 S S S)

Body angular Position x Body angular Position Body angular Position z

—— Real data
Simulated data full
—— Simulated data 0.05s

Orientation (rad)

)| — Realdata
Simulated data full
Simulated data 0.05s

Real data
Simulated data full
Simulated data 0.05s

02 12 G0 02 o4 os 10 12 0 02 0 T 12

DO v T
Time (s) Time (5) Time (5)

Fig. 14: Comparison of joint angles (top) and body positions (bottom)
during an A1 quadruped robot’s jump using a 4D latent space model.
Blue lines display the actual measured data, orange lines represent
full interval simulated reconstructions, and green lines illustrate
reconstructions at 0.05-second intervals.

VI. DISCUSSION AND CONCLUSION

The findings from this study demonstrate that the methodol-
ogy introduced herein is capable of generating reduced-order,
interpretable dynamic models for jumping quadruped robots
from data. These models surpass traditional template models
in reconstructing real dimensions with higher accuracy, and
can also be applied to hardware data with satisfactory per-
formances. Furthermore, the robustness of the algorithm was
validated across different simulations, proving its effectiveness
on different types of quadruped robots provided appropriate
phase segmentation and training are applied.

Researchers focusing on quadruped robot control can utilize
these models in a manner akin to template models. The control
algorithm can be implemented within the latent space model,
thereby substantially reducing computational complexity. Con-
sequently, the desired latent inputs wuy can be determined

for each timestep, and the actual inputs v to be applied to
the robot can be deduced using the inverse transformation
u = WeT uy. Similarly, the robot’s real state at each timestep
can be estimated as gpea = Wazprea + Bq. This approach
ensures that both the necessary input and the robot’s state
in real space are ascertainable at every timestep, despite the
control operations being performed in the simplified latent
space. It is important to highlight, however, that the stability of
a control loop in latent space does not automatically guarantee
its stability when transformed back to real space. Nonetheless,
the encoding’s linearity is expected to aid in maintaining
stability.

The aspiration of this work is to contribute to the advance-
ment of legged robotics by introducing a methodology for
deriving dynamic models of quadruped robots from data that
are both efficient and interpretable. The aim is to facilitate
an additional step towards making this area of robotics more
accessible and beneficial to society at large.

VII. FUTURE WORKS

As highlighted earlier, this study marks a pioneering effort
in symbolic model learning for quadruped robots. Conse-
quently, there exist several opportunities for enhancement that
could augment the method’s effectiveness and broaden its
research applicability.

1) Non-linear Autoencoder: One potential further explo-
ration involves the structure of the autoencoder. As indicated
in Subsection IV-B, a linear autoencoder was employed. This
choice simplified the training process and facilitated a clearer
physical interpretation of the latent space. However, adopting a
more complex non-linear structure for the autoencoder could
substantially enhance performance, albeit with some loss of
clarity in interpreting the latent space.

2) SINDy Library Improvement: The SINDy library, as
detailed in Subsection IV-B and Appendix B, was created
using very general terms for simplicity and to avoid intro-
ducing biases or limitations. A library tailored to the spe-
cific application could enhance the accuracy of tracking real
trajectories while simultaneously reducing model complexity.
Consequently, refining the SINDy library with targeted phys-
ical knowledge could markedly benefit the machine learning
method described.

3) Backpropagation Through Time: A prospective avenue
for enhancing algorithmic performance involves devising
methods to accurately track real trajectories over the entire
duration of a jump. A potential solution might be the adoption
of a technique inspired by Backpropagation Through Time
(BPTT) [21], with a detailed explanation available in Appendix
D.

4) Application to other quadruped tasks: A forthcoming
objective is to broaden the scope of tasks for which the
algorithm is applicable. Currently, the algorithm is specifically
designed for jumping motions, chosen for their relative sim-
plicity in terms of distinct phases. More intricate movements,
like walking, present additional challenges, such as rapidly
changing contact modes and a greater number of contact
phases, each characterized by fewer data points due to the fre-
quency of change. Adapting the algorithm to accommodate a

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

broader spectrum of the robot’s actions may necessitate refined
hyperparameter tuning and potentially some modifications to
the algorithm’s structure. However, achieving this adaptability
would significantly expand the range of applications for the
model learning method.

ACKNOWLEDGMENTS

Heartfelt gratitude is extended to all who contributed to
the success of this research. Special appreciation is directed
to Professor Cosimo Della Santina, whose supervision and
profound knowledge were indispensable throughout this study.
Equally, Jingyue Liu’s support as a co-supervisor, providing
timely advice and assistance, was invaluable.

I am thankful to Maximilian St6lzle and all the members of
the Cognitive Robotics (CoR) department for their insight-
ful feedback and collaborative efforts that greatly enriched
this work. Gratitude is also owed to my colleague, Edoardo
Panichi, for his assistance in data collection and the construc-
tive critiques that significantly improved this thesis.

Last but not least, special thanks to Chuong Nguyen for
providing the essential code for running the Al quadruped
simulation.

The combined expertise, encouragement, and support from
these individuals were crucial to the research and writing
process, making this achievement possible.

REFERENCES

[1] R. J. Full and D. E. Koditschek, “Templates and an-
chors: Neuromechanical hypotheses of legged locomo-
tion on land,” Journal of experimental biology, 1999.

[2] E. Grinke, C. Tetzlaff, F. Worgotter, and P. Manoon-
pong, “Synaptic plasticity in a recurrent neural network
for versatile and adaptive behaviors of a walking robot,”
Frontiers in neurorobotics, 2015.

[3] S.Zimmermann, R. Poranne, and S. Coros, “Go fetch!-
dynamic grasps using boston dynamics spot with exter-
nal robotic arm,” in 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2021.

[4] J. Wu, J. Wang, and Z. You, “An overview of dy-
namic parameter identification of robots,” Robotics and
computer-integrated manufacturing, 2010.

[5] K. Chatzilygeroudis and J.-B. Mouret, “Using parame-
terized black-box priors to scale up model-based policy
search for robotics,” in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2018.

[6] G. Pillonetto, A. Chiuso, and G. De Nicolao, “Pre-
diction error identification of linear systems: A non-
parametric gaussian regression approach,” Automatica,
2011.

[71 A. S. Polydoros and L. Nalpantidis, “Survey of
model-based reinforcement learning: Applications on
robotics,” Journal of Intelligent & Robotic Systems,
2017.

[8] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp,
V. Vassiliades, and J.-B. Mouret, “Black-box data-
efficient policy search for robotics,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), 1IEEE, 2017.

[9]1 ETH Zurich, Lecture 6: Dynamics 2 - robot dynamics,
Online, 2017.

L. Righetti, J. Buchli, M. Mistry, and S. Schaal, “Inverse
dynamics control of floating-base robots with external
constraints: A unified view,” in 2011 IEEE international
conference on robotics and automation, IEEE, 2011.
M. Mistry, J. Buchli, and S. Schaal, “Inverse dynam-
ics control of floating base systems using orthogonal
decomposition,” in 2010 IEEE international conference
on robotics and automation, 1IEEE, 2010.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” science,
2006.

S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discov-
ering governing equations from data by sparse identifi-
cation of nonlinear dynamical systems,” Proceedings of
the national academy of sciences, 2016.

K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton,
“Data-driven discovery of coordinates and governing
equations,” Proceedings of the National Academy of
Sciences, 2019.

E. Coumans and Y. Bai, “Pybullet, a python module
for physics simulation for games, robotics and machine
learning,” 2016.

C. Nguyen and Q. Nguyen, “Contact-timing and trajec-
tory optimization for 3d jumping on quadruped robots,”
in 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2022.

L. Torrey and J. Shavlik, “Transfer learning,” in Hand-
book of research on machine learning applications and
trends: algorithms, methods, and techniques, IGI global,
2010.

A. Hindmarsh and L. Petzold, “Lsoda, ordinary dif-
ferential equation solver for stiff or non-stiff system,”
2005.

K. Green, R. L. Hatton, and J. Hurst, “Planning for the
unexpected: Explicitly optimizing motions for ground
uncertainty in running,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 1IEEE,
2020.

H. Bozdogan, “Model selection and akaike’s informa-
tion criterion (aic): The general theory and its analytical
extensions,” Psychometrika, 1987.

P. J. Werbos, “Backpropagation through time: What it
does and how to do it,” Proceedings of the IEEE, 1990.

[11]

[14]

APPENDIX A
MATHEMATICAL DERIVATIONS

A. Ground Reaction Force for a Single Leg

The Ground Reaction Force (GRF) for a single leg is
calculated as follows:

i Aqy = FF Axy, (30)
r Aqe = FF T Aqy, (31)
™ = FlJk (32)
Fr=J "7 (33)

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

where:
oy represents the joint angles of leg &
o 1z denotes the foot position of leg k
e T is the set of joint torques acting on leg &
o F} is the force exerted at the foot of leg k
o Jj, refers to the Jacobian of leg k

B. Latent Space Input
The latent space input is calculated to ensure that the work

done in both real and latent spaces is equivalent, i.e., u’& =
uatz". The derivation is as follows:

ul'i = ul 2 (34)

ul'd = ul Wi (35)

ul = ul W, (36)

u =Wl (37)

U = W, T (38)

where:
o x symbolizes the real space coordinates
o z represents the latent space coordinates
« u indicates the real space inputs
o Uy is the set of latent space inputs
o W, is the encoder weight matrix

APPENDIX B
SINDY LIBRARY GENERATION

In SINDy applications, generating the library is a critical
aspect. Ideally, the exact basis functions should be known
a priori, so that the training process merely fine-tunes their
coefficients. However, often the exact basis functions are not
known, and the system’s physical properties provide only a
general idea of the terms to include.

The primary challenge is to include all necessary basis
functions to fully describe the system while avoiding excessive
complexity due to an overly large library.

The library for this project is standard and does not include
prior knowledge to avoid biasing the training and subsequent
discussions. It comprises a constant term, first-order polyno-
mials, and trigonometric functions of both the state positions
and velocities, as well as the input terms.

Considering a latent space of dimension n with state
variables z = [z1,22,...,2,] and inputs
[ttt Wiata, - - - 5 Ulatp), the library includes:

1. The constant term:

Ulat =

1
2. Linear terms for each state variable:
Z15R2y.+4%n
21a227 e ,Zn

3. Trigonometric functions, sine and cosine, for each state
variable:

sin(z1),sin(z2), . . ., sin(z,)
cos(z1),cos(za), ..., cos(zy,)
sin(£1),sin(22), ..., sin(2,)
cos(21), cos(22), ..., cos(Z,)

4. The input terms:

Ulat1y Ulat2s - - - 5 Ulaty

For a system with n state variables, the library thus contains
7n + 1 terms.
When applying the library to the following equation,

épred = @(z, z, Ulat)E (39)

the set of basis functions is generated for each latent acceler-
ation prediction. The total number of terms, and hence initial
SINDy coefficients, becomes ™2 + n.

This library composition is designed to capture linear rela-
tionships, constant offsets, and periodic behaviour in system
dynamics, commonly found in many physical systems. Larger
libraries could capture the dynamics more precisely but risk
significantly increasing the model’s complexity.

APPENDIX C
LATENT SPACE COMPOSITIONS FOR HIGHER DIMENSIONS

Figure 15 gives an overview of the encoder weights in the
cases of a latent space of 3, 8, 13 and 18 dimensions. The
purpose of this image is to give overall visual support to see
the lack of change of significant dimensions with the increase
in latent dimensionality.

Fig. 15: Heatmaps of the transposed weight matrix for the encoders of
four different models. The brighter the colour of the tile, the higher
the absolute value of the corresponding weight. In the top left a
model with 3 latent dimensions, in the top right a model with 8 latent
dimensions, in the bottom left a model with 13 latent dimensions, in
the bottom right a model with 18 latent dimensions.

APPENDIX D
BPTT-INSPIRED TECHNIQUE

This paragraph describes a method intended to mitigate
the error propagation observed when simulating the learned
system over extended time periods.

The core idea is to extend the calculation of the SINDy
loss beyond the latent space accelerations Z, incorporating an
additional loss for the predicted latent positions zpeq. These
positions are derived by simulating the state at each timestep
using the current model and projecting m steps into the future,
where m denotes the prediction window size.

For clarity, the notation 'z’pred-z refers to the latent acceleration
predicted from the real latent state at timestep ¢, extrapolated

MASTER’S THESIS - MSC ROBOTICS - MARCH 2023

J timesteps into the future. Integrating this acceleration twice
yields the latent position Zpred .

Given a total time of n timesteps and a prediction window
of m timesteps, the matrix of predictions P is constructed as
follows:

- 1 .
Zpredo z1 Al .. Al
1 2
Zpredl Zpredo z2 ce z2
1 2 3
P = Zpredg Zpred] Zpred(y cee <3 40)
1 2 3 m
Zpred,, 1 Apredy, o Zpredn_g cee Zpredy gy,

In this matrix, each column corresponds to a future timestep,
and each row to all predicted positions for a given timestep.

Denoting the element of P at the i-th row and j-th column
as p], the BPTT loss is calculated by summing the squared
differences between each element of a row from the real value
of z for the corresponding timestep, and then aggregating these
errors across all timesteps:

n—1 m

Lpprr = Z Z (Zi —pg)z (41)

i=1 j=1

Incorporating this term into the combined loss function, with
suitable weighting, aids in curbing the cumulative errors
resulting from the temporal propagation of the model.

An important consideration in this process is the choice
of integration method to derive zpredg from f‘épredf . Employing
rapid integration methods, such as the Euler method, can
reduce the algorithm’s time consumption, albeit at a potential
cost to accuracy. Conversely, higher-order Runge-Kutta meth-
ods yield more precise results but significantly increase time
complexity. A similar trade-off exists concerning the size of
the prediction window.

If necessary, a decaying weighting scheme can be applied to
the prediction matrix to diminish the impact of distant future
predictions. This is achieved by multiplying progressively
smaller weights to the columns as they extend further to the
right in the matrix.

