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ENERGY  LOSS  AND   SET-UP  DUE  TO  BREAKING  OF  RANDOM WAVES 

1) 2) 
J.A.   Battjes       and  J.P.F.M.   Janssen 

ABSTRACT 

A description is given of a model developed for the prediction of 
the dissipation of energy in random waves breaking on a beach. The 
dissipation rate per breaking wave is estimated from that in a bore 
of corresponding height, while the probability of occurrence of breaking 
waves is estimated on the basis of a wave height distribution with an 
upper cut-off which in shallow water is determined mainly by the local 
depth. A comparison with measurements of wave height decay and set-up, 
on a plane beach and on a beach with a bar-trough profile, indicates 
that the model is capable of predicting qualitatively and quantitatively 
all the main features of the data. 

INTRODUCTION 

Quantitative predictions of wave-induced mean sea level variations 
and currents in the nearshore region require a specification of the 
variation of the mean wave energy density (E) in that region. Battjes 
(1972) and Goda (1975) have presented methods to that effect applicable 
to random, breaking waves. In these models, E is forced to follow in 
some sense, to be described below, the variation of the local depth. 
The energy dissipation rate due to breaking is not estimated indepen- 
dently in these models. This is a shortcoming, since it immediately 
precludes the use of an approach based on the energy balance. Such an 
approach is physically more sound, and would e.g. be needed in applica- 
tions to profiles where the depth is not monotonically decreasing 
shoreward, such as in the commonly occurring bar-trough profiles. For 
these reasons an attempt was made to develop a model for the dissipation 
of wave energy in random waves, breaking on a beach. 

The outline of the paper is as follows. Existing models for the pre- 
diction of the energy variation across the surfzone are discussed first. 
Following that, the various elements of a new dissipation model for random 
waves are described. The results are combined with a conventional model 
for the prediction of wave-induced variations in mean water level. Sub- 
sequently, experiments are described which were carried out to test the 
model, and to determine the magnitude of a coefficient which in the 
theory can be estimated in order of magnitude only. Finally, a comparison 
is given of the results of the theoretical model to the experimental data. 
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EXISTING MODELS 

We consider a two-dimensional situation of waves normally incident 
on a beach with straight and parallel depth contours. 

For given incident wave parameters and beach profile, the variation 
of mean wave energy density (E) with distance to the shoreline can in 
principle be calculated from the wave energy balance, written as 

3P 
-^ + D = 0, (1) 

in which P  is the x-component of the time-mean energy flux per unit 
length, x is a horizontal coordinate, normal to the still-water line, 
and D is the time-mean dissipated power per unit area. Knowing the de- 
pendence of P and D on E and on known parameters such as local mean 
depth (h), wave frequency (f), mass density (p) and gravity acceleration 
(g), it is possible to integrate (1), subject to the initial condition 
of the given incident wave, to find E as a function of x. 

Outside the surfzone, the wave decay is rather weak, and D can 
often be neglected entirely. If not, the only contributions to it are 
from such mechanisms as the formation of a boundary layer near the bed, 
percolation in a porous bottom, etc., for which the dependence of D on 
E can be estimated reasonably well. In either case, (1) can in fact be 
used outside the surf zone. 

Inside the surf zone, the dissipation of wave energy in the breaking 
process is dominant. Because the details of these processes are so 
little understood, the energy balance is usually abandoned in the surf 
zone. An exception must be made for LeMehaute (1962), Divoky et al (1970), 
and Hwang and Divoky (1970), who do apply an energy balance to breaking 
solitary or periodic waves, by using a bore model for the dissipation 
rate. Usually, however, instead of solving the energy balance equation, 
a self-similarity in the surf zone is assumed (for solitary or periodic 
waves), such that the wave height (H) decays in constant proportion to 
the mean depth, or 

H(x) = y h(x), (2) 

in which y  is a coefficient of 0(1), whose actual magnitude can vary 
with beach slope and incident wave steepness. 

For random  waves breaking on a beach, a model based on (1) does 
not seem to have been published. An approach based on (2), using it as 
an upper bound to the local wave height distribution, has been presented 
by Battjes (1972) and Goda (1975). Goda's model is similar to Battjes' 
model in essence, though different in the details. 
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The use of (1), rather than (2), is in principle much to be preferred 
for a number of reasons, the most fundamental one being that (1) has a 
sound physical basis, whereas (2) is assumed ad hoc. Associated with this 
are the following items: 
- Assumption (2) relates the local wave height to the local mean depth. 

This introduces an unrealistically large dependence of dissipation 
rate on local bottom slope (Battjes, 1978b). In (1), the local wave 
height is found from an integration, so that it not only depends on 
the local depth but also on those further seaward, which is more 
realistic. 

- If necessary, other dissipation mechanisms than that due to breaking 
can be incorporated in (1) in a straightforward manner, whereas this 
is not the case for (2). 

- Eq. (2) is restricted to profiles in which the depth decreases mono- 
tonically in the shoreward direction. This is not the case for (1), 
which in principle can be applied in bar-trough profiles as well. 

A DISSIPATION MODEL FOR RANDOM WAVES 

Introduction 

As noted above, no model based on the energy balance seemed to be 
available for the prediction of the energy variation in random waves, 
breaking on a beach. The preceding comments should make it clear that 
such a model is in fact desirable. One such model which has been deve- 
loped will be described in the following. 

Before turning to the specifics, some general remarks will be made 
about the philosophy of approach which has been adopted. 

Firstly, since at present there is virtually no systematic quanti- 
tative knowledge of the internal structure of breaking waves, the approach 
used herein is based on knowledge of external, macroscopic properties 
of breakers only. 

Secondly, it was deemed prudent to build a rather crude model at 
first, containing the simplest possible elements which would still re- 
present those aspects of the problem which were considered essential. 
A confrontation of such model with real data should serve to indicate 
whether the model is sufficiently realistic to warrant further refine- 
ments. Examples of choices made on this basis are an abrupt upper cut- 
off of the wave height distribution, the use of a simple, linear appro- 
ximation for the energy flux P, and the omission of all dissipation 
mechanisms other than that due to breaking. The results presented in the 
following represent only the first steps  in the sense just described. 
However, at several places it will be indicated how refinements could 
possibly be made. 
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A third point to be mentioned has to do with terminology. When re- 
ference is made to a "breaking wave", this could be interpreted as a 
wave at the moment of incipient breaking, defined in one way or another, 
or it could perhaps be taken to refer to the turbulent, aerated bore- 
like structure some time after the onset of breaking. To avoid this 
possible semantic confusion, we shall here refer to the latter as a broken 
wave; the breaking itself is then taken to correspond to the transition 
of the unbroken mode to the broken mode, according to the definition 
adopted for such transition. 

Wave height distribution 

Consider a fixed point on a beach, with mean depth h, in the pre- 
sence of a random incident wave field. It is impossible for waves with 
heights considerably in excess of h to pass the point being considered, 
since those which otherwise would do so are reduced in height as a result 
of breaking. The limited depth effectively limits the larger wave heights 
in the distribution. A simplified model of this is obtained by defining 
for each depth h a maximum possible wave height H  (to be specified sub- 
sequently), and to assume that the heights of all the waves which are 
breaking or broken at the point considered, and only those, are equal 
to H . 

m 

The assumption just stated is of course a simplification. Not all 
the heights of broken waves passing a fixed point are equal, nor are 
they all necessarily larger than those of the non-broken waves. The 
first of these two aspects can be remedied by providing for a smoother 
cut-off, as in Goda's model (1975). For the time being the simpler model 
described here was used. After all, our purpose is not to estimate the 
details of the wave height distribution in the range near H ; it is to 
derive mean square values from a distribution of wave heights which is 
somehow suppressed in its upper region by the local depth. 

The assumption stated above will now be written in terms of the 
probability distribution of the wave heights, F(H). The shape of F(H) 
for the lower, non-broken wave heights is assumed to be the same as it 
is in absence of wave breaking, i.e. of the Rayleigh-type, with modal 
value H, say. This leads to 

F(H) =  Pr{H < H} = 1 - exp(-|H2/H )   for 0 < H < H 
m 

(3) 

for H <  H, 
m — 

in which the underscore indicates a random variable. The local value 
of the parameter H is left unspecified for the moment. 
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Eq. (3) represents a probability distribution with two parameters, 
H and H . All the statistics of the wave heights can therefore be ex- 
pressed in terms of (H,H ). Among those are the rms value (H  ), r m rms 
defined by 

oo . 

H   = {/ H2dF(H)}5, (4) 
rms    Q 

and the probability that at a given point a height is associated with 
a break 
equals 
a breaking or broken wave (Qh)> which on the assumption stated above 

Q, = Pr{H = H }. (5) 
b     —   m 

Substitution of (3) into (4) and (5) gives 

and 

H2  = 2(1 - Q )H2 (6) 
rms b 

(X - exp(-iH2/H2). (7) 
^b 

Instead of using (H,H ) as the two parameters of F(H), it is equally 
possible to use (H   ,H ), which have a clearer physical meaning. This 
can be achieved by eliminating H between (6) and (7), which yields for 

Q,. 

b _  (^i)
2. (8) 

In Q,     v H 
b       m 

From this transcendental equation, Q can be solved as a function of 
H  /H : b 

rms m 

Q, = f(H  /H ). (9) 
b     rms m 

This is a key element in the whole model. It expresses the fraction of 
waves which at any one point are breaking or broken, in:terms of the 
ratio of the rms wave height (.equivalent to mean energy density, E) ac- 
tually present, to the maximum wave height which the given depth can 
sustain. The local value of H   is not known a priori; it is found 

rms 
by integrating the differential equation (1). The importance of Q, for 
this equation is due to the fact that the average local energy dissipation 
rate D is proportional to it, at least in the dissipation model to be 
described below. It is mainly through Q that this model reacts to 
changes in depth. 
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In very deep water, where H  /H •> 0, (8) gives Q ->- 0, as expected. 
If the waves are shoaling then the ratio H  /H tends to increase, and 
so does Q . In the limit H  /H ->- 1, Q -*••?, which is a degenerate case 
since it corresponds to all^fte waves being broken, and all the wave 
heights being equal to H . 

Breaker height 

So far the quantitative estimation of H was left unspecified. This 
will be considered next. 

The form chosen is based on Miche's criterion for the maximum height 
of periodic waves of constant form: 

H ~ 0.14 L tanh (2irh/L) - 0.88 k ' tanh kh, 
m 

(10) 

in which k = 2ir/L is the positive real root of the dispersion equation 

(2-rrf) = gk tanh kh. (11) 

Eq. (10) as it stands would predict H - 0.88 h in shallow water. In ap- 
plication to waves on beaches we want to use a similar functional relation- 
ship as in (10) but we also want some freedom of adjustment, to allow 
for effects of beach slope and of the transformation to random waves, 
such that in shallow water our expression for H reduces to H = y\i, 
in which y  is a (slightly) adjustable coefficient. In order that the 
deep-water limit shall not be influenced by the bottom slope the 
following form was finally adopted: 

k ' tanh (ykh/0.88). (12) 

In application to random waves, (12) will be used, with f in 
(11) being given a single, representative value, such as f, a mean fre- 
quency defined as the ratio of the first moment of the surface elevation 
spectrum about f = 0 to the zeroth moment. 

It should be pointed out that neither the frequency-dependent 
transition from deep water to shallow water, as expressed by the tanh- 
function in (10) or (12), nor the representative frequency to be used, 
needs to be estimated with great accuracy, inasmuch as most of the wave 
breaking takes place in shallow water anyway, where H - yh,   regardless 
of the frequency used (within reasonable limits). For the same reason, 
the use of only one representative value of f is deemed sufficient. In 
principle it is possible to use a distribution of f-values, leading to 
a distribution of H -values for given h. (A distribution of H has in 
fact been used by Goda (1975), though it was chosen ad hoc.) 
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Energy dissipation in a broken wave 

575 

Following LeMehaute (1962), the energy dissipation rate in a 
broken wave will here be estimated from that in a bore of correponding 
height. 

Consider a bore connecting two regions of uniform flow, with 
depths Yj and Y2, respectively (fig. la). The macroscopic bore 
properties are determined by the conservation of mass and momentum 
across the bore. The power dissipated in the bore per unit span, writte 
as D', can then be calculated, with the result (Lamb, 1932) 

1 3 8(Y1 + V J 
D' ={pg(Y2-Y])

3{-T!Y^F (13) 

This expression will be used to estimate the power dissipated in the 
crest region of a broken wave. If, as is the case here, the broken 
wave is one of a sequence on a sloping beach, then the flow conditions 
on either side of it are non-uniform. Thus, (13) cannot be expected 
to apply in any exact sense, but at most in order of magnitude. For 
this reason it is felt to be justified to use further order-of-magni- 
tude estimates in (13) (written as M, if applied to broken waves on 
a beach. In this respect the treatment here deviates from that of 
LeMehaute (1962). These order-of-magnitude estimates are (see fig. lb) 

Y %  H (14) 

and 

8(Y2 + V 1   B 1 
1     2  Y Y  ;   V (15) 

1 

Y2 
1 

Yi 
/ /  s -" ,v ^ ^ 

(la) (lb) 

Fig. 1 - Sketch of a single, steady bore (la) and of one out of a 

sequence of broken waves on a beach. 
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Substitution of these in (13) yields the following estimate for the power 
dissipated per broken wave, per unit span: 

D* a, I pg H3(^. (16) 

If the waves were periodic with frequency f, then the average power 
dissipated in the breaking process, per unit area, would be 

D*   fD' „  fD'    1 ,  H3 ,,_,. 
L     c    (gh)2   4      h 

where L and c denote wavelength and phase speed, respectively. 
A more refined estimate for the relation between bore strength 

(Y„-Y ) and wave height H than that in (14) has been given elsewhere, 
and applied to solitary and periodic broken waves (Battjes, 1978a). 
However, that refinement has not yet been implemented in the present 
model for random waves. 

Mean energy dissipation in a random breaking wave field 

In application to random waves, we are interested in the expected 
value of the dissipated power per unit area. This can be estimated by 
applying (17) to the broken waves, and to those only. In the model 
adopted above these have a height equal to H , and a probability of 
occurrence (at a fixed point) equal to Q, . Furthermore, the mean fre- 
quency (f) of the energy spectrum is used again as a representative 
value of f. If lastly the ratio H /h is dropped from the order-of- 
magnitude relationship, as being of order'one in the region where 
most of the dissipation occurs, we obtain for the overall mean dissipation 
rate per area 

D ^ i Qbfpg H2, (18) 

or, written as an equality 

D-fc^fpgH*, (19) 

in which - if the model is good - a is a constant of order one. 

In interpretations of (19), it is important to note that Q , repre- 
senting the fraction of broken waves passing any one point, was seen to 
be a function of H  /H . Thus, the combination of (8) and (19) deter- 
mines the power dissipated in the breaking process, D, as a function of 
the unknown local H   (or the local energy density E), the known 
local depth (through ti.  ), and some constants. This is a key result of 
the present model, enabling the application of the energy balance (1) 
to the surf zone. 
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At first sight, it might seem from (19) as if D were decreasing 
with decreasing H  (decreasing h), but this is not normally the case. 
As long as a random wave train of low or moderate steepness is in 
relatively deep water, Q will be virtually zero, and therefore also 
D. When, upon approaching the beach, the depth becomes less than 2 to 
3 times the rms wave height, Q, increases strongly, such that its in- 
crease in fact more than compensates for the reduction in H , so that 
D also increases. Near the limit of very shallow water, Q ultimately 
approaches unity (except for extremely mild slopes), in which case D 
decreases, ultimately in proportion to H . 

Likewise, if the wave train passes a bar, then the increase in 
depth (and consequently in H ) shoreward of the bar crest„causes a 
reduction in Q which more than offsets the increase in H , so that 
the dissipation rate in the model can become virtually zero again in 
the trough shoreward of the bar. Examples of this situation will be 
given below. 

Energy balance 

Having established a dependence of the dissipation rate D on the 
rms wave height, it remains to do the same for the energy flux P in 
order to be able to integrate the energy balance, eq. (1). A simple 
linear approximation will be used, viz. 

P  = P = Ec (20) 

in which 

E = « Pg H (21) 

and 

2rrf 

k 

kh 
sinh 2kh 

(22) 
f = f 

This closes the system of equations for H   . For given depth profile 
h(x), given incident wave parameters, and a (suitable) choice of the 
model parameters a and y,   e1-   0) can be integrated to find H   (x). 

From trial calculations it was found that the damping contained 
in the model appeared to be insufficient to prevent the ratio H  /H 
from tending to blow up as the waterline (zero depth) was approached. 
This phenomenon  is reminiscent of the classical shoreline singularity 
for dissipationless progressive waves. As such it need not be of great 
concern in the sense that it would invalidate the model away from the 
waterline. However, the wave height distribution assumed here limits H 
to values not exceeding H , so that an internal incompatibility arises. 
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The situation could have been remedied by simply terminating the cal- 
culation where the condition H   < H  is first violated,or, rather 
more fundamentally, by incorporating.additional physical mechanisms 
of energy dissipation in eq. (1), which would be predominant near the 
waterline, and of such strength that H  /H < 1 as h -»- 0. In the 
preliminary results to be given below, neither of these was done. 
Instead, the integration of (1) was ceased at the point where the 
condition H   < H is first violated. Shoreward of this point, 

TI   
rms ~ m J H   = H was assumed, 

rms   m 

MOMENTUM BALANCE 

We have so far assumed that the mean-depth profile h(x) was given. 
Normally, only the depth of the bottom below some reference plane, d(x), 
is given. In the experiments to be described subsequently, the still- 
water level was chosen as the reference plane for d, which therefore 
represents the still-water depth. 

The height of the mean water level above the reference plane, 
written as n(x), can be determined from the mean momentum balance. Fol- 
lowing Longuet-Higgins and Stewart (1962) the mean balance of x-momen- 
tum is written as 

dS 

-3= • Pgh £ - 0, (23) 

in which 

h = d + n (24) 

and 

xx       sinh 2kh 

the component of the radiation stress tensor normal to planes x = con- 
stant. As an initial condition for the integration of (23), it is common 
to choose n = 0 in a reference point in deep water. 

In the applications given below, the energy balance and the momen- 
tum balance have been integrated simultaneously, by a process of ite- 
ration. 

The most important reason for the inclusion of the wave-induced 
variations in T)  in the model is not to correct d (the energy dissipation 
model could be checked by working from the outset with h), but to pro- 
vide an independent check on the validity of the model. As noted in the 
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introduction, the variation of the wave energy density E in the surf 
zone is important because the radiation stresses are proportional to 
E, and the gradients of these stresses provide driving forces for the 
mean flow. It is therefore very useful to have a check of the capability 
of the present model to predict such driving forces. A limited but 
nevertheless useful way to do this is to calculate the wave-induced 
set-up n, and to compare the results with measurements. This then is 
one purpose of the experiments to be described in the following 
chapter, the other one being a more direct check on the model through 
measurements of H 

EXPERIMENTS 

Arrangements and procedures 

The experiments referred to above were carried out in a flume in 
the Laboratory of Fluid Mechanics, Department of Civil Engineering, 
Delft University of Technology. The flume has an overall length 45'm, 
width 0.8 m, and height 1 m. 

The flume is equipped with a hydraulically driven random-wave 
generator. The control signal was obtained by filtering a random noise 
signal. 

At the end of the flume opposite the wave generator, two beaches 
with different profiles have been built, viz. a plane beach with a 
1:20 slope, and a beach with an idealized bar-trough profile, consis- 
ting of two 1:20 plane sections sloping seawards, connected by a 1:40 
plane section, sloping shoreward, 4.4 m in length, (Fig. 2). 

1;20     1:40 auge nr.1 

 1 * + \ 
.8 m  14.4 m  10.0 m 1.5 r m    15.3m 

45 m 

wave generator 

1 m 

Fig. 2 - Sketch of wave flume with bar-trough beach profile (plane 

slope indicated by dashed line) 
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The height of the bar crest was about 0.50 m above the flume bottom, and 
the depth of the trough below the bar crest was about 0.11 m. The beaches 
occupied the entire flume width, one at a time. They consisted of compac- 
ted sand, finished with a smooth cement-sand mortar layer. 

Measurements of the free surface fluctuations were made with 7 
parallel-wire resistance gauges. One of these was placed in the constant- 
depth section, 1.5 m seaward of the toe of the beach; this gauge 
served as the reference gauge for the incident waves. The other gauges, 
shoreward of the beach toe, were placed at intervals of 2 m. After a 
recording time of about 90 min., they were moved by 1 m, so as to obtain 
an effective interval between adjacent measurement points of 1 m. 

The gauges were calibrated immediately before and after each run. 
Deviations from linearity were less than 0.5%, provided the minimum sub- 
mergence exceeded 4 cm. This was guaranteed by placing the gauges in 
the beach, in those points where the minimum required submergence was 
not available above the beach face (i.e., in the points relatively high 
on the slope). „ 

The gauge signals were analyzed with respect to the variance (a  ) 
and its spectral distribution. To this end they were fed to an eight- 
channel Pulse Code Modulation recorder, and afterwards from there, at 
16 times the recording speed, to,-a digital correlator and a hybrid 
spectral analyzer. A total of 2  points per signal were sampled, at 
intervals of 0.01 s (0.16 s true time). The corresponding Nyquist 
frequency (fN) is 50 Hz (50/16 Hz true frequency). Per spectrum, 
100 spectral estimates were made, at a separation of 0.01 f , each 
with about 2  /100 — 328 degrees of freedom. 

Values of a , obtained from the digital correlator, were used to 
estimate H   according to 

rms 

H   = 85a, (26) 
rms 

which is consistent with (21) and with 

E = pga . (27) 

Paper chart recordings were made incidentally for visual in- 
spection; they were not used in the quantitative analyses. 

Wave set-down and set-up were measured indirectly, through the mean 
piezometric level at the beach face, which in turn was detected by means 
of 1.5 mm ID tappings placed at intervals of 1 m. 

The tappings were flush with the beach face. However, in addition 
a deviating arrangement was made for some of the higher points, which 
were above the instantaneous waterline during parts of the time (during 
draw-down). During such time intervals, conventionally placed tappings 
at these points would experience a piezometric level equal to the local 
level of the beach face, even though the point would be momentarily 
"high and dry" above the water. This would lead to a systematic over- 
estimation of the wave set-up in that region. 
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To remedy this situation, a narrow slot, 1 cm wide and 10 cm deep, 
was gouged into the beach face, parallel to the side walls of the flume. 
The slot covered an interval of the beach face from a point above the 
highest run-up expected, to a point which was always submerged. Because 
the water in the slot can draw down to below the beach face, tappings 
which were provided in the bottom of the slot can experience piezometric 
levels lower than the beach face at the local cross section. A compari- 
son of the set-up so obtained with that obtained from a conventional 
tapping in the same cross section, in a cross section where the latter 
reading was not suspect, showed them to agree to within the random 
experimental error (0.1 to 0.2 mm). 

The system of measuring the mean water level with tappings in the 
slot is somewhat similar to another conceivable way of achieving the 
same objective, viz. through measurements of the mean piezometric level 
in the pores of a porous beach. If the permeability of such beach is 
low enough, though not zero, then the beach is virtually impermeable 
to water motions in the frequency band of the waves. The wave motion 
would then be the same as on a strictly impermeable beach, while 
the beach would be permeable to the mean component, making a MWL- 
measurement possible. 

All the piezometer tappings were connected via 9 mm ID plastic 
tubes to 86 mm ID stilling wells. The waterlevel in the wells was read 
with a point gauge to 0.1 mm accuracy. 

The energy in the frequency band of the incident waves was filtered 
out to imperceptible values by the system tube-stilling well. However, 
some lower-frequency oscillations were noticeable in the wells, parti- 
cularly for the higher points on the beach. For this reason about 10 
readings per well were made for each run, with intervals of about 
15 min. The arithmetic average of these readings was taken to represent 
the local mean water level, and the height of this above the still-water 
level, which was read in the stilling wells before and after each run, 
was taken as the local set-up. The difference between individual readings 
was largest for points high on the slope, but even there the maximum 
deviation from the average was less than 10% of the local set-up. 

Teats and results 

As mentioned above, tests have been carried out on a plane beach 
and on a bar-trough beach. A summary of the independent parameters used 
is given in the following table. 

c 
Run  Pro- d, d f, a, H   , H s   3 

file (mj (mj (Hz) (mj (mf1 (rn^o   -° 

2 plane .705 - .544 .051 .144 .157 .030 
3 plane .697 - .407 .043 .121 .126 .013 
4 plane .701 - .463 .050 .142 .152 .021 

11 bar .702 .209 .479 .051 .143 .148 .022 1.41 
12 bar .645 .150 .471 .043 .121 .128 .018 J.17 
13 bar .762 .267 .497 .037 .104 ,113 .018 2.35 
14 bar .732 .236 .512 .042 .118 .129 .022 1.83 
15 bar .616 .120 .530 .051 .143 .154 .U28 0.78 
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The  subscript   1   refers   to  the  reference gauge,   1.5 m seaward of  the 
toe  of  the beach;   dc  is   the  still-water depth above  the bar  crest;  H 
is  a deep-water rms wave height,   defined  as 

H = H       ,/K  ,   =  8sa,/K  ,   , (28) 
rms rms1     s1 1     s1 o 

in which K  is the linear shoaling coefficient for depth d  and 
frequency  f ; s  is a deep-water steepness defined by 

s  5 2TTf^H   /g , (29) 
o     1 rms   ' 

o 

and 

d B  d /H    . (30) 
c   c  rms 

o 

The incident wave spectrum was rather narrow (half-power bandwidth 
about 25% of peak frequency), and virtually unimodal, except for a 
bulge in the range of frequencies about twice the peak frequency. 

For the tests on the plane beach, of given slope which was not 
varied, the deep-water steepness is the most important independent 
variable. Three such runs were made, with s -values of 1%, 2% and 3% 

.  o . 
approximately. The results for the run with 2% steepness were inter- 
mediate between those of the runs with 1% and 3% steepness. Only the 
results of the latter two are presented here, the wave heights in figs. 
3a and 4a and the set-up in figs. 3b and 4b. These have been plotted 
against the still-water depth. The variables have been normalized as 
follows: 

H =  H  /H 
rms  rms 

o 

n = n/H (31) 
rms 

o 

did/B 
rms 

o 

Five runs were made with a bar-trough profile. The most important 
independent variable in this case is d , the relative depth at the 
bar crest. It was varied from 2.35 to 0.78. In the first case relatively 
few waves break on the bar, and in the latter case the majority does. 
Virtually no waves were breaking in the trough region, regardless of 
the relative depth over the bar crest. 

Only the results of the two runs with the largest and the smallest 
value of d are presented here, the wave heights in the figs. 5a and 6a, 
the set-up in the figs. 5b and 6b. These have been plotted against the 
relative distance seaward of the still-water line, denoted by 

x = x/H (32) 
rms 
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As an aid in the interpretation, the beach profile has also been 
plotted, in the figs. 5c and 6c. 

In all the plots, except figure 5, the most seaward data point is 
that of the reference gauge in the constant-depth section of the flume. 

Discussion of experimental results 

The wave height decay on the plane slope (figs. 3a and 4a) shows 
a slight steepness effect, in the sense .which might be expected. For 
the lower steepness (s  - 0.01), there is a noticeable enhancement, in 
fact to values exceeding the deep-water wave height, before the decay 
due to breaking sets in. No enhancement has been measured for the 
steeper waves. 

For both steepnesses, the maximum set-down occurs near d = 2. The 
maximum relative set-up, occurring at the waterline, and estimated by 
extrapolation of measured values, decreases with increasing incident 
wave steepness. 

The wave height data for the bar-trough profile (figs. 5a and 6a) 
show a slight enhancement, followed by a more or less severe decay on 
the bar, depending on the relative depth over the bar crest. In both 
cases there is a wave height minimum in the trough of the beach, as would 
be the case for dissipationless waves in shallow water. This pattern is 
consistent with the visual observation that there was virtually no breaking 
going on in the trough region. The fact that the mean water level has 
a maximum near the trough is also consistent with this. 

The mean water level gradient just shoreward of the bar crest is 
far greater than further toward the trough, but still on the same 
slope. (This is particularly clear in fig. 6b.) This is due to the 
fact that in that region there is still dissipation, though the depth 
is already increasing. The dissipation contributes to the mean water 
level gradient in the same sense as the increasing depth (both tending 
to decrease S  ). 

xx 

COMPARISON OF THEORETICAL MODEL TO EXPERIMENTAL DATA 

Results of theoretical model 

The equations of the theoretical model described in previous 
chapters were programmed for numerical evaluation on a digital computer. 

The nearshore beach profiles used in the calculations were the same 
as those used in the experiments. The seaward portion of the profiles 
was a constant-depth section in the experiments, but in the calculations 
this section was replaced by a 1:20 slope extending to deep water. The 
calculations were started in a point of effectively deep water, using 
experimental values of f, and H    as input parameters. 

1     rms 
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Due to the finite size of the flume, the wave^induced set-up on 
the beach causes a lowering of the mean water level in the constant- 
depth section. Thus, instead of having an initial value for the inte- 
gration of the set-up equation (23), the constancy of mass in the flume 
must provide the integration constant. However, there were indications 
that water was not only stored on the beach, but also behind the wave 
generator. The latter amount was not predicted. For this reason, the 
measured set-down in the constant-depth section was used as the refe- 
rence value for the calculations of the mean water level. 

The calculations cannot be initiated until the parameters (a»yl 
have been assigned certain values. It is planned to determine a single 
pair of (a,Y)~values such that the fit of the calculated results for 
H and 7) to the complete data set is optimised in some sense. This 
has not yet been done. In the calculations performed so far, the co- 
efficients a and y were given some plausible values a priori. 

For Y. which indicates a breaker height-to-depth ratio, the 
value 0.8 was chosen. 

The coefficient of proportionality in the expression for the dissi- 
pation rate is expected to be of order unity. A logical a priori choice 
for it would therefore be 1. This has in fact been done in a previous 
formulation, in which however a coefficient has been used which was a 
factor 2 smaller than the coefficient a  used here, defined in eq. 19. 
Thus, the initial calculations were in fact performed for y  = 0.8, 
a = 0.5. The calculated decay rate proved to be too low. The calculations 
were then repeated with y  = 0.8, a = 1. The results of these calculations 
have been superimposed on the plots of the experimental data in the 
figs. 3 through 6. 

Discussion of results 

A comparison of the theoretical results to the experimental data 
leads to the following conclusions. 

In general, the wave height variation across the surf zone is pre- 
dicted reasonably well. In some cases, the agreement between model pre- 
dictions and experimental data is quite good, such as in the figs. 4a 
and 6a. In other cases the agreement is less good, though still fair. 

The set-down and set-up appear to be less well predicted than the 
wave heights. Although the overall agreement is fair, the model consis- 
tently predicts the transition from set-down to set-up in regions some- 
what too far seaward. The  fact that this discrepancy exists even where 
the wave height variation is predicted well, suggests that in the brea- 
king process S  decreases not as fast as the potential energy of the 
waves, perhaps due to a local relative surplus of kinetic energy of 
organized wave motions and turbulent motions together. Data obtained 
previously have given similar indications (Battjes, 1974). 

The probability that an arbitrary wave passing a given point shall 
be a breaking or broken wave, is an important quantity in the description 
of random waves on a beach. It has not been measured quantitatively. 
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However, a comparison of theoretical results with qualitative obser- 
vations is possible, particularly for the runs with a bar-trough 
profile. In all cases, the calculated value of Q, in the trough was 
virtually zero, even though it could be considerable on the bar crest 
^Q  = 0.06 in run 13, with d  =2.35, and Q  = 0.46 in run 15, with 
d  = 0.78). These variations agree at least qualitatively with the 
visual observations. 

Summarising: the model, when given a single pair of plausible 
values for the coefficients a and y, appears capable of predicting 
qualitatively and quantitatively the main features of the complete 
set of data, both with respect to the wave heights and to the mean 
water level variations, both on a plane beach and on a beach with a 
bar-trough profile. This lends strong support to the usefulness of 
the model proposed herein. 
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