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INVESTIGATION OF REHOMOGENIZATION IN THE FRAMEWORK OF
NODAL CROSS SECTION CORRECTIONS

M. Gamarino ∗1, D. Tomatis2, A. Dall’Osso2,
D. Lathouwers1, J.L. Kloosterman1, and T.H.J.J. van der Hagen1

1Department of Nuclear Energy and Radiation Applications, Delft University of Technology,
Mekelweg 15, 2629 JB Delft, The Netherlands

2AREVA NP, Tour AREVA, 92084 Paris La Défense Cedex, France

ABSTRACT

Few-group cross sections used in nodal calculations derive from standard energy collapsing and
spatial homogenization performed during preliminary lattice transport calculations, that implicitly
assume an infinite array of identical fuel-assemblies. The infinite-medium neutron flux used for
cross section weighting does not account for environmental effects arising in case of heteroge-
neous configurations, which can lead to considerable leakages out of or into the assembly and thus
invalidate the reflective boundary conditions used for the lattice simulation. Core-environment ef-
fects can also cause variations, with respect to the infinite-lattice calculation, in the reference cross
section distribution used for few-group constant collapsing. These sources of inaccuracy prevent
from reproducing with high fidelity the best estimate of the reaction rates and multiplication factor
coming from the reference transport global solution. Rehomogenization techniques are therefore
needed. The purpose of the present paper, which builds upon previous work done at AREVA in
the area of rehomogenization, is to formalize a mathematical model that encompasses the different
kinds of homogenization errors. In order to investigate the accuracy of the corresponding cross
section corrections, numerical tests of an assembly-configuration sample are presented.

Key Words: Nodal diffusion; Spatial and Spectral Rehomogenization; Cross section
correction; Burn-up.

1. INTRODUCTION

Current deterministic methodologies for nuclear reactor core analysis make wide use of nodal diffusion
approaches [1]. Cross sections used in nodal codes for 3-D core simulations are generally obtained by
energy collapsing and spatial homogenization from single-assembly calculations with reflective bound-
ary conditions (also referred to as infinite-medium conditions in the following) [2]. Their preparation
involves a set of reference cross sections in a very fine number of energy groups and a reference con-
densation flux determined by neutron transport in the most detailed geometry. If the assembly is far
away from the reflector and surrounded by assemblies of the same type in a large medium compared
to the neutron mean free path, this assumption is clearly acceptable. However, when the assembly is in
its real environment (i.e., the reactor core), the neutron flux distribution can differ significantly from
the one calculated in the infinite medium due to different boundary conditions. Common examples are
mixed MOX/UO2 fuel loading patterns, heterogeneous configurations with depletable strong local ab-
sorbers and controlled regions [3, 4]. Environmental conditions should be modeled with these layouts
to reproduce more accurate nodal cross sections, still using the homogenization paradigm. Smith first
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suggested an approach of cross section rehomogenization to correct the flux-induced homogenization
error [5]. Recently, other rehomogenization techniques have been developed independently at AREVA
NP addressing separately the error in space and in energy [6–8].
Other sources of inaccuracy can arise in nodal cross section preparation. Cross section models used in
core calculations adopt generally only one depletion history in PWRs, thus fixing the evolution of the
isotopic content in the assembly [9]. This issue is still present with simulations in BWRs, even if the
corresponding models use more depletion evolutions for considering the coolant void history as addi-
tional state parameter [10]. Hence, depletion modules have to track important isotopes and perform a
history correction to the nodal cross sections. Moreover, due to self-shielding and within-cell flux dis-
tribution the environmental effects can cause variations in the fine-group pin-by-pin microscopic cross
section distribution at assembly borders and in the nuclide densities with respect to the base depletion
in the infinite-medium lattice calculation. Therefore it is necessary to account also for a homogeniza-
tion defect due to the change of the reference cross section set used for few-group constant collapsing
in the real environment. Contrary to flux-induced defects reproduced by corrective terms, which are
prepared with the standard parameterized tables, defects associated to the cross section distribution are
usually treated online in the core calculation. This implementation was first proposed by Wagner et
al. [11]. Since the correction is based on the burn-up reconstruction in each node, it is simply called
burn-up cross section correction.
The aim of this paper is to propose a theoretical model classifying nodal cross section corrections
and evaluate the relative benefits on the accuracy of nodal calculations for a test case. Our work is
meant to formalize the spatial and spectral rehomogenization techniques developed at AREVA NP and
the burnup-dependent correction in a comprehensive and consistent analytical framework, proving the
complementarity of the corresponding adjustments. The model here presented is being benchmarked
by numerical simulation of several heterogeneous assembly-configurations. In the present paper, the
results of a nodal diffusion solver, recently developed in the context of a joint PhD project between
AREVA NP and TU Delft, are compared to the reference values from neutron transport determined by
the spectral code APOLLO2-A. Focus is given to the spatial and spectral effects of the environment.

2. A MATHEMATICAL MODEL FOR CROSS SECTION CORRECTIONS

A formal derivation of the environmental correction of the few-group nodal cross section Σ
(h)
g,env for a

given reaction is performed (superscript h here stands for ”homogenized”). An analytical expression
for the global homogenization defect δΣg is derived by means of the environmental flux and cross
section distributions Φenv and Σenv, provided in the fine multigroup formalism. The phase space is
limited to space r and energy E for use with nodal diffusion codes. Both environmental quantities are
defined in each node as sum of the reference distribution in infinite-medium conditions, used at cross
section preparation by the lattice code, and of a smooth function δ. Hence the environmental flux and
cross section become:

Φenv = Φ∞ + δΦ, (1a)
Σenv = Σ∞ + δΣ. (1b)

In our model the term δΣ appearing in Equation (1b) is only due to depleting with the environmen-
tal flux instead of the infinite-medium one (effects associated to self-shielding and within-cell flux
distribution are not taken into account). The cross section condensed in the g-th coarse group and
homogenized in the real environmental conditions in the node of volume V (n) is defined as:
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Σ(h,n)
g,env =

∫
V (n) dr

∫ Eg

Eg+1
dE Σenv(r, E)Φenv(r, E)∫

V (n) dr
∫ Eg

Eg+1
dE Φenv(r, E)

. (2)

As a convention, in the proposed model the environmental and infinite-medium fluxes are scaled to
have the same node-average value Φ

(n)
avg,g inside each energy group, that is:∫

V (n)

dr

∫ Eg

Eg+1

dE Φ∞,g(r, E) =

∫
V (n)

dr

∫ Eg

Eg+1

dE Φenv,g(r, E) = Φ(n)
avg,gV

(n) = F (n)
g . (3)

The best-estimate of Φ
(n)
avg,g is one of the outputs of the nodal calculation. If we replace the flux dis-

tribution along the whole energy axis (Φenv) by the one within group g (Φenv,g) in Equation (2), using
Equations (1)-(3) the following expression for Σ

(h,n)
g,env can be achieved:

Σ(h,n)
g,env = Σ(h,n)

g,∞ + δΣ(r,n)
g + δΣ(xs,n)

g , (4)

with:

• Σ
(h,n)
g,∞ as the nodal cross section interpolated from libraries at the current values of the state

parameters in the node n:

Σ(h,n)
g,∞ =

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)Φ∞,g(r, E); (5)

• δΣ(r,n)
g as the homogenization defect due to the flux variation:

δΣ(r,n)
g =

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)δΦg(r, E); (6)

• δΣ(xs,n)
g as the homogenization error due to variations in the fine cross section distribution related

to the depletion in the real environment:

δΣ(xs,n)
g =

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE δΣ(r, E)Φenv,g(r, E). (7)

The leading term from Equation (5) corresponds to the coarse-group cross section homogenized in
the infinite-medium conditions. This is the output of standard single-assembly transport calculations
performed by spectral codes.
The term detailed in Equation (6) is reproduced in the present work by the rehomogenization methods
developed at AREVA NP [6–8]. These approaches consist of estimating the difference between the
environmental flux distribution and the infinite-lattice one by means of a limited set of known modal
components in the domain of space and energy. Rigorously, spatial and spectral effects of the environ-
ment are tightly coupled [3]. A full rehomogenization model where the space and energy dimensions
are considered simultaneously can be put forward by defining the aforementioned flux variation for
group g and spatial domain V (n) as follows:

δΦg(r, E) =
∑
i

∑
j

γij,g · Pi,g(r) ·Qj,g(E) + εrehom,g (8)

being Pi,g(r) and Qj,g(E) basis functions ranging from analytical functions to physically justified
modes. The rehomogenization error εrehom,g accounts for the fact that the trial set might not form a
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complete base of the phase space under study. As first attempt to simplify the correction term of Equa-
tion (6), the flux variation δΦg can be further elaborated to separate the spectral and spatial effects of
the environment, thus easing the computation and using the current rehomogenization strategies [6–8].
The corresponding derivation, detailed in Appendix A, results in the following expression for δΣ(r,n)

g :

δΣ(r,n)
g ≈ δΣ(spat,n)

g + δΣ(spectr,n)
g + δΣ(cross,n)

g . (9)

The cross-correction δΣ(cross,n)
g appearing in Equation (9) derives from mixed space-energy terms. It

is not accounted for in the current implementation of the rehomogenization model.
As for the term of Equation (7), the application of the mean value theorem for integration in energy
yields:

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE δΣ(r, E)Φenv,g(r, E) =
1

F (n)
g

∫
V (n)

dr δΣg(r)Φenv,g(r). (10)

Corrections due to variations of the fine cross section distribution in the real environment can thus be
considered as averaged in each coarse group of the core simulation. The calculation of this adjustment
is approached by imposing some intra-assembly spatial dependence on the nodal cross sections, mod-
eling burn-up induced heterogeneities. We include in this term the cross section correction of Wagner,
Koebke and Winter [11].

3. APPLICATION TO A UO2 COLORSET WITH PYREX

The test case here presented is a 2-D colorset consisting of four 17 × 17 PWR fuel assemblies of
fresh UO2 with two different compositions: the former with 1.8 % enrichment, the latter with 3.1 %
enrichment and 16 rods containing burnable absorber (Pyrex). The assembly set is depicted in Figure 1.

(a) (b) (c)

Figure 1: Assembly-set under study (a) and layout of UO2 fuel assemblies with 1.8 % enrichment (b)
and 3.1 % enrichment and Pyrex (c). Symmetry axis along which reflective boundary conditions are
set are shown in (a). A nodalization of 2× 2 nodes per assembly is chosen.

The nodal diffusion solver adopted in this work is based on a traditional non-linear CMFD-NEM cou-
pling [1], and uses standard parameterized tables computed in APOLLO2-A. The values of the main
state parameters correspond to hot full power conditions; the concentration of B10 is set to 700 ppm.
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Fresh initial core conditions are considered: as the burn-up is uniformly zero within the nodes, the
depletion correction term of Equation (7) is neglected. In order to investigate the effects of spatial and
spectral corrections, four different nodal simulations are performed: with infinite-medium homoge-
nization parameters (a), with spatial rehomogenization of cross sections and discontinuity factors (b),
with spectral rehomogenization of cross sections (c) and with spatial and spectral rehomogenization
applied sequentially (d). It is remarked that, at the current state of development, spatial rehomog-
enization does not correct scattering cross sections and the diffusion coefficient. When solving the
spectral rehomogenization problem, as a temporary implementation the fine-group energy shape of the
transverse leakage is taken as input data from the reference solution, which comes from a fine heteroge-
neous transport calculation made in APOLLO2-A for the whole colorset. In the final implementation
this shape will be computed using nodal information.
The flux shape variation between the real environment and the infinite-medium conditions estimated
by rehomogenization is plotted in Figure 2 for the space domain and in Figure 3 for energy. A very
good reconstruction is found for the spatial flux variation, which is more important in the thermal range
(especially for the heterogeneous assembly). The computed spectrum variation exhibits some inaccu-
racy in the high energy peak region of the fast range (around 10 MeV) and at the interface between the
two coarse groups (i.e., around 0.625 eV), where the change has higher magnitude.

Figure 2: Variation in the transverse-integrated spatial flux distribution computed from the reference
calculation and estimated by spatial rehomogenization. Non-dimensional coordinates are used (x = 0
corresponds to the center of the node). As for the heterogeneous assembly, since the fast and thermal
flux variations are respectively positive and negative in the center of the bundle (where Pyrex rods are
mostly located and neutron absorption is thus higher), it turns that δΣspat

a,1 > 0 and δΣspat
a,2 < 0.

The results in terms of multiplication factor and nodal power distribution for the four calculations are
shown in Table I. A significant improvement is found with calculations (b) and (d). The spatial and
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spectral effects of the environment go in the same direction, which leads to a small over-correction of
keff and to a reversal of the nodal power error sign when the two rehomogenization techniques are
applied sequentially. In order to have a better insight into the accuracy of the method, the errors on
the main nodal cross sections are shown in Table II. Apart from thermal absorption in the assembly
containing burnable poison, stand-alone spatial and spectral rehomogenizations lead to a general im-
provement of cross sections. Excellent results are found when the two corrections are combined.

Figure 3: Spectrum variation per unit lethargy computed from the reference calculation and estimated
by spectral rehomogenization. Lethargy is defined separately in the coarse groups according to [7]. As
for the assembly with Pyrex, within G=1 the computed spectrum variation is negative in the epithermal
range, whereas within G=2 it is positive above the thermal equilibrium region; hence, due to fission
and absorption cross section energy-dependence inside the coarse groups, the relative corrections are
negative for G=1 and positive for G=2. Opposite considerations hold for the homogeneous assembly.

Table I: Comparison of multiplication factor (keff ) and nodal power distribution (Pavg). Normalized
reference values of Pavg are 0.934 for the assembly without Pyrex and 1.066 for the assembly with
Pyrex.

UO2 1.8 % UO2 3.1 % + Pyrex

Simulation keff ∆keff [pcm] Error on Pavg (%) Error on Pavg (%)
Reference 1.08462 -
Standard (a) 1.08215 -247 1.171 -1.025
Spatial rehom. (b) 1.08442 -20 0.326 -0.286
Spectral rehom. (c) 1.08249 -213 0.679 -0.594
Spatial + spectral rehom. (d) 1.08478 +16 -0.430 0.376
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Table II: Errors (%) on nodal cross sections for the assembly with 1.8 % enrichment (a) and the one
with 3.1 % enrichment and Pyrex rods (b). Significant improvement or deterioration (in terms of the
absolute value of the error) is highlighted in blue and red, respectively.

UO2 1.8 % Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2

Reference [cm−1] 0.008538 0.061314 0.004827 0.081858 0.530798 1.27959

Simulation Error %

Standard (a) -0.198 0.732 0.379 0.823 -0.218 0.254
Spatial rehom. (b) -0.191 0.653 0.387 0.705 -0.217 0.250
Spectral rehom. (c) 0.182 -0.044 0.421 0.014 -0.040 -0.156
Spatial + spectral rehom. (d) -0.069 -0.097 -0.078 -0.077 -0.056 -0.146

(a)

UO2 3.1 % + Pyrex Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2

Reference [cm−1] 0.009945 0.096917 0.006570 0.132247 0.518613 1.26863

Simulation Error %

Standard (a) 0.194 -0.476 -0.233 -1.103 0.219 -0.471
Spatial rehom. (b) 0.204 -0.903 -0.236 -0.990 0.219 -0.504
Spectral rehom. (c) -0.223 0.592 -0.402 0.061 0.034 0.127
Spatial + spectral rehom. (d) -0.065 0.098 0.047 0.110 0.053 0.062

(b)

Errors on scattering cross sections are reported in Table III.

Table III: Errors (%) on scattering cross sections.

UO2 1.8 % UO2 3.1 % + Pyrex

Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2 Σs,1→1 Σs,1→2 Σs,2→1 Σs,2→2

Reference [cm−1] 0.504911 0.017387 0.001282 1.21699 0.493194 0.015513 0.001748 1.16997

Simulation Error % Error %

Calc. (a) and (b) -0.235 0.274 -5.18 0.236 0.236 -0.307 6.02 -0.481
Spectral rehom. (c) -0.058 0.392 9.84 -0.172 0.055 -0.478 -10.4 0.105
Spatial + spectral rehom. (d) -0.061 0.090 9.11 -0.158 0.058 -0.125 -9.16 0.073

Cases in which spectral rehomogenization is applied experience in general a remarkable improvement.
A significant over-correction trend is found for out-scattering in the thermal group, which, however, is
of negligible amount.
Potential vanishing of favorable error cancellation is found to be a weakness of rehomogenization. In-
deed even though the method enables a considerable reduction of errors on nodal cross sections, in
some cases an equally noteworthy enhancement in integral parameters is not observed. From the anal-
ysis of Tables I and II, for instance, despite Σ-related inaccuracies become negligible for calculation
(d), the lowest errors on nodal power characterize simulation (b). As spatial rehomogenization does
not adjust scattering cross sections yet, adding a correction reproducing only the spectral effect might
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overshadow error compensation in case the spatial one goes in the opposite direction. Calculation (d)
was thus repeated without changing out- and self-scattering cross sections. It was found that inac-
curacies on keff , as well as on absorption and production cross sections, stay similar in magnitude,
whereas the error on nodal power drops to -0.167 % for the assembly without Pyrex and +0.146 % for
the assembly with Pyrex. This might be a consequence of the aforementioned error offset due to using
infinite-medium scattering cross sections.
Error compensation is expected to play a relevant role in depletion calculations. In assemblies where
nodal power is overestimated, the fuel initially burns more and loses reactivity more rapidly, which
leads to a reduction of the power itself (inversely in bundles where power is underestimated). In simu-
lations performed with infinite-medium cross sections at low burn-up values, the power is overvalued
in the less reactive assembly (UO2 1.8 %) and undervalued in the more reactive one (UO2 3.1 % with
burnable absorber), as found for fresh fuel in Table I. Therefore, the error on the multiplication factor
(which is initially negative) is reduced for increasing values of burn-up. As the decrease of the er-
ror on nodal power due to cross section corrections goes in the opposite direction with respect to this
“self-healing” effect, the benefits of rehomogenization might be partly concealed.

4. CONCLUSIONS

A theoretical model classifying nodal cross section corrections has been presented. Spatial and spec-
tral rehomogenization have been applied to a test case representative of the environmental effects ob-
servable in a reactor core, and proved to improve significantly the results with respect to the standard
calculation using infinite-medium homogenization parameters.
A global framework for cross section corrections is deemed to be a milestone in the context of nodal
simulations, for which so far the work reported in literature has only considered the different kinds of
environmental adjustments individually. Work is currently being performed to enhance the accuracy
of rehomogenization by modeling the effects of spatial and spectral heterogeneity to a greater extent.
Further developments to be pursued include the incorporation of spatial and spectral corrections in
a simultaneous approach and the investigation of configurations including burn-up, where depletion
defects and self-healing effects become relevant. An analysis of the interplay among these corrections
applied all together will give useful insight into the effect of the environment on the global solution of
the neutron diffusion problem in the reactor core, and enable to improve the performance of current
nodal core simulations.
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APPENDIX A. DERIVATION OF THE FLUX HOMOGENIZATION DEFECT

This Appendix reports a consistent derivation of the rehomogenization techniques developed at AREVA
from the formulation proposed in Section 2.
The following factorization for the infinite-medium flux distribution is introduced:

Φ∞,g(r, E) = Φ∞,g(r) · ϕ∞,g(r, E), (11)

where Φ∞,g(r) is the flux integrated in the coarse energy group g, while ϕ∞,g(r, E) is a normalized
spectrum having unitary average value within g. This factorization is always possible, and both factors
are known by the spectral lattice transport calculation. An analogous factorization is considered for
the environmental flux distribution:

Φenv,g(r, E) = Φenv,g(r) · ϕenv,g(r, E). (12)

It is recalled that Φenv,g(r, E) and Φ∞,g(r, E) are scaled to have the same average value Φ
(n)
avg,g within

the node n (Equation (3)). According to Equation (6) and to the flux factorization of Equations (11)
and (12), we write the δΦg-related homogenization defect as:

δΣ(r,n)
g =

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)Φenv,g(r)ϕenv,g(r, E)−

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)Φ∞,g(r)ϕ∞,g(r, E) (13)

Consistently with the procedure used so far (Equation (1a)), the normalized spectrum in environmental
conditions can be defined as the sum of the infinite-medium one and of a local variation term δϕg(r, E),
having zero average value within the energy group g:

ϕenv,g(r, E) = ϕ∞,g(r, E) + δϕg(r, E) (14)

Introducing Equation (14) and the spatial flux variation δΦg(r) = Φenv,g(r) − Φ∞,g(r) (with zero
volume-average within the fuel-assembly) into Equation (13), after some algebraic manipulation it
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reduces as follows:

δΣ(r,n)
g =

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)δΦg(r)ϕ∞,g(r, E)+

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)Φenv,g(r)δϕg(r, E). (15)

The infinite-medium energy-collapsed spatial cross section distribution Σ∞,g(r) can be defined as:

Σ∞,g(r) =

∫ Eg

Eg+1
dE Σ∞(r, E)ϕ∞,g(r, E)∫ Eg

Eg+1
dE ϕ∞,g(r, E)

(16)

Hence, using Equation (16) the first term on the right-hand side of Equation (15) becomes:
1

Φ
(n)
avg,gV (n)

∫
V (n)

dr Σ∞,g(r)δΦg(r) = δΣ(spat,n)
g , (17)

that is the cross section correction defined in the framework of the spatial rehomogenization technique
described in [6] and [8].
By means of Equation (1a), the second integral on the right-hand side of Equation (15) is rewritten as
follows:∫

V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)Φenv,g(r)δϕg(r, E) =∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)Φ∞,g(r)δϕg(r, E) +

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)δΦg(r)δϕg(r, E). (18)

A cross-term correction can be identified:

δΣcross,n
g =

1

F (n)
g

∫
V (n)

dr

∫ Eg

Eg+1

dE Σ∞(r, E)δΦg(r)δϕg(r, E). (19)

At this point, an equivalent spectrum variation δϕequiv,g(E) is introduced:

δϕequiv,g(E) =
1

F (n)
g

∫
V (n) dr Σ∞(r, E)Φ∞,g(r)δϕg(r, E)∫

V (n) dr Σ∞(r, E)Φ∞,g(r)
. (20)

After defining the infinite-medium spatially-homogenized cross section energy distribution Σhom,g(E)
as:

Σhom,g(E) =

∫
V (n) dr Σ∞(r, E)Φ∞,g(r)∫

V (n) dr Φ∞,g(r)
, (21)

the last addend of Equation (18) becomes:

1

Φ
(n)
avg,gV (n)

∫ Eg

Eg+1

dE Σhom,g(E)δϕequiv,g(E) ≈ δΣ(spectr,n)
g . (22)

This term can be assimilated to the cross section correction defined in the spectral rehomogenization
method presented in [7]. The symbol ≈ is used instead of full equality because the term δϕequiv,g(E)
is here an equivalent average spectrum change (i.e., a weighted average of δϕg(r, E)), whereas in [7]
it is the change in the spectrum relative to the average cross section.
Using Equations (17), (19) and (22), the definition of Equation (9) for the homogenization flux defect
is achieved.
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