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summary

Earlier studies have applied matrix decomposition methods such as Singular Value Decomposition
(SVD) and Non-Negative Matrix Factorization (NMF) in climate-agriculture research. These works
showed that SVD can reveal interpretable patterns when climate variables display strong, structured
signals. NMF’s non-negative constraints make it less suitable for representing signed patterns. How-
ever, the prediction quality of these approaches has varied widely across regions, variables, and crops,
highlighting the need to test their performance in different contexts.

The main research question in this study is: To what extent do SVD-based and NMF-based rep-
resentations, in combination with linear prediction models and rank approximations, capture
seasonal and interannual variability in temperature, precipitation, and their hydrothermal inter-
actions in the Netherlands? Both SVD and NMF are applied to the following environment variable
data matrices: the temperature matrix, the precipitation matrix, their respective seasonally integrated
matrices, and a hydrothermal interaction matrix defined as the integrated product of temperature and
precipitation. The seasonal and interannual patterns described by the basis vectors obtained by these
decompositions are used to gain insight into the structure of each data matrix. In this thesis, the first
components is used to predict seasonal and interannual variations in temperatoral, precipitation, and
hydrothermal interaction patterns with a linear prediction model and a rank-approximation. The assess-
ment of these predictions is done by means of the Normalized Mean Squared Error.

The result was that SVD can obtain broad seasonal trends, but these are not always logical in the
context of climate behavior. NMF, by contrast, generated positive and interpretable components. The
first NMF component consistently represented the dominant seasonal variation, while higher-indexed
components resembled residual fluctuations. Overall, NMF provided a clearer and more trustworthy
representation of precipitation and hydrothermal interaction patterns, whereas SVD often produced
structures that were harder to interpret.

For the prediction of interannual variations, the rank-1 approximation obtained through NMF was gen-
erally the most effective. For temperature, NMF rank-1 approximation yielded lower peaks and smaller
NMSE values, showing robustness even during extreme years such as 2018 and 2020, and similar
improvements were observed for the hydrothermal interaction term. Linear prediction was a simple
baseline but proved ineffective. For precipitation, however, prediction remained challenging: both SVD
and linear prediction produced high NMSE values, and NMF rank-1 performed similarly to linear pre-
diction, with only temporary improvements in certain years. This highlights that while NMF is the more
reliable framework overall, its predictive advantage is not uniform across all variables.
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Introduction

The Netherlands experienced warm ¢ combined with lack of rainfall during the years 2018,2020, and
2022 [2—-4]. This emphasized the vulnerability of the agricultural systems. It brought attention to adap-
tive measures, such as adjusting planting and harvesting dates to protect crop yields [5].Stakeholders
across research, industry, farming, and policymakers were serious about finding a solution to this prob-
lem, as it had occurred beforet. This highlighted the importance of forecasting precipitation,temperature,
and the combined hydrothermal interactions.

Previous work has mainly focused on precipitation prediction. For example, radar observations have
been combined with deep generative models to forecast rainfall at short lead times in the Netherlands.
Their approach was succesful for predicting short-term rainfall at lead times of 5— 90 minutes [6]. These
type of approaches are valuable for high-resolution, short-term forecasting.

This study is distinct from earlier works in two ways. First, it delves into three environmental variables:
precipitation, temperature and hydrothermal interaction term. The Netherlands relies heavily on water
systems such as dikes, drainage, and storage .These protect low lying areas from flooding, and regulate
water for the agriculture [7]. Changes in precipitation and temporal patterns, increase the risks of flood-
ing, drainage system failure, altered drought dynamics, and disrupted water supply cycles [8].These
combined risks require a framework that treats temperature and precipitation simultaneously. Further-
more, matrix decomposition methods are data-driven techniques, which allow direct identification of
dominant seasonal structures.

The motivation of this research can therefore be summarized in three steps. First, we establish an
efficient mathematical description of seasonal variations in environmental variables relevant to crop
growth: temperature, precipitation, and hydrothermal interaction. Second, we analyze how these vari-
ables vary across years, with particular attention to extreme events. Third, we predict future patterns
of these environmental variables by using linear prediction. The central research question is: To what
extent do SVD-based and NMF-based representations, in combination with linear prediction
models and rank approximations, capture seasonal and interannual variability in temperature,
precipitation, and their hydrothermal interactions in the Netherlands? To address this research
question, the following sub-questions were formulated:

* Which modes/components are obtained by applying decomposition techniques to the different
data matrices?

» How can the obtained modes/components be used for predicting the Netherlands’ temperature,
precipitation, and hydrothermal interaction patterns?

* Whatis the quality of predictions when these modes/components are used to predict temperature,
precipitation ,and hydrothermal interaction patterns?

First, the preprocessing of the temperature, precipitation, and hydrothermal interaction data is de-
scribed in chapter 2, followed by a discussion of the analytical methods in chapter 3. In chapter 4,



the temperature data are analyzed using singular value decomposition and non-negative matrix factor-
ization, which enables a direct comparison between orthogonal and non-orthogonal decompositions in
temporal context. Chapter 5 examines precipitation dynamics, evaluating how different representations
capture long-term precipitation trends in the Netherlands. In chapter 6, hydrothermal interactions are
studied, as they combine two ever-changing environmental variables. Finally, chapter 7 synthesizes

the findings to answer the research question.



Data description

This chapter provides an overview of the datasets used in the study and outlines the preprocessing
procedures applied to them. In addition, it clarifies the methodological choice to use relative humidity
data as an approximation for precipitation.

2.1. Data sources, temporal coverage, and variable choice

This section describes the data sources used in the study and explains the reason for using two distinct
datasets, including the choice to rely on relative humidity data as a proxy for precipitation rather than
the precipitation dataset itself. In addition, the temporal coverage and the selected analysis window
are introduced.

As mentioned earlier, different datasets are used for temperature and precipitation variables. For the
temperature variable, data from NASA OSDR is utilized. We use the gridded, quality controlled 2m air
temperature from NASA's Open Source Data Repository (OSDR), which is accessed via its RESTful
API [9]. The benefits of using this source are: offers entire coverage of the Netherlands which reduces
representatitivness and limites reproducibility outside the Netherlands, descriptive information about
the dataset such as variable names, units and formats. These factors make it easier to work with the
data, and to calculate accumulated temperature metrics.

For moisture conditions, the relative humidity (RH) dataset from KNMI De Bilt is used. This dataset
offers a long and consistent record at 2m height. While precipitation reflects event-based rainfall, RH
captures the continuous state of atmospheric moisture. This makes it suitable for trend analysis. Dif-
ferences in instrumentation and site exposure mean that precipitation sources differ from those used
for temperature. In this study, NASA temperature data are combined with KNMI moisture records as a
deliberate choice. Both datasets report near-surface conditions at the standard meteorological screen
height (2m), ensuring comparability between sources.

The datasets differ in size. This influences the predictive analysis in this study which is based on the
80% — 20% rule. The temperature dataset starts from April 1, 1981 to October 31, 2024. While, the
precipitation dataset starts from January 1, 1930 to October 31, 2024. For the hydrothermal interaction
dataset size, we restrict the core analysis to 1981-2024, the full overlap between both datasets.

2.2. Temperature Data Matrix

Daily 2 m air temperature for April-October 1981-2024 was obtained programmatically via the NASA
OSDR API [9]. Data are parsed into a Pandas dataframe, with one row per day and columns corre-
sponding to day-of-year within each season as shown in equation (2.1). In this matrix, the first and last
five rows of the temperature matrix are shown. The temperature matrix contains 44 rows, each referring
to the respective year. Furthermore, there are 214 columns in this matrix, each representing a day of
the season. There are no negative entries in this matrix, which is explained by the oceanic climate
in the Netherlands. This implies that the average daily mean temperatures from April to October stay
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above freezing (greater than 0 degrees Celsius)[10].

[8.70 824 813 6.71 6.96 ... 921 11.58]
6.56 7.94 T7.74 883 10.15 ... 7.97 8.46
6.87 581 395 3.02 498 ... 7.61 1046
284 3.26 3.00 370 3.60 ... 12.04 10.67
10.36 8.44 10.99 11.92 10.29 ... 5.17 3.38
L (2.1)
437 6.95 6.70 7.54 10.07 ... 13.85 13.02
816 590 644 6.01 466 ... 12.16 11.64
3.14 3.67 464 739 9.76 ... 1545 13.96
875 595 5.04 515 6.36 ... 11.37 11.94
1917 955 10.73 11.26 12.52 ... 13.14 12.75]
214 columns (days) 44 rows (years)

2.3. Precipitation Data Matrix

Precipitation does not capture the day—to—day atmospheric moisture conditions between rainfall events.
RH, by contrast: determines evaporative demand through its role in vapor pressure deficit and thus
in evapotranspiration rates. It also influences plant physiology and disease pressure. This affectis
stomatal behaviour, latent cooling, and conditions conducive to fungal outbreaks [11]. Furthermore,
RH data represents microclimatic stress drivers better than rainfall totals, aligning with the crop—stress
modelling framework of this study.We therefore focus on RH for the main analysis. This is used as an
approximation for precipitation.

Daily RH from KNMI De Bilt [12] is downloaded for January 1930-October 2024, filtered to April—
October for each year. The dataframe has the same structure as the temperature dataset. The 30
missing values were replaced with 0% RH. This is not physically possible for De Bilt and can lead to
strong outliers. Doing this has many potential impacts such as: extremely low outliers which drag down
seasonal averages, and unrealistic extremes which can distort relationships when modelling. So, RH
gaps are better addressed with short—gap interpolation for longer runs. So, very large gaps which are
missing are left out for analyses.

In equation (2.2), the first and last few rows of the precipitation matrix are displayed. We observe that
there are no negative entries, as negative precipitation does not exist. Furthermore, this matrix consists
of 95 rows, referring to the years taken into account. It also consists of 214 columns, referring to the
days in the season taken into account.

(00 00 1.0 0.0 0.0 ... 11.0 6.0 ]
0.0 00 00 170 48.0 ... 110.0 8.0
14.0 54.0 18.0 2.0 1.0 ... 231.0 82.0
270 3.0 14.0 0.0 0.0 ... 43.0 620
0.0 0.0 0.0 0.0 00 ... 51.0 25.0

: : : : : L : (2.2)

0.0 0.0 0.0 0.0 0.0 ... 260 270

0.0 0.0 0.0 0.0 160 ... 159.0 155.0
490 00 00 2070 320 ... 0.0 1.0

1320 0.0 0.0 0.0 0.0 ... 168.0 185.0

| 0.0 14.0 70.0 1200 30.0 ... 7.0 0.0 |

214 columns (days) 95 rows (years)

2.4. Hydrothermal Interaction Data Matrix

So far, we have reviewed the temperature ,and the precipitation data matrices. In this section, we
examine the hydrothermal interaction data matrix. First, we give a motivation for looking at this variable.
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Then the layout of the matrix will be explained.

The hydrothermal interaction is the effect when temperature and precipitation are combined. This is a
key factor in determining the crop yield. The following scenario highlights the importance of this term:
Imagine that the temperature rises. This leads to increased evapotranspiration and water demand.
Furthermore, assume that precipitation is low, which means that there is no rainfall. Then, plants suffer
from a lack of water, and their photosynthesis is reduced; they become less fertile and grow too quickly.
These circumstances lead to great yield reductions.

The dataset for the hydrothermal interaction variable was obtained by using the datasets of the tem-

perature and the precipitation variable. Consequently, the data matrix consists of 44 rows, and 214
columns.



Methods

3.1. Dynamic crop growth models

A general Dynamic Crop Growth Model (D-CGM) can be expressed as the following ordinary differential
equation:

dYy
E:R(Ul,vm...), Y(to)ZYO (31)

where Y (¢) is the plant phenotype, e.g., the weight of storage organs, and R is the growth rate function
depending on the environmental variables v;(t), i = 1,2, ..., such as temperature, soil moisture, evap-
otranspiration etc. Recently [13], a class of D-CGM’s was suggested where the growth-rate function is
expressend as a polynomial in environmental variables:

R(vi,va,...) = a1 + agvy + asvz + agv? + asvivg + . .. (3.2)

This leads to the following explicit solution of (3.1):

Y(t)=Yo+ > aiwi(t), (3.3)
=1
where the functions w;(¢), i = 1,...,n are the cumulative integrals:

t
wl(t):/ dt' =t —tg

to

wa(t) = /t t o () dt,

w(t) = /t ), (3.4)

Predicting the growth of a crop using this model requires the knowledge of the cumulative integrals (3.4)
for the upcoming season. One way to achieve this is to predict the environmental variables v;(t) and
then compute the cumulative integrals of the predictions. On the other hand, one could focus on pre-
dicting the cumulative integrals w;(t) themselves, without first predicting the environmental variables.
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3.2. Estimating cumulative data integrals

In this section, we estimate cumulative data integrals of the environmental variables: temperature,
precipitation, and hydrothermal interaction. We do this as these integrals appear in growth models
such as WOFOST [14]. From plant physiology, we know that the environmental variables, such as
temperature, influence the instantaneous rate at which plants grow. So, the size of the plant at a
certain time ¢ often depends on the cumulative integrals of the environmental variables [15].

Climate databases typically contain the daily averages of environmental variables. By definition, the
daily average g, of the variable ¢(t) is given by:

1 ti
g=—— / a(t) dt. (3.5)
i —btim1 Jy,

The cumulative integral S, (¢) of ¢(t) from t, to ¢ is defined as:
t
Sq(t) = / q(t')dt'. (3.6)
to

While computing this integral for an arbitrary time point ¢t can only be done approximately, it is easy to
show that the values S,(t;), corresponding to the individual days within the season can be obtained
from the daily averages exactly.

It is clear that the integral of ¢(t) over the day that starts at ¢;_; and ends at ¢; can be obtained from
the daily average as follows:

t;
/ q(t) dt = (ti — tifl)qi- (37)
ti—1

Therefore, the cumulative integral S,(¢;) on the day that ends at ¢; equals

i

Silt) =Y / aydt =St — 1,103, (3.8)

ti—1 j=1
and can be directly obtained from the daily averages.

As previously mentioned, the season that we are interested in for this research starts on the 1st of
April at 0:00h, denoted by ¢,. It ends on the 31st of October at 23:59h, denoted by t214. So we are
considering the interval [tg, t214], with time step At = 1 day.

Let the daily average data g;, i = 1,...,214 for the variabloe ¢(t) be stored in the vector w, € R”,
n = 214. Further, we define the lower-triangular matrix C' € R™"*"™ with the elements:
1, i>j,
[Clij = { 0 - (3.9)
, <.
Then, the vector s, € R™, containing the daily values of the cumulative integral S,(¢;),i =1,...,n, can

be computed as
sq = Cwy. (3.10)

If the Environmental Variable (EV) of the type ¢ is collected over m years, the corresponding data rows
w will be stored in the matrix W, € R™*", and the matrix 5, € R™*" with the rows s!' of the cumulative

integrals will be obtained as S, = W,CT.

3.3. Singular Value Decomposition

In this study, we aim to find a basis that captures both seasonal and interannual variations of the
environmental variables: temperature, precipitation, and hydrothermal interaction. One of the methods
used for this is the singular value decomposition (SVD). Our choice for using this technique is justified
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by the data-driven aspect of this method, which extracts dominant spatio-temporal patterns from the
data itself. It also automatically ranks them by size of the singular values. This enables interpretable
reconstructions.

The following theorem states the existence of the SVD for any data matrix:

Theorem: Let A be an m x n real matrix. Then A = UXVT. Here U is an m x m orthogonal matrix.
V is an n x n orthogonal matrix, and X is an m x n diagonal matrix with  non-zero entries o, > 0,
k=1,...,r, where r = rank(A). These entries are called singular values.

In the singular value decomposition
A=UsV" =3 opupvy, (3.11)
k=1

to eachindex k = 1,2,...,r there corresponds a pair of singular vectors: the k-th left singular vector
uy, and the k-th right singular vector vy, [16].

The matrices U, and V7' contain the following information:

» The right singular vectors, i.e., the columns v, € R, k = 1,...,r of the matrix V, are the seasonal
patterns of the environmental variable detected by the SVD algorithm. From these right singular
vectors, we can sometimes infer whether it is an early/late start or end of the season by simply
interpreting the peaks and dips during the season.

 The left singular vectors, i.e., the columns u, € R™, k =1, ..., r of the matrix U, give inter-annual
variations of the relative magnitude the k-th seasonal pattern v. For instance, if the magnitude
of the entries of the vector o, u;, decays with their index, then the magnitude of the corresponding
seasonal pattern v, decays with years.

A rank-p approximation of the matrix A € R™*" is the matrix A, € R™*", such that rank(4,) = p. The
rank-p SVD approximation of A is defined as

p
US, VT =3 ougvy, (3.12)
k=1
where A = UXV7T and 1 < p < r = rank(A). The rank-p SVD provides the best rank-p approximation

of A in Frobenius norm [16].

The relative error of the rank-p SVD approximation is related to the singular values of A as follows:

A-UX, VT2 1 1
pzs>VD = ” ||A||1; I = A[=2 UV — UZPVT”% = A2 U2 - ZP)VT”%“
F F F
) s 2 (3.13)
k=p+1“k
= HA”Q 1% — Ep”%“ = er+02 :
F k=1"k

[16].

The SVD algorithm was programmed in Python. First, we created the matrix by initializing the data
matrix using np.array. Then, we used numpy.linalg.svd () to execute the SVD algorithm we applied
to the respective data matrix. This function returns the matrices U, 2, V7.

3.4. Non-Negative Matrix Factorization

Similar to SVD, the Non-negative Matrix Factorization (NMF) obtains a (possibly) low-rank representa-
tion of a data matrix that captures dominant patterns, while reducing noise and dimensionality. Further-
more, NMF requires non-negativity of entries of both the data matrix and the two matrices into which
the data matrix is factorized. The following points reveal why NMF can be applied to the data matrices
discussed in this research:

* Precipitation: daily totals are nonnegative by definition, so A > 0 holds directly.
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+ Hydrothermal: if defined as a nonnegative function of temperature and precipitation (e.g., prod-
uct of nonnegative components or an index with truncation), the resulting matrix is nonnegative;
specify the exact construction.

» Temperature: from figure 3.1, we see that the entries in the integrated temperatures matrix are
non-negative. Hence, NMF can be used on the integrated temperature matrix.

3500 -
- 2020
3000 -
~ - 2015
s
~ 2500 A
o - 2010
>
£ 2000
qé 2005
@ =
F, 1500 - - 2000
2
©
S 1000 - - 1995
E
]
O ; - 1990
500 - , ~
~
> 1985
O -
T T T T T
0 50 100 150 200
Days

Figure 3.1: lllustration of the nonnegative integrated temperature matrix. All entries are > 0.

Definition: Given a nonnegative matrix A € R7", rank-p NMF finds nonnegative factors W, € R’;OXP
and H, € Rgﬁ" that solve the minimization problem [17, 18]:

. 2
win (14 =Wl

Existence: Existence of NMF was showed for the first time by using the Completely Positive (CP)
Factorization in [19].

Uniqueness: NMF is not unique. This means that matrix A ~ W,H, can consist out of different
matrices W, and H,, all depending on how many components were used when running the algorithm.
The number of components we choose to work with when running the NMF algorithm directly affects
the factorization space. A higher number of components gives us more degrees of freedom. This
increases the number of possible factorizations [17].

Interpretation of the NMF matrices: When running the algorithm we expect the outcome to be as
follows: A ~ W,H,. The matrices W, and H,, are respectively the coefficient matrix and the basis
matrix. Similar to SVD, the coefficients tell us how strong a pattern was on a yearly basis. While the
basis vectors (rows of the matrix H,,) describe the patterns within the season.

Furthermore, when comparing NMF representations of different ranks, it is convenient to use the fol-
lowing relative error [20]:

pNMF _ HA — WPHP”%‘ .
? 1A%

(3.14)

(3.15)
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Implementation and software: We have used an implementation of the NMF algorithm offered by the
sklearn.decomposition Python package, namely, the function NMF. Application of the NMF algorithm
to our data often produced convergence warnings. These were mostly due to the maximum number of
iterations being set too low. This warning then signifies that the algorithm has simply failed to reach the
required tolerance within this number of iterations. This can be prevented by increasing the maximum
iterations. However, this was not the only reason for non-convergent behavior. Sometimes, the lack of
convergence also had to do with the initialization that was used. The random initialization worked better
than the SVD-based initialization. This has to do with the fact that environmental variables evolve in
nonlinear, chaotic ways, while the SVD-based initialization is geared towards linear low-rank structures,
which may not reflect the true dynamics. Also, random initializations explore more than one starting
point [21].

3.5. Verifying generalizability of seasonal patterns

The seasonal patters, i.e., matrices V and H, obtained from the training datasets may be appropriate
for other years as well. To check if this is the case, we consider the approximation of testing datasets
Agt, Using V and H constructed by SVD and NMF on the training years.

Leta! be a single data vector corresponding to some test year. Then, the problem of approximating the
test year data using the seasonal patterns detected by the SVD in the training years can be formulated
as the following least-squares minimization problem:

Jmin Vb — a3, (3.16)

where V,, € R"*? is the matrix with p seasonal patterns as columns, i.e., the SVD matrix of right singular
vectors. The solution of (3.16) is given by:
bt,p = VpTat. (317)

The error of this rank-p approximation is defined as:

svp _ la—a,l3  llae = Vbl llae —VpV a3 I(7 = VaV a3
b = (3.18)

iz lladiz a3 a3

[16].

In the NMF case, the matrix of seasonal patterns H is not an orthogonal matrix. Therefore the corre-
sponding least-squares problem

: T 2
Jmin || H, by — a3, (3.19)
has a different solution:
b.y = (HpHy) ™ Hyay. (3.20)

The error of this rank-p NMF-derived approximation is defined as:

NMF _ lla, — at,p”% _ la; — Hprtp”% _ lla; — Hg(HpHpT)ialatH% _ (I — HE(HpHE)’IHp)atH%
or a3 a3 a3 13
(3.21)
[17].

3.6. Predicting the time evolution of seasonal patterns

To predict how seasonal patterns change over time, the temporal evolution of the component score
vector (coefficients) of each pattern is modelled using a simple linear-in-time model. The parameters
of this linear time-evolution model are estimated on the training data set of past years. The predictions
of this model are evaluated on the test set of future years. In this section, we discuss the linear-in-time
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regression analysis of the SVD and NMF coefficients describing interannual variations of seasonal
EV patterns, employing metrics that characterize the usefulness and quality of linear regression. In
particular, we discuss the slope, the p-value, and the coefficient of determination.

For each year t, the EV data vector a; € R” is projected onto a p-dimensional reduced basis V,, =
[v1---v,] € R"*P producing the approximation:

p
ap =Y brivi=Vyb (3.22)
=1

Here, b; € RP is the vector of p coefficients for the year ¢. Note that the seasonal patterns in V,,
have been deduced from the EV data of the training years. Thus, the assumption is that the patterns
themselves do not change over the years years, however, the relative weight of each pattern changes
from year to year.

The change of the entries b, ; of by with time ¢ will be modelled as a linear trend plus noise:
bii =i+ Bit +e; (3.23)

Here, ¢ is the year, «; is the intercept, §; is the slope and e, ; refers to the residual error.

Parameters «; and 3; used in equation (3.23) are estimated on the training years by using the Ordinary
Least Squares (OLS) method. Let the training set of years be denoted by Ti,, then the OLS estimates
&; and 3; minimize the following functional:

> (bei — (o + Bt))? (3.24)

tETr

For each fitted component we report the slope Bl the p-value for testing 3; = 0, and the coefficient
of determination R?. This was done using the SciPy Python package, specifically the scipy.stats
module.

The estimated parameters &; and §3; are obtained from the training years. These parameters are used
to predict the temporal evolution of b, ; over the test years. For a test year ¢, the predicted vector of
coefficients is

G + Prtess
b, = : . (3.25)
ap + Bpttst
The predicted seasonal EV data vector is obtained with the basis vectors learned over the training years
with the predicted coefficients:

arp = Vpbro,- (3.26)
To assess the quality of these predictions, we compare the predicted and the obeserved rank-p repre-

sentations of EV data-vectors. Prediction accuracy of the rank-p approximation is quantified using the
Normalized Mean Squared Errors (NMSE’s). Specifically, the rank-p prediction NMSE:

A 2
‘ Atese — Mtise,p

NMSEpred(ttst) = ‘ 2 27 (327)
||attst 2
and the rank-p approximation NMSE:
2
Aty — Ay,
NMSEapp(ttst) - M7 (328)
Hattsr 2

which corresponds to the previously defined errors (3.18) and (3.21) [22].
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Slope: The slope j3; is derived by minimizing the LS functional defined in equation (3.24):

n

Y (i — (a4 1)) = (byyi = (a+ Bty))?

t€T st j=1

- (3.29)
=3t [ 5] [§])? = - el
j=1
Here t; € Ty, = [t1, ..., t,] are the training years. Furthermore,
1 4 bty i
X = 1 tf ER™?, o= m er? yo | emn (3.30)
i t.n bt,:L,i
The ordinary least squares (OLS) solution satisfies the following normal equation:
XTXa=XTy,, (3.31)
and is obtained as:
&= (XTX) X Ty, (3.32)
First, we write out the result for X7 X as follows:
1 S no Yt
S | L R LA o33
Now, we write out the result for X7y, as follows:
T n ... 1 P S tibe
Xy= | S [ Z_b] (5:39)
tnyi

Now substituting equation (3.33) and equation (3.34) in equation (3.32) gives the following result:

5- [ 54 [

D ey SR | (3:35)
_ 1 DIt 2h = 3t Xt

St — (X t)? {—itjzbj +nztjbj}

From equation (3.35), we can derive the equations for the intercept and slope, respectively, as [23]:

C St IIh = 30t Dths
S SEZE O S

(3.36)

p-value: The p-value quantifies the probability of observing a slope estimate at least as extreme as B;
under the null hypothesis Hy : 8; = 0. In practice, we compare the p-value to a chosen significance
level. In this study, we opted for o = 0.05. If p < 0.05, we reject Hy and conclude that the slope 3; is
significantly different from zero. This suggests that there is evidence of a linear trend in b, ; over time.
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If p > 0.05, we do not reject Hy. In this case, the data do not provide sufficient evidence to claim that
B, differs from zero, and the apparent trend may be due to random variation.

The test statistic is given by

po b (3.38)
SE(8:)

where SE(f;) denotes the standard error of the slope estimate. The standard error is obtained from the
estimated variance of the residuals,

n

R 1 R
5= — ; (be,.i — (6 + Bit;)) ", (3.39)
and the variance of j; is
Var(5:) o (3.40)
ar(p; ) = T .
Zj:l(tj - {)2
Thus,
SE(B;) = |/ Var(B:). (3.41)
The p-value is then computed as
p=2 (1-F,_,(t)), (3.42)

where F;, _, is the cumulative distribution function of the Student’s ¢ distribution with » — 2 degrees of
freedom [23].

Coefficient of determination: The coefficient of determination quantifies how well the linear regres-
sion model explains the variability of the data. It is defined as follows:

SSE

2
=1- —
R SST’

(3.43)
Here, SSE is the residual sum of squares and SST is the total sum of squares. The range of R? values
is0 < R? < 1,. R? = 0 indicates that the model does not explain any of the variability in the data;
predictions are no better than using the mean. Meanwhile, R?> = 1 indicates that the model explains
all variability perfectly; the fitted line passes through all data points. Intermediate values 0 < R? < 1
indicate that the model explains part of the variability. Larger values indicate a better fit [23].

Letb; = %22;1 b, i Define
SST = Z(bfj’i —b;)?, SSE= Z(btj,i — G5 — Bitj>27 (3.44)
j=1 j=1
and SSR = SST — SSE. The coefficient of determination is
SSR SSE Diq (bt i — G — Bit;)?

R? = =1- =1- -~ — . (3.45)
SST SST > i (b i — )2

Train-test split: We apply the common 80 — 20%-rule, using 80% of the data to train the regression
model and 20% to test its predictions. This balances reliable parameter estimation with independent
evaluation [24]. Since dataset sizes vary, the effective split differs. This impacts both the stability of
training and the robustness of prediction accuracy.



Temperature

Temperature is a key environmental variable in this study, with direct implications for the agriculture.
This chapter focuses on predicting long-term temporal trends. Insection 4.1, both the temperature
matrix and its integrated form are visualized. The integrated representation emphasizes cumulative
seasonal patterns rather than short-term fluctuations. This provides a more suitable basis for identifying
dominant temporal trends across years. Subsequently, in section 4.2 and section 4.3, the results of
SVD applied to the integrated temperature matrix are discussed. The components contributing most to
the dominant structure of the matrix are selected for further predictive analysis. These predictions are
assessed by comparing the NMSE values of both the rank-1 approximation and linear prediction. Then
the same procedure is repeated using NMF in section 4.4. This enables a direct comparison between
orthogonal and non-orthogonal decompositions, and provides insight into which representation offers
the most robust characterization of the temperature data.

4.1. Exploratory Analysis of the Integrated Temperature Matrix

The entries of a few columns and rows of the temperature data matrix were introduced in section 2.2.
In this section, both the temperature matrix and the integrated temperature matrix are visualized.

Figure 4.1 shows the first three rows of the temperature matrix. The daily temperature patterns across
the years appear to be relatively similar. This can be confirmed by figure 4.2, where the integrated tem-
perature values over the season only show minor deviations between 1981 and 1983. The integrated
representation emphasizes cumulative seasonal patterns rather than short-term fluctuations. This is
more suitable for identifying dominant patterns. Further analysis will be conducted on the integrated
temperature matrix.

14
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Figure 4.1: Temporal patterns across the season for the years 1981-1983. The many peaks and dips signify short-term
fluctuations, rather than long-term temporal behavior.
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Figure 4.2: Cumulative temperature patterns across the years. These curves display long-term temporal behavior.
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4.2. Characterizing Integrated Temporal Patterns through SVD
Singular Value Decomposition (SVD) was applied to the integrated temperature matrix. The analysis
starts by analyzing which ranks capture most of the dominant structure of the integrated temperature
matrix. Furthermore, the interpretation of these corresponding components is provided. The method
used in this analysis can be found in section 3.3.

Figure 4.3 displays the relative approximation error as a function of the rank. The SVD error approxi-
mation pf;VD approaches 0.005% at rank=3. This means that the integrated temperature matrix is well
approximated by a low-rank representation. This implies that the dominant structure of the matrix is
captured by the first three basis vectors.

In figure 4.4, the seasonal temporal patterns are illustrated. The first basisvector highlights the slow
cooling trend across the season. The second basisvector emphasizes an early summer followed by
rapid cooling. This is reflective to an early start of autumn. The third basisvector contains two distinct
peaks. These peaks mathematically satisfy the orthogonality constraints of SVD. However, they do
not correspond to typical temporal behavior in the Netherlands. This is a clear pitfall of SVD: while it
provides an optimal low-rank decomposition in a least-squares sense, the resulting basisvectors are
not guaranteed to have direct physical meaning, due to the orthogonality constraint.

In figure 4.5, the interannual temporal coefficients are shown. The first coefficient remains negative
across the years, emphasizing the pattern displayed by the first basis vector which took on negative
values across the season. By contrast, the second and third temporal coefficients exhibit oscillations,
which do not contribute meaningfully to the characterization of their associated basis vectors.
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Figure 4.3: SVD approximation error pSVD as a function of the approximation rank p for the integrated temperature matrix.
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Figure 4.4: The three corresponding basis vectors obtained through SVD. These curves show the evolution of the temperature
patterns across the season.
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Figure 4.5: The coefficients corresponding to the seasonal temperatoral basis vectors generated by SVD.
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4.3. Pattern Forecasting

In this section, the slopes, p-values, and coefficient of determination are examined of each component
obtained through SVD. Based on these results, the relevant component(s) are selected for forecasting
temporal patterns. The methods used in this section can be found in section 3.6.

In figure 4.6 the slopes and p-values of all the components obtained through SVD are displayed. The
first slope has the largest absolute magnitude, emphasizing the importance of the trend depicted by the
first basis vector. Its corresponding p-value is less than 0.05, implying statistical significance of the first
basis vector. This basis vector also has the largest coefficient of determination as shown in figure 4.7.
Although the basis vectors 7,10, 31 also have a p-value less than 0.05 they do not exhibit large slopes
nor do they exhibit large coefficients of determination. Hence, only the first basis vector will be taken
into account when predicting temporal patterns.
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Figure 4.6: Slopes and associated p-values for the components obtained through SVD. The first component exhibits the
largest absolute slope. Components 1, 7, 31 exhibit p-value less than 0.05.
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Figure 4.7: Coefficient of determination (R?2) for all components obtained through SVD. The first component has the highest
coefficient,indicating the strongest explanatory power.

In figure 4.8, the NMSE values of both the rank-1 approximations NM SE, 0z (tst), @and linear pre-
diction NMSE, cq(tis:) are shown. NMSE,,,rox(test) consistently yields lower NMSE values. This
indicates that the dominant structure of the data is best captured by the first singular component
rather than by a simple linear prediction. Between 2008 and 2012, both the NMSE, ;0 (test), and
NMSE,,.q(tis:) exhibit approximately the same NMSE values, due to a sudden shift in the tempera-
ture pattern [25]. The rank-1 approximation was still able to capture the data structure well during the
rest of the test years, resulting in lower NMSE,,,..:(t:st) values. By contrast, the linear prediction
failed to represent the evolving trend of the temperature data. This suggests that this simple prediction
could not adapt to the more complex temperature patterns in the later years. Finally, during 2017-2020,
the NMSE values of both models dropped sharply again, indicating a return to more regular patterns in
the data.
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Figure 4.8: Comparison of NMSE values for the rank-1 approximation (N M .S Eqpproz (ttst)) ;and the linear prediction
(NMSEp'red(ttst))-

4.4. Integrated Temporal Trends Identified Through NMF

This section applies non-negative matrix factorization (NMF) to the integrated temperature matrix. The
analysis considers convergence behavior across different ranks, followed by an interpretation of the
resulting basis vectors and their coefficients. Finally, the rank-1 approximation is compared with a

linear prediction to evaluate its ability to capture temporal patterns. The methods used in this analysis
are discussed in section 3.4.

Figure 4.9 presents the relative approximation error (o2 ') obtained for different ranks in the NMF
algorithm. For the first three components, the algorithm converged within the maximum number of
iterations, meanwhile for higher order components between 8 and 13 the algorithm failed to converge.
This reflects the risk of the NMF getting stuck in suboptimal local minima when the factorization rank
increases. This highlights the trade-off between model complexity and algorithmic stability: while higher
ranks capture additional structure, they also increase the risk of non-convergence. Further analyses

will be conducted using the three components, as the algorithm converged for these components, so
the results are reliable.
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Figure 4.9: NMF approximation error p¥MF as a function of the approximation rank for the integrated temperature data matrix.

Figure 4.10, and figure 4.11 display the slopes, pvalues, and coefficient of determination for all NMF
components. In general, components with higher indices exhibit smaller slopes and lack statistical
significance, with the exception of components 23 and 26. Furthemore, we see that the first component
has the largest slope and p-value less than 0.05. The second component also has a relatively large
slope and p-value less than 0.05 with a higher coefficient of determination. Hence, both NMF obtained

components are candidates for predicting temporal patterns.
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Figure 4.10: Slopes and p-values for all components obtained through NMF. The first and second components exhibit the
largest slopes and p-values below 0.05, implying statistical significance.
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Figure 4.11: Coefficient of determination (R2) for all components obtained through NMF. All components have R2-value less
than 10~2. Furhtermore, the second component has a higher R2-value compared to the first component.

The first two components appear to be suitable candidates for predicting temporal patterns. However,



4.4, Integrated Temporal Trends Identified Through NMF 23

unlike in SVD, the first component does not exhibit a markedly stronger contribution. This ambiguity
arises because the basis vectors obtained through non-negative matrix factorization (NMF) are not
orthogonal. Consequently, variance cannot be uniquely attributed to individual components.

To address this, the NMF algorithm is rerun using three components. Both the basis vectors and the
corresponding coefficients depend on the number of components specified during the factorization
process [17]. The choice of three components is motivated by the observation that the first two compo-
nents exhibit the largest positive slopes and are statistically significant. The third component captures
residual variation which is not explained by the previous two basis vectors. This ensures that the de-
composition accounts not only for the dominant seasonal patterns but also for secondary fluctuations.
The resulting basis vectors are presented in figure 4.12. The first and third basis vectors display similar
seasonal patterns, while the second captures residual variations. The associated coefficients, shown
in figure 4.13, remain positive across all years. This indicates that the patterns represented by the ba-
sis vectors are consistently relevant. The third coefficient obtains the smallest values overall, implying
that the third basis vector is indeed a residual variation. Based on these results, the first component is
selected for predicting temporal patterns.
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Figure 4.12: The three temporal basis vectors generated when rerunning the NMF algorithm using three components. These
are the seasonal temporal patterns. The first and third basis vectors display similar behavior, where as the second basis vector
displays residual variations.
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Figure 4.13: The temporal coefficients corresponding to the basis vectors obtained through NMF. The first coefficient obtains
the highest values, highlighting the importance of the first basis vector.

In figure 4.14, the NMSE values of the rank-1 approximation (N M S E,pproz (t:st)), @and linear prediction
(NMSE,,.q(t:s:)) are presented. These results are consistent with those shown in figure 4.8. How-
ever, the error peaks are smaller, which indicates that the approximations more accurately capture the

structure of the basis vectors derived from NMF.
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Figure 4.14: Comparison of NMSE values for the rank-1 approximation (NM S Eqpprox (ttst)) ,and the linear prediction
(NMSEpTcd(ttst)). The results are similar to the ones shown in figure 4.8.



Precipitation

Precipitation is another key environmental variable in this study. In recent years, notable shifts in
precipitation patterns have been observed in the Netherlands. These changes have had significant
consequences for crop yield and agricultural planning. This chapter examines long-term precipitation
trends in the Netherlands by analyzing the integrated precipitation matrix, which emphasizes cumula-
tive seasonal behavior rather than short-term variability in section 5.1. Singular value decomposition
(SVD) and non-negative matrix factorization (NMF) are applied to identify dominant precipitation com-
ponents and to evaluate their predictive value in section 5.2,and section 5.3. This provides the basis
for assessing which representation offers the most robust characterization of precipitation dynamics in
the Netherlands.

5.1. Visualization Of The Precipitation Matrix

In section 2.3, the preprocessing of the daily precipitation data and the construction of the precipitation
matrix were described. In equation (2.2), the entries of a few columns of the precipitation matrix were
introduced. In this section, the first three rows of the matrix and its integrated form are visualized.
Figure 5.1 illustrates the precipitation patterns for the years 1930-1932. Based on the raw curves, it
is difficult to determine which year was the wettest or driest, as all three contain several peaks across
the season. Integration of the seasonal curves reveals that 1930 was the wettest year and 1931 the
driest, as indicated by their final integrated values at the end of the season, as shown in figure 5.2.

26
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Figure 5.1: The seasonal precipitation patterns for the years between 1930 and 1932. These are the first three rows of the raw
precipitation matrix. The peaks and dips indicate short-term fluctuations, rather than long-term precipitation behavior.
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Figure 5.2: Integrated seasonal precipitation patterns. The year 1930 is identified as the wettest, with the highest final
integrated value. The year 1931 is the driest, with the lowest integrated value at the end of the season. The smooth curves
indicate long-term precipitation behavior.
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5.2. Prediction Of Integrated Precipitation Patterns Through SVD
In this section, the results of SVD applied to the integrated precipitation matrix are discussed. The
relevant components are selected and the matrix is approximated by the chosen rank. Additionally, the
linear prediction is used to forecast the precipitation patterns. The methods used in this section can be
found in section 3.3, and section 3.6.

A property of SVD is that the first few singular value values capture a greater part of the variance [16].
This implies that the first few basis vectors are also the most dominant patterns. Figure 5.3 shows the
seasonal precipitation patterns. Here, v; decreases over the season. Furthermore, figure 5.4 shows
that the coefficient of this seasonal pattern is negative across the years. This means that the pattern
shown by the first basis vector is of an increasing precipitation rate. Unfortunately, the coefficients )
and u3 do not contribute to additional information corresponding to their respective basis vectors as
their signs are mixed. The respective seasonal patterns are similar to each other as they both display
a convex behavior, followed by a concave behavior. This highlights the orthogonality property of SVD
[26].
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Figure 5.3: The first three basis vectors obtained through singular value decomposition (SVD), representing seasonal
precipitation patterns. The first basis vector exhibits a decaying profile over the season, while the second and third display
similar structures characterized by convex behavior followed by concavity, indicating shifts in precipitation rates throughout the
season.
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Figure 5.4: Coefficients corresponding to the first three basis vectors. The first coefficient is negative, emphasizing the
importance of the pattern represented by the first basis vector. The second and third coefficients exhibit oscillatory behavior.

Figure 5.5 displays the slopes and associated p-values for all basis vectors. The first basis vector
exhibits the largest slope, but it is not statistically significant, as its p-value exceeds 0.05 and its co-
efficient of determination is small as shown in figure 5.6. This apparent discrepancy arises because
statistical significance in regression analysis does not necessarily align with the variance captured by
singular values. In SVD, the leading singular value explains the majority of the variance in the data,
even if the corresponding regression slope is not significant [27]. For this reason, the first basis vector
is nevertheless selected for predicting precipitation patterns.
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Figure 5.5: Slopes and associated p-values for all components obtained through singular value decomposition (SVD). The first
few components are not statistically significant, which contrasts with the expectation from the orthogonality property of the
basis vectors.
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Figure 5.6: Coefficient of determination for all components obtained through singular value decomposition (SVD). All
components have values less than or equal to 10~ 1. This indicates that the components explain only a small fraction of the
variance.



5.2. Prediction Of Integrated Precipitation Patterns Through SVD 31

Figure 5.7 shows the approximation error for all ranks. This figure illustrates that higher ranks lead
to lower approximation errors as more of the data structure is captured. Note that our prediction is
restricted to the first rank.

In figure 5.8, the NMSE values of the rank-1 approximation (NM SE,pprox (tist)) ,and the linear pre-
diction (NMSE,,.q(t:s¢)) are presented. The rank-1 approximation initially exhibits a concave NMSE
trajectory, reflecting uneven adaptation to precipitation variability. Throughout most of the test years,
both methods yield consistently high NMSE values, indicating that precipitation patterns during this
period differed substantially from those in the training years. In 2017, precipitation in the Netherlands
was relatively evenly distributed across the seasons rather than dominated by extremes. This explains
the lower NMSE values observed in that year [28]. After 2017, the two approximations follow a similar
trajectory. This results in minor differences in NMSE. In general, the high NMSE values across the
test period can be attributed to shifts in precipitation patterns in the Netherlands relative to the training
period.
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Figure 5.7: SVD approximation error p;?VD as a function of the approximation rank for the integrated precipitation data matrix.
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Figure 5.8: Comparison of NMSE values for the rank-1 approximation (N M .S Eqpproz (ttst)) ;and the linear prediction
(NMSEp'red(ttst))-

5.3. Forecasting Precipitation Patterns Through NMF

In this section we discuss the results of applying NMF to the integrated precipitation matrix. First, the
relative approximation errors are examined across different ranks. Subsequently, statistical measures
are analyzed for all NMF components, as these provide insight into their explanatory power. To comple-
ment these quantitative results, the most important basis vectors, and their corresponding coefficients
are visualized. Finally, the normalized mean squared error (NMSE) values are compared between the
rank-1 approximation and the linear prediction model. The methods used for this analysis can be found
in section 3.4,and section 3.6,

Figure 5.9 presents the NMF approximation errors pé,VMF as a function of the approximation ranks. This
figure shows that the NMF algorithm converged for every tested rank, indicating that for each chosen
factorization rank, the algorithm reached a stable solution where the reconstruction error no longer
decreased significantly. This demonstrates that the integrated precipitation data were well-suited for
the applied factorization.
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Figure 5.9: NMF Approximation Error péV]MF as a function of the approximation rank for the integrated temperature data
matrix. All ranks converged during the NMF algorithm.

Figure 5.10 demonstrates that none of the NMF basis vectors exhibit p-values below the conventional
threshold of 0.05. Although the slopes vary in magnitude, particularly for basis vectors with higher
indices, they are not statistically significant and therefore cannot be distinguished from random fluctua-
tions. Furthermore, Figure 5.11 presents the coefficients of determination for all basis vectors, with the
highest value equal to 0.02, indicating that the NMF decomposition fails to capture long-term precipita-

tion patterns.
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Figure 5.10: Slopes and p-values for all components obtained through NMF. None of these components are statistically

significant.
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Figure 5.11: Coefficient of determination (R2) for all the through NMF obtained components. Alle of these coefficients are
smaller or equal to 10—, which signifies a very small explanatory power of each component.

So far, no dominant basis vector has been identified. The behavior of the first three seasonal and
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interannual precipitation patterns is shown in figure 5.12 and figure 5.13. For this analysis, the NMF
algorithm was rerun with three components. In figure 5.12, the second basis vector resembles the
behavior of the first basis vector during the first half of the season, while the third basis vector resembles
the behavior of the first basis vector during the latter half of the season. This suggests that the first basis
vector captures the overall dominant structure of the precipitation data. The corresponding coefficients
remain positive across all years, emphasizing the consistent importance of the precipitation patterns.
Consequently, further predictions of precipitation patterns will be based on the first basis vector.

100 A

80 A

60 -

Amplitude

40 A

20 A

0 50 100 150 200
Day of Season

Figure 5.12: The three NMF basis vectors obtained by using three components during the initialization of the algorithm. These
are the seasonal precipitation patterns.
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Figure 5.13: The coefficients corresponding to the basis vectors obtained through NMF. These are the interannual precipitation
patterns. All these coefficients are positive, contributing positively to the relevance of the corresponding seasonal precipitation
pattern.

Building on this reasoning, predictions are carried out using the first basis vector. The performance of
these predictions is shown in figure 5.14, which compares the normalized mean squared error (NMSE)
values of the rank-1 approximation and the linear prediction model. The two approaches produce nearly
identical results, with only minor differences in error magnitude. Notably, the error peaks are smaller
than those observed in figure 4.8, indicating that both methods capture the structure of the NMF-derived
basis vector effectively. The minor differences between the NMSE values confirms that the first basis
vector provides a stable and reliable representation of the precipitation patterns.
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Figure 5.14: Comparison of NMSE values for the rank-1 approximation (NM S Eqpprox (ttst)) ;and the linear prediction
(NMSEp;cq(test)). The linear prediction model captured the structure of the precipitation patterns well based on the
overlapping NMSE values.



The Hydrothermal Interaction

This chapter focuses on predicting hydrothermal interaction patterns, which reflect the coupled dynam-
ics of temperature and precipitation. Changes in these interactions directly affect soil moisture balance,
crop growth, and water resource availability. In the Netherlands, agriculture and flood management are
highly sensitive to both heat and rainfall, emphasizing the importance of forecasting hydrothermal inter-
action patterns. This chapter examines long-term hydrothermal interaction patterns by analyzing the
integrated precipitation matrix, which emphasizes cumulative seasonal behavior rather than short-term
variability in section 6.1. Singular value decomposition (SVD) and non-negative matrix factorization
(NMF) are applied to identify dominant temporal components and to evaluate their predictive value in
section 6.2,and section 6.3. This provides the basis for assessing which representation offers the most
robust characterization of hydrothermal interaction dynamics in the Netherlands.

6.1. Visualization Of The Hydrothermal Data matrices

Figure 6.1 presents the first three rows of the hydrothermal matrix. These patterns closely resemble
those of the precipitation matrix, with the distinction that the peaks are reduced in magnitude. This
observation indicates that precipitation is the primary driver of the hydrothermal interaction term.

Furthermore, figure 6.2 illustrates the cumulative hydrothermal patterns for the years 1981-1983. In all
cases, the curves begin with relatively low values at the start of the season, increase steadily toward
mid-season, and subsequently decline toward the end of the season. This reflects a hydrothermal
cycle. Despite this similarity in shape, the amplitudes differ across years. The year 1981 exhibits the
highest peak, indicating stronger hydrothermal conditions. Whereas 1983 remains consistently lower,
reflecting weaker interaction.
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Figure 6.1: First three rows of the hydrothermal matrix. This is similar to figure 5.1. However, the peaks are smaller.
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Figure 6.2: Seasonal trajectories of the integrated hydrothermal matrix for the first three years (1981-1983).
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6.2. Prediction Of The Integrated Hydrothermal Patterns Through
SVD

This section presents the results of applying singular value decomposition (SVD) to the integrated hy-
drothermal interaction data matrix. The analysis begins with an evaluation of the relative approximation
error. The extracted basis vectors and their associated coefficients are then examined to identify the
dominant structures underlying the data. The statistical relevance of these components is assessed
through the analysis of ,p-values, and coefficients of determination (R2). Finally, predictive performance
is evaluated by comparing normalized mean squared error (NMSE) values obtained from both rank-1
approximation ,and linear prediction. These elements establish a systematic framework for assessing
the extent to which SVD captures and predicts the integrated hydrothermal dynamics. The methods
used for this analysis can be found in section 3.3, and section 3.6.

Figure 6.3 shows the relative approximation error as a function of the rank. As expected, the error
decreases when more ranks are included in the reconstruction of the data matrix. However, the figure
makes clear that the majority of this reduction occurs within the first three ranks. Beyond this point, ad-
ditional ranks yield only marginal improvements. This observation highlights that the essential structure
of the integrated hydrothermal interaction matrix is captured by the first three basis vectors.
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Figure 6.3: Relative approximation error prVD as a function of approximation rank. The error decreases substantially with the
first three ranks.

Figure 6.4 shows the first three basis vectors, also referred to as the first three hydrothermal interaction
patterns across the season. The first basis vector captures the dominant seasonal trend: a gradual
increase in hydrothermal flux toward peak summer, reflecting the combined influence of rising tem-
peratures and sustained precipitation. The second and third basis vectors exhibit oscillatory behavior
within the season. These components represent residual variability rather than physically interpretable
signals.

Figure 6.5 displays the three coefficients corresponding to the basis vectors. The first coefficient re-
mains consistently negative across years, indicating the constant relevance of the pattern captured by
the first basis vector. By contrast, the second and third coefficients exhibit oscillatory behavior. The
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latter two coefficients contribute little to no interpretive value beyond their associated basis vectors.
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Figure 6.4: The first three basis vectors generated through SVD. These describe the hydrothermal interaction patterns within
the season.
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Figure 6.5: The first three coefficients, which correspond to the basis vectors. These are the interannual hydrothermal
interaction patterns.
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Figure 6.6 displays the estimated slopes for all components obtained through SVD. The components
that exhibit the largest slopes are not statistically significant. However, the components with the small-
est slopes are statistically significant, highlighting the importance of statistical testing when identifying
reliable trends. As shown in figure 6.7, the first component attains the second-highest coefficient of de-
termination (R?). Due to the orthogonality property of SVD, the first component captures the greatest
explanatory variance, making it the most suitable candidate for predictive analysis.
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Figure 6.6: Slopes and associated p-values for all components obtained through SVD. Statistically significant components
exhibit slopes that are relatively smaller in magnitude.
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Figure 6.7: Coefficient of determination R? for each of the components obtained through SVD. The statistically significant
components from figure 6.6 exhibit the highest R2-values.

In figure 6.8, the NMSE values of the rank-1 approximation, N M .S Eapprox (tist), @and the linear prediction,
NMS Eped(tist), are shown. Overall, the linear prediction consistently exhibits higher NMSE values
than the rank-1 approximation. Furthermore, three notable irregularities can be identified.

In 2018, the Netherlands experienced an exceptional drought combined with unusually high tempera-
tures in the summer. This sudden change in temporal and precipitation patterns affected the hydrother-
mal interaction term [2]. The rank-1 approximation achieved a very small NMSE compared to the linear
prediction. This indicates that the dominant spatio-temporal component captured by SVD could adapt
to these conditions, unlike the linear prediction.

A similar situation arose in 2020, one of the warmest years on record in the Netherlands. Characterized
by a long August heatwave, very dry spring conditions, and simultaneously extreme precipitation in
February [29]. These contrasting events complicated the hydrothermal interaction term. While the
rank-1 approximation could still capture the dominant structure, the linear prediction failed to represent
the irregular combination of extremes.

The third peak occurred in 2022. Both models obtained high NMSE values. That year was excep-
tionally warm, and extremely dry, with severe precipitation deficits [4]. These conditions disrupted the
hydrothermal interaction term to such an extent that even the rank-1 approximation could not maintain
low error. This explains why in 2022 both methods performed poorly, unlike in earlier peaks where the
rank-1 approximation still retained smaller NMSE values.
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Figure 6.8: Comparison of NMSE values for the rank-1 approximation (N M .S Eqpproz (ttst)) ;and the linear prediction
(NMSEp;cq(test)). The linear prediction model had overall higher NMSE values. Three irregularities occurred in 2018,2020,
and 2022, which had consequences for the NMSE values of both models.

6.3. Prediction of Integrated Hydrothermal Patterns using NMF

The analysis used in this section is similar to the previous section, differing in the fact that it focuses on
NMF instead of SVD.

Figure 6.9 plots the relative approximation error as a function of the approximation rank. As expected,
increasing the number of components reduces the error. However, convergence is only achieved for
the first nine ranks, while higher-order components fail to stabilize, as indicated by the red ticks. This
highlights a key limitation of NMF: unlike SVD, it does not guarantee orthogonality or variance-ordering
of components. This makes it difficult to identify which basis vectors are most critical for reconstruct-
ing the hydrothermal interaction matrix. To overcome this limitation, we further examine the slopes,
associated p-values, and coefficients of determination of all components.
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Figure 6.9: Relative Approximation Error pﬁMF as a function of the approximation ranks. The first nine ranks were able to
converge during the NMF algorithm. Overall the components with higher indices were not able to converge during the NMF
algorithm.

Figure 6.10 displays the slopes and associated p-values for all NMF components. The first compo-
nent exhibits the largest slope and is statistically significant. While the three higher-indexed compo-
nents 14, 25, 42 also achieve significance despite their smaller magnitudes. As shown in figure 6.11, all
components obtained coefficients of determination below 1072, indicating that no component provides
strong explanatory power. This contrast highlights another key limitation of NMF: statistical significance
in slope estimates does not necessarily translate into meaningful variance explanation. Consequently,
the first component is selected, as it combines statistical significance with a relatively high explanatory
strength compared to the other components.
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Figure 6.10: Slopes and p-values for all components obtained through NMF. The first component exhibits the largest slope and

p-value less than 0.05. Higher-indexed components have smaller slopes and are not statistically significant, except for

components 14, 25, 42.
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Figure 6.11: Coefficient of Determination (R?) for all components obtained throough NMF. All components exhibit R < 10~2.
The first component has the highest R2-value. This translates into a relatively high explanatory power.
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Figure 6.12 shows the first three basis vectors obtained from re-running the NMF algorithm with three
components. While the second and third vectors display oscillatory behavior, the first basis vector
captures a complete seasonal pattern. This component exhibits a mid-season rise, consistent with
intensified precipitation. The corresponding coefficients in figure 6.13 remain positive across all years.
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Figure 6.12: The first three basis vectors obtained from re-running the NMF algorithm with three components. These basis
vectors capture the dominant seasonal hydrothermal interaction patterns.
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Figure 6.13: Coefficients associated with the first three basis vectors obtained through NMF. These coefficients illustrate how
the hydrothermal patterns evolve across years.

In figure 6.14, the NMSE values of the rank-1 approximation and the linear prediction model are pre-
sented. The rank-1 approximation consistently achieves lower NMSE values. The linear prediction
curve lies above it throughout the test period. Moreover, the linear prediction exhibits successive peaks
and troughs. This indicates instability in capturing the underlying hydrothermal interaction patterns.
This highlights the superior performance and robustness of the rank-1 approximation for representing

the hydrothermal interaction data.
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Figure 6.14: Normalized mean squared error values for the rank-1 approximation NM SEpprox(ttst), and the linear
prediction model NMSE,,.q(ttst). The errors of the linear prediction consistently lie above those of the rank-1 approximation.



Conclusion

This study addressed the following research question: To what extent do SVD-based and NMF-based
representations, in combination with linear prediction models and rank approximations, cap-
ture seasonal and interannual variability in temperature, precipitation, and their hydrothermal
interactions in the Netherlands?. Here, the term hydrothermal interaction term reflects the coupled
dynamics of temperature and precipitation.

This study used two decomposition techniques: singular value decomposition, and non-negative matrix
factorization. These techniques were applied to the temperature, precipitation, their correspponding
integrated matrices, and hydrothermal interaction data matrices. The approximation errors were plotted
against the ranks to gain insight into how many components were needed to capture the seasonal
and interannual variations. For the environmental variables studied, the first component captured the
seasonal and interannual variations. The linear prediction and rank-1 approximation were used to
forecast patterns of these environmental variables, which were assessed by means of the Normalized
Mean Squared Error.

The research question regarding which predictive framework can adequately capture seasonal varia-
tions in temperature, precipitation, and their hydrothermal interactions in the Netherlands remains only
partially resolved. Nevertheless, the seasonal patterns obtained through Singular Value Decomposition
(SVD) and Non-Negative Matrix Factorization (NMF) provided valuable insights.

For temperature, SVD extracted a broad seasonal trend, but its orthogonality constraint produced pat-
terns that were not realistic. In contrast, NMF yielded additive and consistently positive components,
with the first component representing the dominant seasonal variation and higher-indexed components
accounting for residual fluctuations. For precipitation, SVD concentrated most of the variance in the
first component, suggesting an overall seasonal increase, while later components offered limited in-
terpretability. NMF provided a clearer structure: the first component captured the dominant seasonal
signal, and the remaining components reflected secondary variation. The positive coefficients across
years indicates that NMF offers a more reliable representation of precipitation dynamics. For hydrother-
mal interactions, SVD identified a combined seasonal trend reflecting rising temperatures and sustained
precipitation, but additional components mainly captured oscillatory noise. On the other hand, NMF pro-
duced a seasonal pattern that remained consistently relevant across years, emphasizing its suitability
for complex variables such as the hydrothermal interaction term.

The predictive framework that most effectively captured interannual temporal variations was the rank-1
approximation using the component obtained through NMF. Across the testing dataset, which com-
prised 20% of the full data, rank-1 approximations consistently outperformed linear predictions. In the
case of temperature, rank-1 approximation derived with the component obtained through NMF exhib-
ited smaller error peaks and more stable NMSE values across the years. This is an example of its
superior ability to preserve underlying seasonal components and adapt to shifts in dynamics. For pre-
cipitation, both rank-1 approximation (with the component obtained through SVD) and linear prediction
yielded consistently high NMSE values. There was a temporary improvement in 2017. On the other
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hand, the rank-1 approximation (with the component obtained through NMF) produced nearly identi-
cal NMSE values to the linear prediction. Hydrothermal interactions highlighted the contrast between
models, with the rank-1 approximation (with the component obtained through SVD) outperforming lin-
ear prediction during extremes in climate such as in the years 2018 and 2020. It adapted to dominant
spatio-temporal component, yet failed under irregular conditions in 2022. By comparison, the rank-1
approximation (with the component obtained through NMF) consistently achieved lower NMSE values,
emphasizing its robustness as a reliable predictive framework for hydrothermal dynamics.

Future research could benefit by incorporating a wider testing dataset size, and a range of predictive
approaches. Thereby enabling more robust comparisons across methods. Furthermore, these predic-
tive frameworks can also be applied to systematically evaluate which model best captures seasonal
variations in temperature, precipitation, and hydrothermal interactions. Finally, establishing a direct link
between the outcomes of this study and crop yield would provide valuable practical insights. As this
connects climate variability directly to agricultural performance.
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